50062
U2FsdGVkX18jsdAVvYviVPK29unBfiC+/0sa6R97YbO72Q6hz2EhM0yis73wg65K8YvxhFIY519lexbdzlS/UfotAmp8otXvy2Xiiuq8JZ1ApCQtIvNaGGtyWFq9tj8ZH4CVzsPl0j3GkUdieN99T75aVi6xED8k84MEEciFmjj0l8rq/d1P+8jEHJylmBKvAw5muX12AdTROfyDOlpp2hIIcRCR7lji4i9OwP7sVo4Ovsx7kRROB7QcH/TC1Q+i+wVarT/UeQCmpihVFnJpcAUL9IF5O/r8YC9A0KUqEeFV1Rlu6VwvGq31anLRRquvMbjkORf5wjf4lp1qXKUL10v5sDUlSnH8NUaqWCiBlmcUbGYujLDLeAOC5RD82OQI8C6QoVPW9l18ai5yZUS46LdQtNgLdjvSMcnpp/sqJTTcsgR89a6hhdE5rtUS7cY6ueOVXsqgicNLi/JaJHukAwwNuIFLlTuxWyCxVI+msIz6WN9k6mdw+h+gprS+QFZxb2W0Io6D7NWaZTU9tpBpvmyqU33UFVccbTJ61lX2UsdiP7OJJd6h8DBjH0cZKy+58Q+p+ODiotyHKfhq8RjWR0kjUG9fWD/DDJqw2x14owSDOcmN81FzR7L+/dOwwIep1BxUzCZswbHU0zl5NL8J42v1wQ9PfGEPIUCxrP9sYTTquOfIIWa8xyx49t1eNTbSE+3e9qrvxVe5O8Vzc3BYTw2W6WiEAmxRhQHjUuDR9OTAj4g9+UDPsstYqCECfqmCjNqbwFH5PzAdih4naPlqOgwfHP0W8Yk18LW/7GFv2Uq2XUWqPmaEsqrgv1EOjzMfxSVmZ+u32cNmeciEa98k35JRCFk+AKqMk+a62kS1UKwatSvVfDlXf0cfNPKohqI/wDCS/HM3iehQWtheb//J3KOx13hnrA7pgwq8CwtVK2si8++pjXhLelEZUaAafmtHoNTw+Pu7kwM5YauUIC0KWX8IdtFC1SPfBXTbq4Zcb9fSvmsf5qVY1XIBqJuPGCdrBhUQMJNPzXp598dUHDA6XFs9QN1Xi/eEcZC0huvA/6M0YbsYUpyouwNDym4BUCTUYZ7b8ecJCQvLxkezXoAgfYYi0M/6IMsm604Xu+RwJ5h6zTU53hmCStqgjuV+3VFaCX+23plgl3RtfAP6eAbsjOOGA8mS6KHPr7PNt08hnVctLMsvbG8TjETH0qvo+jJKbVPKSLKMQgohGemc8Sz6d9DaQmnL9xKpm0/XPLU8D4akdYXa7TqDtACa9MLjHO7pu1BmCn3t2u5Qy46fSvXvhYdXr6IQ99nQCJbCLB3DLkrn8z3vE/5Q+vIIo+mvk7XiFsngQI7nlSp8Zo78Y9SNLUItIXhiUt67N/Bao5VL9pZ0JuTbcfpfAvdKmqKGy+zg3KwzdG7DFhUkHwHG5UiFrBAspIqceaKm4QbiM8cLVo7MhZQD0ppHcbqxrFz4hCVuNd5LVZQ5teCLQxPUgL1e0JAs6frc/S+P4s01xtOWHNZCHJFEqUuhy8hkX/3LjWYkxiurtSY/u3vx0O6VaqvEKP4nc2Y5UV39PYZPIdL6bzYoc/6GETBTnSaRcuMU+L7QZ0TwPmZViLGlJVBAbZO+12wCcsKDEOnRVOa+sMNagUBetJZW9DaXIAdIgz1G3KCRZYVUce/6bRkQN7Rj5fywk7G+kVwgPnbwRitbF6NMf0g3C7KK+39qHq0iDUdjHoS6F9R96Iv4pMfPqNUf5EkwhgZlUrkTwVYwwSnfH2tGFjTiDwMKR8a5fNsc1MYwdjOl76osUkRw/JB4xPRrbdwaAYZsJjlzo3mAQTZnwoQVvvxFtYuJcOiAEkgGvN1QZA1TEIFIguyrTW8EdEQpCLib91GDSRnUeA7GA2zwV15F/2PzHsSiRQVh5XFxUW7OvyHg8jky6zm+RSZf5jSTbmysWUxLHT0uNSV3+3Xmas92t6U9HzXRaNRdC1d9Q7ps3CkHJlYjueYSjJ9EiVMaCO9YejiMC5Jap3T7ZPqCPHU7yd4iTmmmcjCladv6/aP/JmJOWsRFqYA6oN6BnV5UiV72ZKa/G+vttARtqpJ7ElyJPejq1DzWV6W6eXx/fAPIXAx7kC82T+2n00U3iOKvF5b4ScAHx82mJ6NXnZaRUpLCkNUiKDpGeVXtfljKw/qCOi8jE4xYhvYWZGnVSyTG4FD5rAkdlXMuXPV3G+PcvqgngDmEX6RNFmNu6WuZii/ub7uwf+rnA0/0OwXXWxcCW8kAptlbWNuvsZ7scgGT5s5wrnpDGEQffslI04P1raDJJXHMpEc71tPmTn6slJPpxeCUQ40z0V8ul/EfE0Ns/Ie7Rl8x+Rn3aAHYmEPtYwEmqP5ejF48afAdy0tajtDtL3CfxDG3juyeTMJiPyu/LBp/rBATdS0fSnz8rCX7ITW1U52a6VqwDinfY6fsD6zS65DvjX9L0mwhtTcsSHdinnjooMu8lT9ppAPf8gQfennBI16q+N4nBzHgXmjrBNsG1UvBC3dykMJGiLfLb/1QH4i9Tp9mLwmmxS3TRFxUot27oTMQNGsKbYqFvfnLYXkrjk8ggc5O0eoIr1aPaXRGEpq/BYj45XIuTKaKQMbkjC3K2+hw7XBEvznDmEgbsdPy/EDv+9cVtaJwlt+D62z8u5nc4TsTwMOXeu2S6ocySpfoyZrgptKr/BwJ6y2UTiPrgS6nhgx9io2BYbkzqN8FrXXWfyJEVmobantLRcU57k88s0KTZCk6nL4aOKFXZjU3PSzn0l32uviwAqKrDSzLiazqws+Lhau1zSy5ZCENwS38kqD0rr5l6ObZtHSv2drDgUmU37RBgqbxxYLEttqsXObFMaDTFR92CWPxMPxn/BBViwEpmmhqmCkEnPDffokaWB0qGqkPDz1W0lyJ2lwuODtz9PZaCROkUOdqh6HoJ3zQyhtLazGL+QPtUZDVGpqvkKarxwJKbWZCi7A//pYv1Osjk7z/LiS4OBQl1GW1IJ/zm1YbFmiBWwvhbfnHFr8faRe1RzitB2jH6KP/pmxzKunxcVVh8y0ibk3HqV2SJmdwnK+B1fVLUlCD/uiY/4ugRfllWStR7EASOEHwGYh43wMPLJQHIRCOwmo5xdTVkZYxverMTS+X7gJ1FzLISx7gnvtSbnxVqycYnt/nsqBytFX0aPjckpBjlLnY+pAlg92raK/mtYRYtI71BIqGK2nO3uvwCY+PMZaBY3AHqcpE/n61CbHauFcm0i0G4jLLJailjpTcaz9cG2BuhsNq0TUhJl2dkHZCflIaC428Qi/q/QUoV+k+qZsBzlcaiTW89WC3fUlwQrqSOkmCmT7zKpnnwrY6OfcmnLzFuZUGyeqRkM8hNPTTzKaMUUqrb71K7BNXGUOmq5jwwdEyV8aIF66UGP6KxXRMUSBrhQg2f0uI20ZOBgG3uEoxefH82PRegyIObxIkjsTpmjeFbRwOW5akQ54iZ9+CZn9+9FC2zvb0Vv4OR/7vQ1awOSCLqyHRw4vgsHs4u9zvxasZRtGHs5596UxK1bxr1dWizIg4ss1ddtEPwnJkY4QheEaZkxxND85o8j2OlDK4TlXkaSUUeVMXkGC+xZsEIwmrUSCQqy4kdkYgiX0A6rQoe0hoyJkEt0FqTb5uDmrImM2BbfNQQffKfzT/+4m5sg1D6ya4ZV+Jb6nmzwBHjQx15dBMqEtBpBqUhgoVZYR5ac7h3DHCZ+S8B3jsg4f9Ya9PT/SwrrxONEYmqUJ9HrLs9cHBUA49AquQeVwDz0qW3wVWe1heChRX6BwOHN27vztOzB62hOjaau0hORd4sQ143xMZ05