Geometry, NAPX-E4-CA28 SA, NAPX-E3-CA31 SA
Question
Darrell put 4 points on a grid and labelled them V to Y, as shown on the diagram below.
Point V is 56 millimetres from point X.
Darrell adds a fifth point, Z so that the arrangement of points has one line of symmetry.
How far is point Z from point Y?
Worked Solution
V to X = 8 grid widths
⇒ 1 width = 856 = 7 mm
∴ Distance of Z to Y
= 4 × 7
= {{{correctAnswer0}}} {{{suffix0}}}
U2FsdGVkX1/zALPqlywhUddIzi/PlrfVdrWKx7g1eF6qk1/r6JuNaEL99607V2HWxyKINVRizyJxnR7BrlrdaIttmN+iqXoCe0re2L7bjQsKzJ7cqWRyfZTqkNRRus34yVqvYtt4YnSK9fjJGqhlxZ75RVMFMrVmN6T+4ujMWevNFLy6E+uFhUFp1WQjgbwPB8iI4vBHmZZnrihT/naFiPrV6nFKH3tNDCZlhtggk3qCz++je4ZU1CUhDa8EFXf2eQCMbTqXDpqr4C8NVhnAXgm8b7d3CfYYxdNRpZ0rF8hp5CGSbfNrkKgYpmBckyn9NTR9Mt5ffwxIRt5jGv9om1CCfku+zuiXBAtZD6mZYpewe/yJmG/m7DNvP2BE8RV7MU7JUzhIDOmimLbv2QT7MceDd3oCH+pa7ilTNukqtM967Agj45D8zFw9MEk6HAnmUEtedhr1lAOP27UNmE9jZm249GCPezvUk4wv3nVYcm14x2qH2+mK5+2/RfSFJMSdRfon31dFppzU2rMdyVLAj3i4fXYT9gXiknGOFLy5b2pheDEDIYNv/S7zFKiCAMTLeEgbwNCKg3soAv7jt8rncWK39melCF0JxztSHMhifyJjWIIGuQnY6uDJu665VEmtNoBSOQs2EKIFYuYKQFpgnED1wiPsWaCKSR4jrj50QcZR38PgUEHIysSMABgOHd9wlF6fKN4lWN3RF2RYJWCyXKeOkYgpinxZM0YqKYDCFEJ5niuz7Gd6JLpKsQ1I3NFMqqkBIBIQjomaC7jFheYOTacIyq5PHBAD9JVO/FGbWmV06ZI17KSFx3sxCRPEZ2FuUy7w6F+zvaTvTJlXaQqaJqBKM7ur4BEOLYtuVdf8wCh3lA+xfn3M8WGRJMV5fRXDIW+RwSh8NHk/7mXLT8AwJVzrkCsfszEU0NbxsYYNfsh0Vzzl31uZexiVBul6su3QMo12nySRELHmCT3uXw0AVg0LSDi11ux8KOEtAJzo+M5xIP1QstkhQWl+yDBCDZJQuiBamDBYxmC7iSojYzh7dsN9v4FmZ/b5DAIAx2Ul5nhPdN+n29fxG/Ox5iwSSIYZV8tH0hH7fJDxwAm3I0tvMQSJdbWVHuCgxpUfO03AaWRDkV9MTB1boeMM03+TcEl01x1c7fYFs7VLqvY8Hg3mivKpcpbN6pJNL9vM2hT4RxJIBXq3yZfT/qSv1wDLrDfXFbrphTGyVGa6QW8L1SALWBfU4GMNiAgpnKuH427nmWxNcPIKC548Iy/E5hhOjuYCha5eipjq/e/hG9KhOymKn88WOXUQiY7f3Y9Ica2w6baELu3QO11GjT7XhZcjJy5P/1A4dGz4V7Wg5Vp3OSYzB+FJZlY23HPWcB8UkBIOnw/B6CyRx259dlZayDSi5bNhydfifUH3tuoPgIacmIhO0rhb00NQMr9N93UNBw4G7zn+hwT4UyH05wma4YI9i0/AtOMnfi5MyHfuyGYMBk4D8hAPhD0xIffSgeJBkJHOrc0lipFIVtk+3zOdprYpfSCfK2Sv81mF0nczu1qFb5NhG0olozpSVS42aTNe7tpHuHwRQm8RS8bk+etbQ0e7CEc5faoLlRU9LAqWBiN+2MUkX0nFU0CeITETE6AifLPa5g6t8nFOofgGH6M8NEk0S7UScSWy+2Eo2PFjJq6mjQG5mhpMMxYSrm/o14k+Fzz0dkfCegL0GyPwSlP8t6vyaD1b1y7jObLEjrmhKvqgviXAyj7FqKO2fBRZTaS+JDNwfk4W5h36+bmS0NwqJX9XG2LbgzRzF+AOShLYjUiF2hjHKOzkJvslelWRxL83tRpvt4jaydlNNmbCRnDQJnaGdOKF8xPwmrXRqebZfTuv4j3ZF7prSJ9h822mGlMIeOcz3dOhtgGR16tcqK7mm2tSjC/SdQCf4P1wYyo6zr39NSc+9nweSqeiHjdpOClVR6H156+aQdNZPxi68wXCPOzQdrmPb25ODFKyejJ7dksd82vw9YkmxQmYR9saU08zvDiTxCDvvahnlshMaB/IFcsAINHHTdu4uje4COdqPCKZBW3FDQgvEG8l6jjBXWRA8Y2WXnI1XGesIE/3Ew+bmoK91OObOL5OpMo6i3JNg8YtwdsQ9OLWPOi9wLbip+jHCsYn7VMpjN/fWk/EOqe531SwmqGyxSlCt+yeZIzmU6UXaOs4T7XVFSFa/jvLiPpraH0QunoLbRwMbNdfKBk8AZnrRRivgCPFaJzCgY11uquwaPrDPeBDsSYkG3F/0uXjPZa9TRDyeIgW0ca9MGZVKNOoGVZFN3QNLG1oES3BypO2aqgCY8CROAB2bKCZVo25NrCAczfaYHC4XkIDB3PIhEoLR1aQBKC8a3zEm+lYcx20HUM/llJSfNUkKaX77uw+vexSKt7cQ6H7Ih0DzGS+YM72vyCBcTG38Y98yDEhwjFQsxXpnQLN7JZyS9mlu0KUSv1VxACxfF/wuyZz3MXMOf7c2YksPpnNbRM33LD/oR+4QArgHR3zAEPFtV8825qqoSp769zos/fYCWhZeZK2whErzOfW1DI/aI9SeVmJw8X8K98OW6sdIIOLe0L9wr+3mwIWCGm/7KXoaE6j8zvmE8BLRMtn9Nq3ne6tmgIpojJYLiLiKx1UHtjAB5fGAvjaFGKDXSPUR5xJNWx1gQcs+0pRTWZKZ+Xav5hn8+qdG5LezGWn704S1tnnvgfBZUo1earuJIbWL5nwe8JfNz9nfrix0pyxJQWqYqYDTCpeD5trNSg+F/mVfvOEuC+JTjP9tkZfUti7ud+++GuQzo5b6aSEtZjFiEcxeT5nCU019iskdofoy+hkub5Z7BfE5YDRWh+RqD8esa5OmTnxIKogNW5gam4ZUvPUC+wPAjbJ8P/0LUJblHZ0wSaiKFKrj+azfI03Z7QDy8IEdCLs062DPfdlUWtS0br6ST3TYmWBDAqs5jxbBnkfgGmKmpvaQ6WbQ5EjkuL46o/ynDHRgpkd8nvd0LA9mzu27Asxj8sB+woXR0ENlmA358I9dgTd/bbSbiOWLA4p9510Uu5FYcfNp2YrJDutSpmcBR82iTTDvAvrQq0ye7qa6P41vfD2pBdlTa3Na9PISzlZGXyHrd8LJEhwewhdua5Nf+Ui1hxmUPo6rHkPwYu/OqylaWRqxCQKQSB1jmOuCJbC5T9lXlaEpuSEXI7Y3d6Bt15hsSOY116mWicSLxwB3PKTU8NAmj6hV/xSlGJihYxCclC6niwtpsH3+vZjqJgzamAJpl4CPo2Ro4taTJPIju6MgExcADcRxfcnADtrleSVB4kQbMg9v50v37oxQlXRQsyAvwUV1PEdnOy1R7j3bOEc9jbYLYjZmbwdCMCmpGI5Wm0zLJFz9izdf+U47dGkikpZbhTmPPy9dLRilBrbs8/qf9sTeqIV7NhNSbinyEetlT926Crx/H9R6D5iU8AnBIAV+fubdQD6S54+kY7VrZGkklUPLS5e7m8JbHxSSygqjRlB3N1RhR+x+XvcGAI9hqx+4GzLjdcoYDfU79qc0nbTdahv0bC4yJ1u/1vjjCpy1aWFQr3/5bBqFHYQpwIa3hg73rVRDmYdSmlk8Fmt4BxRqIBYHlkQBe7KdH9sn9M3Qg0Zc9cKFMjUovLxfz00owv12Ej26y2M+tc1gsuqBvrt2vENDgIhXsot8WwPjsihtoRCpqY/7G8ikGKuxKRG88jPvQwBdfR2mOgHnJK1tAzAlBc+zO6mUaRH/sAgfsk+JkZR5FL+1aXla1/lV3nLntHwAgjRSK4yqeU8nkN+p/6mbyavVSASeB9nVEwxFOptYJCKvAUKaZIToyoboCKtTzmEgOVXHjLxdFFRmblTEUR+cyapp3s0NC/i/Vh25bRnPc/CGXCx7sqc0bm0B6SADIRMxiSV328/S3n0uX00l+6We4RTOjTTX0SikzAr+wc0ptXsVTp01ocnRdgadGGZSR/C78r0lAjaM5Ii6AVcxpjZKnDjhrkwJmzqesGbS0KsKYB3M0pwnQCRZ/cxH918AzzeXzYDL6JhFSZMn3lcH64VQ3N1NO/AnPwr8IUmjR2AoPi4KUyjPq7mK3vYScMnw/kadhD/j1Nb9Dq85QvnqX1c80JxOm/BwZ8RPtxrSP//3HzIAPjZVpfq68G0fM9JScBPdACkpfZVyrN6Rc6HrS6NKalGeMOUjn6AhUH9DbeJDMkM7f6aOqwnE5fHYYXL6mvLHlchd0Kor/JncfoBi5EQPUoum4TXHVlLZdHf75NFUS0sRcGuMaC99R5AhEzHi0Ok2lHtTHJFJhPXza9nkM9mCnbNIgopEkOSF/4KnWpzIUrFIimS4jDd22WK6J1Am07zVgKSeYEOfEhqM39+QJj8DoKLXOXAsq4cqkHGqfEsw/1hekhB10yKCG0ruao5MNpcLqzhi3mz4F+pF2B1weUIHVuBG5QuoBOofKlCCl2t8hJ6zInOdITCytcTN8L3vhAB12Zzz4WdxO0L2n34s5g8OvkvNcQiKJEhwKFpM6hyC/sYn+b1v+vnB3exMtYgA9/6KAFuOY6nMAmBeth4ENis3JWTsMXUunnsG9RCvp31pUMzfrPyIBqzp0CZCpyHNI3qkOizwEMwLAUS7i89fEt8NhZiQdu6qB+3d/59/OC71su6v5jBzwiLC