Statistics and Probability, NAPX-F4-CA22 SA, NAPX-F3-CA23 SA
U2FsdGVkX1/qAkFuKK4AyQxVX7QvUhIXKneQVLTvcSNTzZJ8AB1Py7Cpj2fBPBlZ7hznJyWNlLZ4voT1S1iji8JDnquW6Z0W2AN3Er4G/f3MVuYjOCJ6EUnrmtwRXOvBnunGZsWzsUacRDF5FM4ReQis2S+DloOAczWsQDilp8RuL57ZzoC3JrWJvZvr0Afl1wgp4vmrMzvcbma226hTjRly3Gs0SBPXJF4Syw/YP6KmWxbokVhddFPtEws783kk7XhRVrhystgfrZnU1pRSoSpRQQ6jSxG/nmdtIkfc//EgSbwERT2aNNe6PxR7P87a8nyaH11UZXFKm7+8kD94IJhbL8NucSHZ/Ag7xcA+cz3etB5zuDQcl3pOqcch2CLCKREuhzuIXvcdUU8ZmUreRQkfpLuTtN4HJyBiUYg1fbZbpeic+D8LwybNbf1FQ+89kJTwuLd1zv5Mhjpj1YLZ11D7i5RGw1FL6hlNT5coyDvtcN1cg479tNaqexlm5o1iICcADDBrDPqYt1vM71CECYC3Q3Qx5TxW8s6JwDii5v6Yyl/KejmZ+p2ZPMOgUB0ufXskjQ+jbMfkKPXeOlKsssk/VyVhc97QMcLxRO5dMh/JwOmlHDIdhynzZfsPzgyR9U4ySJj3Me4lWUn9ZYcPhISEuiH87G8zNmipVi7EJDo0A6+ReODist94T4fEu25UjTd3/5vZJP6Ll4uX0bv+blxMugpJoxly68PUWAdGBqjY/m0emMgIm9Y74KAWx8tRVZ3hKIGHdGqR6j3PSjnFLUz+EMeyEnL/eUGvRG1GaHAJI1HxymI6mJXH999VsyCWGcB1QqMcODlg3ol62tdDD7wjCIXuHKmNcxMq9xhk1UtyPbzBqRU681doSeKX/wrNgrJyYn1F0g1g1f/TfW3dyv0SLB5MsKH0xzKGe9PrBYtXkw2qV6kv9zrbRMHdqhw4k4mXe9okHqNLsvnuWHqnnhP0OgcbXwYSefy5qLKcmXf5scmT6QGIxw2VOVQkyxW6E93YsSepapZRcfZDrq7RS5B0qZd/J81mLeV9j/0SkM3ZODywoPcFeP+BRPiLt4w/ie0J8DT2mU8/wPJSRL3PtNoZWkbEWQlZ9bK0oZeDGr2gwLK/2m/xZM2WIWHVkWY35E00qKAShz4Wvs9+6nNJOjII/bPWhlv9IjjzBGcze9ZXW9wak47DIfnNptmU8oqQ5olFx98MlrPuIW4nstC5iiqmYveV1wwG5v3/LfdpbD598lUG0bGL8+ZLryWL8FbtPiqP6JOuJ7jbzClAyii/Up+KLP2c/xf2k3MPBWxmozDG3ZnocTFfpXL6OZ4rmx7580X4r8W1NrSw6y+eyRAhkLANaXaZoqx52M3hJXhxU84hLjim4asJuu82tSufLba0XankaoPCjwaFQ+gve/gBntFVrC78aD25dYv3OqbtekMG5UJcB9dq3TbHvtGzGtuYqS3bpOZ4U0Orl5sHHatf7MA5FFGwEOlo1WGM1653lWAjwe+cIuc1JjNKpl/N71Q9giR5aGwi3kgCzQT4SpoV9bq+to9CJReoV7zLZlzHLS5/ARlPeb+5gf5LsRXgN/L3//0HpUuv2azXvRRZ8LyKH2OE83Qr51UtAKU2q0uSATS5TUpaoN0pdXPhlsehRTSZwt6KV0U916TG/8LBd6M5N4RPnMk+h0J3iwpSRMVqmjO7xURem2ZY/4YH3vJR6Mb8njOZacHflyEt61nMz825FC9hWp1N2VgOKzyZvF6iZIQOoufNk0hW8V6lwTYY6u6g1c8zijlU1e+p5Hs0WnMv7TEafj9tgVGMan/mz9b/mDxYY1OVc/Ze8OKIJtcIiUrnt9ABAP+9Gkr+ag8KPYPSX7MtzVpYm1+B7/4IMkjeLFTMeF7wkmHmwo7jPERXhdnLSa/ZfyhLQD49cuwsBnm233E6GT9EzzZCk4g8aQVa47AcQrLXcxt8jTCkUpDW6MaD21AW13MtJjYnPVOZrMhcl9Jk61bR9usvLFvrLp5H3ZCO9XsXYEJA51TdWYlr2Q71XP9MmH7hH2WwbERU4iUS6EhpJ5rKIB9A8+DjxLhXYeyQHJPmNRAhG/wxP5YOemi01h4v7Y5qobvRiXrtACY2UPPPE/9lGLTr86KcIN8IbWpMOEz8vRPvapBE6oqSmRBkkbR2ZYBmXeIXp5HlROmykx8Rv9/3WdTI1ONhZqd4qIUOxAP/VyanuUbnpHUpzsNXRGjUA+dOe5Dyo5J1IAHgm1HU/c8fpflifpD+IN1gos/jB9DPp4nyfY3AthB/ddLsyOeJ2H2Ibr+9Fgb9yhKMopCCBhliPmKzBSfu1Nlj4o/Gfk0M48coAX/WUCNbVenmHZ1WPdxxcHv12g63AC7/NZckb04enTQpEUuqbg8aoFT/HNKn4AsH/S5JXadDjF94L0ENpAtINQI+4W4LoUNkR4meg0XHAzmYtoOhQPIuyMBAGm0fmUv8yT334o7KRcqkWkY/9UbM6Lvm0PJlgNBs8ZZDcCogKqxLvd+sMao6ncaxoUlwm+zLBOSM7n3XXyhQ/9dQftXzIt2K+0coTg4Hem+gvyT3Rbnzrq1Wt5WMrPA8QD3hGdJm9hunBlBOGq2IXiQZZAmLl1wZLZ1NV27DB5UQJkdox156G5Vzu0rD8dlJSeZPe+/hDdmyVUeDfJFso3BvI/VCwH+Fc/07HGA+ORHMAoRAjp9kZ0UBnCVG8NylB5FADy86otnNsfzgHwTAUiNuH5Vui1Ihc/cfAVxhVZ34HwR0RvRPd961yGbMuIXlNYiMNs1qiemW6YqgzBkgGRL+HCJxmFD6r8zDEZS3hyOGnhgUZxWiV8GdgEa/VMWPaSG7jxNQHfrEzekQ+TulkThRi5V+ohF21G1QUKuhkbRFMLmKxtjt6Km25fetlhk5QfG844P9WM4dLo/m1np8F16SQSAsXlrbKIEKQ1iTtdenvgVylP8UAFS4D/j7u4GPqN3dI7bpC4vZNxerfSQofWpTIoTUbUPGqINaFLhy1Y1HjrlBvYSt0xAcG5PCRKqKKCaSl6tMSLLKTCl9ySl/GhV+/BlqAwrygFMz2cQUiAEHzw5CAeCQCEg6bP8o2XsnV1Ntl9scFVz1U65SR70igp5RnA0itJOEioIBb6mZBWtKvA3ca40ELvpklG5Bl1fD4UbUv1cZwio4TmMBhzyzMe4mdZelYSMxBIwz8XC+Yb+pOj+7FxU2NTdw5DK2JPm2Smfdhcu5fEi/BperojVdvUrqbW9MyjRtwLWD3i7Zjjgh14ZAbpUG8s48V6twbOq3fkR3x6SQvBcfGaq1gIYViZCM7EdjHU36oecVhSn9BKxVLcuycJf+k14D1q6oTwt8uNQ1TZU6Vs56UHWpG66JAgEiWI+Gn79ejD0HYx1gFBeIapnfH4NVEWPAsiAy0ReXmd3y3y4XUTwKTz3GlUtrEkl/L8WwvAWuYVgEo72vok6R2K27MI7xwBV3QRVufYcBSDJeSJw5cXVqqhIgMzpIyr81UGWdubnIIkMckJMKgNpPoAzP3D0qt1Pe7lnJfbfM0cCiNwagK5DORrVRIrazYgkvsEUQN+scnAymMKycyg1WJRqwfzX5W2HqGkrvfwH+m/ASIZfdbr6ySEaPpuCMZWB9rrLKTtGgyhvktaoK3QFhQdBcl6d7TQt562fNS+7VuvPU/kvs2K81ARNAjfGEla5QRdLQMOVU87RjoWx/zMJuYG2iBWEfK1H6FMvqedLdE58eRS4iXv0uKjjGbx5LUjuth+9JeWEGiPEJm/boIi0X9ivIrNz3K/EXVqKA2bUyfQKF7UPItKosLZa5k3DMhwL/h9xP+B97YE+SjdYAovw1Vs3Hd8Cgz0ZymEZzdnsdJjKeJjHSIj7e00HeKQH5/BDMyS5rWwpRzAP/S9SZgIGG5ZxhtP9EDXqcQ0gDwLlnao/3yr+a3C0ly7so/iLpCsGHuv+inld9YF9JkcyCcvPZZTe9d81XpMRx8wEIf74SgTEbXPOMqoA2hkLIQEGRS/hozu/2a+pW5YSIjTELpjowLWhKgTEvNJcRdj6q2dZMlccCJrA6+fHIYUQrdOgg/SHNYOPO6KXGUKqEkxDtnEKX3CsJBcuu3W2WQz0tu9TCBR8ZVjtYz18J4hORp84PPRQKW5xZVaLWhrrdORjHtFsggUQNVubYd6OC56v89TT0+Dr/3CFMYaGSTM94U2QxnllGdEpFYw3hs0syEkCEKVWptK3uhX+Sji/eOYrtmQIZbD71YRucwfDbzHCSj9SCKMdBKi0L0uWdJvvM0z8p8nqag0xm7ylEQvaaEGM/nWg1tXKp4zGssu+mOY4pgilzRN6ALab8bVuwuqhMAIbv6ngmZMKUc42l0wWh3PSSj42yzB1ebEJPZr3rtqOdXYCVL9JTA75POx2aVk8jJZELE49vD4/hDpbGzrBkD6ykVIMySqfLI5hQpqp8V56H17szVTBsUiz21D8hqIfHI+e0x9QF99sWIJsiuU48Rv3Z4Pdxd3Cv7n6q0lB9zRMz8lIjjFSjO8iEGI/xIyYxUrXI94Fl6ehMl6rG4Ze0T9KnNZmVwKNrMGWPYRWasNdqZgP6ZH1gxblY3U6OBNoVmYKJwei3iyf+HGRT6SBH2Z+nX0GQuxL9FjcWXjhxmp+eGuHKvoLJsjCovsx384+QoBi9InvaAbknUE+rdL1+X8lRlQ5+kcC2UK00ff5nPkEycwFr6UkNkbg+1NqfM1mUZpwDAl1aq3S40r3DfEF+a64iJYPyh+rnFFNqMKNzg+dXT0n+Rg9GxiwzGTM4qrBiPl4ypgmOOCjyrlJMx/rF4XwqVkSS5tifdUqF0HQ8grm9iitvSPRqzpr7RAZFcWpWqmxwx66p7615E8xczCmQVeBnt7jmOTio00F1zgHzgPLJuAmSXhUOoaVeNbVFGDRvGDw70VB8Ai8qeVQ0eB9hd5yKx3/OgB6UL5Qzk7KMgPe60rF1QgaCF1nRLbVOdgGIJEqchOopUGXDv+xCYlb1t64iWuERXwCvJkdwTSN3KRcE9FsutbNIGWgKahQk1kirbDMKl7dtECGBU6uVP4AISI3Ctpf2sHzkUHlvq8MCB+nBVGtgM2LHgpj4oFtNFE4o2ZcdeFsrWjxw/FLa9PcAm3TwAxM6ZXq0FZCQcX8bnIMPIt6tehHELVA3/JP4OjW48TGQi5xYCNH3DSWWmdbmYS5GcGYJVWx7oRAb/o4UAmYofi/KBgDLaoY9xKv3DNTu5z2M0fUOen97gXFw5WhWaHWy9Zd3iKtAh9OYP6FPU+DKxxNLK8Zyi8ZHIayQz97Vft/BlnrZ62/1SKjePSU/lKb5Bw1CxwMDj+R5irIgbZBSa2FRL7mkesgmVD98jx2BycJ6kkj/QG+N5ZydJmhYdrYgtrTnDKJN0FT6TV5vucPqITb8qAr5vYcfX7Xgt2DQ+80dTY3ckJB/5pt+hs6lzzqqB+Um3CHXqC7e4719MoHgAy/c082dN5riSOM+jI/8lEl7i1LIypzdc9NiMeRUHuw4ClF1bnYimW8NcvPKLCbFULS429Hlq/xeUrdUPpFIiXUTj+YmaZMo4U5gHvajResga4ICrv2J2sndVxpcj1zugyzE0RCPsoKaejF5w6oQ59a1Xt+4Ioue07W/EPDqmAvmnVCIrrzwXhBPBoHxeSHY2mJed6LpJAgwm0hsGZ9oTdD8ROQUg47b6waQUSlc1mQhJekAcmfamiHGpj9EpsqIyFMQ8MrOd7oS5UOR2Ckt/JeQJePGJFZZSVZ1nc4Iu/RDYGYEPpNrGuZUvD3+3/NSI0AF40muBQXN8JVzyLD3jFhRFA2udtui8cUaZn2w2OY9mzm/f5k1LFklrZvsXxFlJaUfVpvs1Nl0Z2UsQoKaZ3t1nCbkjjhvlCPHmK5ma5JPDnyuBRlyXLShO1gTmN9NEOdDTEQNCMtGFJmBkQhGN97UYMyFyZN6dL+KwO7er6pQ/9GPKV6uW0kDFQypAxAqTfgAc8EmGAR2n3dxtTyzjn/XghQ5wyF2itmYxf1tZFV6RvFVfb1hSCUdhDOMP1VYW+ebmGx9hqApsn5rE10iS/fAyYPmdFj/SbkmFu78CnlfFHy2y6RYqEQ2GBADR50aEn2NHaQHw5krjk1dhedS8SU73RRlCoEivxgvmPynEZV6p7zoTXroB9vC9TYgh70D+CGM2DoGw+MJwWLd+HLUsMyavQFns0L1HI5L88tmOuUM/OGLEsMUmAaNj56F5CuvZbr60g531waT8ntYzzQOM7Pl/X5LdbLFXakIokDAE229XYD/jg6VsvZnspXGNVeT3hNtLtOIRA5QhWwdA+PpgqTADCxvQSMXTHo1XPv5JIdnpyhPFYXKpdiKiQFhIuzqlERYJBKtDWcy0GR8FXWAcsJiKuX+pVDr/R8Hf7bllGEQRhVRWuxibjzUC2xrVL2kjQxL8PuFIWCQVYlnhl7er8V1PM+3zLf8OFZnhc6FwTVPrU7w0XFI0SzLfNzce5ZDoD7InUlKQgQLmKNhUXyCPQGLM7ARCoA/m5KU8XJo7VgrAk/oLNlWVo+MWPJVQI8eTlhDO6G7/tl/ykJTlk1gPNlUENSMfRkLrwFmEdFU4LnpEmr80E9z2vwOe0KNgi1BLIDZNQodifhzrkN4VcMNFVh4BcPT4oacrK7v8vR8ITTFMErFo7ZJTbMiqahjQeAU/MTlbxTp/5rBBP4HMcCFay6QqVhutd5rWSisZsutgvXcqLi7vwF9whDh+1ucRa3c10xXmh6NfCtS8+ST4Fb4MBGKSPX14iEuCBrM/yfV/KSe0KUAW+FXveQm1pERMUrNtJITfo1+vVziW6RGriq+nekaxIEKhHRna8aIXeHCvY4qFNQ0YJelEUTozBwI+EJqP04xtzWwGZ1mRLHxQprpjfXoRfnyPEfr3a0swwkrRQTvDnQpw/I9o1pRWhLelOMrJX98coyLPdv+iJrCP7iF/XG0vUXhNPOMkr8nf67gIMSGdvpdo9vtQLsRfV1SH4PyiO2TslWXIQchbrj3U/cZuYhI0J/MPGbAL2kHPHVz61d2JYKQ3LLZC6AlN6Td20KNSscVn9cFWpq2uEoGhyfcFkLHEFRVLljHxOGwSUxUWu9ibwF/RBbkS8tkyndk4hOOiV/x7PJMtldfs9MH+LtHNlKGQDFMV8LrjpXetxPIE3p8q0PqKgpb6RcIRH7gNWla+byhFk/ZL5BJhS15JIWQ0T3+WTcLeh16XANudPyyovEro7rs4YcDjL7J5Ko49eF9pgg1bAzZILsjIyZDoIsPHLB2ZaV47mXE62eLnZql3l/I4ax65uUmNt6aHkxvIfra04GEIU1UNO//DcBC1Nw+/w7yxoLDilB0abcBgfzNFnG5toGcSg+mQyTwWzPpPe+RadDmB8LVEgSKhhiYqItKrQ9tCKTS9h0+Hhb6k96ZVqnrF0XvggRY6w2QTFOr05sh22DV0qT922UzR+FOGlpNsiYTWgJuA1M+PI6BvkE0E9e4QCXLAhwfBl5u7uaxXoa+lNqBe5N4rw9xLq1xq6TDGB5lYpnEomFSGnPxy5l6BwCtDv4DAD0pg4jewBOf7DsVO0uglYi8rU6RiJH/sUX9GvqcYrx6CfRUHIxLVeyWYuCx4rJsmKgRmwVjNtvxDLhF/HnSHbwODglet1Tc0xcasLDlpaJO2Cju9xj4yClTXCR/eaEbXuRvlcqcXjzoueb0hD6KBtmY02cCaI+c7Gf/97ml0Q==
Variant 0
DifficultyLevel
679
Question
A new museum records the number of visitors over 5 days.