WLtKAWjIOHvEUw0sPKMYOYBeV/pd3LFomeUkERo6JE235jow7KJ8mv4U7EXqNOvyk1nvr0F4iGElSwbLYpdL7+z2yF+cNppBqjX3Nj55y89TzSae/lx+jrP5CP74+6zVlBfweMhxyWZJsia5SXbedjrB11MRdJvI6XmdYs6lX+dCNmIfVqJcOi2aoEO6mC90lnUpkSfdSbiV7sNKdndCL3+ZTcr88LuJ04gvogqe/z9yr7I8QclIC0HiuBAebGnyjfRxyp+sKzR1FhEFvSB7TtfSHqK7L2pPIC0dDFX2a+VQfF5aEgZqYAeuWmn0jHYZmAOTu40klpvF8dwH2lfPQ1xQmpla3GxfTsj+OvXJR9R9luJpb6dyRXRESSTiQl2gLU3x+TaKKkcgVOZD9FYHQw3+S9MBEpMNg1gVm86289VJYD5faKs7brFOcG9QvK7Cc/rJkhCecgWRGIhZCc41TMsZgiUIFms6HKzUVJEi9tnb6w+WO+TQEp1ZA/qK46n2GVCwuql6Y9FfI9cwcyW+bNOjfRXl+XbeO6BoJ1l99RrhvYU3f7BODPdE5MMDguuWTb6IRRErXDRlprFpZSWzUPhR7qHaj1vttNzuAyMwEvtmGUwzf+/ypxG/7Ng4qed6IsL8Yh/iYHawtUZjw+Weq3GOMsdBp3GSASR4KJJhfZVYY4ix+Qtk4EFF4VQGEaFET1wL59FncmFaNTWxxiQ7eM5uUlzi5AcIrI2GmMWqEUKwiMS6EduOR+KBAmnciv00ntGg76U0/Xi38EeuIlLr7Lk7tmkTCBiKIIAOIgCZilu4cSz1YS8TvivyEpbaUDnyX7QZpuggganuSdEJslvN+omkAGjd9dpHE+VnDbHaxBMwMrepyFB62pTqAe8w36Mr+M0ir8PSoZYj863smjVFrIYhyOA9UPQSDxK9I6WdtSaEPl9+R7zcq/PX38QlDOHfzQc0fpksVYhRqJoFHttMA4LivWU9TV0JwEqeR2KVIexfWZNXYhIzE4dMcit0lmkK4sIAZGL3AsryZEgCQ0+nrkCqrePLHtMJqQ32A/SOFyzvBWi7W+UgaYrZ9Rtd1LfAryQgCR1T1d1tA+9XlaZUqXA4pVwRw41ZO62tBAeL+kvc742PHN/kmuTux008qELVcpBmYU7XErNbWqFGEcyZMsNTleekoZO+H+IArNYb6TTjmJCTWaHe/yWrH2z43GPDPZ6ThUzwVVzGGrCGjbWm4DnbAXECUfcHRb40Oyb8ucEIGo0C9yEsypzt3+Xkwbd/kALD7lBKDw1/yXFSAJMxORVBRY5FDQnisI/Y7/Hckb6OaPcbyXDtp5slw0KcOZ2+u2N/8EXA5TGKpm0X7ObSYtQrRmIYdi7dYvxOrVGXo2KApTlrLN5qto5qUJDjcd0fxHPX8f+9gWYGcdA+Uqvmp2R/asLHHKOoejNTuUUWwU9H4P5lesXOjgC2ViYWvdYquUEHkI9o8RJg4IcExQxGm/wzxycVVTutFSSWxwhFw4SAi6tBZ2XfpIT//TWFkmxB0G8d+S+F3PcvuZwFjsWt1WZML039NLLdlL5jQhnb6TTXBcA6qeD3vyyr2ND3Cr1hF9G0CFuWKGmqEduMyk7cE1ggVzOS8kTiIsQw0maFJ68XfQWnvJiqWZBBvi0u0oVNR7XVtHNAN6sGVL1lPRXa+lUS748SuEeRrAV0elNebe/+uwQ5eN2hzZNSWF9jVptKkFkR6VJCll2OkXGCK4++BZni6Ws4zO2a1UKM2/RxV1UGj5niTpEnrBDS61oW/dL8zHhl786Eng8TVnOyooyKnKYu3ocYNdrsohQK6Ei63RK4p1kNAiaeA=
Variant 0
DifficultyLevel
495
Question
Calligula drew the shape below.
