30255
U2FsdGVkX19JVhpngIXQm6hjgEIJMfqvVOGGw9vFDKU4dPXCIEZwXqsGfBbR9cXNJuligyraBd+i+BU7wUhMnCMzW/4PDjV59zt4e5ckNA4y/O2562SzazJ32xmitFH9SG5rIiHImw7ZfGPcd512O2a7EnR/yzWogYi1dzF4cB9H5kf4AtUl0OBQ4UK/uh3wTZocdRN4nUkaJK/eg0U1IXOm8IlHJhV/BEHloBe+wGs/XbKm8LcNFF8ZPawpkuWhzCMIyql3wck7R6NhevxbKaeIioCQfmunJn/K7W2NcGl6KJZQ0rUllkjhvumxDMlB8afuSBDpFVQHW0cTVuVtjsT0C+VkG1FFyns+Aw33a2HJmqyynw4367un4PXeOvKIstGPxZAb7eMn7X03WMTiHBTo7hg7tSyw2iBkTrZm3WoPbpS3mK+OVbwsrS99LRyg/JB2MpXvoSJ0xv7iY2Fg0EWvabETMrB/S44Zgt6wNEWRuIjl2iYVK/Dzj1HVMbxk83gZwr4MpYNoSeb5ptlGeHgy9QCZBfS3NfXq/yen009xWkBPjTGk85tlmg9ckp2VgUijIiqomGve/jV6ZRZRgUH5qpuYOg3ZwuytTjbKj/jngmAm6Xp5ecf2IhKEwTab0UlyiZE6+ZltgOQamoa75mBPxNgzgHkJOLrTWKX97y3BuIZd+rvU20TV7TGLHniDkWaENKaq5hCzQxmLNCcyYSmOTdsXupD3x7Luxy8FDZEqtcqKkid9I24SGZaD6eAW42fzcbuOIW8WOFLHXISVnrIl5b2BkezkJl8oFiiB9PId3AOo8U//qhHMPmXCZj452q/weqIK1Abydv9vAJOn6RuN0dF62dwIH43c9UgJR56ISpAoxlA+4uY8ruarBc/M+Sgmd4gBcHI8n5WWuGXVcbpo5T0mnKa/HJlnj0mCFCHBCUsTlneo9RWfXvbWUVS94TdNbwbo46pBMoao0dtQTJ2qspJggGcjoflCTukG8nvXLnqBh1LabKqyHY6qTFLzH/ZkOqRkNbZ6OUn+y1KXLe1iuU16NoR6GdX4OoR+g65Wd7Xb2bvw0+Nyv43hDVi3NkcJ+UsSr42MaUfD7JWO/soeLqQ9DZtJsRKqShjaZ2qOcIR+nu6ysia/G0H60nYZcOcU9LqNwLEKim99WXaQE7oCQEEROGCN37BBSlZmM+FkrbFSV5iUkoyCwFUkYe9PFO8A2Us5ej2Zorg0sv9s+O5z8dfAup+W4eAdwxtd7MQg7TBGWRtU8AAZQVWAL7Gj8b3d49xYkhPDIFludLLrPArtSyfuQK2Gprw5RJXioMx0z/o1DxnOqvAD81pzwSfeNmfAmBSjq5fHDZAXA7UJ6axIEE+5lmW07egDjZXR6T2otPV2HzvxJCYYZtKd1wci0g4t5tCkBnJLQHPOxcBcXja8ialjE1s9VvQZFgPTbTzxOguyQLbH5tpKTfY2MzlA7r/2wKkLo9B7Lr5ax3WW/d1EHpmqLDadCdIq1Y+VlsfnMDIzU1Ld9di4kBPkR4HlD9ESHtEMuPefBt46vTFtgGjuhejnB9ShJgRLeG5HbNknTjw/DN97AnS/v5aix6XKxrgGcnlAkAFh19hBkgHpiiIrUjW5Is5/3ydjzFHAVqxwkeNK6jajcvjjgCaFSHVGGVqN1Rpon5Tf9MF83T1jsldX+050bmJV4gttM2YwQW7VrUiVhuCiihfUcP8xUq7i7+TaD8J1QfrCuORgHAxuC4YrHmeUUqBFtgcF+FsSpXxWVu7Equ2WjA8w3D6JNgNui/Iei54t5VbTnNH5mwFWS8ZAs1Y9dZpyw3IsjFdD7yVdXuHMtB+DdbDsuu3hvS65DGwqgi5649DP/1z6utYR4L//K/LmyHE5ldN6bDiUdLdM2knZnRtCVG4XzhFULWWZhHmyyOhN9CwrRzzy7dotqCYlslpyeXJw4WHVpEK7nefF0J2oDJbis49+qupToKj4JCzXMLMiqnBLxQV2fIpjPMebP15FJlP2RzlM/ZqP1djG6NZjwpOkDgpUGxn6ZVdnW1kPl4GKrTk557+SmuYgFIaJFvbT5s1SIYfolHwMk6Vc3AEmWqN+BAD1dxYieokIcDDV76k3xCH0ljPGOgU041vHnLm7v8m9Lxmc+Nw0Qr9teylE2hsunH+zGPRsWUDNPIca9vjd78ZjORPEPOF3+Xhk0a53vmgFFQoUPrnNoUy/cp9gLla99OQILUAH0x5htJbqkwnDx/n1nZIxRJnLtS92X6+1YYgFbPrpVAzwCaH52fT8fHYaw/xw9XEBdPtyMDps/1RkLF6jAsHoRRbtyFGgxKnewTwBdUDdVU2tkzeZl5lKqYDWDjdxORnI/eh1DzfAbW6vwSAUL+ial0P4ioaw9GgK69xhoTQmkJD+tNb2dMofJCTZx0JgCDSTZjEw/XNR7JJbJ5LlY17lxIsBgzgN0J4Zsb+AmyrBMEVDH9v0paCJ7RQ87bao75zCAMS3z6iRMBYxtK1c9UmsJC6ipYbk98MI8pXYRQ4p6VYid5dhISFbje9SBJp/mtd9KM9Riie+uwJtcKu6ULwo0seQRtT7TobZ7j8fNT+HCPwEhpMLTm9BXL7n2thacCx7PeBX36Ld2KilUXJ0gW6Mh9MOyvhkA1BI8yOyRSScToWZFmZemcNhbMYS1/F2LtCZi535SUn7ZdaVRw5elsdAJmnp3knd5bkccIJwuHz+XitDgpeMDL1pf74EK7kRi3Y0uBNGzseqHDVqiF34momHMoF7lJslTYpI5+rPnriQ7c6dCoDrf5A4WK5PWGDix9v/0jZKKLPVk+bouCCExaIWf6u2sVjk/NMcL8bDFI5ij0X2oBSrZ8Dbrmaopm7LMGtkjcxFZVeMSbCaazeom9kr3/zq8A99yEM14QngMsHmL+yHX/Hpj0rEIodB9q1zTvRRdTW6GxsVCoX3yxCsKb3eC9saQqAmns4IchNfzSN7T8uHew932GSizagXcMfmWf6q2MZaX81CpvHZs/tOX7U3F8aeO2KL9KJCmex1aaOr2b2D+CWpChA4dIctS1F2I2lhoujz1KfGLTRSru8R8F4k+bvOANLMYlu+PYwSwAkiuzoCiqNjWnStQZ8hXKbtnRPqYqayrbclFXP8OmuB/s+XHwTkHQNEMDmlXkmRNTZfAjC+1zIVs4elsjscxeUjD3YTs3+lxVziDS9lG5sSB4xDwZ6t/aCqM1TLRs98+MP/ajm3PU1C81HV+Dwfrfln8Byyvf+uK0uX6Y/lsrpsbyBE7gol7fr9jbrDofb1p0aK18OnMZl5FnCyaltusKN7e/M79U8DzPBfrWR60gMKd5fg9uM7jAb2tiFukh42MdoRSDgLV1Hi+VP3cJOR0i4XY6z/sI4zVNuo2pu2ArpSPkY4I/yEiOlyn5I13T+QlqgfRuv6Mt+qRmE1EXgZdg4DnvBfDPYnb7Y9mfHdav+hN6uLoncxqNw8ppnn7+Sad0djy/1DycyWoQZalhHr5oavK2+y2TSVz8MwO2seLYxr8vjIMjJFe6cGheZQukWcvqTH6+wL0/2hrxZNNhI0wMhmoMupDWU0RxTbEzDf6H1g08mBtL5QhY5DYtjflgbXy5M+iRjogkz/SSvvwgaer9Sq0d+h2g03tqKRZwB3SM8lFxsrP3W5fpGTvD8OGvl6q/zx5vvRqDN02EAR20s8nJMVax/JOSgprWAbkqYUkl6KgCJobk0z7sC8cZ6K2U5RqylvQQ59NnEQcZt6mm5/bRURU+CFtB8LAhuBc0f+iksFQKLgWoOfCsstxUvmeAZn4lNZR+YYbe6XGuJ5zpWdEXbJucZdv1K9XF+7507ykTWFnL8W5DytjW/DVx/aRj/JTSN39268RkGq5Pgyv+l4JoE7pQaHlnntMTOZZ3ElCTZSPqDpW2wH4TU+E4/kdQL2W0jf2tR1WqV/SXgN4YsXOQxQRY2JHsPHjlKaC/WfvvxHbVZqUQdPwnSrnsL9CIu+63xhuWHSr6ZBpaYcSehsl450