Day |
Visitors |
1 |
220 |
2 |
200 |
3 |
230 |
4 |
220 |
5 |
180 |
The cost of entry for each visitor was $12.
What was the mean total entry fee collected per day?
Worked Solution
|
= (220+200+230+220+180)÷5 |
= 210 |
|
|
∴ Mean entry fees per day |
= 210×12 |
|
= $2520 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A new museum records the number of visitors over 5 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 220|
| 2 | 200|
| 3 | 230|
| 4 | 220|
| 5 | 180|
The cost of entry for each visitor was $12.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(220+200+230+220+180) \div 5$ |
| \= 210 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $210 \times 12$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2520 | |
U2FsdGVkX1816SWwoLLIBtCUAX6Kj/mARZdW6JZeKOoWj2PPSIcOzMOQruOXHSCh4OvG16Xudognk3xGx0XMXuJVMrUwLh3XMYiJrHY7UqNGrRIWgEY1bhOmOl46A7Pk1zZDy4dVpMqq2NtJCMopeAFl/6dl00zFe2a6zwfYGWjKTqMQxfvn7PI88PI5I7JRmYbgqIYhiGf/lQhynU0p3NZ4kjQJYpXTPjySCNY6V/oAlYiJcH3kpN/J+PI+WhOnaMTZ7UFGRCFDUMRKCRAuzP+ojwZvcm+j0+j+5DTkZ4ya8Q89Ho6v4s9CNq2mxKMw6RK8V1MbqQiyjpYrJudb6uN0p/WKS8GHsGafXmktmIzQCZ7YIR6Tes/hSN78458SfYeTlK08MIMZlEJyVfAmroVi+aQFtPKJa0XPHwEuKUNaMV1bexBWpgqAfNmoBAHnehZCHrSua9tY5QLMNw4OiIcqeTZ/BFi9CzBkb7d3ElJE8CTfYF9HQkzbxFLWCbGUkKnwBu3fGT1pNWw+7KrF/REEUwv46SSxsKVbNV0mBU4x6zbHEIkKBRV+5k75bKN3WOhAJ94TXMkkqEd9bDAnXpImIQFT+RSXXvX7FYbPufNo00LFjuJQouBNoPBjjwRk7Jjgb9yElK7bDe6UWCK5Oa0BAunENFeHWUXA+n5HkcY6pwv0XbvodzB6xI+fIhQqmDPtuYIOxK8tCMLyqebUrw8f7g38GjsPqnxyXnJ5wS+honRW9Yru/lJD7yHG3X04h/8s1mThPF5rVn77BNFnoTR/lsiH1e0pnTnOfxGIBTnzaA15FpV/p89dvjoCCyTIuRpuWyA2iIMl8sZyWFfxF41fdH2+Xo8eY6tkkAReW9koFrM3gK7Jf9k61m86kns8NJ3LPU947e7tKsuMcbmKmOHhIOdI1GAK/FiuXJP8cKUci8Z/BAweK0wEas4AV7klqqWlF/GVvuw9l0dY1hOIQQbmdWRyLf28lqtWYLqPghExYjx4CjG5rTosN8SE1vVAHnr5nTDCxqC7QeYZUmPdv0DCKHZ566o6d38Sr0iHg/rdpP8SOIYF0GP44b7nYvff05A3PI9NChOgzmU8qHtJF4rbJBG29oO7XF3WDz/CZuzu/krgZgC0JDLJMceE0+VdoLomrY7bWJvfkkrFyGFXODMVTWCezAI0ywjXmHeNb00550foMr7e0LtRahgbqTu7rRwyTkySPESSkd2QiGpTnQcTV7O5MBJKsXPMomZmr93ckdfmCjleHQwDg30S82ZkM3HHwn2+vhkD7dlrJSVjPR4XxeIUqbIgKlxk81PTCXCvos36/u6YOjmhiIVOI2JHfxlbMjK6q08tbodKkPYZb03l+y5RGVJdelSwIr5tpAwdUOZUOv45qHqSthq43mdFJ5xS+lrm5mTnzAdznBWVhMkuwcqwOvYo8UZOocWMCQ05zCBqud7G3RUmauj1LCwNEnWvFxxbgSAjKQODit/AmTeUuS963HeAj63u9WB2rkdSvmK9GBplU9zkcF6+ic4gY5UN3U0guPcZyaHWW5MfhviSWYQV1OH65J2VGaQcTYO/Cf4xkBWAF62g+wRQiY1NlP2UE4p9nBYzyvGcmNWIqjS2zpwNALuyhnN+OUlCNqIRd3+4/S8Lw2gEsuBXC+nfwqO/6En4OpoElyVcdMm7Ng4NQin8+SCAGTut1aczAvPGCtA4ATZED/0De5k1WjyanAqi8dkZ89KYg0NklpZ2VBuFgDYHcvdqJvMZ9Q9mREBdnZSHt6J12kd5UqEuGY/VTjeXOFZZ/VNg28iy13GNuezQSwyV2dDESkgEj+qOa3KoXPiH+PpcTDRmedUo9NEEbCHQgK3CTmGgI2eqQc4W7jc5YutNuHHyY8uhlFd+/wpH3C2hgpoP8OY7oOWEn2Gk4lmVrIAQcqiVedcK2bT8gLR3SPSDfoQ6Nixf/xVv5pL/iPoVp/1M8iYoztFVDCHoDNM9lkXZtYpVYXsBKABlNBhNDuJqOmSkNAIEHfyra8nQg82N2tcfF1ldzMq7ms78jmRFYmoulvYMfFMy7QAarpXt7pHtRQMdcP7a3L21N1kL5gL/9wZis3GfLzZf4LlFoRQ5g8X0h1eRBhNAFYP72j/rLuTTMy+FvYU+hRYUrhkSECZtE5K5X1hr6YM2YmW+/FPU7UDew+hWhT5q9sTcr236fjCVfD/UPQZIbeERF3Nc5SfLDH3ooJwFcaNrkvjyAhkKiANQeSBzu0qX0QC7ukeD+GoMsgchYq5x6HWXGwoq163Jl6SsemwdAT5KdVxvElnFWl585d6XWKSwkfcu4gjDxDvLa01LWDN4ToDzoF3AnUGzYEQvs2dyx80DuoMutgGNfhFbBntiTFEcMbpIvGty4hZmeLywhto3ygrjnFzOsop4NHYpF7nSEsVE8iZZrtTi42Y8xbwNyhssZciC6YtKgJjuchUgcSRYe91w9sl1vLm28GCtYpXaUgx9DkgVUy/NzrS9X60JUpbRHBUpuMQfqTfdOpqCBqNXh+QdwlMh4AyiTOFRrksexxs1BMy51BED4ULjOcWZEWLmNjvoAaYMZmoX9jKlbDiJ/+viIXp/mx0a/Yy8dEucZ1FhY6DFgfRWHHWxfsj3E2NueIqDWTkL1WIMsvAAxXTMs2cgbOvAagu5TSA/ATtE0kOx4PyluBNTH4vtlfGdZjgrnkrlc7e+keMEpG67hSpW94j96pKfdhz9J3R2DWyUPwS56P+7psD8zkhJznaJ16EOwjbaIhtBatLoXFiZQN2X0J+HhkpBMPLc/vjTX7jtbfvPNZKwfeTlKS4t8Wa0XRsJ1u8p1MXFijF6K7ttJXFI6QjQBefhnOrI6YNVemFdFzBPnwycJdfntGrQbgF7J8WFrSZCJjxz1wPb2XFymQzSGKYSd0tKMTdrAfWzetT5DopvrnQYACybrz/MZbHvGybhRqFHm87eGJxO40FWM1TlreU+Veo5lCKLNWdDZHLw9ZEir8ki1NWpzydq8DZaz/AglCahIIn6V0zw+c5oyYwCXIwly+O++XSgxHksToWMDs/YNhoAM9h0LN4PlQ40NU53fPoAdcCOwY9UdLr6gzLbqAwQS5QyCkWdQBf03Yt/+16YnFDJrWF33mNdYGf+RK5j42hMCSWFplyauvqmLZQvHohITTpUdtolXmLqchkH91HrbLo7MpaQeEyftVi+mWgARd72446YbbsOw9AIZa/lkAid0Ji39lT8rfgpXcMlE25M/UN3lj+UZtWjnBTSEkI1wfqUHNurpZI9qAE2ZQ+dbA5bhid81FalxC4Js3gA6BX3Zou2K4ajh4LH5za+OnN+eoQN95mAsATXzWZp5WZZrBAt4EHllloz9krUr/wLxM9CMvsXffIqB4Pa1154TCfk7ebCHDGiRLrm3TTJcsRzjA2fSxKF3G97Q+1W1hb2eFL/5NRBFJOK7ocGICnwoGw6dvqQ13Uq6njJb38BJUy8/HDRujjKR4a9q7AOsZStb5cu0