30045
Question
When at full speed, a {{animal}} can travel at {{speed}} metres per second.
How far would the {{animal}} travel if it maintained this speed over {{time}} seconds?
Worked Solution
Distance=speed×time= correctAnswer
U2FsdGVkX1+JNiQ7tjHNkpcgnoSnEvF9ikC8pLa6imcXF9+JXgsKVV0bf51L8UCXMnNI1H7AjKlFREAAYNOtrZ0n5d5w76cCwRtNWNA3CeenI5L4u9N+kg3AHzTmmeGJhwH3D/HlzJOiA+IWQSlWseEbn6I209ZJkleFYc7/9KQk38xlPcyI+kUvT3SxzTSfG2pikTDcDEq+cRTRtLcNXPGIP84/B5N+M0BYn2ZXjQ/MrvbhRJgskY+5ttcPe1lZC2dqVXN+T2WYN6w4vcj/NV5sm/Q/2LN9mqZgu4Qv/ODoJqEtd5VA0KW0Lj99PkYQszvqmElLcoOZ1KqzadZhpLhe13JA2i0lWK2mmsZiSZOZAQPCBw4XwlqONPliXosYvRiss8nkNxJZQv+GylV6vK3JKwkz8G8YbVJ7tQmxkyMxHYJP3I5+k2UKf2gazstbRpLMY9dQ7vHvaAWDcHuHiS5p4gTpjLGRbP0M35mncdjt8qB+pfEMgr9qsqi1YPyzc4Ip5tZXzLuus5FMv8Lsp7Z9dBE93GdmPnOFl20IwsKmPsONN2vwIboL2QzblOqQhQUEeYyMQ02Fi1eMXrKWfuCpLxWOqOi1Ap0igjlVzyiPHbD3B6fHavlEmPB0Egl90/PGAMPPbZO4G9iTZCtplS4ZAYAiudmFwmbpi8XtpTJvlrqkt8TuHnM+lTs/cfW9l66pRB5zxdrzRMTJnpyuNFa1Eb2+GLcGyQGaBpzMxGVzmkN56697CK5BEZTiPBQOMDEO3XF2E/akhEYG9N0Z++nPZ4cVhOWV4DoYkeNlp15h8CADgC8NXaJ5Aj18ZTEZttPzp6IcALy/T1hBNXl1VTcS9Qw5R+uXb0U94EkP8RyiJzCeOhB3Tyeujfs+tKNMeVwSrEquPtJJufyKUIvqCCnOEA01X+ORe3fU5zey12TQ0V+I6WVQvlu5b4gaao6FxBzy2SPgFA/IREWIrUEG4nlRy0/8ebe5z4VkkRvzq+jlBQAny2jihDZ2vWkLF0bHtMtM6xonPS1LnlxXbSeKvCPKZFywtTocT/7GPsgtKxYoUvjJmmxu5fxcvrty7LoRijC7tvFX6CKvtUNdGPnIGagAZpzg2Vfu9+V2QGDNKlokQoIwT26iuWbZA1nZX+6pYSL3oeyQfJG9I2w9xTrSAXwekc0edXo+zZFALwPencEvFvQdgAVs1ZkaeuvVhDE2tGnURN27Qu1hKYTqSJxUnPVdWov85rAQdrKO1a3dF2DAt4+R6SjHWIXf97HaF2FPJAtheGXdXZuToN3rtM+wyiE4JolSyaUKASv965ZuNikOouZ8whvPs1WZhapzphAL/ZjMlHjTAwOb7Le3G5wwN1/tvvMDBL/KjhULEI4R4kgdACr13DUzbWykGQx/4xSoGlu1GtfGBVLP7dRma1aa0wIUz/1MJ3OqR7Z0ttsDi27A11jVpOjo1owQTMamO4EWCwtqUTQ2xvu10ISoQFzgXbkg7mB2SyYHF6HfhwWU5ALP1TmsW/ekzIGFUZVmUsiwOfkTxwYjnuUOlC9ces7u6gWo4W/8weYRpwrWDyQYoJU+WuWYNpoHA2NzHwlfiy3HJbV5zjpjL9ay2IdlNCMIa/dlEidVZu4M73r8nGxZycV8UVJB1u09pNnIXysswaBo/bd7hdXj4x192omw76BxuPYyAEvqDSgmcRh6rtvYKq62bwOiZmmPQATpFMhEFQM7yFm44Zj73ALQIzR4cCA+nBS/v9cBb1p7Cys98GeDCYcMomprd6CJF/RK199N24XeaoU7/27LvbpJYshSnCdu2/hMa9mA3lYnMSRCXdAQ24xgup4HCu3HWXBm48dvY9o09uBA4vt0uBzXnYpeSjU7fSL9S4168RekRjjvStunj1DnRx32M3TMn2p82VrIdowKhir3Sje8esvL1kNahQEbEvj39O1MzaX7vOahGZhJI6ipzEOKsRIbELS7qwfQ1GnxS3z/w/0iMDOFEjrNtWXmsWzqs/MKrz8fzJGCrBdLXwAxpKqgWtTPQe3NL1o37O5FYo3MElP4u3M6jo5K6h2Wvk5IT83hE+9MthZjGV3BgdKAd0XwFnkwtg5dOYfy2PCIEbhQd4/SyvVObQHcUvJXWIbr0C/RG2W68OgSaCiemM404Clj0ZT6i75cF8jcB1IThC8jTLig/gNyd4SaMIFiVImqKLijihSMMandsjaJs98yCNMzYhLrKmUlCLkKgh6QyGk6UyclBN3V9HVt1Tk9TpnHxQKF/sodJMmUcCpkDxlcGPkyKpg0j4gCagP+FGML0khbnM1D+dsxeBlUgJ9XBHc5trj/Vdnro1Csrc9z4lsT6uqHc2flErnI9zuqhBHu5wwNJdaYJz7NtX2GNfcYQ53XGsiPe8SZbcDXENLHPBSvAscxkcbDmt3897BWxC1l3iyswxBJPebGVLy2ZqXcmC6c6FNRN8C9ct7SPx/LyKt+hXOqzBIeNet/XwVdqBSmEvWtRZt35cQzSObjSWgWAsAHsoYmYc+CHXkNUc2+ReP8nfAiZK8ETcKkgAbuwT4DEHb8IgMuPa7K9B77zvWMhhp6IflWO03+gOeEE8UHz49DCboDVCiCs5DNQDuR6uhW7Xm13kG1P7vj0MDdz//qUXdt+4WYG/J6D8psOxp6cF+eZRsBEqOCHMdtXw/hR1vI0t/bGyOnR+bvecC58NdHAk/IVQviL4gjwScx1L39V+QLk/WmjtXs3T2SpUnO3sllXEI0VJjjhHOSL6SHpBIQ/JxgfRxkkE0swVy7Gw2O7gdCEZoE0eOkatUIUGyJ6SAXXdJ/s34F0StpTB4sIF014ZcsqnXPM4LhE8Pcg0kB+KsfX3HKZvzKUIebDpF/ZqOZ+5XZ/yL8jAzgrtVHUb+JC6SiF88Izj7urVKaHeee1B0Yf8Ekusz6bnXJWb1lq4e8LvnEudGwxX9nxWKMy20nLQKKbTZah36f3fRZp5+qyfSIlimf/qj1buw8VlrRWzG32XIkULFLxSPyQOcwWx7EYu1X2L/9BggTXiugO6bqkMqIjbTj4yH52Ln6G6OmCR4inrOpHlcNKXHGrEl3FGWud6RO6hY+h2zu2B7d/7nWTckVYmqU1KXKKF65gQGhz2Na9VzcuSJNR04tICFd8VeBXe2DbQmkTHEu6KNscJ2o5YK2Gt884Y70ssVvTxL8tUFegWrlePwir2QkshFcbiGcpgfeCSzQawSPzHXM6cPaieJbnyrcG026OwHrFJ3SaR9QlGLRuTVXou/9fLrJFYqYJEWN5PUyP78IvRtjWgl3mYu+YaNe+h54uo87gwZGF2pyny15IDZGBPVfqyjbBKx4R9Fz2w0cm7hUGqhs2eTb9xuNk/lEsE9s6RXKrz96UOkxGkc9nU7H0fWj3gtTCJzYiq8+cAtEO7dzcAgbfTWpg50zEiUkVyJbu/aD9ix2L6Fajr22TXoHQupmJL1theiFsE85Zm2OQcGAjASDl9Ywz8N1o9DMd+jn3ItgbjGCSjRAbq8enA89