h8+DgkQx3HITPBfNCiSknIoQbTTo1F5LE/Q+9Ohh3TXgue1Opjk42EbWGcurZluHEh+uTmwObSQ5FKdP6rfmhH5bCn5DUR97cNSqXoVHqizkIVmSbYuQ1QW+mzPfOMRdcEY/V3nl4dKp8pq53VEIjOGGQwas9sl7vzJm9RkgFeammo2ewgLfksjWaY2aXzaDArkNckfaCz1XpWH9MxErWtdlE6AmFuM6IcIam7jVwHNzzakQYZd8ClIcP7c1Hs/HqjbKog3w7MWtMm9aQMmAMpP0gTb2BNdjbOKXfJ55dhEDF/5aWDOkC64jOxIyhRmdJ8DxJYI1ihbL5oZP389bDleSf3SKGcf4WFNPcOWCI/gVb77YGz27PMlYfU8U6F8dW9veibhKKwML1cdSWQQ6TpxWNNpSZ0XGxipLLW2OCjLpw5s3rgbvnPb9BsjThf9JbtWosHWqguja9f5//NjFz4352wsHVJ7tvxzoDfsaguerMhAa4m+IZS55r5C3a7vvx924C7NI40g5kc7SdRSeHAywo/73osFDwDQei9ZqZhhsbzf00ovLp9PnF+ne8Z7Jj3qzaK8R1Onh9y1SESKfMawiIaOn/366vIF1aqD/SVMYrQQaif6/O23Aw3fMy5riduh6H51Keg0a+zRGKKEcgt3/vrABv9rr0ymI1MNYaCd4uOb1kzc2DhjHsO/9naTQQZngitcBJK/JhNgYlxiSfM/ou3rPsF/cUETxbRq2sWG7FAMacE7yVctJmhNJ6r4ZR8G4PLpzXZVDmpGBvjYFTIjU98mSsJENIJjHls23qM4HS7nAej+GUz9OSbb18jD+iNj+ScRrUDtbrMVhrBbo4FQehHvhru8HpaRyW6DRMfPHlRj+WdrOzvUzOf8nRLeAaVltYsX2Lou4c5DTfJY2T01fQUhuqSqjIXC0MPNIPNt6wMnQqStxZifxFD3IFMFkhUC2+BgoqYlO3CwdMtdaRh71GHkUSA==
Variant 0
DifficultyLevel
543
Question
Joseph had a weekly allowance of $100. In one week, he spent $40 on food, $20 on transportation and another $20 on clothes.
What percentage of his allowance did he spend?
Worked Solution
∴ Percentage of allowance spent
|
= 10080×100 |
= 80% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Joseph had a weekly allowance of $100. In one week, he spent $40 on food, $20 on transportation and another $20 on clothes.
What percentage of his allowance did he spend?
|
solution | sm_nogap Total spending
> > | |
> > | ------- |
> > | = 40 + 20 + 20 |
> > | = $80 |
sm_nogap $\therefore$ Percentage of allowance spent
> > | |
> > | ------- |
> > | = $\dfrac{80}{100} \times 100%$ |
> > | = 80% |
|
correctAnswer | |
Answers
U2FsdGVkX1+dVRlR+NaHKSSBRpOU8XwF+/xjoRjtoJC0yYGUQPpdeZugu6qR0S4hKe7N16AcPiTO+8aqRYfeL0A8ZuWIPIE1uI6NqC60g0hh9PQfS7h1ANArw0vW9Kj3ZTl2WOxeEeW06tW38nBF5/65GWqy9JvEHAUUq9gTn7GfTlq1GhE7Y4I3xLGxG6OaMxFpuHJOAIElEoi1iAFmFTuM58kd0zYj9PwDz5ZypuOpbv4g1t2Nt9wEQt1cGcIk42zs645LACbF6DQAkAD2I++zBVQADGn/gF8kCZjHUHiX9GTdnLEE6Ktn5YRAaDrctyRF7CLXDlWC87ej/l1pkngNihSdBv29oW40H4USLhqTfLudGtBs0xzkqiHwkua0DGUKllsSyGGlW4Ou82s6FJaOlMOaQ21ljTwbzl7a0V+E2ddH/6Ghke4Fh3X+4cQG54WlztV+IwYkDVPTgZdUTI8n1h969mpLls07Ps7Q/wgtcogxP3eusG5xY6oCgjcoHFgFpOEC4lUIBv+9bnbW87yvfqv7unVvU8hgBkh4szXg38mi40R72bb6QFDiOcz/ZyW6lYqIZIrOySw3ueTfz3fxidIyWmCGBozAsnhppBurrfLO7fNoGrINYA8kx4ilUUCu/QZlR6ZY2ZFvsMxwiQuItMCxWJwmlL+csUMCnMAgrd5u4s9OzjimNkZxSuLOc32NxOk9lO+i/7M0mKnNaEF84gbdXT+Dp52d53yyoxuQifuW+QgRdnQeHu0g4V6qDwtV74RWIkOZFs1vmd7PeMSLVCQfdBn4TUnWSbP3Lqq6P6xcQQMRGobXVKJMeQHn1NWLHzTaWXbQF1TEhIE8XTdNF7dhblzjE80jgZFuzl5+NzY9CmhFa/DI1f1z+9F/46n0vZLyFjfl3r0pH8xaPXWg0emL6QKuAf5QzPDq8jqZCajTUVCQ8KwBlKa8Iw07RjqlfqyA0CLK6bwvTz7rtBmmkOG9dsAOFCTgnjeOuNpNxb2m4TR3ftbzUWnt0jm/PBgSWKp5rXJgpV1Oi63W5AxgarS0e9aEAy+p6kBKyZoTMopLT8fhm1NtmzMxoDdolOEBqH8kIbHVnt8u9Xa5Ny6L/HUViLCYkhVIcPg+UwCA829Ko/FDY/FBQWprYObfMElB7orWtJ9n7RuRV7JymM5QM9nuEEuxas1lE9GP3V7qKRdAjYYdIC93VqojJDHIJY0B2fNk/8BaTnb3zCezV9Mmtrq2FZQ9z6iha0R/CgS0YXjgmbO0SJUcduyd/ZBC12CmfwxUFYktEex3GagganP76bmi+32alPIKMfMwj/zN/hTGeG6gz8f6Ede6TOrnxQlo3N1KhB9Mko8CBWydxS2t2a9PLhaCT7qWnB+l9wi+sPM3jrnQuPQfE3TwflfvNOWWbEwfJW+eDZclmQbqKQx/gTXs61gz4ZRy6JFKJqFtGl6fxhnMZhh/9F64KDA0RgX/KLQveKtaefvhTT+V5Fg3/d2FK5LJVbohDoi5IgAqfmyGPcTNux8H6O7Wk0x1eu7ibdDVLrrCCuJxxS+j7QQKEGCh6vGfbMipBon8CjsJCfLfg6u/IHW8n+DkGZrzfo0KuK9WVb7CPf2lFUqAHrSPxu2xKA5BEg/BRqsaKrOg9FGK+jljYeh29mGh1bPFT71qPznRCEOtvHLs+S82XOiB8aDfcFaOpg8ZP0vNwscPX7GI8Kmtuw+1A6ebSb3srpOxHItN4ZK4W2nKr6JikIaVdQuIILpfVvQ4FfBatGab4hUmd+zYU7x3Dpqn9Ar/XrkhHeu4ngIbH3yUW7UigeEetr/CKeGtn+HRnH1bbLEM7ajVys0UvkKuo6GbPR6tOv+VJfzHRcrT6d//hdnSZqtr3FMdEi/FKm3SBLs6VB5OsecQce7+Iey9PPmuigYz6QB3lG1BMyYzVIRxSiyIxWdoHHMy4JRZnVi1dulmBk6o1B1Q1vDPBx1BveJz9pR8+oQBbpayHFDh3sMzaIkK8UiTO0llXUvrGUJ87ZsfI+0TY2yQvYOAnBUazQerJT4rP1FUS1CiGpUd2lAcWS4rK0OJw/MBePhgFgrV7F5mXhYbdo6yHNlBEp/QFdS1D0lQiM5COCEeGjTletjfjR8HFeI0wTYfgy8SSpHODnXxWGA7x2s8Dbi8SR5/3eW5/+CTUAnGOAAJrrFsE8THFsxgB4aksfJhSk/SUMquwztsbeICisJ7LQxJiRAqMIsU8fHgIwy2xdGLI/J8pj0r/9BjVwx2syl5nE8sOQqfj