Algebra, NAPX-H4-NC28
Question
Jen drew the line y = 5 − x on a grid.
She then drew y = x − 1 on the same grid.
What are the coordinates of the intersection point of these two lines?
Worked Solution
Strategy 1
Draw the graphs and estimate intersection.
Strategy 2
|
|
x − 1 |
= 5−x |
2x |
= 6 |
x |
= 3 |
y |
= 2 |
U2FsdGVkX1+c+FieP2+b+T5KzgOakJ17GzpH+YZ01n49SYFiMvvBG47zDqAiWM86KaNgK3ur9TQqbPz2fiAazumVhb5F+YKx6BCpsKkuTBOCFeu3JxgjY6t2ryda/3lMTXBoaXWVKtufl/4aljQIu/1VrBpFiz0dPFtDzQr5WHvdymEOVyXpcaTdET9iiXu/16BEf8rjEuDMy3cn0pZX18FyiFZF2BbAObHiwwW2ojVN+5bvmuSG4WGY2jaC2/dkw8ItW4sa6V/NYzINzcVZEe0i5LaWi4hQ9ioynwP3aOHuEjgNEGmOz3ZEu50sWKqRzsnFNzJ62JamsoQ0Y39CgLk9Rnss3DF+jvSTjyipjyWjW4uxUklVKVgza/aBFWNWtAF5AAhmlEjVSnGINCc5T9UAJtwZBRJ56490YxHUelFEwKPbYDmlx/4pV9o3lUldE5jJ8FiyeIjhzvEXtp2ymsljCTxzTXv5yXhDWDGRVfdtNgSmsKR2iEaNTcP91Tulh6f9oFVvANnsxgDezuH1Uw1Qd/OOmiaNCVezKrJkYKgyfa2fOCfs4KUWhAQYFiH3OqT1ItaeRKz736dBT8zcr1mets4D3wKyiB34rp6iKKZ9X9vm4aFn6GhLPi++hjIwSoBcEwKCQQ3qncsrXQ0oOvEJQkqWx/kQgv3sOHuLMl3Rpa7Jjg1EZRDDSJ/MlHbW736KAJRgmjTkmZn2KI2FSXW9SY+ilkAVWatGCCApAaKLvBq+muXb4wCN/12fG8Rd50DGw4VulMxVt3CJpEyFtyvM1WoYjQRKfgg4RONHZzxkym5Er2IiAEKETbe1RUZOOBck279E3kABIVFRCU/FiQlDyt2VCZpZPHL1iOJ/ZA+tHkaBNLAgUTkQaeBdHfE9dy36q6i4DB2kVhRSQHybMfILjrIl/pUTTvxPcCiRw7xIvQLM0jibScBK5FuWgNQUhxOM5vGln5JLWHCjBs+WzalMabyqflVcXjT2Zq6wTDG5rmjT80m5xDIQ/SAhlFigxScpBvBmN0NGNzqskiWkC5dP1B9aHD/AtNAhUk6SPY7CIj9G0ZhbFT99xKps5+MNPKvSP9ewFSRBmLmTi9WBDukEjUjXrtmWzPW691y7/jyLYZHvqEHtWNxEagfoU8Xx7/kWUK29b9gucyvDlqHSRGdL3e1oiOE5D8iOaMQPNsKGBGkFOdX2SkLqOLxBrniZruWCjDpEBnEjJbjUVVthcHXF80CfrT3CaPkFskfrIIU4Y8vuniHBQ0uME5u19d4xAbgeNl4cGbTkGuS2ma7LEllAbspFogjykD6S/ZblcZ6OGPYTJ5mvYxcIwUdeuXGZyBVtX9IpCF5iVPpdBKRaGmgtcSU/nT39C+lQD/MLPiGJi1GfrhZs87ZScMgk85BTt7C5SftsE+SunZtHV4/80KE13QCTnDhWlZcHW3yiVXS2U8wy5x2/VMPHu2fw5QazayBmSbw1LIV7SFuWJUyFn5ELmZTuzeUlTmjW368l305W3Lt8lXWQbvAVP1cc8BBeBkDM6TSba31Za+vL3b3IcTK7pRllXmGREQHwmvCPknUdURpA/jmjgyy//mbOaKbPuyJJDSttl4eoR8f+CyJQH/ZqPq9IGha4ObSDMwdEQhaQsDZxgslxe0hArNX4Ic1+clCGqs/Ha6pobwEv0okxgEP79veMOOS3+RMJpKzt9jnq65NefXhS0Eji1JWSomVnajwExjE4oN4JRvlwAa4KxqKPJ/aVlZMqx6LfC2VHz0CkYxdlV/P6BnaQCTTCUTn8cXdYsJmazpgkEvIEidx67htVKaKzEXGoNTnhLR1t5C5Iiml9U68RXtnK7P5Wh0WFVBgX6HKAn/XWdF/27nCk6kds3mfym0HTN/H/Hz1P84keYGSoHN2yGC1jaNuuaaCGf10awgd9JtrDixrAIl+ADB7OXBI8pzHOkZQiedCNmGAAyydM3Pp7zxZ9V0yeawsMAwm6g2B4WDObo2ETgeC/s9rUpIBeJrLYb3Z/5N9Nepky9Hd8oLBKVIjfJHs5TADzkXPQJHJtKdNtYBHE+OPpPS72GfLw4iHyyq9QxrL10XSyYpBrK9F9kNph74LprBrkQDmyksy/ZdmP7rzb1igcYEN+3Lb9cMQIy11CwjVyv8Un6vOR0lAb/oVELRI9eT4Z8IhIATVjJ9bbw5zrbLUT5FbtMxijM+vMBTso+HBuR00vcDe67T2vRsbPK20LTZ99NzRgIswYXGJZsYxzI0a+D4C9vXpPdkSTIh9SaxArbSwuqp4tckOf3lupiJj4P79VzEOCS2heBzLgYKW5uFma0p1Jj2cpEtHq2Vl6MIijGzkobWR0MYmCtkMijPZB6Jrw//onaiIbnEuZlIcUpdDV8erLU7r+oKUCF7Uck1lBjoaWTaCa82fokvkvrbSUUMJ21udXrwhtTnadSEhlqS73ePTl12QgyxZ++IOX1q5+p9z4N73bhstext+pglz7cTqaqJIrMPlJPexS79xvJzbz3CYwgX0pRjEMhS+vkWK5ezbSN7/3H50IXUC3UJocfBvdohe1gS40psH5335bhrQPEexNlGDQPID/2fjV0IH1jJae4Sun24HWtUzZ+kH8gd2Sk+sYykrRbHen7u6Qr0QF1U4bxJiRMItvmkoqtpeKcmvmkfl9pmG0Musb3miL73bsL9Af6Nys8tdVs3wAclXA8/d5WaMSigHGTrOmwc3AJCVGZeh5uBy/bIkentZEhmATAzSWF4N34d2giFp/YkVbTRi5VPwNez9Jjmar/8Y0egbCCja4AJzI2/PZei0XOIQx8bcqF9Bq7i0jvmKnK+jNy7KClCQbOFH3b/PF1WRsKy9Gn692jrQqEDjLOjsGmwTCeXS3vf3mI8ekX0plkT0l2Sat/mJxWv+tgmw6KaXDucld7AKfT+P0xIlvMK1jZjgKF7hpROoAD3u123dFQU5bzPCB87Y+UP/CHUe2XW/kq1X/NXoMC5YztB6zS/F53k9jjt29Z4bBxcz+XTeEUfT4GREP8cHREJiCWd0bkoqDQI7JeOYGottZdmSgGk8Hmx/TIdfS9RyTREbs/OkCorPJjdQNpw/HqJiH5afVLdefjXxT7Jfkp0V+o+d2Xy2PM2Jfvmo47X/IcSsa3OnnvpKg9EVspk/4/pvl9YIWymqo/j0q3C3XlO9/F227jI5GFgYjieR/FqJ/v8nvOjT0LG8uly9fr/lzLqkhUhy0q1DQKUSPHzGxR9ypK2mD6LUz3IWw/JnzVA8e7V6jd7n/hq/MWcO2CPNmFmBsk3ff3w2eqIxEwHaExHTYRWJ9