50166
U2FsdGVkX18tSwSiRNjoelHCAEmv3Y7nnW1+xW4z6d0/DrQ1VnjFkmPLx6CRM3KMLUBJ6S9TU6I5oYvZVx0magF3nO8kY3pjJ2uqlEGVON6NecaFUzA+1pZ6z/g5xD43Sw1nLZnzDJ5Nh2/WcSfFGPm96ubwMfQjwC8Opw0VacyQ9eql+tsgOF9OJ3Hb3yNaKMzKgI4V6pnLHZgBO9ndtfB+8x5TW1HBJ1e5n7dBEEGeM12o+CgGoy+FoUt0ekERCoqE05htIJ1c19xFxVp47FjvZ1lUiX2+rxQX6jh+VsBRj7G1PYvNkcVHEsrJ0sxqoyTecSTEXIIDcEs8ii2e1uvS1mCec+q72/zv9ppXD+T9GJx2q52Vj0XILoDqU9kUvxRJuMboCTusBGgafHRVm/fJE/Uuz6azFjLTN5lS0e9G8+bn9K1mgg6vAaaNHwN2ehU0q/g823NbYDbQR8RkLLcIvgO/MjuSxrCiAyrLdkaMWwsRhOafwo8mDlC7x5jI67F68G+LihnLp4laCAJ3TZLc/l/EfEy39lfkIqj9J8CvMePFSc2OG0WTU4OOIEJA6G8MUl05YI5fXvpzTBkJlVObyKWUiOBSmeG60k2X6bknavShww7gemC4DRul0027FyCkJZgv+qTEitBDYDdzdokeX/vWKzGh4jJozAddCBn2TC3xKW+NB4bYZHuJOpT6QDcGb5YZm8gTiXI4h+TV/reP7nohp5UujdqOeEI5h7WyXiJP/L12bM4y8MdsiGL7Kmi5MJ5Pi9dkK4mvLuKRKP7jGwB9G03DFKyNn3npjXY0vuM3WbAQtqQ4fNNnsoMgB195LJab1qKdfTP8cyoP0wQkoaMLQW97KfTqogdyQEH+ZXDlhtC7zzDf/4DywN9qLM/aQ6kf0xii3HTNfELvu7hQQvbdWjPN+zsCX3EyFGMeYFBp1XzsSPa9fIkGy6kQII6UUPVISfmUYn0w1agYOlWPVRpUFY9DbwUxklWigPY9rFLsGz6/gi1X3nrulcP2oUD3Clq//DX4jub+G4Zxbzhe3lZQ73vRketvegsh9As05AVMSkc5Meo5fB4dJQlcdoC5qtSS85FWTU1+017pSRwQp+9ht7TTtKRQ2ITUJOKZtmS8EK/lsPQlnsmG2B3RihQHaY1m5yeDxcDtL6t2vOvcWD0FxoNOKya93XNGin/5G4qMGScaDQDZ9gavjpGOtTYBIP7Y6lp0/ufP5f2xrbpnb1EWQ3W+jIArwmn5HOIwVoFBlFrVm8qfJg+3Ob+aYN28eOO/FQt4S8lJMu96XkkmwfTBq5Phkw8ZawQF1HdKtGN1vGTEScGasuRi9crSPjL5n3uy0v7xMCjht9Jz3r+kBg+X/og2Snj0dZ3lQ+48+7B5PEQ3ln4Davt9pNf1WgpKDQfSBMi+W5zrs5Z7dcahG9BZyF5r4Dw8YwmpVeKQdcKH+4DrLR9U2FppAfQvatdjf0rVdXGuiwJNV2/TLU3joGw8WM6p4weJIs697okTC0gjT8b3q59bbRic/riXJBJ2kND8eT3/zS9NPm6CJ88BkQRB08C5h5A0cjM8f1rHMe2Kl8rF5V2ybigf+VBld3sxPeQJJnaMW+6laSGoVxOFzB9cZSIMzguJ5iyeWxOqxFC+gQ/Ee4tXhyLyKP6HKAbBGzxwD+tuO7PNBJO5DB1OBRvGxVl9P+iNn0OkmbG+LJuajf067FxWkvEKlurQcXYcHlB7z0rdOmh9IMUDOXXZsuNKzr3nv+/4+55YjFxZSSz+mpoLT1B4NVdH3CxdvrgNBlKgFS8FBjHRbMC+NsWoWca01cexGEdrCClG0PM0FT9ZhEJey900y4BNCE5n99y3+VoiNfh30B2t5CixfEi1kxup4tDjyAaesOo9M1YOug0AfpigUWuPthLkRbOx+PzWo9M+GFTpmd1lJWeZJ+2/lZXB+mOylgrTO4qoW2sOZnys1ZDOflcSCsXdJL6qeNCmK/BFWCda3IubsIO3NQkUUeLg61ZZ4/vFV58lKLj94d1Sbz+dE/v2TOhQq5cOgbsJDxlz3siUFm12V9gmqMHEezQjPyWhjSVvZBx5N9KxsIcFDl4ZpTKbTp/8XS8TXQIDpePjybR9BMxNvukJoJdG/IRHsdTXp9x8iwYmq/OfUx5rm0XWE//BPT8hv1hMcCuoVvryo2zTOwTqcmFyzzMZunBB6qiPIS/Pl9MKWUPGw37SiAu4ja267nxp/zwt0s+X516scaMmW8N6aEuRQA8hP+r43OiCFtTKSmW5qv6uYZvfkFGhERsG0uGX78Gj0ONT4D2jL9SU3KpuwHWKUxWJ2XYYsR5e5Jhq9UfWhOxqmSTiQf1ZI9hW9mkDE69iQXXpBHc64rEP8RZWZ6STNnVkNH4r/ViepnDutdYLxdwWtKMbtCffthiqVo6fHKgeC8qB38AgnZDuW1WWC5iEmCcC5HR3fLxoF7ydGsV6Qbau5ymhN1cyQi+m8hPcQFnNML+ry4Ln4F/vCcb7xUXYGX6NOx6zrYYrGji1q7Rsxy5bWN/zAo6NkktkGE6ePzoI4xzQrZZ8xkzHXwy8Wwt/el3o/BZIPO7Mq6IKNU3AE6b1CRB4EACBC2HU/9bz+Xvkoo9yy9EFpVZ1V9NDXlr7OSaT9fQEnComHxwcybB4B2fsAYb93zOxFjJn9e2Jkfwo5cbJM8clOlOhq8mLfRPMtR5Jt+IrqO5g/5PKVYS/xSB0pbFz1eXEmzcwQE802HPrSI/bSbwVTJrzQdhNyHZLfjFG4JS3/NtFOas/YcOCU4kiLgPLPmh2JsPGgMUCvwXAA/l+pOD74Ig4hBE7ytmD6KRzwpgB+iQ74gx1xUIFoFXMnvFymIH2G+cRUrCQg7AhWeCGAP66RQRCnGZNZsdCz48xAqgMBd9nu01IoVH+deilwR9yI1fBnmJ4B5c2EudP0tiYxZPsPdbCe620BtTD9cewUZ0O5ordnT308wpM8M7VczSTFxy9/g7+LMC2vcykXefWqQ4hfFodhO0Xq1bghXyZNoI56kDtMQBZBmJPSvtgBGTRnKV7mLlx32Yc7JCsAKR/OLh2vSLtns9tL6iIeZZUd46SfF1wNgE3RHCuj1D7n4Ny3t6FZCR2fhGV2lqGdAtr0K+wsSViCSgg2f6GRGPQ2DDzVnrGojiNYGg6fpSYlJ+lwqBoG+ryXRKkfSASfCHCqvD0SOloImlUCIz/bkZh3FL+PDsuZIOt9oG03r3urzuabt9ykDfbn6vFRx9zbqiGf83nNDlex1slskKfWoCb+TkPHKPup0khxwwCKFuIviZGztWrSScahBFF6/bV9UONfi6Ru2F7EdOhigDpnTYznSKdryyaznBjdmSQS70UQ223DZ6LV9/WD4JPeQPGFHH0QnR2ZLO8IoZc7RcRF7AO9szRUcr6tBt5XYuGlzvJLRp1juz/FinAKqeMjkmeBj5SLwM681i47n9h/UE2JBx1qxfSWwH7HA6p3aA4ahSIbkFN4DNloc4Ypz0rED1hDJtAe6ijhXM+Pt9jF8ELr80cwd092qpP9v0ioaAYzNZbDAH39Vd71+0g3eV8Bx+FXI/Xg1uNLPZcVL+nkTPgiGpnGQjszErDvm9irMU6b5YMFs4WOXBmxhxQ/cdB+qA6xr1r4O7NT9NFFiVo8vJUBAwjb10VTnkAJU4PcA5hl1ab4qM9vrm8siC6YoWw+UqkfkXZAdH0ecH65gOcGc3wtYlSG06gZUIPCk0nKOmMdRfvP35/r3D0iaJ5z7VzXNHgB6Ol5m2K4AO7ncBbkQfAL8zxdw6bkx1HKgcCVELnD2NkULzr8YD4NDnzp+4yq7qwOguGxW1+2eTNKnzEJhDGGhLl9I5EMS97TdUfcFPExNt6L0X4HHs3+vTdmBU6lxEovhmAhCCb4ZXvQ/BLcrUaAra5xgS0XVJBTOZPeDj79WXBbX/GLaK6wczzXr+gM95gA3PlmLVUnnHCSvqJeB+f01m/b0y+Gdc5EPy6HjiIRMJVKg4ghaMvVP1eav3iyFdAAhsu6R230N+gp+Fu8VysJH+slqdY+mpvgy6Cam2YXEkPGwd04dvdHKgkZOvSlf3+FMaRJV6ZFZqGTospN6fIuHoMz6kI/hJGeP97e2yypq4UT4gKYXEGfI7Mm6yVn0mk5Ai2TZyrE3sPPLo0femGT+n6vrnBz9tkXgVvI54GKUwZKBy4xeVYtpGJLAu/w0MHmIfQAzN6gBfWw+VfRC/ps8ymfUGz7cvVNxBEe0ID/BRTHQm45HUdwxsprF3BPM+683k5BhZGOFac+5lGPJ+/2DTmj3Ez5K9ezkEFwYNd0nz4NSkWszcWuxYpaSeI0g8baGrPKYOb56UigqGhP6n9V31ZCXBHrBYog09TlfO7FpH3bn/mTJOFiIJkqxrRl/muh1Y2DKd/n2WjuVtt+tkbNmfZsn0gXqNAa3vZCm4eWu8aO/lHYzXLOmu6R/dk2f3UC8MlrwQ8G9oDskWl9njKGKjvHKfYXGgGKSt4w/FsLu4BaukAuiachSGRakRU9Nbg4+YoppxFwgj9jBuuTdWXP6OEqDYjjUkHDqeGqGJOtz/5dhFud7nXLJLZEimz53XPue+9cE9lDJ7ZUNYmfzotx0pxOggGTxOCx3ZcixM+ukD8P0D+ZEiQ+/0+cwOWF3066ENa0yJkdsYpLn9pjfgVXLkDZL2ROfqcas8++12Zf1np/j9blumDdQEj1kKkGobGKbdG4uJezZzXjB+Gz/D2UMhs8ATXuc3/KzRhhlNpNMps/RtqTo9Ym21TkKHVbDySLgA8sjsR+feRo3zQPxT9vzgiNaWu/c5B/6ThiucZqpo/pllCHHRPh7qTyfYoppIYwBB6uyAm64csQjwBHgcYVRPNS37AsBSDhd+p4q5JDByD9gKVWyoPi+az6FAj/g0bWIQtyff+5OPdJvxQ8gDgYRBM7cJwJjSOFdX98yY3UYpcWDgxOuBIm2PgeMoebOollicMaz0NDaK0boXBFjjOxGGD6DysyaHoGKhV//0G9ZFGYrKhWG6DoIe98i9xTJI+p/EyrA+gGZhdwYhFyosMChlAf2g8Rz43OBloMDrov/TI7023WNEZJNTzwAvigtC8yDUlaPVrmGI0uK6hzaO6aHzw34r/4S5EfQB2Rq0Yflmm4M677EGqkip4fd4IJT8+0ldTcdEJ5BFnktDhQh+EP8i5QpDjpovTe1LGxc01kq8z+eWPy0MVenAJJacnFikArYMs4prN8yVhZr63FCLGjrGhrWvC0+WNnZhRs4wHUV/RTIVQ22lrqsq8A7PPZkxefn9aywgF+KatrjgxMxAEoAcr6iysDyNssBZ/upDsX5uAnuTjiz5LIeKo6Ppjnew9PejJ6adXGaUlYRtHU7aZHqkhlWUkt6jVNKANOHBuCpLvBExm9mh1YFi2zbdKFGvGgWyWXbhau9WplZV00T8xsufgAr71++eX9WRNzsC7/io+ewSAXGuDv9Q0hBGowhU1o1xBHPxwEFzhcMn7ZN5EV0wE0fOdMz/zEXbE+T1ylZ2FXvEpmEddV2cDxrD8wt9DCGB4Uzu6BaXrFm1ucokCEmZI8byb80/DXcSX+xhi9Bc2jjfLqtcgjJI9pcRmvxN2PHUnPTQbd1/q6K1/fQ20O/UHK25cT3ZoGzYXtsb1tnVU9SUpdBQSgS6rVK4QzPEsb70yMpP/PW5Ip+8HDBJ0lxGe+DOEcG1bTBcb/Qk8/+wRoqI6Xbjsxzh+vnjUF23tn+LGYC/gf6Wi3UeFVdgjtW4mVEaB/5e9KzSTQIRAodyZGe7c8yWYBzfC1Q1tXKnaoEv6K7lPF660VuDGqs2jkvAehVdbeDtibCOMDOcAsi+lU3qlGu4istk84zfUxv9kxEWj45x1sSJLNHxDyRhPS7v0h2J1YVnSfBRnnLIhqJAIDTZrMkAR1TIsDkhuzQS0gAcgcYn46rckO3fBN596M8wj4SHjiD+plw2g3Sg3ngP99kbVQt0GwR4ljB2sOLGhWYFn313IGCWj4QRqzBL1ckhO3Vy18zTOFpaCZAmFtk5X8elrB5BgECCI3sZmD+XCm92XUp44RTKf3ATgYcqglOFq6ZleKBjtO98p3zwg6630jJ/oY8dwJZ41ZbeRbkvKVbXngwKGadol0vgf9TeOFDYc1xV6EMPu6uvx0KhNj5lLQASrzRb+j10PPP1Ok11T6DHA063S7cYS/KjBkdupS+n3fKHIeeYAfOipUt9xrsSvdoFGm3MhmyJPY7ljqsbYtZYrV3PGXGw6Ph0y3IaEQeu2eRrupdAwzlyLZCSmV3M9edho00dzHuaLsjfA4TA4M9AWYC4CBgPJxoZ6pamRSW9bu0nbYeRcLsS3ObGRVQNYUxPC6RQF/502Rj6TpM0XiouHZRjAQyXmVEKEnEqgDuveoWDR407h2sMm8RGelg8RI7HciOEH1nZityZCcxwnBp/pCK/IKn/SHVwZwEBsP4YDibv56QW8RnhxovdU2aO9uKqZ9SiAo8iqpvjx2TB9DEmeGcPQTepq4mGtErCpNZI4q4PFYY11XdL1GHvuG+JrU1+ugopBBfuuwER2alnkpBKrWy9Dkf49WAW4Y7g9lxd+IQKHfdHnCxeIOTchyVw7AQ1h9qoyqQGTdZJaE1BRbZgMrPbGjPOT+/dcmeXUkvg/F0v62+YgIxRIYwRvnRLqG8zVbZ+mrjonHW/rpJ5jBA3owZbTb8VKjh0Bfvr6QZIGvtGTbzVxEJNQmUqQZ+J267vv/BAPjaRiQpv2a7P6XMzx2pvkINtSZ0s68qD+ns7Vrmi7iVOdO8Te02Ueny/galWcEI9c2Es/xPU/hftcR1rXiitzXI/GkZN3CJ00hEN/0YuRbEYlomCLKk97AXhu48GonL7oxRdsYupwYhc+98dsJ8v0wnAm4RbaiOIlhbZUTpCiMpAvmm3PlBj5/XmB6eVP/yeAs1QpXhhj8BqP7f8gBL+mRZkhf5rhRHJ0cvWm3XUsbPTeipHZfAG5n28L4aYIS2YGGuVvCGQh1c/PUBBMDgg7St+VuDBcss/h0gq9RRVc8VfGujOMGemnsHSHkmVjAAZHs9RcSi4aKKmRrAU900BEh/DLD6iVKitzxGAr97og73pZ23x+v/mitxK1Hs2lskc2d/F28RZ1T8QbtkGLdv8A0DSErn5PhWijsuzjgb7gMb9lzZ/SF2UMY9iu6opijs21vyjkNG+X6Vaf/d79DFRvb6pDdyWulOxxvXFE1O1+psSJGZNRO7b+dO3PZ2v51ZEZR1jbIhsqmo3guDGG2Uz201yNYtcFBn637/xOKTw5pvTHeJbYpO3ttBtxAV+djVv7v4oh56tvd2nnDRn4+u5hPgLj++Rfc6n/IxZgI//fapeB4bq3YSRdipTrW4Dgy6YDVl0+4+Ycj5vqMK3Qm1cX+xnzpF/zgPQEzIq7qYUohdXNIflOoSXSra0IMP1r/dwOJVeRBMzcixAfyBEug7PloFaufur9I5uCKI/r1kg8meDxsxa1MuBF1pN+GZLyvvf7HKSCvkJLDgn8i8ISuhRFIUGlnJaEH6YELR3wB3IOP2aAnClQE9x9K7tqu5K6gqT586l8GRJbo9uHWYw1dGdzAa2SpICTOMJbwph2zyn6K7mixJ0wFiw6O3TV3uwBrR3GL5KaDGSPv6w+ROHY54d4Fkt0wu9J6rRFhZS3kY5CbWdsFSjdJBah1XwNvDaMuDOAM1sRrkpRbex+m+G/7WRKHP20RZoB0Ef9F5I7RMuvat4NKA/AxKaFws9xC3N0NGI+t5fmwPFJa502wadsxwTnmLqYgY1HPz40cfD9QpIz6udJ7TwvmynDtgecHQvXEij5ODTLJPVVZbbxUYjDr1Xlq1yJJGCxaVUdAzR3vpi0pzsDvtQAo/0gENN2w4VFB0GLLEyJasCfUPc8GszKcQ8Kz7pSNpguWOwPkwOPy9GlQb1gvi9Q3PEHHzZzqJhQlczJHz3YMwe3WIrne3yf3G5GzayNf6Z/vlKDyZfIoS3R3x/2ROi5RBcuWFYC+JKQ05Yz3EFjaL0O1oyMyQ4MP7JAqMszY3CT0/8qQNybN613CZgH+VwQsNcDBGcNhp46ar2xQrnKLcRn6iBevRTOxCMqVkCkJ7xcn3IhoXaIGegePlIYzNfbAjqdD24RkuoTTeSvqp4XfjEtSKHTIvGfNc4IaEonxFS7fvEPk1ZiQO7DeAlcVSzFImVsqPqZh8AzCtf6w/BhsxU1bHdpVvGqpbXxNg6q1Z/QTFmac1og7AHBlhxdf+ZcPHFXWGR1c5lLftUggbzSHF+cogxzzRK6vL+0n6bpXddSFeT19dbqeX1R6xWcGmXuEx9LgVytck+BsWl1FyLfK354ApAol6cHnLPmELds+5TOuasp5DVcfNbYLcAELvL9GG30PRoUpNBCQleTYGCJwuu6guljuA3Zbc3NRL0q8st9J2ykmG2OIVONCOhTcdY1o8KkHNMmo6FRfzeIhXho9zXFz/BNY9lK56539GHAcTCCLaR0DsTG/wQQ/zyqKzCgQs+8IKLaXsYDI8mwarSEAtj3QBHaptgXCO8+iVR2rNMYBdT4PP5Phd7HbP6u7cMP/slwJCqGLgWdRmS46OcWBaA6cf+QWPxZsmqOT/RZ7cKe0/4CVqCxKxpjW+3Dp5zlIZ0YXff3jFWBvY/ErPxAdqsu67fL8i3DK4SmKsiH++jR/eAE+2WyzAQTSUrKIuArJ1kwdcDwcSo63tfDHnqHQpDm3Gcb1Wl+Jeel5MYwaIaKFWCVyg==
Variant 0
DifficultyLevel
488
Question
Raphael is 2 years younger than 3 times his sister's age.
If s represents his sister's age, which expression represents Raphael's age?
Worked Solution
Let s = sister's age
∴Raphael’s age = 3s − 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Raphael is 2 years younger than 3 times his sister's age.
If $\large s$ represents his sister's age, which expression represents Raphael's age? |
workedSolution | Let $\ \large s$ = sister's age
$\therefore \text{Raphael's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
U2FsdGVkX1+FALCosmdcy+991kq4DF1dDw/lCRAd47btlowMluwdwe8gEb0JSr27k9YScmkY9K/bvLHOuLe/f5gEfYGlbxblQAgSxfW4ctVbHr85NCoblj17xywYxasqZc6W0aKWDgcDJUFKikwrupBXER6xsjMdaFANyIZfZwVNaBpiXY0JC76PO1kx7lVepzAKak+aPs6GI4z+zHbja/V4Bo9UjdNv33+g3fvG3DVmdFGQT6SDfF+NHzAsAWXjF4g3+8Necow0A++EcFs5NIVBdOh81EwJGPKXdjL3Q+Xyff70hY3LeOtMPsdKxvj989+RORxyaiLflsAm07Ax2bgiejbIPmXJ7SRARPDyhBWzcKkK/LLsmqnN4rTlAa9oZqR73TD8Fc6fXw3dQT8qQmpTOKsnL1gJyqnd9JdC2QPqVbpR2HDyyBIhnlYSFQ3tSC34o7N65s8y6AGs47Uq9x1Sxa0wobJKqeRUPh1KcU82wov5cmu+6WeH3RfW9dRiNEznJFKZQ6MFkVTjgPVYV0H30u7rNBqSOtROh/N2qH4+JUKOaOhlSnG0ud4S6TWZ9uVg+WQbFmqNstIcXYjZY8ePqanjWEyP5lVQPMCqsGSA3fFHxZ2sHcjLQudeTB5m2XPgiXibkFuATir4d8tj8GUQ+u3wjtlB8gVJjDTcD7v96VziNahNaIHh0g6WEx4O7rcy3w5RZBhLNbCY32LF8K9EyRJWSek9wRPEWgzTfMnPYUzCe7Po+cLQypinFjst+PlQ0WKwl3nH2Ls9UaPohZ/tOhhZOxHp05moDklWWP1AXmdc1sOm+lVZx6Wy40cDldfEuara1cSy/sfEXPmnmu4ZcWDtoMjdMjWvlf3yAtsvACHSi/6YG7BkNfrVyosD/bFLpo4VbanqbIxHHim2Vs6Aelm4KF+GKVNslS0fT06JI8X7vOqkt9LXWRMqOblCq4MrDT/lu5kEGvNJ+bRbq9p4vyheye8OIkf6rURwAffqa0d8uIcMgDuUqR9z0w8OjkHt1mCkCpwFtYrdZps00YUBO9ehMkK7Zd6EHtY5I0yJCbCGJDKxKIeFGEU/dw96lTDRaBtCeBeJbwv66ggcEpdBFUlZreuzWExxTp2SSuxwzZ2PFJthSY/PAYHFbSX7P4Bnm6HpT2jsk//v76hdQVAzhf22Ofos6CUqj/KVP1syDszhJu2ELmfE63IlfiaVqhDKnKTgBJJEkd26YS05vAEzj0GpfmrUG9Y4auaA0/NOgqKAE9j8dRNTIEQoTklyX3vZNRIZWbeGVchx9IHqSqdXqLLeOYkoOMzUA7TXMzUSOT1rl5xv+93Y5lT3rEVksIAl/Az8E9NpoE9TNzglqyE06lCQSsQi0r09hQ2jg72yhKnfNV/7/AXyt/77WD6czFlsMH7pzh44MFMCXZRQuOB4D/rz04mCL5me7rQJxH+KmT85H37W5Nc2axnh/TSl/3ht882v5ZpI/mkl+WQqCSB2dj/7Hqt69wDNUuM+IetH9YPepG9Trk6Ved65bgjONgVslro0tkCBDTXaWd1jGXgl0/k4C/aePmWIpSh+FxbxcpUy1qXFljQ8pbm4SKHroXRKrD6+muwb2027LSqKxAEP8xkH3xIHDOGZStWl2BE0VNp0C64WsqXoiTYdDZrW7mIqQEuHt/0hAGi0LTNW1JW646rcmariD3PuXe2VHaY/m6WAEkUUA51LWUsd5JCPPG0oxIQECo3n+2yE0CMdF9B+aQBZXClxhQoGHPy76o9T+xAxuruhwZUvkkHtUVL2pR36AD3gjzgRqNkUtv0zmGLR0CeLUZ8oNz9ttYN25Pc0pnCX0f76vA0ksNQIM7lRRYujpDfIuI0Xcy2S8uyHuoK8MX+p2qxX4CFIgn8dwLsXtG/0vXk/mQxrX0/pM4csz/FtM1Ao+XLfzNsHm53XoJgCsKWfSQmatSPIvdDBtPD7d7zwX8LOFPUfNhlG/BhW4KhrdmP4EDnRpdDjiKv9D20d7/KFZ51PMyI44BGvNjbN44vI93Vu5pxBnkMywDf+Ec0gEw5gRLEofIDRKEFgOTdCunPd8PJ3fLPIQQ+aOsinSeAZTf0m+SM0bT//FVcGiStSuuLrqZ7tuNgsBwkxcDPvamKsj5VmuHd/vmbi/J6qZ+gzeaSmaKUjvphbHMD3g2nkfCWs/i9tNEZ0ObRgDNKMw5ykYK4mZ5hIHJoHMgpzvs3Gl6y1sqNf8au80wZL2PSRpfG+amfyDGtVxtz339BkLQ/q2XAZBUVnquhIKh6O0qjNt2PRjQBv8+VTBfUJS0Ha5tWOmzSvlrZy0w8eTmThtwDnS9oAhnRTuCCY+xaVx9eXtWCyum4RvQlnAtLAoxGuhxsAe3uQBtX32SyNgQJr9l1/vaWmKjIY5ZCmWgoxXX4Pp7CRbxQbHb5iTa2zPkWNR5BWIkufBEqr8NH3on6fbV4V6wYorb5PLLmQJUkNlNmh1WimoVn5DEy0qG937qf7G3zQxtYJ42R5WyozqEAmDXE4g21MA0ynJZb+eh27s1YmPJnnFxbaEfwtQfxnA4s+11gBhYHKV4AOigUjAae6k3JKecoOSEoAzTbSs2VCnKi02hd4Q20FcAShphirwCAD5ZD/2qJv0vOvdPdUvSWf2Eu/ZG6wKa1xTUfF7IC+7no5ZyukGUrG2zRUg3r8CbU1fz4a0dJ5lGdT0+T8Y1nBIdNvXTOtBmKHwDlVs5YJaKmpCtXSCoikr1ulYs0c7+zo3w/u6yxHTvMvZ81nqA3VTmBv7XP6NdrzRAUHXpoCctj57vwpPHGn3JAKE5aeaCxFEhpV4i7k73KDH914ghDvB5/sUJNztalUnRzwnrTcaVn+n82+Z6Ce34K6A7QjZn9NxRLPV7PbI+g0S7NAxDIMcP4HoWY6kKROuB9SOTZWjzLZVaJAosJFYxvV13bKhsk7sYC5VjXmyds0JPzgvVLcmh9HNB+RGA8TO34b/7nDmCZAOeCSXp8VwsRdrNaB8TqDxWQECGpxESxoZAVqXBjLwHpnY2JzZmRRFEw+7XmabamPbrFXD0cSkdkbRyL1aU3XyjJ0EBlK5YWrR+VnmFtBny5yZszaylUYF4XNtbCSxsw1zjspkCRtyLMyBNotHRfSRn3bXIYRIMuO1JBXtaCLicQ0UUATirXWDWjhaRIDooZa5n2GNUsi7AqzOw0XyivtqCARhBdp3TI5q8bYd5/P1MaismskVt+g1TYDaOliz3riTRytZqM08IKal+jSl5whOTDdAbGPl/XPiOr/lXhby4rZrVVHHnC6t1MlptDA6s+UUw4TWhmo5K8mn2MCxD2VGlPgS+4CwAwMMD+6jsPySu02FRe06KqepdIBV4rgSIKYaHjVnM8dtSkvtz5XTCRNUaA9Q2B1i9+UZ2l3n1HLB/hNP0q4eNLu+cU9ngj+mG85ofyV17VJNMFyzSzPy59g3C1LX8LxvudEx4kExv1m/NyWuHjyxOXTUPnlO+osjTqpjCF/dcwN9/reEi+6nK4FPp2nVwv6oGioUVc1zE/fqIVabsO9qf6gdlo4zhkUC7amlHrZwtd4QCucd61KvU0zrmQWu4lHze30J/OFwFO6vBRe5lu8be0U8EUJJ7ziqcUSkbX0Y6sndNXwpGXpdbSA6jk1uL7Bu1rjxW8lo8b2PsxP+UuZIeNBO9VIY3/K5vWR9W+1eDmSkTAHG+6nA6aWENPWnEr8BfIqltYZbway53YBSA3dgEHWhLQ7a2zRhIaHiiJNT3N8pfznbZoHMiL6/KlS06iQIl5buocmLtY7LSRAN6bz7jA7LTIkW5OeFRZBrygVVfFm7/wTLo6bo8F1ZxLbA5B6u88jGH22AtGb5GkZMq1kaSRMpd+um9/myTP6h5uPZ3Gt1ymeRmzY2ORPzZVXpEesM/tqB/8ziRdCwp9n9RppIJNEWTVixbwLt/Q1YV4gIqr5C7S6VcYqTB+5Ow2MjwTHCbPMGFR6DXeVTjE0JzVG4ioOad4nXKdQL8Crc3lc5N1QDia5PaWpD6flLQRe4DKT7hKXODFwqmkSqLppH2i8typ06mGXKJWCMheZtEQX69TuJlLBowUw2TFPK9JVl6t3fTK/3dDTmDO+l6e1DGRclgGK446XBWibsJ/Y0yKqm01zMgvbFhFOcTm+91c5dLqZXE8xNDDsT+VpY32NVZmRyw0l9+w9gupdxDc27XN+YR3KbNW1w6OX3l0fmYZCNSgIXcG7MUfF1ikrNzQJrelOAH+t2CNgbqFHTYRGVHvAToSl91aCT4PJZphBZ4PhSqNLvLEJmz/o+VtuZfrAuRCkuLJfSKocz0zeoxvfPoPA7TzecE8oeJcmriG7mbxBPpFeLI683ocLIx/aEGPcQsh/So3oBA0oK2nF4u4QY6fM6ZwiC+SozP0Ieq1sWCCCavxPzWlZUXb0BI+Rt8mBbrUzZdensKleLPDwq2qw9wyugnKxQpvi2N5wRsrQlRFOfL8khgeNkSYb2KrhzlnPNr9KmXvX95DX1BRBg3U5bjI6o+F9Fq4mBSBxFzrSjvo3axKZC0gKkedKBJ716Uq67ifjGe17kCyUXSuhlRuNsMxDSHmDCveIzOyvV2h5mOLiDQaaEejz09kL7v1gFfToSKgUfDgJf5YKQFAr9CuKzVAkJhfO8qnf0+cLE8P2S3rNvskEIDOVpxUADIOvnQzBUA8jWyGGdFTiRBAUgXHgkrKHN3LrRJh5peR+4H5BUPuVlmzCepbMhKlhp4XicAlp5GgZfBnVYkEZXAPPmaJ9gusjeqbm/zEYLy41U7YZIjbUUHeprvyIWtFyI8WF0v81dTteECjgPBoFSGP9T7PkwRNqH8DCOLlMvNdKKHerth/vFTqYhEJDNQOO24aNWfgSgm2Zjd9+FliiohVETS5lwA9mYLKeP5558O1h6qZRZc2ijRZAw7WpTsCjgMN0PkJu/VFutJfB7ikC26MAjpqP5Mlw2suLI8qEK6icvqNAv7E8qfKMTady2U4TWizCUA/w12RFG6C+jN7OWo/4SFTrhViLu8LW3k8ir9crx4osEg5o/tCpQMWZ82NB58dIuayan9LAFHi82VxSW1Yy0towzsWiS6tByOvtG4jYJiRE9Kyt7Q8RXuqXMNVr/1sAneoVoJ8HS6N1k7kmV1UKhd0MnTh1gR8ok7+zlwjbVJoFXV+xT+j+/Lj0n9ByR5YcHhK/yNQwgrjpeUNSaBtn+2kTg4X/z1yxXi7c9NezlSojvT87QLuFd5SZ7HJkpjlFRuMem3Tgz8I6dajeykTq6ck7wcg9ZFbFAa7hiuqvExDPOwXNRUJK+hx/KBJcbOvlRtoz4mYoO7OZgLv6WRkxC8W/FLBTjOWpdFINanGLK2oqq/0dk7VV0gbqOSMztWBKSlryPuZD+P+eo84YGyNevQ/hgeYp7E/AKRKRhcEdpT/YOvzASN1P+063hvk2q2VQtwGjPh2GWvMGeoU5MPYpPkKyrxNGzjbJS0fP5ScZDwdVU+A7IJ6/2CPrXqxuhlkRwLXAmYOw4WfwKDhwWYHA9GrN9NsK1r08DNZeXkhkVuag7cLzSS6qnXjidgb4jVDiisWptg2wr19zZWlDBUkZyPehHujH2DFczZ45cjCwfAWh6rCTXNA0Edfc2UB0FkjGOWlDCnAxhZuiQFkWxBK0dWynNQgCMv0ukOPn35Uhsi/necfEy22OrRcOZLmKW4sYmM4/Jm7jygmAwUFPi3Hv/GmHri1jMtjr4H119awwWEzyE06xAxDRsc1/QIHYKTGZ4sVK1N1lH676JB5+cRLNpaC0aFKvra3uthl4VIfpPPamhTvGYMDVxqfKiX8E3m9V1ShSsIF4C86HjQg9BBoy+jEYvYppIU4oNedmoBGyz5d4nfFESmBx7QAXrp9cGdHbiTk94uduDF7+lI9P/KtIfwGjUlma1spDVH3ncmF87gE67lzzECjGnhTizQiDwzTW/glICd0Uydacl90DW4pobcp2BUJI4rtEquzv1eTi5ZzHoUaVM9/BiWiM6y1Nmfkl8l4tc0oxxmbtU9ZD0GCZEgLGnLzHPW0klskbwXfO8o26wso0s+lTGfHcnNLywClD2G4MCfdZcS/Bc+X0afUnGJ1RyBTBjle6vqIvm5HnxskB6iq7WIdJMqtMcymnr+qDAZ7wr3SgMac44+pZK8YDfww7XUFfMuj2UHYDBcSPo7UhHjsuFEVUjl1D80T/jUdat6Q3J7Of4SLOISeHUoALXebuwUiIYfgmAkss9AepQO96piCJQQvrti/54aYG0CTv6uYKYnqQ48ET9siX+dvfWQ1p7Mv5FfIwaiob8nv+tgh+g/9vRtpJFGLqiHc44Sn6dx/y+vZiGdMxP/IponaQy4iEL7doQ2Q8exXT+STKNnSVVdniXDedqtXtBp+NYxGyq4OOQQ5tYTmF6QgBIdV59zhV/4c9DtyR/IYuTLnSv5xsPCJ+hWk4KT0taVgId+C7BNukTw7kPNe93BlgWzuAFPF83uXaahoEeo7JuTMCTjzlPfubH3qSElIeLIplkKqF9Gamh3Ys+AInWt9SVc/8pdXsAT7283CcEE8wrWAOOu26mJFyES3HfTCasJ78e56gNkzmfv4nO0FHWqkNyb3pZt7mCsbewG2ZHyMmmFZ/Xsqu9FT0uxoRqUqJl2yHD9uUJjukf7Fusok2jUCH2FUR99c9vYB9z72tOIq3qd2kkPjsLek77oa4CXFNv/cjhmf8+8/n0OEHBFysg/WlDa+EfgwFCxz5xhSFvxOFBeVJm09Mzw2SVSpjkrbebV4od7UC3GUhrimQhm94TaMIOE1NDjDXUPw4B0ExBIWfFbewVLdA207pzsm8GanIlwGX+Djfklfv/7XpNFTrGP2Nt92tft5DzyUVlC9ppJzH8gtvRDj3ovEJ3L9fDwpvxtGVla4l6/xuiVXEPX03AU9cf0Do5tuKlR5m7TUv1lJJ50VTuaV3iAT24EdhMnf5oJtpagOCPOQImbx8emTkbCI0YJt7OY87sp7j7tTgIOcGVHaLB5puqBsl2/kAvPbwNuQY8iI2vghipsssLMYVxhoIsvqmZnUZ3hdWw5DHgKJlIJNMVkWNhgDRiQo39/bB0cdJvQU0yJdTJNyWwPkVOCo4aTQYFWFitq4x9+Z1lOQBUqociSRXz8ZIsedNL/5INuyw29W91F2IwH6f7T4R+xt8JYSxsseSNxfkWJySpKHZEy4DHUHxS/OAor02QTDlRCN/Hsuwq+9uhIuiVqe1yKRrz19GinsnBvDRdKiSEpin97Sq0uX9QQhRYXm+vTyFrEHYXJYLWtCBlkJjQGDpP8SiiSYGQakftBD9orzh6TOU5VQFpGNtS6g2oJ1K5eQHgPdEe0DmNkVubWd0wH3oBgqzj8jw9qInhWDJyNb/llG2CBG6p+U8HB4bJoCDNCbl0Ot8K95urpQfsw4XBX/mp+bQRqAcgtiaZm+chJEnJvVpVfqEo76Dzfn+3NgsdebnClpvDmGO3IXagKj+B/I+XhB3TmYJiWrBEPSmlLLbJR0O3PCGUmIkDryMTseCLJUu3PaHyVlfAssJbFKuIFkO9wion/WlivuxHMNgO2oYoEgA49fwKhvMbSaPo9F46b5aQSx1wVDaKbVa0KzVaYHchNRME6G9IpgDQWfENTEhvuWESf0RbofjYBUkU3367RwiwxcYZvDfOTuHwTUX43oR3xExcJ2EbyXrXDDscn8G8QVpLCbtxqq2+DNb7JXn68EhQObXzi+4eMD9r6T0PlXiqX9tZCg7NR9oLamdU8r3u442Mllx0AvDjXXDUtkzMGxu1NnfghJU/Hgm3UEyCsUahzhH9ZMr0X5NhWIVk8d4RT5BhougviCdAEG4EIE7loPp5plcgSW5vnnPCrZedj2U/YKW63hssmEIpizsy6q0EBijhHocHg8isBIf4GOMFkPdIT37s2k9KY9+tKt+qkZ/WNdlWeOF7pl0fZsemj+snv2bJLTLoWN5zhe/hvGIG7NcNRIuTX0JfOXVMJah30lUpvCILOt3D8AW1aO0rMjyKRBkSAdcCb6e6ZgWWNvHKVfof97lHL+kKoDz/WNrIwe2n72uuj/KUNtbK60yOtlkvWN9DUhpMnNPbZxwvsXNlQ1YqD5mpJanAuH2Sc+dDmFG6o3RKBMq9lHms6XLsJxaD9T0AslFnojVI9a24Ltg2knI8kDaRvfeeX70aaz4vQItkDg51yMt3ssqKtDkWlEVEDbK9flIg61eqIerjaIN5EADe84BezW2yQKa8hq92g1RMsrAX9Z7EYWekjmJtJAHPbku4UaO+omVCcjeEYhpxKfCeX23RVguVVa+1PiQXZo7EKnURLwv87/tT6sF1lMmQSv0ze3TDIeBs4DlXjU4JcLhA932EESrLq+siTmMMDeyi5y8l49certI3PN9X6qY2VkH8U0oU3DnxO9rbf0j1nzDYE3ex2ZayyCXFVzj+Zzd8M/tDRiEmHMc3T3qxL8kSY6fNHjnKXsd9sln2KyV1KoOLWwOlRrqL1aT5coIca+jcqixv8Yr1enT+sODoCoLtchGRh7h7f/Ikb9sTaeRBeeisupDwvhnGitb3veI5Pq602K2dLnO/AP56TtGmHlP9vb4ur5T9BtUMaLpPBude65knhMQ9sdaHLElv8Cr5nLkoQeTQ+whqsZfBXZWYb7/xI57KngM8+uOI2bG3QNu1ndTA12OKDvlqr9lYJCwmJdBId4Vel/p54dObkFTC3L7MslD3NZxl/U/8E0F8HumuUHleQe9nPjEKPS9JO1PxkeCO7ixSlCR5ShOw5PN5dww4C4LvaOkmfEY9BoHTqkhTCSFOsM3o7kejKJRhxUXondCd/abea20I/ARTWt+NA474J+uVYM+aIycYSYHJdJUbgAHXKpf9kNPGzf+HvWrswHS7FQ19Hcbj94Xo1UgHyDOcSlhT2opmxTnt/2PZDGqqW/64H7nBNNcD+zfBHg+qufGrlpJx7TQvtXfSzl/67K0uxgQ35owIbBUORWEk+yyOwlfAif6rD0+JRHiWthKZ8FnPfYtb0dTmO8WWkFsaWrGB2MM9IJ37P8z2UVQei0C7Tb2pQsv7Hmans+HykMyc/B2wUNwQHBVzMhBbXgt5fD1AV8EF8kJ6y0x3iW55oWa6DlQBtF29bkOGd/Ojw2fCz1fTz5roT3QypTWtJTqU0flC73hE2W1Ubzsff8Ylmm5EtVKU89jcHB22LVY55Ty6rf51BCOw0m6Q4XDI0CjBtoQf19+Vi7fJ6134DZieJxzrvg1mQ1EGrv4Ey70qQ2GgsXnHFmkxkNiR2B1oFrSpIhlNBHX0nrDDivY9UYxuiT5xfnb9NVfNxmygqsSYgZJBT26vM/Jw7hq4ouhTyVMAr8bFTnatmxNR1Kp5qmCmC5JBzFMhihzA62qOEPHt/+o29pfcpAboNbX29qxIrelNS/+XC5trLcbFxVErkzsZpOBui5zMXPSOyGfrhHDyiuBYDYIa2r2y/PNxohkgYcY/MphWA8dxhu87I/ubRpzPQzJjBKrMwaT4FqIVAwOm4l95bTZDEi3bnsDYFCvUnyklo50jOOQDmekFY5PHzPDxj6CFLiElsh5Hfjik0GvT+qNbv35IZ/hqTmEThafg6ftnJgTbBxtC+YMJy5umUuh9UJPpVDOcPjGJTJRDSSKjP8YMQSF03aKB3O28NHVpPH2EUMcmokROt1lKt5FC0nqLPcgumKA13m7jY5+VoURrlAMs0DqYJ9Kj9RA0WsoIGoIYrpa42nfFFBmWLWVVS/DCFnhLo4u+D1YofZAVn3qbby9dFrxp0e5vfCGXJVHMbLhrvzh8GalK4UEZUfyl0oPZ6yht73cHUXTWTxqrWMkrdJb2NaMKCKnUZ/gaRrVGfZmLerQDZw7l+YPvC0EOdl8xrRjsSggJgHg8u4WLNZlUGbMRBhF/3JjfqSFEWsNkgEQvO/xOJE+OZb6t9AHnWiiunBKiHBqPUfYlJj1hf4INdnEMa2nZbFv7SAG7lOtiGVGFrhhnu7kB8oQNm3r/enEIw7PvB4XCBxd84T3cXPJ7Fnk082+jr6AFUiojFMtudTSK5KdzzGF/3N+NF46wnwfTYU0t6jRIp4CGK7//eu1I2YYu2b4Dkc1wruMDqyZ442c3QzUk4yXS528o+o4W9jvTXC8pVwEv0yWeIcvrXgYVZwn1+OeL5g+3DvpdtUaRH+wr+tXzBLBBp/El1KhdOxVqoHzCQ70P1/DAEuy7FBJIK4mKP28BvQxnCYC2wCdTfG+g2YQkOK/ma/FRrKBDEI2Wrm+zTJKquUVl11CdSyq6bZTaAqMam7iq7GZ06q/A5LhQPBN86JfDAPprDSilEV0iv4tIw/tdMTtKxs/+KmFTxQqsNUV5qinTthEdCzFgmBE2UcSelr3Reqfhybdj4RBi1CCRQ4cafSFWOVtLUUwSnO2JeKr7NYiwE92oHbSpnSMv+hbICPlLep1p8BlAs0a3VtNNnFC6PQrZUmfu7NQ8B7b+S7cP4wSzkFgcLmEyDTaktXF2d5QqfNLQ/MveeYnaI0GpI8qSsMTZe2Fq4rE8gxJF3a1v/4WcBdYnnRUGGS2rsbzC18p1Rp9tR+V5SUjedny4MmofxTe2PvLxT/+tzmiXrm/qsc0jA0RJq4nRftbc9kiZdvV1S5k58xn1uJisyDvvSf/R6CUvdcYVpO+sjUVz5FXImFSnaOfh53Ty9+MGsGvznZO5J8uVxflzedg6RRUidju2E7BlNpFVumoPOMZu7w8/B2u++3BFatEIvLGSoVqheK0im8i4tAwol/qPG9mfpxMNNuAu60HwOWJtmvPSFw8IK7z9K8=
Variant 1
DifficultyLevel
486
Question
Peter is 3 years older than twice his sister's age.
If x represents his sister's age, which expression represents Peter's age?
Worked Solution
Let x = sister's age
∴Peter’s age = 2x + 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Peter is 3 years older than twice his sister's age.
If $\large x$ represents his sister's age, which expression represents Peter's age? |
workedSolution | Let $\ \large x$ = sister's age
$\therefore \text{Peter's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
U2FsdGVkX18DZzwbJpdkX+mQFo43vzPb2oH5EE8h1N80f4CXs3x5arenBn7zhs7ULnzEae3ulBY+wEwb6SvrhOKo+IJ97p8nImgvSTZOlvuH9pDuPUrb8VBDeW6nbWVX4ifoC5NrTL91HEnA88IPTA0YerdotAVC3FwrBLvwzjrtUosj57TAjBS6SHxgqdPZPnOCuK1CWLgR19I+cFVxlPjea06YczvJN6AOeGJ4shgvvbR0GfzsJzOkw89FedyB7lFJHWNPvgqg76uejIMJQRDNK9IxkceN3tqH5aVRJ+wAHTrRN0juRXEcov9xpXYLoOsYq3B4ToC2s8588IK8aSQDmq3w1fmAnXcQ7u4bGRVCXAe46C47I0GjAfrgdDJvnFa+4lEL3TRMUfyj9858iXq/eY1B42gs/cq2gvP8vCkLWqHDoF9zR3Lbs9em9CeiEGvWS0QFUlhFY4Lw5eZT9rK75i9nTr34zmMOnzXP2wSDmktvcZpD/5URVoaOUMA0iqQbdLivbeVBSf4jTD+0L6brEleT2J2zCl/C86Q9BdFvu3QehfMxfyMY/utsGSzlHuqEl2CIlVFm405/brIRPrx79nzVvnB8xHLU4MEGxoz8PPtW8M2t9N/dCZxCUlf7yQVXLYTAkduT7E1lz7I4Vw/XYrosDpt4zD4t9exJx9f5PH74nDkFmw58aNgJQ2GVp7fwfFITfY/Mrov/nhAjv+znp5YMd9w9uq+A9nf4RBq+mIGc7x+lwaDVerbU5JOmLH5MshJzI0j4PNSa8U9R1sC65wpWk3DdztnH6BFK9t3IubT/+qAxa3O6yw53tbvSbng1PPPBVcCcQfQOP1modFjghh87gojiuX65CPKQ//ctOrwhyN+MtdOJh8J1InoQJypf78nePiXOonWl8HKFyFyu4NeNUOJVEs01LPV5mxYoejz2toG8E8vbN0iEuBT7fVSfR5yDhnRKz2WSKLqrQHOSH2XMYmDYgqlK3maZPC7QzL4Rx0jgxaPvU+SJKQ7sIQLh+rYscFf3Xu28mPH8gBCUIS2HjwpOfNZ2QSkDVB67jpyWTbRdYc+VvKB9IUFL6YscxZit4kIYqeLUpBOq15KX0zT8Pi+vBTmfpQ69FOT5IFMYAt7jnthVSE9QT6LbQgai6rQ2mIEvHp51C7eTTGg6/t5zH5qFEz59z2+8h1biyqH6X8wquOWRKF4toReH1tFvC5ddTX6mAdbkQu2yZmDwB5U1axZK/MbVl7DOFcnQatrxm1IuEDLhNM+S+AIFidC4PzrYa3+doecxc+5tSlODivdqJJ6hjDWYCgEujTmSzQo8Cy1dxKklISCMlQu+O5KFheIVn3Gnn+q8EVrdTxizFzQaswcnri+XuTbbRDSltgNi4RqNx0/1DSqtiKK+brfv9zKMpAswUmkJMON3uGTJ2a6zUE1y0gsWvuMLj3tkLuhdtWWvmJCOrg8XhUbZoyXRBClilyXvWxpLPBKflLBLL8Qbp239gVZPRyXtqJD+1/8SJ/X1mncJImSsH9ozKPu3Ma3nr5xosildXjW1WsEac+tHgJ7suKC2XBONm7D+s+56LJcA1xURSEIRllt/aRdXujM7dO1tA83ShfP13BZPUd6a7PV0cX+dsV7nIHtjz2CuUf0iAFGbzUYXsNWpCRhMItLiZDIjSqPV5amYROMqCwwrsRRdypKhCCCxRsVGAzQ6TZa0TplmOYwxCDjckVLhxgVVipdEPttqjP6xP2mJ+4oqmQWrgZIqDqXt32R1FEa9tS+7VY4qRb3NdbsWyRWuaQ4i0UhKw7By5Snn7sUAKL30A8PiBxyRWn5b8vlqSURdM1BWweJpPdjgWJ3nkHg4LSBDveB07WbBKYD+qU/xI84KlixcmpWUki0edG19WhY8P9tGywiM8DdxU1a7myWauFBywSm7r1QyT8/Qey5DWJ6MRkpxeEXJniBskzKghW8hcUtf3VRkyQJz7H9FmsOIXjOnoU6XbOC1SjCQNf6jO4SZnrrIPl+Cp1TulkJYHnTWM5v7bQQG1BdiFhSEIGXKy+141AjblGASVNNl7mQEky1OGYZjkvJIT1nA2ikuWxShgpk6U88AubRmHVvk4NEBlOuUKAN9KiLcHytBHiKdyVwVF/nIwnpobKC2b1e0EFIimKBqk/tFEMqZvFvhuUHJsjNyaL/yGDRDx6GgUu42+4JXymPV3S98kPvT9B2X3JDusYJGEzvJ0pENT4w0m8KfJgK5iv9+lnUQhj7Go1lQ5GI09Ak7eJBgh2RcaYKuXJb4b+V2oo/PpdYbPMTHYy9ylwOAaS95kjkcH2PH4ugIacP9ykwpc7LVvUyGF342uW3OxY81ih7jpCg/TtOElQoU3jng2m3u3CM2bKIqBBWPzKQsB5wA5kP8kLyAOr92WhcrIrmH6r51b7vjF6uPyA4eOLpZlF+0nUkl/UIZu8hdB4SxdktPOxXJZqVfmHWEYZyC5xIGJrbkNUsJUtaLzyeFbO2nIMwM9bUmWUgp6CIWZbNup7V92pVptQw87CJ+y1pSwBwU7kNLX7vyzqehL9CFfHyydjhb8LXKAuOpZHqkoqzEhlGCoeff0VUp/2Hysay8HjYvc7VxV0DOfnRUt6uF8wHbQp2LI566u7p1IjRKJ0+vr1IRZr0GN1DzV1fDd6MXTV7Y2JkOf1NhW7Z4JZpNMvEj5GrTyGnae9vXo6xhSoSwxBDaPaEgnUwx4j6d2Abywznpff/kp9Niad7d3ZDZsxZtSUdztvH2kkiX9n1FZsJcir9fOUiRRlgbbTW0X9DRH33hpV4B/5E5gqhGQ1OKzV2XqGMnNmStR1NfSkwMGeArmhceItmWybA5g7itajBR4TWXpoYZnu8Z2JAK+4rh6E5KEO3Hb57wt6shkT1TVMIJDqycPiXtXDkTtBSP/Vz4flAcoWW1RbdCEQfU02yd0J5XtCWtePJuA4d3H8i/hCu1fTpM3CIlLge7jDaSqmAJt4MSV6RG9Ux1g9f1JRs/wZrS7dFu7/HzH4s8aM418Tv3AzakhHTWl3zWgGQSNUQaunW0EAWuD+GHJrx+0keosasnr+Zr6Ic57NrW5/yVU7ZGvlJ1vz2jCW40upxVA89IDc9eWgipMrEtd4rizoH7KPoAxxloepl+ASGssRd9ib9P2gJDus1TQdM6t1pRXhtIQZmka7eWPA1fRqS6c0hOm/Fb98laHRf3i7zBg2pilDaWIJX5gwRNn2aUtFkQ1ApRQsg2HX7WUPtRkRfNOxtdSsSCU2xcDWV4rLxAgIusU9Po2IHQVenRHElmPu9M4hKS1Iqnrrnz38FboxZff6VqpvmDM6vZSa8mF5ZiFrO2B8cdUGNeI9kevKFdocBrwCn/QnzRKu4U8v5rFJJ4AOZWzi2iyBRAy6xjUf+b6JUEgvJ9uDHJsLsV2oAmNEB6lziCWRiehGgYyK7l9sDJcwhkZNTuKfmGZJNPP6zk97UlesiSanwg4YQQjFYbccU3bSj2mkXOaObHjCUkk7MHRyU7n3g/IybUCkosf/L6e6F3kaf34Zmb4FZwR1nT5XTvaydX0TjeCl78Z17PTjmN6KKWZwk6F6Q7YktubTSQ0CGAn8PvoRgGAzbMUvxxE3T4Ei95yInb4afnaawh1TkbnXjWF8HCKxOLoKXbwxBOy20k8L2jlh9Lkuo+CsyDAFU4G///MAdE6mcjRYaLs2ICgsTDHPzbDv1Z1hm8+R/d+WiOqmj8caaq3bBq7652ssOhn5LOEWaChqV+yKIgY4EBzcXxfH9HNyYQ/Bdg+83+mUHBrTRAbOtFyHT3uLvhcaywCP93h9vAseV5RqE2O3YjDFb9ozpwq0zu2dhgwtaP0jSNonoI230WepHB9jg/gR77DVFR+QKYub5QGZfqdro1BYPcIyVWRFAzqkwic0ngITfRtZDDhkCQGcyLSnBI9k1ZZIxHe52uKWxl0BiqHWc/xYSH5QiD3R3SJ0Ku2fag97J8rYp3Fzb+8Z2NvBz3gWd61rwB75LIAm7zqaYO87OJwcYn0eU+hifKxhT2VDfN+vhg7imYQFKTUG6S2RbEpp7qmBTwTdGeXah+zMmfbIpRTcpLB8zV4ycmRKR4TIx27wQr3WKTLjKojwxw1gJiJGMAUbJVoYVEYi26L2ygMgFP5bd503An31XfA5yaNKNE7JOodfbRzuAT0yVp0KAE37AEUuMXHPJsL3uyV5+9FxCE7CHCNIsU9kBW/nFcLqRvAfORsooLf1wGrZrJnZBCE0NLfj9F32/vlZ7Sx8solRYmkasJ8L9Z8qj1+rDUuC3oymmwnM8NNFAn9N2hSBRmuTVsZwZvQEjB9FU3NDUAvz20VlcU1B1pHdp5rtEVrXmhWHF9tHWd7UgwgFpcGxOFNgy3CzD3vmPEcpKcvRa3E/mCLV90J04qSR+ZTd55zPZHLUS2pMq/ir47fWe3p2vzx5wSwQajidv4y4eqOdsw/qdqQw7Ql1JZ93/z1xA9FzzVzNXBao8KqnUxYVwze0BN2T+Wh2nXJ5WZJi4siywBCyIP7zkn8OT7oM88dYQfS9vlPyCeWu26TS+b8xDihgEFBRomzWJ3jwBcMx/MooD8etpvbDMQdbLHIoh6C8rt39C078Zco6jQbp3+/vWwPqEhCJKa5uvi6x8v/dUSVSWPXWo+Sokyr3pWnh+kw26Miqha6lZOC4P1hCqz8I3q0Vv5UHoRktS7x56jmtIUm0n1OMcMGUWxsYUnsimyidon/hevoTG7NGAoPYIxau/ISq+ezDjYQsidqYR89/QWlEKQQ7cIJOkd7vlkzUV8wLMjShQFiNT3QnUludTsip5i480ArShNMNh/NR4ZFrE0VEvfPBUACtzwvqzXnO+UfGp3EQ6uFtvBzq5IW4w+3WdySbwefajpC8ibEtXfANTLYlyNuh4qyAm8FtEC1s8Jn9X00Gye82EMaatyXFm3LimjmjAXKe6zlUYGj7q5oI5uYPKG1x+uTLZ3moYM4ZT2Yep5CxOqBWe09oR47wdCPhow2gGp/WPpaYWqAkul21qJDVLMLQI9ZDk/D0jZj2mv7W5+g5RUNBZM2G/AeoMDbNIQEkTL28oKV9oSH9xNU+JpqWOzHFvGISmsdp2MjvNz+ZI9Udb6k3uhC4RTO8e2LBeFECOpwEGFXlx5OioP00i0ZAyZ7zPL9upIMk6Bo0LmaSQK+lk5bdqAWMharA/CikTNHMRa/rtDkSmxyEPnFYTg82t6MGnMBa83p7sTNFEVGGqZZLsukpBeyNuN+k1sKdBWzeXNK4JgBa3zHnaEtEkd6o08dj2t1yMYP1BsgIIzbs5abNHRqhJNPnLYl+IMj6EEefim7BYBJN+P/S3hgtjCdO4paRdTD0etRN1wbIXojw60Z2945zNsseQZ1pBvJbT3KpTUe4BuIBt7PyYhbjQXkdJ/rPeEtK/HP99kpcr+Rz3D4/cN9QrJ91uf+lTYbZCtTctoig3FRMAyKYm1G05AbTG4kwwx/Had30kBDpn/VuICuQ6YFJh6n9cth7ZH5l1tQovOkThoMaH78/TPMFwInS2hVgIdr48Ypi7q06CG4NgAHzORSOjWoOGe0FwTST2+plpKX/2Zzg33yryOoXe5Qbyhv0C5Yt4w97Ih82eGk+9cxviyQ1+CJrZeR1pPMJawQTEFWIoowAIzEVG84IaeQHW+MPJz0eXNCIuGQrgqtB0vtAmAHcD4GoHaVi6EcYleI196cyCk7jRbAMRnfTdRaTlVmcUJd0hZc7Ri1z74sTpwJRJ6G2GfvTAHrU2dE5kqOZtQyt85QUqgbtgvjP7zPR3IaIhloKNT7IuVdtOBHO76yU7mGg9e2w8XbJ4J46eDDDP1RgJFsjFh5LsJbWErqqu+JZlMV6bT3Oq56xPRy6Rads6ZSav3E5hDYvyhq9FOO7N+DIbPz28Mhwfs7pfL8c1RyfMMB41hvyuS3l+Iqjiiu2HRxbVDUIgXphvCXChAvMc4FkF5cVsuZBk09+yIstYZveBhxTL+ZNHWJkVAO1skyWnI4x8BL+HxdCx8ESyNpUaiKJCTMdex/ngjFc6M5+Yg+rreY9F2xsOvWNPUDYRuK7visLtrD0SyAHUW0Us9KzUKcdsKkUEsOw+Ah+6xiU5mZKWm0/nVVmBnOfoE0jW2sYMy2D4Y74j1hf0C1bKHjOvPABBFDPPHoMlsJyAPCNwisCHxd0ibjYjMzAA1DxsQfeSOj9cGAvSwY4aFhnb0JFVkxZ3poPh0KklghzBBusptI/zg9syqyr96hjx+3TJNqFFwGShQ5KPm56doR+dSI2CwkDZJQqjLfGnl0EnrywlvCLVEjn1wh3PI8hvB3r3eXA4TO38q96s7vEx0CAOqlD/s8nYp0ZjXdByBeYcjPLOI8RX4SO/7fxZh9mFPMWANOuuptVi6uD88soujSgrv/PiUXm1tdp2550EiIFHRoxSWk6HH+ZhP+Reunk/bZxSgfaC83Xnei+XPJlebNHyrlZ6Y0S5zBeD+bxY+zSsn4buuRPdFSYAZlD69cFKJJowcPKqAokfjtWKHG22/iMNXBD8AHERfArZqRuRI5sLu5hu/pDkN4s2Y/DVKvacDIOpgqzBpZr6HHUhgNSzo/wbQzgaLIDe57UbW6/wZQ4m97opVaOGjUTEwlKAM+IPLfCi1R4FE2HIHBqHHJCFJifrhiZD1SMQtDF7D7yYI8hHDqBnGPnZNyhORc2ZuwN0RoFnGQ636uOyCSPmYIsau3ucmtDIbN1GMEyEzJ4Lwqu3RQTk3GdGykBrNtuL/sxhgL8L1T3i618JJBka4i36LYmvPxGuqg8iIRwLuALPTfm8wz6aUxfWj9ABy38q2QveUgZgUDQKFKqnHHiV2TXXu58+t6lYLItDwHruXvntZRsnn4hBJnsbbWySDtuKde6jTJi9PAN9E/6maXzOYSTx7wLdmSSoIqk8yTJ87RTL8HVsQcYeh6KT3Kc+2f65I7bP8eMipwOhbKWPUY3Cp3X07+F92CwL6fdsin9gRuHFrZoD18Nk+eUyTWD8aKvIACXNwpjyLorWna4HUhrl2ih1OGFeD9PA7hURogJj0GK/Ty+KQ4kdzHXxAobGxyQjBHB9iJ5t9HzRi+Z7wXUcmSEeUb3u6Hosr+3jAdyrIktxUDH31gwgGCtd2zGUOd7iq68ziNM+33sCVWpswKDXCPE3iKRyD07CGoRbwv0GSaj2dOJkw0/tVln/QlLba3eTCC1VhgOsl1Y5XgNypSBsHwid4U+pcUcliKnsuu8DKWpwkYwikqLDbz0n6GwllNdfKfZ5sQU0meF9O6iifP34K7uf3ps07FZfahtqMI4+PDdg529WvAsZVw/moEQQqrxrd1wl5ZSkzwcZqcoAUetxR1HDB9FccEPPP0yk7U3dWwPhD3S3e/KB8mD9nC+vy2AoqIRcaX8TpGj2GWUcLbMCb7XtfvhzxPwGp22Wh+VvuARGldfVwipxcZV89XaNzdcFKLOnyNHCpwubgbNx/DLmKvjcs9awnUbjoNzpfvRN0SRBUSwfO+fbuhnY2/s8nUaEtdr6+uyMyCRrJhWTSk2/zaXIK4ZovI4C/RWnpPn1oOdMT9AueYNGuY9DPygU8pefDmVY2ZjtsKeziUZ/jdfJLQiLf/e4IbfvHovjTpXyceTB88vFCyZvXgIMiH1k2EJU3GTWpsYblgrN6V3fmagM5dKjFD1mmVXBmALWCnTyh3cN36G/1U7COXrAOCsQqs8mmgZmxI++eqAAgACQSqM+ErzgQoPJj+s+6Wk+OAAYSBzNL8I2xULYzFq8TUIjIu2a10bsIHSMgU7KoMH+Yh2whaot3aLR69ZLDN1nhzqP3Ln+yTvIem6PuOEaomKPZvx9s0D10hMCIeG1jdZQ0q+aYaPb3R/AV9aSBVdROFxWeAB1xk1j53S9vp3a+QKJYA31HHsa3TtZolV2bjImRVpUZGUP5kYN/lRNqMZO07ic6U4+/jxqIDU8QKg7Jb4nG6II+NAs9sJAiNdGoozXfdezYMI4sla/7CSWAEWZ4EswZlBIrV89CYD/MAbQQWYbAeduSIrD4N2JW9qe5qBZUFRmkG9N6eY7BGUiVCRiL5LxntzsF0w12aGxVXm2O811bK4sGoBMxrXsCqU2R7FGplq2Sef7bI6etCuOSKELmFrblsf4tZxOCtWEqauY6Q83I0Sxu0z7y2qpNY8CumXITY/DG+ofxJ52nIJq9rXzLH3esFw8Y5Z9lZwglZkpCdBAaxaNtMyzvK9PUnMwxIOFALMt3GB4LD4jlRPHypgTz4DPpPW/Kt0FNxSiTOEe+kd1E4TR8eRDbs8TzykE0EZXUQS/VIMAZ9eAsRpYcRSDqTrDTwlR4m316mtEzaFCTMDDB/GzZWg6EnayLiVteQi9hN4H7DjhmsnRV0U527jw6q6/vueN02Jj0Nb/7lURqT81LD/l5NcJtEkPVUpeB97AapOw9rHe2gtpH+CkyhDnnFtr7UQQ6CV8CaoSNpNur9QOpazdvsfO06v8451JHrG0Hfzu00pwk8bFFzgglTx1ZuEhLJQ7txoL2jC59f0WB
Variant 2
DifficultyLevel
483
Question
Maria is 4 years younger than 5 times her brother's age.
If x represents her brother's age, which expression represents Maria's age?
Worked Solution
Let x = brother's age
∴Maria’s age = 5x − 4
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Maria is 4 years younger than 5 times her brother's age.
If $\large x$ represents her brother's age, which expression represents Maria's age? |
workedSolution | Let $\ \large x$ = brother's age
$\therefore \text{Maria's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
U2FsdGVkX199JMo5YEq/Qf3nCM/Vu58u4NzhV9+MDlwD8fAhnA65czLZy/gzNsA3pUoaOov/hmibEyKLvTuVo96cyIOyC2pfBw04SnCa6m+R+1NQ01okca8tLYUQiVt6w2OpTrhZATCxydSHewPqvOoO3M3jRt9N7AAQlGs6BqEIUz4SWqjZXg+XbgneW+LfDbp4BqEA4yrmwB3og7xObAIxzVX/yIiI6t20GijvVGDi5atst3uGVsYjmc0MAbbtBpAxp/9Y1OVfej0RLGAQZIyKLJQPFQXWOi9BZCO4Lvq6PH27iq83ajpYA9PUasPIg2DAHjA+zjaOXUm1yC850sahgxNoT7zKpgfKwKlnGI6y4686OeJTkk+fnjAh7y3AQN5AQYDjILpwtvzMsQj0e7oRnwIQ8ZKtBrd0DOc8WubxY2G8N2eYaLjwVzic5xTqCzyU/fSjNndGCg75lO07N1pYGkov6Zrt44vvPDQvNCczP2Tf4dSUWuemq7aLAkckHYHl3GHGjpSUvt/HoROtuklfgn3Xrbq1QjACgR0pGfID1kF8QsTo8TyqWCT4guuq1wAdHlfF4EJtrkSWinnxTtq/zcajHqugTIlh7DKUzb6K8hZezPJarMsskFZwz6vyD7r+QbJYZP9+7Ib/z7jvcQ5g3MqnxNIQtbxHAOc4c2j8U4idK5EHdRUA7wKzygYCj9h0/6eGl1gDe2mEJAGrGshxDHaqpI47UCsOyz7y1AeKJkYsO0xuFY8XEpeivs2rCyk+F8W314HsxTxT+u/kNbsh2BGidKLoLf+CHD8364sEiz279HkG/oHJSnNpjzo/LIwZS4fFpp6xPAvSsyaGE9J0BWQ/jFHPgOY+jEwuPR+BTFeyVBjJetv9DiqBl2r5qtV2+GPIF6nJnSSoZnJRJ3MhucfbhU0CbfD8474lmQ8kFcJL4J6n8ReSXsLObJbcl9/0GFvcdpXN7UvpGDfxQlBJioURTqRqFmvpmEB0NHjZjWN2riSqtxbRLfE+ynWfmac3ydyRqSao3kN3faTGpn0rRH3PeJpKnaWUx1DAXMEHnnaHLa/gwVnLXxdd5TDZAE95EQMPYtfTD6uQpdhm39JJEt4xfGcTwy/LP0A88N2cmeVK7U2y/5bhswrOF1ptaylC1GNfYwZ/eb6ZLekg0vInzc3TqIxJHr4rX/w4K3SAdFaNvXgz9yUQ+wbgkuqjimXRCah+bFVNSeH24t4TZJLQzwIr9tH+pXIv5RKdN0+GA5Qg+WBlZliuXDqczRPxAJ0Iavvc3tZAZM62dRAan5AnrydPk3mVBQiBYNhTTZoIPjJ5JDEhnwYg13isaL2thOyQt/pLLgi9st0+xmMINS5o2eG0vtBpfx7nS+nkHt26uZ++1glN+gem7wB/+swBIvBVywO0VKmGfX43yvYMYNt1lgWP2cWlEKzSbP5L5uFtujm5wdAOrZ4AXLPesPJUmsG8NiWeqkZcCoFEuvO5q8wgRpaAydhKnWBPl2z/AaesSpAfJR7Cd7ofVFVgKp2SfdYhaMHjcMByBdWfG8NBuBpOjT3xsvrNfmgYBzM7YA4KbWO2v/JazgeOElkFm7naZhNrejJaZXferlxjzie/iGCdZylKP8JAovZ7c4NI9r8k1y2L1ifsvgFUfknoaKvl9ovbv36L1jgoy2nRuoU5OzK3lyTvZ+nW6Y1ncPZ5M6MQrkkev68F7m4+to0tSqF0bGZulj3jgVyehxVjC+lVi7wvlJdRz2gMGOAXqiKgM8azLHT9cRg5mS2EzUrISd7BG6WqXWpMW2kQI1gxwmCn+KniFdgDx6zS4mzPUtEXD5TN0Qyi3KWqIUHFfIlYaFU5v7A/fPrF888TTU26j6MkH/dglzt/xRV7x4UdkFjWrvmwxfpvSCYO2yrwQtiGbeBo7z+cwaZLIJI6igInpI9hw+QfRWJiOtxRLnfz9pjJS+NIj4FdFd1chSsHqI3GWS/5QqXmdRVdXXDN4IMfshccqN5UKqL73HgxL1q5jIWRFyN/kMGAQr5tEByff3+9G52cndr7RX4QFeXzsEldwvQ7TnmTydt4N93XIHqi+QBTG+nyVm464I0sfkUj1scbqz4MksvoA2/1qM3g57T/H76RNE+EkSc2oHLTRvAGQMaVKSB6HOMVvPLsfTxDQieo1KvalGzdH62qyxZ4JeVw3OAbCV7hskPzBNJRYLxQ3XRwJPVTugexkoEdLlSGOrTOBjtjmLOCR5tbZ8fF1q7oG9S98oSOoivP47pi8T21+O0LzGBJsYaD4LH2Vzgt/KhijMvonF9V9BbFIArFGdrC+FBphAdqeUXKdpJZSDwrGwqYpCZ1lSIGLWyN19TeLqFa9gdi1Igdp0V/LZQeij36JeOuDz0fakIk67GBn0TgxLIBoWallXfSAGD2XLQmSV7kE+5QdKInY1rpiWmzqsRoiZmb74Nz3qlCi0gtHovROxa9MvErU693RYEPcf8f5HI2H455vebU+tCJNBFSGUbtpxSUf05tSQZetK1ztfj2+kCIXVWPn6djpdiz9QLO/yYbjfblaPnIVfJMFNCFmayztCnq/39dr0GxKVGMwe+uhtHcYM+pHh5yRYcRKlbSDsRT6xZY2yoD1bsMaP9M30ZXYd/vw6kC9s0QtEUD0tzgxPD9WGCgp6D4fth/of7+lsNcP4j6eiDJ+1Up+e/xOl1EHglT7fAL+dZVvrlQsD1dDRCxiY953XCU++GmG1LmQhP6oZZSe+suMmc0DroNI+EE+yg0ZVyX68A9Jw+210hB3rabIQkVA9J3WRxKkGBN/VX6E9Trt6SRgg4+3pa/Qiesp4Aa9xo+cSQjw0jE2u5BjbzbqCH++eEqh0GLq+hvJ5gmnXo3oy+rlz2dU5hnkDORHRQxfqRX5xKnGGuqc+kMjwnC8FCFFEwEDzJngbVoB2fiu4QvLdctpn2+39c0RQk5XCHpNrQcV10LqQkM/LCOa+MfOa8TY5ZJfbRfm4d6i0q7NRCYAfCghOXS9VSW+AaX4qVHRwEMSAgxcyGBTkeJMU3mFq7bjnh3ASids9KyMTv71KgspBKIRS4FTMoaWcDeV188cTbeehhEAfuo5kbf+F+IBeGyHuET2uG2iRGTGHeI5Vg8YLOKvaJrfdzL26Tkz2HfqrOLxVVY5sN3ttS11gy/GgbhCMiLCJhkXR6fDwejahPHuOtE/YUcMk5c3e1Q6WCP2hSn0j0cHogW/8ZoNC+XJ1uCmZLfMwxWlY0aE2DCGNTN+vxwAr3goKBhydkvWCz5C4KLVZWxYSJv2hn8iIyB2sQLFDerqMa/7HzzLdLUWcNo+TLuAjc3soaYUuvE4oz3vVSycAvSDKU+2NOuHW2G4J8E40kBV3wO/Kd0r5VLGf0ubYu2EAgJJ+IuSqrJf6PWEp+5MR8kFq97budrvn1CZucYCF5aGA8bYarQZxye1RZqrBRTGSxvrvlyLW0WwRXfH0uh5W1tf4vp5QkWi1JvaxjfJtjHIfBvD1P4RAYxCpg1oWpXqO1shoZjSy9JeVnShy4egSFhhtetxJ8rq3VzeoSKPoFEQARtAj3Solsedd65hOEOSDLq4X0T0RWLbg/oJolArnxZf8sv4F7JyVccDLL4uftcE9yUp5eD4nrKxsbMSPpc2Pd1EHAFtVTgXpT/AfZdXBc67r/Qu1lbEfGK43ER8xV75VBxC0ydmwh9pIGiSvrj4UEHYZzTrOl4hYwXsRiPzDi1mpShGOTm7IDc+8ZmXQyrSWm6zT1XWWeG+kWz6xOS2TwGcycON4qLY61BsYaUdr+JFSR0KvpoE4ubJ3Q0tB0oXTHHrbX8EvIevSEr9/OcNYwj7YuusUIA0YT6R7ZTfMJ/hFHVsC3+MlA4VOGaLpR20R7VNxJurn6hUn1NXJ63S6ruDzN8rCR+CONw2VI6P0hyCh0AzlLEyY9dxkx7438uB0GiaplTLCIgp85koOvD0DWE7ZvBBC6AjrjyDTdgLNAO1DyWrtL2RofMKeaXmB2uo2N+QUyXNESDJ8zztnKcE68p7GmWzgWjB2OysJtD0qDzriVbg/BrDht47SjZU5Bzg/IFiN4jFFpsNUU2nIzPnzKH1JmyohiPp4d0ic2J8KaRyoSObFDnKQKCok7Ax9Xi+Y7K8C00bIDgGlG7lgHbkdkrpEUGZHkcX4sg495iadI4IkFPVOIunH1lVkdNrpxMdNgrKDIAYZexL6PbP3Rs9Ccj5ufE/v0wyMptN6+YAxp5vr004saTCKQHD+W/lAUBVGrRh/5ZIhujdKJ1+i2P9Ab7s9auJZiVzGRpG+kxaqeTSONrKAPXvPY6s/g2t6Ms+kUXsE2EhbrvWQnBwTsXJgBiBZZyZGWucPX6nhRwg8H4HpNjNpZj/h0b57wludTdabuAR3h4CiuOFJM86f9MxC/Yw+grH/8N109Jqn7bI62ZLF/pyO5mS3yAw3N4JW0NV27TSclhGQzjkLOrJv78MAjUYhFHJalBTD+aPGoyL+bCp7V5memFxxbF4sQ70lgYF3haIgpAynyjr4dP6U23nE0fMbq9VFTutF45MD0RgdmsVd7OhYFwbWdJsiifbwQ1Fsr90AQsYfODDmjt/VEJpq48DxudJFS/DXWpFJnM2PriIV8qMmM2uUFrirecihPmRo10rF2/XadOp3V5mBG5LJKNrKP8/G4q/qjDB3SXbZF5fKU3YV4groT3rNLNW35jRu6PD5gZHsDByds50t9goVZQS/crIjR/1+6z4nSNnjJ/U0+CvQaOE8aB7u58O1Ln/NE94OzlpgO8bKx/WnBll/VwRdkO+GDTCMD5mo/V7jd8juUGuwmsvRcnmNEFBuh7guanEAMxsLi3tniOE4z+FBbP5c1x68VkrFXRCOaY497/JZSfNA9rKfJ3+b2fg5qko9whsqrSEnYrWynTO5P5p+qBqA+8LlpWHnKJ2qfTJGJ1K+jHdMZM7VYSXa9NAlFUBcqgkvU1SDMP0pqv7KwKoD5jnSwNClU2LuKIsRAoFanqllCj4FHKVHGode2xf8xUO5XPa/HinL7a2YX9vZOZ/woQZcseFalvLQHIEJvDeINKiRMt3BT+gA3TMvdsXKOaDmUQ45yiyyAJp5KMVHwqg9fICkZWPNhMI6Bt7mSgOB4nL2mqk9h1DmSYWnr36myT7c03qMtW/edSm3gFbQFdg73Qvi+fG8HHAm/6E962tg/bFyUJmkAh/s7fwO0ROGqcv3b3MlI/ipflnfW4YuAhzKLhs/Xhk3yDg4Hun0Tnze+kffRLabdM6FgRRP88VA9i5Kp4/GQVnASsAC6rqwkbP4SdUMH2a3IW2EhcHGb7Pa/0ubyOqEcVOfSb06vaTEwXrBZx7jsgwfuyOOcvbK4UdRZXkeNzhQ1DkROFoN1yEoe4uCy+++lmTeGv/TF/JLBOSAh03UxxB1D5pFfCJcFdWVlZd5ZgRa8OiM8IPRvgLv1QnD98+iYjgxyavUkdzEPuLdTbJBYwGZVbStZVs4MMXF5GuG9fjXWtFlxskZxTYZCDxadSzgRLgmQeRxz2NAuHTqr72TXCZ8SLhSPFQGzUqBVdqvBao1Gs0sgojL4YA6hebFa7r2uNpi2Q9oDTQOiT2H5Fl66BOqdxxf0shABm+zYxczOF3SMVNKpqqAt9xNXOCcGrbtzYZylpKP9fMS6Jt666BfvXE9o7ToXTq0dKNDWV2iCKmGjyLUyWSVBIZkPCxFw0+rtGrMdI93dehd296EpyBLzxto3xmbLOikJMOsXOI9VdHluet3ehKF0RV6gvwqo+FlSdghta0AaZ3A4pdOZpMPnZtsMFJtlDtNbLB9mPO9QvBbx8qJVS3HoylBafeix2p4qbHLPiac9zo+lx+QjGMG9mLjyhiyTRIDZP6pBiEdD/XZ2y/xIxSWJ2wi2yALzGl5LCvgQVGTGa8qsELviqKEMGFGW1txrQhlUyfPjkk4tQtmupCoiNmmNc6R3FbrtGfAOC/7dZvXoEatGqzewJccH8Z89JX0OTfXTg9U2f/V+Vi6K0tSInEYHU3unWos7uJcDoh4F7ReE6ZFzMc4RWiE7HpasagE8XUIbp9Y7LHXMCfj5K1VFe8aQ8GYGV9dnFjsjMWcQk6m1fDYRMeRml4Yut0U0OKdHhMqcMsBLGcwXf5rYXiN4PxVFgQgnbgqxh1k1nwcBHMuYyTatnX14TorieeIWlZZTGxCT3uj0QwoM61QsrNMVLXnR2+siqJ9eDBgSxpMKTnp1zpk0fhca6+I5d6Q5PI+g3dWC14NwN2/WK7qKjna8j1Tf4E2OS/dvpt4zOBm4+XcwBhfiDElltrwImry6h6AkOUcAgqyneYrJZCK8y+ijiPHWGeouKatdqDg2SaSsfo+tClGZ5QA17YW3fRIDdI/TGLeH1Q6wgtm2EBWo7bxtlydjYWn6i99Muo9mDpUN5vO6GF3iby94H4KHqQ52a0L2surfCDZnlJFs60YKPmZD2taKTJKNsWcHAEZqqxQjjVNAHnnbAFa41iZwls2pLAr6n0c8utKGHVJpRll/XB5oTMu4pObtZqTz30xYfi67J9JyiCHUO3riV7ZnRfF/tXmVKQNEscgBntjqCWbVWC/28cIMp2SkAk4kgAxZaXxOdb/6pxJ7hb8E2XSgCxeznhiyTZ0cxrtTrAygiQe4+63qaiYFbDUHXbiikLl368cv81oQp9Tej6IfcBzXYUSOXdcncPr9WDUc+JMrsEajF4RFLpERXBP83xaVu2l7UxYrPcLJHSEgL9yR6JW5+Bhdzqx+ROicTCrxa510TQv5XEcwmphktCM8owjM9tvl3LAoConCM95YdKTnWF2gN5w+J0qUtwE59IKFo6vwn4TCCimsFMEPezmfiniFvvwZHcQ9rXX44Fzx7uJdvLXYj11THxHwfbWvgIO3dS4aZK3+jJ7wYgkr1iiasKfnPE8MEGsZyYTPypZukIcbwP0oZdt/liH4Rl7AAHSiFjdsW26D+O2Usv/SSDkUuJz0NkpKuNKlja5qQejLspq1r0ZmKbqe6Q4n0v4L9ZoxWUKm3RV16EQGgwHbzlZc6M+Wh0Ri5r+xBU4TSvqH7J1mruddhd9bFqZ8rmjo2wUIybdzrHv0M23EMGMnCX6rnCmBcKujI4cAQeU96hktGxYSoz5vpWrKkGr29jyZ4i07l50hJxV3cvnCFUJ429Uysx/JKb1AjNJxrNgE6eMJIIyXD6QZybXF9Y5rqFJr5qGyKXcmHZkdc6y/Wjmi1Y+3Ij7pXJsxmJ/gx8yuNhZifhOtjg1Bd8/olpOUY1YeJKO2P8O0haChoX07PH/+2TAbMrEUxYQyfF0Fk2Dw/1CFGxjDg62/C4iKg8tgH+oZgkEY6FeVFj2ZR1vNvkZRavzSXqT5ZxEXi3XyvCzEodAKuEpMQhN9XOHv6lFMOFJju09pmE2v+g1E7SsdSvqP5g/hnd7RTU4yR7TOxBbY8pxYosmCFbzNErNJlwcqYCqEK+ocotrFLHDvkCoy5V7kWtYfcNDy67yWegpEoZRXXNxH1FugvxNJvR2E32EDw1vPoXiPB0Ae7N5b+TWSJksWaU0SGaah/r0bXCPKiYu2FR1GzcLbVJW2kXID97PcDkayy6EWHUqyzB2NH6JiIz4JIdW+4wHch5AGEKW+w4LCytv9Xb+FBtwfYmEnb3HynXUhyzY1QbK9HRFaFkWrKpeyeGVj8tS/cmN/wmtlp/m7LCIsxsDANK+K0GWGrqRKgjAF2/ctBQ4fvcG+fOKgATdDDtTpq5XgkNmctOGA+lKO9s/s7+s8MmhmFF3czH0JVPIFnKlcx2s4vHWkLZXVb31MWB0XOadXN4rrMSC8jSSdIcxtTOfcg+azr+Qn2BzSsBhqKUZamxLibxKQj2qw8nMS2YFNHJVrWFpxsoRC7/THlXd2vlaIlojwvd6j6+ULycpga1Fzj7ucBy9gIfR4dXckGxncyT/IT5YcRSyLKmfZYHeNaCzGWKs8JiB0LkMnLe5hYmSRs11GdidV76fG4tjA/Zskd3zCFfe+1AVmdCcN5zGrdrKBhULemp4V6OZnl7jwETWzgEhzndtZ6N+rqLHMj0c8rBu+QIMkCyDmanS9UxdpYRc4v3F7fWI2cof+GXEMowfbAVfElmByIGZIeMXEkcbL8FSetS4FHrZF2pt80KnEO846aR742+A2mFQEyROuWAebvd3uexT8c63XvRsHrCHjC3uzCvEV6xlNmi1iVPUwBJc7IxUaCm6B5TWpWZlKXpvR9paDj5jehs1Ph8BWILHQkGMX21Sv7lIVWLsIz6I0gQZXdDsA5A7wgFKRmeGGisWcmy3yx02H4SK+bNy7F2xCeE3bH0SGUlEBBjnoqb8FlhPFWFnwri5EuQ7uWkty9ZDUYoArPnT6C4YXn6WKbktlkXL/r/t1Q0VehwAk=
Variant 3
DifficultyLevel
481
Question
Julio is 10 years older than 2 times his brother's age.
If x represents his brother's age, which expression represents Julio's age?
Worked Solution
Let x = brother's age
∴Julio’s age = 2x + 10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Julio is 10 years older than 2 times his brother's age.
If $\large x$ represents his brother's age, which expression represents Julio's age? |
workedSolution | Let $\ \large x$ = brother's age
$\therefore \text{Julio's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | |
x | 10x − 2 |
U2FsdGVkX1/orouwV9+3reYp4WufUi7yCv9ExcrQP4YyqqD2tY4pD4nPMMXQrI5H2Hn9Y7cFRiHrSGmd5Hxg++Kb53bh5l/VCYr3nrJeT+n2nBPPAmSML/Zyictg1sxx10XaAEuMHLI0o2ST4CUm3QYGfMvAdKA6eRnk++uxbbjZq1yqJ9ITyXGChrGN8kSUtl+hcnYYJ0447qGpMclRD/x5eXUg8DH2XXl55zBOHwX2fhxg6tQYolFoQ/Nb2iGhMLZrYaO7px0FD/DRM7FHcCqpp6o6UzEQBlLnE0qc0uFdTAIyUVg08G7NKA/f5OyE8gBdKcTo4YzukSsEYIYyayvM5ScPUd738J1Sng9J9vmZ/9/hwzG0wp9fZtr6XaBLOov1l3qyfruoSD7bdRNdHiTbl0aTavzHmFZiOSxPyC17BwjWdDcsUTZ7F/Os8CwDmCBcnlpj0BtnfPW63Gt3w9OtLD4DtEqX3GKXOgPuFVAkg13po5tAYQk1rxoOwlnEg0X1dC6p/sUmK3d3N0XR7U9zBhZkzTeFajdszVpkBVHwnrdHWx8gxrQQhc5vBxN8i0iaRJoJCOOaSLLRrFL77XrnylpE+P6dTo53SQnj2Ruq+uC2zdmChzhEBocMzqIrwkzF9S8YdCuqtHPVd3smIxMieFpMrYONbrQM31SuV+X3XOKbRpopoJ1xpnPGGzZBTfYDdZ1ZEHCHlOQzRE+Dg5HGAIc9CTibbF0EJFtBtuhSiqr6CfDQtlZcIRCCA1k3zCZw7eNItHdJoRM0BU/yojs6kfZbX1DENSVqi5P01GM4Iu+MtotG7suSZdUp3pTOF9tWXau566t9SOfKL8vmFsXfrZeniqsJzjyD6ycZbt8+Pi8+26wjzRTWzzx1r5pjd3ZsHmlxSl/rZOX39d+TMIxS+twwabAhVhNVdmVOlHATLU7o3e+R+tmafTGkTvPKeiRdAz8+lQbtzD4+d3WJdP3eS5xL2ebJwI2OZhjaXTpvgUbUg4Fw/urMR5qTgRP0FDGtxl1wPSgq4J7Hw/Of4KKQMVybFCqyBoA2dmGgOFchzMGTa3Gg+Np+ODglWb9eGsTquTZ3/nAN1JAYH0VB1Mkll+GdMEDJM80GHjBdWdmzvfa54/RGRzdWqBjGkOWuchSKEctAlDGKAhk5otksTKFJ555uOaTp2+H9aXS4qeZ7nD+RjbWa2Yqt9akyxg36BSHzbSPudjpm+ST3LXqPrNMnyxSIEsOqhM/CWi8i8U8Y4GL1FeiZFt8NhX9lP8nMnWDMeCqBGa4gDUNoXVv2vG7I7Pp6oMR00HVZ90THR653DUDU8vy0LdP/JiUyvtoewPAqUGyaaCeinr88U8bZNEwYNecu+9zZJrNXV3hITlfpjHmVuOkY6tWX/HYem5llTfst6CfBX1DbuxffwR2KIz3/67EzymTSfF3/Trx2Xws3XDPO7AiScsEC5O0nHDyaQ1CdJca886mK2STBMd0F7h28D21SqJCCTTbLlZxpZYy6CRLbJcF/bmxo8AoP8caKwmokYnOKLYyZ0WulXp+ixnWl3d6w4y7IJp5ScDP9E9+1StJPWKJqKveFsUtpeM2hlDMBjYUv1I1hnXFojHKDqigUr//H/YD5ueYP47SdTvB33rDiIJK/NA4ZkaPWKZDtUTaIqS3V0Kf3G0l77044y5DeHXCfhOwptaDu9oBlyDJXV0yAzOt/VeS8+AsCVrHP/Oh3yVr0jDHhd22bn6evxQgb/e1Wo7oZgMQCI3PY1G7UIS+GAQXFLPFs+paKDYURTbLp4DEujGuZRWOyTYvXaucGWYPHHEO4IsoTUOH3i5bKw0Mc+92WzuKWYLS6+WsCE69cC2Xhv0B+m2rHeR75IrZFayD+qgD493wAUo0PLe6zNSS3eQZ+z9LxfNiFCaEyh/5hAR+HnaKnMPwFb/5tbBJYOcOKGfgWrhIr332l6P1Ygcw3Bj018ekzK5A/H8U/bPG+t8oUXprptYii0PRtM/yLWWfuICHYrYz+XXo4cI9WVDv5k0PrlkjF29so7BToLdFPfGnynM4cSvDnOy67cJkCDVoJZRsRlB3Ul4NBsgknKze7pRTrzJdHuY0dW6PQvaA1cEiCQr9Smod1rOoKExnMHvV/GiWX9nIJfRvt5jeKOw6A8f10bwCF6oJ6KsL8+MIVRQh3No9Y8eX2CtMWLu/oX7f/JyqDQZpoQxaL/6JQXbysb8bzvp1TcdrFCbLPs1tDCoy/2ExyyYi8jvxjEYQs4Ed7o+SFdaKmsHpVisZuHjctb/2V8UKXd+eVd75xh9+r95RSpqOWtY6go6GbXQocCOSK9tfLffksWh7I6N4QOkSjIPmiOcwYp0ZzSPe2S24Pabqq6YwPu6l4I15cB2hzYI39MsPOWhUqJECWyZn35/ZNpD7HsQnFolontldp+/I6eCGGojmqTfiqxGwht+4hkeG0k8GYc+qd/4C+WEU1uP7Wz5CCywdf+BSHaPWhpgw5I4rPKFcI50T2gwRXHW6vYN5XytwydBjHkUS78JR7I2h9VWIrpgx6Ixk+0adfMsLH1HeWWc/03HnlX4RGWPYncx25WltgBBC1eKOmWMGe/JWLcrfcgBiCMdM4Ybf4/GEihZ/sMV43slljCAsOxt4WBRsk2yV6fiJ+n/1bv8p4BPyHcqOST4FrRxRlKdVf6tltbyURst6UcUhF65s87B07PAf5ljn9LHocknLfMX6HW1t7QISQ4Ase7VBwD+jyn+lNXNrfWZ+9o0Uim/3rs0CjLMmG+fw8RDbYuza+jbh2T2kDOHgG0ol73ICojyc0mjO02eRHkGP5X0evfku+wsLLI6fSTJPey6Hfwt2PNxcUjhTuwyw0LehYiR1y08BtGN09m92y5M5uIXcrlpDZEPna0mlGNEQ4rY/jq2U9qecjHT/J4xxkHhtxwhTEvPDrhd6t/PfGEB3VJveioBqZokLQxHJVpRvNuHug8ffjDbY/TkvVkanUIr+KIV8BrHI+KTAnW9l0AfkeAoWIjji7pKmUpc72GuGs3n1CVT82ZzDTdojJ6gF7y4yExZ9C6PbAdceyKfJaLtgJDgEpOF60zToXnqXXH0NJGvw2DwirA3t1mImZDIwAZFwytOrBDYs7qWR9t18QFIFzIQtczCC9iCpmfgI5D7QMSmQllIe7U9w3OIOsr0zRnJFJQIsoDIrIeVGLtXuA8auK5zIhZaHuZGlUKVDqNA6CBCAf9pA4aWl1fGSq0kL23zJH4IcEAHONgP7ZhyQmI3fAZzPs0EEm31WP+AeMWO526lIr1mIj4ZhMWNeyz9BpxtgjfcTkuCii3v6Ugy59fFh0gmXKBf7agaCestJYia9/59bg2ZKTHdlHfeRUWUuyEWDALB6rUsd3ND0vXQYkPjGjq6b3YH7EqsTpmKREiQ29OV8oP5mk53xc/UrtLGoaCuVAajmKZwousOfvcj11vifvZVr/ziP0dVbkBRfu4jTpGLePg3BgxkUnexc4G+WkX0S6J4BdM6oxUOxUslK4iLjk7Xcxmicj+WxhRNEBTbtmb5X2yoWTsEFW++t+oeREhp9f9C7lnYVk0ycdRpnZMnLcOJrwx20O8ywiywpdr5Jt0Kttda+vKFxhm0yeFo/IGHrE2/AQH37IamngYc2aqoZ8mbHtIYT4FKowcj8GJispNr21RX3Wl1gs9sK2zjJOYXoqE+DGoFnXurTqS3DjCPIT8w8ajfnYO+63pEGgmQA4IdyNfXJKTMeUlFjJeCG1eaaFmgGfcwXt8wQCMXYFuAqr0kdBFfD1SFmCxa4b3dESiLbBRWltEFQvaoWcbNKXbn6MdByw9cKiN47c2XDFtJ845XhezHQzA6GLEH6uGUMPdnyyckERfSl+Bmrtzb3xpRlSMO5tyB5vlKlB4K/XKpofycMsv4xEcFA6fad/cUUkEPcaZ9K978BwO8o3AQn4QHFCePO5mQmD+njVAD9t/Hlwk7QdxbAtKl+ZuUhlwaGsw3GP03hb+3A6wxhbgN3xEtsBPlrQ5fPYHVG+e+eXjzN1dIOkiZCHiXv/qL9GSnaHxThYLw40xpQ9dnh9Mbe2BWMDXYlytEAsIcKCMnh9oQHprMUpRuEMoQlg6KEA0ryUCs2l2NS11pz7j4hkWLe8/Lns5eJG4tsTpwACs2cBJFyFmojAnGeG4yYKN5/IReIsvnpO7q8CgISFqp98fCC69aktf5F/FXLAOZfcOBonOmkgFDOL/Yox0fYUtpNUqUaQnyRl5yavG3nk72sQT2w70PtDNc4LHuXjOF5UYrriFfI5hoUG3fKIoyVGP11j+QjQcpiXi7PSYldgG8foKU55Hr4H0U+w846tvQQib9EHd29w1hP9ORtQ68oWKiKr1nKvbsqW2RzKz+5qkBrkWgteBNZXC3gkEYo4pWW8KNQIZPa4wFA9ShX/3YcHSAr5dJNkiQhQS6oC5VFL9EhwhHF2yvOMIgC96hUzPWIMsTpK2aHNjVZNRHRhpxgtkNYcOCBzGOZCEF987q0qN27WhnjlhGo+2Tf6mzr9lQpswZ3rgoA7Bn5g74fxB9/xIqvAcr9Qn2wWog3GP6lqcnGa3rkWeMPEg5IxgwmrUcBChP2mXNcsCwNV2zonedvDASl5TGQ5DjF+kjtQliVX46oVomTDs1fUqQkYCACsUWwWQYlPRQRtSBoLvgmlbvkXELVEITBr/NUsrZpH5NmNsllLuSxSenomX/2lAZXUVMfVEhhXA8jv4jtyHh2s4jnIEs5XEKQ8uTbOwkW5Ue3AZJND/96ditCSFWbt8Y2Akg3SyLCdTm3bC2ciBShddCOFooJklJ/JVNwigx1bN6MmgJEB282eWu6ug0FVlDl77Sbf6igNzvMG46wywwmhGQUzzWmFrMMp2yxx7xrkErF8yKdAyQ9Xmarze7TN8p+Llex5kuikXLsbAH8qfclRObD1R5W8cIBKoaxhOQz07J/lUXR0tARzOTivGO1YvgJ+Pc1rb84jo3O27T8l6KtqGeEVus7G6Az2px3l5+TseB3ZxVXDsU59bL/N/Q2gLuRKr4ojTPydAC7Ozw0GdKJsvTZYTo2LH2+PmWj6JMASrwg2HgrLRI+3nFHNj8m6CdaCv4q3j0xRtlw96XirrceskZp4htEKTRaN9Y0HnnQ/FPZbVr2pz8WR1MOUz7+2JHdlRnTkeNc43C/ogGGVm0a+bpiPCBOjN2aR3eO5oYG2rtU/qTFbVVsHN1QeNhslga2K6WcbjQYy/1eifyY2gpYQWvsHnoQ7mjh1XEon8YRBOu7SNtdXslAYzHyfzOmZ2qbr5EmkKoLxbDhzelWhW8NioNnOPnnYcJNBAW0aLQIKDHHSEGXugEunSWYpSWdZ2BOMM7OyP0EGM7ZDYN9FST/pFHcUHKHt5V5LnweoC1HEkQJT09ZDRwb5m+3zZHhAystwR98Hh1cnvzQiLueffdK/8pgx3IE/v96qz6uAHIZeLV+2aUA8BaHeYmbXuejE2UFQgJYy9zs+9R3TdHjBX9V51qeQcbXAjiN2nL9akA567izHImfSwEzJfPkKwz5c+WkH48X4oJ23U0tsmlt2Xw2Zp74iXQtaiCe3Qm46pLpSC5h/wb0n+akZAIltBDgbj3lCOJVitTYTshNhKKknx+mEuIDswP5mtOceAbOICJJEdX0DJwtmmq4zAUbyGVZRKwr2LTIcH9E+grFLahS2ZOFtaUij92wEcVPqQ4YlvU1PcUw1LZdE/z31Y8u3QrD8dQikEyx4Fbp41q0J7jS3wmjVTKv8i3+OI3v6FyRIkwrz1iwMKIrfcBhl8UtZxBHGEfodP02ruIkQ2W/wbhL5j1zxFKJoFfw5MH4IASrU3ZT0l/r440pGNamJ1+4uJ+HEN7O/rshOBQ2RShSaMX4rnmZzFHaceOfpIRwWyWjDasZxItx/pgxwl2ekNJ4TsegVaNFZkLcYSOgT2X+4kDN8bGMQnR+3/eZkRW6na6xArbbZXS3LOQ95CaNievSf2JtarnVAkWF0gninHTQJY1SmXrDHhXiLotXwt+F+zaBBIyAfTx2/AZp5fVYBynodsXJGg0PcwWjAIeDEasTSrZJTO4GLecieYZVxuSnOrFno6RZMN2YSwR04jl32ukH5GYhjc6a+bGdHXfBTbLws7tBDKqLuJ0i6wdotyKreVoLoMQlwkUp2ioPFF3VYc3YN1G8XosVbGUep/PLkfxUNyMD7G6KfofPcS7AA7nlmRuSF+jsMzGw1YnTcMOj4w5hj/8IpZ15fLOcaaLZGZIjReNat/XHSBAr++Dwaw0dSF2KBKuZsXaxTIf3OJeBwwxPV6CFXvob5rJZp9A5i6NM/hT3HC5XIQN7Bfv1HqFxlRXk3zWR1Nk0GRoG1IXU0zmn0NXS2LfEF8THYQNC9fo3QMh83fGW+PJqpZmG90bhQVB0vVOb2VC5ilWusiBCRE69v2J6LR54IlJwkmhGzTmHh3ZnNRFJeNoRMARSkiKCWY2xA/7QIM0mDE6IjSlUGiAzb0tzdxLaOQnUDE/+HrnwVZnUNVariBtt9tj/Obbr0kOP40NbskN3OZnMTwsuS/Ns36vU56Cgf9OXvmcAnVce0m3xC95IEqJawKp3v7IQ7nfK8brm2GLxMic/4hj4zaxJJPaq3QQsfffHvl/8flKL2apCgpZCtJryQUjo0hgO6o4QHPf8fVuON0Jr6Pi9pDhgYyvQOKmdz9QT5hZBXyvqC0BFkyuS7l/OVxJfmIltWUbkbXSlPPwjV1pd00qsoHGVM+vuntf+7dUS97nMfZ+E/kCYswcO+Mjc29ni+eRTKm+w8VC8hG+Po5rkD0BccX2WOX5Dk4IcaRwcBhjMJYY2e/Yf8REdwoxlqs8soKeZyYGv34HDUbB6cjjksdTexZmLNKRf7rNEH/+xHBYsWHNiDi/i3UXIllKkBzqD1UuqndfHdRFypUf0k6hIofGPRdcNY5BsGhWpSJ2cYaMhAqiif43yWB3QmFiGhff36hWWXLQeG/fqQ0i+MoKxNdO8ejnbgTlpGLTDb+OZDIwklfexX78NP5LHpGl+Xb0m4c0mWgEgq2NaTrk4FxS66iLgD9kLjifOpbMO4cep0SAr3jgcmHKxVkMHBQmO8DNxDyMgWvI4BkiiYY43M3TMk0sniyjTY0nIXd2O6xEbUmDXeLoicHElRCj/SMC0UXIn8GdOIaqnwIHnZ4hInyiSMdKBDI/ySs9SDYzNR5GQMQXpa6QWoYByATvOJCHoM++e61z+bJtl7tkqz0ywZ3tRK0gNhg15wRqd3KL8AvgmkmjeaqQE9GQMwy6r6jQmBPqV8aqelhJHd4TYCq4gjNacomylnU7WVX4oSDJD/x/Q9/iilBV4idUDPqONoinvQkyKxEcyzK1Zf+gUVM1u/Yrsr+eOnYhaAyUfJwDgWjnlTP4iocJU2mn6TBZ3J4+wNEoL9p8oqzeqwzuD5c7yDzWNbT39LbrSbUjZ3xTo+GeTtTMAf2kyQJ2GxlEPrtaQEWG1lx2IZLLW6ldZRcbJeAVewpUFe4WOBL5YSSkdXfgizao0g/xxEYsG42Y64qKftX64kAk4YY4QfJ3OiU/5iORkCb3mNc3NkcR0GLOPPxtNMbxq/weO6jadlgS1VdFpHnDmdSXqKbiDL1zkK6wqrA8a2Uxud3EaaC9qJ8VI0NMxD8Hs4FA6BCXkt92q0+emIr/DhWHMfVwLdbZsRW3qNJlhhfYnx6vW1JCjKnT2aiSokM4ueCwamej/0k4z2fggeOc+Lx1Gkb3hqmusA4Rx99wMk71Rfkea4ehGyhA3R+918ecPPOWmEmTUQcH2rVWKsknJBZsZ9EtUwpZ9CoSMhdLTgMzple0VmMtWuHMp9QTl2OAajF5nfAyfCylFd0LDI+4C30lsVRfvL8pMFjeunya35hk1sLQABq1LSEXXOwMuf3ednrbhpTQXOqAYxivnPqdbePi3HlJolN9xRJ+RxtRaYPJndNh/7golSLQzjnjqsbWZII+cJ69AaBR0dVqEvoIonEGDiLxqbJKXlfk6WEN9eS7NoMsQMx8upPcJgnvXvr2fkObfSXcFV3pkZXGVv1rpvZ21s/wuZDXGyaLQa2m5zX6oDdVLIoNubVEbnLQBoefrRsRZB2YkztALCcDCEHUio+VP8Q+WNsfSA6yRXznqrHgwIr3Jt/GByJ1/6FGezoChLbl1OFkwRkxQ+8VQrUCOIrU4uN5UjyIO9sZWqYNuvyAgkUOdvYy618PfUb7E4DWSDHqSP8kM9IsFYTFki1sDh3TyNyQg0uGOwmRxnJSXGhvCvBb0oTselGMIdRRGgMvqt4OpjQsyFNhA/gN4sHQZ8fZeSj3/UCv+vWkpArzl+zmtSgApsGGzCNj1DmBhNSioXiXWZNXRSZfWc7onx/BA8hzs7p6sN1Tz+NfEQaZmceSxzPquee07BqlrsQhWrC4Tuq2DwrxOfe/mXrOji8DbRcEH4+Zmg26Ir0X9LPPiXPIXvnl2t3E3VhLIpQcbA6x7lPoJQlLXycjIyABin4SIAgWVpimRLbW6nNIF7/nUtTgT13bq/+gDcAM7w
Variant 4
DifficultyLevel
479
Question
Bernice is 8 years younger than 3 times her sister's age.
If x represents her sister's age, which expression represents Bernice's age?
Worked Solution
Let x = sister's age
∴Bernice’s age = 3x − 8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bernice is 8 years younger than 3 times her sister's age.