7w2zHy0uncZYy7dahPAMNQiiGskhP581rP19ClKpE/ftxy6h+gbd475er2bERKOLNJ4wR8tfL5o/rmWFdKPZ90Pm5dVMbEPvymd1gKcYlSn8YwUxbVjO8F9CmnVppgj3f6kFgGANjI5yW0E+QAU7bmJfhwt0jd5EyZjM5nEnwnqSS7MmRuEjQMVGF3c8toHT1yHJuQCSzkYPdXMuyaJozpSQn0PoO8+0lqif6FStHqijmdi1qIUDQ4TGcvuftd3eH/V5lQmdPhPKvM2qQ5tRbIri0q9Nd46dv5KYIuFT+73EcNf/SOdhDKff72QwEDk5fhSEM0EJU62nLMzbqf0IVsoGg5hIekJuJuzrtFqFGbsWSdmq4OlsM1AK8QPShId8QfywsZJzM35amsAPuL7AmtyfWcqp7GK6H+JoeIgrTFn4pLz9KaA04oAh3s7nA5ZAzrmJBcuMHrGXhMBMbu778excISN4NXne8YdCmh/Y1zvJ0k1emNxh1ayuPz09DxKnOLOoGNaz2Gx7lBRP5LK75HGd2ekN4Ys6lTDT4bvWR8hWXU0C2MiDiDqUVexdkaIwg5+TV9UD67tuMboGNTeQXAcfTWrNzkINpOAi+iDpGzSoy2eYBJhXHgQrjQJACoSW4D8dhqlJQ7l/f+AhyDyFJ5CyFscUo/W7/nVp6piEJQ1oZlN+/v5Kn0Ifuug2XhAUqPfiWyJZ6DrgZV2yn6kmY4yPgcBwerpIlW+4PjN565OdXS9Um3Iqp5Au6dJe8mM97woTfuAk0DJaAFbFhP01r7eXuGbJwNhRIkKkwSexmgn2x3rxkaQ7+l3k+QARZZR/UNJfPQzahM2BUVj0ZG+GkQ2D0X0gL8ShLMzYfeMYyJbA7VtmB9iWA4VseU6AW7clBZNMn4dXzbRMm7LtC5f5J50iwKw2MPXzTeQYDv7POy+wcmi2t0vF8u+rMiiGBWdOPjErqX+RE7TfXH90PQGSM93GID+K1qomsnKnSjzdatfmLcMTjb14kJxrHUYspQ3S4UAN2EweqNMB7uh9OHclHVws/LkReL+Xn01XQDphemxzU9Gs3ShZa42449S9q0Il25lwuWtUC3yAg+5JE7pIoXkASVerNo3HRzfLLwkfgzYucxLsicbVk/r2LG+UYKuR4nzz33PTEeHILs6gxovSrYGXI55zX3hm6uagL+JMvSvIGKfC2ucNUY9iDo2C/2vXhCqPQsAOy4SKvs4zsG0gwcvG/ye3r9FfAFxDYzf+yjokXM5Zr9zfglzCXF3a0VLREFi+inAzbWdobIYJXbXHmgflw25T/LTJWeb5edHqZiCV5SR76QR9ePo3Y1W52Yh5v3irSDR9KoU19wIYPXY7sOXbzRx2Rib3Tjh6vxK+3uJDU1m2Jb/gA0oCbbUbAomVpTj27xOKPd1QyN/cQbt5fBJRcFuk9rClD5gr6NwM2Lk40YTLLhdeV+71qyBUUSFXM7si+w2k7B991UodSKETSh4QOw90DQyaUI2w0VtVa7T2U83uKiTo5M4VEYc72zS18zyG7rrZX9ksgKVE2zlmLz19d8xn4aKwgMErb/f7QlATfA4T94hliW5vIyeepUIZAiXHyibm5NrlnNe4iBf21piu+o7TLIRglv3BKJEIcVr7wlnsSUkuC3ODRCQ8NNHLeFDpearOQMWJ8s3QxXLxL4szKZp/r1uWsWAJYFR3EbgcT5kSOTjqU5w+gNLtofvf3btw4/k8yNjopo6UElodUnM1AodV1UBYyJYd0IkpGeRoQdFZLHocb+D26rWkubuF9X96tYJexAqhQTReKs1JRXeMba7Njh9F4AfMvdkSMOqzOEMp7hpuABkyX1DRbl55R1MYm6mMx8jBMu1YYH3spKjuymTnrPdRgUHoz14oHdniNJkYqc087lL0OgmwLcbViUVCEPDOK2bPpH1wFHyxAqmFwa7Mp/nKHfXRe2UOdahGPBIZiiPCEjsuEe72iK1V3eeXb8hbEPdFiqO216mvd3ArKsSkVWW/AsU48jE0Skc5hXMY4E5h+J0Pu/m6iXjGWKGaL9TDfvrJ3PTOkDID6Sd66tQRafghte9FF+DzakEYHTim6vuDgo09We+oV9b71hPKayYw2+F5Hrdl1/bzxSGB8QnGs34vfbtWyjxpVAULBa51eVTSBePewKH+yCw5gimUCoItCZvqzSO1MA7Djm8pM89wtyd4BGgkqkF+gJVYdUWQ5MLW8ud1S/H9b13kBC2/1E7wCTyxyygDKkDcu02Kx1QZcelQjZQx87Pxx2UnCVtoYZh15KZlWx9dAw6wiM0QvGUXq33RC15VHwtERKg+Q9SgNGzspOTXIUt05lMV0n95QwBdAcepHlDDUUtnvaA2Ak7iNECVopJoQNLoK0DNhNYyCSP5FwfV7E9nsuD5hK0xTZ1vNX2l7weQE5BFHVMURAXlGpJ07hU0ebF9L5v4vX/IWHGaI81Qvvv+NUd//qopS+2fLFfe2uzCCcwYAxGQSNHxgHyI0AmJaMiALYMJ3/Gwg0C5uEYT2e3Ooh2rVlJDQlwS3RWaBFbVxWkn6/q9Hjz79o7vP8/6oKgm16J349JQG+OA38RrgHoC7MzWrAcm88r2lpCq2czSEy40nYo6kmpdJJFd9LQAEJrd1+0XOU4vTOcYUUIfYB3SN4H2f4RUYdbPbQwMlq6RdWMhnVkqt0xlcImoAWlBW67WbnfVD4DEcHjmqnLH0izA6lyLeMAXD6SgfssR6FA+XCCm0fRIAxAXb1WQ7y0wo0aaE/u1qY73thrf6UgxDkAuYeU5Chpi6oKGnrGtbby4gBpB0N6PtIKu1R3qgZacYuoywLL1NYmZ5/NGJXk5//0K5cHnP1E4tn1SsCOYrETqRyVvvtdHLU8YN9Al4xstyCoo1VIB4x+FQfeESYhbTYgxZaWGc2OTk1nHKz2JkfXdhQNWOE+K7EcxsFB2uNircMSYC8jAwv6J8S/JeDYO/p+j22RrFyXkBAiVoEi1Vs3W/ENlPhwJ/fAVd5/Vc7P9p0ABhukx9YvltFO8mTvfkqgeYehSVZFdD1R9o7gyhi2WoByeDP6OqyneZgoUXMd2Qn4VGd/m87xGgp8BFJUU+2cunCYJzk987uQIz5NDt5pa+VcrtvHIQwyLlclouV5ONRIqa/YqD3hevyqhTwkhj46jNsdwAOc3ax/RTjSmQwMeX5j+sOr7s/Pr0KigB+LzRyiFTs+ef6suJInj46bbhU6n2PSsWWMftorlMEfs2Vw7zbza73eeTLZmm9tHIehnetJMmQl5o3J82FcFmIuhajvxS0gA6r9KzaFqffMyqs7VdFoGoWlExD3sT70QbJB6GqkfTrRXG8ylYMGmLN/aJZbuXAFJ5PA03jFhZU7QWOQpCA7nKTkkLSH+