YIMV4qJ188qojF1YnG7Zic6i6XQ1EqalDz8FyvU2h/prciDhYRpPU5uT3fn7JQZiKHYc4R4gaGhrzu7sgEWyhlpzbEAzsek9Jx2J22BlyZwtAMsn399607CfhHP373WSKRu59jEagP97QDa8tUguTsYTzMb0qd5vtViqB1bqyWXkfdSombb4SKdNzxSM2qYI73QJ3wYGL6hcrTIZRCS8UGCFub5enmjq8tcLXtUE1G4O1UT5OmT7rqTJ7OtiOsRuCbzTiuXLMK6snmcNNHXI8rf4jigHVgvnDAAVPDYnI+1wYeFivIPMWvZpPAWXQufwjSyNgLLUamZPQKP7ObYcEnZKmhQjHjxfFSq+m+2RAufcR576EMb2HgNQSP5MSh1D4NQOxly+dkuc6DqzCBxgX9OqA7+rx3C3Slsh7vXvwwPyDhgXDwv9+r/kjAbGNJr3YLIqCyU/qxkVO82TwAG05rpSt41PLrnj+jFV+sjTbZ7hk6k0RCfoV0xuhOT9o8d9NXaiNu1+l9owB4dGBwzXVtdlclvDUthxvW9eK4vGBFqMGJ0+wyugU2edJ2hFlMIlh2u8CfC7QATtlUM6MDJ40meVEYJDrgB7+8oForUtkxbaeDPLn7qpJEpIZqMyT/hbB6XseyL/U+auOlsf2LpCBVL3RjVZLyD2mu3u7Olxg56P1yQ0cWuE6cZEgHIhP1bzVLD/qGzjt2bqMKMergmLVwc9NN+ojdkK08y4IKj+ho11GK4JBQqGoZfetLDDSZiQY5KWw4DGDUt7AjgRKT/6HCzoFqjz9KVmlW0ooWjhU/GslrFOVLYNoae7D9jMo0MvF9iF9A9uMKAwKisiS1HVFD5emC+LDUYK3E9G9LJt8aBwTJR+K8zIn05QTDj5A5YjsrS1mgkT8SqSceCBQWAJ5rcICELu+7/mVByvSIrguAwfmAN6lzny7AAxgFsBCj7H1VlAXuIAJjaDMlcLGW67ymWr/DRR0CGZVIqhVM/5RCbKApZa80Nzg2BRBERsWUUCYTEh3gSmp4NVhSPeRSUWw35xk3D841F4Kani7JnqJ/F5roL62g+7P0t3yNyqksxUr64FdUbQ61F/SxZO5EhneA5pKdeW/B0YaPW+rDaGV4BRVTsfIZDSCKyYWl+u/f2IjfXk8N4i/+cIHMoQ9F5fyCQZ9yUwGCHTXludd9m7240AqxlJuOC5inCkt0tvl7aQn5Ce96FUYW3JDntvBg87S8u4pyt72rx15r4lkGITwWMyKJziLJtuUg3L7M9zVrwsrF8yPy+xu8l0l3dNT88UENFHZIGuMEdAYhs8b+aVSfdfLAHk/3dIvrSsEeqVUGrUaD1wqwFzeubxmYw7hZL9HhgrvpEy7Z6nvDB4lVvxNE7dGGKmRYnJlKsBs6b+mj29ZRjOlLRAqHMfAXgmLxb70ItkJYne09pDDHJbY59iEQuyuZBCCnH6mGDvDSDLrPr6ncsjQcyS01Jj5rYywu8dKFdVGSdbm1oV4SnMXQL8GQvFpMm7Ld8MPddIEOa4RNDmO3W0m5/Bq7PEMcDO/fHJFPJXOySMBDJaIk+lhiu8eZPU+UsAMXXeuNcLEpsxjPhHkWQMP7ZTtSa+aP3sDy7FxR8no8Fc+umgNdx5CUSRaxeY+efgtcpfHSusLwrG2Vkwb27pS3VoVwcE7Z6Q48bUc5aGJlsGi8JPozyO7Y8SVlbBVRJspPL6gQXlCTZVzzJCIMDHeqMYg0XQn0DQQPoDF5rIkYTy5cmSPh3JlvDeF6nIh2kGI+/bUBUMYI6L2fvTAgfK0IOQc5L+rkKpdWbBcdDHupnjOkU/TlXGv8BI8qzu9AXd2ABKxI7eXIdexTsFsbxQFYljHRlm6fPZSa7WjYLFnooX5cVW/nrZvj7oD4TAVNpsNs6mvO1zjdos6exbhBSiauarXpOO7AgOcd8nrQqQUO12bjzWduGE28e6heVawTekHUv6uS3Z0hl9US6PPkmvzS2x6XlKaxCddf+Exx+QoLj+rQh/5ihAFNoN2A86uibm7u5euqONU85K9Utrw2um/rgIpLQnw56Nq2v/upCob2oKldPhxUHco4R4BsMrVIBwTTZnsopj2AjbV8deh2k7vPPpDCkmtH8xDAfSWULA/vL7UFPQfZUyyH+7JRi+n57UiargWGpyi6thtDDI/WdwexTRNg+rIHp1RDnvuGPOrieHvkbCMvOdYZstsXtdyoXfKCzTr+S6NrbUzuQ4goKVxBxRpg5xYtx0uHUYWttzRt8qonMGy1ypBLag7JE1/bc06erKz5DvDpc0nOFjJiMvlDXQUussnUbh77TE8FDd3/0QwCid71CjfAkxbRQVJ6v3hVoo+/31d9gDbUiUqRvlOuIRpV6CYgiHoliqnr+P1LweHX6vYtmIo+ex9GYfzvpQPCubTjfcS9iiyDFZAk5NCI0hXQs6tnLXr1HlSRt1GRbEcmZ6scQUWYhyAVK+GuRAqR22XJZ3u+iTAUJQ9ROUR1JPdv7rf30XFbqbLbOdaeQDJEU5W4mfIcCpdsi3hGTWCZ2rW7znLUuwfYrcstlVNiqMQ434UezHnGStBf3K2dcBu7/QZyOFGBEb64MDSQ/fzXLmKjdyDEUXFUeKlObkW8DiCqk0jK8pPyqgu2zkD6vXcI3N/bLcnDBu/u0arI7JlJjdv2AoVqcgZLO6nxOBxywAfZmNJCo+5Ju12QXq+pQBBx2gOBeLaEf02oVK7Gm/8AZnIiCHVISgtTtqt1J58kJerzwLDzZx4aKDWJuH6EVJEFQ8ubtSv+wVSBxHsL4ztotTcCys8++WyHSnDnkTV/5Qi/viVsnzid3UxResCj5ldII5DpK2GqaThEySAC3w245nLgb6BpR/g0u83ZJq2jUQggNcrnwZXIPeuD+g5g13tslx383p+ZXs7ij10YTHFPnzOzqlkRGjSkioOT+3Hlk2Qd3rnNpCsx48g091eNDf7QYJjgdJSYWhBcfDU07QlZPwwZRxrHpj+H1Qoq+0rI1SKCQ2+CydkbjWd369MRPWifVL9WplY0pbjeF+M2lJtFxTSjKyE37DI55Aj5iQUHsbwvJ9cA+mEsXJ0cDYpzfXB6GKwfLgHLJsPlOc/r4UE5p2/dhmc24c57evvSV+TorPL/oEPELlxhBFQByHU/vRTOn2KDxaM3OjtkW9NLAr+BN3s69QNcDuP/izJ4DT14ng8X5O92e8A6Bn6J0e+tFgBenhOURtrLtruYoE0Mhiz1wK32mQHW4DVM7y20O95eU3J7SnfYC986NkIQjYmHAUiSPkIl7YDtpDNWNGQR259JySO8gsEtl6gaA95P+LJQJCbWGGmrpJK2jIVYqR6vmAcZFk5ldAjMUvNQ5jl4pCcwV98Lx3+SUWH/vHKbbrUyD1Au6VF7FNIqzsZ+e4VE3AViyStIX42eo8kVf4vM7xEY6IWXPOde/hsQN28/SVfuEcfYFfqKoGOfsnsHQoQpIXhcbjMPHGt3Z4ox7wpFEbZ8AElKngESgDDl6DKrCwAMn5elt37NDh+kkJTQnsOUvnlvQS74JE/G5F/QAzmMOPcKER6NKnlbn8UYqKJAGfvkedQGCbmJZ2CsMIFKVHARc32Ij3xxE8pxNuxpUirWGIkHixq7NrznJ1LOc6r8MtYpf1j7fCM+XcTIVHst4qbukdD4IeEdS1mVL3nHe5Y3crcznQYwPMRVNb0PpJiF1jk2vNRdRHSvvI1zHrqjfDeGLEsbTlGtww7ESrjeTIO4MFCbEiouBJKENsZ79BuZFsBe4Ja6vOTR0HJDX4xxDCF+5SktXEKt7n0SW21ClkqQJ9iBmMa8kMRf+3OH9K5Yk5WkG8uDlBZey2+to5a3g2gTdv9XKSAMoh+iLGF6Yht8VpoPCf+i9Oqq4XU8VlkGsQ37vuPYWcd8Y10dlvXLd6y7sqmEpiFn7J7vBHksgPA6oXcj+3hphdr9ox5SPj5QGZKJ8uvlYKVTSAwxLkp7oDgEh7pf+UcKeSjOoXnIuMVLFyqvGC225FI8Jgms+qZcUXMAY14HYzasdLukYNS9+Y0XBlmqeZtokT2BBmCSTDEHscoMIon6zcjQBn/nplkNMkW/v8z5DQREicsJvl0/qwSPSm39uEn7lsn5pLxWMUIRJajwhZvTUOmwOL17RTG2n4z0NCpmpQ4bIBzXedCk94TqNYRJtWYHtrbTVEjDsN4KGPwDsQcrqHG3MP+5dGAPdUSNOB8+lmYBz3SHueZaDOgI1LuiVtYG7KJFa62mtvVn1pz+4/hkBzWGbeWVdmJ2MI9A/46pQCkZ+HcCQDyWRWYneSabUjR7yg9Yv0cdGsuIEGjuC4JO+f4VwCgsCEc1j0pq/ld7Fow15ojDf1Uz1QDivpnXNzT08OwuZRFbFSLQOUYRpMGU4rLem0eho+JFWzgP2PuJqHRxTMWy1seXvZ8njh3eJEG0Qgj7fdLS/ganPTK7DIP98vuTrIjZuwxQ8Z8SxZO0XuQ7g9giDFd0EF2T93fK/LWF6nfIAIak1USbAdeOlOr9xBbGjZiw+XgjF+cctqgVUF7UDqHd9t9v9RwivTDgvahwBcAm8bWzM/P1lcosO0NG4OXhBKtReLY9vdBj/gCiP/CQKxUORTOm/3Tl3xr7GHbgS1hbZrIaIrKSpXPwUd7gTj1qcXIgbATnidX0tlvKe5PoYrdoHkvenyHxahWtqYgWurcS6YkpOd4lOKngYvLItUT4Ogi7GBISJx8VX+2JHkztu5FvjxJ3Hl3ormQdmCQbrNujPhJcLSvVEGjV5D+35l7/91YAE3x5LOqCz+xSdWuyeC2XPLEZT77ThgR1LA7Z4JnH8QedHZKecBlB4GXbF44AtOFoYWMPbfed4OPaG/Iv/IoiB90akCS+XkOT69uOXeCBmT4+Xr8djKQFMnSVLfPM/Xz9hiJDGGRc0PnHZiISHfsighLddebGMeWGWEMFVSAaPpORuki/fVtY8Opq5YESMfUCzUFTbFnCKlCtIe9rhuZrR7LD9lA/GSMRulgfcmAJ4mWNK/HZ35gmtd9CsBqOjCrXnkEAp2bzA6CD0+9F+J4HJhsJENSAa/f8VtZOOPaO+n8sBw1M/qgF3JQvykS1zFxAEZi+5ZF4gCUUHWbFgEhtQPYFsho1A72o9zybrQEFGSVZjr47cwW9oygcHJkZujzsHIa1zhnb+Tgybivka9NGh0P1ZpbX8eSsu6Rvz9QSO7Vg3rU909vGifDjEoMF8v7FtgcJoTK7uLgReethHpWbvqhlEcUjSDrUpUmifVkyJq6nYJpxTE0q7Bd6wxyXVD30jpx9TV7X5eoBjla/WKe+hw4g+zgnPipMfRrDnv5X3y5V8hMDrlPDe6IC9HlgkNyOt4DousIMDFHFjsI1Ynutuce8rXrskWOURGCUdWYsbgQeP/lJNTMd+yHGv7e0+iQ3qWq4ZsYQgShLmEvDVXAIFm82phHVlZIEUtETGRAlhfK9Sj4Lhg14pRRAODo29AWYvs/P9KqSusJn3ZdAU1Qm0v5aKJ/9Z1zJmRVcTnmq+tfBnyFA+Gt/FMGGr03y8z3aRR2rBqfRB7WybO5HhiIOt55rr8XweEVmBC0dKlN5PEEY2zs4SwRPuIE5mjFd/JeFRMxOJwI/QmHchWaQKnlyjbLsJI/7l9uJgIDF/PIfEacQBoGk74QSlutglNnmBTEXUaoaey8fFfO7sDeiKm+TF0/CZycyluVLaeBK6up6W6qXjnggc8LdAu+nY53nVYNAB1mvGanGY2UVHMHEH1z0NjiqjI/COhGkACoUU9TA2swbIFc/5bQmL7WOhEwfmHZ6ugQSDALB51eU5NTCiUmLLsiLII2KdVgX8SCei+PrY38EZvUzjn/+tz+fi7elUuemGurU218YAv/ljOEkedc0/asltHaURHZ1SYphvj6FuYvxAoVz0x0I7xJ1lzse8A/PRYhhwtqMpVwJZXtYQok47fI1y+yZT4BbKwyAVb70Uao0R8W3iIPhf8Bc1cGgyupWk+ySqqzk7Y0w2kvJqU7IvlBCWfcvdkWxN8ezMdrLHhx4r1TZWz1fxeFA+vFhgOKGIiCClMCxAEFk/f/qjtnoNpK0j1a6XfeWOCu0LNJ0691foLAKbMNV0qb3CAgd6dAdFk6RqiE6sepRUcl6cbQE+fU1AZl4rlAfN8qt98SiUGjmiXzjE85XH79Ph7hWzPKZPgfAWG7RqgrNo8Nnx78Q6X6CGsNJrK+q+3g3HKxfQRC5Vr8Rgt0U35kCC3uyuv8HhUMf6WNLySa9p+3PW9foX8NfExtgdXZtS9duQdI6s1WthlYPIGyjsvlZhc2vWg1DHMtppI/EEUxzxVuJHlEKczGHyqRtGZFkYYuhZ2G1eLhXxTUjnbg5k4ltHLWWscsCnwXtbYTe/a8aVVB0yqgm1CD9Un+jfyQbZjdoGhXPR3A/CekG0/Q4eIqxpU30TeI1dUgea21fURKftMjQfMoo/4aqkml3fsWaL8+pPIpTOZiuV0jtl+A1DIiQ0VNNsr3hrXxcUJeDd1ORt5xz/oV/qS4spjlEKA4VPDYFw6/Px9tQ93KrxRI5qDLXOLRrgEGzsYRn7lIhwtg59Ex2dH+80tXUpyyys2qV0n/+hLuWbwTmf/7whQUOpDkM25IfxJyQvpty5yXi5h/CG9LqzeIy2L7AukFXchAc2WcGpMJd9z43o8TaAGcezE6lSVc+XkFsE8/WkAe32kFKV9puoATPCntorbLhG6DqvpS/BtgNSIRiBDkD4BfnAnYoHygRi4Ig5pKayJW4vj5I7yvBInR8pgle0qtaH30VBC/h18D5oLWhTak+eBeAvKswBZQyLx6yD7eu+6o902ebzB5xXQ9u7nw7WnsMFO9PjScBSIi0ElJSD1Qyfl4QLkSxZ+FF6WvyobI+AATk5JcnkddV31MUnpxy78MwJRa/uiR5fO4as/5ocskP6Uyi/xXa3tBPbTYTofabO67oHfh73U+nKRTE3pCuZjIBel4/ScASVZNZm5PufQoiqF3mIAweyP3Dl1JsmrMBTMdRkgmt9NcuResjwFxkp4TcNZnZ9nTGkqK5gMJYNFHqzhugnqb2l3pXo4wcm8MWUoR9RupIFVQbZ6SFOx/ApP1szur77x9XGO5yRwDXX/e/wa8Ex/g4unI++3OXCvwvLLHEGGBz/UhvGXQrd0oF19gH80KXU4zFC/m5+shpf355rDhYdFUHusA64KYp7bNb//kDMJ0tYj2QnaJW0aOFD+xZcOen0CadqSe0gITmRO1atjGN8YJjiy6MZdASuU7DOv0QABbdjU96MOed9eTS4PeHbeSq1JMT1kGvpJ3yISWzpzoBJw7zAseSa0yRWzCs9Du6pZ0HinHi/zTCGD5adbS781R1roUW2MhcjzQJXM6s8zEisGTtbh18Eip9b5Ibzz22j++7yPLUQ2SNEwodXWpcG2qU40eSZIlF5SHLLnjgLCCiAjPm+htNe8wPo4l5WwZs0L81pnWRbfQ8elM3HVz24P4QHQplnYjpZMuVqk0StNtUpLGzUw3llG6sV3VY+IQzW6mdaf3IdYbKNacrQ67vYAP52mLqruR82VQWKzpRG/VBcxFj+MV+DQyUvaEGRNR6vuSKhnVwqPmMcYQJf8ornLQIkdEdRpZ9lJ7Pn5rM5ENZ3lHC1ks125dHN54/RFZjpJ29Qj4vlEXh4tuEU4vHi7x4HMbAj6zHrJYH4xP+Lg7dVUnJUepWMOilh89BjiyvcVwz578j3K2VPAC5TTCDloUcY2KvoVp66heHmcoAtNGX6r6MsITLYC47mT6aQUgnC1tF1eEp5q428nmxizAbKgJvMwIN7RVklnM0efbMw2NRIeQkcoIhGKZ6768xCCUYBMTxqKftIPfnOzLBtWPJ2qfFM7a4Ztv0cl7SZSNtqZQ7AXmSU2bSVVOa7xEJaPayOSQD7lbueHbuqSWdUMh7GFmrudF9sCVCSloY7xyKSTL+rGxDrsvdkW9NLAeId6IQOjaePlsuPOQIWfB41tOtyQrSCV68LUKLknmhsOUo7s2u7a1LaVm1ZHjxNSl3LUzSNjW/rO4kQd3ldgTJ9mP05s+OwkiwC6qudTkSKRNYMLyLqJuCYhc4FYItA2mFHofn12uY0GBWefrSRiE/mKUmzDWQ0lWcadCXU6vkpumvnu/WNBprYZWCp15ZwxylTrAjofjAMocv5xKMIEzV2M/BQN6L/5v9PmgyyAiWp7N5T6+Z7ZBYUO/N7sIJXPvNYKAAIyZpl0Fb3RLuAgonAXsrkOWtxX5dnyMPl4FjyWdiWN6BzqzPhiXZfshptsN7hIcBqAqMLQOc8ta9G1tnJONEeGIJ64Y0VplmAaZ8fYM7Skq/LrR0iBoDG367ruhlu8rS2BvW5tUsn4D1zCcvHRp8+ve5dWPffmGyW6TbhvXOfhIMPptsllC7lUH3OvoOqXeJGKydtu9Jzc5adxIl7HKhWoSbrblsyYR1wYrfkldv79Bd3RuqJ8G/42E9jsnuWzgsVWaMww6UdIITm0JWejlUvlwVtaAaVjFOeiatoYioz/n5Y6Fwj5kQGMTMLBJlii/0Apk6Ur6036ex+DSQk9dk/2+wZsyDoatvH1r3cdAm6dx32+BnmZRXZ1Ga2R5lIlYYO0kJU18McSgAHXw5XbkMzXGfuOotvvHVl86T6uIBIkZTuM9XRwVTcuJDmjO0vJ9Pqk
Variant 0
DifficultyLevel
707
Question
Jen drew the line y = 5 − x on a grid.
She then drew y = x − 1 on the same grid.
What are the coordinates of the intersection point of these two lines?
Worked Solution
Strategy 1
Draw the graphs and estimate intersection.
Strategy 2
|
|
x − 1 |
= 5−x |
2x |
= 6 |
x |
= 3 |
y |
= 2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers