50167
U2FsdGVkX1+G0v+t7Mnhab2EnHec2dybr6CNBVyhfn2xHLu6sIelKI0epkcBHp0ZsThpy7c/dZEQ2N+W0h3Kx+aDwN/NFGWVxBwvnSroy0UmHDG3xd2fmsq1N/PBqqYVFjPc7GJHOcKDppE+tWclx0YFl4iIXAGNR7os0gbIUO8/67q/IIIdw9T9EPBSjtfIwgA4ZKsd8SxHA/cczJ5EsjYshrFQotUFibLXMlMVNxn40SvyEexpbJHeuj0ri+CHtWY75+GhKNOUZgivaQ7nY1eYO9MVSIAq7V6m63oWJJnC+8WEnZN87qPWP3njSW9LB2rZqK+CF80qwNjUYK0IraTVyqgPJw6gpioeWfV8Qzus93sNiyUbQrPns5K4mokcVh4vvBJGIlLX26sSfGK5ePz+YcvCTPmISTw4AWmlSACJyY5HFRYgMLEKi08qzWIVcxdzXpv1l01hHJTfeDx7JZZCbPYwo6lZY+cQrdk2uL+UsLAE66jMYSu7wDdrDCa8P7E0bGGRSjJt05sJ4aUGfv1aBTintC6hIXnaR1BBwjaoz1gLTlofsyIUewHHJ9feoMkzdwkegq08MGMrMHEwyao9xZGt3rVp0xjF2KIZG29G3zdV6oAj2hCcDOMRfDVbQPI/KnzqGe2BamJ8BpoFlV7kJB97t8srQPTcIOkiGi8mneYg0rOpc+E6VhNFigeCBvAFte97rQdK005YZ3HTK0YEpq6EgEvgHlGhQFkGOFna8AfM+t5EmCtcWBJ1NDig7xyTW3TqLHc7b12XOSUYgjNg5o1lTGeF7vMWxVuRRwcWqrely37E1bY1FrYqEXNhzllBQgplkeo/xoYwi1P8rwoLLGemApS2AiwWua/067QnbUOS5o65VGm6GmBdIPdOqFER/UQfAFKpHEDOLqoDnSqgrmJ9Yuk9QuJvDL8t35VbAW7ySqpa9jsA8qtuFWVKF/qJm+H261gggJhmrwtPdFWfXWBBdjyrPhbDS/GPMJEZgtZYjzqpi55TV0uKJHZpDv+hBlCQ3vJMYGSHJMJzv3cJiXT5qXj50ZFYqqTahexh8p+cMN0Tp4MAuy56ivo5DlnXEkQndq+dTRTYnGkbVKkNTMq8RanGxzzECljdD+V+5jjX4b7MnWRjfIbrTQ7tR+z5PfhXRH4M7AjFou1zQk8JUz6S7UUzy45ra/JT2xdTvqZSDXrYJiocwhFs3YgOSVFNTdvzxfvCLKuHklpuxxB44hD+E/7Rt0KQO/vGuOa92bfy0J+Keg/XV3bqIGVq8cctt4XDowSbUTYeoix91IIEMJFNAWfikBB2VggXcTicUdivyvvMcpnGCrM5YtbvfrLtBvnxSBtoGOBw+2IPxay0NwPdij5GFd1NABMvtTDAUfXfvyTa0K1qcGvuqpGCAJ3qsKmvFlJHy9a+PFR7VfDC4a4E5kLTxDvSy4o44AFDWj1hy87Q+vdO0PjjAvkn0EOFB/YhHgmblmoPw9SXZeVvFmjOkD+yI55hSzgaf8LA4/IsZCgUovNeo2ngG8HHgsltIQmxqGY1zdFERNasOB0CWe0cTfl+2ABvA7vT8kO+b8hW7uXFgbG/3qnNaY1FpZtxT6UWux2iThbeqrslq9Xa3KNtCr4lvhxa8dzjENPXy80dlrLW8zR2qFf3iazOg3oSB/laTh0lApvvGleQU1CybLYFvPksrpVu5lZzTkkkBysLjXZXmJqRtm882dbE++XimDkR6avX3DVUDwmfp7IvVL6nWa81V3+lBHd51RMQoCTOBx7vWlctuMUZ362vfhL2xLB33hwPCnUKe5d/BYrvsuAS0eY1enSaRDKqWTESvr4w/bTayOztzw8K0B4usROwRMZNmFj5NQqqX7TWTLJDzYF0fE3nYVOG44k6ck5XJMsU+EuV6Uz+0Up1IfohbRHXu6kYc874M9Gzcunz7sOTaqOyGG3Op79Cx6Y11vFg62pK93k017X07dVFqKdVeG7+quwd5QrtnLiNp5t4AAtneZP7NhKnz36IUhp6flBwulLR2JupFOEoa5uh6s8IGIx+P2XasXa4h/nPmrLgM5Y3ClcTn1Y2nowguG58UaMDiXj/ljQIxUSVx7fmRIbz10ADQbMtDB0+xi2wK2FspBKqVBp3ymeD8uoeF8ZlLEUZwA6KzJa4eYMppAhu9L6E8iw1E6BvBT90wO7Cr8oMgIp1D9vbiJ/EjVCEe41uTGVfGaGBffDCExkW0rKAqXy0agdQtEC3DTSzG3bB9wonRdgYi23+TwvkoVDXLpJmc/bByUWgnHxYLEmroTxGxSh+2iY+463fKPZjNdWJ04nNjy4j5vI+56aMTv3LDtIaYEkh/BmjxbjE+xA3EXt0yS9o58OcyxFLqS0koz68yHZmA59My80cFm+JSPvLAt8jZ1QFsMLAKKGVDD5iF/GxU6lqZqqz8Eu5kSVMzwHE2LNV4Gz+5JtmdxI9jK4+Jz05F6e72SyYvzCfh22gYtEJuCEfoHPrDsHly79zZ/FnCZziI8Ro9z+RcjRHo4uXL2NvPXAOZB/5Pptt6hK1rIQuVTwFqmXWR+dFW2qYuNm0+WdgHBLCUYL6jfeKonsavAzIGOI6mlqSM/z4i3SK54nwAfLH0K/yfZSJqQtHmINwfuzyhFev9l0A8Dy7F1exmm20gaeeQURlWki7OM9/0/JbHl+yCeYAU3DyUtXbpTQj7f0HM1T/FmsW4Gprzt8YQ8dBeU+QILKTWKQjuprVytZk534QWRDSJ5cbMcjB3g4w/Dr+RRJMMe4jbDz2GT87VFcicHsYUWfmIluHQWxKe1LY68B9qXCR/OD6SOUUPZrsiPSHsDVGBv0hzg4cAFbnR+M7MAmZNZ2mmNT1hxtAIX5aFA4ZFxqJuIypf49M3Im48BxIIvSmcWPAKUDkmyIlMztPd/0/b1iSkJjvO3IOUXJ84T3ui68gqcQPbYCdPUc+27xYXDVo07eOaSJaunQRWIUHB6czdPXvrLACBlhcVTYH0RFD8U1u4NM8885CoVbUGXmkszVx+w1qMIpaBWzOAACl273Uoo50DsO3YHaUewaCMz2TWSRd2o8nbT7yys45Ig/ZX9SoSEDDICg8ZoWomAhSudXO0EKmodfa5696B/VE+Wxr/VCUeEG1GITsYwHE2pUx8Eduvf/V/vf4X0riaxsH1dpXRCgRGhhfM/t2mcO5DVymzXSyLoCb9SmtknEFLR6dYdpzqAO5H9IwUacD7p89dbWAMwJyalu+KbSKHPhT6uDomI3zZ593pzR+Rq1DI5jyWTF5ZGVCFSnnr5WNO2bEzHAJyjiLuEgH1tYJExOxNJWIEF/cDT2QAngcIBJa5e8voQiSYhozz8JwAhnCEIR2IMZbIsCmmjGnC2xNLQnhY/ffe25A2fHgiUUT3pSjf9dhrVQfPZ8HjYbueyTvk0EoZuoxyl4g3pk38uOO79LRt1/Xsl7de9mi7+/u1H9aO1d2hozfd1J3TmChKquHK3bN+QtMlooJDrPb+OjDT72PKWXFMORu2/adQbM2pCU+Rva0wRLk9WowSJtagbXRdQVBMcmrLoA7GGGufVCSco5i/NFCDzd/KMW4Y3QIKgrBGACg/YlprUuhBm4oj6L2fx6INlYsNsw+fgkZfHytYgbiZ6eeUB0y3JRl8l4mt23xffwTF7RgDEfJmszHc0quFDb8Uf6tPASGbMyFlLZA+3JmJaDgsUTlcrcRvAJRo8bXGOwlsEURaYxUPlSsfMp5SBEVpGGjo0WR0sGUel/JFJvx6ZJEPu4Xs/xyqt03qPnmJJtz4oEYxECiBxuJ+c1EgT6/wiSRJxSLgpziKG14pNDI9OOmqlWCPk9PZcfcKw/hBMzEB7FBYb9sZNp7ScysLOyIuF/7JzeFZ46FLRWTxWWSnveSJ8MDi1ipOcB6RHKDcl+ivO5WWaTITk46OxFoUDwx7QYFloMWmpup9HpoYryDzjGbXi432qGHfZudMmIohUPKfI2bR4vszqFacv0SFwC7EOUCujpVBuLcNcFQ0Yt+FuYxwsmr2wg5UPcGOnPvVMAZStiQ3AcJImRSzvGdBpUoPKR/6Okarj9zcHw2TS3nJ//PRz9pUsB48m9oESYaNdrFRPo/XD8GR1Bcr7vIEh0fC14hBNJgapjnpQE+6gSu/ReG4QV89bDftwaJsbwEBiZWuR5+ZLc3W+I9Q4Xr7WK96XAWV67hiS9kiG6ATof1yWTOg+hKIE2PyY7NBCo20bwoRiCNummdbm3vfXlxIrBBlyLHaN2uxxXXuV66w/YYYIr0yyI5cmxsjNmWpuOpmVD2u2TQuQNWdiQOiqZh68/gSk17ymAjPcnBDKT2dPrF1YvlH6cY3wilfMlfYW8dLI7UpbG9iWLu35z+IP0Dvm7TqJGlnOYBZOIy4cz/xokwDcvgggZYVQgUIKoWm9EVcAt3FWQKIwFw6xga5+GPpCfIJPZYVUI5w+lQkBLsxLbtBXGmXn3Hdy4RFmintz1oyNh1S/JoeRlkgtUGbiYoytk9TN9U5MxdVyEB+zXZiOat2079GPloqWF7BShjvmYb7QhYaFGnM/DnEgw+hb8CEzfdT/vHq74+R1lxyond0zZkgheqN4JQB85FuPR+7a3zEBlCfm0Q1GVvmFfHwxPLKsJtvCYWDD9elU2OrXwUACz8ydGAaqHxoEy4i669i0fFC9pjzpyqXIl/CrCaoba39nuY24FAKzMcWZ/yCUvhMKHMeID7bT8QJ+LYm6wmAvtpatjtzQui7Bmu3rN8VRYWUGSPMLWB40V64+dOuJ5HifpO/TSa7XMmFEGAswEbRRcehoXUIN5Bz+nkV3H5oYcf9y/NkOKuB6XRVEKUQ03cUxR66RVjjo0Mt01oV+LLPtcuDb5+g9d3+GVA2kZd/FowJ5ovDzYSZaOCzMooplAqxu1b3yKaXaUAOfRdRyi+0o648HhGu8DiF7yyg8w4IbknN3Q7xPG5YL6n/xcRNZgFbJ5TdBOyWcHY8VedG2j1zZ50zoGTcoB3+Wr7RqXMOMm+E2D9x3LE7tV+ESAeYylQe0gWgqe+M57zizRZahoSI+A2rz/RO5bWtD2lTvyWEkj8VHGK/xwJvb4dYDz7GGewTGqD2mCNgOk2ByTywREDRkZ84SX7QM7INVPM4JJ5U8z5EXogDaM5jQ+RI+Q0Ri088huBvkZY9pnuTprnc6gBB1y45H3PXRwFYBZedTDbWsRjQVzvAhMUSyLLJAZdj2S9KTeyOlaUoF3SpMh2sBoI6BHDrHv5f2kyp+FGeXjk9yhJzO19fq2Rviz2gisCMx62hZPa8ScQKZG/7aU8xQmLN+TUZ6uaeRNGvNniwdJ6a4AuLFE1M+gj1Qela1a4Y6zwGPTypvBvLniYWcl9XgHuBx7fyGoF7VkUsB2C/2O2ISlsjDlsknKINu1V9PCV3iEkrrgDqCq2/SY9mBov291IDhDomM9p2y1SIvcd90mn7vcnZoEEvm7u3OfsAsJghVBVXAAfNoXGNzFB3qgB/woWsQIbErNgpAxGXgXXp1PgChMRCdkjmQk63ae2KbV3Up/uZdo8FeEKbkGq8Tkx6NoyYGijghIjV+Qefq0h0l+TAp5nnDHkZHLPv8vddlFpGv9i9RAENDqbIo++mm3j/ofr0gVDnta4cMR1wCZBnBb8CKUgm21UTxqedr62LO8aLPCfxRF/TKmNa85l4YLIFKcm79U58TA3v3yIkZEXhKTEFmbnkCoWTa6gicPNim0g5FMaAPsYHZ/Ok5m5dgNhkbB3qFEwoDKDQMCf9KzTcoPc976F6xehreoonJfK8rbOTN/wMGyGru/IkbzInh/kuUvcrW1ENZ9nNiUwcerXErEcwDQFj05A8F8IEh61GUB1u1zAcYKr3i2lzbEEk0Zs6Qx1zG6YQU/vccQRHmP3xdk69lbhyjdxa5S5eWSM0bHXhHgErmXRxvw7A2eBBYkrJpvpVhHsNZakU0qg6hOfboeO3b6zKjxhQUx8i58x1HhrpuUWZWc6HyOzHCsFfMMJJLdUlG7Bn36lHUtbvW9C597OMgBnRsL9ZKILUCDPwbG+sqzsMF8IdD83mnxk8QO8+AtngN9d6Ua6SMj/WWJkpnNyZlRq4f9/L+S8R8206oa/TvrbZfGnT05C1KQUeCN3HmXw7gyfY5W44Gvq1WXvyskzbKu62sKlLlt9QMq0g3jPSa3iPMhqlMAKqFRWOKYIt+9+FQebeRk5Rl32UQZ10oxWSvaxabYtsRIfkpUtULvgf0MmE3o+Yq7Ju9b6fHMtH22+3ZWKCzDoM7BFX9Py4wAiMrPIgrJLqAh5xmeIFPnFj0L5qQiNbJ8l31u6USAFtrTRnpRBsLSp1J58ce0OfDF0pPIWGaeHMcEYFr3Zv09Fj+tSq8icHoaVH/ChouMY2kJaqTvgfBfC22CSBEcaMbqkk9f0MRx0Cb5/OKnJXynhwZnwGrtLJM5VngXOuReZEuAE5VpG7qHejDbkkCqHRk3mXBcrWgBT24GvPOB9BpUZvZ/V+uthWE1aHkW9iZE8FycdvTskyKQpZPk6UlBehKl/aEa8JzozZp7D0f1RJqLJ0Ri4WwToR4aO88vsm8X62GGs2hA9zuqoQQaHtx2oBQ7HvoV8kWU3tGiL+UejNJX++5yVOsBozeKCuD5hhP/A6o4NJgMpuF6zYuXIfz1Wbe9icjwsiiUlhTskz8eYKT0RAxZK955DJ9gaOrDtmfqcq32Z8ouqXV+MOAiro3t5ezikXw4Nk9z41SNyzS0O5K4USRvCM3xNGPhFrNqHN0TxC9s0LBKB67++7/dxiuzzB6pvHM13gItTk+f0HXFazUMEEh589f4u69015AOWJqUD7E+0yvkg63cnjua4x9xXwT+03w9QbvJ9YmvRj85FpkBQ8xEMPgQVrjhduDfxx5uwaeEk6pNKyLhakf/k9sqU42OXL8Z0epTRxP3dViG3MBgHiaYz5dMGiRnAF+5ONfMml5hsTDf62vSX/H5jpPz8GCekgHfxJeVxhi/PCcfmI9QfvzE2kxDEAYfhIm/8BYHk5hRitotu9idoMtA7NVzePpMskzjiUpmelUFnHcrt4/rLEMZlFeQujqHJkrHObiqh5JmBFb6P6GiDQr+HzfQSrqMffdCOr4d9UkghCa6ADZNx0/JmavsthHb1lktq9LMq+PfzbmNBp4NsEFPklEIqmXLb8F/7P/ZMqcwbA7zhO1/oqNavfqema3we6iDqnaU+bYhBiL2zyQJLCTRVVpxtT+j09z0KbQ+PVEC8hfMoIPUVvtAq6A12PQLA0eiHw9xX9d4gsTqQELc3GdYGSzezXFbyNVqfn3rr8Syr8drU/NmnZFF0VR8W1QPoPb5Je0Vwmx0vEculrSnee/GTkRouzWIM9nEgZ206aHcWKV/sSVe4vCnWW6OPFsnEcfMfLMg30/xg6u2o4OodrXUOs4jTUJKBBcO4bA0XCkIf4tst+M+mWDf0lba3v5Pu076nuMAXiEYshGcqW8DVvaof435c+xj48SfA5yitI74k4nY8qiQ+4j8Ziu5jT7HwOkVTftM515aR+aKMP6LV/fEkcDDvymWxH4fOjHk/jiSQPLGJ6doYoG+z4ZqK309FFYnKK0q4v+rrkvwGZdAWSeFVnFHghGFgvre4UAICE+c6V3oN33Kav9a73kKFGyzRetHdqiTFrLKswoyJWYr9IjCtGBuQ9sn9GqaV0bDBMRebPT77sZiiWUh3o0JapiKlpaudBc4om1NKZ/FnOHr6lgvDTsueLAhVZ0tBtV8gtre1chyGk47YdBffFGNdRjlWR+sxU17YtqBPEB5TWdV1Y71jwjtnwqfTOndYNBLkLYdRc/kitQF0j1McGJhebonTLu1QuOB3bfxLYZAfhpnqOH3M+8cPxiWlDizGFtEwJr7Rld2M86rUKjyA9X1nDG608f2R5NHpoSmZdUn0jrwqgq5CTzyFWu/44qlWkcXEQJglna85QUgVDV3zL6XjDJ4838B67QSAXO77w4qKO7dUf1xbTf+URTHZzrC+oCg+enJp4VIoJMzrgLfqBss8j79Kwt85OnjV2PaBajVdcciuRMvvU31mDhz8fqRtqw2Spd+UnunBZJVnWycZdbZoFzEaDeKMLzZYFv9C695L3Zclcr30tUDTL0MvY9mT9OqP9iJnMKhRbUlwoWJitaTjB9eOxm/AeYCKN+87lpqfWB7Y4S8WHoNN9ROjkZToc6XKhmEI951fMk/dTQGyKC/FgUs07YG14ohWNPiKk0Gpmo+ZtXoI2cG7RNA966ye4Jy6qpoKtiOAlXhE1SSHj+eltvAf0mmxk6QdC180LWuC9NXGjQlaFkBsC10qPrd/v7i9GKAWJcAPK5NBycft+FJiVwZe3zvkMRfS+uZ+lBni9eUF9ImqA565aR0E3XxH3GrrXdxJdPlfnNSf+MRK58Ouu1xae1dkWjU56IFJBR6MO/2NaxwqFDKuWit6k43L/MTmpcr7zTEdvVRoHX9JVH++v8lsGd+dHhecEUSHXGdQcAX+s5EjDKE59+8nvpYcI3t6JVmP9uRdkTbvzAyh1GUk/WwgW4QrNtPGz6m1aB/rRcuxCa8BOwE2s+JQ0A0YX8dEf1UGTS9u5ekOJUrbvRNY+pjuS9wQFCQ33QdyoPUDibuF4m7P8jT1/CiW03Y1aAqng7zsy9BX5IGUDQfX5vVb0RC8elgCo1sqYUxowHX5/hsG82gFn8X6OmoyUsIr+E93YkxC3NYa2zJYdJMGl9b5ofzy/0VtHc5xrvhJepmEd3NlusTJKg1PKoUB4OoJyYbJlwW9uUBwaNVj4fq7yVWzlIKHSdZuCV3LHqYUIhUa+YA8xuRYja90RwTQXT+7n5zSeFYzcNcqhOuEH0utQLcb5h/Mzht8CEK5t0FNPCqlfUSgbxnMosjtst3HwgkFKm5e630uxBIsWIPxt/3+tDZ5EZib6bYAdw/fET8gQ8fT4yv1UtI0AEAT5PEvp/xqRoKGp3h1KkYzdYq9IGfkoGam2773OmMOyEP70yQhe+lakVOOS5XeShprNnrBhEjzQlOW3ZWoQdOORbScWmVxqIlKv1RR
Variant 0
DifficultyLevel
559
Question
Stu and Tarly collect sea-shells on the beach.