6No6KPLc6j/tEclpHltc/86tnIh9c7N9rolCypftHa5KrDURx0mqP6dnd6W1uH29Hbaqo+AmEVEUeUCgoQwbaqhYjBDdEGPhEURw56bGMNHzfJZZgnjp3l8gFu10ttNaA2l4TzN+AAZ7zj8Txkx1Gg9q4dOQ4pRuEnPtS274yNw6GeEwgr0yx8K9Y+RxHqeRWqIMl4NxDG31V/4QkErQ/34HIJXMVpBaVYxV2Vdymf5AQT1NC+KqlX/4jVH3XihQAE9pO1eH4zDwo6saCwyqKHp+eM9saV51WBwYMAfpDwYt2uOqPW1OCp6HCGNcj2RRpiJXRYRC46O7Z0E1nkpAoPIvOh4FkPDFkmz7JCzy6AlYWU3iDET4RCyvr263ovmF63YwNBa7WdFodfsC3f7dc4ukOlz/YpatrVfZ15miQbEzpp+S5L3zzBIb/+uAjsdBZ2enuB36ETbsCDATtbtG1Vdn+/5LYFHwK4GuS5FDBNcn0kfY12DzaOfHJzgEPMepA+a+C6WZuPpkzflFSHExV1fxBqgP7YSB+JRoXUcM81mqmpVbUE1cdHfRH1TRrf5+WoLynfUgpBWNi4MI45CQFuU1V6iMsa37W/ixXn0QV6EbtdjvjkeQAP/Ig2wp+t4qUhpANguqfpVVMBw422lK9f5m6gma7FD3BtWI2CIWx9xF4u//YVT0xR+O0JwyzSnU1KXO90muJPJIBU430nQBVQbLy2qA3/7eCRo2EnyG8yzfrFCIMCDvQo46x1vzTZ4ZHs5Ztl4OR5fCAPoP2fWbF0WBQO/9N9Qj61aTn/q58WzCwweyaTBUNFEvTn8Lq832/rnurU4EyiTwWI4EJUkmRuXV8W40Q1WsQy7fU1DtIHBu/5v3V8QZs481cw6+xSzCIkCcIvvO0qq5pmLKsbHoLnCKgMNv658770wapbxA3ZBidtoi4Obn/N9HQ0BirPkL3eNyb1eKtFaHDn7QnpwObQypu2ZDU64sun0UUFPF2rUa5hYh6xKNQP//w8Ri+1i0I45QvQhzM5pAkMrFhxZ0I3IPH6/LXp8t+nyLOJSCu/+fjTWeI1cNzJAQNDETyGODK9k1mcF+i60puRy1LF3D/BPYCg87mlzZ6xWPhqnkA1sudUYG2Dpyu9tPn31SkxOUa6R7oHOzpmv/P56X3V1XhN3AT4xScE32Ap6cXK+yluuYneOZny82FtClI16dSQ467c2pxziC0dMg5F6VxCjEsaQ88GIS2wgxmbTNummnRaJJi5udxtmArt/0IHZxB03ayyFv2TFGSzYaFc1LncqFnqYEPDsjJv/bvfg768zPm2xZROeJJl1brKNHzYzWsW+yZ8mqss0t8LFd1UjuN+oCyivW00js8AcrRB2GqBU8+yeqRFNGd8HcN9c652HG9po5CQXUO3CjjELKQxIl6ATpybj2Gj+45RjvSYm+XJ8r5p+SlJ9mMPr5XH39DogYTi/V7ENU1xFZ7Mvei5AIEq+ZjLiI7mJFxz//Tba4S+n7HQoHzAymJ92yw6pU69x5gyMNTNpLmInBtNRasi3fNQPIYOHonaqp2V3KWKJ0tzgmaEwJflS8Jf9Tsy1EqbM3U6dtoapugX3DYt1EIG2PKBFdpj1e26wDbx1zoR9OZ+ccOuItDUuQ2cjwsqo2wJOvQTRKt7DxwOGdCIJI48vda8igh65OOUgnfnLBHAUX8dYcsARekedIix3v/DFx+KqRP2J5Jhygrot9DHJ1MbT/B+Cxr+5TPYyJTzGX7sIjamxrdTYZLsktyGDPayuHlQvt0xGMF5HoihGn157+uyMpQzFzu3zgtvP9uN7OZw7CZDdiMWzDO4AiZd36UM6FkuCOASmGG/tNoEmEW2kYLWSgZQYBbsIIs3WgNAA7n4wC+S13eYjolxu1pXeh3Yf3rUW28QmeLeCOSZzNA0WgGpvc3ttwN6pd2BJuci5GKJdui8S+Say3r9ZlfE1sOAZt7Q2FjmFeq/Frw6Cpc+Cdy3PRA2jYYoOKUWGeMOE9azlO3+R2Q1lLsuZGTy1fw2XnYRmE8qzOs4iVWjNAH1r5Bl6lKBk6BwAm+CoiUoCqT0itjWk8RHnkO6+fPj6lfh+ewfbA5+HuZr0pmbYvRwjhASehyF+ZF7o6yPo+CPXrydjuaEYQYUHyhSWyAmXYfcTDWzLFFM3665AnhblsK4BQ9FH1gEonaZnFZ/EL4UDbeIHGKt2/4HJkSDBn0hoapszFPTXvqM/RstTcg2PHmADcGUVqlr/BZcW6zxqFfGIgQw2hiFPymZ8lTdEYRtNIpl21s886ISYsa9CsGP/qKa8eHSilVWea7PW5JFIkReArkoRtiaEfZlvxg1rFEcgWDfGr7aEGfyaTK2ThQgzW6BFKYtIfP4gkYJ8FOFZtbsI7vYEIUJh9WxmPjn2FYb29C8ODWn85bnMfiYSSmOkzSPg2v/9pZ7EK1c2ZSUGgAinPxwsm2Va1SL+GmKFxtN6hgy6ZkS+j0lyd28+o+vdSaYNCuHkqR9NriHvTm2gPKkGiEqBYuUgdDgUugS1Fc6GFF04AslRYEYK4nlX3cDZG90yUZPrR3KB5opDzWh0qNYbLmzIRm7mqT4vKjd2PxFBdcw2qegMGXqoLe7Tn+XeBfjI6yWT7bpGxTmHZF4YyeE09wGe8nTDLad3deZo9Zfy4sRGraHyM2FGheV0eRfwNguV1voKvGxbghpLb+QrunUMKcfimbbMk8qlVdNWyKIA4+R5blJE3he6cOQCtYCSx8aHp7iEhXRA6xQhSD/wCB4DclvMnwbiOldqHSZ18iWoA7KFK95RuNpoA2F8Fk/HqKV4e3WWZsTu1BiF4NBQWmG425gAmPBh+verNg6sryE3UjQWw74jY1UE3K11/+Mmmks1e5ZsuyQJ9VGo92LgG9v9UQxlugpbwWgWg59ANqDjhlkYur3H2mCel6IG30zBVDb57+s8JNYalaFV4u0NUqStsEL0GE8FPK/NevunBZqWMGKG/ElwgnEThvraLF9WyKmMx2fZo5zMXpAGzk9E+IDzRJOMEMM7we8oY89PEWIZExEkJwrtd7LWUxslJ0mukJGQA+sBhkdId59l18C5xmr3Av9nzCoq8qYBAayhhND30IXxgas7HuWSjSLf84ollf4Bzk5Hx8rJEbs1tEUnoptgGD1Ni2HZnqgipGa2jvLdqEyTKqgzCmr1m+/CoxOYZhaFKDcz8pSaMP2NHq/WjCSznR8AGa/9d6D4aL+TYa9L8KNBtIATQGVQa2DMv01O7T56MfEil0kLQt9sqzuke1lV9G6uhwCy+q8pdy/BrSUxKkEMBP52xiy1ozH2Tz12qZ+tsKyl2Pi6QawqoEfgUPFwc123SRzezLt0chv4s/y7FtgbwtevXC4yTkkBGFcoqOwscSFpM+Zdnb15hxeaqsEn91fYeqC+DjEB52ZyHEMCHCx7G+JCgCKBuE69AGBJE4qmuTM87X6K9fLFtzGd5Q4DwPQjBhvmM8W2xGL+bbNkFlsQtVNeXLiSAZfPn2Jl48PGcdXVJm8PtuF0WXv9w6V/tw4j5WK8O/HVGFNui4en3Ew4bn1p7ugEQEuJFzA/nRmgW93GuJMCKRS0nQOUvHl8TyP0qc28bRSCyYmR5/5YmijWbsiqkEzvYpty6YixcMVCyVCdCYv0EZdh9+a59PlwZ6fx506LRifzn4PpjcFaH/eZBz+M+WrOL2wVHxWX0E9fl4OQ6NHaECxif5Qy6BoAJkDo63JPGkMyPGCfLtGLg4EkMzt86hoaeE13JWYFIjcH4TNYIpHJmSLPf6CcXGdDy5qIsZ1gOwT6mZI+92S+FPyw0WEuXragqKQaKdO0Vz3E5Gan5V9nvtBFyVKjt1MLNoUv9ch9D+oN4Z+3Og==
Variant 1
DifficultyLevel
543
Question
Lyn had 8 kg of sugar. She used 3 kg to bake cupcakes, 1 kg to make lemonade and 2 kg to make jam.