rRcEV+GRRhko0XURdWcLhXMIo7D70swI0hz6SG8pKae80bQANW8eDs44EHcaryqjCGXTuScUbFBp+HHSsZPF9zsGFJyP0mlnwA49sOYVK6VFQG62tB4ExMnnBjDpjqqzvmyvyO5a551Vb5fVKLQr+lcM8xILnGaoJ7lQRJkLaXw4plGYstX6pBv58lJ51yYHJPK6eMUEZr1P1E6lgilfFVIAkI7eXmN8Ay0oPv0/QB+5iT85/BipEsjeHMd+0Ddh3GUV1WBJ1qSHu4RJsNfH8VpRbPLCXWnISOFu37T1tZ8/5vojcsj61iGHSpIGGGGqRqBqCrtwaRU0NQhTrUsF2Eu6RxzbnhG3nlFt2XGJGpTN+ZG+g5s48z7VhBRKYxF2FIidIWVCPLYd/q1s9pHkr+welu3PP7EbEmBYR1toZ77sjxO74u8RMrzkmgTD+yShvCNEYcPnF8InBokl9g9SbMF79SnPxGlUtulr0fzwDlMqqAPRiPZ9wAC3Rjpd/oQwkseAdclkUqP+56wDhA/52D6nW20ECUekV2lEdD0zaFDK1UJ67VGzbHqOGqhbjRfO/14NlC/R6QshrH9Kbrit+TjqwpWap9lzoG0eOcMngH7Poa5sCZzrzEweyJ0M5sfTq6gNSevKCuyxJX6I0Pkb3m7ZY2yvPE08GPdehZTYshYO37TiFB5nVI9GAYwj4gXyJ/Ny2s0ZoKyq5hC+YAMw5CjffjAg8J+8V0JA7JaEkoBx8rKWM1WXJG079Q4/xGy1raT18KhxQHCOwlhwvnGCdfM+T3+JGu+V2b8gtHpg692WU2ZEGJ3siKkfMHlMgUkq170YlxG3lSOAEkAw/xA+d3l0ZGXWDVR2UF3ZXvNphOdbJKgrH6KHYcwuug9WQVIKntP1MAES08HNrdds9L6SW4YiBUjJEcJaS5ahfUjg1UO0rJglW8AJMFRgRriIz766oj1xXcRSi+F7p0IcjVJy1E1UD5Zw6Bq+HZFf8qBl93C+QAWsKtnmkkIncUCutF51D6iyzsBgDotcrHqrTyyaCpDbkYqYidSRO/unxeEX2dwT3dDrTJg2XQVx9UE0bevCozgC7BBnrbTuRzeVD1pOqQK216rs7QXu5sSKWc0mBNJGC3NMU9G1LMg28VwetzGSEbYmDO3HtZfSaVQSDhQHzubROKOu14fpWgeoHN+XyXQ7NPQFKJqzX92zT8IdVSXVWVcCEKhXNNBQCHlm7r8ZywVMcolZJW8x6QuoFgBzzGP6L2BE8IHyQGAiErihGOPGXd+LhkMa7/VSE/Wo0zhuQuefoLxJYHFGykdViW02GUfQLyquLv5VdZHn/DKXiYhYHH6dFNpJl10NLuK9yzh6azpoOiSsykhfBwQsnV2/y+PfzBgLM45u2GRJlaSqS/5Jx2anRbYbuYL4vMoOn5PZswTCjni3BL6qJ9gwO42Yu7kJpmo+1jOFHkeTcpkXj2qo3QKUGkV4YbI+r0rkNaaBtRoqRl7mBO+D0xQBw2h/73fxb9c9xxPf3Bgc76r7JfGSts6khTccNlWVzyf+s73+aG7wiNryK9ADUy5ILL5aAvQ5on8Dp7ofivo8P5BaNxV8YVRO1bm6GLsK7/WqZMKyxcvbeDwAfSG7xmLbw+Rm7WNIpqYiyIXhYgQKATS/pXrbUw+Uo9X/2P7p4pJgs2ECneIx+NxlDPii7Iu4RZr6yJA9NYSR+h5+W8zVrIwG8EcnU1KqtgFdtzBoZg7XVkIgHrl/kXKcU1nTAXD1fx2fw9kPB9RoW69v0Apu
Variant 0
DifficultyLevel
536
Question
When at full speed, a kangaroo can travel at 16 metres per second.
How far would the kangaroo travel if it maintained this speed over 6 seconds?
Worked Solution
Distance=16×6= 96 metres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
animal | |
speed | |
time | |
correctAnswer | |
Answers
U2FsdGVkX1+6MWEQbcOKNL+eHzNugM4BWHSzgDyAf1L7+poo41AYSIHaqpJA9l94jLQH3XyvHsaK9bT2zGdyY5yTfkr6rUC22LMSY/rzdP2uUxN64JfsYV2zQ+25Afz1fOBeamOrSxYUGWLmo4YlGGtPZ2WJgu3d4D/dVR7nPwLx+m1sxJ5VpOPQdiHwTZgKrXQ3J0xbA0IVWYUIVxNBKVj6KxFI05tb78LRkdskR66WbYCxdibNKd+BnlN97R7X1Lt9vGyzCKZjusqMYJTnH/hEnyUWOpBxGpxRW64nyh2DkXHsNZvyx0nxxFx9r3FbZJpnZ2gEvv4p1c6amRm/6rnO9pNxQJbmMs35z5AchiXg4rO2HtIHrHCNY0zWYnxv1LzcGCxt3GoUDm3kZj7kHwYqEjEbvbqdzWEBS9cD5tBoKFG+7ZhLi3RGilBVUsGkJEXPeVNHjNUPT9eo/AIo3oh+BTHBOZTuh7zORAXtrDG7eC3nllmAhJapwPpkL8aljqkRTvcNAW9Oxk5Nx10Tytdkpvih6k3h59HReiZvX62PqMuhWt9x3vCeH9ZBPcxEAzxAjKwDsHwgK7XJKPKK2r/8bJGCsV+uAabAgRpZWDB5mS2li3HIZK1RQwjmV9kVSCBl4rBHYRfeFeJmZbJkv2Boemky67v+dofb7/mfjZY11piBniUv8jCSgaBzDC+Cjls1bGcrFQrq215+KG/zIy3Svm23GdnLb0r2qfxvXDdmwwckIUEM/avxIibBCgpYmc505Ghxe6wPbBHxSDBRGb21QCL4Y7A/R0oEb6941VaRk8fsNe5wIqItx80rSYTVG8QI/b5SAch0SPJVm+Cs5Gmcm75qEi2VOYhV/o4UDnZzOS0ejQYXu+JCXjvUL563lIhgCDaY/QCLc8RQ4zK/8f2vyZr9Pt8H3yxCb6PP7hJ+LabX/v/eBuH1l4BfCU/fRVV35oYx5Ppkz/Do505ZTOUifrkCkRRGoBo0TLLUMC/MExZ0r4GZkJwtTPqj/PdhD9ATGcnJIB1LEam2He3A/fB+ytuz4LqrIilABCX0jNUc2jrPayEUhLA9QPOeAF0sd+wmfWNodkzu3+fveIZX0969XmWsLntGTItGkGWMktZHl3MtDlvlSOfHq1oGFk25AsIvF7gEHHs0Bz2TOT8W7eh1gJ8S+99uOTKtKzsSG6GtDUQMx1vQhZjkzkExYTIdXKp/JEulpFqqbU/G0dz7qsuxTe7oUrss9wVbojZXeJCPJkIn91zXjOMCYRC6oEtjIIk1FQgzcQhEF4+xfBBuqHDZLq7mv7qQX6KS1fYZlfYYWtdZO9GyAQgGReajsrpyRO+XjN+o/fQNhmjvdWXS5JFcV5r8iK5W7yXODJuitmSG6YDLYRnvTtxoo94MrdB5htq2KTEUXBo9gJcD/pHQ1uQXFjxLZpyHxYcpoez1vyF4F4C6GU31KZVhjJYsKshg1BkJg+fV93WBdDStLbiE2/+44soJgFZiXKooio8AjXZ6c0l7qRr7tivQUm7V8Oe8WCyK467+n4DEp8BqIb9FLWbzvHAmTTBBbTqO2cW5uETLtDUlr4ccgHm+6AlbJ20h2d1ld7BP1eX6fRf8OXcAVW2MEsUkqC+1Hwko3Bh