fa6jPFUIYhN/Bsvhho6rHJz/qwIAksTEVyTkm3IQwwtt6lX9kRPOftmhqJZBA1vefmuYPQka4wPDNxtbS46RzABDuiJXi4lzcGg/Cr+Jv96VfopCcMUf7Q19Oow806wgpw33XrcWJAT+SGxz2xbqx4FHr5hF7C5XbX5pSHRcV+Z31jj3oKJJgvLl4EH+kFIElcDm8Ba6aAae2jW3/GuFvY7+N+fGh/lTL/iUiHBXuXA6ORMVNtIawgrgd8ZwBiNN11893QhYWOW69km7MG7aPbWV8gGinvYukYWdq020mL9TLR6t0hxI6Fy1kleZEaAteFAojgC22q3Wokq5EBuGjq0nJZ34/81i0YxRMHNCkyLAVIClTa09BK0Lnp5EiBKAL6ZPzpXP9gL6XzkEF2tL7L1R6N/SHVUMknbnO4vvbpcCe9BwBuVEvBAWBg7IoUMvdEONQTTV5Z/7JRxc7UCAvrMx2oj1Ai7AE1UyEL3/iNv/MRlLD4b5Zf+VYxrk0kCvOxKRLJQ8YU2t1Qtijw8YdhBpORIeZ+P75Tn5BHvNI/rlLJlOReTMzdUnmEA0KmBUgh/SQD3n5yRLlzGK1eRsd65yRRmtco7HJDfsSQCFEgDStbvd9lvDIGXCdTjzNacCcOcOgfnkEN943tLkHZNh6XUcvLyjhUtvzqHjEIKpfmP0YX9rF05azzVxjATuWrXL99Tr04rFq7h6FpEBWRjmVPGW4mx6DdVlvDSlyG5hZxCo7ZdPOWoVZtRM36HHYhwyY6k7fPvvpW9Gx1IUbof/DEOCOZ9knnyyUMtGwQFKl9CWmEMkslJlCh/x4xcAL/weq6/3/1gLD27egoVwRKDf+QfeTZV4nZOzEpUQqtrWiYdoGdTJrwv5q/BPdPtXSGikwRrSOZMfJFBlKnqki14XeTre/nZpMFOdx3KujsVWPVYNRwagRyE7Es/NDpUoBHCivpmKK67VYO7V/r7dBDPQ71pqIsvN6mG0Vxg24Dg7ArAgDrfEzfwRvVW7SNijv55JpiLN5Ggc+gF6BSpc6gjmSwopcLfkWUFPK2QeNFiM8fOcn8GJsRhPWX3LpJxqbqREHqU40sKCfVKub83bHR2Wy4qWan6lvTliOC98HXbdZUYfbzwBeDPSRWT9q50XsBZRHJZYu9iRl72ap0mjcdQq4RmFi+G72eP/HCIY+ioQlLiG7Dj4NlqvszqyvoEVtEJ7XO+qd5nitZHWggUQOJOQdIj5cNvp0y2aqRJm1dUFF4xkU8zYX2pggzKB+NZBdaMsTlV05vs9wtKnu74yzOyHgbPedEnA9iXEqPBbvpCZyH7eUJaR7tZlDfmjZUkikLHUKgNhjnJs8RUOLPDOQeNzSzKox1uE/xUOD9dgETqGopIZZt3Tbfo7zet5G49M5wyhIlmpiMQTErIUKRvOk3C2M9ywNio0KAsw6xGYHm7i0q3luFFT4F0Dgu2JH6ZuLDRiX0UW7cubQ5Usoc7e+FjH4qdLewo7mZX9fSHPAfYgPTB8/Rr97ZF1TJ79fwNF3/vo2/Ok4TJG/DOCkWYNMzYJeBkVV8klNUjCLWm9cLE434SmKZccocxMITTkHth+RW7jHGM6MAN9u1LcjcwpsgsFlqleSXsEmZRSrJYXJ6LrxUpzQGv9aCB3NZdHMORdXRYOqSgVbUwnRALZAoR9eSdLdW6fZloeuMLvj/0mAxJ5as6nwjerNNfAxqvjY5+zMXg4UmGkIj9voGWl9Zg6oZc6/E4KQ9dzLya7O3Su0al6yI1W5hvNHhOUCp4SEY6IW5aYkZDSVGoS7jrdrynt06c+dzglSkGDWMw2ytNgCvNYRf7lzQT2boKmwXTp1ZMzifSqzsxNo7bOQcnMi1ayikhG9T/FO+Vp0UfCDRCC+JRD9ZECh/ePUc88OnThF4jHysCUhbVCFFEAkZ1Lzz/Nzs6UdwyMjGxa9fj8EGdLFW3M62Z9w3xxXuDy8Lv/xbv6rbTMXVa00ksh6vL2uoNYtvW2OMKl8Dgw+ZulZNDqRJCkYerQvuRS00DsZ79cFIL28ZHhZei6UZdyE55MCgE5cm6sX/3Rb2/UzL9mjGQNWidOEOAt2pyAD+RUSCtUM4NOiFet5bf1p+hYw7mqh6BWaHx10T2q+efntYIRBr464S9grtYw52J78VN057JPywBknjxaz6e9xDwxkGwYnkGLIpF26GOk0TWZp0+i4F8ZZkNoYDm1lEKqPBupajgAMNGo+0ejdtQAcDnRdIbjsSKTFFVI7cNjrdkkft9EYbEnW6MRcFclgxOc5Sv/aVMJgHicU5/EXS7auAQp5H+/kjgRKHehnAJxfZPZsWUhLrm8ziK3iMtV70R+5uaXr5UkQSinECt+FCsx9fs4/hCzJnTG5B81mmS6IHEKu2creSwrvOS0RIiTr+/+giyrvQn3RX5R+T0cvTrJj1M6fl5VeFV/wleUNG8BtwYcUqi+e7JqRm3kd108e8PEYyHaT5IOSYIRoeai7ppKrQbZeRw/QWDNyYTnt8Se0v1x8EWDaDd1vw2vSet9+moSvhK1m29Zh2gY7PQFh8phoUi7JZPb15K2wqcImTbqvrg1BuHt/i2WcJBapNKE30jcSVmUtBHBK9AULJtZmOORambU1gzjcOpPDdg9Bi0zXWppSYa2E6uzrXvBKqKnnyJ5taJ45qoe6Jt1Chcp/GW1bVIyctpX8oIvyCnKAxRZMC9ip7GIy8L1o5VDVrKz/GCer1pdzNpK/kjUl9tFWPNR1ehnxn193aGsm/rLtKxWBIQvPICAWZHHTEPms7VnFfvrP6cT6teTrNLEAcbhNur5zNl8vf4ZZl6lhcAtTn1pvBXSI+euA7y8HVuclu3YGLCk0xrWNciNWWNqq1XVeon6UzAaXkC7JznOgjY/R4Ofb9vSnRNm+hsXgISTTubR8x4QQCfm9NTHhKAAaJIZLrato2nN2uAWRY6Rr7voQRuD8w9V0ewJE6BNQULLoE5qKZFwFYzjhW/xkZvFm7cd+qDzBjqFiRaZb5EJldkd/mUkmitoCIXLhh/523Ou7XEf5yvf+MsMVxNZEKoQANEqVhwmKbzSkDIPaSs58e7ajafbWIDgPf7DzsQ37vxvKBYEhzKGQYB3XkrQF7PaVpRefO/f5aha7LMYaFrhl5ckwo2P7ISRD3BymwMmuGvOatmUJnL4UW0WCGfBhq57lpvZLtZebZYXZ3dDwDertbW/jHEAkM7F1n9YmcLWoFZhTKK4GYcKPiEX9FC+tsZd1mdr4Guw1npbR7m0/SZ2wLXZ7jjKeSXxYEWs6DvvJ30Gp2q1ITx5yfPla6zf+T+3CDYF5mzq7Wdx6WM3N+4RmcuNaJV854r8SPv6St12wF/dOI4betTsgWVlDOJwF+B1oZFIS8k3cEwLG62ftAxr4IhCNApZh5nfEs2UTHXiJ0pIEEhcDZfN1BhapaN/ADsOnJTyvHMYMEp6aguw7gToTFqGPBLT0YZv6IITlOQEGVfMVAr6dVQ/gYHj9nDCMMTrj8ozJ2k55WmqpEsZWdigwFgWXQ08fN/5vyG9J4FrqMBLM1crQyc7i+QgFGck/CQyEMe+QeXdtnHDs/UPszOlVA112NkTpekh9GMjykPmvRCeGl0JkaOsmbf/vT9nkV8fHijcbW2kYcfwi7D8WhU9zJdmYqaqeeeKqyS/OfkujXCjtUf1N4OoE+wtYYoUjTf1/KQaUbINdouce/uE5napVtoUvy3NRFvpcfrCzvhWXUHaOL6tLiKKWaJkACkAlvDPhWTuEqzGVzKJjuGjuyEk7K28FIkeVCmmfAgQOGG1gbZ99+BwGCJaKcdQ1MRyWOvwUQrW/pKayVX99UK1gYEiYAzYEW7P25PuLYFKPrcyldtPw2fo5GjAIBltGEHN4VebgsAZhpySCuzN+mtGUY4hfJJJbV1KOp/Kc/kE7XnwgDavklDrtViI2ltuSR88HBW7YitrOPAcANNePF7K0KAkT3z6vVgq9Uw9tq+W9tFgXMfkGDaBOB93/AsgjYUB7VeWyFPd2JlSNcQP19e1LJpxaH8F51TcJQ3mMgiE8lhE7ktDuObT1GP0BfqLF8/OPeOSxGhacTYcl0m8t0L9l+EkwuuE2GAie/6pQOil6asY+uScnH4uFN7LO+00C0OBb7ECdWJjs6n3GWt0XL8ggj6Maozzt179ASOIVv6smorv5ZJscM3oLZLaSk7Wtp0XlVIKUjgWgUxHmr3VcgRg+sEycrtQbe7/Zc91oYkDqDql9sCfCDwqFp4YIS++Fr0px+k+IzgSMxWNzasHebFtNroVhqiV4U22cjqSTFXLHd8Y/3Ne0YONljTBHiwNHFPVOm7DaZ3RsUy9E93IJGZ2Pkzy7SxLlDP/u0Oet0CgNrvB2XnI6c6SBz/2gaKqLrkJNnoDYPyelquJROLgEje2trfxs+XeJN3LFaxjWgSLMmJwSY/rcj2BIOq2y3/5928pUDgKzJVNlJTW+e8orSUTZWm2miAv1cYmAhgAqPU4MOXm1t5Oeo6V72+naa0AB3VcKzSGiBlPan2TuLhtBG2lEmj/03o213I1SW7fR0W8AaZ+5s=
Variant 0
DifficultyLevel
708
Question
Darrell put 4 points on a grid and labelled them V to Y, as shown on the diagram below.
Point V is 56 millimetres from point X.
Darrell adds a fifth point, Z so that the arrangement of points has one line of symmetry.
How far is point Z from point Y?
Worked Solution
V to X = 8 grid widths
⇒ 1 width = 856 = 7 mm
∴ Distance of Z to Y
= 4 × 7
= 28 mm
Question Type
Answer Box
Variables
Variable name | Variable value |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 28 | |