What percentage of her total sugar did Lyn use?
Worked Solution
|
= 86×100 |
= 43× 100 |
= 75% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lyn had 8 kg of sugar. She used 3 kg to bake cupcakes, 1 kg to make lemonade and 2 kg to make jam.
What percentage of her total sugar did Lyn use? |
solution | sm_nogap Total sugar used
> > | |
> > | ------- |
> > | = 3 + 1 + 2 |
> > | = 6 kg|
sm_nogap Percentage of sugar used
> > | |
> > | ------- |
> > | = $\dfrac{6}{8} \times 100$ |
> > | = $\dfrac{3}{4} \times$ 100 |
> > | = 75% |
|
correctAnswer | |
Answers
U2FsdGVkX190OJDPbp0VcItjB4C0ox7X5F0vfOyB/ujLiC4QUcWFv6Kjwq/3jefW85kykDgQ3nIZYskyvayUS1JfRtNc+Bg2zR1PYUriCRcMiboXsqh7lU3BkVU2ldUXTyEsOHxpUgouKrswn3lPP/dMttn0pwjtvzb2kfa0vp3eVmprFBKcNrP4yEHq2quuNHrkqDiC6CjzIaGS7Gqx4eDu0IMQP7xdfqr7HANyTSwlYFEzfKbb+rQq1yrUmFNfmSORgKYOS+NOl9Cvkbo6GWfEdIUl0juFlUWsk4/dct1VtIKz/oGHhTuUlvMzd8OlNiySCy/5jJefDveYPJHMVtYuycreILhh43fq32AlbH2vwek8Yo82jwpq7xjgb+MQxo9p2C+sBnH5hNZSfpEQeNXQmrteeaCEmlwCvKSKMQ4LGlbF0pC92yK5cpBMSJ8CUfzs7jFUY0PQ3R4cHBBR0WftVUP8SWOE16ND4Bv6td4yMgnxSskf+lKBqfviafPdDc++YoHxwfMUpQJzbLlFsr+mL7sT9hwcNyuWxzwCaQl6o+6fZJKrP81ahEB1mLvkZ82U7SxolGjbHBLg8tjbMynJYWiKNi6+TpASzUzjw4GKu/mO6BMGczqkx+HdSo37+nYPnx2GXZ6dVjMgELP5O2chkH98msrZKCkjVAtPvAGnauH+QXtDDxNf/3C1IydCS67i0ZFzCuS+dpa1JwbvZ64H9/lhjyF3pWaDnE9AOjIuvJhdInciDpxSgvxu9ewe5t7vgoHysMK9FIfuvXXBJpNzQ8FFBl85wgbdu1lGsIh8QrG6Touj2QxcAwqGRv/IgSUDa1HEH4z6vA+GvQqpLmhOn9CN1r4AYztPzOXPq4+mEbNGs1TfvqydlgQCARHY/Pg/tw0/a2s+OAGazWket1pprOB2FAPSQ9db3mOEzVYMx0xLkPzD+8C7ZBIn0GjIw42kMQaK8yXgGTYVp7nx63/H9hoQKuXS6W0ROoeM/v7OM5+KXXiaWhXH0PGWD+0zWPjs6Nn8HrVoROkWbnwJIzxBKXE6wwnt6HH48MNC7AoVJ6ebTneLqHZ/f8kR+lwgcox0xtBazWFtyB1w3qPLQqM3Li8qvuzHYrnb7ySgVipQ6MgMW97aWVD52D7DgF4eiDEULxsO7PFUa9juMpwDho1R8Q4C3ideyGidMEZ2LOoz+W8vA7iOoDBXJh84DxIbV7vDj/UmYZWnO83a0GOplM/30XLoTmlFDhMRDiTazmTza3Rj62jkNzDbOmrkNPyqoY5pxkx3yhN9l36pqX5QxQ1l0En7HWHH0NinNYCwuhBOzk0AqSBMdl3VMoT0Zzjcu6e20otft5T45+qS+wW4kUV8Aau3uTL07f/duj1XZQZPM7IccQx+Ox2urHH+0aQTmnA9oLewnrWKxqgNowGFdVNqyJKl424/fmNgnHJ0MqpMi+r4abM5ra8ANO+9PUyTDtr3XWtXBBleEa1KwxqloeZUxKhlSW+tZ+mGYdgGxQlC8wSzvofPxmIaqnMgTKWTProkd+HIVCWnEeMjQMURmMHYPgPEadRn4Sap5IQiVBn0i73B+eCoIHiH0Btfk8cURqlfadw0c25Xn77NVOBVYlX2wxFyW99B3ZB/AlbLoic+KeglZHnOm7U1S/INaqm6EAj90BJ/M3SGFLQbjf9m7DaqqJYIlVd2P5QVTn/VjqXh7wFshbB2ayMP6BeCvpqfmBIkin+LSE6kMK+3apotNXlZgPTcfwXFHX22B5GEhKrJZBnD9Ee4IZmUYfEcN6cBCWWzYrQdWIYpwMHac4rMN0h3gTs63B45kjEXhw8T7BMPMgeZbESGO4itKHRM0FW2i3uF2fJPSzJjjCm9CLp7h7evJAVCXAIeSFjEAJ9bUc2oKe+7GxGKodbI04A8fBH4BU2JWpJAwVRZFvG5uIDP0GshvscclgED1KhBXc9COFpD6GdszmhFHIvPXT3BXKNc2mcoK4lWurXwJMgc0KNnsTjo6nBS8D10HtHaCnoCV2CzYQTmeC/H+L8kVn4MH7ENcVidksH14VF99/85kf7bwLNe8gpp6uBvkMgWdDhJ2Ay6/hntSsyGYINkQ3yazCfJwgUCh6Zbb5CWvMWM1xeyM2RoFu4W/IeAl43Wu03/ufF181Zh4/Luie1i4EJeyrU1i7BjgXy4AJTe20OWBIJP9Seq5zi0lZDlrDwpU2i5m65bfdSQ77MVkPaG2rz8DI6Wc+JB2e2UyjkkOV21bttpMOdzcQIHvfYG1RwbMHOO98Cy6aBSdLSkkG5uaVAlbJ5u01w2x5MtAkGXrywadp4rOgKp5rSdqcnlYU9Q6kNOEFL1UvOTj5B7V4WUp277z+wYoJ9j8TXqSXtVmB0CeR4Ih5UbxikfaEHrdORRhjAM5HZCiv8WJ8u2oMT6wiyJzAMe6e3HKoX9WlRRAeoo8yOPsgtVF6XQV0fECiMIRALMs7IrYZSu0kKeu9ZQplMT04wcprxMX1Er4JPhojDRt7R/0Akerfz4mFwRiz4xOMIjDTuQ6kBFV61OaO7R6zOwMqeF6ocFVO3TKY8o/wzP9/CpDGC0TK+D4pV/VTU2s87aXLpG3bs+SqyN/y6KlSF4Lh2UglDhjLEaREjwaUcldKb2UUF75zlCZzMdxAp/pSusKZtKI1LqUk4+jviAZ9Z/2yJsovlAiNPpzEyFiiY8Yr+2aftRKxb0KoyK/TA688dU1lePfkPUQhsZD8yUD6USBft1mVtPLH6IwS+lBw0MfM6b81jn0lyaRgQjIB8DfW+Z1a4xCT/mzxdRksEWGlFz9lqvkFsPS8hlwG3lcZyjjkYya9jHBjb0NS/0VOPpXXMPRwCMNCWy7ARaB2RCQVPc9xjgYpXElQ+ul678Ef/DKxqlnvVpPMxCf4A1Cjx934zInJLBNmnSBDbD+5e/Z7Kn4Nbkz+XMuKaw9zzcFkcV7xbgkkMuV7HPCMkZ9Gcy7+Th/c55F/GYwf9ERxvYORvpV35/qv/GDW9iLDLV3aZ8NZIY0Jk89nu7PCsh9Kz+olxtNYgFafHq44Wegqvs4lVZ+Uyv/hhwbSOFGAGub5+UuXzisuMPo9LyJ8+6h4EJYHegHtfxUWP62pScuLgbknPMag7iWY83OYFYUqpgd1TTEwufpb9xHz2YXIZ8bF9HbnIyyzQo+R1hXEoH8LrawkryNs+VOqlsuMu2CqibqMGM9948IE7X+2fyrQPePelmM26yxyPcbCQlvx19vJ69APBT6Y/LOagbB9kmYrO8IkvEerbS6eMcZ/jPBQ52//OdUTLcE43ofUMeIeEDlZ5Lgh9Uf1ZyDsVqRv7n3XhVCEnWl6HABDU5LdnWLXtqKWKiiNIVCmqcbY/2y2siYVNVrmWon3iMEZqEEIJI74nLIQxmSldxI+VEbShAix1FpNUPRSpLikLttgnHXvp8Uvvo8xhJKttA/H+172BF5v4jDXozlnnrIzCIZqipQRk6steQq4FQ3oiflKSWVeFKXjAfDEehlP0RYFM/npbJI+DhHQeHk8QCIS9RW9kZOQt5x+KcjaGKOwl4tOu9y4klEu+1O81paoc4qnajYluRXU1BtK7cvOmUGgDOltHqqugVhd/q/ejJnjkevn6Av38MLcifL+WkWuHrtaxowTxf2haQV8+bOeWbot3D3n9auwio+9Lf5TIDG0cP5m9jrYGry0NfLNsTd9/rsfqO1HTk5/Bgh7Y1RCx0SkroIW3yOvkkT/0cZ7iuwE9ZCFq8rUgZSB8q7UAlAMhvw4zva+/enGNdec03UD2u1y0kG4FCVOCJBvWPDtfsc5D5iCzgOaPK2JrRN4cwPztJPeJ6JvNPZg15Ii2H75X3/5QMi5iuwtO9u3D/N+dryuyTAa5WsQ20+9WP2I00JU7tDzBm0pejj37Rcv/zz323DoN7ZcagpUof1QBnjDucLJ4I8O64zkpdxp+RI2oSUorZrlJD1+UZWRRU452X907f2mzQgfeSmd2J5GMFcmjDAqNUNpAH1T2xKLrs8V6VsXBgpte7HwWTloLaCNCig3hO0h2795gV5iVutiNTeiJlTaZpjz7F72XtPo5YrTC+XmxEoFlgvMHargQ5lM+Z5ynGbtMXYacyKy301u9f/CiKu6m2tfpdmYuK22GpqSg2ED1PbURoSHCT15W4kgVopnFCWsa7E6vBKW16VwquPC5gNBBq9b4iTEmMofIBU6H0hSVBqy7yGFyAeUt3EwgVRKBgRfSewYm7tU6jv1VqQlMxXaAGtFgJZnLXhXNNuTS/qnNf8iL2i+bNgsNAOlfXAHpNKrHE0ZTQGzJMrPO964jSDfDcusngEJfyZG71Th7vpxh1QcMUahXSh0fskrqaAOL5u9sdf/6Pk1V5KKWgZscj+HD476PnlPFPKp4Yqrp1hkiJa2rtgYDpzAexraHfK8hw0gLIFFXedPUslyCEOJ0kXmZElKIhR/IochCaAyejkU1lAMwJzKU4MB/OxHxMYbYsl22zj/mOk1pIA5JIgrVTWw5FZkInCCdHgxaIFJ9vQjCBJAmSOvW8bULBIhYzHhiri9KQRSKVDj78QYR/cvY/kF3Omvh/fWmwiTdb2yjyDGiZwFmITU7OlZZHtnA7WXnB0YbMB9r4tvlO+GHGyQcLd/UmXNNSyRl2SDg+JNAuFOeoNmZ31lcRzhHmHWzY34q4iW3e6Z65HYRqGzoRLsOFuM/lEWjcX8xrKDcLkiIEMygCmTKFuVVI3HlKm8qHgyn0AJdkiyvc8fbUGc5X6pACfFrHqUcq6hCv3NzUKrUq2NfMDShanoxzs55/zzU5Fh5By3MezsGV6FIh/B+lkt3+VcwTB/2/e3GUgVDUqMGXN9KlAOS4yIjuH6ewRMf+6S1DbFjmtP3+lt8w1Pb8Z7ajCaAW7yD88WWR4+QXyaC3pEu29K74/OxSkuukVr62LPEsWhiPWvmf3fCl18oA7YpPOX6zckQtuycOTqSxnMAnDHSjDrD2ybgFTlOnkd9Ks6PHTjr0rqBgYxXXCHbh9fqgB7feTN4FflH1cpd5y2P2GL2hQ7RxuhCkm/p54A7CkMg4lc4kkjeARe7EwajOw5FR6SQ=
Variant 2
DifficultyLevel
543
Question
A builder purchased 50 bags of cement to build an outdoor shed.
He used 10 bags for the footings, 15 bags for the slab and 5 bags for the path.
What percentage of the cement bags purchased did the builder use?
Worked Solution
Total bags of cement used
Percentage of cement bags used
|
= 5030×100 |
= 0.6 × 100 |
= 60% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A builder purchased 50 bags of cement to build an outdoor shed.
He used 10 bags for the footings, 15 bags for the slab and 5 bags for the path.
What percentage of the cement bags purchased did the builder use?
|
solution | sm_nogap Total bags of cement used
> > | |
> > | ------- |
> > | = 10 + 15 + 5 |
> > | = 30 |
sm_nogap Percentage of cement bags used
> > | |
> > | ------- |
> > | = $\dfrac{30}{50} \times 100$ |
> > | = 0.6 $\times$ 100 |
> > | = 60% |
|
correctAnswer | |
Answers
U2FsdGVkX1/ghHaI9aFMKTAwUIw/4v7SAH8IkSMKql/khOiCr8T3/TUsTLZjIIwh2EZyFWgUY3zbhiWOt9EIybNJ+3Dxvf8yUIbYovbf3b9E7ZTsqX2m7olArgipigqze2SL+Jc7IufDJbGhxiu3HJfhTxwIAGmk2+RazNH1tTH3LFsqfNMw+Etkf64MpCK9zj195M15XRSonFzsyX0T5WQ4+70/xTPlqZt0ZTIPCkC9J9UuSSINpcXwqPMe/vLa39B2eShUWk8mBLHlwxYPTa0r3nkhoEQzl+tE3lGOlL571C20ibOuwxqMA1eB9eqKc/o5qhs7aqT7Nu1vFwGVnLgM/nktVLHC2/6J+mcxGyRAIGWzS0oJ9L8+kqnWw3OMt8dvFpm443rdiivLKOyyujRp4OWnYgyQzFp1XeiXeFnNCKzZXejyFCgBOVQXbxlk2t7/6LSacTlqAsXKgsl40moBPww0nkDq8mBvTJAAl6aP1O6VQqcPJhsEu1URjGLiM4DVzvVY1YJpjTi9DcS23mbym8W/aFj+c0QlFe4T7YDRtC7sK17MfQmuCpofhGep6h+bg4SEtGoH5/Dgxx9yMoHK4p0OVtVg+ks5XRKBF6SRjsIiH32xzXR1detPSd7vjhwosidVS3ATZWodSkk3Fnkhz8E0tSjnmD+nwlBllVdrd6OMIapVeQbFeWp83vGIzdFI/Y/3o7RG6qYjlGX6t8a7ELbTVGsuFxzQpa4OAOoQo/pDBi7M9ZHxz7nk4yiwRBXeA+P2ZZyq0/ivUbB82ysy2wS6fvZRl7b/Gri6HajIY4GL4eGU1qhSAKkwLc8ukTVmtsPAg7DetBGxuxfiCgjBejE+D2sdlYwcXHJxGeNZeUPfJBlqui4WdgJ/pXE1/YuvOA7s7kjcHbb9+jR7Yy4yGVjdnesWuO15LF1tpr8Kjr+DYUTabGUxbjNWHGU/FrgDMIgSmrlfXuOQQ/CkwCNbK+WgzrBeZpeO0HuUlkRqtMvAurgxqWWotO09ZoA0NjBTojsuz4Y2IhPAdT0Zqg+4iDfzdiah7ozx+XvEtr/dYRrWDc3rxMtJFPl6wzgdxLKo66o1kX9gidSOfpwiAQozBzzYcwo0O8Sf17MSjI7QfE8XRpyCnLAfGQPxHOuTVACjQr1NiCBWKyHoCKvUthyQXJP4uEyvcAsvyd22fJfIG2SN7gyJKNRgaU6/LTmaX4wubiSPo8VO2iJNy/CkrVJuu5U5HMWXpLHGWzwR0P8Xv51C3NX2KIsMPGMLnXBMuCBvHRRABPuIsmBQWZsGUhAUQz6mCNt8g3Gdbcf2zr5lbEDOxbrRQfwdaIHxJkaG/FJfne5wv2SPT/pX5ikVFWaMY0e244yazGSBReH9SJugj/2He6zzXwVSdG439KhbY6fqERaWPkh4NKnnsh4twgfOhNDFsC2heQQQYFlWdfOugtXzze4IyWGPjBcCTfm9zTnGjvpFy51bS0x+qCyxffF8r9d9PuTZAmck83tVjRVKg3EbEk25AyiK2e1FNhFsmBkTmt8DE6VxfOMC/QzJg40xbCBpr8mKuPDMD+/97wTTsDJOrTTNmSQGRPI9n40OP9P9DloF0lRIvDgeX9eJ5ckQahMH2g7zdL85WAbVnyAvAvEDbdu9oFpRiDPhY6B1TH2Rj6VIgOHa0CRmhtRrbtQYHTolFcCL7M7mr6YBsLEwO+MM/oev5eQHfbfmAQnu+R7Di/5euOajgSRAAOnOH4A/rWv1XVsu3DQf7GVwN0gqN/nsAZxp+KWgzGXIFc/+VJNs3B8mBi8DfJeVtdb1lQJ/lqJEN2+LGT/fbdZaAAhWmyJ1YiftvRrD51InJ1VSCjE+Qwqz2Pss0R1taCP42wRdoXR9apHxW1E6bArvwjtSyeVParXmKWid1UJyJm0e4WlTVTFEvY7d1/cFae0gYN5WWp5V4p/IsDr/MqObXMubDfS/5IUyR/URFm4c2HbwcFvooRG/UgnsapFrsRgymXJc5mwWPx2mJaRr11r8BRstRoK+BQGcLSJmMA78LxUK4AYe2cd659t+iCMDtOEQ441I6Qv4MsizqDwF4SS2Vqi9+g7TaS5IAxIp/khkdrgqVn7q4SF0ibw6ItAjRQhpU+B3KPGZPF4N9SjgQi0gNNeaP1lVwq2NY0Gsu96O4L2/EJ7ivjavEXEyJRxiWDVxvsvxXGQvcqsNpDM4EC4vQcI7l8rMg4yubC+CUtOnOSXAWjWDP1jPEHIVtIK7vHAfaNHBR5WYXbgSejNstIzQOL5S34GjHsHGpE3hVfZD6/QTPENJeXqUxX3LFbOT9dKqL9AHfI0wQ7/CKgji1d1Um2DVL6GCBH5H+ze1PiSFyEuQb8BlUDR4LUUy7QZT/qHmfC3V2zB++5qqaR9MsM/IoUZVQOWn+lwAtQGgMW2Rtd2qgfrn+ye7uuIv8JaDpC7IDVHgLdvGAvx29lPLIHzgpo64EIBCsjgjeBTPV8E5zO3GPVC6MWwnjUZIhdJTUcZk7ih+1bmBJbigCnjPHNdwANkmBsgDtvG0N92ZPqbGcCRmIr65qmVeuHaL+IAOqsaG00EHpL4cFgszxxFWbnv7CD2c5x+J8lkYWvqtA7ROooVcQoX2nZ1r1y3EP58zxk9iD6z12w5d4Fv+KjsKCW659D3LLHwZJ8Qomzz9WAidn2r2YDAkMPpKuch1TKWnFwIlXbd0dyn87iIHD4Lirvm0mdX5k8CAroXBowVPD4q8orXb3xRvt1v4hjQhcnCRlvJbPgwfB5ZCBcJsFipLn8GHLgV5LcVJvDTFrASYJWSEe/r21PPNNQrDQLV7yRbEC6qqVFP670l7LFFP3gYzMP9t5O+bwcNYQbVPPO1pAQLCFynbQcrjNN4t2P+gef1Z7qN23np8sIbqJYJSFbwbuYCJIE6Gq7iDMRE6p0IdgPD58/VmfrerRbhy76W1Rt+LM1GGUk0XvbtZ3IX5t7PHxBGfmeFtIxbspaeRwYoT+p4BOSto5mRHQgnLXC81Y4fSryjPrkNKfImvhy7FFl6bX3yP68SOOn474ZT7Y8mQIasc6XwmVX4PiExbnhStryi4v9ktdN0TVb44JBNIbgCPZMmE2ncPOCKOiswRNI8liVO3BXkTJsl501I+5kxmUFbNRO58fNQoQHRL42VfbvQiX+P+vMrJist06nwnTOt6Id7YrzQdoTZldcCRzM6yH/Jq9x63rpSnXFNKJNK4w0PTgiyMLfz5zkgmDCulTA9wTeTlElwuj85yqJn+tTyDDDA+7atk+DV0mmbDyKcn5X3ZssPyWAm4J4f0+yuGvDMpvDv8Ic6jIgGj0bwDsSAZ+kjumbCNG5ray93iUV9Uc2aLAY8LfU3nZ3a5wl3+qdsJ014KKRDVPdaAZhXIYG+iyde7I8/Lm0lY12Oa2L3JSOiIDBGeLgFMUOGUSFZR6nDc/m6FN1mnVjWRLoi0WKRnaSTBw8b65KBmlmTdd73PPOPqH9rwtZRgesuPl+5Wew840vpXL0SvFN82ThxU7VG41BRUjzSMQLqNBQD1nolrMfpERxC+1yzDC9wIWPvhv8ftKsO5pILYU1mCZ+dkItETIV1lHM5ASOkv/bI1Mx+h2jyaxCN6vZdh7IZ3FzLqiOw+XAyiTGHkG+GQvNkZbs6iyTOvR4PaMclMe0xkWkYOpx+Jc2qEavR1qP1ARW0IEtoFewPAXzrz+WexFDSzZBv8sQeagPIcuq9F3x5EAp868f9u8oA0ERoc9dBbruLNNeSGKAXfm7bOCdXAoGmlKAWp/GniZFArd7MNK69Qzbs11Sqo9aAPONkbzO4cqO8oEiOZcfNldOVgSdGibVLcLzB+gHm65k/Clgdv3/7gIcYhpjbHKcuKsDSugzPZaHEcmNmxDPhzKT2/LwOXzOojuNl21NqJ9e6cjYOsFiaxagBLu/msOH++mCrfyqMqxU0sZJb5+cTyqeLilx49YLVpob3I+zoj2QwpMBEejPKVQS6ipK7vK+xpLhT1rkUgJ8rCxnCJa6JR1epVyRTJKvNfQUPvpRpT7mxy43gQ8pNxrs1YcenhZJemayTdpO8i35GqSdXvJNiswGdXGKBWXzqRbo47rUGFPL4+QgTf65ICAmxMZl1RrjdscfOtAnyYxelkSUi6zRkE3nfCeOdqnzColMa6FvVoFlfZTd8MtVBWr9aXDaX5w2sm9WC9gULvsA1dU6piKsPgJY9Co1UzFZZ7fUmtld3erV91TzuYWX2FI20gGIVolQ6mF/nFe5pLEPAd7t/pVFLPkyY1XAdpHEwL1d9w0+odlh8hdCEmfQEoJehJQe2xp0qp4ujTqQVbJisAg+9FmTR/9g9HwcCqhONnilrxB8MA40r/HGdyVmmCH4FQmqI1n3XrqDnXKUyVFZ7qspXQnx0QdDBzo5EfLTTFtmQgPRgh+2b9y5UGeUHQlZ0rfweEcmcW6g7m8WE0rxlhTUl/AsJgeo+LSifhJUbOrX0RkDfZ33erhCvLdXGRhiLwRvcqGVegh5UeH7dHIIa4boCUMvqjPfOeJC+LwOEHyinFWuj/pZTeMSvcXL/JwMl2HL4GXr1AOKjKGO8Z5TbWNQY39ty6V9/W6/94CZbmyJpu5NAVUsJ3MrjDfgqWJ8fk1bDN7Lw7tbjZSjCmFqGFP3mIBrvaYm37bZLJuhRJrhTj2j/JiOXh/uMscR9Vo8JWYax+2CWw+yKYCjbKi/lrKEeiBxpGjJdnlijZipWBfa0kG78mrJYEolR7atn4sonDJ+taWIwahQJm/xxC4C+E7dlMU01H5zrJ6lVpRbfY9Nzkogs0fyDssrVihRgd2g56lvsyIvc6EAQ4ezaCe+pU9XIxRKAGbPuDumKOr7OoyQxzrmmsd6UPPj/b3Lgkb1u0GqGEMNEqRim8SbWm8Ttp5EhZ6bagfLhYOh9yL0GGvL4SM4g9EqZiQhPuhfmiqQGySrP00cRpunOvP8laYpW8Z3ND1VFU/3chiLgV4DLcmr2XLwXl7Lyr7w==
Variant 3
DifficultyLevel
543
Question
Barry weighed 80 kg and started doing triathlons.
He lost 2.8 kg in the 1st month, 3 kg in the 2nd month and 2.2 kg in the 3rd month.