Angle x° is 115°.
What is the size of angle y°?
Worked Solution
|
|
∴ y° |
= 360 − 115 |
|
= 245° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Calligula drew the shape below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/03/NAPX-L4-CA02-o2revisedshape.svg 218 indent3 vpad
Angle $\large x$° is 115°.
What is the size of angle $\large y$°? |
solution |
sm_nogap 360° about a point.
| | |
| --------------------------: | ----------- |
| $\therefore\ \large y$° | = 360 $−$ 115 |
| | = 245$\degree$|
|
correctAnswer | |
Answers
U2FsdGVkX1/QGy8G9ozkpLBy5u6bUYVPCCuy1Rr92DeNc6CWrNHw6qhkmN5a8jfKpv2x8y3nLBlV+1tgP/wt8FOeAYycXUV/yjD1+5GPBd444liefX2kSjZQMg/HQvGkFa1V3DkqZKzc8ExtuVSn+Sh9nKIzX0N6O9wljR4nUZLGG1k70ISVVseknRmiSUY/Ob9ILpHbJBnVnzkyAhq1dmpH+TdRkg3r0A37MtUV7UyPqHY2NlUIGID3VCX9l+h36GOu00OXcSEj2lQQiiQMyq/wX4IUiMDEgy4QbIEUDllsO8+kgpcN8uyZkt+9gif4SV8TYbdWT1sg6bCup/L6nTRjlQX2XeyRPjF6I2WaQU9oGOqFNneRx28RMpwMK0Wm4MkbgoEY/JR6tsjB3Ik6LTnFQHkozKeaEJ1bnB7Ru9pkoT/TIamFDItSueDcX3e01iFPtFEGkfynsY8VHhz3bDncD7KPQSywLymcqHz7+7rnKKmEuHgzaV9Lm1OV+tRBg80W3VUkwhHZeJfnC5+SLKV7jbrhx1mKetWDw3aIRDf5le1kyz/QzC/FGoYtdxkCxxLFFZOt8G3mgHVmC5Xv3sUi9zcvWpl960yYdTlOZBhueZhvADeZCKsmoTkWepKJeu3Uy0FSDmPUwhiyYtC3AhsN6jSK+kRo9g7PqC1mDtoQE9OBQTLixinUk0aPlTaCT58ikqB2CdOPpvH0MlAWbAXWbDcKL15PMW7Mu/wrwZUELG9NhjQ9YJvP0QU55EA7NcTRkuvUzJe1KDJelf5m5YswoTsKUlhxrBP+SUvVm7/EXyJeQinMwOD8X1hHLmn5wAQNqr7pJTMFjnJnMtSeV33ZIYlRnAp1KEz3xWSjE/PnlUCiMwxWx1bHaeJA3Fx5bZkXhnHA2eSqqqQp1KdHLPzLgWpKpBzx91ZmyIcL1I5jMmgroxTC3dsaBnD5AK/B8SKv8U5RWV5A8uwGzGbvoET3FtabvPax316ri0CnkmUjarqEHjQWK1LMv5UzDzKuWtmJOWzXuIJoLRXVOWinbcm2dx5g78BgUqH+nkc02F8dI/9z8c6uvQFHPorXqtZHSevScyQf+o+jDHBWEPXdZB51PlDjeeNAHdUa/RE8lSijhOxD5Od8y3q0nYNsUq6JsKr1SEO/LCp7cOZy7S5Zm6hXA/14LApg5DeA6iMkl/Z11IfJjxBG5p3AhV8D+sgdm5fa010wbLg+U//0Y4EAv8EAauFkp0xToBPn2E0qUbpeAqYWw8PXZKTpjEqt9mknNGq1X5g3pcEBsuHwyX7oe8m8GOdW5BKlCJVZm83TIUMzFbAIIt9Gj1qoJUjGzmv8SCKVqmy4RzxZMeXLrqOLPUUKDF6Lh3Abss48BkM/UMCPVowuo29oPbeloui4fsppvjVHQWrlfy8fVqU9XDlyCYBx1nLaHy4/VBNVkFG+7ZP2JxbXKS7wf7VPLC2QHJkN/o9PmB2Apo4oCLXOFem7VzywRdkTUbyXZ2nyPd6250LIKZfcSJeY534Y+jZJSwxph7/DSs2k571DXvj+XqptGZ9oZoTasu6+mANC3zByMOCpYbg2Mb26M46ISyZ/2dAurHruCpG9+S1B9T7SFSuE8lwIg8Tl5W2Ik9AuGQq/FB+Qpfq42Y+q87vJ+yzCwb5qnThWEEe+RuIT843piYYL4oksMRE7iIKV4pzjmLL8DPFNcNyH6iH4UML/YaiUn/At4zif9dc0oax8QEYLfPlERQ8xCjXxeKxdkVTuSHbFEwXNjeAUDrfRP2ymQ/F1s1g8nlYBdwzOZNY9GUq5yRHANNqdLqUscj1Fv0vZQ6OX9XitDiC6+JmIz6ckq3UBQLnd0itDTX/XIok1uwP05vpc8WDNZmJ5HIz9gRo3Du2c8vJ2AO4G2zxcMbb3GFehZqDMMXEbLcfx+nHgTQWpsWCLUhvG9yixUW6XGN2JtJXPggsbX09ueDXJ7tmIE+MD4G61jWRmTV8Q7uFkwe8of4yefND6Ey5Lw14Wwfc+nWYy8RNwICqQz0+v8Tt9tf4v8H2hPU29Ass7KiXyI46pqFs7vsndJveSUyd3jtjrAggLL1tJNB7Ye2Nd2m3BAaDETMRCcSuobyOklX4ZTV4eIorMd4l4v5kCmXssGBR5WM7l9VWLaOHD4f9OmSqaCrP+8qHarBopxvSV900sSr6HbtFk58IFlOy6cM7Nz3eMYgNdrcDRFvsdPn11R+LuGEd9BABcvC4rX6owYontZGpMY2n+3cOUrpzvtheoY0DTUb57LwkUIAXFWPwhU2hTUge/1+Ko6y1e+LDJvJ0mcoIjM26nQQyrofVvL/srNCvC5FYNGU8lWXBfc8FSuB8TinPLLjTiOv5OL1ukdXQ7Da7M1jFbVlrg1jNiWGYd8MgaUOdFU2HXl1e/rHYPKOxJtgNDbldh2AZURatXTGrzoURa68ZJxDr6uN8hGPCrgq/3Usbua71w/+0QurNvkyCR8zPg7AgnAMfky5LFNpNyJyDiuWvAUv6GdN7hPjTAuzBqqGhRJt5iibaHUworvYH4+DFR9pzVc3EFnpiqD/sFfwz6ECi8QWexdlFL3cUXbTP9inioN305aAHg8VfMBjsnOVEjcczATc+fxsWDvgvSwcE785czeLGy/NyuXi8lp2hS9PUOgExsB6A6rb/2mecK+signIbXhSl3AJWyp6VdyyKQpRypekT9lETRrSInJQtV3arBLeMtipGRZIKxS7VKjt6ZMHW4SgEgM3y5TllsgzY947Mf8v5Gi+2zLyiCIDIMNV/3ZvkDwqrx/+bcdrv0q09CQ4m+diDqQqsy/DJvR/zmthXRK+heNZ5vC2IO4bgr3DriMGZuLY4B/7WtksF5sB4z5U4tuWoeNUf/LjqybIw2wJ3XEtodSs45/vRCF4b7ZCsyjxtCQaYTDZsK9+r3lT4/RTQIlgtGkUH0PuqbyGDWULoYSrKBC86RjCK52VFEcsw2umib3c8wm7hW5uz61pZjF74odhpiBJefvUcamdjVz8Sh5GouVY9/7FGGstiuis1Fi3Yw6jnOWd7kXEWjufp3eosC/up0Leps7MIPUxR22U8BN2moprjD//ty1gZ1jPWyeLRCVau9FWGYiJZNxbsSQqLLyTvh0W6xyUD6YTzpVZEwnuvxXT3lTjevML7U1LJjUH+WCj6uhoMt8cedmrC5wzikpfaze2RTTIgcPpExfqxk2Nf9gqGA42Okm9G1H3GCsQxHjCaTBtFfdcp0uagDqNAlF0iSLOcmQ21dbV2QoOJOw5n45n30G8FgHdlpQqbY1O1vSc8GVvo+Qi1RZWfHgWC+Gj+plI9KaaR7dpBooSNJDFGp2/FOA9+/OiGP6ZA7e0B68lxBz/Zo99ZCNeVdrdT5qh2kRjlne1PnZ1GxZ+N+l0AkgwXdpIASWlLK9Bj17K08kes0oOhh5gla1wwaDEm08YIPYVpeLbHPXnQBsP3f09Vf9kmpprD6ERk8lSO5kEDQF19ICEaK6XaVw/My6GPLi50hsGTxHsTgpCLZjMGL+s/F4A0CXUHGxfhTvkuUndQr4Hm3lGibQUkeXVqD4yKFfFkBhPpeQbSDvSFLEsakpuIjmUCA7HpVQsRWP04cCAnc+V1wphR9xC9EwLqWiVoLb9auqre6uF10cSc02SGrG6RQhI2Qxr+cJ29UCzM5bProlNXpsIvN36yN9KNb+cAh8VepgxtPvlJcgYyKL0GIm1yNPqAokpEnNpVHbTeB+RCgzuvgopNQzscJKjYQqECr8c/sD6MHTUqrly4mk4FY8rPdDITd9LGDb229KV5kiDc8cVuGUwGal/0s76TbBLDzvlJuQ4LL7geVjZXZd8aToxJkVba1RycA5LW2zgA1Ab309jwLF4XgfuKfsXXwS294DAuSNqQLxhs9LQnYsJohAMJCTMLCBl1GPwzKjkLm1NSNuUfUKLVJgJ6es09NTvnbOb5EN97JEGQW6SsioD1EVu5iC+I+0AXwev0Y1wT2xx8OW9WYuNK7ikYR3yixOE2l1MjzgUwKM2136nPSwGyvexQs/JUBaq1cyZsPVBP17NXajvZYg/U5r9Ip+nyvruoCx8djQxlU3ha/SyLdmkPKPN4Zqi/Jqd7xtFuhS1NpFoo149g+4m6AaOoYeAkDC/XjeirL6Yo8qQfzvZUCqklJBYlnSUSL1EbTglpu/vkcvMGPvh7WjTHRCyPUc8YW1rn78x+dRT7EhDBfJz+wHtv3h5t4gxrbftlikSsk1e8pZiVrDnwuOMeAexBUxRZmaUeNHVm544bQeudGhXvOvvyvND7Tge0LO+RG6DwJgtBL2jxkg/h16rnE9j6+erZohwEj+yZHi7Pvo+ZBukQz2tgfvr+v/zuyj+iHMYZNpGE51i6iBqFEah6DXsQu1kkLlgU/j6rmhgPKvJU2MJfPoe8dSZ319E7cslJ3KU36Bead800OEy9EFemAG/A7PbKHG+cM+8tboOOT17bHowRiB3Ya9b2dZScJ1zblJ6CEr4f56hwJIDrBSbvwTheQm5gl+ensUJzbA92tbE3mkeEx2iKnwXPSHNk/vGm1whO9cal2nXVUC+KPG0/aie5b48qjDBemLpwqh48nNmc61f9nxX6kcuLWU2H0pMYFXTj3SXrN1gkPgmgLWo0JWWeCofSuY/LLhrAHBdS/EaEZu0pN8+LwvJGPMoNXHjCZp8P63zYrlHcRXTnYdh2rVGu37ifPFkfe/atr8MxkkK1PBnWBRwdLu8/gyzlxwWDRnRtvFt2ExeyqkHiP8da4x5JSpnj5hTlyvCRT7iQ4SGApRv+GBVLbzWiRMWDym4q5Q00V3WKSxD4vIOu9NuOzeT8DRfdnYCGpYJwgQwVWcUYaqfvld1W8+5ypZ7KIj42lbhmTI78/S5T7yNBviUV+r2VS3r5j1SWE1nDbgP71J0ooS/QNBkHa0OXJz+6/nkDKmLjUW+QML/gt7iju8NQq09pOgtsszpQK
Variant 1
DifficultyLevel
495
Question
Sheila drew a four sided shape.
Angle p° is 135°.
What is the size of angle q°?
Worked Solution
|
|
∴ q° |
= 360 − 135 |
|
= 225° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sheila drew a four sided shape.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/03/NAPX-L4-CA02-o1revised.svg 239 indent3 vpad
Angle $\large p$° is 135°.
What is the size of angle $\large q$°? |
solution |
sm_nogap 360° about a point.
| | |
| ------------------- | ----------- |
| $\therefore\ \large q$° | = 360 − 135 |
| | = 225$\degree$|
|
correctAnswer | |
Answers