9J+A+rNlzOKgc0/fdS2epp9b6CvlyzAh8ki0+MZGUa4d6ZvztJXOHRx/QG8uo5wtXyagdKPm75HVQZ7my07fZ675/+06r4TYQx3uJeSgkeBvpckf31sseGZeHb18SIO4G+277xJA3fZdo0Yn5nEKqT8eHXj5oWKV1FWHt+w4pXflj5m/QBcfvNLJDTryqmawtubMdcGH5yTEur6zsXaXh+axZg0frmM3gy14Gfr7EZzuYLTcYBP6cv/Z1liyTpmdsep17NoIKN1C8xo+AoEpXveLYHmoKeqZ/S/QpK4sUpVVC5BwJYsOML3EZ4KjRzSXvEx763mcPVvwcXVPg8FQ1VeLkR3Wl4RVSWCxQZBvo9ocyKmDtMBB2wl3HSsXAQ2yBCV7fZ7G5fJDWAPn1yXT8EwKONc2H791z9VQtVksmiLbzHv5kBGIT6x/x+KNtazEIYol4Q5PCDYjfwcavENU1v0hpi5ykgSxIbopEnwoXiBCOhZJgLEa2yvVpqMt9AzifhEvuf0gNnXGup/n+q2diFrpCuZHzZoXse+CAtQfkfLesgPQIbdPt2w3jHSoNsEL0rw38LHUS/BC90IReq7BHQ/spbxA/dwl6ipZVsnjwPTEI4O4PCRryqpB/DftQ7NpgrkG8PC6+a+tMJpLpuh2/aW07Y1r0NsDtVNWGk38uy/0BczAcwfFkcZL99gbyHlQYaW9iB6/cS0nZG9paQY4H6wmvXEQFX3Xqd8Kb+TlOshu7I2Dwl4tlDAEu+VBylwmuEK2ns4NHDbd3ZkCUyoOtxxyafANoMHiW4QiFm0RFuSsYHrPkRt/YLQXrgsSZjOgNLAt2mx6tYn1dvvkSHhAJDTgQfytbaXbIOxgxwAZlwCIgsVEAdyQN7tuBx41QrxneScahja7CnP3cEloYviN86uagxcPj9e0Juf+9Z+6Oyhu3z54T0RZKRLcN7+JSs/AFIMLvuF2D9PZEylNaFiSRPoLKe6xGJOo2v7+wU8AltUXFaxHUFHfyjWIocRNDyxyL5wN6TZTnDuYtg8rkv+22ivV2PE4bloStQwFwOks/I7UrsAcTL9PwhZk/oIHVrjiIVCOcE50YLIq3oqMuuSm29LsvLHUW24RXGQvehQvPFVeCHwn+NDICuyWiZEbqf58dzEmytu1i+twII1EfVCjMfuW92d8NiZ6lRrWNHG3mQA2mZu8Vx040e7rW7JqGe14nk/c3w0h9AfqTpYLpPsfHroDCARq/qGCAZ023517WEg+uyZqjLTeSSF9PqGBYNRQwxrvLB8qKtv18T34d3hQ5EuL/TwxdjNPFL00Amhx5//r1ysU4rIuI0kMPXOwuCEWg7nw6UqndgEVPWcoX5QFkA0Ygc6Wyq5205DruRBFpaFkhfbLmW94ANzHzpXrhknIeYO9iadyqO1ecW4Jv4Sudd0xLP5I26m+BLeuD9pabpF/T0tLz+JFEmGaB8lTES2xQCK0QUUseFAtobfwy7cDbLt5piA7OzJkaUCGsNQdwvKRU1UhYhI1FapSp03POm1kCA+rdUrDlCsbBoz+vMx6teghuL0o1MxbKH8YWDUtU9+mWIE0KiJPSo7E7VxE5pMyrFAp3x0YDgyjz4b8CkYt960xBDiOcoZmHT49TvVngaimAh6BzQezFBjcnc0hZ4Gd3EDdA9W46LNWmxfWKNrzwfWP3NKIKtfB+8hMI6Fr55XZQgg7I8qV5D9JiQ0v+hUkna4IKB8N/OhUPbdZjBD7ylqD39YQ/9mSDxSnSOg9F5w9N8m3MDKCQVXJNUR3lnFOwtGNgPunL5ZsKJNaWCKMEFEV/0CzK5R3iAks2aIU7Nzt07V2Sj7kQlc4NdX/5seEsUyJKs3OIHyNfmMCAqZG4yzPoG3A/prfO9xRoXgo8sic/R87VqBdtWSm/u8UWlzSSy4e0qR76OEJ+Vhy5XRGFJO/qsNNccSZ7R1aCHKQzvXrpbR69FUBIBKdNXBIdzbzpjUYoraqYbuTb2K32NlYG/4wW5U7Tc7UMnpS9pmSjv9QTiq9iUUeo9OjBTXrHVxno6zx64VnwVkt1w9LfTTTw/qLXR64IQnweihq77am64tLeH3M6xSHD1IB1wwJhXKaRe8tiTZY/YXMsvdO6fJhHsOvCp/97k0i+SoV+9Z6Cv/QKLWI2TxBHOs/bJbjRF7HD+nQsw//z7hhpw2IR5T/qHiKNSffzL4lAX2zFR/KaawqyAdZgJxU2btpZXviAyV3OTBOkOJgpFoeY8PLBd681gp8KVS49iCqN31MbLwqacuehRtmy5haWG6r3GTc+/e2mefseRT9UJFUe8BM9VPj0+NnfnA3S5WBHwQk/PN9LOj23uhRRQFtvO0UUKAUnWLklO10ilR9mXb9Km7H86lMmLwX/jeMJPFlrzD0xl+vDYXY/OtBDWkFZv97FyB46LO7R2mHvR4tkT1fR77V59PAossXQOolfNAUvF5K2CseJYhQCHuBE1+XVw3TcSMYS+Z7Cb4jBkxMCjWGc44yk2AJ9/WwJ8544nCRLJZbbM00jfI6fBJWI4qsfirmgvlt1V+vc8/cRiwbKphJj5R6+xozuggrwJa1cO1PFvkxKiP3BP3zKgB7Ltg30VuDj99dFN0MCJDOuz9GWw38FEGNACjyOTJcul1PnTV4e9GN2VfjHD5du2b5h8JX5fOsnKdOx1jRTWSEtq2vhsy78eGx8dtgZdv4pxEWnTws9kPOJuoCnFsvO4IuyRwfFvrNJzIwA9OgHkRs5PvrQ1yfvLIX9VAXwkXwC81pKzORFn+2zjr/OTip5LcA/bAwRzNEYFt23iVGy2x8qF4KAI0svl0RB2ZlxHd4A2mH+OEl0C/xz5PWDA51KlbDd5z4CoJMWooWmxraxgac7G7zLWQ7+45ltMbvZSd2nnQ3+Zj8hxJlGQdysdQGY0raeIi3CkH6+w01jrYrxGP4b1X7MWN4vVPWP5FJLcOtX+0VUJOj8WQ4/ATtV/OoOh1aV1RJtjHuLpbPrpg6cb1w7slvbcqBWwOaTLP7phcaNOnHg0LFPS1VZRJOKBOcV3N25awa5wsoaKE0Lpe7p8/BPyvekkXFkZ+LtFZwE6hhiGL5CzzGzAKBYfK8JFV3YyCidDQLTPiyZgn0JeON37PGXQx+UHFF7pbiazbgQP4jqtUaSzfxA6jBuRl76ny/V5KTCpv33+iDECUdnFpEuBr54VFTw9ggUDrMd0bzKVaBD2QyDz36EdwW8NsjNmaPhdZ+YNiSP0sg1yJVScIKAXPubnzNib4mL3N/Yd50HSX+tKFU4O+NQj6D5bir6s4UTe1FNda4QDmr3gESuCMOqVq0JPZUbdAM7Bw6xkp79ozQwK+o8x2xkHjeSUWh5aINCutNOQN0Qcq9KlwKf9iiOEL3R6GgvoLvYhwmNPaX5cIDa6J1E1QoBiGdLqvJVm+zGTar2/uwFzrjc6kPLfpJRUGmsuJUEh4226BUrImhMBa4bovc5dQjaTfyev6IZMvaFpKtQHGFzugNMf5yKJo6vaDUs+EEeGozIIUvS1EwjMTcyzSTObIGC+P7wII+5sESaPMSUNRZQvHDtyQQHKtM0ksB8yIDTQgnom3/cO15NrOzGS4+fE05KC16ocLGzZXYBsmMMgY0iehDpk/Jc0eJZ3P4=
Variant 1
DifficultyLevel
531
Question
When at full speed, a possum can travel at 6 metres per second.