Tarly collects 3 times as many sea-shells as Stu plus an additional 5.
Let s be the number of shells Stu collects.
Which expression correctly shows the number of shells Tarly collects?
Worked Solution
(3×s) + 5
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Stu and Tarly collect sea-shells on the beach.
Tarly collects 3 times as many sea-shells as Stu plus an additional 5.
Let $\large s$ be the number of shells Stu collects.
Which expression correctly shows the number of shells Tarly collects?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | (3×s) + 5 |
x | 3+(5×s) |
x | |
x | 3−(s ÷ 5) |
U2FsdGVkX1+4cBqIInYJ5gbirBVGmRmQOgzGeFLTVFpDLxN2iH7mWHgEcHshT2yB68oJElEphvtqeuAwvsmdRTlHJt5vwveBFNyFZ1V/m/UncO7XB5o8dZNohMEify38GS97sVvxQNj36ooU0m7X3yj7Gczx66eSqhTK9fzJ+vAhtQFELGzXEpvkpQgDb2avuCahn0GT1bwOi/lBqBK2gdgVXkMFwqY29AD9rkUSFAWrLmWxX8unU8apEFujjII7irCmeiB/SRlctAsBESzYu9wE1H8caDjjgiNuDWoXwDyd4l2O0lM1JUtckOzOrB5VAf+Jivrzowm0J/WwuC9G912PjqARXnt5FSLUH5iN7CaXe4eXB9x9+gTqWAOWLZSDx8mHMO2KzNK4PWGwxTWcDl6scVc6+e3vdRw/1cJIj9h1/TBqew4EB1TpxKIi48vpaTa8sBWjgfqE4vnIhavF8GucDx89iZE0MPhSMR85MzyynrQDUNgir2feiYUI4CS53tPf3TfUhDYPGtXBVD0Zhi6GXzPvS+zoFEVMKr5HlrrfPhOkgB+DOwKuTxnT1aEJE8Xqh3rFeZn0uLi05brtyPO29IQG2K2W8IW2K/zc2X8G7GqKsx0AwfdI3m7hjqZI+vyeOOQ/x9flfK11BM242YmMcS5PRkgNFOgfH52quT/DrOhN8obVsl64cCsOeDHkfeht1awDsgc2aQALopWKsDyOczNamHLtTMOBAC2lybLlkaNfyj7zt8JrejsWl9ZRIImZIjK3EWVXadBrgX2e8yl6ABu7WAxVjoTOsAStbqAZoPAfV+y54Ki4N0w7wtyVX4VH+MWGCz9qAuRxtygwNB+kZMmWXx1s9m5gWweaO38/c8bQzVZjmF0KFmS815EUfqTEgeqWSfkSYAovV2AE/ylArzB9/ag+vZVWzoM8VH42WEnDdDsh9qsh4UTfSmeRJIpUQFYiYxR7DFAE/HIIvyKAl9gT2CJOHb2JaW8It+0qbCvmX36/RAX2STpvhtb5B5JpJqZQfRFnlGyriZxhUp5cJ/Gax9yhRGodbgRplXkqBUZ9oSAjpFvEsNmx2dxrHm8wsezX1W7Y3EYSE8rGSTGrvSIXj4JZ0onQWQ/jt7E7GkfCxQXiUeruxBMFarEuh/pZFkrdGlxEMK3n3SjIwiRvEn06K6mu8ExZXU4RoQjPLFQgDaLoI3Thquvkwe5oJKA0YPIuVJiT42+KadXvni3K22+MJPoVGfzokXfImhHMLeGUNC9jCvW4HROISc2tfTs6QfaYiL19nQhEiRQk3o3YUWW0Fp/cXwnP42Oa+WC/5D3MVvf0eJe974owH2k+YAr60I2kqntdF1VoFCnPGZdkA2WPzD2jQPEvJF1XfSu41wHBfZutYd4uOywBjDMiB2COwA+A41cTGdWhLGGp2ZUxlF+trpDyUs7go5zR2SVDRZeh+j+97IDiGE4MEDMM4962omeY3PBkQwwVVPmJgvO3OljX6lQ1zE5STZnviuGI8F0KetiNtjpfrpA4VN903DLL1+09K/CsId96da5NKGp2O1uySXuFuH/2P9ctcuG50GhTh2f7BYT/6FQ4l6zj26g3s5I5RlTWIyIxt2LfD0YYMHxTIzBinObthoFZ+LH1wAh7+Um/YQMapT+tmqgka+Gog/3IHgI6HnkB0YMnAtencdQZk7bQXl49Sworh7bFM8RAymsJE2/23z5DHy6HxrX4/viKzrtIMdaD8tO0ccwPS2QNCk6+yXTSWPGmGzmbufsu4xvC/hieQ6ZC4FR0fvqVD3SvE7aGqvQvt8DPwcjNtf6ion3vbnlhN5N50vnyEgRjf3K0AKsHXC96H+AYoqe91Mt6rdQo8kB6ODlMyd2zxHGaa9R8XgJdzxx40z3A2Enf4OPQi6jErHvwP+BIIZN41eeStbS3ag7Aus9WN7QU1k4DHubOBm6DaxxU2jVPvJD+krKwrMvWN4PJJXYd8cn7R29CoDZ5R0SfXnT4NLauIDxONzMZRUniIx1Ak/27QSK0sQD4IHpElgSZCWb5JvTUw7ei3/XFsa03WVo+jyYGl8OksAaxN771bvBFtwhZ4xLsH7cjxFMPb6Kzr4kFSLdhUMhcIxFpjtI8nqiajTVtl0zlzYfnXpT5vm7WAVQlK564pb+fFbkzGoqoRNJplFFpTrarSqhfp9gKba//lWghfUWMm9wnkWCPSxGSg07O/guVbVJEkj9p1w+EXFFGZ+FgfxAcfhbHI4new/Rs4nhSeAwf1Lw+pUr6COx5YgiXu2YYnLd7oGXlYefSV6CiwduwPPKDgFIYLhVc+uycru7APDoahW6nTjmh/coxblt0XTRYAFHjFnLbNarrApsokNZLVSWmIcQ6SoBw4qtegy+8eAUTjlmuoY0O0qVdwUrynZP9/OGz6wJQlXgPHjuxbjCakyvgVIq+7SEKdy8UEEcqWhjFY1OkI2zworpb+d5u6lyEIRx0FI/ZByu9tMTb0E2wUHNRAHWsji/h1G8J7CBkfl2wZHEbVZPSp1no3Is6rwYoeJzaAqrFzRFtJfsUA14AFpYPgjrko7sEWg6RmFzz75D0/3mDSd3SLu9h/Yq+yfKa8KCi1NoW7FE4ZxCVk2w8pq/zpy6vQ8uXKB2VuqgNMNINBAXDb5DpfRCTTgjWMrUvJYGU2EckCvXvf+vmSdki7TtHuAwFZaka+gIqTupBGMYFh21oqj9GtkiVtfa0JyNBtE7NGbvb0hGa7aonKwcfiWTz8ptTlP4vbjxAuRLj1QEYsMpOJw9VVFDDdSISJH9J8O+hklFRtmHh804rs4imIfPXvmp2dS/8AEG9sI0C+BXz8stKqNqjb4OL3CBG0gbmrhGCkfXo/t3bpr5GgoidPnvDHxDwLPY44AGVV7Pch1LftFQm1hcFkQjj352ZZp7lOQwTROHsUgx6V1kDou8AlQijlhscH6XnB+WQDxf20lgQVVvD6lxw2cvGdwYGyPyiDXPcAJ+DAnI1U6mijtZqrwonRzd8qsvngPN0N7kmJMCH8sXJDpbQG8l2lpmOdptAoiyEcols7Lv00tFvG1t0RKugv2fiNzFeqEV+GmDwLOD4UoxM2/cjz1TaziWvvppswY2fcZb20nf5oPjMWeVm+fNeJijtvwj0IGHdf4UpVBht0JsVz6NkZv+NloCZnI1hgoZQU7RtCM/cvMnYEzo8sgx+azzPTTq3/WnAUSrsCMytAMpgg4xOisyXLfpXQtKFWfrCq6WbISBKVe5Vpm5hB/+GoWjcwE6nund5UJDKWBd3sO4O3vq/JvJ54bH8/t7+ezMuSBga2CvGbn+lxxQd8rzdc7rgYY9qfgZEuRnD/iY0E0YEE5qEsSpmHn1BC3V1SQ0O4YRUqyrDRTNvoA/5MN3CV71okJD5iJc5VMn8d3r+gr5G3K7r7b67uGr6L4Nl2R2Ztf3g6T/dnondVn+dNOr/rK64PT6F50t5G3u5s+TDavlEeaLKVNdtFgKUFJeEKJEPiPc/Y7JNqZ3LHZpqgUyz4dKdDV/r3Qu3my/wRm0FQhQ1cb1/RQTZxNognBlm5we/1wFrO4hLbEcf6hmIEcj0WquFdb03N+KlXKS4kQCIflHjqFTQ3R8Lypm3Fpm33Adu2P4KMB7d+wfMXnlirbREGSfR6hqp9FWsNR0MUyv+f+UWZZj04HCSIb0t+jhasQIY47JumBBJWDOdX7BYU4ZDioux/OpJU8FFHpdF9sUE54MvjCOKHnFTcNRUDSW1fk/gK7pKZ72tYzxKCwTIAQ2kqbveIJWKs1o7jF8vZHvJ5AFMf0cZU6LSUUEazLiw4hRk3s2/ASLjLe737BjusQdzArssqoEsz39mexNnypthfbvGQrN7Kg6B/56fFujuXbH8j4u87XlTnJtxNBUt6xG8YNWpvX+ztlOzKC4DZM7U6r8V06pmJti5Avq58UIBTQU5p/s2YZSdeviBglAdcCIWYeYOtEAEeKU5+NdyTtTPLEYm3/YsMLi1K7E1jIZYlsUFtNskPHUxsmEKVCTXyXPQTynKJavl0GzyZSkmuG4PVDN2hDlXVn2VppyVuBuesV3H6wBqSb2Cct0GNe5WuBActCTbwPS8Q7fHGaQCyFbpjUcoqD2vLavpOhP91tr+7X7mmTBeAMD3th/hXQkHXWnzXewAXpzERBx6J24yEnunYTNZC/NDnC8X6HTuKyh8bPqJQExtkT+rakAiumw19VmDduedh2/Sv+nvVTvIpP1gsP6mZe3BX4kHf7vN7WH32Xa0k9pl00RdZY9rqfntWE+vHltfiZ82W9pFd5P2FPJUyolBHKygp3xJC8LhjOGuN1Znn4bguDbv28TfoW5CP+Sq6L8xCc4FwrEAlYsfyfBi3K5iZ/61seHieIc+hdQ6QukFb8/WT9ktODGYaBjId6ozD0WxHQX1xIsmwhd/KLp/eG+fx/7eN+Rcz5BltC6Ve72sBHc1YR+ZKDNS+BLpadZNDt+dIWbq4/Irpsu1CfmEeRqsTZvqlNFs3fwzZ77zhggMJKdcOVd5xvB/ZBrehrLJV1LlQ1F3ZqSJbXoY26NiKhNtPQf2HlKDn1gFL3qxCGS7jDHjLSa8QhGF2OW93AH5OdCEhex8P3Emo0FdDxJOJR5fuZzYqDdgtVAQxMcNSseUa9qY1a7QBS34YD4248pEyHt15BkM8rvod/R0JSA7cvsOG4iAbjtLh5zWmDi77mKfaqPogw/XOF0e+h+h/zblUZKxu8PtqPricencuT+/+eNiiAwjSF/UIH54GqHQiC2BVs187kJfqMuSi3YP1ycav39BH61vB7kJkUalJsWcITJZKujVjUF5xWx6vUbI5jRxdVAJgz5MbPI2RnUx7ugGebjviaOCgQVeTkk8JAkOJFiEa4M77gNQxyLRaIFCdaTXDTVk0le9qlxmzNfZ1cO6ax7uUDX5eS6vZcUTENDQWjt5P9JByYD2MWMR4yCFXe9MRHllBH7/9vfkCNioamhNI2XB7bmI74BXmWFBZ/svyina/BRMGnBzUUBCenOZB4F2zpwUxoBCJGDLPxbnDhdsDpWcKejfP8Dne9rCqpJVS1tvhBi7Vd3fKEHoGp/K1q2pIsq+bjPS9SxkIH6J4hFqlEKUbf7MkBo8q2dyxdkhgLG9hvrF8R4DzWzawSeeJ8BzaYYS28q3gvI+tYzaxpiu0kbaCMV8JzsEfqgziJPoBlmyiUAEt501XYsDVWlCBtzMKggb97EKBjr9I/5Jte8mX3oIFWAeHBPOYpK7zHhkR7ARJy1RcDvT5BEifZ/MNhGdJ48km0pMhNlCpIJr/5aUM+WGuLCj2Urr/I/H0opAZ+031EklTZqKXWKc4OESfqfVGIaSmTajj7e1+PpxxTuqD2FKom1esf4KWu8J6Tajk0+McYhlprn73vjwjN0o1QjmHOKSA3WGn0h+kNy7o1sRZl77TriaLISUDlVrewOgBgkgnLa/zAehDBgWRSe8I2vQVMuLnw1mFoRfwqZvyjed6E6faQpnS5wKCizDaXyX26ZDzUnr8yr0iJJKZ2rK79Ya9brLmwuBlTSELYZ+mvERX+VNjVtBwtxTzM6VYmiLvW5BA1tcNTz1zydxugBK5j9v+zATuEJs0uTmJODze9obWQ+f4PxKVub+6TV3wkV4LRlqEN4luju1o2ZNQqHT3IFXdzAgOUOh2fr+0Hq7+NTEjdwI5Qmx8jpAvJxK4qDRmzoanobsVWY3WsoOM8CDTdqHyUOHqVNZUe+O1OuKFks+IsIoR90qj1PKObOqSsnOaM78ZG9ZnYqMveqU+rvqn+FKRoQ7iRjjHvrsHrRPqnSEkkpmrdKeRHhnlLVi/4mXe+Pzv3hcf3h6gJSrCUBN2KUpDr55QjMcd1FVK3RB66qO0dwybnoDeA8tdnS37p5soarlh39xS3KWuzR3j5/creHwNPiPzq/coX0KkuuC0IBjSBwpx3dmtneKRnXASLiTMCRpjSZuGUESASq3B1mK46kqfeJ5f+tKvYwn77odzWruMe1ywF/JelKdKPE2jMwC2nnUnKLv6g6Wokolux/MWI9ydwIZ6ahGGf/yTskoZc1CNLwQ26gbUxpdm1o6ECDrwwwkxZWlRs1jMHhRC6fxV044BHz9vCBS0EpuUiI8+BQm+ugBA9jtNFMvyK4KyE5rgBEVOoslLil809qgPrGbDMcnlr3xTCTJLyvjwd8VnCvUg/l4r52kHJ+tDZX1NTd/eqVbX2sZnZNVd3xyHV+LzRJG6FPK6aJv9OCMGL5D/aWoARQ6HVmrub+1Yzn9V90S7yFa0Gp9ZLK7wfx0Rr03RWUl6LXokH8ivUhU9VaclQIvwwXm4CJAAZFf20IFwxgzy1pCrkQ7QwkIN1TrOZLToXcMTe8XR/r0e9i7hu54wlFka3LdNwJNvhmu6U+77oHGsf0c4MPkvws+c5TPxzQtWXFvHr+TUcMgZ1Ax2bZLj5ML1mbmsnVB7MVBMTUY/LQumD0nEdfUN5YONGiD8UwR5dbP8rNqIGIjgZpRc/yvfihObI7iitS8hA+hV7z3ceIIx369/3dFYyCqHIaN9xJ7hmnxGBbG9+SowU5sFvCZFG5BnMl0+B5LhGv7bT7hAt4TlBapNgJWmg7SgG5+i7EG4F37FbsXbyGhxMX48CxfqcCBqqxLCR6p3vgkL4JFDh7NFhWxm7svbL8zPwPdgUTLcuJH8PrfoAO38MShfnl2efiOeFX/yCYL7obYg2h08Z+jzrJNSC/yEgVg3XfEIqk+DqqGUIWl/n+Y5Aj4CCGGI8ItdlVT1Bascyk6YLwpCJLn5tXWaH5t+g2Xbp48dU8lb7EIMnKFYF6gXx1Vau5NIxgdaGHFJq0GCUw9eMzeQKv+o1aoVLutGs5ITLd37yKdFVpYE59VOKifCCXsS7qTooxbi7PsBzeELbdDMrpQpDE2esDbj1k1HYR1CIwKUbpyXcZMVQ3iAwieMaQhC3ja3zL6oca48cr1WS2SgbXZ+iZ10yoHCsWIrj4RZzHkl3rrYcDQ5UX9Pu1v0Iul+/Kox/K7COqjoFPwRhYmPjexdzo2VZlT/vwrTrdmvfVr+OI1sJ7zia1/dAYjLNcgkCdvqR8E18KDLWoeqTBfqgEqCf/RTEV0+JWED0PZniJwb85hYCjra36bxHfwNWG7l1kpj0ORn/scxVCCq/g3TUc3DE3QNHdrloDi92TFEUD7GpVErCm45QAh1sw0TKIo/vLuqM9zjMPueUd006w1TjgohHGK/FPNWI1HijqgJZNU0pDBMxgMsta0BdcjWxPHiMG8+d08Hh4eMGNI4O9x+KS8q5I8qCqDhIm05ZIXwO54rkzyMt6o6L0Pu7OUIIrBDG8/fECWh9lnwnoO/rKzFGaD1z6T9yFbadMRONCh8b9GyA7B8WPL61lt/HUVb7emc7UzC3vdg228uo0pr0ER8QYrE2NkyeV+WszimDdDN2agMSLWWZX9VPLXRBvjOVisk28Jc1yjlNjrEj9L1mAcH1iYRzBuY+2I/MD5Psg8LedALpw4SJMUa+HXqbTIsOY2hPMi+xGrscYC03LrM2tDiCJMYFrkAG2NR3jfvFuUVjYAUPV1la9d/Ps22ghztmtk2JXHFb07UlBF+O25RFBejtIkYtZhX6TIP75d6s/quo/G7fSubxD8JEuoFeA8gpUXWgADACenl4ZwUI259epT+OWlyVLmppypAvJEwv55380nPaWahNfWMq6tXQm79nOSuDBSI6+ILUmyO3kD1cL+8bBWn/9Z3iQ5JTtswrzvnHOJ2BDP5t9SaCnDLvvhOgVgmxMxw+CgsMU0ekyjvo4IEfpe3C3txWo7Rk8N5G1w1kAwdEaNGXNY2RpOlYX2gE9qtw7BqkvvqUwDony9zE7/A/vAvZ3JFASOR5xFdp5EguDfTXVGwi7O0zMmzS73XYy/LCw6tm3xROxF+TzYOqpwkz9d6h+F3DeWcj/EAYAkjHT5GvF1Y4mOgMJC0/84+v8iuNFzwK8qX7zqp0A8wJyDYDmGZTIpNgwLWDnKgefhwLyTlWtzjKbW9pqRwIYHlvjPabnOI2LNUVm17tmVI9vCu9XkqUvK5Kx7dOW7WODtwHogn5CP7ZJRkijw02A6TR2axIvMN6qJjgGJyfC0nEjeTVhpWgJ9C4jjvsu/MMN2hiDsnEv2kv0B9WY3Br2K6/opvpaeLPpOtiQYU46Tt04nEUnSa+NZxl0gn4QkFtPkuwNcQtU2cAWkxdEkWFVrr1pZMKe+XyzX9Tjub0wSLMqJMLaIOO0ErtNJHgMe6PtUVkVyyH1fw5aW3ZA2Z1JoK5ITe3t4o9V2vPs9zLvsOOXie0iKqESKO+iktxcQv0bDmzsYPTFaarwTDLUxYDMEgtvGcWWweR9drEyqBIFVWyXAnqH9uueqiY4zIF7NlnIYUKkH/0bxr4JqXrpkOnFQbAFdOVLewAjQwJ8rwjZVS+/XavQ79ga7YdceWPRi7loUj/6i2tz6V/e0nT5odgraWRs+zESwtd3ZWwMPyOFu7J+npGD2YJ920appKcUKirVsF+rGyTOH4wCHsnej3pl04LvtDsScNaHYy4rhosgS4yyPWXeBSUHdqUMjU3rLWCv36fudN6opSr9y25maqVv5nMhIUMztO+yvGcqqZFoVVM3B0qEjJ9508zAewAxy8NcK5lgtZf9Pgp3gOlPzGBf2SxvfwUF3USK77H4FhU7BKJo6Cctkhf0mrfLpMxg5J1ERpAZEZP54vDKwf0Yxi4qYZBxAz4+18CEWAeYi2SkKDQk3Z6JVq7nJdxx+2SVX7fKgjHZDWATTf1iqtx7/quA/+Q/0X73uIZ1KGZC8EuSJ/RtTiw0cBfS8rAOoWjD4uTSV5cwFwcnkTPsmTW1uinlwIWNTmWLILxS0gRxrPrflbOYoNSig8OFvPUlFlR/yZQNqlS5w29XRHGVnd0oyaAZr7gTFEZu9WqOi5eMehyXX82+UcecguNXt6KroRPrd3wPgUGA9sOhj1wBjvS4YpzxB/31KTWZriGVlYGyDkIBVs4KIPj0+BgX16N7ZlpK/25bIVbo5bp5l2KbM4L0rkwq59RE/b/67a+T4aSBqL1k7hWLaJld2vBzvhmaP2bB2b3+HxUUFlb0LgGk/CN9XWsTTk+Hd
Variant 1
DifficultyLevel
559
Question
Bick and Dixie collect aluminium cans for recycling.
Dixie collects 2 times as many aluminium cans as Bick plus an additional 3.
Let b be the number of aluminium cans Bick collects.
Which expression correctly shows the number of aluminium cans Dixie collects?
Worked Solution
(2×b) + 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bick and Dixie collect aluminium cans for recycling.
Dixie collects 2 times as many aluminium cans as Bick plus an additional 3.
Let $\large b$ be the number of aluminium cans Bick collects.
Which expression correctly shows the number of aluminium cans Dixie collects?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 2+(3×b) |
✓ | (2×b) + 3 |
x | |
x | 2−(s ÷ 3) |
U2FsdGVkX18shXWVMoDsCTZj2Gr7KyZH5Y+CXsdtKnWJvOSaV2mT/8gELna0UXpLorVtDY2WwaPQvqrFGqm5Ocbo7rdkRtKlqM4vyNvz1vxwrckT//nv1FZLBgppNOCb/zVlEy9onFbgeC1hZGJ+pc2Yd9Ucb6QErNd4vOwYGMVQk6Edq8jPwRbBW+hEAb6xIuJzaMhVnVm4nZa6l+vC+O5DRDaEwBc9glRK0hWgswAS28LjY26Domu9NYAiGl/+P2LiLT1GNFjALX0eqMqpxDRg7euc/UpUnGk6Y8ZhgPUZLzhpydYS66qrlXDYxhLhuruk0bHygrrCXpRBpqyog7zixaohITBlpKWrVzDldYTfYLz3AQn+k+W6UM/EaojfNuu4iXBcMJwDLRGgwaQWk41kgoorNJTn3QojY1lbDUUbkStz+12Ycy/pF9cyXzgRU9fJHOl6suJrDQ4XKdZ8pNGLts/QlXmitiKX8BMlHry12rxXo0jIpsptv9F1Zo3swQSJ29Fx1y4rgBLDaHA8zr+Ugydk/MxmNbp9wIfT6xr3OF0veMdUG6bWzrwRdulItr+g3fUjcQX1GhBFj7h3LqFk0YBEDYKd0x0Io9EHZyo67eoFf1Hj26M31Tk5CbSU1l609hwk7m2FyB6gjuubYU2Zy5XaDE3B5bE/3aP4w5KJ4EH8S9upO9RpUPOKyiCJWUIwFIHXRTgVDt87BXLr+RZmq5r35PBgR/q1hpXMQoauy4va9znk4aoED7/3knx4aw8XiM6r/RWPSbjxBnG73WH+tIxC9rNztZaRz8T/GNJN9VuZTa9mqGB+i+iOnSViPd6mxenNqDKfG6/RdvwquiLgXmYVcYY+8lqp6ZZtoDyRJog9OOREMvExRher5oCo3Y4CfKcmhnA5EpUGkLrr+NZ9hfcAo3aGe1pUmdR5hGMKDEZscSPDP01Sk43sebH5gXN+p6yLemhnGgmW+sIR4kTMcEaYhjwZFZt3Fvga9AZ/g7HzG0/vVxTKFYLTegVmtxdEEakDm8vgjNCyqdmHrLkvGDnvyZiHAL4wUq0+w8KGFimg/G6MgPq2aHX8xh5Vtd8G1kfE3bpQi7uJfJbVthLnUcc81HEHkkss/NByyABTMP1YEWC9Z1Vn2DsEo0YozT+mKIZm9SUzCKFpZWXwHU5bFRSuK1kzfjmby3CWfW0Ub1O+87XMaMRbBSet8YJ7rLfN+frCELNc2gb0pbNRz6Qb64D65aD47HGtLmwBUs344iYVPK4eD3n5E1rBe3kcTkBMkrP1N2LlX13XFdCMRrdl/1jVz4iJuN5KbglzBQO8ba4EN92Wkp3QiPF27p0Qd0aqO58n9IiyezVU79pd2FM8sQc+SKVdR1Idbqc5uQWwN5P4VG9jOArNv3b8ZYdUBR0HhiLpmt/EebJgr6yGA5LHQ1oJ/0Lcvtel3RMootrv4fqLn+OkHG1h1ipmthhhLq8dHcNt2IUqsDmOvze72WVAWMi2TBJZm89X92ztiFqE59a3OeXCwfwOzEhSH6lxeAEE9licsDU3HMhfxQs1JWotquGiec4bnj6dHkP18mSo5li4syIWqJ17YTDT1WuGqlPb1SbGtNWxWRx1/jhnnZuDnJtM3yIbkmVHjzGeoLAPKNdOePHmca4LNn2jZyRq0ShjSbHiwMTkYuIbcl1qydArOo7VpJsNnmxCFxSi8E7t2diXmRNAd0ULGMa8BzO7n3KEXWUtsFpl2Q74zrC8Pm+BcRr4hJQtlsrtSYGfQVbKOmEE2oXhl4DFWXu+kE5Z8uJ9CiKed3abnYVlQf/37ncaiw802oe8iYSd498U52zyU77uJIpZL59pUo67UlEzs2WJ+IekJCWOVrH9kofpqQiEYFVgVqczc+AcNwGyyaouh8dFNJz3NUOdEOKvLA49qwScaktt6LI65SKF0eIIzqn+mmzblNlybR038p5tPNEl9FMMWbe+LSysINoDZoNXZEyqYoPITnff0n2I3gIybS10Vp2e5kQACmn+2ubL+43CusdqkUHY0rDszLStj6vxiCr6xO+At2hfVUm3z/O966sYZ9O7n4ghHWJnSMUUzBOHHpzj8bH5BQ+skWD7kIscIOw8WjwtHy5BPlF38ilCFRx4be/GSgNOI9RLSmiIQ2xXh79isdF9F1XdYyv5jl7O7PZXuUX0OI2icfGhyjiFBmAG3iQ/66DZY4Yl3glmxKkftVB3WSlq4mjqPGa50V9+ieVwCG1Zm37dp2MzgAHg2ClAY7Ybcspom2GN0mWh/JLXhiN/GFnUePUwnTPtzpOJX3gjqcObmdV9OH7hWl+BOnhnuFU1t68r7/GbH2kQv0WRjNCWXU6iQAjRieXoHuKDkkul9Wyvh2zMnwV3NcVxJ1VNR47TdC57Ob7EyNfUUsNZXx67ELmv5Ia669sJDZwhDVSbv/EeaHtdLngdr8ctecYZy14nzbyupYT3at0uPLIZUnaOG3orv03ALfiS/BRcBomr9mRLVVwWAI/ES4jLBJZEoOxn1XP6LE9PxEn6aSgHKp/q0FQc0wh7n/KNjigDiMKyyLHQcVmJscZYleei0b/E09QtKadruB2gq27JXI2VXIcwKRGVU+o5uSzLgIrW+TpKQ9AFiDLWWQoYemD/4hgP4mgQONQxubjD0gH3Clh2RaGilDZUv13sQL+X3pBI8cOIIArYUyNRN2cYDjfmNda3pjIuAAsZinUbo5bz6g0U9a3Kx/HDBiwIBwt1IrgFJsA8nCyMKf+O+pLqBRtDEtUUZK6VXUfCsuOpB2I8MsDXziXOawMnFaWpytfFe4QbCqt+5MaKQnDp/bfo9UOVuYscGxTtoHZv8Fc02XNbC8Lcvrq4jUxxwwncnHhgB82gFmZu3Nn5Bfp+1osXbV4kjxE/hrORpvbuSteRBDJgZtV2+kV28zXbZb3GASHGKRtBsZoKIePPaQ9T94QChf6NAgFh3YVbuAw73AFHiFG2aeCDeAdLJ/W6CKpZoMAICUjyCaiK4RNXcWvFbmyRuRokXwgwBm7Vi0vgv9+mV2kVjEiSWDGX0A9jT0xfrU343PiL9fOI8eiCHVFOPxcaJeU7mrBC+bxF8GRyYHcW/ZzNjspZGh5UDGZEgtAJO2p0btB4ZqO6Ob3LS4YQFVAgEKYNwhWRCaNXhqcCjiGTzveZNviNxOGYxM0gmrB1HYvSFRug3Mv6mklQdBnjlYTKcq3Low73hkF0j62KtMKf4Az/JaGzYrW+9tcHQvlAP2E9NWG6XRkpRI1UgBiffk60+J4SLtbZlSF3ihBQ93wC0+BaV78CP4bZq9zK7KiZd24vptlLgP2ndDhQo9yU7xD+t4byTEdYjgGk7ig6hX7IeaVkvJNFKgunnjOJejFcyAWcSiNBKofpl9hPpbgRAegDmA56XtYlEdiFqxhUdvs6SNDm5jpqVo84wCQf1DdfwxXTjuX2DSm6EE5NmaaR7caKAj2AiDOGfrlRrwwle9sQevJWz7+CIVJL0ZCDV1L4Bw+ess8YNHbaNGXf4oLm4EIys9TDElGQ5cmhR6fKq1Tkqa6xsYGDT76oQ6IPiajBhXIjHkiMJFiI/AExwv5TOrR9F2VRhuL4m9qaM/voyiD46eZ/RIvMRTDeJioDP2FfcvweqszCevwMqmXwz4/ib17/RY9cuN3oRbzrA0qjhT9brkSNWI2jiQAyCJWu2Rd3EVUlnklUXDoPnyRDBZce+fhfbRsb6UeeXAR64YYQyCsNjwsOZY7FqHbUObfBrLdMAs8FhNIfS3I1nK0fQq+A8bmPevrjxxQgztPCFHfthUx+ufXKqA7p2UifuNk/7A1DTAYIPavNT9T0H4iXwRefQ/tSnJi3c5P4Xk3sQ/BZIGns5vhLDOAtYMV1oD+n/yedHk7wSjSE0KPuZJ7JpJt4s4t8SrvXslMtRO/Lw82zf5fJVWaBc0Jt1A9GbSnqoKQipodctu2pUxmpTSMkNyIvlwKZTfdx/mAlUOu/F/rYzEXJO0Upkta84dz/QM1ldENxN5YnDr+8EmI9ViphSvqWgokBLpv/Ked2DnfUBWW2wne3EUkksf66BB01qOKQD81rNOx8ogYthLuFjpZkckk+2Yiqp/pg1RyVL3ja0J2obnJYGAAW703r7euYvh3H8fXb+GVDpHUvjioLoADkZt0LHO31nesK3u3FsqBrzzevOvFyNh+oC7ZyE9g9uo2YLZ+7yqbrLH1nWC28Kf+4cUCNv7Gr79bUQ6lFhx9FFXfQmCSya3ute34JyipMn8BzQM/Kd4SrPa4CxPILAXBReZwf7Bxm5F02K8kRezZLxgjorr/8XcXkDlnt7+71vvlirK7BI99xfFZoGg/HVK72+8hjn7UiBCKTF9n77+LKBjTQEV9OtWLOyzCBCg+24A85179FHEgE7MTREY9Ygdao1EEuUzWnt1Xv3Z10ZVIUi+CYmJSWWWsVYNqkbtXFG+Cso7YaaSjV7IyOl38XxzfGibIpQE81qtCYAOf9d7KpHRxozwcpxXYK6Pgy58dRAahK6UmzhFoj3mZz0RflcohAMMnYZ03qgOHN0JY/DduSugN6NnFNia60ntmpfj7Yu5MVY44z9SlrOlT7ubewj+2wYsPQ1tE3v6541fZhuCgIfAYpcIYq8Dh+AaGuJihkcwZwUfwnCqryzf2ulvhea+LQ8wa9pCngdbKPVRfA6fkPqTSL0A5UkIqVvHo3pcngB+zddbJiUmb574o5f524t4I3ku7dUgTbD2NhS7RzQH0UVuz7348ocGOv95Bh8ExQriuwNT5Sekviio0HhE5/9ACAyltxNwQiGA4xyBYCToG+5CccGkgGX6DCJHlRHPMxnQmua9sgZV0vs0s8Hl8GWfgsP7PhB/z96AmOuBR8zV7SDZmrvRiHjN0lUpgxcYo3wR7jwd4hJ9wPzbbLEfPJUIGSMWdq7WlSko9S31jXIdfjLPVjaNxLKkf8oItMgj08Y+eFBJqC/qerbP0n+iivwzoN/Q6YTm/w95kDEvQGE2TIjlgSDpZHR75KRMZBAjU1KRvKQsBEfITr38rBR1YJLMin/Po1lUWzvyzEjNqxrrVkCRddv7tlmqxPl2sCQSN0re8WgLpVaNhi+gQrpXkQAIdRXgl7cmReFFQgVA+Nbo8v1ukPIjTfwHjIPtMKk1klgCs1ox9Ub7XIiVCln3Fqp9nAu+j87br5KhQmPJiLO/dhpI9t/Lk/NKTruxjpFgyvqUY+5a/XcqHDPIzkJ4ESwm8z+m07wlILhtNmyW0NVSpN+MnpSiJcosAJBSFRfeU88MKZm11PXbPTuQHEL6HZElsLMIUxemm1MvR2wv5R0K53CmmjHu3bszRkW+GwzMPtLEn9OzRcQOAq9zdZZVVoeAUvQyVpJrtNKgMQt/NuOS/hm6rBB7GCweoOjOxd6ClzZWtE26NK1dzPSiLUnJP4uq0Gfcra1yDj1FAXtUgPopVKu0awSjfNZcTWNNvGviyvBwOqpyeFfw5B6cvz4bdrhSZ5vyZY4/7cwn7XKLaJr2D5uJxJFSN6n2wYTQWObIJwDv9HPuHkrhvlkBIGrBV64M/O2YpN8b3hE6zhFl1Pxo1cISKZ4qczGsiUFllfQjL2yQCXgAUhbzZW/t/gwLIsUT141g4PIDJSGPXZU9ed9RMSIoe2kW5TdbfIZH4y2sztQI70lT90u9HLTj6zXhsVfo6Kj8xNl1zRqH16Fo07Ha2VlBUON/jTzdvlpp7sPDsth3MnQDjNaPo/v9S6YKGsLaLrexmLtUYO9Vj+6FFsvmVcT5KYTgzlTolv7bmj+YRjIVsx5XGgSJcJ06Zvy7OFlnKCRP6MskhG0uhEnN4od9KjRVE1RkhoQNmWpp8CxQLb6Cz20ZCfIKA7kV+KNig4zK3XisDrlOnuNnsS1j3T8GKOSJRov4lo+hwaOwp0arCCRsBFQa6uOBQ00iuqPpj6c/YVW17zX44hZhcDfDbrbA7yiZJD+fZIhly219TQPxNqUpt+t/c9IhZI/1dKf+hOiP+RkLY5TQb9bXej7JW/fYKDyM28akSAcAzscXDMoBPELl+IPuQdwfmkq7tSV1oY/niUO6r0hBYbUiD1MC9pP9tCoK1jnenGqSLRkO15kxZMMtfofqv7BZm0jrm1tpQ8L+qLjCFlnavR5cnhDoiEhZ5BeWkGtZqSTruiezJRLil4GUCuuesFLmc7jP21Hl2wVHuj1h2OS7PkHWdRergi4jKQbp4XWjSsxe2lELbcvRdcbpys4bL16SD4O+Qk2ZCYflhrWXPKNdo9l30WjcPT/lmjIMG1VYqJo0m3iQCj9pBnAixMOMosa70zHJBFFGMXo+omKU+Lp5gIltkmp9Z0NF1lOup0H/uQ0VnlkO1adRfnm7RhqXzDNW38IGHVKy7iQxAaGM6xirzGvgr4EcU8fijEcrRsoaW2bXCNVJxJxccPwCciOVPY+M+U3wMRwI18HXeTpLH2jmHUY8r27vXSxSL1o37M/I1QKrw1Kp+oyecnNd4QsORLuKILIX89VlUBGR6ZNRRUkBLsg4hkqs4a++IkPLMM2tCGNeqnn+Hts48FrKJcEFT7dWY3ibTY9RjiH2qxptHdUe16sI4Dx5xvIuCI/pw58FGFOQsW2gA8dMxtR8gmO/xL5j0CCCfL3WA6Tn582nAQzJiqVH2/pEz38og0pKemgXIdQlbR5/MiL369R0nduo7Dnncp5aqM/+uAYc8dUgyZvvJlDMbaMJvYCRL6W6pzXzEtU24Yw0XFRoTH7h9DirrBBfhNHf0i0MTP0SSJkojxXZZscqYgl7BFqqVg0/Vl9cmL/La7TUYYlr/oCeMYOcpy6W9ZljkLzsLnYrbUJ2AUhM7TSo7Ye/J2Z6mogiqwC1sHhRxFrdsc4XgKVeEn9mMdpY3RDXe5gPiZUGTNBBf93Arw4bYREV0Hl875HyHiYrrSSZvpdqAwHGjjRHfIRxUSrWjfCRaNuttGBfEamF32MSAzWfgAMCIICpp3TRuouTp5SrAfvAVJ2dDUJBZp8uBtQnzlmpnwm/A2qCKZxPaSY7JTCteZp0V6G+8lumghjodUSDl3FC056xnLO/Fgkpk1aamW+5rBt4ybTVuLmofcWWtu15aMQ1977v+QhqBWMOBjcNx0gvAwtblJKllbikU/3m9rA9UGSJn+6Cv59WRvJra+PkJPyRNaP1yDWuFiQaVrZeO6mLM7cTz66C7zB7KLVrpvQtmg0PubnGmxAuNkuBRC4JQ8qnjsN6Gs5+2VzjfqA1Rlc+GqgGDhoP8r0sfYPXYstVXNLIxO40HPvsrBAW9i9yPYIGYJVA4hwb6xJCfIrIu+ET/HvbNrgpAr1LTGC7v7o++yxYEDGkeAMZTlgFbwKdfoIgbEsByJ7lCwnpuu7aJTKASrAWt9hEtNyk+i2Dj3spHZioeq139OlUGYMLNZDAi3E9jshKFvNTG+NoFxkI7q5NlipOPBAfxtaz+vGNEJcFkc1wYAzLflAOF2wd4sHkaCD6rlxFXxAKneSqYtynWfZ9hjZi3b7tS1i76abpQXXn3CAbzK0YXTf0BzJshoqItc7kvlrXE+SVFU/MP7uwlKmk9702J6aVBflqE0MBokJN2t2LYmZJdGeF/Kdhyx6LKb8LhHGPMi9A3f91dzPeWZRxFfWv5hhveNXoS9oVvs0LpVku8ddP3F1XvF3awU547CRulYkU0Iv3h3Uz8VDESoB2+6O4DDYcyLvFI2L7R4usoVwJCdp4kW6t8RjmD9f6g4nOpegFI/Doz6B0/ohEoh5YTYRW8e8tKL0slMsdWifqr13CbG5GMU2peRvixIdHUElKxAkNSG/mMYgV5K0lhHhNCxRlSaX9/bXvIVIpLD1g9+VCbkNGqSw/tBXOOxPl5hrEM0/8KTxXILA2eAT3D2DDD/RIdFOb9Qv8XypqYG49Dcp5x+0lFu/z6TfaCyIdNpO87wj35Kz1b8DmVqlhXojlLC9uKz7QO80zIjiJwXqADIWgRoFYrPNnGP5EGbrmfwQC6flNBsyNuWya6ZNnVp341lcki7XiDryXpbHFAVCg9XtIoYc/uPlfk2bD4ptXY3qL2YGbxSPtluW43nJI9ZHXYrW9tIa1oIpqxeDIG+sS+9YuouKjUW9GrIKCjPrr3EblPaZIq95E9SKKAx8/VGBzP+CCKJdNlWvNEd4ng5JgQPLO+zgZM8WOI5/xTGCIzKDnWwRl8Rhzxdg0Cp8ydgj6njbGAEZTQGGcjImk0HE2pgSDlOsf2jukuA3v2X2XGdJ71COgmyKN35dXRpjx83XEGpNR+zb+kOQ2vHRBh1GHAflZ3pN6ND5R9PvUKqIzeKddCdjS+casNpi6+3Hl7gAGEFtARep8fDFkRQhMay0TdFXH6ic5J3mmfScu6xa90fU9ufaX1Cav9dnS/BRxvvR1+/jTNw2EhSTaSAgh9DA0AT/+RXJAPZWp8wFuVk+TwTKeIK8pFzQbuC6J+w3naf0Elfe6CskDZDK9e/0vW7j/tArlQx9Ka4Q4Rm6Ru8Ulag6esidJuKtjoPRyV/PD6LjoYq4cTpr+lw2Z/t/J/U9g0kKv5LRnoA08W1f2G5TVL7DCvH5ac9aauV9JZ5GepSt2XlRAyC7w+q2YfYS0ZIVxRdWQakkUtKS2Myel4nbIZ8kAO2wihkbrEkhp7xDI9LSXpiYtEAc3GBfKexOpAzQGYODPZSt4Fdzd288kTdzHxA7D6PvOEMGToHszSBmfx4FoM0K3EacQg3ZQ2Bfhq/bVu2U04rOCdDZZew/dxZEdT6BrIXC0hoel4ISmAJA+J5CSjBpMH7fgf6KsGP0NONklEoUjhYlfv8dzM9+AGgA9vhK8hsZaK/aJEwt9a3wecYK2ygoRB0GqbdaJBZP9X6mPVti6aT/JNL+kBmUONHNecgupbdlqbkhHhHX1nxOGy7eWgcid3cIZr7xZ3ms5NRoHJTl1D8t7W4Jie30vBpFz0f0b2G/mrb+fnHoARoFc7r+c1RD1uAxW9UOjQa8u9yoLiTqmGn0ot8929ZzDpitT45KdIurewEmIfwm6Pgq5n/4fJ18Vu9CQeopU2vnyFbR59+FfWoe6CCYli7CLjhRNtO4pLdZkV4bTO3zWu8Xm0yCCuLO4gGMR0ws8y32hudvvx5u0n/PfqAruOWUvuxt9Xbny6l/B4oLhdRq8LBxbFJQklT/3gjMhS3FCGHHhSAxmWISWjHOCn5tXrmAsGtMwz6v6eYDQyoi+huI6+zQAB8+AsTVttHvp1k6Sb7KJHD4IR7QH3BaHiOqG+azz5+2PzoBAcib4d2l4luH0XzGPPwl8rizeDgs6JfYidlBwnnU+g6zDlPvNGpoANGitVWoYonQscWNkiiHfgT0bFkyCwVnwCUwpO4QkZlF9cSr0p+kJaCxZhvGv9K9qMpC/ql1hMl8H7N/uSARIaB8/PcxLJOtldJX+x3c9mkZkKUB8Qh0DbFyb70jgcpaTOsB2rn5pgKxMR7iACGoGGxj+DCgM7pCawVZY34LmjRhBLCk7xqXXC1v7GVjF3FFxxkcoFBMegqlF9z3aFGc6rLp+kNALo/6qMmLi1fRkji+P+JN5UDvGZbMmLsf/2GvuLM1QGaOmZs5tF7dLz2J1134yHIuBNCoikIeNKTJlSYM73SDqYWJeGKF9wPaS0Hisej0AWcXuJE2bdvCtVBXHFdn6t1j7vI2txYZKJenJBFX8qaEmuZ/5iXu5hQlbirsr4kGzOutPuG6pKfvxSdh9naDFSrG2cC+TDc4sxw9CHdrILfm84UF0KXqwUoUGoNV1FCee6ytfK5DljOSYLFGYYG+kwmMK0s4s95L8Dgly4eA+2j9k5haZCF6AJUTvLeKnhnRR7R/KEcnHGmbF0XC7NkQa7f3oYgBRoDGHRT9e1NDn4eJrZ3iGWIULkQEHZpwifmn67b2sgFTWkNVYv3y+LPfa6nHYr5LrxZigyRe2apuGgKX2GLjPD6Lz+K2omF8ENmVr/4taqhBcS/ZvitdQLk9M/5cMjvmGCa7yQK8KnEyZ8Oi18jkyCgRchGU4bF5Q6EMWsPfiUoWcd8vyugf2eQcklWauuw5iTKTFsqa3NNt6dBCM9wfyaioLqMGV6BSjKgT6J3LVKnLXi2Msx60YJBfDgxB5iZv+tBAGTuR3Od29y1t4G/EO5Mhlrep1Savx11q+HL32CMBk4veEJ44+T5elJmzmlb8OdUyGcpME7maOcRM6ALPnelhZW7hcM18POpLlALeIix5KqgOnjoZx56HMv+/lXZBpMBMLgvg2IDWkekc2tFhq8oXpoIo1KXaaZfmjk7qraKY7qbFQ2O8ouDFMR57cTGlo7VvEoXaCQTBx69z4oqaVsF
Variant 2
DifficultyLevel
559
Question
Barclay and Isla picked punnets of strawberries.
Isla picks 4 times as many punnets as Barclay less 3.
Let b be the number of punnets Barclay picks.
Which expression correctly shows the number of punnets of strawberries Isla picks?
Worked Solution
(4×b) − 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Barclay and Isla picked punnets of strawberries.
Isla picks 4 times as many punnets as Barclay less 3.
Let $\large b$ be the number of punnets Barclay picks.