If $\large x$ represents her sister's age, which expression represents Bernice's age? |
workedSolution | Let $\ \large x$ = sister's age
$\therefore \text{Bernice's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
U2FsdGVkX1+n1SMmQx1vI1bgeFr/OL4f65quJFkVkTj1Q/i36hpqQkwlOjWI/TdsDb8O3qnF8NS2wSWd5R2hzZd4hPDiXFTKdragpHQHH/XRg4Fih9aFqIpaw24pUnIJURZtUdTb360+tiTWMfgBhtWhd2IoCHvcKPZbJSBZK5bX4tA6C3iNDXJXFllpuB4k0gy98Jg/F4sdBlTrWjmUDZ43JQQhMPVjaWVXsE7XyqJbix5/sYGnY0FlDFw3PeT+spG9ALDq5G9z9qxsk00kgUs71qzmcmWWY+vZyymutho1atjWRPTRGglicZKRRTZHdIrhrQCsg2TiiarLHF5dlbAYViuRAcUmeffZ/Qi1gyRTzhijnpMX8fHAbesM4Tg7FOg1zuQtSGeOUKpiypu9jU7kyhnsKhH71ssNZ7b2Lax3jxA7Yfm+0duk0baQSTXJrqO5Yil56bGJVEpup91lPoR0ZWL9QPqgEYGoO79JCps1varkjbkn4ZuBXwLIq50aOO3sw466gWtkqyi7Hzu6O8rvL2aBjwghFRIOQby2+0S8nTqTce2lYhZdwRiJXfXp+0J25WU60+DGDOIVSkGVotGYALE3Ie9scD3eAtS/AK1GgvkLtuZEN1DUq5ahgRkn8MRO6tLkLhj3HAW0xGWDkpU4Psh7wIwDbBBpHD5Ojm5PRdBDAzX7Niv8reHG99QLaYKHg3mkFWv2ltekJLKdiVLMzELHG5RpwjjBKKMFDQVa7VcefQQzoL3RXWnDBYr9VufP1uMV7X+pKJZdlMf2taLYsIhbADUv9wiT8LNqpD+FDViYqQHNPvSzBO3YsWaJDV0ACkPFJfM7FWOzWRAj8s9JsOsl0whxPf6FkMUrsuOjw9E8F1FmNyspvxIzXAAUPcCnkVg19F5bUwB8Tf7pY1yZnc5tG77UnnLWm6UgA23tvrL3KSwicqKQAMR00CXQjDavoQ44gjwc4SFFUZb2u6rNA6vW8JMKrjg3xiHmbUsZh7IKM+JCNoZ00w6s8w4AYfyS50aKd1x9ATcdGt11b+kDamm7n26spD4fKozRCiHhC+6J86t6ZYmXLWGT0ZzUaDUkLthEUBWLp4od8lEnAMOUchN926wZo0vnD2iAHz1lLqv3bl1Akcpft8jICQ8OVBgZZBI5lMxaNsodnKrdbpRJy1skK8nMiULmJZcjpcWSSVAp62TlorPTrNEEeGpXF/674PcS6fC9STiaroyWzATpYixLRi6wnMJyR1SxfbVLUyNqlN8XhhUpow+Sd/6tIGjvaetgPCjQvDiXtD5HzuM1uozYGS7ICNk14Vot5hkFjnIvG2jN3kgLB9udrjtf/XT4c1z5DPbbkqJ0Xb1HYTjbhHOGLkPH7AFn2H+CfHfhGX1hES0t+zfNYcwdKLKk/wdTLnMqU7FstTO/p7I1VpfRmhh1pdVTqPVELZee38/D+tgWbunLkbyodsBL7fmlI21e+ZB/BB4cK0wxTvf4+PLb8SKSg7EiefqblJ2iHRBelqTWW77MjrIpRjzGqb7htyKajyT45rOFolHyYT66jndDNL+taBCJ7j1zPwJuQPxMjYSaB+F3aF5lHV+rcqfE8pV8GXRXQvDCbGLytuRBLUQ/VryQkba83nqUdrFWYUwQMdFoFAr0j14vxXMxQgAoUGbnlTTZDgNWlLpMF0Euq3rxCiZQG8wqPyeLSHz9oDstJ2deebiE/KEnm+TgjPT7p2V7JoQqAg9fgCPMBpe8ujgUNYn96ZpRuXAwGtha3YmSNw3s30aLtv053+frFBxQa9pj1oD5Mgqy3dEuk99znn/H+F/Pm2NWLYSHBJvLx8ZLo7bRVBQIXJWS2eFqjkNRBhUfBAqQps9s6MjiT6/QVuhmtu8SvIuRPLV+nBXjiTLeuOH/hnPfXmVtKEw3YTH+OVHbaflPUp46ZfpV1MStbUKhZoYvDS73hzHTM/f6zo4uV3kqgq+3a4t8X+7w6iZGNDa+fjYQUPtNBF/65fXqHuYdZ7NA5bnWz2eTKysmfWwX/alKr6+IE8zjoHpA+mxZwRlSSxDjerLvoBggWTGH0dF0bd3Ttf4qa4f/j5E5d6oyTnxowOfr37g30/E3WL+MAkX2Bfq7tPcU7gxg6jlkZnYfNToEJrTf3Hhp2S0ccn1Y1d1OFLTfcnGhMZkl5CEfxQcpZXsXtWooOPy0u8CMPrkaffrxe7wlq7ZumSmj+4cJI7SqAwDk21AALvrQVdwBj6eNIiXLtrGimkY5mQTCdigGB+ejcrpusqYBmmNYMbXrGiCXX2uA2o7DFyzENhjuj7tZSlw2KOZIvyCQomNGY+fKZQ24zypuj5nojo09R05R10WhUzNNJCIGdsDTTn9S6K7MvpkkfjW4J8pSvD59Tla6kvBkDZC38Po6SHMeBKgg7DAfRyGUttuCDEdwn0QAaGD5OmQU59wpvwt7XKWtj0TRXyySpS3zgiuliivb+3AJIwWma5pMehNpDDGAsgReoDECPuP1AbU/s3oPd2FOYJq7XCabGnD13bJ8BddEcKfWBgyJTvv3ekfNxe3c+P/sRUmQfdmKGUQhnI+7PP9EVywy8GhipAW0Ud6c/NFL0jmndFEkrbCJE/5poGAYfseCSAoxssRH4rm00FvEJq/qMUC/dAzvehor6+ZUm2qRqHkoO9NYxUymayQarEz07qPTviBHVlAy+O1WTp+1gx5nhi3b+74+AWwPgSBmhJdAoeAnXekn/K8ZP2zhUyx0m+x7r5iZOK7kZxaWVp8JAInRCCrPERpniqxaar/qncDFIGXT3QUlFjxB/6NDVMCtcroAiRrMBknE3ixgV10sGxp2SS7E9ma5gdfnbxRFR1S21RkY9V4YI3l+4ruBD8+3oVcYR4FtLWqoNONG1vfDKy6Mkqc2jzEubuSQnSqXYF8JRp7QVyHY3PwraB2vq0oj9LJSLGrKlLnaXp24pEo5ZWQ3bJDOvrOmjdDUXxFYyOhKkoe0Axy8uUcKWOLT/X9N9Rw0kiL6PI5bW1s/bdXZoh9q7PyKHJLEwWNdNiXNWTpJx2mWqKSJSWnKNR+n5bs2gPdcwC5roRftoQn1Sr94+WmkcOGXdo63ISuOgdrW07c4yrzv9B/UTsGzUJmNgEk2Adm/XDdfz8sU9Nf5z22g8WwfN6wla83ylN6YccMbTSeVmzNies/4e/2aN09bJRq1IfS8JcEjD7DndScX6BbsH5SPIRPnSy1MiXRlIGsf69Pb2yuZhRdmMo2KTdllWlkNz8hl+6bo1EA/wwy7EfGS5P8MrGn2t/hyvm/IITKn0nnKCiJArtUzXqA1SjEwdQj5wev+vTrR009fHcjJEHx0V8aS2BINb5efmIsZxFOzg9I7bVqMU+zcgO2d/3QyIfikOZm0H1iEZA2Py+I3nPsKqwz0+0Xa3WZEQmpAEkOv/dvjMAZt+BJPn2j2kuLNdSsB+QGGoqBjshi+o+vsUCEOw1fTdcKh4dfQZQy0G5aAeQ6m8Qi0yuT0wnqXpoJO5kF0UTP6XGAiYn7ZY5FbdqEpZO31TDNmnmftXMWp4cmwUjEI5eJGWIcwa9n8OCOy2uORZq+pVN7i+dIC5HJytwjtpEUyFhvRlwh8Mnc804is8jaAUsnaXMDt18lcwqEgFYl9gH7BUerlsV4kK62TbuOuXV2D1vklMlEoWqmYpfZF2MZK2JCMXjdiYJ/qz55mfsH1F5xZQtidVRihZK3JWiP8h1MT6yVoSYsej6Z3qT/oWEgpIw3B9DDYvP4rvAT6lwN+yATWNjdlSB4UQ6GkwqO1onkGNsKWQC2H2tDfED/NBpsDKfssF5wja4zim/0IxlJI6oISIhR8oL+xFaahJMOAayWGwGwYbU3LMEs9tH2PcRD5eb+rh+icUlX7MzZjTaSWelYFCqUQH0dTEk2X3NCtP+kPpKtb1dmF9B3TJsHnnnn3KvbkTrIQtfHVku/Dwuwa2PZsmjJIeV9W4YKFj1by4CM4PtX7qakAczcN4UGRPapijjC7Dc8z9IhXE5mh8lY65yz3dcB7GW/8cLAZikJo679R3JFxgErsvBmxzc7uXDCaQOx8jXbECSbJd4NoQInj7u2QzKIBvm/Ws09WWzct9q60vb0O0KRgNvI7nfizJITcVjiGRJfKw+XXm2RW1ERo2xfztajJU9wUe719CunGj9nGvS4Umewhpv/4j1XZRrp4NZJmLOYG2jYndmqoJNFNHQ7u+szOERfmI4kFrnjPUSOH9m9evXRqjuZMvQXmThpgVx56g/tuIUoDZnG5MLmNJkoaQnA/1v5XAvkVMMrJB2ezFUxLAuMbscn7nFrDdYU9HrzPBmlLhTZ5O/3XVQ2rXTvuIcLkR5AYf7qJRCAJfL3ppdQM1izrWSyuCGqXfQ39qDvxl+BwbcCwKJfqitenf63MPVIKWd1jZvpDKkdk8ddlvkp8UDBsoR/nh5qkmjKIKxv2Bjq+al1akwC0FjbqTrENsVNv3EJHI8yYljrFVYYSepeyZ5Zfw8/+TvQV+nJU/QembCG5ruNR0/VyuosdH4k2ks3s2PNqOKJnj6nk9M75XQl+y5p18ZvS2fdiqM8hBNNiwxM/M7PfS27ATo51JZWo6uZGr82/K74PU+raxkkMIcNji492JaH8KZBx3Oea3bxcwhl2sqn26VGSJiK7CspUkknAfWFHl8X/p/jnlaZ8lEsWbXgh/wRmrjN7ahX1qc16mlqtHFzMZCeiPluZQ2k43MrWiFsW+GlHf/+izUd1D9HL3EBbI+1W7EGD6oNsbIUL5eoZvXIR/BKgsWfg+9ZDyHzOORClmjUCru5pV9QQ/Pa6F44wRUYhOaRbcoEz0uCN3ImF73fCzhoiagqmlsWKO/KUNJiHU4tDzZIgldrKALsbUFqP4njjU5tYK3SWamO2PN7bGxU2pybovkE3Fg5GaDTchtsuE0+LZ1oJLift1H85i8cd7Ak0Y+dpkmqY0mjpQB6tERmgIMBm+MXk6AUF99vb8qRn5FqnpghXDB7PWJxDGMPCl6wniBzN94xeBi5d1gts5rYe5S41uKWEhFVOo1WvjkxZ5JJZ//MxKO5Y9FeUck88ceLhMryVjv6D/0wKfU5YLIfLjixf9U4g3kGopQQY4PwU2uNsK0y9iRW39mwBWQHVzPRvU9qotJq7/YkZpCUW8Xb71AnoVbIybrrj+VbDToAlZXoI+5YK0LLO2wn4zpsF0ldLwJze8/QBVWUIBydmxiAOZZwbnAGG4m1Me/EniAWv7e9Lj9tcAK6aWORWhS/JB64e6o8DcPn3toVV/eG0yvPnxxD5F53xpo+wR7kkSgbVlCs5Ncm/4zJazCOEOXubhJEaSHknTUUcHyS+p+wkzGdxTS4xD09Sp4oEpLSLQXck7/I96IJEyBOES5oTJrG5akwdChYBxUtZRmU6EDSViSKHeC1KTxFfUx7INwn84LEZY5L4PgvYJM7syjRfTAwIrHgumOFLUpDee1DEZzzujIStLXdCFe8ZJYFo3iNgMoLnvH0nkp8whrRft6jx2n9aq2wdPn/oTZj7QeAQ4RlJ3mrnDSLTfoXtb2+3/NeNWmP7KvbK6Zb/CoSxSwq5bALlaRKf8dyaxRnXMqZfH3bL8lbHs5oraivPtXNWOppdk1oNJunnfgCbGgXUdXlNnihdlEWfXbog71T5SB56kXBvkevzAZG4NEfcPKEg+QIqt1je0+EWw2XNIFtJKN3EydsVejqYbd7cHlOMnMHBpwJ2jxUgr172ajTkg78U+eAZLt+lBU2Wp2At3++7/WYnR49MHbyv4Hduu//9IZHMB8ndiQbalDNfGGZ5gIb+LpSvK64WI/PfJuSihMohYfec3eqWBcb04tkZEc2oWPlcTnbGdXl2TgfVQEgXC986YmbFxhCrENZrmNbhv+bjW5mJlKT7JZgTlX53x3jSim2Wd+PCmu5r59sn/2upI9W1tn8HEEG7GvwkG7b/g6ZSotR/4iF5Iib5vh4JgPnTEyWjIdSg2vLOHw6lhHMssMnDbP5cblYLSuQqUoh6/v126s85t/n9mr7OHLR9jo511YkyLeGzigMTIQugQVx6ez8cx2aU4NUjptsu1gjGbrfabSzuTcI0LdIJuPSPpwft2/Jclgn9U7ROSPpbPcVFB+TTYMVVvxN3glg5Zl9eSuWEwZ8WN8AVzjLmQ4IFw8qJGkweQavI1cxXmYnJ1Ss7owDeMlzGtmiwTkRcotWCpCW46u03DKdZrjGUpcwLqGght12aJ1PG+EIkaSyJKexssJS5Rs23VUtgV1AAf4IZnWE8GjDV2QIVJ6sqvN4/PdnsBZ2KUkeOtsYZTsrLeYxTOTfG4HqueLgHaSH3LI1RO+vNK+Ktw44knj5SG4B1VfZaHc10FrtwnLkbZeBMraCBCwUPyKAf1dh9dFNHL+P1OpbHPdfxgXvfL7CQiFfl6KZBD21SkZ2z9UCN0TVejQi/AyvM9GZahADCuhZOPYqtw/o/0/9qHCFwlW2tlyWF4E1xmaH0fMUHTdZHdZ4LN+mQciYpB9Zi1inQXbTSU8wjC0+fIEJotEpe2Eo0rlxZq3Iu9rtXX/bFRYtJT5RDD+Oz+mINTlaVf1DsIi0rzIu0ADF3K2royV2NREnHlsSv3KqUM0WgIL7zKkI5OoOuP+raSUCiZQAKB+sxNEbYErTzy5iZ9kfBDg7G83cUltbGY4SvEC/LjFurueJCWSjCiK5wFDl0+/CY6e9JWikIUAGmpzwEshbjLdJuhb9cCXkNd+7vZ1ZkNc5YaysvvWNJ9X9I8bBLbLLEX6tbRB56yrBhSAeSOUf70lbw05UnSi2wB/CrFsYccVEypj6GkwZTuxYmDtnIF/88Ndad2rgurdC7X7cFWqLq14zXmebFVS7+v0lf0qDsYTTaaH0BEbVY2Sdi4pST7PdKNpAqnGBR5k52NNtx52q4gvC6bCHQJT9G1bZHvVuK4KpnQsBaYJI7qHxP6RJt8EwE+1NRry8oWsLPKUFXNgILtTMYZ3K6HtwdzpFUVVlkuzK6amfo/seDxfnBAGbLUxy4lKbT6gsIPhjbf1Nfd60eeg210oqVTB3kOU7DxJ8R2f4HHY7tmJiCykANXrFHSlUVkAHBL2tY6kQ849Zav++Hhy96ETcRB0J1SUNC9+O+bNQjw1eHu8tS6eMFhNsog5qTljZCnF846BGguSy0rcr9JeXgu0r/gCSCilRDEPWmxVHZj6IR8ndNDU+mabK2LltVsKOFYG2lRvdDLwNeXlkQheeRgZYUPRKtjwjGf/i0rxO3ZeY3+LuLqefZZNUGiCM+u/EL5rJKW2AIhMv3StkmLTS7EE8nuugGHuPyBA+6KqmREgNXUphUuIlXOP9U1Mbkw+cTIYJQq+dNpVJIRswPe4lyaVT1TtDu6024VN3mTTA1maJkImwQNKc124Svii5vOtRA2mUB0F8L3BZmG0mFIshfGTHrjA47avMSWuq1BYNWaNKJz3t9OroI1fbZxJYAeyhBzmiGNj2ECiLNp9qz68PzoOtBVSMsF+3A3HQVn1j34Zp8wcuCA1mfpgFUM92P6wFSH7iH6Y4IwmJptCK4tYGDa1Cuz2rBEMzpC0PvbVIivtUNqq3CMBRONF83rdzUjin30b5td4HjC/7/NRlA1igMjOBjmAmVlPrdv/aRdTgQngnUm1i8PYrikV2KgE2nMCD1+RDGkPVQqhOvdsdMHxDUIpeGp2foHZAlVi3HFsg7v4DZyyrLZYTTfBtWMPr6giU2+WsOZLcmMPoQu+VhFAE+WUzwav6zgk8DvOiipn2IkrFK8EOLoZWdCg82fb/hHnHvmS5uAW/NLMMbQDr97yHjTs+iRgrPVvqhmKh6K6S7e3sfF3SqPc/ABKxSSU1ud9BDYJI8Ogyi+eN0ap+MSkFcjJVz/mjnZKM1yKz1xInEjNmrZznQKLHmNk6qc0jZUS5LNZhErctSqKLMAP2++pEf9RNgQHpPyobfPKOWfEaQCGRxlEJLtzRUJ/d5zQGrB0kkEDx03M75jrKt/MOJcPu/I2U5PiLVME0X5RALtpyE5ladVex6xJNshog/G8tDHb5lb38t94M0SqbLkrheedIHgh4Bu5W3jJFbmTNQ9J4f6IJCwSF91yPyyiDzFwQbMhLwaVdH578B/wkbm4Lu5sj7VZ7RE7KI83HhrePWwZDysp8t24KWa5sSMh9U9n4yOfwwacC+uwXc3QVyoxCzBJj+adOKD7EuBf2/asSoOnjzAOsMh2o51OROoeN9VybmuH3DNvgvosSNdYuxAyngCZ+kAQRE0hLVcVv+GgC72lCBhmPy0D46j1IzzUpZCI3S51SZLLdAnPlRFke6wznS9nQHKwtXeKzq1zCQW+PPdhckMlDn9oOTIBVUs2UgEhEBTmEE+OvT5k9s1OJfAWGPjKXQhiKraedX9cxkRLG4S17/5rXqtliPKdfyQ5dZSvD2d1vqSABCFTiGYvf+Iwb+LYUf4Q8WmRwj79hoEMl3PndAHvMcgqL8FGyD8QvFC03sI0kXFuJNLd5l6lh77FzgCAHEoOZlOQ9RovTzNbSoBnUkQSd/aZJDQIfnnOpM2qSifLyvqy1GsUavWOMGUOlZeK7nni19sUWjRueLPhEC/jPO1k062S9AwBRtSfzFzS/i60nzM76IYeI0PfswRQ==
Variant 5
DifficultyLevel
483
Question
Oliver is 25 years younger than 3 times his mother's age.
If x represents his mother's age, which expression represents Oliver's age?
Worked Solution
Let x = mother's age
∴Oliver’s age = 3x − 25
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Oliver is 25 years younger than 3 times his mother's age.
If $\large x$ represents his mother's age, which expression represents Oliver's age? |
workedSolution | Let $\ \large x$ = mother's age
$\therefore \text{Oliver's age}$ = {{correctAnswer}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | 25x − 3 |
x | |
✓ | |