hXbeVYCjqG5wQjd1V1Hb6fP/3BV6k7MkohQfMFsWeruJTqdhCIeumAimuGFtcza87h7UMhtkZQCTGQiZ/HXW3VHyUr4muYJ2fAl9TIgZfHZ+4mO52nXnsK5NOGH6S0hhi1z1qJuZ6jh1DmgMi+NlDy52TUgLFlg4wqrET+IyAZEQk07IDTY6JT1C29mIxFAhy7IccPtEdtS/wbqbtKfFM8yEEy8nUYM9xRM0n9AtOhzKthn1fqyHTpyq8MDnLaV7OppsyRe1LHpuruNf96mIpbU6CHUppTBkRtDVqtI7H0O283BNEyO90Y3uUNPoSYMP299QN6+Ztr1xOVaIpl/zmX01ZC+fz7Xdu8zZe4YAr9R33kVDCWrSxFhUH0P+nlghs0zizMUk+Z+K8LkVAMf/gPASWrOasP+3sVmjPOSgrbx3EfZaU17nmoeAKdntEuo2l6eqk0NGY5qrfhMZ11k5JDTLWxa9j3B3wRacOkv2KUDS7y6CowxyDgyKIjLYO7rjXjEM8PBJzcgtCsRqPekEQiZ6BjYuCpcJdtxEsW30ntD57+N9Hbnwmn9cnlw6FozihFHfG5FHPpdHTAx2jddBg6DpNiOSFtpxnV1flmuU9CpLAAOcTc4S5MEd0Hv0s1kqq9JuBOtKS5u4p3k/jBeaYv/JEmZ6ztf7J2Zo6Sgz7UfjeOzf+E/unIjxmuyr/vHfAKQ/T9q7qCqcdixx/Z+1knhz3arXW7EtfSy02t/MIioNwfKvq6dy7cL96UokXwAy8Lgk7irGYcPEQQdcCiyRSUOSWOG58nlirKLEJJ1BQE3bgQP98vCMh9GrrPQKs/rargpAxD/63TFNK/TjxbDV0HQVRgq+BogTKFdpjnXk4JIKvAzBTHp3D/RdA2AcmJOjTARbuJCm7iYzKqax7Ha6FprAZhC0+69C5WFLqcEpYcc2Jdae0/w1316L4iDKVf0KKF602YH3S2sB6LbIE5p+e2IezgBSk7PII2QJ9tElDSEcbIu6MDzWeRVwB9tnnH5nvxiro3vf5kPPsg/cqAkdPd1uJ5T6ndCRPAx+dixvUDPN7jgXlhbFavkir5/hc/ln485Z4IheZp58Sstm1Q7yHtOf0FrR3yz3UQfLBBHuNpvsHru8WAxyWJur4NrKKdpVPbcnoOQoD9za+q1dWZhbWFOfhVruWWdfFbQbx9Trw4NlcC75uGT9hGAu/uJ3V8mdW8FQSZvJFM5rtliDQ9NIoaobcox3HW6ThG+Kz2Zl+75NdsKIY8gNtjb9phKOd1I9zrgbRsM70i5+HzIRzjK8xkp9EEEdVof4JY1Sw5OHa7ngCcjuNVe487YUGvo2qJyFvSXMLcQ0xMdEHwFTP8IPaFMNVK2uWpFdgQcqFIZUkfBZSGiwD/RQfhO7SvBAsdbDvhS37OTjwOTWVRHAQanCPsThilZP3lewycJFKI18iyqutqk/14tbW1tPslCeZEOlBbFLWFX6RwqdCTVJOXZFFVhAKaq3GlXUtbrggAZSwIwFeQ4lltbRfC2KD3NM3VSlEvQeBuzBIY2DradFJBTged89GfsmeoR5weZRnWHXbSIijgYKwEj9s9/B4jT/RbsO5X4lVtLTfHQnFFQXFVGKLGST1/5W1Gud2mMFTbJOU3axOwo9EVyQjwAOC/qyudL2B2YNWShBNpvCO97DE/EsMexMjI3l1FJYRbE3WlFLBXgdNP7KZBI5JZO6k/wlVoBkoumjA6OdkET9xbT8lRBZWXg1kWg0sCoZo/ERdqaf3HZcRjq4OvSW1Wl+HVZmbLFcGwFXUBZvszo0YU9jbLC3sCHNIYvfHniFs7T4gOXEBGl5qyJJidWX0vVekVaYsk+diZHaPQxX5affB9HmxLp+iQ1fcTI+OjjRnG/qnKdb4sc3Ce98qh8iaCP/z2GtxDgEnxtYrWmBwN8V0fBUiI1Q6yf4YLfP8Xxa+jgUKBHPDq8CsIvopkUvoW3BCvM3WuD0ab37uTh4+61ulJYqV6EhVX9jTKwo5v1O6guZJPJCQwCX1jIb+lCeDSVW1Txnzztr30Mc9PpywVY8ykdNNq35rw65svFCRVj+SnOcgPTdOy+9g4e6ZkbKNkNL5MZUD7cfSBmabnaCmbNi/AwlByN6ASjBETAXyPKE7RuUq51pxDn9RmqJgbZhTpSf8w1IBfK0DkGznks3lsoUJ1xRU75Hz1bhiNEbbl4sQ6Ob/EDLOQ51xPgNB7M0Q19KV61GdcieDKlAK3ga8e4Hh1DjCkwJoqC2L92mhF7yfI6p2zYajxZ8FWb+6SSehb7rg5HMHzl9cnx6giDkV4vR1hEIK0E6ZJUNUctfhbK8Na+2lUCWm31KwSfZv9/MWebyZlusmeKe1QpV4RlfVfEIuj9fyDs7PvC2b1oxx+lluntm3l3cJUnOjwuMQFJQamP8UjAYv5xdpNoMacE6lGmJ8PJLMyjed9cKkw3q//YKZL5Ddr8FncdJSTAUavaWH/PShw1KSf+uC/OtzXaBk30/zSJHZyExM94wtoyO8vccn39nXYparBpWDZZKc3XC1PW/y62Sq6Q/yXdqbedM6x+GxPpJoifAAgdpJPV1ugzyJycmWQrq8Y2824AXF/q5NhjM2MeDhF8zuXxDp0QEsI8QrCD721gNHNYYqiw60RILdPTARp10CVxBgb/BG2HxixG2s1oR/cQkPj0HxP9SQKDI35Akr8vI452Lrjurz7uDQqC4Aju5JpE93muUiXYTd711ZxARiasaIZa3ai730H131yzXGI0MjlndYO0NAow0hiA9Au2IxP5QtOYfG4O2zuMtMpx2pXOodoVajsQo62EMNhlQdYeg6wUfBYMGYW/K+eO/nDr9pE+jcywo/v+nh2DKFsOjgmRLUnucSx+CKKTFu7TVmTeNVBEcb3TNASFEkynkCmEzKemgrzRcZqtTmCN3+7ZqLiLNA2KdzsCp0bhc5V1CxLQR110wO/vrsSTMvfEmO0fiulF+zCjrT+e5EbUOFYxz38l+1GygOYKhmp4TOArK0oSHWb/UW2kYc9SPd2S4vg8vDbbLn+SOlk4P5RSCD70MMSjndFnRrV6fLoq+h6GEOUjpchzEpubZ/p7i9FmEQ3641Ka7VbOzWXx3uXdxmOgqhXbPU6WCDwNrjolsgoh7nzRyPvqa/s2Sa51EMIxv1XHyauPaduHVHkpZZ4wqG2L4t4ZcqKb/abgr2g6Zqmiin0AHHMruroSqThNZ1Bfne0rSev7SjamWq/XON5ukzlTj10z+B0C28NUCSXEegRfdliLK/k1TfyFmJwi2CVBgZEq0lX57yqDsgkmDl38GWQFWlZHcv+ZXqvmRYyUPF8c12mOWJDAggUQuG2GgxODgJtJEFxofEZb+i80A69lle01Spik+1OU0o4UqvtxZsHCq2S4auu5OukKgxWmIOVDMT+bNIEl6sKErt5BGrl6nl8L6jyqa7c91W/iBWF79ju0/MH7HfMJS5C4BCD8WQlJOVR1j3lbN2pA079GWsO1DVUZqhTntGTv40pRpJbZOfEZvZsifNYiWmq46Xs6gloFKVKW56arOMMkKueame1trqUPB6jCrC9A3lz+uNYzhZP9Ry9GwftK9m3r7s/EbcvHnzswbo05KZAWx5uOzRB/zlgOU8cv4NwXygK7BTgQk2WWJhADzC4wHsD6JV4Z2G1aa+yFDtcCf1cRw49cnvbG5FaXtfl2SlaxRdgO89QgVAhLsw3zb+MgCgMYOyKhkYUjbgj3xeQvOkierwiL0hKGdqCvRTAYq5mCfwHT4jP1dmjkauqSw74rfAQbxBuH234pMHZsPJLd7SZxUSGQS2dLzZJKXlTgHJv/MFXAAXj7OjKXhep2SdHr8Erp0jJmFtXHqQaoPw7+RGMfRo1QQNY/6fJPksfw3+WdCcuGTr9d1vHpdCrg7hPIyjXkTWA/fCAyRDUM65u7ZNqRI7tSI0r5G/TARP5zvfqCFDH8WSfPLpvnJBq0uujDjc3oS9x9CuX5RRUhEpor6kl8EkIc4tlE59roic8kVygC0Yu0ucPp4AXMwXgIaEOP5tN0EzFw8KzfS5W/3GEwsXP6BxkDwS+Scqywt1GiBMFJ8rvmYylLko8hpEaJO3wzI9alOFnq0EQabk+a3SWY+Pqy4hcCyabMWXghZMlqFQkr
Variant 1
DifficultyLevel
680
Question
A bowling rink records the number of visitors over 5 days.