What percentage of his original weight did Barry lose?
Worked Solution
Percentage of original weight lost
|
= 808×100 |
= 0.1 × 100 |
= 10% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Barry weighed 80 kg and started doing triathlons.
He lost 2.8 kg in the 1st month, 3 kg in the 2nd month and 2.2 kg in the 3rd month.
What percentage of his original weight did Barry lose? |
solution | sm_nogap Total kilograms lost
> > | |
> > | ------- |
> > | = 2.8 + 3 + 2.2 |
> > | = 8.0 |
sm_nogap Percentage of original weight lost
> > | |
> > | ------- |
> > | = $\dfrac{8}{80} \times 100$ |
> > | = 0.1 $\times$ 100 |
> > | = 10% |
|
correctAnswer | |
Answers
U2FsdGVkX1+0MZa0HAyJ3P7Mj/Ggt+IdxJjqSQoeMUeHwmjm6lnXVXDxrYn1HA7OwmYg4xmEWQJ9oXi6qvQ3L481qWD51g4AcjzxgjFjUXIyEy9PUS2R9+ABIl1gtMszqVKNp8icH0kaTLS2mAVxm3LWAt9bCREDSWJyylb7HX1jDCF/y9aW46KWWoYP/wVbrEymTGq+pV8+UIlcetWBd6D+Iapeq9a15ObymoIhOZVFeq7zTI5EpuGjHAgGfM5laeJorpuFyCoaHUXeWKC1ox0n12k/vetW8pLEH4ncs81SNSYufMxLqA03ykmoopVunra9QXslTNk5rKl0oEavYwR3FOhJHXGj3VoJaDaFFNS2FkG24srMrUuhIzVrrTan/qQuXhiQ++/Mv9ua13oQRXVAHlpq5dIcyJj+UKWNaOX4OvWH5kl/QoFb/el3UAHYe7YEB6KVAx2iqtticSEvlf/5bNrOSbF4g4q0FV8Agt7xSaGBU82bagxWzQZF5wHVgo+H9yBBAyeV/FiyAsehIi/6PtpHMn6Up2CJNZd1lrXCv8Qw0kEBeMvvCM23u3vW56TLIDbh00ju25JysVEA2MzTiW6qmNFwyLKbN3YZBAQ6WYaDtBNn1hueahKNXnF1Qq9iL9EvICOHknkMIFhQwPOdKQ2WLNRYzI/CAb3bRvmYSSoAYK2My8kmXTICa8X/KnkVdtUA2uhqdqW91wwuWfJB3t/yTWJfXGjr/esZO63ScalywEi/HNjIs2dOBiBZKrY0Qrjk1bNgA4F+zOyTeu86+c8BslMo2SS1Y652fcijNop0mx0gzBYrNI7+4PB6fg7sNfR7q70HJxYMLXfNni34eA+qgQ+yfyw2PcxJ7XCHcWxszKvHWH+MGCdUr80BrSZBVmAwQbSjAX/xsK5XYDkw29c8WMydtmS+uhO099TQ++UjkZx547zX0mz/1FKzhJQ8qHxC7mxL3t5bE3r9KGKCM4u0DMDzqQMm+VSnFaoDbp9lnQNgkbN+DJL+9K11jRT8+7X3Wx8a5o/i89jjAX/96lG6TmKgh+JY/Ur9/PeQ99joushoHtr/nb7IreljactQGTHTZnokwRKJLiuc4FEfNuBvX/iH0q1PTcv1HZum89aQfEjx5n8lGrV701MjPRzPiaULBIl+YoinRnMrZTUXqgExUXfRRmztTHdAleaWPUKmqXmDutsI2pHvJWoWQffjIGpCHuI8s3IB0al7Ynr/LX/YkQFBXzZ/1ZfKP26Kuh/qT39Z+xOr8KjwOdPAsw2Wh4HP0YrZQ3Irfj+oMaO+lz9idyuQ9SIkfJx8ghAwkBwbi9ksc76Voph1SaKW+4NFGdWcyEOhZChuyDdW+H9vyFR2DYqpzWtbUV8WyGMr3SJrfhqnpDMGuECuS4FzJwlVtBzhaliE85TcqbENvES8LpiP6TwkoYzV76LXf7L72IrEHpX22IXBN6alXjrZoBGmoeuQTwYrd7rLjaln4OkGT5ESAPvBr5uyOo9cx3kBboAW4tE4K0V+1oNA8VvW9cdnvlKSGErJMoB+kKsHiqTh9hv/qpEzrNETrIzKS/isbE/VyvxTQ7TAWxsBTdtz8+klJk3ZA00/erDG7dq6gR9ZYdTKji4J9xrIyb9BEpwS2C6EX5JN7Eh4oh48225tKvg4zr8dpgfwzUO9S4HLvzI0JximuNsuRxe/xnCtC1NSExH7/MUWs7jdGvIR0mdTPjW+VtJwuzRReyenfpJQGa9bVbRDdvWpl/QirN6FSmkTHkzIFi4RUirxjB5BlTXoWhZUexsklh/dNQrjSU3lmwhxkVTjFNF1QxeP17kC1AxRMmt2h/gQxpZvg1h4KgEMXkXO9qYXzHovmbQW2/PsYJy5F3rqElID70LkRVm39lq+inig0DrHDq965kLbWyhrtIl8khAxKpIGvau6gvINwQXs+RiOa2ViTJ+NBHyfs14xjkIE0bZRZog9ce95TG125ynbO7mfS9N3DhvbSnskKU4hkWosMwd5QPK3hGchgbi0iaMs2HboNrsxz4lGNPyYaFDdv0twCa1MQIUs/9wOCx3rMrgJy572kldKXB4ygP3Eb4XEHE5QSM19QW5NZUJxM6F/Efzatkkf+kHe0KwJywnM1Gj8JWQSwqYXcpJCmKyVN0QtEw+yLJW2u8HhuuoPYPgSfVPmo9snp5vYsTh8MeQRfgZ3//o+4ATok0WWV9f0nhhmlAQ0boopQyPsDqzZlcYqPCDu1nR3YtNyLNT42xKts82i/4ZuSl91qX6Bh+lrCYvi4hmfff5XjFLXuZZ4m+ADEsKt9BkFqVyvLgv1i0fITcInd9uNsowDG8OAzBQKCaqg1axLWJLm67MnXb3rR6k2q6sSB/jbuoAksOjmapLv/KLAioCxPFt0prdE9Bmigb9BlDNpbtnnN+TE2mzlPG8Nud6u2NSFNUEVZoxtauIGWZ2QVT4OH0yFswcTEY8tOF3oBetJ/tqrRiGEmY59DyeEqLv8zVfLPdZajG+yk3vLO+w5D8wq8tzQm1JYF85/lbNwDONy7noxkDQDVuC+21CETSstwlcgScW6xDIVlBP5at6JDE9sHSUkd2mInx15m2czVU+T7Ld34kxCD4QoQT3jREVCgVCvZdRQik+HXQM6bC34o6S+JQP/VYUNI1iIhfveGeLjIFwadrmhAlzgPCSQpWrtr5QExT8y+fNYBclAF6RyfsJUMmlpvUKOLSK3CT0C6Ex/w1fUelXoAaSbp9d8j3Dpa5FfFZmFJr2GFTfnQeGTdTSpiSX1IIlRGeiUaypx7Azqq/rth9hf7nH0tMl/Z+dK5ZV9ON7F1aRLWdXUiGNq/y9OUUy4RwO+s7iO5FG/QZ9fh+i2niWzmfOJU6019ykrbwP/t34JSb+EvxpXtAXpi//dq9Ll3OOH+qVtLDPcWZk5Ma1scFUlxeVCrJ9jn93sT6p1xV/yqQOMn4TQ1SgDg4SXvrXIYXxaHCzCyN8J9sRONJ3cAEvIh2vbbXOL5aRzpduR/NX3FmmOE27PEd/7qXvFh605JeCXin51Vsiiv0U6qTzkeQvYE3wbfCvej6QFtcLpTcNKlX269/E0Gu8KQ7JvEod7CtumFaLglOmMLULyihO1kLa93s/ieQZleFK5xZ2pav2uDW9yaF7aVK7npkF26ogzHwdcWLI2aI7Hy30GFZYWB5McdahDXRjoZPVAdXe7aE95uDZcm/z7otuq0niWey7350oMsoT9suYUAQUdJW+NddLq9uRcsMzdqfWuhaiZ6/On0ZQj03K5DBayEccQF1J6kJ1wffKrkNjV75oZAlygBbr2RLcqFTQEFAZ7EdKboTAh/qPUeUXRUHTqiYrFAUzKrIU5vh2DQlrrzWDp5JRbjP44EJXSXR9qZqApFmDyRkaJzqNDnrwZ8C/D3ZHYjiFF1BOi2ND1jcEcMkqccZAaviSJn/wG1q6mDBq7QDLHGK