50041
Question
PQRS is a parallelogram.
Which of these must be a property of PQRS?
Worked Solution
U2FsdGVkX18oGaPjNw1CPNIA3TAf0UswaCSJe24icID5/9uSRhf1dNJ0M7jb/YGHTn6JRuGJ7rALzq4kF57xDZyWwrWYHGMVGQOttzcwfuwYfR2/Qr7GHlm9KcJDTpfXX57qcYzAcLvPLb8xpBz66hGy/VB0ztZzLAlazw5bAELIyFpti6nYo7uSiHnPMOiWTl3Co4EvbknFvd7uu5whYbrsO3Tb9Yo18Xhq5934gc7wPtE5XMDm9/U4cp9L1oIX/t+kM5RFL9WPCFae0XtaciCb8yKiUXow+/S0XgpC1i9jZ1uH2spyPULKqbGeAfoL4t3ewwcB6tEgaWy9ZDoNNM+PbQvy+IuIiA7s8DZ3IDOry2Mb9hwb7gYZucZIGF1jUuFZKpfkTkEGTeSrVlCAmYCK+fBTBwtWQBICD2seBMPXZJkSUqyHoEOnE6zCDUd/EHyUMAMugYRXQI8wfknsrdRPudbzIv4LkTM/YveoAfVQe1IUjSRair4oeH0kctkkEPy3NyGLxMoe5CdbjOJXoWgF/gfQGutXL5DG68Mu6PaEuvZ5cmsK/iWu+TAHy+ylHKU61CDBTrumYnZc6cRECJCRalNJCdzBG7FhdRFBw1DKIGR/WT1KNOBPoNpvTNrs2CMZcZCKulCkf/BA8YK4HtxbOZIcv8JUfmSaWDeRhG1V47zGR2vppuEScJ2Qm9Ksp9DjL0fZCemX/N6Uit8+H458hoYTJ+35iYveHUwaOCexjsP88vznIX7xIcH+mmKKBcNcBQ1sd2UxNtaKJWIq+Ndvg1Gd7z1xkFQkRiaoABcT1vI5yfr8Pg0UZt7QqSr/PephYjb7qrWhgLQKgWfwxbiXpOSQNyOxO8oV/X+l0oEXkvjuwqY+i5mG04rKYebP8kORtA25x70fCVlXou/DRuTN4CZMgc9BkYDOQveJRrbPJX6V90/Z0ObcDJpFHWb7ubW7YWCD1/AJH8Pq1h5b7Gb9Tfx3zVlDNpk+z4tKChYjakKY/oBjUNmTr9eqTkzLjfxRUTE2bLMNEPITyrEzJ6ZqlMi3DxqMr7qNMAnTxwYTl7ZJkL6roycu3669EIqRaKbsz9XDIiplXRBTYpcXTSmW1Rf6pvgN8AmpgY0dLUzu+ElL0vDR4GX81YdVCT0N1zQbuBtf0rzl1oZvdWVUuGpuoOyn3i5giQBc4V5GHSe3+VKZNmT5F5GRuPjbwjgQXEPDQZzrSBCTj5lHaAg2Miqds6W65JIxOTJaUODEY8otrsXAuALzsMxmwcYV8O5Yvqw1LcMF7IMU1cq4bDE7102BWmc+LNHMcAdxzQK+xIT4mk7YJj4JI5Upt3Vd4y2vk8Ia1C5AyOIAetxJuBbxhlkNweUdKEiF4R2qiHuytnHaUQtYoCuPREReRnDQ+oQW8H2boq8ye/n/QSKbdvQteiS401fo7glpCyco7K3JTzstDjcpKijMq0Id2IeOpaGasW93ZtuICHpJf0E3WFUGyCLCBMbx9NTr0WDKiNcnOieqHU8uQFw1Lzt7ijuyDMtnQyBzNdHsshEyHCkJC62Izvv/TmMQ5+OkihpeJDNs3MCLHFOzja7Zza48Z55M88sC95G7eKH1kIIgpHBiinm5byVowImO4OCbCYJoegXhkHIUHroWf2znnR5phlwX0fe1EPDJ03tFHSG2e4gylcEP4XZMyRTVK96TZC8zCazQNS7XTjTLKdxS8FijL0z9sr6aGeNhshMo3X5Q3NF+1P1YFns7PmWAIKD5Bhf0y1uJw6ccUfDqmU6f/BSBAZni9oxGD7bgm6oOkp28GUajgTqJskuk3SlxtX22ULcpDVajmTASgEkgVPNEmztPVb2ZBlUASpx3WuznH5BjHaQJtJDMqZSllH/nXLcLT86ktysdYQou4Od0SUOp5QVL1T7LlSHUwL5NESUJifKARM7DTG8Abozy6aP2pj0uaC7W9FU1R4tNiwLFR4r+MZyFyEtVP2TAbhTz9PRCNZX8TkrHaPGll9I0Jxpsze1iK9TndJuAH9ruG/IGGlG8fNCbOns9t5ZrJ+/kqKOyMg+QgZk0AzEjKsn1t+cltCNatpTnnEMIhQlekayGBcXjqKcPVShqZqsV2KxjnCorPkDE1kiyKf4yuh/46K/PgMyNAHZUNwEC5aZOEDXWEA2/rY1GORjgKwdRjXTHbl2v5ltJwXws/xsqh4uyi4K2TY9/gRSsLsgmFPgyc/plJK/b0/eNOfxH++cWT51nhCsWQF3w/4ZKVI2HP3MEXLvxBQrlkdHKVyE6Oqk7gd9wyLNEunCc9FJ/fFVcGpvctSjWRXdXGXLgyOGjuVjg07VPc0+jYq+O/zR/90fZYvjgsZYqUqJJ8iNv65zQNiRPkgNnZNX6A2dzYVr9TTuCbMXl1dk/hkdtJJMsJNOsH4eZSHyDLPEbr+W4/xc0zyW8+XbmK9hB9CfyKQ2A7ASbhUMsilDgzp2YN+lly1qVj+l890wjWcU9MLg+PKEEA0sNNlbA50E1BLPx9zJ0IExHtKmYxtb512Cdlni0/Gn6+AZ0949VU9UVKY5R+Rpx0RT5EiAkLmfLJ841Vfk3KUqsrb+2A9feIwxLq64ZDgLH7xZx6pynlfYYq6fPqloG1d8H/msVajkdUV0cKMDsNibZ0Q8Zo8Zkh1yOVg38LhS5tFYyxejrXJ0bBY1GX/CQdqS2dbaMjP9YPf7z504fv2lR3YNMiBkXWvvqSMnCYqlGmF9HIpuSquYAhfWv4GbexBv1Yf7oXusIxcG29/sInFIsIPrtX0QrY+pozI6MDBjPL+UyOXCAFi7+llhLhwh448Wz3zchbvXSxOFEs1SU12kBgmoA4HLbrH/dMQqzpHj1WNAMqFHkKkdMKzbF2OVZs1u7CLo3/2IJzfMjfYqUdCMdW0kgtHaiKrwUNf7coN17gHXbvXgtjPd9hgRMHzRvjvUgNLmdaecjVIA2xcUVEfF9iAAVGT2AP2V0oW3Z2MiKmcTfm/n+vV7fQYVK9oLCcxDiLYY8dex85Bp2h62yK+uvej9Kb3WHyNO7SD3YtJvBDLVJAra5Br3BzCmTDV9kG04kiS6KEW9f2kMqqPTXf6kqy5Pq/5nGXsPzOPcIQawQbZ5zrMS15WDPIb5tAd+VtLz5VReIWy9PfOPeiEJRu8Ugi6A0TNIKV12ve9lC/290BN6Yq01/m/8WB+FzakJsSym8hL8vFwhWULyRAYc0reQnvC0ZJR5e1T2t2WO+jEvfEcFtN1R/Qs2klJXp47BcTJGpXnKG+6kM8F0ckaBmXlWcqjpbHCOhY7cYc85xHmrPqjfy7q0yOV4JOdQyE1qSjHdHlvpoICalwoQJzKfNjdyJZd6nnDjICPSnqo95RpgU3RIj8l5V0wUJ3DyM4wcPOsivCL9WoR68MccRlQ0WDexEjaP/0SLsFPaNbWSXNQ5bx5+e1xf5sY3l59eHWPR2k4ktOtvmr3fFFBV0tk+2dq5Jv9jdFBMN/W+Q013W2eOakSfGvpRoae3pqXPLy6soLg9X1+70qqBi+AkGeEnypCuI4n0ig2hzuBMI7Md5xjp0jdIjzH/eatRwhuGwW+uXxC8TU9BE8LoGx9L07hIZxd63Z7b/M9Eb9rGro2Asf0bywFGBHkPOIRy5e8brbWkwudGfa2U2DIMSyrp0a4gj7UuI+FMK4QQGUr3EOKJj+TZSuEZQSY4sBIMCRBqUdO53s3S9EtFgRjkt3J+Rm7GitVDsS7Hv/B0AYZOTT39Umi8MEQ1tHfcdbFNlAg0u/mrwUsa/K+dy8SNSf2jonHHewcffl7BjLjFpQdL1/R+RWQW4y5tug5hsSodpTeELhDZarVb1laoLL3E/RAXCz3CBqkGS5YR/iepNFEtpz6PRudyUnlsi7dEsd/JkTtAv3KLmNu4D6NSxuL2Fla5/tUPaXEVNcEL2ZD7TwCJn6XCz0aTqEDKxAvfRQAPmlM/3sOlN+WIJge+uct5Gy9hKfKUbbnckwKEr7oNi4roDUOjLk9QWcW09O/vs8hQoH8LXffweevFudd1exfwuty5MkOIpvfVnba8lbv4JJDYhOLSzKLZz4DiwM6wGGil15LoTGvmxMwRuvzNAR6bEWXaRbjWQoS38MHKOZrnK4oKK5mgW9U16WAvYh+In7STg9jfbhgHlBXRhI2ifRZHF4FOalg5VLavUBOBEmJ4daD5LbTKGTPWo8A9oYFgW+1Ad4v3CDvMrN1KHPlaV4VtA9azIS3Igk/urdtRvVf78XqkEwo5j0/1nQIulnVVuA07Aj8IPfnJ2roY2uQZaEpENvncH+WQ2R9TTHO5Jefy2VrXciA2MtRfvC4V2UUeGalUTfGfbbKGJG2X3Kdq6X5OJX9aycogHz/N1n95OqbaL4UGTLvgt4i8eoYgIaru3rHogPoj0bOtd6XyuOJtapIAs4hM9xJjVUjCizXUa3KgcTdcI7+jLZVAEcrOb9nNYz7mBN0vCjvJb/gqpLHG7iv8Hkd3gGk9lJ7NHWZe2XPYsMRf4coWz84Aujd5ZG8mSq8mOQpN4Rc9lyAR1OWPqjRGKc9HWIuxIeLwpYPI/GGCWJh0CFuXLZU7ezkNsAyKHGha8vR1gf++6rGJY9mRcCY2J7V14lp1SJ+/fe3axlKhF/6Tk69EeQyvHxQNxez/NOhJy51d/D8bUIPIT5qNUd3WXdhifQVEL2ab5wGI5nLRnOVwXT3S37Mx0ITyk9edn6HKAAlcLLlRmGLGv2XlrJu/CaJwpsJlrOZm0OASRxsKFiEN87GYmMde9fGP6N254+tB8LTmbT/NGIiFNoZmNISqQGnNOe0XDbG6UvskKMCTScubTV3j9ssYg5tzqFIu+a2MKQbdhZDznre4qpxfgy3r/zoI3TLlwo9X2h6ZNO1Kc0izyCjhOw9+tWoTZ5oOg1CqsemtXJG6dbGm2J/a53I13VFY2AvIha1lGxrmks1zeFrp5mYXej5p8yBFgtNxslflhtMjEr9fyya7ezJxy8bBoSxYXcDq4/lgvU2V677vmTnt9zqEdC7dQeFMcH2hSQRfpgbgxE8Ep6HL0IcoKWatYft+fhbvreU+32dBRRkVGqe/nPy843gaauirI9cR/AAJ1E0Q3/Y/HWrKr9FS4zsuP5lfUDk/ZISXoJSVzIvnCVveh1js8D/VHKvT7SQfMCJkjp9ODMRY7Fm9s/a/9tgza8EySQqFJgrK+S3ybET2OFOqKzOp6GT1XQTdu87EB31rHjgmWBC+6qxyTxzNdypb4M/2hAsRLXNd6gvXYfMoiSY3uoYK+AdMmoYHlSo9GP3W28y0gc93viakapxWT+bgCKUdt0Pq2wpLs8uD8cZpPcoZGZpj2kw9+pPcnNUvdkUTtY5OqllfBJcchD5qJI6E7Y/JSYeOn8Wd1Dkz9e/pz90fW7NKaibnYxFjAIe+B385jJm5qc00UmQnnQp2PrJ1rJqMuoVU9/O/EDh0i9PHEcnfWDIG62I3Uj1wjCdmBhtIVWJ5aNReI29o3U94P1WdoQHqKqA8ErKYbzedQOpZMSo+E+jfqAxc32S1fNZXzyuGKd106UTAZIOuWnLVVk2cGKcOa5d5BlO6+QaNK8bdvCd1oIKVIc2AVkYhfOJwh6tVlVNJEcW1FexV5AHg579IjLoSeVKg1T/Ps+KZ4A0I8OvixBzGWnxmoimT8S4BztrGDkfh+4dGb2SfjTtFDKzrOYnz3egxzUPOVpezukS2I3Lrunhdi8qWDz3NQmFoX1uddEFhYdjqUn+geY95V6xrl6HvzgNAAYh5a0izAJkUSo7c193iutGKu6ao31SKaBXYhPw2x40HuVKS/bsM7FvBVjBbGEZfhdfJnLb4gmw+RaeaQ7MrkexZL8sxrxD11c5PK3JnEHI4ytRg/qOmRsaZoumkV363N/rKD9afczoGw8s0dMiuSi0IYwoCP/tzD3Le/QCnE3qo7qnRQVQhL8e/Xv3h7ycWPtK+7fV/ecw/byKkB8hGT/W9lPIGduk8/ZxBDkLv9LHjeY+ieYURs0DwvNJm9qz8gmIWC29GfDO3zBMANbXXMszhs5i/HGsUY6872GshTHsROre+L43n66ZnZ6F08DLMRBhM5/13lWS33IjiPABTKPt87geqgz/TxTlb5t8tWI6Im2xO9Qf1q1h/qAyX4S35yULxA+kvg9SSeycvAQVJIGSGouFp9er0GswVRJeDXKl9+ZUQnrNw9JOt40VWCW3ZE+Ia60QUJgXxUh5lsr1WoD3oKnuvft8P1rFU33IU+sboGwoZ6kVU2mJvRGlrlx18H2ydt+HELR0ggvMHIVrFh9kb95IJMKDDOywmD1D2zDAMvyu6p3ahpb7k+ivj+Ym6VZl7t3n9+HyXr9lKbybueOXfVNsRvrS0Q9AG/IURCJHGe6B5IFKBHSa84CF9FFIdpsstX1slkswr01QRw7oGY19v/2Sl2iM4qu4Z2fF1Z4pCg56MJPusZSeOejnc4w+iKQVE0U7VzlxBiAb/TEd2y45NrxcwfWmeo+7CFUO8bmDH0BlZiAVZMp/eAPPQ34WEIBvT8V3cMT1isAnhgricxI5C5RR+HH4h0c3+s72PBwp8AfJ04Wk8YwNdGYOlRLHRkpciV69LiJmlG4VocknJ9DihitxIfbhowxaAOJF2orpu4O/kzPJHSUn5vuXLTr4VYlqbBXXV4/NZOrbt9WbMfizLDUjkiBZs5tdpf/Ou3rm47auCQo1wNhiVbL0TKxjox+boznyscgMognTuZYCeL0q2urtztTu2kcjF0mlonOxBoqquaZg5LspFacaENu4R2H0p3mL73D0coL4LXpaQ3jh38xPAk3bXdAKbhdcC295zV/C9a/tHL3hmuE+1mqSldizI69eetMgOEnWtIWzwDkSnTL+3c7PE6Amz+iE5yJvAGap7ZKzdcQR6qDgY+07K0Fzl8Y6Z5O/tqE5bMH9TOXaujBigbpClE9kEla9OfSx96oarR4JS6lOBsTYUiIQyor390/g0D68e/A9tGhV2q9GvtlSl4kLrm6bpvWy6tTbRMJZ+TSJeQkBzjyVMn82NA0cuTcWiQqjNpxdeivOgo3u9zOq3OLswJYZwZ0xrPyrCbnFD3v1hrlLWJ+1NVdDrFB5eiA38M0gHtLCd/MmfVjbq6FebbtVre5Bx8z/B4EzRGPwNudHbruJPUzS0OO4PAqnil7ZK7u87zCl9lDZGnmeqQojvU94aeJq18G+AL/5jiXhlDIZD88E8Ppd2rMNuBZnKaNHznEBWiHhEJL3V4rGh6JVsaaQNW35VES19gM5MttiUi2U7XK2rkneYNpPesMTcX/boFyvRfFcJWtvMoN1buik/aladKJwQ5CB3KA3fl+PpYZefRtmB/vdDYzArn9t1f+yf3+vqYvMdj2Ae7lrlwMcPCtu8oVfKF1Yu0VKzYnJOmcselpQ7o4d+IteqxeiW6NB6qA1t1OB8KR0URd4tUeH9DrqK3RuveT2xvsGNIi3R+ygR4q7hvUuXOhAkilDO7zEljePemFojZXnUWhj7pT935gx1yAsyTCCs9F3+W63KxdV3MQRm3i+D4uzlIXBUIuq5bocZkEG/7jl0MwpAbZICnNkM4l3rVKTBgG1NCJJBH+xesEHjcENAZDDQ+QHsIWJRjfuQhIt58E1ypaTNDdTRASUhfmX1X68gG+8KEgWJEkoGpkkdGaDmZYCtp1FuKvb9a3LigKdQqzQXb/3DOm/JLSsvm7cN642D7qDS0FnA4aWzf2CRv2hmc/Tcexd8KgKqliwiYpSzlNvU+FZ4sgvuj3N+uXKQH6syN+Qsd9IyeIA0TFOOy2mqin5lS7vXsbj6aGaUOeIsdyCJP9TRTKg0kqXu2FeoeXKIVm9vps0jceRWw8tilD53EOXorRsWUGGCkjQYUYEvvcb1YPYUQqHozUIxsago3nzVzzu3Ttt9lbNUOtg5X6grs+qw5xrI19GDX2uN/nRlZdJU4s2AtnTO9w1VAAGMF93Fu9a87KpjbzRbJn0oi73SFsqHmLw0mf6lsd9Z6To/CU4zoyJnf0c+wJuzjk1br4bPSp6MUhnL8orsj49WH80UQ6NhfzfwtWWSr/lgMWjdTS6OCwV8kndquQH710VJ3ZZlJ5a1JXd4msN9tgMB1l7MHNRXtmQyxmWFK1Q9BlMLU8tCzi4X8UYpJzLVAaj1ymc64jaTj/rwUeBNmmEsTPWwahC9nEa9fyQjy81XUl7exjdf5lW9WO6c5jGkB92erAIkMthslH19BndyfBNj9CcIt+eMXxVYwZBxZbYm6rqoev0MsYzRzELS+qyXy4CR22+8upgxQCsZYbtElHMPoBFGNYgqCRbTU0mBpbX2wN3nNS6trhi6mjz5Bi2vI5OsVgbJoj6LKJ0TNiulvowqObx7Ak6jaT1N8rTX/wfsBxzp1LKNqeLym6nNOZz5RNrs2Vi4otQ2wj3Bar1FSk8UeQQ/TNaufKNBaTvmOJkv6Xwp3grxuw82EhsukZ2F4PzzfZiKStM4YA6DnVtLJ5EWpoYjrEEjT4DCvOL06jPq3fCAwltiJkRYrCPqCHuqKMK1CD7pVuaI31aT/Lf1r+JwFkM7R6SJ5VTY9H7tJQtwqj4tJ2XU5sQDAK3TzVJ8BCcCO673SugLvtxuj02f0CwpckZukMs8Jhkv/paZMS8FWORSpQib2qss4rw29fV78S+J2N5b183M/Uf69DEf37c7Vpnk/nIGzwarijgqCklnU5wblrLRrjd5sm++HeegqY0TGB+ACMjNiQ/A2vWHCrbnCyh8O/WTIVgpSgzN3dGBn9KjoafSSZcFZpVqrGnZVUZilKhDuiG+2KVCJVZtcP2MLJubfUpTir5kA/HNIWYKrZdHjy9vczItfZSYIKnVVPud4K54wlAgFgcygPwqk9Du22uPCGlVian1bVEfHNzp/M4kuPjlFBJ4KaBBXDxe5UrfQMf1c2tJlTh5+bHTd+UPgvASIpOad7j6yjI38HcAU0xmsCoM6TZow3woOX2PmjdALJUiptCtjGGB7frFecLka/gUkufONbhIAUOBlIHo33yk/8yQeUKiDRG0mbKlVj7uVKac+KJAaJAZka3JkKw2P3e4bMOQcvHAdHtKvGG3nzIY4a1fnATPiyfGVQmjby5rpf1C5QCdzWwFta/uosSgw3T3inai72flGaCL7WZ8t5grHbLaUvXivsXLLRTEwWDOAv8OKVDg9Vb+TZfOKycYRy5ZiBBZs9Ivtb/Or/LggDBPLOhVjXIOmP0rW4KfQ2965E6Gv4Orrn09Qi+UFRAC04AOO5tTk0RfVFYABh26DZrhECoFy1OAts29pBnSv7CfEprj3Hrpj6pDA8KpZBlDVzUyE0DeGiJS64p70nnunLQkRODDk7hUHO3Q5nLMVge+gkD