Algebra, NAPX-J4-NC08
Question
Complete the following equation,
44 − 33+ 22 − 11=
Worked Solution
44 − 33+ 22 − 11
|
= (4×4×4×4) − (3×3×3)+(2×2) − 1 |
= 256 − 27+4 − 1 |
= {{{correctAnswer0}}} |
U2FsdGVkX1+XwtafTxzWo5w7osRHnOd2lZGvE2mDyd87QQ1mydyaKDl1qiCvofW/MNiZrPNpQg0c4pLeYMg/a5ruMsavTan2e2B6idr7r3wubUkv/3HXSet+4XtnrnY0MJvN8h8W/BhOAZY5cztXtcniDrg+PX2p19TByQ6v0dXsg1IdIQYDC9TZjDzKzP/2gj03v+3Oo1Uxe5+EMAGtl7jYHgYgKcKx5lzmvw77siMVm9sfRS/PSVf4h/hFv74mffHALJgmUXHRJB/evwINK3UkShtO61zQDW2ozAU0WUgA4iReFRs+dMSEeeUl4+eqp9H7tNnnCA1w7q11R366UDYtYKuswRjp4+CH4SPIyEZ5ExWG6FEX/jpVER4cBMSowB4W3dKq0rjohuJZ98a3onPLx5DEGbnySva79qwH6dmMSJX3LJ17Hpey9j9j/cptTK5WTsMXwWN+mwm6BP5n8FZ2HcZLwWYtaZwgItioaCmzB0OoYw9mtTg7VVnjXc5UcIsv21a3P+A1hKiNHh1vJ6kvRP3wrMJ5BNNX0CQ3IFiNCo9wToUWNCzXLogbkia6w65zreSf4tiIpA56dGme6c2vUPgIlXyIODLUpesEKzX46bSuUsYUZykIWSpyb5AFbw+nDz9nfmyfkErZxREHPplAulEbPh6aRTVTFuLeG3RySoTvfyZ1d6pxJLrRi+149IKp8hooov9cxDsQ4m7UQfafObo7gS1C+fx4HDHqHP+92PV7vG8u0qDGewl6jNMbtl/PlTm/BwZzBk4mgNgnjjtCw8bTH/C4X8ga9F7rzfX/Gs7Zzi8CbGF/GjpjESNXIFW3LWz5KhJn/LGegR0V+gFwmicc/XTFpk8TAqODS0oQiJEd2O8G55CyXHZBYm9KH22MqFTCCsUB7cJ3uq/r3x76PSEGN0Z2xqY5V+lLAB+3dIQhZQSxiQsq3RZFIoGYtFeKv63DuzJL8z3ux3kqxqWkScimU4rm6vifJksWqcoTDDnaikodMw63UNKi61AQMzDoa+I+kuIyexuReZEmi+kbaepFRKw2toHvpMdesHERZeH5sIaba1aciqEBVmZJeDKY4ceV79tPMWTDi52JJ1byEUHqZHF1aVA0BQcTXT4MDRmu3BZwG+O6nYGvJLeq/09LTb7k+4tA5TMEAk5IdZmaf6mqtdqM3awM3hfDcQEIQt4o4KEZttr9YLf8EYLS9Ij9SqMKgQDWTZqnLdnELdYjF04v0r5QMPcPeWux3qa/JKuYvSJ8m1gqtTMQl10nLuQIYOgwRecGR+gO2WINPjO/EoW6K4HPB7uUCnINjJ+wtCD09zg95n1svDrLQFNm4YN87o4myEF9jWfZ6wImWgcBpc/QeDASuj33KbHDau1XTZwXW/P6tPthKJW+HqvVcgkLHXl86u6Pyb7g89COngW9zfr/gfuu8BicOpXAhtTs4soJJ2D2UUITONGcpW1tHMijc3HQIg/lK8rjmvyYWq+AvUmo/Mfb+yKqGJBnKDwxjCeCArWiFPV2NVsnm8bI2aTK9JP71ay6EfEa6pkrKOM7e9cU4Bez69Ss1OizuyGgjp4g15/oZW08a5eZY1W5/bDWxwrRUqRh65k0r0ssgqZy3EYOBMags/+32KMuyENIp1lys1bMTiVMjQBBAHNJYzooz/hYrIreR/VP6eOFZvk1FcyRvMRH53gpuy78pvd33OvTkqJHQMoHBFmL8zfkhaKcu/ht9gT0I2tX92YRwKTZXqOimZLFGpNsSXGlYjSKIiHuhuXZCTCgca7t2wNM8inWHZVNYChjwRQud1GxW1N1c9oHfVG81zx7I8tz5XGvwsXHi2D3cP2Eq1q9cQcB2DaMx1/2Bws2VVxLlH8RrRdozDDcaYriU67VlIL65ffLcu+xflYfJu08OIIMmPSW5+UgWaDirGgObkpuW9vuziiczr8KzxczPsATokcGh24yB5ez8q0KvmgpqwEgE0hoZH/bQoYcuZmimKXTQQYkinBuTmgFIs4JWW4LSdAzFNqOPsN5JvamBzES87mqLbniVdQslKcmgMYdWivNOcj2XgaA8ldJrf7ThW3kFS49NGz0NeD7M1CvMdKeGHa9djHlu6ckGMAME23aak/fKZ7/OYFn1YS4kxWcV3M2HENBmn9y/hZfwGTAH/lCDMYx37+9BCk0Uz/qtULvOH4uJnZboNKhicSHpk+7NNmIi7To8l+h1e1UqUoXoksKXPGIXw3n48II6NuNFWjNvIxqI3MoRYz4AJcT7sNDft0WR2nOExgcNhiLhpXVZ6ebuAMMAxcGAPBA7xSZOah8rEp4vUHGKA/e1l/UEAxuulGVBM8dnWP61azYmVDVfTKHtFEeg/jk3JL3N2C0cjyv8/CPh5j4HOcbLLVKzgC3uZ7DFqOh4O62arOh0088MrA/cw8Tbe79F68sYZyxVGNq/pnKst5ETZmGzECobI9kB/X9Kbpljs9vql+gMDpsOO1sH+yv5ilgwOFd/7ME3YslBTzUmL+15UBF9IfCs/WfPwzXPmgDWSiHFZ2D3UX7oC6hlvl8TL9XkZdK8YCYG/52+RexWQgJEFMJZ8B7sBCuaHso2v1DTIj5o76W6wIYxfV2G426i++Yejtt/ttsArcTJw9IY+A0nssWcCLy6N/+k49hDFtVVFdUDHvx2nyBLvNpzenUmf+Ik3HEz6fHHfrdRfjXJW0XBJWkKBzfNFJaDdEfUtzJGi8tc9fUw2NwoKq1Xx0TenTQZkZamd/wJnmbhBAb6RbizuOve/7q+tAxh0algtDKUskvrmG8eTs7B54hDBSBXW54qgFgc5EH4w7Lvk0QjuWJ/MIETaKnqKaBwEDVcWJYtA4QbBn6Dr1EpRW6JojHzgdvZLHjrfBo2XqrfLyKMWmHe0YQhXVizSiVCPQPXSS281krEDmZQJm+lM0Nl8FLFJNZPYl7NrDLyjYt61pE2he7YNuBNyaloxaTNJWV2wBqQzYnD8EqnnppkycemvqzjwqYb0OWwiXXCaLUB5j5IQUVVwyt5DAiKWBKcwFpZ1iwkGxfLoqpVVie1j7RVcxmEB9V6KG7F1z6L6b6x/FI5JwOMaOf5iQUcWJ5SDTVJHwbfc5s4eQqSvu99WgUu4EhGdtTeUV76TR9PUkqgUO72LTdw8vMUyH1OPdOXoOrgK6g3wwFro8LaXDn5xH2X1Fbfr1w7Lxy9GChRFqS+dSpHOdQx+o3G38A8SXoF7UOXkwd5DEX0Nheu5CL3qzUR5Y/PigBbfHLP6EpuCwN4jUpjCOdhuiuBkx+vJ/76NFa2jYnZTlEg4obyvJFVdrgEOFjEy8fYZ14RLIPhMuls7UH4wEttFiWIZyKx6OfiJM8/foHVgF/DRMgfhiGGvHRMFp4fODvN82OfgsoS0t+LPUZWRwcdSsgAIXhPYmXm5LxFJDboNc41lhQWEFEzwAs3NOpxh5j4Fl/UkOO7zCF14qMArKUAdvm3f5EXaong2KAVS0S614sEIpAUZI3czd/T+l/aLLK5wLyWUGeuewTrIHe7IJJtVn1vX3TLj9OaPQMeWYiXZVC7fDrtM3vMM6ZVVcUR+5NDiszASLtA09+NyKYa55pJ1kL5GuqPDJqXmZKCgNmU/liG+6teEHXbzH/izKkSBwvZ20z3ir+A8pi51ZYGuGPm+wpS2JgjV6NbUqXgtmcNyO4iboQya7FEYzcS4O8Y+9ecYxphRckaaS6oVt3M9eOPOI5AlUCMXGmhQwPrr+gHgVH13v++wH8xKqJC/Fr5eXccnV2zohNW1LI1gNNwMIUJKDjztSzCDzQBKiO9whu3nM5X1VEmCh1dLW8mu7eEOFVmlbtXD++I+5lVBE/zHewAvn4Yjv+cW7bxi3ArQswj8bvOylcx0TkMlSDL/X9FytqNrsZbnudtXXPF+/CZs+qwaeNLgb6wBNOSNjUzb/zW+ZbPMMqro5D/KSbwebAU1zy8o50HvXHQSCQ4jUbxh1mGe9qbWS78WXriN4UW6w70POfokMSl9jlPh1yZ5xFFGLP0LRLhOTQTnWsCsjH2rtreOuqOQcYmqFbpDjeYvscT2YKaiVHF5apsUGiadDv7egIUXqDhaXMPK86GLzHWf0UgGOzQESjuvChF+kUB+L2acElsswoPC1RhM12BvP37rVA/GZdfmWcCm3Kfl1uxT1IuAQ1fbQOQlSunvn4QIeSPmDTe3IyvFJ1MdVmMcn+OdrYU9lowhJHdqhYNkmXBSNB1GXk/Uga8bWrLbtHfgJWyL1SzlLCefXsVZ2/6a/hj6NRY/oGZBQ6nDqZ0cvkY03O8j1ZFgJmmbuYXQL0c/v9N/raQ3NPtl3Khc6CYwgIXH1d4FRJ3pUTBTU+brk+QHyGGsWsvODO3Lg0Q0IXMDkOpRSmRYa9/8etEftmOMx3Oiu3ORKfmc4mqmZX0EMTGQm9z5V1A1qyNYPDXdZ5UvW6++46fYALNY6O3BZtLaFqrlXoXMvnh7dfMxGBJhnIs9uKWCfIvugr4/a1UfjMa0a7ewPzL843E3/9R5SkUx2ZtF0ERqvURJIFr2m5IbNuCO4Ee844r0EDQ/cjvFm5l6aodZln5Z5qMSXDvMIVypjNdOwamyHk0QZEpEn/IL4szEVKucAMQUk+m6h/EzxNu503oul8IRe5quXTljK6NTvoQTv5gcgZzwK7a/Th1BGIObkPcexK7gTuEiKNT7Ta3mhlNI19vNynvRmvkuIuca/7taWBxA77vy1WdSE1TDHZK4coKhaqVRlq0avIroVqMI9NOlRPq+4fA3mNsoc8JgmscYOKo1cy7XxHCtHZ0c4wtfKYGVqHdyqBL8xJVI4vsW/IcfJd5nwhjt7qEBosgPSMCa8rrQTLs0cS58kMGfwx8mLqfEhWiyb2a359bo0uPnJnySXfDLrrkaNu0JV4nUslEd5ERgVMgRUhYqOyJLaEg7imc2sQwnzHX0okMVLnVkv4jTV/SvS9Y7erf54WuN/i+lR7U4aQufFygoYR9ui+vFMJI6JACZsaY7OMKd/YeiirdZ3SxC847yIx1zIFvXd/W4bBZVyIiEsdqZlH3D+lR5ZlTpLRrZGEekTPFc5+ihE9lYPqBfpTxf1JAni7R8iAhrzKSuaU/g/wWif4NtnJLv7JIm0NRjB4+7et21wDWis61eJxrjbbX8TtPA5Stq65Btt804d0hrKIs5x5FsXmy2dApe7TqphgRlW56dQ+pPpALl08Hg/+Bp6n4D00tzIrSRznOTd62T+7DRgs+n1oibC3s2SCGTieCdpfQkv9WzKdFbMlR57BFw5MgsJx2UB3rFeKpFRyfWUJ5YOqqyQ+3XljdR/cI4UbTI9R4KqK5gGN84bviaKjh3/SAGED1zo6UYHio/SaQvrrgqibOOACOwSxvemOsoCdVOJjXA37TovMWutvuqYRY7o+k15yHwkdHJEePUORBooiA8WyzgyeAxpJMPoTCiezDTvTqDY/c1Lag4ypOm7NyOOgam1Q1lir4bqO7NSdCez6POZ/flPN7CGOHCmGE42KXkuNUnXsFlYXVmEwtU2S5/DFJeiUdPkT7EulDiKc5K1U9S7SH9TmQ3wZlJJMfwXJu8zXuFsDlPSS6uvTX/YYhQFXQqjeGQ5gY4MgChaH4GMmvMwoRU/9n7HIoqIydLiEhpy6TVf2KvmuiLMo64AiF1s6