How far would the possum travel if it maintained this speed over 12 seconds?
Worked Solution
Distance=6×12= 72 metres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
animal | |
speed | |
time | |
correctAnswer | |
Answers
U2FsdGVkX18iAl+5wBfbEk8UugW8WxiiZo3TmP2AxqMZyTFId4JUUXNBPiPnR6nC+BR65zOc6UgA3QPeCIs5YaGftWdolalumpM26HK/8Wwp9F5eUtEczK3IA8d42M/gho7KE4kBv8UwVaT+vnhGGDXISKeweFBgA4ep/UaIDSwpnnHmuFxo92xcD2hz6CuqhD38UhoS8e7GeEv2VqDC0NOFuN+wUOwAbP2YBRUO0wtQ25+D0Idfxu/kp2Q8uHZuDdRYJY3rIMxZ0qj5sdk/ep+aV9zTcn5tKY60g+6pd5hy04xfSgrnWYeZrnM6xvnfgK21bShbU6H3HHQyDcrXeLgiZwptuO+XE5Hb04Nrpm7lxxEMu+nmVAXX+cgMUdu3y+qcuucBIRHviIxBXxI4sOZp9IT6Y3iV/Tz2wW90V8rmy6X3aZXhhzslN8gSXGqsEhP5oAMi6TZFyaCnHdDxzfinGSclwIXce7VD7qNFA/zb4bUZ//N41o+YysC8aZIfHQJ+bOwJrm6vlosf/eL1BwVYY2fRh4n4XtJRzy8tyoxEK/Wrymbh4zHRgd4JunOsVp3TyLk0f49wW6jA7N7Ejc0LiieL5biZ9oiK1WaNj3g1zh57Dtnwi8z3Qn2/RBLsch+YilcKv4hlN5agjaa/zNCb1r7JeM/jFcbdpW/YR6f02bIb9Rqe7Sle+Fe+xoruuoKy5onfIGrdzlW1jWKOWNaUCZBfSTrtgbsy39e+5SfN+mSE+nXM4cMe7vl8KEUGDjw4IVNSG/ji6kTfSqlkdHex+qAiggCb9TDczRv7JZ4bwJ/hC5+JmYfLLn5ZVZO0HADTWWn75gXMA/6G+o04vgqVpdOTGopSNlbKOqThIV6jTUjh2+Msd+Uv9rtw//d8C82bImS8dgmP37R5ET+ivmwZvqXof6usxa1NXxrdbJXf+ireZ0csxAJhcKgCM7fxChPctBXY0HpMnHhMALGkVsR6HMDA9icQiGZRCNfE9MoDmzhSk3UET56NJaBp14iptf+ZiT9vxYIaxtD8h4tzGZla5wpHZzhYGlERi5WKHVS8dFce2h5EChGzuwWyOI/kuv4XVOoVd9sWxHxbOtHGSJxHpNCFv92wVDsB3EUFRWUgFRBBw0AjiaR3fvlGddiyaHSaXFbTYyCHI8+BJoD+eToIvduQADknydJeWYK2Z7izxQOJ6Enl1IOGnH+NjFU7skFguC0cpi+xRzdTHjuMg83gl5pdDOiHDnmZZyKGs1QODUOB+DDSajw+Tm9z3DtHJJzUhYNqRITptEI2n4/wt2qBuiYx6QI46e8NJXgX3gDsnMyD9fdMeHA8xGgL1h90jGQMf5Uilh/AThtjAIAgTT53mtzrmqCrKJQF+3iwF4Xte8NhfWAuhhkZvuOrfIewsm6apBKXDxcuqt9V1gUqQ2ySa7KhIyaUtM8ESDp4sBxZTGcI+Iu0ej6R6IWVcDRYu0IomIMLGDUhnaxDYXtO8CSXBvANlWJNs5C1oXG4/i+Y3gUM79XH+HiKCr7hkG/jdZC/W9HsnJj8bfYwF7jt7TK7VmdG3AlCT9NI2BHnj25BNVucaIENTbg0JFIZWyRjz7VDuKjPnozCbG0VoM12QVBtsKi3PVg4WiDs6+eyM91IU4sHZ4nTikcPgG6dUoazbLdDnlPulgytXC0GRuady8suRiV9/+mCNZMq4Ts7RIuiumZoguTSNPdWDiInTVDywAl3Tqj0yYHtYBTpAerMOKHctJdhyEPSbba60rSIcD23IuYUwIfzaBH9Mxn77oV0vsPaaMaKgETvJpXykY7kk2xjSeoVq7Fa/hfKn1i2/+9QSEJqRm7Lg3pNgVpqAsFmAPcILBFhTS2FATLTGG1CHWKBs7hTCqbx/9L/mn1P+Q+SIlnpSkSo0MaRhVkoz/BGQTunNeCFYA/7Y+TsRfCaGY727zYRdje/Ntdl75E47eSKPoZsF7588ITemVig/ksrN1oNJt33ybU3sXR7p55scb5suU2a9VahIpebqzHVq0MKn3FZz+UT6f3Tmn+E5tYtVJZiI+usfj880j/D7c7isNKlQEeK9FBbdbcgKG8a20xhmskrzXBB3IUScz75PYS3Eeu9VtMIAWrsU/lRjES9Pyu3CcFvHQV71cSQtiy1vio6uIwOJMZwMLTouvnRZBkAWgSDGrq8dQ0G5RbZh3OZLqtogRSEuYfFuGoxYHRyWcT9zbSwp11gsWwIMTyuRCsQ56f51fzrZqg1VO2FG1n3lbt2yjAu3GfSyGln/TDzCnh6+e2Ajz3jao39bKzu1QFsQXrqdG70W14I2gROY5vlsFWkxsgJ6QxNrXNGC75vgfc3duglezWZ7R4sCRb1WYNSiDLw6xL4yIzJ+WsM0tr4fHFJ9MsaYWkVz9Ttj3bQGdM1Hmgq+Qz8G6SIIoS8EftPwe33ytiWGre3BfxF/roPUrjsd+076126HhrKDf+w3sA/dlaHzo5Dl1V2pGsUHE56AXBJd0RB9faIjp5fc0Ax/gPv4MiHqPBsiupp7uSzsKuHVPSfA2p+6qoP6J8lMY2kF64pqjEFHHut7TxFnx3pjiMoFS33geR8ekgflZMip+KYbA7zzKDU+rio065NWHwnEkcXinrLQHo7GcG3dGap/i6kdxy/p3QqceYBXUH8BncaIML94S6lICJ8akSdaPbmvg8KkgCHXk6Xx2SuRfDVozcGOyk83+6rMk+vbRtFu3aKINt34X3U2a22UtOXhn4XZ7AiZ9j5oBlN19FRru0TDhwEsnS0XR5ox0qS+Os20nnV18QGI42Sdgvm5RUuJdt+5CxW7nC7hsZ9tNiq7SbYKaTRiX+4c8eA4rIPYjLULqRgIfl0acEGTV7Ki9ILjpNIyGVwWw6E4lxJQFxEUSI153MSJvxzz3JUs4HnMnr8gMkvXEPkgdvpEY9cgbd4gQT7UNzJR0aI2t+bDi0DNi+MVD8wpc9niYlBRrkCMf/JaJDOez4/bVrDGhtQSpfNjJ1aCZrWrsmNnn1jdWdndNod9xBr3aMt8C50vx465xwe8/IctEoEhTV0uQ1JBtPzHpMu43whHmdH219icXb/qcretUWkNmovrA7hSddN5GRPO8nmKGsmusK2fQVIdvBP7uil4NKO7qLg/c45VVhDPc4aUe2A1mrf1id8Tx42abKNDOw87VkYVcrVZenjBKGRvREpGP/K+FAhg68x00ZvoWf0uYiuZE5ZVS9QN3K+Yv6mhj4sfCNI1eEA719GUvUmpMy1elNKlVxNNjfPOneEsDFFzhoZsv9fPFbLPl6N4KUo2ZXyHLXB+8VocKDk48YU3ZTTLlpn0QC9IMOHsjolpn7/yb2RHPfJu91OzZRObcbjNBhjr+Qr/xPwDHFdoox8xbPeI6LVQ8ewK9mt57e4tnqSXZlmCYXwPObUvbNrvzDPHcyBslQJ054AMp4dM2rTh/JCgWzFG+mH+VIjIH9ZI6j8P178azE9iw4lbgAwwUKcVcsQmowALYiuY9ubGXoefN+x3WXWx+lKy5eWr6whMZZUif+Kw6YcXTZb8MVtemcJvcJHUntbSe6pgYeJL9zv7biuJCJly+Kagnvk1UuKLHVK2yJ3UIKXIB0qdLDmDx2jM04ctIHJYSzLAGcNjE/OljCgAGdKhipiEIbzc0MSqtaaWkKB5ELKi1Orn4WNCNSwGXj0HzNaLMFcGaE9TzeH158bNE1xkRKMAM0R37g09p7FAe85ojHazUFkKoYIJgbqh/Yx9DGW7O2vxMmAns6mBuLu6H6eENaESecnCafpJ9OdAfxGHNUgPu0Apgckr50ntMXIzrfM3RQC/0quiRbgNpwEevZuKmxFqPLovRKbr3i3DXQXkyKjlD1wWx7ScUQ+whbAALSIDq+CgoGPcD/OhAgXiBfxCEj1M7pA61G7QpT5Tilv/EnvfcMaDnA4ejbHabI/LgfJmUOs1N/SojWd8hucqet9wuRLNcs9JRuI3YKANCeC7q0pXsntm46Ti7r2p99DRGK4yCHNu0ms6CEwtSg2XJTJnwRBiZm+EZHQB63NVWbhK4YNRtSVagYZMACuC/XHQZrzrzhWzhgSDbc6B5w2hSinthveueMS+BfW+THahIPRIhCUm8fGCsxn98f1jM6STItuE03ohk9A4R2ypx2BkInQbA0XZ5P7QehE+bLmjNrbMFGocv0JmJy1N7swBH01XuBeCal4+s42Fo1UV6rROfvtDcgVmBKeoH0OAKSYlbqyGggrv7BB7T/7o8RcYz20lFnakJqw+XampWKBpn6gUSJupcMNGCbahsgkOqL4NqGLbhnEwYtlpS7JQ3HH5weAWLooq6CEZKIjtNYVFOAzvo9fSikKq9B6tTtbcyFUDtNmd2B1J2aPE3rK8iOAhsdnZ74sx636JskslFOc2zzFBQUM7VX6i6IbTjZkSfaneNWxnVNDRR9+mHCZH96q62QSo++6kLcYhDKDP4DYJDDTApkWcx1r1lFE3gxgvG0t11yy+SJLc0BKYKVInL4n+D4WOxPIfRQNYqTQmo9hWhz2U3bh6U3kRpnPGuuea38t/94AjlmYjJ+AAybZZPj7J9nVQ7Z+BV+g3sSs9NAY3tU/wGyKaV3CQ2zirpHYQ+jqLkuVuILrnyt1vQ2prlM3inseNGvpDHLU5RA3ir8Ao3fYauovYr4VLgIQPz11W7D+yDm3nnQ9UEoXbjA+mRrn1dmFzzfxHodE4Q4p6Ffps9CRICKqOhXRVgN5vKAldg0rNN9edxCwLZVmH3qDDejFhaPNsIG2+8lXqTYCs1o5GAKm1Ua207735dBsgap/jSCay/tkBSWN96P5GSdhVXNLpYoxh0AWCkmnMZh2v5/MpPTx4dorlzHMpczfbDrG60y06u6egDLXVZ5vL1FivtCUGBm1+BB3Y+Y1f7uUyq0eAEjQpHwIKRKMKOKHVSCJYUomH6wCa+Ag0dCNcAkeO2SfvKH5Ehj6OodZUqaosPMFG3XIOqldI46eLIov8uBeC5mI6xrzNrLbF4LrtucuhqotfTa5SSGgnX0J/0BuUiO0es6RH8cIRPcHlxFanwfVjjaXqAWbF5+QhTjzVmUdcOAGES6antupVhcrZSeGbuh8vYRpcyxT1f0fjKH2iMdVzodpynuOz+qQRgsRvgSEMw1dNvUjixNumfu9WvzDk6Q6OOsOtTlU8GpCERUPTwNt2UPiYBXm22u4B/RpmIPcNAImTrfX9VzYaK+TTZ7s9bKa4m6rIFIzlSVjTdycWI7VSf9/1Q5Np1I8RtSTqm8dTHz7ouRKIMvn0Ncr/ZPg/jmGp5uI
Variant 2
DifficultyLevel
533
Question
When at full speed, a cassowary can travel at 9 metres per second.
How far would the cassowary travel if it maintained this speed over 12 seconds?