0cZG3zJYEm60pXM3yHbMUpmoNXfWPcWYDRCsQ7Y/megP9eTfC2L03e0jSoUtyeNoKbhfVd/fSC4tWeKri6HDJ+aFP8Ecu+SfsinMWH3uaKpF2KLScDnmFxx5z9TJFvAJKeUXTepcq6Q2rSMf51nEPDq7laLiPQymh1Dxb+M8qqYZqufkBi7Xx8nf3pwX+4sEEU5QwhttL6b1eaA4mV1xIFAZpq7XbUpcoE1G1alQz9Rtqb5066LDF5Wa1e7oqwED6MMbXIansoXdI39x8EUKX3UndxSdBpymGVIgo+XvR6TMfFdP0HraP0o0ghMO2IprYdjdAB807Y60FHbSA7o8LXmkL6UcV75BrSeuXYEoHVd8QyvZ/btODmlvcG3OfNz0U9iD8QF+RIocwHmZt0yfr5+hXqhVLjpVX6cgpzXSQoa8Em0A/D1HdbcvV7inPjKvEXkHIb7Hu5XCP0ShjyTYOi5PGXaYclBvEcnnaluAOqVQPSjj3VcjfR6oA+S919NqFa3uhYG72+AxocmlWYQ3ESECQSV907dtIn01NZqX6o44llHabGyr0E+Oc0/51QWDL94ovJKBIsldp37khjJskmWLj0XOG1O9pxc1ePljCwqPEI/OucHP1Mh2iHsyMgYshg124cwtX6z3m1rnWihDaM1bmGvWFNahzs50u/wZDQnCK+VfCl2OQkgA1MWMLUrwxpx1drHxsI3SdJXP5XVfgKc5sTwiH9tqP4sb8uyJLA1kepC3XKKjDuipkaeEJcvg27Pl5qcMsAOuZIwVLHW8X8HEcYH0JLT/3nRKJL+AxhJnMiajjeWOcFZNFGwZ/x4iP+ERbplxuHp4jDslxxGtsiEf/r/1fE7Ztpz5Vb/I2tljnwcbBLTfew1X2CN1syshs6UMoXt9WXQM4tagaFO4iAgb1P0vmsS6yVtbl3Y3J2TjQy9paC1CXg4nzi1mSo3rzRl3a14WPsEUb4rzA6H4H3Z63lIWHHDNrg/2wpN4v3rTQjdOUL2lcu0P8d15DE6L2QVW/WSMc4x9v/UpQQm/SwjNVAQtOEz1LF5Ahp/qn5EzvVvzDu56f6i/yAoAJ/ht57BqqtcIVcZ9bMOaYgaVVaeSv9X6/cSfaWGNk/wWwBoNko4nAn9LBrAahx1cpS9B2eF8EsFMYFeOVEw0oX17Yh2yx1DYjX6MHTV4eQ3v9ldV+dI+BeH9zBqiXvPV4bIFoN5WHlc+OrHdi/68ruY1HjwG2kr3wm2xjahyFumV87Y0FaVQEDiT5QpULApIBO+VSaSBpgVRGFbZWdssrDjLdquJD/xPS194nCDjLAVqtNpx5+J64YoDmzwsWTqMyLFiUIt3X2U+hSZd8hM0GKLnAqhZhhn7EzkbHW54Qzu7x3SEQg2iqByPiWxJEImkMsrAgx8KJsZjV3RACcLEKiM7zvekzhw65eOORpuIWwuGt28X/96qG2KHq5ztEy9CMjBqCdhAYBHlf5ya8vreBUz+mbkw2353Uz1dg4WuupXg6mhQUL4iGYbxtwRxgtCdrL4vDIeHrIbBXcbKYt659JDKqQ83omxpQM9o1L0uITjVL8SCeeSpetz+x11ZbxJ+01Ibpf6OZBPwPQ2sFZg1uBxKv3gUduKyIEIA6ztdzcy0/ujTcXDSYlr36YblROlzb4CiojDfd+iLKNOTaU/dBzh9FXKo3ho4Y/83WLgL+wWc0PKHglqqPNEootZ6GrHMASSVofx9XAQ8M/LscoKemLicx8/Pcbkl9AFPeWnENd8QOIzPjvjiAUE9GqHWOUeiVxzI92pxqJD7c9BJm0ln/v+0D8sgu4MV5J8cYATFF6nl1ABEW+Ofyx9dveo8HVW0Ex81EfMAXiSJMX7qg4fZk0vfVZ4ywCAJ5bxpU/rQeEdG41FmtoYjjHisvnMth5zZ2zOJpkL5X0MsTKIbqzYZSHOXnkipBJoZYCAhcXFHDLg8YG07UVPMVudHTB0I6VOFZddho8eFNLwU+Ee6kkno+wy1vpwQt00U+NoMuNOIYvgOjsiOW7JJr+30crjXy7R7L889bT6dU8U4NHMebKa7KEg9W9LGvcJ2lyFv4No6vQruV76jcaDv0wYBq2I23y7gKpTyqW377aRjxzG7FKh2yaQpLnsOvgtxkmVw+lkFndd2zuz/d102kpIbZi6h5I7Yf4HOOCNPkVEjZueFdJerzsPBZvpbVJYWSRw5/NJgHXFhArTXaJeSrAFVo2Ib+jEC3BHxbp1uv9AauojTvNwwQeh8cv4WtZBuQxyLClyh8LIkTIbx1s7R7fQ8i4o3y5P6pCS3KL2elD53vxVhObs3TtAU7cYT2xso8LNFuWMYqCo8FG28Ift5XxXvF+B/md1Umk9BOSE7s2tdjVZUxgPAlmrnQR3q0l8kRagmqAh8p3XrE0NSt0TVOWLcRfJxghzrr+cLM0IP5HAomSypYT2wabWorFLJNrNmmsl7BXLRdsvRlh0Xfi0gCFWYxpFsMBWKV5HejBTdmPlxgGNSY6hrd04bhWmdh2zKEI32ZKGRCnWQFwbVJJjY4prQKJa+kzERrJe5bpkOdOorvPlkTNrg6ZkWHtCiHW+0ChWq6GLs60qa4CdbNyvzmNdDn4VVUy+5gd0IM0Ot0V5DDtWPIDyq7nz/AZA3qx7UFpAnjt0/mWcxH3BCFm2L0/Eetcwxk/VS15/jEC06mwCdfGiFDyEoC0HNUV3vJq3/3/E5CeZPlUEOdIFlEv/UZP18WL9Wugg5vIFADaZV7xxeu9j7QeR/X8CbJAbh80KnZh71sT9dpphLuLm5Wj0Fyz0Ea1kZEkxteZgMDiB5zk+06piUrGc2QGQ6jXV2t58PrIlAil76TZy0b7OvMdYyMInnK54wVlocKLF+g6IffxtQ8nZ9QaoSp+eYaPiCKpxm8clYwflqzPxIyRaTC6ilsSVEl4V0J7LsSCQmIo9XgdBjKcR0p/i4QJMOIqwm2kB7h5euXCRvtyehLLLbiR0p/hig/vEb5o9ysG4Bl/pxHOOF+HJmXITOKMQFrIHs2PMkbotT8zJq8XXHDdMMeBExuqzXVwmk9aIu3Ir9BDxYifHwHvGnWpkSxVhVRbFYfTVVvGOdjLsZsbILpXnzlQedG8X/j4xentqv7Fz2CSUKLu4zmNnoVDw3A9A3s0NMa5dQdNjxR5HU8A/1LVPugHsVBag2uOtFThrQ5TKJ+O5nSXcw3cJ8xo+ezjblLG56/dZneLC3OsflB0qIUrydcVVt4178V0KWodKlyniQsuOYBZxNmqWfXGMDh25CV6pQwC1fo=
Variant 4
DifficultyLevel
543
Question
Maurice bought a family size pizza cut into 12 equal slices.
He ate 4 slices, his brother Barry ate 2 slices and his other brother Robin ate 3 slices.
What percentage of Maurice’s pizza was eaten?
Worked Solution
Percentage of pizza eaten
|
= 129×100 |
= 43×100 |
= 75% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Maurice bought a family size pizza cut into 12 equal slices.
He ate 4 slices, his brother Barry ate 2 slices and his other brother Robin ate 3 slices.
What percentage of Maurice’s pizza was eaten? |
solution | sm_nogap Total pizza slices eaten
> > | |
> > | ------- |
> > | = 4 + 2 + 3 |
> > | = 9 |
sm_nogap Percentage of pizza eaten
> > | |
> > | ------- |
> > | = $\dfrac{9}{12} \times 100$ |
> > | = $\dfrac{3}{4} \times 100$ |
> > | = 75% |
|
correctAnswer | |
Answers