6tgIGHCXDbKp0ldfq4TFYiHJD1ofwq63AHLYhBh3meHNMYwOiYO2pkpOWKiDChNY0J5CG059eb6GMYcXEfWNNv2mXx8C0xcBo/IZxZCDYs5t9YlcP4FK5En6zRyE9z/4He0SeR6KwNdcWXAcUq580uclUqX1dx1HlWDQ+Rq8Xmaasrq9+OLFqhrZW0OiYBL92Yk4i4Gj+d3rfgvjvCljNbsHXS0GN+FrrsRiXkfVpOXn3eEeKp5g52qYFxyTuyQRjd/Zt0E68+0uxyOiSDjw9k5fZXDXlwQTBJB+YcleP+c/5DJTMcMyoiQzU871XOuDczst2jP9MWPA+cLGgGUtLhOd24xhaa52N1OXtdtLa84BFYSDNgOf3aaQDro5io/xiJ9tUAfbqfQ0lLMs0+B/Qnw8RaX8YOOcQq5ORDFcf28ePE1L28MGit9OPihkbJ3TdwQAMEbjZXwh8PXY7LD784L+kUaLSufQwMONuLs18eO9Tyx6rndunaEafYi61k/8o3g6nfOYgP6/pBzuaTBniyloqFa467p/hDPTRXbHA35quP/xNuw9kJU8byoqM1k8GEDCxdiYxcuK9MS+wICDomB9js8jTw3p9KhyvPwu2qVdm63sQe5K+VnhU3mp5PUNit0dd/T3STdpCFen1UZ5uLWl2bh0worcsABPV6bSxAe/elviLQ1UnfIJPNvGMmgZZzQDzcSyX0EGm2KLH4zdSehcfFEcoDi9SMPgNmmI7lGacxq502fVJGTbkNjrBhHA4BKrqFDBxBinzNMI/Rsu5qdPDcHExMGvhxglyWo+2ycCWBifOdyTr0CViYliXB39rRl25xi/+5WzEZLhw6pawqPy1jkeQa3YUi9jA7KSkvXvsBYw/WDz7lpipHDHXP/1vCVjHW62z6eAbdntbTw9YLnWKDSS19pWz/gUMXgQ/88Ev4fFrIgeqMbtAsEdl5LMDERy9iEEuz8zv5ZB0t1fcCb6EFW77QScQD/+jtZ9M8naRP7RoqDdQPZ+SSmRPqLWbjfRJF6bojwrXpLrKTG1WgQp24uvi5K92Bzo3AjGF/qW13fRqxkPj/AYMD37E02MEEWi+dVyGs7lEJ7XhxbsQomORFsjNleVQUfAQIp4oaGXqYV+xWXyHrVCKOk6MnBxFKZffsmbOWUsT1Kk0hSuQ24QqWdGslRO+/IXt1LKf8GSOVuzyLckd8ElsakDPZjvjEumV881HtIE4PsiS2j6ft9HZaU1+u5vCkeKGdHR5C4fFeZLezG5OEZYcc2rl5EECRdc4Gr8rLaWjwkczriYsmTrAXq1mx3Ajqc3hg9yKO93HfG5mgGvedGTFLn34u33OFfkN97kMQ4VaMwYCR8+FKkqeZoQpm8n6w3x86Su2/s8SmXVoR5Fryx8sfoZ97URDBnkQlmOkx834xbswctkbRTesra4Q2zTeWn0GKUm0Zgx9zTCE=
Variant 0
DifficultyLevel
600
Question
PQRS is a parallelogram.
Which of these must be a property of PQRS?
Worked Solution
Line PS is parallel to line QR.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | Line $PS$ is parallel to line $QR$. |
Answers
Is Correct? | Answer |
x | Line PS is perpendicular to line PQ. |
x | Line PQ is parallel to line PS. |
x | Diagonals PR and SQ are perpendicular. |
✓ | Line PS is parallel to line QR. |