Which expression correctly shows the number of punnets of strawberries Isla picks?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 4−(b ÷ 3) |
x | |
x | 4−(3×b) |
✓ | (4×b) − 3 |
U2FsdGVkX18PIPeyhSZ4s7N5DF4ItgzyLkH9zWhLaAjSFZOiRSYwvGxzd6lthjFYcmsMHIaCryxzRkjF1Hh4TOOTq6lJdrmPXdIrVng72DrD4M7zjsdTLVqMAFtHc1ZvnpSqe2JO+X40xR6T6Tzu8Bzd/v2Vy8bNakTVAgAgWtCqvLjTflY8HmX5PfeaJEWNCHP4I4R1YIDcBhVKTuZoDofW3UpbzitRDbbJ1VmdEheHLT1hyOqqWENSHyQYFiF3FOiereqnRTFLN+oCjDG/dOblbMUajjfRR/OBZvq6qQQ7k924xOTnROfaSfCWnysPBSw5wwwE2yV92klgsfmeDG6+u1ShQ8w7YFsUAT6FTGL+hLvRm5q4/aIDYXJxMg5KByCl2HvPSTuoDMEnScF2gyo+i/zp4nLmCBAGtC9ByRBXv03OL//QmJ8v8AyGko1egR3zNUQdgv6r2OTXC3aN28J1h49cC9Wnx5vNPw8DCNA3T3oBxIew6SNbHnivRg/CcFwv5vlWnitG3hTgt5d0t94PiPxA7d/WsbYLbbZOCJLKA+nUq/fpwaIEcy0yfGNhbQZyqqzRVNgjTYTyX5+76eqLvMddu/N3Hrg4hfTzq/y/qI2lBLbv5mG1ff0BHz8eSJ3YM8uvDWfUoHkZrEHaGkZZNEW+TJB0wnlRzGjvYhQ1pY/IE1jC79gRetKG4ismt66I4xt3cdCULULjUJBGHCvFySqx1/4Wfzp6GGL6XadY+mcRfz0mecXbA2FWQbQ+/hIY/7OWbTarY3GhPNMnxr9kTC/jTfduF83fxjs9C00I9w8m7PubnBjNhA4iBxVdf+vJB+hVRbhbL7KsyIE8jRPzkSIuGUoYb/frM6wjcAde/cEcTtJ+n6TL9aEOZMjwTrU+4eVDxP9Zs1mdssokqRb46LS5TjpPoyUqoMuGoycGPAdSzQhv6fjoMYctrHFhnAUcAk9RLiqQ+Enz0uLX7TExiI7oH8zIIOglqL4QwYDvZQL0sf2SqBKxlHdBM3oe6SAorideM1GcgyrXT8qGxw5u2sVvkuUPd2ZzQyS2uPY+yzptnNhjOist4rJ8BkYO41VAOqt/ajV6gyzl5zDIU4ROmyY2zFSzy0wiLDDnRhV1MQefrdqRWfUaBjaC1vi4LZ+56hcbXUhMgbX3zJnwQp71rOebMkn2FUengR4qXnCh3o0FOch/MEvfxNuNOaX3eO7YvlRvhUv2MoXQxQ2iOum7/ptUmSjqj8sbSRMsNhadNAGSv7uNYXyXaf9J8szSMTGt11koi3znhxraTD9ytW4zaRWTjcc98icsCrxmpeRU6kjp1kEDF3juv5zhhwz2Jf6rfyVZPQgT3GPUc6/+k1e0sSxyiV4UFVSFTT9S+tHnf5VFTrz1XfxhPCPM6mIcCVHyNIeNk40GRQpalG/6fUNEbK5Ym0AcSSYrhtq+4BObXVo4G5LiKglvHXPsJ4DscWe14VKdYCErgCMD+hhYoN6Q9Sq70c6V9euxXsS/+v/Gv0ygF2lzsmvwjv6QwvGG3nsnmDFMiiJ+s1clVq2cZ5T0D10DatKRVdFlWpbYfUz5qVh7JpXw2HWO3w2xmWc8u21vKNqqSl6kv8UtjUH3IT3aVQ4VliPckx4VtLjqbxGgToTrcRDiGrs4iK0+yyocRGP45n53/PEFXvuWzAbtePf5bBQ6iLUI6EYdA6/HaJjkqBxoJGwrAg24/LNhMx6nfc9vu/gGmjP92w9LGF7pCOXEn+cDuvl1APldhkQhtYOiClSsglYj7GfsdAyo8DViDjKhT18mS2pusunnTDS858sZcVZl2YDRFWwI+g3ZUr/eqYtjQtsbV0z7VnquEnxvhSyfd8mryFM/u7PorKLLCyQWA99YORahXDiO5d3u/EPvic2RpIlgun3sWu+W62BY6S1sZ3M1vpzfrwbaPpIlWxe19XlTvCyq7d++euTXGEkb138faccHYGmbkLLBw3ulggVP15mnQdaF3LO6h0hXQNIOlyi+v+s5I7Vr/KmkCgGOtsplnEjtXFNqx1nqqo3dGIwFvhM1oDlJInbEKFHShbiXCMUX3nqeCid6Hvoj2Az6O3H/0bT0LTJ0EdMJ+aqgOofxuSQPXXXkiCVyTGPBNEJHSCuIkSfNNJD2faPnYRpiXuQSQYmoI0Mb4BJAuwRbw4JtMSEeq2owk9oowr/TKTKHa5EHU1z441g9FO/TLnlgnv/w3FDQCDpnlpDYVq1fyg647YEPw/pceIl1/vTW2Z75qJCcicjEWORrKEbQ3dx5m/imaIM31rOybW1gu25aglix0HPxRQRKHwVRYqjmbLyL/RlDiCI8c/t7ml+mplBPE75npUwocSO3/m3Y3TMVvbNuLHFMO7PwJ1aJqhpQzcGLbRZutTThhx6gQASlbLlNSfV3k3xoIcuzz7bOR78QsibdgHKI9D4QyEUzvozKT4Cwv+cP/0Ycpir81VZhGldpRTDcyrm7w5CLZhfafVxcTgQoVEty6LXiY0+9xRl3CVXxv7SlYIWsxIt6HGsSxXF8rBjSnwuLkRmV1nlu1ljFDchOzXlWc/2KeX1k5jq4Jgo6l18srUBQl/i4q+EY2C1qqFsizsmq1FGLWj/ebXNU2E379xLWb08D/5vggLJJX7DDXzwvByv1Q1nu/o1iDNGk1DRovMA28Qsuz9eYc4bOD/dh3yxMi9BZyXH+7ovnqJKKGBOvSb2uorXVSQy3LuYYDvyf2qTNnrKOdcrsAAgwPq+WJR6CYzprFK1IwJRyuYiQRCbIxdoi8SglEsZi9F4ZrCK+fM+wk9GMQT4N4+Wifo2jsQ2cJNmJC3FfZCyKBZ+ray8PF+4+iMjKdQocWdTEnbuXKKbLrHx+zMV4yz+3kn6c2T4yoXQjALbQqtjiJ/xYYfUTFkbmb6WRkYSzBV95b0YPeh5gGlxqmoXdEn08c0P1LfXnYozeIWt7nCSfEbqoNF0y8RbXE+I5PwMji0zN/ZQeK6x6oh4QKNriv9ZwqmcmZ6csbLK95EXSjANUvTTsLzIBtSRWMiVWnf43T2Y/c10RLHomQInJx4LQvVfMlrd4rpIhSTJMjkeRF/1Yf5w6r5+1lCFa/7bhc5/ABL7XT6szr6s9YkANXbsuPBTrRilpnCdgL9gkGPvrhWApyqzyTMP15ZHveDW9sM3sYZc0WPuQRbmuLf4xYQuKFBG8XSGfGGnjFg+9qeBpqgLRaa0H1pwajhJHq5dsWl4epV8+/yf+JRgDvGervFGS+zEGSw48c9e8o2dxGKYTCaoRCKCIVCg+vUwfjvDvDltdTX4E4lWQLCljlfcRX2j73p+MFjAGYfVfjVEgyf7WoIYchI4bQbAkD5urOJOQntfySwc83CishTFALecKYuNd/a/eUEpqVuWHSJAP+CpHihZI7oy2VjOBXthq62UBvPtfUAbKwFXq7ldlROFlhVgeS1yy7rOjaHUymMsoUsC3hV94V4ghakT746o9n8Ew7vhb3Bi+udNDc+L7B96POPcYmQ8puuVJnxy5Zgqfn63iZtHZGB6S9i42iCwkebmNNBvzMwuWreqQ68bTFLCwsqflPOOP14uVi8ugU2dsGQpZsW3IYXuC9/m425F236p+UZduhv22JuiFXEXzIu9fL1cC9wj5bZKzkpCbf+G3XA4bvM7BQLDA1UfAWDja8RcIhPMtz4J2kGAXeZA6Ipag46YOZSWPoJDID2N2ZfDf9anyt/h7hMQI8xg3O1EWPhp+HDGYU/KWu6MPxCsluhLHMV9NYTJ44M30YgQyijv0RDtW7qDtZ/doI0qKxM88+ceXxgx7G6bGWN8vieSiiCFVj7DZX+4ymqw6BdTndyX9al62EX5gJ0FETFkMpMYt/28qjL9PbZjRWwc71yHCY0QlsHMfyJqgm5tFnxJKG0zkhmiXOeGNgcQ+4XctRhMqqKgzQ0iu4E5q9puiEcQha3aPYhWzviKTLsPPuWMGgH4IAikC33EotKVJzwa3MiI4BS82HJaSc7YkwTjWCWnZJMclPJeF0Z5SGlUwB0tSF0s96jcqL0wx7U8EhusOgx+nTaPA6AbRGJ0DqA8ZuiOaNfPaSvRvmhK1wmEc35KLL+SaShXX8dispjtDi3eRaQIoQCGsCXzhscKLZoFcRHqBpEfYhUf/hTkUzSgFaFgN2R7GAXty29S8vc8f9ML/XF0GNUyjz+OyYjGgdIydQX0gZj4d0EKFr3KNbHfETNTiiaUOM2dEgdNnOUCjwdRO2KS9axUSKeQzxjQucZ/DmRmj9MxAaovtwUSe576o1MN2+teL9x0jHVvfSDTZn/oVF16QtZlWSe0q5YqxsgiS47O/jl6fU400ihLf57+iv2mAV3KZa+sV5CW7TYXszDU8RttMcpD+i0yNaMNYQtMvGsUOeK0BssmplKnqZ2+qE64AEhWwXSKFTkAWxxOO3750Vqsn46UPVJnYfMAGtoncCccsPk1zo5x0gVvPfAre2RRW4Co3eKas8PHE8run5+NjiIzAbxyQm4oVbZzqkr6DM2GiL9oudfc8Ps1FXz+4Gi30Ky0MX4haNb8smjRneepUkpqtLpHcL2AciZLZx96QoIaGcNKNw0AAn8+2oM1MRWr3n+LAVyzCiNvaXCST7EzPOI6nZp9N8IGwL1vdHojleYbDHUKTvIQzXKXv+E6cPE2fjc7/vXiS+81l7m9HkyXQXJTvtndmeJSECj/QRjHntiB4MXFvtdVIu5ZdVIVj7QfCGlahmU9pj1orPHeMZCRGso+OoN7fv0w1hyKFxGGzQu+C/9JjOI3xqzYBnYOFEgdWe7remp+Aqji6OspVFjW6X3kSJv+JlRe0xJgewOWTjhbYz3W5PqL+4fvAeFgbMff3x0+vAJs7YmsQEpbP1I5rZjo554h8cvC8vWzXKazHYccZzjfi14omqm7BIGYb8ydrcfUEyxelO6tz/cqwgVLuSH8pySNHYWnbi28W6qzhEqvqjBwVYw6+BbP20lGh+65fVS2xVrnNGT6zX7kUEXiBau0h5vFcHahUZX95gbAm2c6apkQ95CdbHvlmgmMIpAerU9HZYDtm7VsTVKoliaidVRB9SKR/wNC8pVlmL4BrT76uNpSrPUUMUT2AbBQX7GZTElCrYXNp4XO5A+yqsaeYIxP6Ku+/pESUixv150DHfUCRK4LcINWl8vcdEvJDj6H1KqvK8CnSQ6u/3Tl+sJ8vokhoYRsmOdOE85unHzaw3RW0E9U7V04Te2fC15ScdhPq+lpgxvpV0dyAozcgt4GLKlRoeqGce3r48XjRRFRp8ARQGA2SeAGVtuMZS3PnPeqOwKVXtPl2pZrPhN1ZHfm8p9ddqWN3hRcidDk3vm1jc3iGpbm/p/DesZCvdpO89Nyw4BxjaUtFj2H4HXjMix/n+mNB28IZAkgKy8C+yojIYkXt2wTRWyzNDeeMgEYQCTNTXjwwri8Y5ZxPYBf1kLZ+cN60zR/BqDc8aFK/0xB56ezk4J99Q9aV+QdTvMMrrO3cEdk7gcBslKv9XqvdIKZu1rs+UD9Vt1006APmy0feOvcuilFFQFYbyW0/01gQBpbeh17OUuaE+EMEDWw+SqV6wUl/6JXKUssGxNmEnfQ2andmeVCvU/wGHVwE14gXRfvqCJcISsUwm53F/3LBOWKi5cVyylHvzpBgcNbRmz+KFKZu7rigR7rASpbF2iFzcNsUIk4RpkzB3utvDcMdnfvKpoyB4X9wWGl94BO5XG//f5ui7Y1LMhLVYNvl9A9crxqe8QsA1z9gbKUEVQXnYwDFcU0b82tTgEB4+YPJub3xfG4SAO097NH8TXuRqQ36OW/G5mCnYjF/avfutKftPYGUJO/BBavSUEkaLqkfoWaDqtmAKMVJwqwlLsUh5VLyN8CxrNfVcNEDTXJDj8DXtVUEQVxWSkPnaIRTcb9h4vw0DWjrkHJnm3QvcZrS1xDphc6hj9GMJbguKpVxoArlrd3mTroT5onlKCEG2CiSXecqv8US5nsLE3AvKMi62v+WPSMUv5HY+saUhzOKcpsx7O4yL/UYQZScVYhMO13iD2nraNvyXq7d3b+w2t9n9nmwGxbS3epM/5HHu5J/AkdmrxthKvs/Lfbdo7ut/TSwLV84eIVNzBqsrhdlucH2CUuEOPHR77B4RN9gHRlzwN5m0ritfpm5hV1BFuv8r3wjRCH7uejTnO5yXrrPPkTYixjClXDlfFoL4NYjuw48lgYjG4TUY9SffM6aY57WR5EuvOwq7WDk4t4jX9pwerkzgI4V7BI/zcW1nJjx1BscINKh0gNFNayLyILm5kJshyrIK8cW8RtUv7Q/gOarUf0v5hTU/4ZAU7WZ+Y38zyqxvMg/afGi1ZlT16WjPT5arllb5yuq+/d/LXXli2IESQ+tOmZaw1P0f+7vlLpOtMPbMMSZds5gkRHTP+PgpQagIvTh5Z+tBQ33r30csUrh6XxiHH4xxORTavTRv9yvLhRuFONYBhyhmxrsgD5Zyk/7a0DkBHydPsNXsS/aXA/AWElu8/pDB6Eh8OcceZijQDWNh0dKOTVIFTmwzpyIzVyWJYJr54xDLxW8h468VmUC+GXtDry7nToKamhQDL0qO0nz4JG6S4A7OW14OGlsnADB/bNP150xOHZRYht37bvxDoBEWj+7h+GVHkv5b3nl29CwYlHndOnIXtrPL0+UjQqoxtnJP+KrAC/COxRJ/lxraBjQ+l4EmAj7GVdHs4jwbuoHTHdhUOP8SjHnqGEVdiAJqVSbZsu4v8ZxV257carGjOzgdd6VRYsMy4ZKjEfAN7N801tKvbeAuK8OKSzxiMruPawQ80YT2pRjfoDK3qeUC2+tLZZHGPb/hjZiTzF590KN1q5FkryoU/2NPkwud4D+AfPJT8UuPheQPaWMh1wT4rNh8sV0fC30D7oNA5Nnw+iMXH0uA8837KheJT0uqpPD+gEwzsTo+34E04kKC1jbqItNDh731/3+9ghiUVJtKDcwqlv5iNUomHSWaFJze7shWzEn7JxfLg7U4NHMKjnYZbpf//oaUP5WBxBkPWOM7MEhgnwmrOYhX9AyB5RKkyxqMrhuUx1eBxNJPi6nJ6A5UV3me4IBcvrRHYsfbGcsO8OcfiXhO4lNXvKGPwzQeW6zAZf9LFqbxIL6RAunr5H2lilrFiseecKMvRPl3MLGVdX1r+gaRt9CChYRLEZAQzKFTi/pBv/uYtWTOn4OHlPo9/qnEg2LpyYnGH9J2a7kl9redS66pM6dTa/jWg9D2CwU4za8RMgYEydREgSbdqv+5cItnbhu+u+P35D+jzxTZYVhLDKw2dvjFdkXmyQhZ+HNwooti4kYVm+EmZw88oLuxC5HrifpTtqZMpVro6POyXrEh60SvLZLHARttoyAebYt0Ey/OTuzNBkhbcTcsZi9fO+gGWvz67/18ggmzLIpG3y8RVeSCFaG1+evbTM6g+sZA+9tKVklM5hxNGHzLwaXXK9hUm719KlLeZ3Ezpvco+o+EbzgPhfs90lILcxHyGQX/VJmtF2h18JhwQ8BUTUY97Q0IxGMXS7XTvaWqjeM07T835oICpTLDfGVAekPtx6L9Q/K/qKF+fAe+7eKt5FeZp3yQirZLrC+caJnJm/xW+NH4ZxDyKQMU1t2Emu3AJ+wuoHe02yV9KgHTGMIbkAcAoq4FypLhAnGUjWp/IUUNfVr3P9ZWavyPdBgewAAxRKZQhJrcn9s2X0kygbmh8wk1X9l3bItuZsBHFukpXbCYBp/hL7sUvSjZUdPUC14IYSDVim+ZWKggbMr89m1qIycYmOISMNk+PtfERXLg7sQLFBSufHYpIRwzwHg1R0MxDFmUn80FlZtSHitzDe7gqgufFp6g4rP0RbSoEWDM62uwgLVEYk4FBTN096zsNV2lMgnP9sVEYP+Q2dlH9TKYMYfpo1AEa/v+Xk9KpSwB2Ff4MEqDPTM8L/855Q5FGwDKISXNannr11DhVhMI/tzMmQWdx55C4XteZm4aE45GYk0sQIeqTrgQQatI8tmn/3+cBGn8wcBEL2rOJHS1UnUdCvU3GkPBIF3pdhsrhE00GB75eZG1XAiMylcSmKOLh0N93ME1DDcmxCe9TE2r7pepUs1274WoxserTgJ+JDNlEj+280OUxCRcAw395Qh1GOonDqHCRaElytSD5X7/Hqrm7Fq4eBAm8pGMeJFNJ0I1bQn2Ry+4NmoBoFAifEPImes9x9b+fZGfAg2pVgqYMbCMG4I+8HhJF1dZWOcHuiSOZfw96Aj1kJJodNfxTd45GTy9m224oxurTGi0gtm01qkIUe+HUVMDD5NVYSsv2pOV7u4wJQ8NZgkAx2FpaMcfBP5akvoAO0UZL9l24jMvmS/AKE6zkNwGX96ZHUq+KBS5HuXt5DIuOI3p8iiuQZQM3AfdciR+cSAmm5H+qS6LWyLqlJxQSV8wQWOISFDQ5THgC5PZxv4bwbay1Atccfhm/QFlA5ed0Gjgif180vcpEdXWor+gLKHlLKSrKP3p7FHnkQuFINIipQerQqZW5xWxL2ceJHGCmE=
Variant 3
DifficultyLevel
559
Question
Brutus and Cindy are watching the same series on a streaming channel.