/dT2JZixJQLJBbcGzgC+YpYZAMMiNCTHAc5ftG/2RpgbZYbGbwvFL/i8wqJJ9LTZkYeQ8enX2vb6EQAHtpgktSUwUhw1B9mI3BVk/WqXhPPWfm/4Rzyp6aYBXXPJteBd4dVyQrgk4xPYy6CokoRb0SZEqQs5lzfwWiW3xSjTvxn544do5UuVvNsK53vuRbVJ3jL2FvGQIyhbHloRQh271Qk71tCHUzDmRBokC+4PkPRlIUyBM00I+cUPeXWZh3w8nMG4B0qtJ1SirZYORPH/V2qo3O9XRFAGyZVpExb9eQgyZUYzssVOxVH28UALh0mwk45WKVsYHczYOnA+gN5a+cXcJZZcsYb+5R9Zbcsd2ZgBuaA97ldbiJhrCGLir1hKyxO8DutJTYBSkSgyoLvVB6gRQiSV6hsckjuhcBiUZmjZTkPtezVBVY/L/3KmCO/Mns61+UknwxxmQ2l6g6liKPB/uH2rJg1CmYViWp3JRYxhrWWnFEBCUWTITtPtIbXELayTMkJsU6O7Kmewlihk999PtaJQ0bTiVAm9yultbw0nt7Hy4dQC1F7IZKgKyT/1w3P0eIYu/BUoNWBvlU/fZ+5WIGdU7JNL66oX/dKZZECzxGqYkEfZpbf9HX/evqLb/8Zrm1IDM96NsUnzlKRBI25DXQTz/cNW7eWfJq1WPjDskxtIwqkrpW/SmhsQIzFPoNFQAeLUhhwAxgSUPOJcXn2+wQeMofdgLxF50TueIMSC8IAm36c5U8Y3IV6CCNrn7m+TqPF2QzRQF0gZe8pqA7+77+ZnJpZqSGQHyGAUg1MYj5xaRv5ETbxLfL7QqGq6hQPUDk3rvzeJGjmC6kyBNrcTXuK6ixTYu/j1sy4ltH/5AZvJV++ON2YOwpz07Q36Y1wZjHx/Fcb8P6ezipFL7Iv0suIykUBIPWOU8nN1Bc9oeZMmKP77i/ppkFy7nE8ALpIuUazG2RA6u9b2e7UVDzmhmjeuoVoLBKZ5EDuF73/kVeUSw9VNJeTFbvduUtG7txPsUVGLTD4cnYr5lzErljYj5lEV5r7lP40snCtBKTWw4NVWfrPi3xfkeuiVZis1kXy/I0lDYLQIo1pycnwk84u2/6SyghppRaAlNyJOKD6FB/f8yEM2cF7zRwE74tiqbv8/GcDHlgP1Tou2IKMK48OKdm0rJp6BK1Wi9U3CYIyds4/WRaW2mk5UJVjdfCbxTqzP40Wkq/boWy2DGzoSjugQA5ryKmn0KTr+a4oAmZ8Cd+abXzY1yr3WpHuAuy7A4kR0pu8oxuqWp2xftTIUS35xTzJDfb1tlktQCjBqzOj9runFh7ayeGcyo3pMWx5SxuERoEPpckm/5E+tY8YR20kjDNHYFE2W+OpyN+TaroDqr4VE0sgMcOjz7qGd1DWrduMJ840TEWxmn6r2UgGOmC+FPx2OfXakadkPSycn4F5V8tWB26fkb3LzkA+C5OLnUERYy1anBZJ9D0UA0YkQ2njGVuMi2l8/Wu9Ib/4/q+efB25rnP/iyDzXMvzeLb4gDJdo5l0IZcYF6vUQmQBbdCJWt4AxmCCJtKgqvheoJX/8jIO/kw31euIc4ypBq449k4947+0lAjfu1F5yQd63GOekh29c20XW2TW6RCQqFDyn80ve5929buu2AAZxKhe4rdVHTMAVr64A/WkvisELCtkLDaBGuFoGRxG6QB8rn/81My2e40pLa5YfKANzb5Dk5YWxPrvMzfl5Pq3DBNLQshLbKq3IoTafVdVK0uB1o5GnTg7c/CmDymd6qRvd18uDq6qQx6ZQi+JREz2PyuMdLfo/sVCn0kRqBf2KuOZ3TLs5h6wMx9Jgp3BjQaCJd1Cl4T+ZcD81CSfySCAQ6YdycUGkb7meOBy132AVKS6VJhFNxkYwIX7lWuKn7XqLsAexLY6n7ALNX9sP2Kzg1q8+dD3BFujWG93vQmpFP42OXGCyzViseSnqVxYeZZrlbFciNQgNa2Ca6AddZe3ZViIucrkjoQjuAxBpNv57p9OEe7FSe7X7QOjsEV7yqNUorBozM/tClHLL0uYHf0rU/X6RkE50cUMQlPbVg6qUhRVqa71pQrVWDSgAzHO5ZZWgbqOWsjaQrrmXOcKwR1u5pmvTc5axXf4Bt3Na6P2fYGYZj7RhAXqGRftceSeWQhpZAxtMm/RDCXoR21SnHAFAtHS3gm4CQ6lBuv3N3/taamZjoNWKzpO+5u0MfVj/1tBM2W8FyT6BtoeKbOkoKCV+IPLbpWKpR/OX7Me6hZH6VfLk7h1YGLiOiUAn+PyQb3hEKJowYMJlLrmZgHvK8ZEe8JuUvC4PsZDD7Jj5GIuM7BvoPE7Ne2yAR3IIEUlOOraQ5T6E/IdCnj8Ycyrm2juj24lNG3TXS2jJnt19X4g7CssRFkOrQ53ruWWx3dzJxLbZhFkKoD9O+Cq7cIEDX1VH3Iw0nEUb05SieW8bO+rx/049mzJFx7tZgUnB0to/W+pv5QG6r4NwHWDxI1wTtaW1vSIppRMilbGjy2Ax6ymNAM91Jc7h1rxp/Oi4oGugr2TtZBwxfzFZpikcbDrAyVwKHJuHqs7T+tSaJrwB/U22ZtGX7ydQOY+mRGz7V8n/ImAlp0VIx51xIdSvrFvyUaNuwixejlBR9D/xntJjSIAhQ2c/LvLpT1BkokDwwTJD3TgCWwWUth3oC1kpknGvI4xwOubJHTNq31XZLDpaHSVubs9L9VSM1sdtyLvEgFFebgEgCiaJx1nUxFjTeLJgZpn6sMgvGphHxZSsZ96XjYLdgbzQ8bREcbAlwXpTqsl9JsAw1Xrq0Nr2PbAUTrcr8Bo9a1RLdz94SCa5Zn0MJuw8dPRwnwk1MYcQmwfVE0Yu5x7hXoVZdkJfdrEkJ2jp72Y4/OZ7HFjM1VKyXqXKgAMM+9gW8+e2FpdHIB1jm3ChgfoDipccZUEnsAjiUJtdBrWRlsXB4IjOYIcwjCcx14RXP1XGfnbUncUMqqGNWBlqh1LS0oMyquikgGfdvOs406iQ6l5bM2rnslPxpl33YxgK/MqMFqW2/h3Vn9KTprHOMpMVZgPq++FXUECDMx9+ZxtONkaRZpBDP+oPk3Na3HkVckC0sxhWwq6dVTtCD3U/AemaisX9EToI76XkV+E2+rmH42HfPch82VD6+c83RpmZXRge455IrWhbEGVzfsYmOdyNpJoVoJaWsNbMauUs95hrfks7LsHMSqHfZIKmdSmrBtz5sGfR3q1bf++P9Cjg/EY1t5d98ayZJY5JKhb5nuE5znJ2kik+ocw22I0U2PceHur4QxsXQLv74zWKF9jeUdg1TJGy/5SxdwNXhePFWQGamMaS9xHFsgxUK7lq37jrieiHFdkOmZkP5zuOG4YePpWWo/6MzpNyejefk4OQczKsl6KgbjS1jyE9TL+PgUWLczfctwEPfbsTCp9h6uJIdEp+7Fs3I9e8x7ZOTr7dPUb3MR8unZt7BE9avjryxGaU3Y7IbAdIjD03jICojOvp9hQWFRsSAitDCxPCT4NN9ZBZHXcv2otdRUpqx6gvHz9MTNC/b/WyeCoXOodx2aro9Gy3PN0B9qyNOoUfOcZGWUzaofXRSVCrMiaQ9Zkpa26VrtPANWmBPqfC9jcfh7sDk5o9okmfjPcAxRfqf2t4KobgYyYrT5q44RD5qV7YptUeqnB+ftZW7HSSiIKtqkfziShYdhjmqgQot/obyz6sxz7MpeJbyMbHhEXl6WNKKYtZ1Bl+4JtzUcmya6lrzDOuW0aH8PbrlLbaeTavbf3AyPfw2uPfTo3LLWonc//AjccseH8pbMkGcths7HoXJrXHZvHeMD1MZ/wI34hB/nj4v1bPyTYYX2JXJ2sZPByyfPIPAyEnO1l4nJ5yxQIkUlFn/9nBXQ0t21dsNrKdh9tHOI3jdX5yXFoWl/2AkyKVkWZ6WgKiJR2Ca6C2uyobqUkz9txS+FKeecIFlgk/uHz1Hs1TrOdGpagYlMjehQc5wfDChYPSgTvyqiKOtASjKFROmhrOT17yiFf6EgfVbefgz8JU7dmrIWoOo6a294UbyIlRP4emM9Y6VoNcEd83mO5hm1lYyA5Ob57VMf6InaaryEgKtzZf9BK+ct9bw09oqJP8qeqfcL9nLoaRmInvzzG7MhFW0sqhuHpY4VM0+h1QbiurpOeZQCRmJTzYWov5ITALr8TrZ7P16zXWXxwFncfLTppJltyMfEBRquUY2Bdj3I+WPTcf0ai7nlscFC30bSGLsCFkvht/JnYuXH7V7Q1aY6ebUlVCOtr4SwKlGscZZ7PCb/ODfYSn+cf0v2skvu62E09DxdtxXsl7JWprwS608mlw+pLJa2tI2NULIF5YccIMPZNqwrvMN/xJNVayFiKnUHPUnlOULNGFiqGDcxV2A8yefKQCv347VHwQzDeTbtNvqvTilcNO7knIAB6ZnLNCvQpkZbA6LRskc2IXcg2B4PIObDWYu8aRHh3ReVhdAtQvcRIPE7Yl5NPZVE0xQ1o5lBnUxkKzdZcIWUVFiXLnj0PGUUYtEAiGvk1ykHx+c0YCzhOzJPdQZq9XvnGDwHMAJx4EjEU85C4WHelYO/xRgQU7htG4zLlhtEu1PNE7ygzhWZwdjpO+zzjiUTpNKNBoWg1NEUTXCjmGvehPg8lWJCJxP2G3wlCr4L/4nPrgzUSDaaaliRe4ZHy0QenX8lsYpU7m/3HbsId5txz2Oq/U3GUMvDGcNAMYc4U9kvF+6dsbmHLDg99jNKie0+5KnIA2+ZQZpAHbbFzRrcQTFKoQAcMi8VnhLTe+k1Stv1pbdYGUdFAsoglD1ywkKB8Df15OkQi+o57Yrb5JRb+Y6U+Hzh1qu/8pVE0FgprKUa0pM1llpAq47zslODKKneeVQa1gMN3vZI8bqCmKwyfGcpKhk7KEWf8DN1Aq1cfRxTiR7vxBKaFROWFqoVv9K4nVd2O3txbBn969C3qg5d1J7137qqm00KRhPGbo58zqLF6NdTTlDU2K0fFQ5qn8iGR317YRii05r5RqPJw+emO9HnfKSlu/uZ/uV5Y7ynxrE6/9YvMt9VUX71QCf3s4gYQuNVzJC2m+wV63j9PdOEenxXqNgW9RWuERM+qCgukMigjqV+/ppN1uqhBIRYgINYhPufaDcjxOlum5+XCv8il550F66fDoUnvBbNL13RbBDHOJop41/+TixSTFQRvf+CbK4iYM6S8Os0EGR+smyeywmWewia5gyPrw0f5ZWY5S+5d9slFxWIy4To+6oI7WJlWH8q2L9Qq8BqXHqSQdTSxw63BTlOC87VKcz+C9tDUJGoSIKHKR1hpMFn61+xfzTUskFGX/PX0JNmclc0SsjOTSk8G61L0WF36dtB0hSsScVAZoYxGi3dhaoaeS96ig6hqZRCrh8UDAHFBhcszbtIaSbIZQ3Z5IpacEaMTGSWJFpJL20JmkFLRQBJcX0mM9cLFYzLyy1rMl0YrGixd3daK9SR1E+KPkjaCBMdrhkHsGxWCwnrS+LK+5RF+hk322oFY8s1USwXDVDbNhKk8Kpuow0xxeLZN2qlRb5bpBFURcctGhTfWqRrhJigxErPy59J4Ntrax6cVwl+YMF77G1idpXZqr+7WrEwkaNbEtYt6QMMtzENIav0NV6vHN813xBfogj2QtS9my9dA+H0gZgQWX4PsRWyZQ+vMnF6MMDWukR6ldDLDTsoaG1+MHubvn4W7r8XxImKgvvrSryWe5rIR2D5XUnzgnZYJkCfYG8NM5ojRg7so/avqp2EGwkMHYXPmIOcGn3BpSu8yDKk0TyX7AttfIBdx+9QF3yqlk21tMQ+Ccxwql3xY3klQlTgxvAbMeLaAVHVrjS0K47z5iKXMDDJSReWK9fZ4WmeuLXo2JnZrTW0L9oc92ybQrFrJMmCriORjrGHvoctZlmxxE1SZAOQ9KCsHMk2gCfzQ325OxFS6QVKK+fS7mKrnvTDusnjFePeWMs54jMzU9GR3pt5tnmOqrqp7DMbvY9Lfg2gwLPfyQBEp01j/VDM4GilLCfaY+JweujFcHA0OwPArehFu4aphIu6zTHYv2uYJ8css59nMhR4uJqGx0BR96wYYgSXafAlZxxz3L01q+zH7bKuGQLDcRF9Q5ZHYqW5DhYKUuAJGmRotLt5BIItON6VVfZ/yjcJSl55aFvGiwRlD8WooUxLn1pBrRL161BaFJq2peBkeKbefJuGguzdfR832K7vfiQQNEW5SWjG5Ch/LkCi9ZWFqTKMIuyHsJO3XoDaqcHRCTS4rjpN8qacTjQ+cQFyWfv1ueOwemvgQYts5qZE8C/K8GyXgSPumN4++ve6NLj/ZAfDGLkiKUwEw62quJXKS6YQjoe17mGKSnDsPiH5WySD9O/VYVxLngqLmuoclWTZODkYfaWfV2D/csalEubfVyo9uEGkUUbyg3p/jLs6c7KqNJcwtsgllcxAUQ1c4QNs3ZpOPyBn1N6Ql5J9ltPvkuDpobsTGEF1uKlGge9tOWaoAwm4nmdLJi8ySBKDbq9dqhH7tlSL9InVhKn6cY4QNQFwbpjGTGDXOsN8dyW5RaNEKf4a2DZ1e7IXyZoO+h2qvnNFORhNbxE+aTBX1U6cPeGeBHFUTnvUgo62jofYcbcixf1uHXU3yK/1G4wDCk8EzulUoDm6Yrcpq5o6Y6pQqIJtMT2S74dl6SUz/N+VTuA4gsn3Wp6CRJeuSyGyjUF2C6t60hDtntdeFC5ZW1r+BQH1GG19HRbLRnQtz6PcTLeq9MfYpOtxrjQtaYo0miNPMf5BMzj8tuy1SuyeEuNb83QFM9QiJ/uMvtbPWGpMOtLfDA6iGSMkNxXTE2/l73QfD6zH9bs7Ir0FjkbH9VTXEh2noGzvS17f43fsng+dQprypalsp9MwhGTHuyf698hz3uCTB+gIk2Ey7PC+Dq9r8+qBnLcW7QVtDdjOw6TgwtiUDSc4JFlseAYPnOHiX4wzXfhaYtOM0oOF9ydCkuBlD8CA9dxzY6COFh9TyoJNRoK9lBFCeXXWM0aD2bzBpFa+YZ0wrJtXgcjYbGmfpiuhvaN5Rjxwz40rX2mG+2ABs6CPMK/r+WAm2zBEMJ2ZD37DZLOZ//rEEu3PQRlOgQ2QU79RCfZb7uXuyVSunhz+Lc45mXrvsrm9LQm/jp2v0k9AunnWNxtMTZj/OHO2ku6bsJKtm7IEZ8vxevxzb+jOiyAcNKe5QL7JPqJcVhfqGKU9gUUwglzX170XveYRL+gnINPE9NL6fKr9TNAVqT1YW0mrlEU9eWfDw6eHHU6DpaF74Jj0xmk9S1/tiTGauyVv50J5D+8WuGTQwA6r9+ksZ1dlRzge6Rn2D9fvfEhvtcBjxuJ9DU55kSBFKTvijckkHkMOHw4gVnMuHlDtdQuGtjOHlRp6Ms/OFd3df8KZzmgthbaMHA4ggHLz0UAxljgvUZWnxfx+xz6wP1LhPXHVX4HUKpPqyvvdzaEyS8zumaH3zJq1S7FTDoMKXygTaugSscRFa6TPhTA+7DKg3VrQf5pAD4WV7xA40Mqq02qi7NKKqFD6sqmCGWff2iiDsVDQex/bz4pMykqRq3CBjUIRCNTXtAkaCm88s2uHI4GYV0SkAqhCVbfaRg7F+KSYcEyX1Sghyrw1cOQyAgKC51q5T+vSJkm+izB9Nln60IqWKehj7QWG53NaF1xEchv05m3qUhn3ecoTK0Qyk8krIA1NTVvDQRv5YihN7Ixj2y31PSK/8ESoYBjPeYWv0FyxRW7fVizNh3kpPJiYmGjMuBXFFKM5w5wuaut9NJZgNaSZjp98ahY8hPaj6Q4Fc6pEciiCnPrNorQHdYklKPQvr+DkYKPbw/u41G+hcRCs7MrwqaEEc5JEuNVM17VzaEDf3eU1aV5TmLBWb430UZYt/BqXMRxNhds2Ox6hGY1+7c5lGdLqZw11fBY73IEzB4fLplNWx6cUtqX2CjMiP7j0mNIEJ08o6E+UsU4EPBT8U3e0M4/cdweYstM/JwZ9dIIAO9PzaP2elYP8gN7N1SuBO2JWR2QHNthtGUtmJ4vP2LsyGUOVBiEywkxFNIPHL34cA5VAE0oSh8sG7onSXF4mxPntjxXfw4bhqAZ8FWW55/YDSwGa1SuOF7cAYoHohELfTXB2FB/ClUAzMVyHQsju4Si1v0GuHtmMjOQNKDoEwa1wVqFOMoy+FPh/ahp28fIz6RghyEWuK2fIkH6HwEQubF45B0gAIyHlYuphXGVuG1OT/Y0xEXfgDkuy8DcebvE3kWArOfM2VqFrq02xcsPKKx+aB0GJobiwV5PmoEjTyDQNFJ26CybnnjjoctpdZVcXAs9S8T8gCK0CDuKJHI5knDpEyohX5C/SV2uIl2Dt3eTuuKQBRxuFw0j8HUf+H0r3NEds4lPr8MdLpGxp08fH+e5OhjCtnMnqM+sB21layoWJMPZRssRAjMIyyixh3NPUO8fQVUYEsHiHSxlU4Na75i/XEUlFUSglfJQfYeQDzuXdYipfBguIELTYDrmVUplh05ad8Jv78d48Z1NE8v3CQANcIq6X7Ur1myZjede3AoyX2s2WFtFmNh5JciyJqW4/UoFeT6MSamX/nfbqs/+vGpZY2CPYXhinJl9sO3Sv2iSdxEp0pRgxPGdlRwNKdwe9YXXuuYwPopninJMWXopNahJWXSjul+IvvYEQPEPsh/5Xd76Fce05MnIhpiOmsg27oKxjyK+LpZ2vq1UHCbqRxv36DmV+N0HhQymS4GiVZ2HQY50A0ajenavLZfISybAxNQcO1JX1KnSVQyOdse/Fm2Tpijl30oxeniAhlW69Bj4u5u7AmxR6RdetppaF94nzlyrhK+latF9rGO9GE4+69y+fjFZuR1QxEResXytiZrMsnjbGl9NFY/mT2CB05vleXpdQQ0jAqIeW9aP8RJbrGIhXO2KNTKTofxBAafViwGYmEY4iiEcpap8KR1kDKq/s0I1pEXMwrAzSYeNJ1QdPQiZywmscPJrPja/FzveQnmOeVeKDkViwyRMTM+LZzmnnHCJlOfbkqtB53PVIquc/7z8yQ6P1HKOAu8ZGOTsCfAmBnI19Hi4hYIJiWUdHwn7hnJxyQHbWiAlMPe6ZgGThnKHVzubWLBe8BIqRUUpDQZwxR7UeUDf7gE7s+nHqSg6DKTXo0Kv7dI/vK0vOQdNGCXo38sEmeU6zT7+SMPm4sRfxjvKZ2TQDMS95b1l0yPzEOpNf72tjkCBFsoieMBcsRTmFF1czLT7e8+5o5fy1CUk/Se9CWU7V0nlbaePcrHPbzuhv+tx04FLbLwpuCin5vjuJtJSQ0SWIBFnBFuxtyniMVoacJOLayUgL6VPdq1bNxYHM9/Orw+3T78AKR98oN0pZP/6cBQ25z1/XwVeXlQkd31vQBx4EW3eIcv+EsrXwGlMtTUeKO5Qlo7iyI0XomfGkXHVOi+QrVvVQXj3HwJofP6R2ED
Variant 0
DifficultyLevel
770
Question
Complete the following equation,
44 − 33+ 22 − 11=
Worked Solution
44 − 33+ 22 − 11
|
= (4×4×4×4) − (3×3×3)+(2×2) − 1 |
= 256 − 27+4 − 1 |
= 232 |
Question Type
Answer Box
Variables
Variable name | Variable value |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 232 | |