Day |
Visitors |
1 |
120 |
2 |
80 |
3 |
100 |
4 |
60 |
5 |
140 |
The cost of entry for each visitor was $21.
What was the mean total entry fee collected per day?
Worked Solution
|
= (120+80+100+60+140)÷5 |
= 100 |
|
|
∴ Mean entry fees per day |
= 100×21 |
|
= $2100 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A bowling rink records the number of visitors over 5 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 120|
| 2 | 80|
| 3 | 100|
| 4 | 60|
| 5 | 140|
The cost of entry for each visitor was $21.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(120+80+100+60+140) \div 5$ |
| \= 100 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $100 \times 21$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2100 | |
U2FsdGVkX1/JxHHrzrGP39Sn/VfeSiRTXXBEf8l/SZ6rA1gOJ9z7SVABPXBSJS/kdstUJ36fy7uWmXV7a5isqEs3jboAtNdoPsD+v/9d7zrqSyaJrGVqssTSMOBhctVMcw9dvTbgeLhamXYx0eW276SZvUWFQg/BYNl8HGJXuGdk0QJ2xUIR9j5EgMtf0LRMl8GUOTTppFCHc3G6uYWko/JKcB+yozBhsNHl9SI2pG1saCaZqENKQEqKaWOwmOsaSKsMLBv7XceFS4jLOvELzuXj9mlqWRncLiYMXqnn/pzm13IBtgnXfZNNUhvI9bqEswpQ7YWonfmmnUU5fVBvjlWmAoV3xDeUhIe8hzboA1at5K8jGDaKzjYum/x+oGHw9OoViVEkG6PMmSHDaqs43xOMNlnp4XZmzY2nE2qAbik0HfdWjFiAuAPSIQp4c8Lz2Rrw2J1TooesYF4oNSqvnNQrOSFjc0oDS2RigWQT/XLlEaPK3dB8iif4BuVOBZI4CLUExYPu/iRg9yjFt5C0JD4hIGIibtsQ3ybQF5BL7SwgofQeXiSZsXJ+jn10gApI/7iOJ1+TPF6sc+s0qpYmV308G8tPqmwioN4Eqxyxs6ufmeM9G0jtva0dkBdYwGD9a9isLUP03yQFR0nkI9pNH+/3Bdet9ABN/L8UQZvj4M2R9GYFE3Re9RDSO9RhDbP9kuwcVKwYIyNiycXeF9oJLq7RAf9T4PcFdr5Et37GJr+x4Ch3ng9WEs6zbg7tVucDi6VRXxQu8EypcZyeUydJBn2mh05WLLQ8FJvy6cr1oXmRiYUi09jUH2Th1BQKEpvYjaXThENWBsMc3sXxT4hPQhUMyQSPQpHgFI31Ep8YbnxLjYYQWOZbB3CxPaQvkjzDcGLMhmT5iU3RMpHSZUqclqKIrRRW6O8jyGL52SBcPxBTiifk1yMWLgSwODsn5YCVCtue/aChmXiD+e8iscOeWIsubS143vjhWAtzZnRG6T8u2yINZ3opv5TjY/SJqAlClsYiK/9sPvPpjZS8SepcuQD5fPDhCxpYmq8/XPKFMpqhhHZZzKBpskgDqZHYUQ3liHknX91mI7Pouk1PHgEt6qH7zYqjE4TUX6pqs86tndOYDSazKVyU+PLWlHEazsi//pX6gRXyKV4BTY2n75np8DnwTQu64nmbX4aVhIvGsUUQhlkOptcy/vcBvr+A7+5op2/hE3A85S716WrhYZtZuV4m0C3G1JCR5+no+zl/mRo/+hvBzQliV0oXfLO6xkGJGaSxK308HBVJUe/1hI2TLRsxoH/5lrGR/Hpg6fMAipW3lrYvTi7XQG9wCa/3TNetlzw91pfsc8SDRgTcZyDpYz9+TtWri0o3Sha7e6xjEWXvsCUpPKxoHH5ZsqPUtGMcy4HIsbJOJGzY3W/jnx9Dtd5wpApTtn9WXYk9NBxGFfOk7IcwPFFt9uQMohF58pjoc9ioiiJa5HJARzYfm6hvHyQ8ht2dLhZ9vVsbWqsMZlYKCThat3ewQeLQn42IvyJB8S23Ix8dWa+1tLHy1ddLfqTXLd+p59Ffjs8TqrZXx8w7RMabOsSJAHkhq3ygNg3YwSFhrrdHpi78R9nZ+EWvzg798UPjOKSs4kLNyDVQP6OeowVtJKMP/oRWC3jAfH0NvDwens+SS8IPPUDUi7piG33ZQgqR3fCxIGWZTky3tzn23cbJA09KOBn6OQ0dT3Fgr82W6m/OGzCygVp4FGG0DvA06sJs3gI/tIqzXz64HsGIy/q4o5D1c2I/09x0uU6xfyW1DLFfJk11cF4XRrm4MKkw/FWrVkGeEmDOE/pb6QKgKb74jGTVr2IZKvriHsQ7uZ31QZUPhVGkjo99W9zc1vPpPGRipWpQrQaXz0RBFTUqAj0XBb6hro6GoU5p9DbjutmO/GbzKZV7wWVp5YVOXdoz9u9ilFvgZ55w2xKO0Rhu0xDJiDwRn0X6B16ZEyHbw/0VyUORt9+V9nCv4Ew6+ogYrdNXIXiIQM4p0lMHRVfXatFYLG+1c3R6gUjHPFHS0WUJEZEQ6QSSPq7ueJQws2L/LDHM5BrzS3hwZetUeI9ENK+ZW2aLioeptBK4zVezqdaZfPfynHLTU8Qs6Y0bsHOAcQ2jrrLoJJg4XguWa6B3NVKqZZUq/eLCOHJBT/vodqaN+d9CVGClHrLW0dlCUYeFFhyA+bKTcv1NX5NZPwrJcBfezCKCYf/QbcHd9p0f0hH0KZQdTC1UzFx1pQz05Ys90tiuIR0LuKjqw8MEcL+3rXkwW9VoVpol3CHBc5JS+0ebzhXhjFv2R7spDkunWdpg3N8OZdKZx5FlOJzUXWtVbL6C+ApJb3RyM+PbgfN0f5DkPOojQwCNKrR/UiRg3ovRjuM74kahoj3QstrXcV3/8d8Q4dji18G7bTdd5IHO6o2w76/8PKoaUuMn49myhTOmFMjkeX5hvHscWhd11AVBVAhpilFu1Ssg6DXp2PUKJJQPrex0m3OufN8iwVG9uyZ0e73eyWfFLA3F9fQBUFkboDjDmw9QSOEZmgOGmliiZ2bS8sFR7pJbNYvtxr3dt0zRfyJ4lFq7ZztfEw6b0x5bYnIDznZIiDzS/cHCBXrNTH956NGGf0cAWSnDgz7eewc0Q3e30qkE4EGF62xSKBcOrkRn5qz2wEJx9wa0klPiRpIC7BB7iypwjrl3V4RQfjycjtUFVPo5wJQedoaSMMjdzFORJQlAbOySfGs52Mx6DhAdvrW1CzAsJUqoWfCC/tCp3hdapOUxEaqALKFwmlHjC/hQwIoNFpgvNvk082+N9qIS+JJAQY0gpAT+CfM75aZP3ga90F54kYCozR3HvAvjiIO+XUo4m0CaKB7jARpjyKdJ2Cld478dzF31YyeW/PJkcHzKdqekGFbVctit70gB0AHFTSNxY9CBz1rf/WPqJY6JA9tTpxKjFLU1eubGQqUtEJ72HFPsNpswyqnhGX1/44ZuPrp3xyvfl34w2Ewllr8fDe45cmDw2JQTElMqnAIxm47K5B+lF2HDFYhHU/VGwJq+xuCJ+Tvxg9iMUTp+Td+NgnTr6EFZXcVTtgIhe0cqp6LwiJVeglvPpMdtogyShAoczv/UEGY5S5LStwoPvXTEQvyEyrGdHRFnZeLb4hVvhwKs4VPHWbf4EQuuv/9ZV1q/o3yplsxwAGhnKHPS5qF+5yRMgS9XmVqZkLdTp/M2fbct5ohUKtHtjUnPSbUB9OPb5yJcaLgVWpJ2e+H0eaA4odv0SEvsxqdJuKqvnpM17/Y99cBMarw4ViSVvGuoyw9hGT9mUsmqum6ZK6H4P0x97+v/nK5qAHeHk/Hwlx4RRG6giZXgoEoxD2eff5chMY1MlSe+fFjqBQRd2nRkdCbK8QWhjLrQlQp+CYpEN0A2kobLOh8rdxG02Mlvf68tQgvE/pHN/+xkK0pUaxdTJvVf7FGQddEpr3AG5qe+Sd55UuCYiZHdTkHkOd0ssjPtBCOxm9OcoAGIEU5VrS7cnc4ZVVIZ+dgIHEHLb0oQ8qo7b/8e5KKYiq/AwVPhgzPmsWGv5/aV8Gv5JL0WGtmdMWdsAsGMwZvHYVl48WCJUa9+r4Kx2wxFsj8YZVNqenUBm8pQLYGet6i6sY/wAlM4cAqVDfdLJWGexdsghrkfEmUYfrgFgHs/c4PywWxLLQTk25eBa0notVurq7Zo9wFXQ7yYE8cGY5Xy8rwsAhvA6snX6On0nvXDyhZkXlUgyT4moHsawLsxPLnHWSyjHlkGii3GAgnlx0M3s8Z2bT9yuKmVsZdRUWJ3xGPPOn7giVIy7etoA82OiBN6h9/0jfAgKNSLTs+yb58ix45iHOLXJy3xMc25YyeUOWq7MMdQq1L1SbUo5/wXzOWYMI9P/pROTEgCN8wZizKzbXOlMmKxotYncGOOL2OlDgUJaMLWUv3yghq4j7YRkt/Eac1qfUrUlzyagyOcQHVYwtHFvlT2810E8/ZQ4dvnPk5AAInjHDM4liWwyidBEggVFDNjwtqzvfF9kz4r0x73GUIpPsB0j2Iu/zGuMQ8JzYHFggFtC5GQ2p5DogPNcD6Qc43eidcjVDlLPRC6f+z2X+NNztGyRTKhzf738haV94CUReagwngB3ry+ecrvsq53fwLbrBSTr9erV+iC0xijvAbIMWd1p6MCEKMO2mrFO33YNVFY6qeqXeVigkj1PsC2xr24O6m8cfsvcNc4NGIdjc2n1RP8A2yxqgbjv+FhwMzJyABsWE5ozjQOYYU7/s26gZqSmTg0FMjDHkc8CTCwi/7K5XVVVPPch1s+nOLoy2PKPnKHL02qnT1M1Px+J8EkyZpeoOD0bsGbJozd7nybWjc32XB9LYxSXBh3DGICKQcOOANAOYXAXCzCKTiHtgBOv7fITAJMc+YTU4l2JvPzs8G+zqjlGsrF1TdOw68QJQbiE1nh2P2li2wYNJQWMDnYZ/eheEGI1oicuHTPVkfpnHdxrbJYMJlMSxmxzdyL/OsMJHQKOFGXi0QtCMYYk9g30y6VNyNjckgb1ktdgKkKwp7cqNvhIwhoIEKqdJHDRDKXFCQqw+VpTEf/XyOY081rGTK105QxjJhrPJH00EZH96N/ILZRmPazHQlyTuAn+Q2NET2DUN80NMl0vUcfKfDWRBK4pgXRdZQZP01I7NJWeLSx2CESowpnsxXiq3kO1zpoZjVhYVitxdSRhet+XYTGfQxCA3X4Ou6rfcSkLAf8G7c4gQCPbf9ESqVc8lQbX3w7rRuZ3FAFjZ+ZIccjDKZYJp+/ri9mH4MRUQMnZNbTKIl77svsYXqioL2vfD+PwFbXeeFKVJ2674b/6mtAUsKKxXxHHQbXy8q8zdfGGVcEtaaBlwP+hJtYSiOxGiL0jvMwEolkVIxti8ffcK5+BZKlZa53s0YIg3BkrLydtNpRWMqi2tDkaEO9+rQU8pjD2GVeXPBTTZTe7lNLoKoHn4o45GN4arJj/l5fW5jVKMxWDBDitjNI4/bZMvRfdkO/pG+dAzmKJQTW2y8eim2Uom4zpDFJImEKLdlvRSI5aINlfJcItznvD2FjAAodf0VLpeM9mELJ1iGj7wt2HLvz52XFlrXWz3XSo7PrP3uzYWoaKgL0BepDCVJg7sy1WTNs1n6e0PsnlydyMGEJHhwnkdo12rW3KOYb2SECafwDwyjdMc8RlDzNy0TK3H2RnjmmuHbeLQfkM3P174SNmzlMVwz/u2E9TbJDpaKdVvFAvAlgbeBe10Nwl1AyZAfbdFcNt67n5LoCac4EaTHMzV+wRHDIJdVYbuhn8OwtAaJWhkPiwf7KivemS/dj5A6OZ+ZtLUa4bKC/hm+PoR8K3OrpG8sLIRQCS1uJ89NxV3XAROkiXFp6vqrw9dNXJkkNkE0cVbfraExdGGmjBidnQEqLK5kDWc0rFXKTygKS7rNF0OMXgRkLybpaOUh1ij0NAWL3JyKYiQl5DHEthKL1LFWJUVaLcGla69UA4WEV1IV9OsgqiyBDwA5v/gKGRza7bESGcz6D6QAJWxOO1CPvHgLfR8/S1CroU93mmj6ojp8nON948VlSIiNRJq2v09NCyxs67GfRN0lfdzih8FND02oqTUqDJwiaCem8BYkZCZD1vbhSukCarpKWDI6zMNUTD70l4dlkvjcxE/JiaSKDrTc1tPEl4yW1dI+Zy9nc9XKXdvQUs3g24ZRNGuM13k8ZPK0B4vp1HMOEsi7MrgJRbgc4scnRcyJT1bWzUfhtRPVTgY8oCX2LzJqV32K4SeAm4yCkYBI9KTadtPzCSCjtCmum95VJByo5VilYkONDQ5ubL+X3H71xN6ePVhNFNfLpRj26E8pPXf6ZpaI6yQ/seSFIVtp5iYVcEovSp0y9ZEh6ifOf4UiIyMV4O9wukCyZs4nLsUfvHG+a/bCL8db6qEGS6ZAaCUIYrsTBD9h36qon1P15e1ebY10lPMBjx61kt0RK8aY7CkJ8QIrVffuprGDD9xdGZ/MvLX2O2fynMrhZKe7oZgVS83MNP8JRwTpJY3hA8ZhCt77+xicVYo9IjDi6FazGNCw7F2sss+5Jymnp2/xXKSrUOH863ydFxXZTnNbvz+57rqDBIfHe84gy3zsoqC1UIr5jrOxETYgmUK3sHd41wnM/FGx2Fkn/cqh9FmloFwYrWenqc8n6OWs5zGXNnc2tWhECGRvMAqPiYSZ9nXVIy0z7kck1cN3gle7RSKMYAZ3oFGSES4422QJwj/SJ3OgdIBs+zmn2B7+xhGKkHc7iKa/HhwdNjTBVXTjA+WoFAhWOwpoJTgN9QBJftEhNqmM/b1ENwka3+nMJ42MY3VGY2BD5eLgcZsnWhnC8Wb5mzj0umGZoM0k0aQeZp8Y2p3rLH4wMZBaxDcACqJyC1FA82zGYghziYVjEQGgZqeH/ZxIpSIzubbjqubuAXyW/XFdDaNkS3fom4zMbxjySt00D88VXmFkgZIzMKDtTBOtqhH418MDiyZteGUvH2R/C/ut+vkHc4GHx1ROaS8REGZfQ/lAj98wMtCwn17tpeZTcelIsGo10ovB2c+dy2QAlDL1kTl9evDGPspXkh2OJ0JqQgFvX4/7E7M8kfRUfoK4aF1vTNw+Y4VosTfW6C5Ck2sfruDOMr4c/Y7n9vWTbFk7KC3DfC77gG9qQxKMJezzBjBK/PI/uMTL5HlTKcvdtCwtWEXg/4JVux6WZ7NuVfnrkIWk9OLU7sglbYaFZK8oC/6Y9Al8C4zqbZOqkD2FEYtEr1JaYUvvUi9bBWazqOMrVZT39jAnPFme6+Sftn0jyu9GDJixFiY0/NZc3Iku2yRi4CcINL8gpW4CDi0zWbrPNbR/73qnNU3GfJpyRykdTwO/7eCNMxZ3IQZzZGFtOFs+jpUa63d1vyektvBBEd+VxjkYEuw/9Ov7qxgXAhl8clRm5q0/SxnPYV9218TIizBtHRv860e+eWj+R4gWUtNfLoCcnKnfaatQyjQKZATxbjRVfdMENtJffPbKNXn0yZQckt1MnxdeenrjaOJUwqxDe3S9GZsLKn3cwvVV5FuoqJvFaBMjVL0sfXR8zVLKqZw44MwH8gtYlbO08Obx1nM2rODrNM9KNUsoVzisDRVjE+QIvMgxIRkYGArsXRKgV7B6ziUSQ+Rk1geMuS6u71p7rPqbjziyc3FCwnGrN23ezGiBCr53DZcyk+UFsVV/if4vc2p7bHl4QOGjs6v3Z7yuk/GMfLcfzGHD7qIF8jYVcfdJ0vqeVvUWCyKcQxjVd98KoQ4m/FsXs+/sSla5B6fWsfQhgQoTwiPPe9LCBFfbib8Jnq2/XLCS0hTK59uOXH0aN756vez9+jPY0yTC9SJ5w0W8mvdZs+6j9BNkL//+S1ixhhxl4J8YJBCZDDl5Kp8yuB/a9/buTdwAgJFcLJA526taY9ssXSUsVm+aXS0SntQa0d5NQimI/oXSs69oWHBaEKeCxp2cgSayW/F5ndT8HMSPAp7M+FlPHKRTXUlnGebHjEZTdVEpH4SZgU9a