Cindy has watched 2 times as many episodes as Brutus plus an additional 4.
Let b be the number of episodes Brutus has watched.
Which expression correctly shows the number of episodes Cindy watches?
Worked Solution
(2×b) + 4
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brutus and Cindy are watching the same series on a streaming channel.
Cindy has watched 2 times as many episodes as Brutus plus an additional 4.
Let $\large b$ be the number of episodes Brutus has watched.
Which expression correctly shows the number of episodes Cindy watches? |
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 2+(4×b) |
x | 4−(b ÷ 2) |
✓ | (2×b) + 4 |
x | |
U2FsdGVkX1+KrHABMXV5eUsws0/HVUdHw/iUSYlPhQr3IQ+xu6oeDhxqrfpRPoOxiV9KeFwXbPZlcZOgKIQZx5mQNzmqXKeJbYcLYWdscYxO/hpvJm3B0hSTv2kFAf/eqfT1smMt9a3gR69Zjpyt5Rz3OTZPASHNj/zfA1wLda/ifQwjvYYqyvZgOjHBUMEwN/5vd2AuZNiZ22xoLZitQsJUYEbByLScod4n1NAu6SiAXDKeYBGFgzzTWMjvEQEHD+xCp/hJDX/1cHY8Z9Q6PpL/IGNi3jDxG6Zef+hXs9+QVn9Tg8Dg/n92+o6S/rb4wTKNr7b9iaM/C1Trdqs6CKrBV1XXm2keU1fs0NJ9naFd/kNNO3lPnuqSM07GgtKcqxqSqno28DwhVZvIvN6chXB5t4ARIl3YHRN/uMffPbTuHbcq80YZ8KjKOHXFug4Xk9/3kVUwROVMwas5ShNmoDd7gAdvgA/tucXvqcakK4lRwpV6KH4Zq0OOQ2/5WRdkTrRAsYA3NK6WZrH1rAvyc6mKgQiPHQ8oDGVcAzFvK6SU4MZ/8xNE5Vdi3j1BA9XUmUnp6WiVGj+rsh0wROwpF/CCJ1+rXwEOlBdihRI2IJVzR3QngJWSFAZUlMFjcYeUn32cUGnJBFWwUPc842McUBieVnJtVZJ79QyugdY7pkk/qu1Jz/+k0W5VwZo9zjUx3+UvtqA0DZLiK5iqApIaGhv9+t+nLNaUmNmpVjlAX3UD8w540Do5Nc2vx3MzEIVENRnws8URj+H1LKjgNi6Immwb5N9ZpNF2cahD4jX3eX+eoKiRvb36WCN5j5nlho8Zj5iF9xLW5LkHk1WzxYOc5SlGRef8x/SKhs+hAmbvZ/Y01CCXz711Yl6Coe7Ru2SNX4SRdzpJIeO2Hz6OOX0O3SaBQpveKbiRnJ5nRdL5rump/6fO6rcg7CUIGoRpFNG8lmZDjuzp/emb58FiomomTAr8GEbXZFdtT6DJHILrqvpdXXh0bdCppwO3nmbLH/d/Hb5KxOg5c9mE/775RiLV6bUdQu5fYhh94k1QNPNlbxo2QAaXKxoyFhgg90Rk7u3cVahB9jNH4AQDP8i46T2JQv3U4x4kk0BmI12Vo5r85mL1oqjNWfpXMJAWk7PLXIIUdGQSvrwoezCZvilr0HDMrRg3Uc2B7RfR0KtP9BpO/Kilj8reyELSBSkxe7x/zRXgKp4z3XAljwJ0LesqDxGqKqrd5DoDB3wnXCC4wK4hOSEiyODIaiCv2eO8MziTCY1Z16uLcvFVx4WbTFY5Z7uxKw37j3o0iKPUuhMJl6avRGk5yfTYq7lUJ5jkL+nyEMS5HX2Osj+7SpXlY84IAnR+Iy+60VbiVbeYwcznAQ9nDPNpZY8FV85bPg8abbLhPWfJcQHfXrRNGX8ZUtCMRfVztcR3qEpwXRxaGxTX50HVbwonHWWzslgEZs2IIigBhT3SgoB53CW7U6H5yl6O93ES0BQ1Y3jmMC423VyNwoLMwO0GGhwV61pXM7JKKGI+RUWJUpkZ+q8uKf69N0fl0lo9aSLhw2BNVcGtsWrx7fkRLFz9JlAeKgexTKYg1vtTFLQc+y1ZrVwWtn/Q0AYQd5xfIdQBLvJb/ofDA7QJQZljrV5O2OBsseXzcFffHk2JQNwsTK/bKFBWmPKJ4mzbBx7hPnB5VeslVQtNjXnGGUfrgAnKV++34yLO47jvf/hgcnV+/JOiDIAdxExuKPsEk0f05jnSyfGWfnR5bzAvKSTpD3iMKPPeuJyhfR1cLbNhGpEfUBA/8lkhYOvvvkPiU+mqys8VokEMO5iy+IzU7oVS2uiM7Tzc4RzL8fkZYMJEo7ZY6ufl1mfe3h3ubwKI2dz+s0HOZPvCbA7riYyUg+A0vVv6vpywhSX8cc/1jBUg3Jo71UOuWGi1kL9hDBDysBkpRruPH/9v8RXAYzYFcVMHedMtHdgjXvYaFL5h7g+sOlhSPxLWCk05Vg6inhEl9GUmTD72DLcOKtjD9K9mET4NZ1YZADc+ag+2iG9OJUhKOqZbDrjQyt1jOKIDGtIQygX1uUMIHDzNWQ7MKQL7b1bs/1WqWNZ/uHjaNmlezBeyqk2LtJqAY9LFZCIQCXs935+P0sjUildSdl7ZGaa5lVoZNM1N+k1rn5FmDIxqqtLzSgal6XSDfEY9dVcZoh778g9wDEo2T8qIaS082FxmpdfqWPvuMzAwF0MLwPOeE/KpNpjdqSA/mBMrlZASc8IMVBJk/R70ZwxUb++GunuE+rt83cfPNfMQZdu4RpKmZgQt+LtV1ab0os/WuvWwFGjDc/RsK1YAr1y7qblCZ+voQWTAG+L/iPVFImFpH/DRuxGbjPesbp1cb6RAereTblbl6JZBfJqUSjoeASF7Gciq48/069ISqeP2HOt+F74qLt1AIDcjdo6M6JC1aVNSmTq42L5JUQfNxOfe4xrIK0G58UuAj908ZG0b4ghlytx31GyVt6rr2g5tP4glwD7Ad0tb56oJJeMIRZU/NlNlrQfhmpV2WmsE8jiPkZqx3qAHE2D0RQfkJTyU1LSeFFghMHji4V42pvPua4hchrUgGBCTVD84Q0oVPv4zBge1/vaJxuFfluXDYMr2tVbULDyuHy08HEDnQVDWgZ+QNEsq6kbYF7QuNT347lFrdwsBZf69uu9vqjEOGqYBAQrcZAizhXkYsN6t1Y9YqP92k7UVPndxw67axn3BiLQFaT09UZBTobnu19ggDi/Bkj6fQTNWifTUMaVxqNLiRqEfVlMzQy7hIYVj8nrke0G5nVqOrNn3ZzkitfcmduVGOu9yDxtTcnO973gwRY5w6jEYMpcxPGB9MjkbRt+ILhx73rf/CA55q/yGSF7LXK2/Jb0q5o55jfSD7lc8VsPd0Ky0O7MqY+LLgGYgwgzGHlJyMf+i6ZPO6uM45KRkUD/Epw1v56oLz5T1Gs8ETXKLlCbIpqoh0kBbSJezoUFEEEaDkNKykdAzoxC5pNroT2EF50eCsE6WJqmbX4O0Nmv4Tx5VH5EdtBBig88fMT44Lg/4fdTnGicTNOUhRXYIaAtXwJGr1u2bk6V4SJqqhtrBOsk4oA/kmABYwdmO8Ow0dYkDerxIvkagKEGR0085N0qh/Umvmgzx1s9ZCc0j4qREGtKulkMZTIU4dIGLv0X2vUg8DAnAJuEe+gf6WenZBzU1eHIxwvNHui+fq26ajPmDCG+TLm3xIpzDHkFVmldrdfJ9IGedKo4Z9hBEm1ZBLDqQiie+yWa4pdgzY7uX9laD3BpWXC5HHhWvrT/hdFtslwMxCLAXKamtlUBCAsdXt14jUsGf21Bi0pBqhtCOQIOW+2yNZ24eWwrtjvy7SgJshY25drryFlc/hRiUeVxWlPxJWgm/O/skCIZMSnSm8nSRcMdwo8rAXqauzkOOB8HwYyxutm6mVPGPei1shb4kwHzRTTDHuzomSHqNv1seXKxE7bmcA8Kkp42ltUTH+Vl9UEigfxTQIyrOMq+ACSb1i4Y9r1pLNdLlqWmM0+y9yMhrAazsQMhSZphL9N/PX4Z8E0Zjq58BLj8LrP4CkAnj/LZl1xRmT+5bMgDU+Y49trIYfqkdgTgOwR8PSagwDwcTdg3crKy4rN8PRrKmzCW7TJvYkK1IdO7Sfc+D8v+hXCcmaZbz740ly2xuapeigERovOu1ku06o2LEf7LwyETDkubZoCc1ZUq8Y4voY+J6zK8nbuJYTMhDViWTcAP0lOMxAaZkv3GpJlNrDA6tCRvgYvaO9WdutnUocIYfWgRERWxQZJHemd804G6ZGetMoCKXjxQVww5yqleQgY8ZxQ5r5X6vxhzYezzvdJ61GjhKz75g8opY2kft1Oosx7OEU2toNQBW70BAwTP60PZxrD7yJRW80a26AlOtizm8CgJChXz0D2p1eWzCmSY0hvxSDXDLEQ1OA7aXI2wa2A0vn4TCcemhLTB43aGPxmS4jrczWwV6MIYl/MyIRAVFAJwLlXzbe4VFbuJWAR78+CaY7nJfa32G7Av3Wo9sjrmVypaTxgmg/7ho4ta+rPbwjxpPYTWIl88zRDbNvZbVVGfUBe057U6h3OIJflD2egyXIKSOc8E8MOVTdjuM+E/sp+XWwu6NXx0SymSYQvoZJHJl5n6t4BPiLGgVhQLlhd//avZIRY3NPLNK+gnPI9WPC+0UdfyqSTSAYF+pHTp/0pgCbHk6c0uDSLTw+Zi+5rhiiHGwahpVosRS826kdAnbRpWo8yGCo8D0NJNhxVGYm9VxeQPfRUiGsExXjOxOV2emvt1mlmCwfm9ZwZIeF48GPvP21BWoNqmxhoBg/i3dqnhS4N3ycC58ea4M5YFD3D7hsmLlN9IHdTGUAthFyhLlvAxOdCKcV2lieQkYRklwh/SPkWD4M8LX0hjOYKYlRvm4hXIG2m5BEhMFQl3PyZHbbHl5VXVhLRYEKEZB7VIgQfThuvCB2nli8wvq0UnnNTdOZOn+l4udFpRdsZpiL6nYrY7NUwDX/ZJ90sW/VVrBD+3vXpyxSNwcHe9uLNUtPwvOR2Unmb1GpIgtVDa6shv+y4Ly5eBCy9WiAhZ1ue1WJ2SkP03kjZXNrfLX5YcpN5wXoNb0EtEu98iqgpWcy8C2AURTJ1aa2+DVMW6et7tseefTpYSS9hrkpQfyaaa96qWKNXb9bc4ZNBW6rPpfW2Kz2Y7eblnzESrWilvk/L/ZNYdT4PshTs/8oSCgbmAHSi+BmTn6lRjHQjiD6fEMkrp8iVUeC9F35EwC7k5/qpEeL+wUoatJUNmsoVtV1MDnB1eRNlnTCf6Dx2BJjI1R2HOiPB8PMh36iRfNtOqVDT9Ht/jY9KYhoxNAygGHZr+ihnP9kgNt2R6jF0M0CAN8gLiuR57t5hL/TEnmcQdLuiyD0JS4s5k91q3mi/f7xyoxNs6h4rXpGT2QdNZPuE9t0X4aa2nTrR7pehzln8l0JFTSQldVDLu0Obmajy38pm5TO8UYBw5oKZMecCRdZX30zFCh+dH85BU6UXXSyndzu6alsaKqp7NRh2h03ujRG7Zk7sswUfyf5OVQSWCWa2fz9qFxEAgshfDv9zxVoAdjWEYN2c3TUyx3tG7qKl+HE3PmG4boCjCUJ34g/RcL7zyh/g6KQcytiXUlRD6Ucn2i3Un7JFnEFHhDbZZ4J9Vybnu4hFuILZasxVzhlRZfLR+7rNjNXjadv6KXgNVSL5UCSSHwKMVF50LtBEdZu4FlDpkYxOyR65YGuu9p6+GqT1gnQMyzKIVnGZNYld2KolrD6q2Cpp/aNmcc9QqhkAAQnfqzZhl/72YT/Qn4BCQj649ePrh1vI3PSVtaaTFlsU+1EmQm30o1zh8wBE3mx3M6N0WXy2UtuWZeUtpBGrxG8myPDJowlMQSL0r0oAoqCWK6jmiA4MMm1sVGxzRFDTwFo8Oqqwqx+GGd/b7Vb37CWO/0dmha0VXOYU1qu3OETx7QEk5SAkNa70BtSXH2CDerH1ozzRar5kQuBkrSTTQDjTkrPf4s707JqBbULbfVVFXVK3LL0XmhJZGufLKshxfohPkDx91mZb37a2N1J+6mD6z29LlyeMyUlrwMrKsPiqN43+/TdiK/nHfqiy2Xp9MBrVCCYa8m1SVLMJEakwZM5ScR9b54lLI5v5UALgvADf4H/5Z5CZaP3KqhNLR+Kgp29WGCtf5rns++LeBomf/Rbe017VMxiidL64OkRBQXkRdXsp2DVhnII9NuvgIk5Wx8EVRCXX13fU2xbayQkBO+VTS5tfvoBuC7Tv6184SmEn/CDCV0XeOZYPnkLgP6hha0m75+4Y5twaPYovZLayz1zb+hGlR+4OX/SxnoqP0j4V7yOghzDipUdFilxp+s+WICzxVZO1OGuvsAZAGHtv7IYMSSN/3dBm/Bzao8inV6JkladBjKi3Bni9xvISmeyQKtlmhiruKnW6JR0KNAgSxaDUBXCxXy5es2yvfZ8CevSumd1Y58XjQ9xQIc+JE8h/10InbNPc4FqRr6av8StANkMGKNe8KfpN2WHQ6HNlzHjSxbM1FaL9vxlPwAg6dFL7VaYRnWjAw8QRebKe6dtmJeUxKWkd/LyKc88bzbU4Ysf9+VO9VJLAbRu5vzWK+l28oge0cNfjpk+2TNmhzXgxswgBL1L2BGXDeTHtviJ9OKv7fSdJLkCt4Mon7SLue1oy7gUEl9h54niqsKROoDSCg7QF++Yz+HaxodA9SBRtVjYURNpfDGOyrwwdxRX9cLy5zDfT+iQg8ZKbxxJ7/yyqujGYiFTHE+T43bx3lD5reIt8pxcNGF+Um71rE3crcqMnqinIwqfYvwlMuqB1LbnsQ4ydgaPaHcDSx/da6oq1/FkELlJlOh1v/FPKhDIuz/0hNbLyTlnvmv7rzMFFgec9ajjTV2uex75zR56t6R5NwBy8DQu7XqPVDWhp0wPlFCmvKsfiMA9jvPtGjgf1TkQSC2i9m8z791dZgGgVurd3SWxBt7ZgePlPgxr5xnfq18TS7Qwv3gyo0J+bfpsSzKzgOYckggY8VpZOsyz+9SzdkVU5XHZIhc7/G9+igmmnyR2dhSb16WK1rfaOftkotp50NXQZOEAwbj1b64eJMJNQlRNIgXWF0z/N0FjW5UzQMIe56Nx2PsyupKiHsE+mjs/U6SrHLTvD1UKKoDge77pygSqrNsTjiKWt8fZ2QQaFV/SDwcIU1a2IDxuCUjvHH5+kgDDdqyUkWtMxJ8hHdIw4yz4hPAcS0RvdvOxCwTGFFb1pPPshFeMazQ+jAw45TRmOJiQBH8ALFyc2uEJXj816zRJ83RgCX4FNbiFK5Ex8LuldT6D25sbz+FdoIYZA1bMQy00resDNoEBCxY4J3WhgaNrpZgTFHNczlf0ENNHd7H3Hhx/rSK5mg907St9V22W6CCbjNgZuUTHRWarHxz54MZko1EBdoHC3akwgspA6o1n3nGIfAx0bsKNDAT123QsdSZkhFpOpVZSOgk+dLAdRYNip1f/EMDnWf/JniX/I1E03ZES/8+wLSDTH7BAbgNGydaoLh6W8SdQTYSS7PlxzY7nQe+RYMi5lVtJzrTaEd1ZN0Sztn5TGdhdobrAZdcoriPLwRnnPEX0ABUxI+HfeK86Gf8o1qdVHLQjt/u3U+HIjybJ0IbxCVferYUacrw8KvuGJy/M8hIH96kwsv/axOdRg0xU+WqzFDbG2BeJv55uRNGG/KcDAVVJAyfV0NyVJz4Z9aP0vPYoesYQTqzxLR4rfzoRSXhdUVPloH0x5hRCWw9tASqooyk4pNq1QLWSLA/dds/aGq+VwHH4xjBrVD4XS1ogtjjaregOXfmCBt9OAE03/8D6X8N/xxvyXfqwux1aa4HFLILJpAkshJ3J2kls7inr96WjNSbeQMeb9jNqZGmc92w4TRRzN1UPAsi5Oakby/+ukSrOr7XweI+mOwZBGt1KRgK91lpPcuDX28t/9haYLru3UrFdl3fOmmERfRDjh/fWG1EOfYjib4S2peZQv2EoQoSH1/ICo/rWw3iDOt8gbZMYhbYeG1W3V1MIjiRhYCdk1xzeXn89K96zAl7iTT3HYnEnva1xoWE8oujRMwU+HGixpcpwoJzmzaVenZn0gGx+G+GadcZKvC1YOz4tEc2/jJ81YJOnG2Ol2Z4/CYQZIz6HRfSU9PtCXcTs2ZqcC+LNMga/etvBpPSD2XuKmmMDpUbyfZK77mNFpf1qZ/xhr08s5N4Iy9EGdjftxjSC6zdlnrJkzXzEabgTvGNj8UEYjI9twzrgUtrhqaoj2YHxJKCrmlQ8WX7dXNnvM2b9HXwf84HYrrVj2bxIBCsPvphVCuY/DTYhK1Zqi9Lesi1AiapkSrqQvogqRkYFZiisPmZLOWOET6JMtSOrxdjlYnJTt92Ni6fO0+n/kYBMU2oQ+24BcvTpRQyjy/q63AfMZq3mIXLdaNJVqgqx6Y3ijV4gn8TMc/+5T7WAvqArghbvjtvV8Wecop32YT1JQxGVe2KaOcy6mM8S1PhUAJCYcEaQ/Q/oi/V61rF3AMmmlBUDWhktDXZr793OThu3wmwrTqZh1RWxvG+NwI1TiWjeo1aoeKheQmww/pU/NiMc67Mp4ws4zaCYaVTCipAAmIj9UX74hLfg/YsAAmIOd9qgW62LYjguS8J2eIFeW8ag9AhD+orEn+IEGbdIrvBMc66/y9yV4sSWt38JxYSA8tWMD+HnmXjpSyiBoDJ/gsokm91JCOChWFlTVhtAZ1XoAyLo29ZSFW61KNJECVzOwjbskOwG9DVoAao79yNgXgeEe26TPZwrVjprBHmdpmjiQiGh+NlBGh9cWqPS5XAY55pAaUb4tQLMrDrQ8DWwIu9NVtXwEplZ++9YcuipeIw2+M92IHyhre0Ygt96KzUXe2mmxIw/DG7F9hGiBx4TT8ZFuP3kzvQtxz+TG1qEnSWEKv58Q9TLQBMN6OWw2w1Z2APqS7GfkifTzG1X/wnwzCAqYZdfEuHBvdJnfkjyhRHl+Ul+VE4OApUFWdDKIKgQztrm2uopLZnwEcITX6qUZE59yttdiBEy4TstLsyf7qzwaE7GI/uwZcRVOqMQSM/jwMI0q+z27Qn7t9oGnecTgNhaukjLkn6bc2JjWMLMH/KF7ogkkEVWslG0VhLNqn8FqPuHTNXFYjP4gyY3D4oO5Y0/etNguEGqTMXmRxzF6ONAJfxcIFjKdYXsv16uBNuoMPSAP/dk1bsjqUO+W9/tzCs4eQLFmvAHEKYSDgVpoPjftKxQfUiFMODl15rkNJAviLJPu6dvzSY4AIZD+1uUtN5on1RKmnvtvAWziBdRj//eT1hSsc9YzUQZDBnR9uEHxbNThcyXiAVfR5vf2A3Lq9gHk3x3b0jUtnwL3E2Ny+gmnS+t0DFspDUG0jHaLFkyCD0Qc1ApHRVezw9NaszgceSujXX9PI3o1oinSpnIsy18jdXdTGOKAtMzlDqxpFcFnW7o61JovVP3lwiPCKUJkrPvTblH5xhU3jFCSFnfijH8/4Q1IS8IJrJNpjcmO/X00uYrhiSCIcwXvFG1ySIQpbh0u4kT+8de+Gh/doflxFUgkcqs48PjpFp1z4stg1l81vZRl0sUr1r13fzlA8KHQ7MzF84v3qIGHRlSfuGd42Pjou8CmyWg8DVxn0TXmwuCz89xefud1l5eREpvcKS3v+O84ftRcM4mW4Z/T2PmbRhsmqoQY3zzc7nOhN1iVz8pLaOElfamVhHQ/ynMVAhmssKU/C44yuESJ7tBNaPgYad2NlJCXLfuuDhSGpVFptWCMYt3xlg/zd6rZg41Z7o010UGEeAua8YJ1kx1+evAdRCbrk8Y3mzcg3VtQLDoGXIm4+SUje2q+nhePhZzfnVld6SZkVlet6hZ8Ej+HprVpT74Y+Mv2sukza/pTzwIMFB9H8x7XbDpbvAfDVhmPjLlayCaYuo3bZqTDj1pHXq+G5nOqcTAksHeVlg43k0Ms+mgtlsYZxB+ke8dnso1A8bn3X+uX8SQDoPakd00dKp2AdbxfOlDpxwH45G1xolAKoH8MunoJIZLcVWaLuS8pPegzQEK3uZvR3JXuILBgRV4tcZapLY/UYTQZouwOaA4b9+LPfkgpkC28e/Sg4FWHBOgu2ENZAwDpLg1LFuG7+ngKjUKVE6IsfbUyXWf/wpy1OXtbzZsMHRH8b5vkLXM0Cbl/ktSCRQgrdyyAuJf+bx0LHIysuezOZxXwSKOYCH1IsbT5mhQnDEgF4WJ1LOXfbG9crPIXsFKQRwhKn5hF/FndfuxTf3XwLIrEl6MUS8ockxsnw6eRSt5ImrR+JpHyU0fUN6zyLH1eEcoUr1SE6EyItS6gqBi2GnBON1BOAKn2XFKLSU24kHwv0e13KbZC7JKDKUl0wtpvZDw4i4unS+y5K5ZtTn48N8MZzTK7aakGY3IToooq+hhYXyhq5GT9AgOEyVNHwUXFtl6xYkyPKGucr3LozjLPBEo32hzNKVGAxRun5tqC9UcD3bfhC8OHLt11IWCtrjxQffUIOE/5ybS2V3tuy0QI29+TP7eLd4w2RuRCkBHsMBl4Yt4rqQFWmTwaW8LetN1G4iKE92g/G8FPbWZ4iIBYIjAfVz0U/shlw1QUOwH1Slx3Gp9I7N1O07YzZdnMZoQ3OIH4LiSnwXRqLXB3tH1QU7/lPii6R9+7xPkVx6ooav3z3fn85mEKKG2YnAi8QHrtn1lWYE5oZkKHaFquhhKTVarhUMHFxuahd3PP4SZXPqC07dzOrLbNLL6J49uMg+2lHUxN0WAp4QMGyoIprq8LG1d9cu786+d4iBs/MT9qCuO/xoFtHukmUnLRDlV6NTViKAnWwCyMw1r6hd4lU+n1y3rEVj5eTJz9YrZdUtyM7hAbAevkHJpcGs++rY0T7Gw+GqRhgDU6thvigZrZS1qI1hv+S7cIcwFFRqH31Yx1Ss7iemw+MiqYuWQNQtEB67J61TBbvpD5zb5TVl+I53w625VpX8fUndzHw4vyCL3jDLsBToCj8YCRvwhvIe/oJxUhT+QMbtEKIPGXwqFeRj9uK4oFOQ4ERLmZlcef8ljdZn8k8DLBflk3mlrRj31yV+2f/IuEfa+PCyKSklQxd+KpW127bMNF8XXsvlVTaEsEQoa8DiuFxKhjaZlsJPMa1CbHt28VyZV4KvZlvL9L4NyRDEKNaf2bm+PeMSO+3H3q2CmOxQqZDMIcqzVqAUvk9j5JVXB+Rp69nk8Uw4XwNL7EHMW8FlKlVCj1PZaT1M2Xk95KXbkfEAe4Gq/sXrcVapiJKj8tLDTbVMC0+cspJzHlNbd1TqvPkAIfQ=
Variant 4
DifficultyLevel
559
Question
Jacqui and Rina are competing in a swim-a-thon at their local swimming pool.
Rina swims 4 times as many laps as Jacqui less 1.
Let j be the number of laps Jacqui swims.
Which expression correctly shows the number of laps Rina swims?
Worked Solution
(4×j) − 1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jacqui and Rina are competing in a swim-a-thon at their local swimming pool.
Rina swims 4 times as many laps as Jacqui less 1.
Let $\large j$ be the number of laps Jacqui swims.
Which expression correctly shows the number of laps Rina swims?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | (4×j) − 1 |
x | 4 − (1×j) |
x | |
x | 1−(j ÷ 4) |
U2FsdGVkX19Zmf70/5GT5TSz+usAk353iWdOB92Fec9UuRyrvXDSKpxBsyq4EsORDVkN28x/bB3VqqJX4gcIUmetvlf3TcN7FI/tGIyydMQD8HJh3M5m/3FDHeSlV6Y2+yNByoCfT/HSWEK2+DZ7rpGCiqR5t2HkxiKfQUbGRGj/zCevhiCYm1imUyg+HUHjdpjOf1DpA024TtKCqixsyrA4ZVbihswTCH2xfnA7M9chrKbuB3Cqu+NgT1MC9Ouqdyu//bZeLiTXJoZVpwy0FlbW1vvIMrPHX1yjtNb2WYUCXBsFJulQdrNsHl3xQzAoiWe8EaDRAq7CRgYnBr8RFS2kIirMOKZs0aLsLDAsG+rRzPdqNUzAAFLZEBHBkZMRRkMxxVV9nzVMOxtzUGnAAvMia/qdgb3JJVY/RKd3ZVZfQHH0iYlBSW1rjNdLRWapGnjxPS2iCqe3p5HEBFIzL5A/j2OejP08c0ZCRZ4pxMrIJwrYcXbmMiOS36s/fwSDvqvjATIte3j8cBKoe8NkSgA8AU8mdHvqBr23s9v73UcMRCPDzhwD6SEsIYMP4LSMnrTRjDFVF9R6VWrv0toph18iiz5UDJrsctEkrRFotzyZ9VWPtuq39d2LTCBGsgXzsZIsd0wpIDnL82Xcnkd6X8ml6TEmDvVIvZ492Oxgnqq+JFRlbE3E8d7qBiIjXDZvxA6VM4dweUtA1wVW7npMUQhMgL85jkKubEgXyp9eRGZgWWyu5sZa1b9ZCX0V7AGKYADGRxKdUUi74bDPLXJmuQyI1f2XlzA/31Nml+NmRC7Qn/qEwP3R/riFoE8afg6xNefbq8OYyLZbD/bcENYPgbWvDGGroZZ1VYLsAUP03mnGrCUfxdkS7adh836ObeKt+MnCEuGzbcU3gyfzJlOpxOnIGyerlxZtDFiVXoRmU6kXXvWaqUGdrN2hvkPCJgT5Rwf7SaMPk/T39zaycf5U/TvZwT/eQM1mepLa4uSl2Bq2+GrW0HMIidhgeQ+ThYLe/Ct1ewx0k3E79PSO0q1TYz9FXKvSLqh7e1+IaYM0KLAwOZpDW6vVWGYJayuP5HA5u6ymfCozzvPRjiw7N1r3oXEzHd25wnlQzTxXmQnMDq/1KP/tuTGPS4hXSAE5tpAVt4R9HlorAOHkLXHJ+fhjSFOmqvt3HB8ge+vFef5zIed+onDh+BhtTIA+4T2miluPkSlYpz0kQjUzoCHdpMEfcdhul3rVINMSrSVQQOgnh78EscaUEFjPm/Ag2QfdzVAregfgYeXl5EGxZC+XPJZykjCH5Hg6wfRnpLQpPtp5KUeG5cM3yGvHihMMtLX6l7T5+XRIgO6ZgVddbAjxDozwZKBNW3qtlh+jEuk7EskaMkhuaO8MwWmCtw1m50QDJKPjdhdm8E6+FRDU23Vp0Fv6mR+FkuK1oLcVeknEYeFQWaksmgwP9cFDCo9VHfAL0IJxiFHffcGU6n2ORJTSIyeQuGKDB4zHCUV6652ETHdFXGexUqsFPrOTR3CQc7+UFiRUiM9+gm2nya4V6F5g6fMmW7aIDeGQQWFQgFku+j5HGysyI13tqABGtfjw3X/K6g1jVFz7Axd8XJXv8gN++9+iz3fYM019NIDRs05/cwpJj4elkrleuSAfKoUmUKAjQzKSAibT2h0lGwxQEb+A7ckuXKiQ3hkQ9y4+f2bQwDTbtXA9DPZuKYB3k57+rZvZJJdf0bdeslgSiqc7p1flPOjUu9SxPQm3u9Qe+DzJKfPSMfFIWcZYmKEMC91a1HYB3WlSbJNo8exOERiJGM/SqW5Hwp/tRUV2JBR2tEwRwXwoRFr3vbDvOTnE7cJjwVqoE3Mu07CvMvEBdyVu3FY2iXqPXPQRdxYej7sFOWmpzbr5ZmnHGIN00laFvWIVk4ucnW5CAD7cQ2XKip2P9BpTWfuYIPih4s4t23dp3Bc0RNPoFfX2+2JhAIXkBH4NoOPFaxl5EFsk8tEhNeqAhyNY9pKSz9gaI0P7kDRXzNpiW4EKcA0LIcE56PzYxTwuoO3Q558i962IzGsTonT9yk0dhBDdNAnXwtky+O75bMV0ezp0VIC/qORiWvE8cm1giXROnQZSnUj2lzsU8c76tJWsojrvCgEhSlSIbh15ZRqOdnYrCEw7EYpitsWMePZXzydknIForT5w1vCxn2K4yTA9x1KqMgEaLUmon1EtPPS8oxJj/C3JLeuR76hKQDYL5DDYbBpMwH17d75WZ+6FkYy70xI/wonbYjL3vYVb1kJ24PL9sBUf3dYOyYSQ7yFA/MQrjr5RKxC/uFSP33O+vBJJ5LHw58M8zz/idzkNUog144SMCyeqH8BZQVlRFqXAW5hKKgYLrZiHFLDCjUJm0D+cpSOoBPnod+h8bNQ4PbaNFKppdicVesO9fc7ZSzUrENEssDuK4uykevC1gPCbAC3sDHO/HpRdulebGHlVBamJurAVF3z+foESVE/51QQa9wegYRpXk3XvRyFjpY/di35oWW0Y1W2NfIPnwrlOUpDhvrMw4oPjJ6oe2v2qca7ZgteMUwkMJQf3RK0r/GlSsIRlLs8Gy60JIc3nf/IB+4AWUWSXmwQWbf9Pl3sa8bLFDAMWoOMgD08393UiJw6Y91Cp3XXmwC7zS+4EFiUnOnkAhqdtnlOOlGOPnvU8iOVxKPRTyhwX65zSZy9h/s8A3xmRYoA3llDkkF8TzNV4goQEWBgtxwz+ZuBrfpchVfgc+ZpEjI/igAstTUlw1Nu2FDVJTP2t97gt41XoPdwiMFrHCmykJ+a1arWgoXV8i4MFqITu8CQKb+ytn9tOpFi1WoEowU06B3OT7a/KvzxdXgc8P0fdj3ejX/F/ZzxHeErpu3MS9c+2R3LskYpFQl59cC+reOB9AmE5d0TzvuReiufmXdKy+PD8qiVWv4aI5d0L7v1bXbcjUHoY7/XMBMlnInS3fGEfv1AWJwZTeA5sW5aDaJHp7ETfqqoHEiXTZNvzo/qqRjBZr4TagOlCTa+gJFaHmWO0cxakLd2hjGBvdekUoP9F3pGza3hIZH7uxQN0yc1ftMhuMCCBU5Dlos2GeO/iR3v05ZfMUPa/rGA7REDt14nB0LVyPJce4YY1XhLMaWuJFD4vSDKhyx14Iy0Bwr3+SYPmnGDaF3YLYIhmSYjpDBfVFCP1VmEf439q23ujkgcY4uFO7u+qxheaUU3abmQNQWWlV+X1K3kOjS4mRyWHDj5YoazNIus1S30cjTzPdTQ96TAgaWb0zquMixkUiKj//W7QlTufoLLAHDKVdCCFMfBKby1/V2R+wyLUtnih0Q8nEug7mPeFd8NnvKmiRF5EyvKct329KxSQg7SdcO8pja4STbK04DoXyUjs8/pAAQK0yLJ6E70gPCwmPzJyzmpNHVUVu7K1QYe7XYb8trqtzA48FQnbvaUN6qZO71uALtmutyXnoRQTf/dhmf8iskrgW0NFobCBXun8d4NINwj9b+wPAN22f8bXl54SBQQcpSvkxp8DVAP+QqjJc39vbdLLDu2ox3EYumDBsOvW1qODtneHznE2Ld5eoBzdYQZYcgRTHqzS7juOxBxDTMexqUjGOUTkQ8k3Xuigs6hHgMinzOQp5RuuM4gSvdF8p9dBZOUx/p1wtgdxRPctEgY0/04Q2drW/q4rWOaqU2NP9cRQzlTYWSX8Pj/vX+2YE1pZuyL6qNYIedogDJifDbN9jO1JVM8Kyd8guGW0Lg2/tf5DHc87rp0d+ZPOHEiS/Xij8xKoAo5AQA3xU0IDwCjsHBbHTAHzwr2EDkepuoo46VJXt2Yfyj9Oa1e50Z7Q/QikdrW3+4JDOgf6zwOrncn/a+tsm4Sa4oYSntGgqS6CdET0kbPQus9uXSzclQNf4ZoFgQr+Y7bkcaEVR/bYhMw464EYFZpKVSuEbsnILFqML27e4hWWWqcium1PlYBDZ5fKnWfYdnDJwsgOZAD/FAe4goPEW5X11ddOKeA3OnT6g0uKzfULMkTK/SSuCEHTJWe2FBatZxvfsO5sR+/nbgdOoy73bzRPMtUe/60/H5IKKtucvNKfcxxQCZptAnE6P99omkfS5TnZiOgarJVjtDm132CFNaXnOY7W2OylgaRF9VZqepqr1LlYThXVH7PaY8NbmHmqGcnUowbtsLT6PKJhOaC9jl/KW0TlBcj0MzHSy4X6Vhcg8eWnNrKDdvesUl7XFh691Y6gI7poyCevhpWGUvmQtX/EaoV42vTICKmWpKclRTtZqqOl5YBrkLqneItfBj6ICGeh4UuN7Gs/RuJuQJiwAhtUdCwcNBI+7uIgG2yfwSteCEQMa3ACr6smgtzMNvUAS4ThYMZC1gxQRflkjRUlLZLkntuGvRNtwQrdKCmZ5xkzw9tzO/Ps5fBspYaSiXSLgjFiyitpoUev+pAjrOmmXfC/0KeDyH8I2WnqmN3cSm+nWE+0XESNTHoiJPvIwgjn/XJ2c1BGHhSeNriYAIckHJbP7W1WpoDNqytZiuAoAgQ0YGt576dZ+m+Ww25ZeDMixbH/+j7dbiOIQ/FriHm2R31oatnSTHCmyweYx4eX2CAmBVTVE/AbsU8XkL5BpaStXIJ+zk8Yd0S8BKNmoc33ss0cfB/YfUC3lL5whomBEKnrB7oBcwWLSMsUq0Pl1zmunwHCi25QQJLj5ZRZLWjodRCXc73ZbZ4S5iT86vV4zzRPv08RYLFo6NYbpYPgzbZhZBRCYyR8vcwSSTZwzs6F07RnoorB5+ZXw8hUqb2EeMkKwxK7IoUnyHxIx73jJIUS+te0kIwn0YmFIUCMLa8roRL5py+yA6oqATZyd6Vmo1B6dzWLuzhdkjpl5evHgxNu3vDViNoR9wwLJtLVbtGGY73uz2Pe2MbrkEl2xhO2TL1YfUf2XNfyg4Op+oyF5rxlTyYpcQ4m1UaPamn0J2VJaar1fEcG0FU1UJZkxS6HbstkMDX4eWpnJxXdrE6Bq1ovRqDAO3ggZganRHl8EK2bZZh1sT1QRcPKldYcvNIYiiDrLT2997CUJejUGVKu7kpdBfv5PCofPXaSOR8qv1Kcn+mgdkrsFkwD6RxFJsWOviwnZhDI9gmbbFaBiZbAo79+uiZtOFWVHCh9zXQ/uThRAdVH/FwqVcr9LQWqrc5VeAFr5D2W2eZQng0w/iv1WIfalux3KnXfaEm9XzkKBpF8Xmu4bRP4auQ8a47DPS+2e45vOMTQIpG4j6juFQkm+htrVEkfxGf7UYQ/D6t00FvNZubmqXOMP3k928mxrWIgbRIrtN3bKRmxrbPbOA9HQ9kd/07TwSihmllZnvS8HtVthBSiY6pZVs3S+1BXZHgZGrqfMRxVo7u5FeoT25QmHHB79LM7YHq9OV4YZgepTbeatj2wwGS5IzCeE+HmzeF1rBeiisQghVo4I72tNwvR0VwT0ZqTUz5/lAXYYImCpKnET1Y2XlqC4O9eHu9C0PgGsTF6kT1x8XZbCPjKeymVRESa1Tk9LiiJFkoXZiRt97ckg6mfTw7j5fR3gBuRQWO1VteHVrF+ZnQmU6/YMhOUEZPrQ4Pwl1oMlzMQsG/4WVf8L4CDfYhsCTZDEGA/CRE2KBlL0EzLrnyWAQ5SZ66wLGNvuybWGZHXKeiyp5kWP9FgJ/06S0WSIYWUF6RMwBqFqpA/6Fd+664CNjkXovRmRrpK2JVxrEzrDgSPYosNYEbtYe/MfCcFGOYNqicm+wjtgtH8qPkeTmx0KNJWdbHTfENWQQ2UoaZlIS8q7D3CzqLWq+qWpMC/4FwnW4LEdUcBQg7y8eUaSHb35qJjPyKcJEIKbmsEYc1V9+Jjq2//UiK6KE38LT5tY09irTD4Hqh/hrsoszbdJ7Rht57dfNDu1kTsn/RYoVMZ4vbfYnsnisz631fjx5RLA0N25a/PNG3JYLPPaXrC/xIXBtzQ2jOBKTiQyW3EHNFmroD1py2VfC1pLrgzrm8VTjqsUAdG6ewIlwM9FbtQorjrtAQ1mVkfjcX0UGMbaVLjv6C8ikSTYGkT1yRKCyJwa4awxowc0uVZLc+26zhxm3FDc3SviGG38KpPso45tZSnWY4mSPOasXY8KnsRrkomYkaf7JjuwUnvN9oH5NGOK3qzKc0M/SA1qzhWKs7SDOwzYdG177DPQ3CFR/qW2UxvOmDalLi1uW6UcAnjDkifJN0iLZ/Dla2shN+jqYYYU5GXSKyUoFR4o3piWQ2CyRpsUnjj6HsIiw/6TpuHwt/pSRQgNF8WqDGgCr41XtmQJYPNXdPOiMPms7kNpcitUM6II8/36EA3vWT7x7+rSa5YVFfzKFwHdZajase8qaupYpW7VzPcIOHS4AYqGiID1W+RSB+Iopo5Vn6hI0Wf2kk2E4kMSpcM+pdsVNJvSHXbp6BNYUunnSFQLWrTlW0Yz8k1HP/Xz/IIOaTW7rvkxJ3ccaCtB0YsF0JvM3sif4pQRpi5H1YdOZ8OfPs+6ln4Kp1z9NIrOC0l1K2Le6zuWpJaAfo0289bTmWh0I8Itxw/qLNDlWnrcs8zMBrQNEa+8Wm4YKL8usmlCSCv6rJcV3k8Uk6CSC7BsyCq/G1bEKzDI1+gE2iXNkrhbBiz7TA5jcXa7CIfvtk6pROUTwTiFAKrXKXvF8cbwD5UU1OwnDqrYj30HRUnza2Yr7zNzfnHD4SwSpzPjyfO6UL7JuaDoi/85lBimRdqjjALGOwKacsS1Ex4Fc7LeSVJa3SWQzZniMotWHWYrytgrc/5f2ul+iqGEq/mnPTg0IdjNlP5KSfOpPyFy/kSDocR9q4WkkGPWpDWMM9DSirQkro4SPaavEs3021wmdxaSWLC7oYs6hx4K5dG+pR8LuHaLIWgvPD/6OMie03JJC9SRq5bgd5nYtI4w1G3bC0Px9eQgFgaUdOfU6GKU9dMhOEzrfdil2ntHkvT2JGTDL+zlIEV10G9u8xChBd2OFj5tGcUQjwJ1/lXgLIE50A9KqpyYE4PX9PZ83zCFWWSSZlYhum6C9QayFPi+hX3mEqP/Cxa9t7KccMXrUV9NxyUu/ArNAf7tCzqY684ymmbkLzX8k5VusaZ+P/whn/P15zK3P7Y21Te5khV9VXc13y9WYySIyQib3MPXD3qBY0YxlzYHc62W8qRQ9tuDKZwQSQoERBDbHFjp32RIymDCbHI6G4gxpWNAY0MyfWhWn0s1Jz2goxnxfZSTS59dWwwZCTB9tfNsP71llS1uOl05lZ0Elhl68mXCNqsFQiOcmsblirEs9vvK2/DQG8RTS589ybCskWfmr7RCmv9fcdmjZaG1VP6Fx8cIvOlUzl0XoELrWJaznRUcfeibA/4t2C0sn6IFHO+UArHBSmvs70MlymZYOZvmNdrGpQHP+8gjB4SLxwmjWn+pzF6nOokxNvUWfa7OB2q94tiewKJgbekadePFCuYFCSjN0M1e02CqDLPipdLxQ0mDW90zJrkn/svlO4uM1nrkRDfAa/DyfErp0uN+UjG6n/fTdoRUo+ecVjzED7OGzRoYIorxFXMgGspklXvgr1bc6qw4Q9rbmq7mKObjDHv30pSoOqWuOToCLFocZMJB/V8V7Rxnx/JFzXGxSl716SU8Iw0GH+btCD86HGfDxClcCAS2wDVid+9RYho6rtqaQIt9+S0TL6J748SieBKu9j++aUYIAPbMMJcixPLxuqAnFQd0qkIbO5EtlWDzQ0EfU9lhjEJ7uKBZ4NpjZBU2vzt4p50IBV+JeW8y7G6dSBJgn6GkbjcgYreIikIxIF0LLstUCD11OZ8DBxuoM4d2xKwZTAjNPXnq16iyOeQHnxFLMG8EnxWbgzTliB9kXAX1gpzutr/fucd1X/dThT9/KDXlL0O01+qK3ucGezuX9aPJ2tqOUBBhsekIZ0hWMUNfqeLgtOx9lZWsgmatGsfuvCGEvmS6mDdAgE6Sq9oBZ+8VEadSLtgkRICApjHo42FSdalN4+e3SOMzr8oMjAEPR6iLqlATlceyOfzGuFti9IjlxJKNGK2/yqon5egG4Z6jZSkfJtfedc0JZvRIyxdUTES0oM9VvW2YMCPyZjid6zJl4NKwiMW672ByZ1ZON2kkwdxYaDA7OZY8HJ+/vSyWjmu4Vf8yL1Vak6ehwpn19O1HmU/5cGYTijPtDPNaPyfYRmsj+FuNNAn2YL/GKbK85hviOM0EiHeoepfVlbuDJbBK3RhVh6IUyHWKFMwflXB7LluMYHHqDKFUQJmD2hsqss2yxFhCmBGo9o6FAls18LiFHnptz2XE7QwQi3s8Q+q+yrjsM2DbYmpPU8bBINX7+hdMIbjLSDdYzCaG4sf41veizA5jKuX6CrzOlFhilSmlQ54vpyToD1AiMy2NLpY4PYHYXtggi+0W932HWDYKg4ZAlMnxwktEQCvWiRnmTbkRz4OBm1eHVev0WV5qx8XBItch/fy7zymu2kT5WD7fgoC1fGAP78uYTe6S4ZBgj4JNIMoxk9wkz/YbgnStD4fuvpap0QvIQp0Qx2Y3olXa479jMFSTYOAL5ohaQ+aTvn448jl+t570sgzNx28pKow98A65r7iGzK7Vb1GjCmZkLVHkHMa94k0sQ2frKHHiNALD/RkltJai1HYa6RIsIFEg7etnKXgxJHphs7EAe7MJvaHzucnAxbHGdYrg+mcb2IXjm1UbdbUpgxaDQV+q/Idkiy5e79jM9opNxeHX8w+l0zJwgXt+wgsBlMdrq4ggfgiCbI//O09fmTJNhMW8d0dCS28GXc5Q2Fzrn23yFc4Yj3OKCe9wCoLQjA7Z2VmegC0XQyl/sWaj7nSfA6AKYxI/xhrBaAOppjtYkYt9k3DSoc2iiTBAZVR/kkZ3UgoZbcorBWnb/6wII6j1T44wA+mrA5O/5a0I2jmiIE34hfJJwkCBBMqUyfvJlkWpr+eeeLsHYx4aABlOsq3t0MJGE7qZypIrMMdbdQLGyiopIho/mAiyuvFDBiyNfErxSEwsSQcBy0PgcAfOSWy4RUULr0vkDLIsLahJq7DKuXtK82zRriSyBCraACKkjabUBSKWtX3GBbqUeHjX+bNob5WZpOqN2TkFWBK2wDR5W5hkREoFBtwJnMs9DCQ7ljZivS6Ku4r8fag5uSEjFQSY48aRX+OX9lTO/kdp3j0FKc9F9d7my+50PadA/+LJ8RoxgXtXoFQRY+v6/CURU4QcqdEkipaixTl4GvPImMHbLvn8IWukaPY5OmDIKtze57Sy5wMwFrLRh2YIFQF7heqYdkuXpr3f/wS0o6GlXTs5fm8S00sx9oqNzMoEPX0WJ+D/dNYIj7ndGA+Lj0QOLScky6cr7RaMsU4nTFNPm1iMUwIhS3SeWsR5IxhvvLiiiGImy4HDvtjr5247LJjb/TAVQ9OIUeB9K+Z+bu/T7z2KSW4UkN4dfgFvO6Niv1QsgN1R+Ez8Xbg4UhRJFlHlSFosPri/BOdUmOJDJ2vfx2lO0jHrTrfrczA9WFLnoOmtZdJTdAhSu8bRSVhD5qIi1k3WOcloSQNJmiY+9wF1Zizz3sKvzaahr4x/C7jtjDUWjkHpmJO795KaEcZ4rZmlP1FhHUwcHtUWh8llaSmY38y4ALkGedgKZBNEzsCRmeowIXPfBETaCBtsssZUl14yMcY0qTFSIUtp9z4vqo4e0Dg4tn4VK3Se09och9GgGlhFujRLc3wB4T4mmTpb3Cth3isWNevhawHdEXbY96GKoyTC1WlqmSxFARC2H+AADd4rvBVLaENx/YnXEe4YhtyoAkFVrcZE6F/eDlBw2sf8Ae58e7CnwwLFm65J/WQXPvTdgBPj4dxkSqtqJf9Utm+6hd1t2kRf8k/d60VORVCaKhyl7ozN5N/Y3dIpRzCX3TsRC9+WcMzoTb14WOjLI3ifxMxQAKHphPT/mFbJPKHMoSTfbEt84hdEctPLBxViCYAg+V5Eo/+h0ljtQNUJA/dtkr5tSB2563RP+g0kgUP4CDBl1nRcQyUunx0Jay/a2kXeS8WhGh5EKB6+e33VpLqwCgh7aIv0EMyvVU2ftPPBTP+dYS1wL2cIytBDOUYZdrx79PnqIN3K2e2EOZdFNu9vVQEFPTSXPeIjXmndl4jk4G0o/kgdtZYs5aC9Y+aJnPaZ9u2raB9ul1ekKvHKpWhfmDxY1O/GzdU5xGb7e7NDbNBQKMFPQUOMAGwjbCdBxB7vs0yT1P9sOfyxNJtJON2noVLs/Dvhbitx5xUVkpa6WuVSTD39Yp029AsRdj60Q7ZX3BTQeT8399lAr3AgmNZKo6D3HFo7D4KvBEbF6KkM1M/C6PH4I8OXU399o1nux53ojt2SbYJbXYokf+JXTOMhewAwYUnnQJ8ZdtQ8dbbQRADv5SCoFQE+GgM37MaD4VxUg==
Variant 5
DifficultyLevel
559
Question
Blaxland and Lawson hiked over the mountains taking different routes.
Lawson hiked 2 times as many kilometres as Blaxland less 6.
Let b be the number of kilometres Blaxland hikes.
Which expression correctly shows the number of kilometres Lawson hiked?
Worked Solution
(2×b) − 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blaxland and Lawson hiked over the mountains taking different routes.
Lawson hiked 2 times as many kilometres as Blaxland less 6.
Let $\large b$ be the number of kilometres Blaxland hikes.
Which expression correctly shows the number of kilometres Lawson hiked?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 6+(2×b) |
x | |
x | 2−(b ÷ 6) |
✓ | (2×b) − 6 |