Worked Solution
Distance=9×12= 108 metres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
animal | |
speed | |
time | |
correctAnswer | |
Answers
U2FsdGVkX1+xQd4lEj3a+YJzj81uzdG1Y45Kv8U9fguuB0j/uOgeLE8fdnbFFd+/bOA2HAf+WVZZel+DFVRqY08MEtXCm9OvVhBTNfZhoGUcKLwf4WnWZJMT2vriFdEJVMLcla0fHsJaN20XdgjfMmqyO57bq+d2M3w+SkxLzhVukriMvc8nnQaTPAa3WvIi2ufY6OQNN1HLOPU6Fy1xibFDkrp4Vapq62J8JshKM0QJWDK5R1Y127uYlcwOtjsACEUlq3/8vHYCP8tuvJuw8HfzPBIN70E3d9PM/Whexqg5tz4lYG3xhPi9AhX9L1+7eD/n/tVJ38FhOtcOtDTn3bfDP5DyF+5lK+GgC4u4JSjX2wTvB9fw+TXryq1oJ5d3euKjSmbuWLoSYG+6CRPZSSkqH1XTbm7Koi2O5FPE5PcS7yhv47QE3dD7qqcyk865X+iQr3UhP2Qp5Zb5MD103ZIVd1KW6eqgScvEPoXpZdYcQ7OGRAw3DHePWYdgegdtU0Elze7se27YFOSsuvbKYIfrRjCl3pYcT6yDKAMyZfZw9d8DzHxPbIrPO0sWVNTdKzkLptWC7Ti50arxDNZHEhA6yXsXiaDaHffALAQEO0Y9/qCLIymoEpRuOYwNgof1t51bXjtjWrTF7gkug+hKx77KCMA6JhjhuhXCAj6wZUjxOM1PPqHCIXx3NYit8K9drK/ydtQsW4KcCvAC47m8f6ajV2P3TCZUia82kk3oHZg4CFfbF7D1exU/yA+rjc1IVEDkVSbjYoiP35Fg7wo5yK5jdigDa0IkB6Rod7+/+xLSLXuIufl9L9OrlvDyfSQe1RkcwaGB277q2J4puszDQnhs4kpw7b1hx6Tj+2Qp3jWLek3A446/+9DQkAcaSJ2jLKtyDmXxbSHpeLiQmuCPYXgZfoE8Hfsj1rfS5zI0Rmrb4TMEwmqZs8W7foNhhvQX9woRlWaL4uQmrKCAe7D4LBwrFRJsm4txnynJbHVLq4ZpwekMEMp4PHn0fAmTq97YPcdkrkhmp7f5WuOL6jjfi+k1XRyL4SJ7BHSonPWurEtRLNt8ourLszA+m1DZXm5PKwKEHIWuW0asIvfbeZHUEV/f2Jg0CMjXqJDNR/1kxc7h3Udk+E4zCKy0025pI6f5SxwGsJhD6OoePehSH0QYOAUpp8AQPardVJgHmAk54EMY1L5BAPHn06HuPSNZelDDMExa1i9q8z9mX5iAIxaihDQ7bn19KKr5lnbg64/4MtsheJGW7pzW2OsONQyuj2zXVNwXgwD4UKHSbHx8pQbCHImh+bqmFIjVo0djypqjmsWYtlNUUHPUzm3GgDn/LeQslwMZn0geOtkYeLUp8HU9dvC4ii/ssauQyVHFPE4SAUPMxn6a/rfEmI1D/Z+RdNJ39Uaay4HesiDUn0ALum0sQjHs/t2OegpN3jo/igkBe+uCp35bcYFyFatNTrCedU05rLf2Bz7K5Q+Ssud0boMfcizqn5WfCo1Qhl/0TTPR6dEMU3/lTdtNVqs5rDmqVj70dr6ZKtwRf4/5tCZWaomDcgvNtJELDXYDpdc6mg8vueh9DatfG9Spz0TU9e5zj6hQiIxBKiLL1CHUHPn/wHsBCbb7sfX8ETBmbsGWX6n0xENNd4yzn7BiSkZWtK3z2Pmpo2GLPWNDaSOxpN6lYYB0ui1R/QzxOZzTbvTMujO7ZbO/BglQKCvxtNEiABbI2eMjymOoBUZP1BsuF25B+Ie9XSfVp9cjk9SdJQOFrNXA5664cqPRJnhdj6S48ZAibepYFaTY0thowtsg4UOitlUU71aOS9VilPSHlkB7FvyPu9hvaUez5rq+sdEFlbmPT/+2r031mtkqx0ZuTLGcY48czUN6WgHJHmSFK3SIAJW+hGonddbiKTUxuxKqXzHWXPUW0+z6g2Ln3vWmJ5g21xx8yMVP3eLkhzt+lzwLoBx4tF+1xSCjvVHMFdPtDiFjhzLgaAPzEKUZzdnh6rjSr4biTloEiPr76L+7HiBw6OyGFt8xM4PAv3WJnKkMaqXDT5L33KBG4eTiWQvRH2rKrWQY5oUBMYCwMG4FMWQN0YyKskcfHVx0xHinVtEoWUF1/pUvv04HdZcFzTXlUgvZCyjEqdkQ5/+9TI7bnXLSdFbE1KLVAyIS5lho84WSyo4hr5O5WUEj7pEq21tZS3PvYk5p2WCI+ryc4k5gx9nF6RCE3lHROwcaiLFVVRyJqaMeFuYPsk4fhTbJJtCaxk5Qca90ZXc/A48277YQEkkkTAf77yofu982rH+5ZkLuf3/XSWLvr+1j38Cf72Q6ii2M6oEe4x8Zbzhndy7BhhdgznNMvQwLbCkId8bQo/WHWLC/bG0FTy0ZMYZb+GPvkKS8+Ij7IPL43TCGdG0ul53CMGgbdzNg3aYcCJyLR0pJJ9+npqoiNqOmeOEEea00TnYFlKiU7OOmcPAj3x7+bu7RpwOFo4hCwFgJd9okn5Eo/dTOZgf/aKUcQR9lBxy1aYHxM1HYe7cPqGM6M/FEO/o7dkBon1hIL1MrYsAt1JvC8lqUqqgmKxMRh2FVv0EMH8ZdoHlMCccoLeH4mOJ5O4UiExeadFiNEM+kk3CypucxPsblObw5+6lB1glZllYHjY45FMCcPnyRC+zqYB9RkFrirR/xce/036vLcE25S3VHFzKQWVZ4Nw/Wf4aky6d5vtOTYplYGkX7LSAzRdCMkFr60zvPOrPyHdgkFOT0asqUFBvLy8SCGleyiF7G8FEQgdcjb1ZmnwdQrL6TDWYW5UjuksXjqcXp5A7SYPzDFDOFnwi+K2RVnpgX4GnI5TvqvVLEnIa3h/PXk1U5EhYjXd9YZuCAUwwztTMcvgPD2TUE9m3GYJgFO5cSdn+iPJ5dwibCwM4EajKwuhSQohXRH6qOM/eG9h3QvB7oGnCnXA86/qbH1nDocv0XOjob4qmqsWljpdr+xMglW7zjt3ChOtu67uDDE9PiZWEOoJRvUBOI5YjU0I4s3+zYnQcjxanhoAzabM7VvBlclC4krW7MBt4O9sWTioNHO04CM1nLPTICkDh2CYl0Swlg2DWqxeEWS2n13Fzc3PjNDjrf7jM8nE9OKGBs74s4/UqEoKJELxa9IBxhLu4/Bbccsm/cu/V9XKFnSiyhYzqod9tNAsBCgQouf4u+NvY1PaLyFdw2z2qnjdycY15regL7UFrkkDbovKgaNDBlFM5xNtHEtkRhud+nsilFRV8EY1GQuK/xrTWN2eFccTfQlgCKe+LL9vNYIXB3Jkfbc+Um8A0DyI19o57W/joiYv2NMM9RAke7c2k9OMRViq3wGllrnATdTdRPyHif9bFcfUyYyf0YH80XY0pMk++VL9sAr3Sm0GCgEDjqII4NCVJXgLUG1jHIDQjvS2/wSCps0NjuxCIuqi3NCtXmXsZO3h4xos0U9htfshMRx8edapCZ5R9H/vxZ/oyYnl3X8oYovDSdG25IsJjt5J+CnoPpoK0AcugrzNhX/xK7GB3hFFq3a8e0H8J3aStG/bTSF6iw0aHbAhJbQBmvFQ/Govm/WLoQgvrMd5v/L+JHd28ZxDTSjyT3ugIxwFDfTlZfacU8Sqak9pfedcymbk//on+JQaK//70PqH1x7yayuug8+hvrv4WTch5FhwHPDW9vhW8PeT2DaPQwP+RxOPI5dTowStznoilv45u3R9kRO/SUjvojvzjQO3oi2BHKdKY4/qZnlB4HtTkhQrxppxdC630JfTOYO5yu5Zj3cvg/cDSwhDO2hrcJDOVEKJv467nLo/kXC77Jxpm0gtqNbFoxV9av91Abmg1ruIkuNmK8E9wbRQlHcyVocJ1SKgDI8NnQDDqxlRTypEvuDz1sUEhCekWAmcRXuXDOBF/5DzUT3guIp7gWk/WnwPXcWZO+9AU8wTe/foN4h3QG/idKDcdhHyTwfiJnagy1X7kx6LtrL5ZhX4iQeci9E/G7L1k52hVzADSNFg48M6Dzxmm07sbeVMS4twKQYwzlFEJ+eiG8aQJzsL3oGlHrcqe8WDzLOKCgSk+8apk8WOsZjcoIEnlnBh2gQWoLd9cpI81MqeZvIltNlOMRuxUf3Zu5snftaLS6kUgKzKv03u5y+hkkWgKplWsdSWEhAPns8JhJyY2meQ4n4R0bS6n1PB2uqIH95PenPzh/Qp4e55+qRt9/zbSwE0TpqNvHP1VgkbJdLNzmZWxMrDrGitKgAp0gGLhLE0f+v6KvHK+JoUAMbPqcz3nNRcmF4wJknPfXx5/4W3of5ZJ04B/M7zfw9srmWisKM6b1LB2YsCwd4ClgGHrvjsBsJNABwN3s+xavNOeemEuXAXSKoTi7eUbbeuL0dObhI0CxrHrYM78GVmvv15pQsFm5a/1L3wTwBdQyE43PlKRjOSv3w5N04a3Jfbrmzofr6a9o3duoSnDQypr96vxmYCVsiXSJz6yhOBBLXca6qXWGFOFGAHw/wmEhTQiMp2WEo9b2AC+RVoVUvMcd4WXb5wGfhyrdCaAGjvweesCF4+6Bg2TcN9MIwVQp7pitdd33EJsIUVw4mV2iUQ/ZQh3U6NT6q1lLa75OlyXRQYZRk1rs/IwXpW7RgDCMbG/SdVOJRYgQXlLqIwutGE5TyP21GPf0KLDNUjURBI9EOOho5FVQsfdDtbT/bkZk+3Iuzh2LE50M80W9qnvYkyaZvXEhczGOezi4oAnjDyK7bN3ZO81GN8AMjrd6BeLPBlm61MkkuScA26KfYxZs1Y+PmBh4QXL7PHwcWNCsovSu6Mpjt+BmdKH47HNISonjEK2/eOiRYjZ4AiRthSH4ghaMmt+Cg/qHHfVhpjmYHuSDll1fmoSYV3p/Z602U2beH1AK9OTu70sialjwam0p4DkKGuqvprKET4TpfTYISaUXnMKuVV9fH69V7kJ5to+tNfSCZRHJHUDIDRSkcT+iIuutuqpXYWbEb7ZtUb5BwGI99tv1dTQWbEQg63MGxAjYsElieTwtIpbp6mv+3icwgMaOYYYw0W69w1ZcICw6dSiluEatuOp9Ln7yBVq4o9ERudFCKGLuDyoP1+fEFmeScNSIrYq5jzD9EYTey/yTDejNxjALWlUhNOfamL3l+Z/EQMueGIxNElDwsuGzr6HdBC5hbfm1mThDStKk8mvcbTT39xbuuV00jRdmsMM/2dgSs5ORe+Up6nItTg3XVnoHpR/HxEO0VNfU4v3SnyVkfcquhoarnlSbKDC6huPIBK4eafJVRWljQeoNrW26RCAwHbf3qSmiYCeiQ6QdEV4=
Variant 3
DifficultyLevel
534
Question
When at full speed, a giraffe can travel at 12 metres per second.
How far would the giraffe travel if it maintained this speed over 7 seconds?
Worked Solution
Distance=12×7= 84 metres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
animal | |
speed | |
time | |
correctAnswer | |
Answers
U2FsdGVkX1/GpC0ZU3lWEfJxWn0Xqyrp+jp4O+lBQMUfdhEx+mDmayeaqXkbGMhs8UOvIgfjQICausuMrpunieYtOJhyaaLx2Tn13OPn6vBs2pDQ47Kko3741xQukRkXDZMLnpKkr9G3xL5rMBxu1jmkEzu2Nur6SwmoD705VXQOe8lDQK8v3yobmuyYUhYJnGG/KKH3b8DrERdZ9a0rID1ciKtuUWiY8AqMrp5odxWlBqOmXaoS56WgxqZELKVK/v/axig3Yzkmih1UJV3mQxu65r0elyvLlRgcYKJTP/hQfGJHLnmLkmG6Wz6vDr8NpV4ppQJJCS2BdzhL7qzy7w/viqG7EyteQ0Rr/rJTi9jStkWJdINDYqLaduIy5xfExHH83nwBdG7NYagIhbQpCkgDOZ4a/50LJOIjWo480LCdzMaNq2Sb1GErlZrNgzvjmh0rZjQaOP7snsYjc8xJ5zS8x+XxdcggQOPIdBYDAOeOcfvmn31GNrXfRBURbKMDDn35e2ExeBUls7q37GigebyT3N1KlhoRV8UTywChCKzQbLjt+7Crdz0ufLAW0fBvrRRtjvEwxvzOy3YOG9LiTGW21NVPetl70gxtl4kJph8xAa1IMYLsLgjeBRcN3IG/fejB0ydmmBrVR25Jc5p9mZMTxdn1tvWvYZnw7rlswgr5dyba/QHUam2EZJW+5cFiM4sudSFF9cwjpgquX8ZixXfs+cP0IqIWY/hPgMxP/fyHQRyViQL/3Mygwk3V3Qp1nn3G1EZe14fIgHCRzpCnfUxrjoKHzZg/OtMrc+0tHHn09SpdyrPH893x0XbMu82SF0Kmj7FW866UE2Tl7i1xNidp2C9Jo21hMeMIxKRO+1ZwpNFiHG1u5cYb9NpySEkJCQ/N2DQfyewCJuxNhMwfzZ0Nqxz5xhX7tl93CJjE6azhAB+Y1PTVGtNKsXrjSJRzkWnDhHWnTeuDQbVfs/SpGTgk7ZiZSRmyzvaC9EmduskXhaqRQFsLw55ZzP8O+WNVTNAjncVjYw7beZBchNbuqg7R47bz9OUtxDkZKwKRJGErsnv1tFz/72jYkjunFQJfMUQRappygGaGoymksrkumY7pkbPYYMpMSpXTxWSyuqd0hCkjCK6Wb2O7Gz8XneYMBHYG54t3bZofXjmrfEWEn67dLreBoQltXqR63McTw7GIFX7cxqqXxi6vmaJbI+y41aL8cJsCXNFzzL6njIXY49lVb6XT4jvxj0RgsvgNgxLumNJPzf1lMFhlvoXXYw58S1NZ6gUpwqEoMaC3tPL/yb6NS5TxECDgPJNZebsO6XndPOdgN1PFLTtwrtnzEoqnguagfVHNmWPqtDFz7exHreTzhkhvy9pdGvQ+/tGqvglIey3mrLMyLCJXvHVf9exyoZETzb6V5jCfcYwA4eTXsnA9ZAffecYhYe4nFqM3dCUy0QjLx53Gd1BBhcD2ltcTiRKZsp9cHLftedQUmehH8hvRsyEtVPYTwkW3MhxcVYj44/LdEQcwt9OJBurxx90Xye9QmAvGk2MVqPA9LR7HAWtTHRE4Y1Mpt7TFnREWunq9pAzbsN10nD7GGWmd05ZMmMN9aU2fIRod+CtJQ9VijI5ISylU19L+l3vwbM61OfcAXaAFM+dpTZ+x7Los9D2+iQA1Ci91znnb0iT2s4JM+dV9IL6OtHMYczTVVVTJUVcrUosbky/W8lYHFG93hJuV2mEHBdih5/osqmGnOt6zfUt3HxU95u7/GUsXVFTxxEO3vscVgpD0TPXblqbedvWgMBywGgRZwt1pzNVgPDl+h1yJMojfpxcgkeodg5ueWTGjszr1uRIL5JNnIoxPV3h8TqYRQghrvqusqkDKOH+Q6kQZ2j2BETFMH+qwfN611DYqMYrEIUan23UC7SAqal49r6usKB37owGsCcbbDA5yBffKZJnKfpk2CXUKko5XeibG489F1qgdbN91+gbjX8nX0i+Ee8rGNgB1kim83QDcG5vcbXEebW10zjAybvUBj+NUolJGYdgG6BcRqnYj20lg1uUnN4BoTebZpxxaA/VTX4QeVNM7PQucLf8sTv4tq0rUQLZgSI5+jmxhtvUKGYjuUsJzsZ1++Ke3/t25yP3s00CaoWzQZzSVMNOOShiylhgDXJ/hCcac2FWwdmt7w8Oecv6HKPhWzBRsCYlBFu0mWBq6V3Lf2oHNihALrCv/2fRasgXh7cf8+EUymSTkvTaBonELaaKP6EmTA+06B/ityKhM+q2P7RW6nAQsSeeblkCpTl5quwAnq1XCcfQBCyJxG0KLtHfQ9rbdm8UZv7qDfl2stk4I+TVfkWQJow1YPSi2exHggQ88KYck4cBkX1yReWQQtSnxE2q6s0P9h26/bIVGAX9vZ16gNXtchl+lWIWq0Q81EGQ4EVbMd8EWV21kLPN0/tA1z/YSbV7afmiAXfXFUG02CxMYsN5GTJt5dhcOxvMidA8jRc2dPIKecGHE/7ONl6jwpwqweUEJLokUzMZKAKDLmqwehl6Moccd6eSYuDBofzM6MmsjHno29Obbx6OEs5IVZwEIsKDQG8kmAFLCMbbiZtfZYNzzBsXlJjqupXIVpVOFSDv6t5RP7Tw4jlJpclelhot+Ca4LueY3+pWp/yW5ElyxU84JdZUIxKHaCni2oFYJopl4iikALAmgP4M0gQbLkLS90N2vHlTvm9OUajjTcXeoDp60lomkTGC750w1ii71fZQE0HiWSQ5JuFC6CXJB2G6qEG74MrNZxhfuKoQtFR5TInf29vHOb95vbvmjjw56m4XuX7k2lj0PeIAlqWSZIgW0QlLBNhKKpuv/5QvtEV9OvtT1XGsKSA3VWLYiFSGaVXbCnPbizathKWj+l4ofMWbZPjlJ/8fLmkohdNzFHQsl6RgJpKdUBPx88IKa2bwIcZXmwoK7MweSPjEPsTi1j4qdlcb2aYtdf0lWC3qj5/lyzP38vbf8BEXiGkIwfqyqeWEWzr8vSzkR3qLkn75OZWloX7yrFvvajX+X82FKbP6H7DA1gy4wUD8IzClNeIJeRt3/Koe4ZoElLDzjzC7JQ+0AXcSXZ7o+HThvMU57ZP9dpqjSc2LiX4726/98XKPczB0QWFX9rpdkVCqv3vzV8g7HvgpjkBBcU3Wda+/UbvySTMxtv5GZx0LZikKm6L2QFa+bQvSnX0FEhUvI5i5zpRI17+hIwhbjIQ57WXFD2Npfht4TzD3Oq817wJoH2RzeO6q1OQgh5/+OVb+faBVlpC9JOtcMcC4wfypvdJkJpZvYcicb/9nWac4/mW3sfgnIgg7mRYDn/tivr0xW85VFdHPgdqIDf5j8wBkBF955dnjt72j8O57/EQdbtdWo71rC/vSV7+4zFFBwl8m1fRTGSyuWwn+oDijjPBgcp+7BkmhhowGJEh2+18n48jig3nXuLDxBiN11RmjoGg0x9gZpY3L2qV1Y6XxQ/+0dVtxKqsNUsmkat90nt3N6/y/JPIDdj5/d4oOdm+8VSgThDvezL6bV9F6eVNUD4ujf7eD18+5pUnoSZViW9tRMliJDI+PHX1320obzrnNFJ8KVkmZo75gA5bRT3/r5nmkARBSUtga1nzlyciWh2yUuIEpacBOkh/9t5rYF0z+1R3+VTi0GUTZfQhrh2qo7uj1LDA1y+1U0oqMMWrDOa6s3WRu+bUHkchWQTiecEzYC7386hp+t6i9hv40aKC8NGMu5ZUzDrAahzQhp2jrrPjot4+eKQ1xb1tWe6weOlZjJLp02YwyKx7HSZjbfbuLMbUgEUyCO7RtaLbpksMUpg/xuz+1ZBVKpDB9M8aVGBiR8aaDj3ITX0s1B4ceku/09po09Rk+XQjfi3LdvDQBI4lld6BNGQHzGzbbrGeUKd5RYa5zktx5AeXOmC1CY1vf1M9r9QB/VRnHL2Zd2kgNKxaz6HvIOMvAV6Z/kK/5f8jxItVF6i5jPZAKfMjlWbmoDHQmn/nlT5/BgSwz1RWMJ4UkmrCVT282SfbNJeLh00QGpSNvt41fPUhP2ji0DHirTu2L4ChKEn1VolJuIr5Ehims/Fo0M2NgqGcG3UxHzVFzY0MbkITZOfYp8IMQwz5egJ9JemkcLQMbcewZ8lJz7Czy5JqHfj2IB2pZeDCo9YVDH1+GFYV9WfIwovMh61VliNqsG1hiiZ5R6cx/RSiScEx4DXxfaSTDO/CWRqqGqHiOwG6mhJt1m1WSTjyCNRl2/ecGQO6BTPcvhZK/qgiEUWAJzVMxCeF+UvYgGbzLkUNvd1XZgcm12fS+frAKYmh7OVSf4YmehA0MDXvBD9MVG2sb02QYsTKlcuoHnZJ/bKdxjQhz6pvpOTNoadktGJErZuuup1T9xbgEuFqv0DRmNAw8DAbLebMydjz6iYw+QObXnae5QJce1NPUnpOu7Qw7SlbzWC3jXJHQ0ACll9Ju07d5fTxp7BerwKeBRRx5uhjuFlUyxk8WV2K/R+cfi7FHHeZ26i3fRXn8GpVBPhS+qcvLOUOeR0qwnUGgxQ0KVd4gBcWwxqAK9yhSCKl17r/9ZdYOTW2Jw0J2C8XmLvaOWWzrV/P3Myd2EUfWnrehK/hwwbV/2AxiQTf0aCSbT4LW8RTQxwsbRYx2n9XYQNc8k89GAbTYKlSgrH1r08MEE1GMvZD7gr23SJGynzIb1SlFk7EM0z6mz3RKOlVjQyF1efMnt9TdunaHwVlWvvQGiASD5tMquslTwEE8vHYnppzUR4rFPfLnYijEpCO6DJQOidbrTaVM8CNdCavTlRh149vHD8PTIW2g0cNR/0DMXacVuLm5hbYBR4IGAK4ADswnbJK0QY/IsFkzyrlRhu+Z+JyH2BGuxUPGfhvD+rNTSAIc6m0n5pMHcgO5TjAhsN7lt6PMem8VNe11jJ6ujpBt502a6OHHbluwZ6DZZfrOjGYKpD17N4+5+xJa8OCHbkspAo6RWkl52B7DwKGtEunEzccFIXMnp3ouQ/1vkR8TCDI9FA/3ahtRSVCqm1/Y/bB9BwaujOJnxH/i80R2R6J4t6d0iP3ISwgRSWrYmItLFzb4TRzup9cO39i1wvAlGrIXR5663D9eVZ1HLp33upZXf8qx2IDJ/ZlhTgDpyHJxh8TNQRkoBnPwkIIVvZz90v1pChW+Th+Fo+R7peMof6AiHYeKHJhvrF4BQGsfOp6Pv60/27UPKXfsRa7d6B8tYmFGS9AXq+KOR6yO71QYtvQjbsREu
Variant 4
DifficultyLevel
528
Question
When at full speed, a hyena can travel at 9 metres per second.
How far would the hyena travel if it maintained this speed over 8 seconds?
Worked Solution
Distance=9×8= 72 metres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
animal | |
speed | |
time | |
correctAnswer | |
Answers