4xM/2ccTOfjo4NIFTB3yNXECSdELLoDWkLXJUMorDHtwHQ4fVhk3SqBgug2v6B1TeeUpMw4EsMk0QcuGijxTvkvCnmzYRBraajqU+GFZqIVwTDa094QL5ia/KH9XRjx3y7zKoa6DgOIM2ZDcBvLgY8FIIMr34Xr0p3hUvqrmgF1eNHiQp9iQkWCrzIFdwQlGmWcaNZJYZ11rH4ahEcMuxR9LJtGfH6bb5+VeqPfm/MVKULNUueWKNXDNhinETjKLkFJJNZN85nYCgOOUQPopMIL6SkmOnwc7vLle7N5mR88Ncl/St5KuXPGyG/mM2Ks6SK5hOv1CtEujNYDkFHj4S+J6387Mncmn0n93VimFB3HRc8NPhcFR5j/0458RPnVDjmd6agau/6FhXp604cX95iI/GgtiN2VPoZaxaALLK9QqlFbYSPl8ejd+R+5CqTYM5RWmH1tzxKLGjODZJ4SwJugx04AyymJBBlvS5oD6GgQKYd6edbdH2XFonRTFuxXwUIlrkAKR1qPHBrzGZthInVD37h14IVDd/76Q1jL1RuRGqQe2++Vi69H5VpbBsz578P/WYx5hBSfI7XboIA7OvWqR7+gseqWDLAEEWONjaJpY39TY1arP58cP0aw5Nj3frYzoS8gSGvVtKMUoJyiC26Xu8z4maICa9gZrD/FbFVw8TqWynJ37St+TH3nzhV3KmAiynb+lDPMqk75GW8PxkjhbzeClexoGXo0kEQc5kwbc4pNqOmBXRKVNpNJQ8ocJbEMu1UXPdghPvNDpxeYeC6v2eFsgh2GVFqIHMo3VQ7XE71UyYNbBRFF0GLJEM59xu5VsbmWGbcwNajQzIgUdeKnb4W7rBKojo6dYjHWLBH3OM1/wLfInWc9lZTx48R1DEHSkFSkqaxCYiXkJQkMs/4Ft8abCf8+OwdDUy3osDUnNjaooferTLRY2L+D9RNI7SBksYqIAd7J2tpWJ7BYZvDuahUV/BR5JJFRdzT+5wYrHS1uLlyGhO9sHue0AfYXR0wHJlo6M2PiYHf2NQaMeRqQLjDy0bcXVWDX8HyxMFV9vcbP24JlEhqC2c4WgEskGYI3tKJLFiCX3SwyHTKcfXJiOwOuG7AZyuRExnPXj1Ays60v1hMa/EmBzopBptUMi7umf/9DOFjC0fpW9Oyt1/QdzRI5qwX/qfM5/gNrNnloOHsRIX3bx5/iVr1QufcNGptmFuQjMOgbQlOjaJPqGFsg6bsfyAKg2g6KjByR+L56YSudJI0wB6ia7/uWOI/pt/6B0Vj9YOW4cg1kJwa1I507J0/AixJAIOcm/dH9nT0YPSRXOniEdqoAgG/y+eHh7BaQDm5ICQFa+JVNelsfGpOZVNcfJ+t2SHxQNoLVm6IjWqGtZb4ela7N/zZpWP7JXxLJLxlsbCIguktjBAM4UAzTno2DtDHowmqhFJzVRz4Y4bqjJqbAl/GpWHXw+dZfId+tQeQSGGYM5niz2ty6Th7vwjpJ0Vr1tIaA==
Variant 2
DifficultyLevel
682
Question
An aquarium records the number of visitors over 7 days.
Day |
Visitors |
1 |
540 |
2 |
660 |
3 |
400 |
4 |
320 |
5 |
450 |
6 |
600 |
7 |
880 |
The cost of entry for each visitor was $40.
What was the mean total entry fee collected per day?
Worked Solution
|
= (540+660+400+320+450+600+880)÷7 |
= 550 |
|
|
∴ Mean entry fees per day |
= $40×550 |
|
= $22 000 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | An aquarium records the number of visitors over 7 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 540|
| 2 | 660|
| 3 | 400|
| 4 | 320|
| 5 | 450|
| 6 | 600|
| 7 | 880|
The cost of entry for each visitor was $40.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(540+660+400+320+450+600+880) \div 7$ |
| \= 550 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $$40 \times 550$ |
| | \= $22 000 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 22000 | |
U2FsdGVkX19osMPpTZ9p7mBDkCcWnQ/YkjVB4j5L3RKhzrL8fkhbJOv0GroERw1d/q5o6mM7Jw6con+DKt6gd2umN67U8M5+k6VjUCkMmMIoNz+oCKg4f0fRO6OVOuZmEORU4wmUZ+hzIaFWHuxpX6qb0TafIiGfizJ1Y7i3dNuUsjGVt7wAvEgKjzHM8L/uV8sLwEP5b+F2tNxYNwmuhVttYPH9WIeIqhtfnzLibY8n7Fi8aI9GqhEdEcdP/mAQflYpINrQXkyxQPgawxV1W6Hyn2JuUTeTaPAMrNRLHZXI4xl+aDd70zp2bEfrYZZ4+kczxP1I5nVvkgElgUlc1iMByEm1KqHSZMaVeAjCyUCKG/peh8+VSaP8SYmYT8xLOZoEAisZT+zZ9AxXnN+LbC+nTTaLTHgU0xPuKftc+ZxcBkhw9J38kmeUHrMWLB0G5JhllhZGxXIisY8LXEeJ9dheoroe+sZbYX0kD9QUaaoUjUGvSu8hiLS8G+tsPKWGaMRJOwTxXUDkiLd7luir8OAmb7fBx50W/b1cE+HKfXneWZHutNYQev3roO5wyJbRyRrhRlT/7SwdiivQp5Cc7EOV7NSKawmS7ny4ORCOxk6k3PnXwMSnuRba18d8P5rYTH1F1OJXBIWXVK3TSJcfBfhsHSqEW9eg69pf64pmp60EZ5GFazA/DBlxsio6nDzP9sq0YniHOdRY80lC6u7UVn0Md549gzGsKFMeMcqw6tMuq2NNOBlCI8iw9PN/CsBPShFS+MIdSqqdtCD6UwKx3ay0VpghdGaND4JZCejO22Hl/4V/KXYxAf+GLNVSxJYENEBBFaD3iCYvqYul/Afew3bFxzIA4Gw3Xr1EYPgOf+jfdembu4l3dTo/AAQNbR75sOd+MgovUYJCOoXQhShReFEldyynAEHXk9QJsa3wgM0m9U0YzYltxTrSXJYpn/h/pKfRV7rRyvIoGAVHGiWSk7H13qpmXcSXQ0TC4kA8mp2bu+ZCpeAqce3dOnKNE4/T4o20XYyVoHu/+cpsgAdf3ia9EaxAg7yGAChwPU6iKguT91BRJHP6EDZTG9UpaXAIUJccQr+iybc6rNO1CKwW873Zuq6fmdTC0/vY+c53gxb/rREFfdOUhEzYN18dOQtRvokR6MgoPEyoI2rSwxfYXhycQFTKM8V1OVBW0hBytJiY7Wm8ET06OEbo2vZtC0i2ElUgqbgg3m8weQ7lY9/idnvoC7JVA7WkZr5zblLgnr63sSez9rBjQkdS09uu5I+CGx/JybymCy5SDcuMxc+6eDHlY1ll5fYl8eU4CLLj1MbG0qM5MoCX2L5plC2MmOhgRrX7SAkU6c4ftnJjkPS1XBBqYkrwMO1FFDkSuRD6pVI0Dy1UaBwQchyCGIKB/wqyPgmpAQqp25oOV9lHF3yvkH14oJvcAkAmg5dbtngLm9zp9Ruy/kMWA9Da+M2eyYEJBCEvD9rkpgaR0jseRLN8o6wY7ri7N7thPyJpbnn4Y4yf6W6yOaRRHy+nKnX/1iBWrlna4Vc3kQxWo1lYvPSsiHeoTdTAxaOBODHhjNAVkBIEDTENLgJ0bnpj1UybCxxO8PTgnzjZP1010mXRU9G4XDcPOdgpTSfaLz+yzVolaJE16j4AG9ZVEtwwi0kq+W8PgPlT3addEOSFAhiSewHulvDsvUnVSV/8TGmGWKjbSWkmZ15RHO2FqT8qQYcPZjp1Cc3GP+tMq+6fMXY0Yigrt4Q65eipfaVGmZuhEwO/uUOIKvs+7BbRAM+btyqMSJuHcZ2iMHkuztv0qEqcc1dW/1xox6ODr+U4wI6wc2KZcSBncN05eGCB155hy7x2YT+I7C9La8o3goO7195WHXQosoZeqTfhGE+2PmDZDBoHoOlSyKpqTkFpMjLu1jWL4zdtAqu91Z6lMu0/oqYxXr0JrasYdlohHuFReHBnP9RJCFd34V1pqd56bOegQb4iwO0l7A/rzLbmcmG7fkjBekTOmPgIBoKzkr+2cVZ1M+t8YXPYebN5tfIxJozbfIA+0UASs11g86PC9PlJZU4Xx7pMa2xWDxxW+1YN0p5vBnlvC3VFfx1t1S2XZ6yjRKGabNghHJVLLYFUigxISOYjfSiVGSISedh0k2flQpxCXBQcY6UQPbSMPkq5d6NljlVXeqbWwEJUobHIVjGNLfjkqWrKYBMNAkQtfXoVKKtxsRxjRMo7z9WkBXrc8iABosKqezMP0Qqg9jWdCuAuSI5yKLaWMXtLsv2nSGmB2KZaAwFfxijheYvet8oIdo6wb4CX11r18DJToFf65Om/XWNp2fNncH+xUiMRTClT5I448QXhpP85VVFJoNl//Ps9EbN/ItDahYSigdoj7xPnqZEtT5u70MzlQPgquO2lC8ZbVMOM5CRH05D1yFfKGhW0sIVbGr4wAAedeUIMpcHb3BRYCgZLZ7v3m0ZbJ45Ah8HkSNoPsuc/7F9kON4/x2xIq4KVQm0+VWob2E3Q+bkJoif+DKMGx6M1mAIi5N25V3M912z+WOxonyfzPStkmjgCWA3sQmXgUA5g0lH/ccnpvEOWoyZK688SOYcfpwpjE65US1Ruuwm6gWNU0vRFTruZHwcJ5Z12PLhU7xxllN7/O1Ta9+TjygLrZfJ3vgwLAlTOGcdZr6g9Hd4DyaKjJQs9XabRkVWtiUU4PlCJbMb+6IKS49Y68qlq43X151b1OgHESAkuyLqPIh8vE8jCgbUyT4BxmMQxLrxU8CXJ4UEjdFkVsM1NHvMXmTFR0PBuPRPCnNwwJbJQroxLWUAqKqtJSZaHi//gGl36Lj65CD4Po8KJod835P/W0v5RpJU7rqqtk4T8rChao2KyWoVdFgwDuB3/I3AqzyOye33B1O93jejPYoTUL9LX8u+FDcRuzVft4wn2oSa9ulBN4qnts1XROl+CO19H5fH9ZlZrstdH7JGehjSLLbFIc3J28pIzNbwpSOmHU9uJj8yRLL1YpdXd+aG8zCIjkNNU8FacGhlHbNvLkiRZKaQzbQ8wrTYUQOnFO11hSZaWmH2Ab3dMKwKI+UGspzDTIGCAjNJ1PVrqgZUvzvtF3QjLHQ7wS/KoD7XLK0IXNpK7sAsuaMQIzTdveWaqscc+rZx9dca+sub3vR2M9P/lKgQcW/WhH6ea5IGfgzliWO8aJMG3i7ToxzU+iwts1KzY6ugS81cCzithDaWKWByOsAIQtxQik4FMjOnLKL+oWqIpC7KQqFTRZofSWttKx0lwHee0OIz3MSYtS2maLZAKZjYMC3AF/74DxR3raCDaqH9nwBw7oXEJPH8SA+vfhA/3UkmvpAJu8zdsn4ztvoTKOgVYIIk5t0oxfFbIp4qRLi3jlvyPJU/0ks5LbpSwAYtw5zTJi5rBoH746XEYvf60mmDoqOKVDM5CZtHZehS6sBoim9oWf0md3h0KFiXLj/QB0ILkCGCLf1SI0May3fXfBmIccDUW1kW7+vOzav+it2KYKPrC05lZImOSGfuc334xDlR+jPfRD0BIxzTbRustSi2EG29Yy6iuqJ8A27PoSHo7ie1StqTAZTBOMgh93h3Ba2YtFZcdRCtJO/lU9yBdkkjdUBy5zezZbOodGjJ9GPBGmtGX7XAkjGE3PnkHMc4D0nju3loxwyDnM58vUvyVTrYARliqLnIhTh+5zF5WVdTJHOGDsK59wQJ/Af3Cck82kfzybCSFmb7/Pq9CkqgOVvw1BWbO3lqhNbOfRsxU8gNEijHswOFiXJM2UoqjlFsfsN7MPj38PkE8Yyjf5/esGx9xnk0tMFnFvCCy6iDTD4+72FI5k7P7ldlg3BdMWwiQIaLx8xO18DxsYee3UNIQFJBF5slGcxLJPuzGu+NK1KET8lUwWAILsqupXfOybclxh1paIA6O/HXGFHkx703ae2LFdaHGpOR6c6P1/uP/Zngo/S1R0WocSQvDHjfJxMn8YhmzJqfMXUTZmsNPoRUM7wfYsaMtG1eYD2lpD59symEWSGwP8XbVDyVUToRTjk+WXhFArzccNJehT9I9VS35gHpi9V3FO6KHmFuAnvJdD7DkD1AXfr/oBQJaJOZTB0lYtcTh54b19z4210tl9uWOxcMjRwKyds3aFKEWWq984m7WQB03CYs4QTVUpCdCgU/Hhf0ZkUko4C8HqpPi+eRp5wuyvJi4HyPA5s6s6oHjrjunOQwPJei1qvs1P4lNN80L47Gj9Lxe3N8QV2XVKGdH5qOJKTSJKPHXonKyPNUhpFU14KSrytZAFn/T4NP+k/l0MSVR4ijaAdGE56B+N7GkAHTFAWd66e/PrBfYtmeoPgcSko1OzIBbWYmtoQ6uwe08cl1gs7arvO7QddCoZtf0wVVuIwsiPZoadcwgMIoCot5co466mMOH5Gv0BPAXtNeiQbZkPKbA1SnufZ5jsfkB4XegAljVIEq3iy+/60qIPAGwpyq0SXd1CCBNRreloDThlWGVCz31X0Z/usF+UMx0w/HwIVkdsykh/F//dpyho4pJSYoWhePZVJJNVYgEXAssn8LW0gFLxOmZDa8qRvlojYVBIVKdt3NIIUfc4JyMl/NNn1SMBXG4my5b6Tu38SXneYNogZpI1psGBOpQHdSSwmFm22cwof3pkrRnA3KIaMLnKWJcRhhUKbJWlH8cv7BzIvH6U9QgxpGQL3vPNfL2yiepYGJfXekMFXYWucbWf4bB3Kvd0ypKYCJcopmJhy9hKgXZXtufr0QKG/bRW/pON6qzEZxXB3PQgoJGwDM2hAY3U6/6yY3g8i19tGqACgtqn43dLm2IjIu69xOwYBTeDbqcsM2+nbW5uSWuWqO1PwpuiSP1fvA+a93IksejZEfG6dxa1O1S6nZqZYyL4XbTI4wXe4+gfQt6MZTHQoPhECFAE5MeWzJCd30rfSClNA5m6ven5Q5P2ESy9jqcLwFUFKVbRFqttrEkvzGeqwtkxALPiZ7Q/1uG38GELExTFCcZsXgZvpTmstTB5Uik7gmXFyf3/bL45sYutEXegXP7m5YdTIxPMgCaBGgpsLbwWHKwie0eNutD6jvomu+WmGfLmGkJEXCd3v7aKghjbkvbfl0PcPRXYK22FW13NSsjknY3ioM2Yw7jJrgW7U+OyqRMx8tB5sGTavt3K6ENbUF13wxAg6+hit+/Bb0hYNFR0INHRdvW+TYj7fQVsMi/MQ6dBQZu0jjiCGvvE/WF5ArjDm8Z9jwpG0xD62K4nMV/H7QeK61NG7eceogQRIb4ekodwTW0xMIBDybYXDuziIb89q8N4WJsn9d2QF5577XnqFjg92pHzXhCiBhPEYlNdjvfwFUzvH4Y29WXOqQ2blI1GHTS99xnrof7ATKZTzPnDVMQCFFmkvvO/u/AxKl19zLGcJ1maHXiGDrST2Yw/9TFw0RnjVVH1wCgYzV6/Y565ok5DF32wmP5K4TNxiNV3dFQIaJnIpwD4yLsR0L6wNues93khNL7YoKMFhbeL3ggUu6f3tT85KP45AH7yR2wSVJiremZH27eCWYImCtvKcO+ZjxAg6XlKb/yuFJ9zmT9qY+FdRbjGaAyki9qyCxRiv/0tthP/Vl1+hPWd9ysGRVhz5ANzjkjFUNuTbElaX5viWeM7s4h/3QWFxvyF+nXjQaMnumTr5QHclhIcfifxBwMQn4x9UVkQLNMk3/5BdML7ZTxyxE4sXwrRFO/GWY4bOhOfgrvRUa80S5NsAU7GWaW4eIAHPxchxMf9XotFIOFIIxtLvaYjPCc5TWD2QnpZ1cKvVVxPJt67rZDqIKpHxHiIhJ87dQvk6EhFoG/Ns//poz225/aZhZJV7o8R5lYeFh8aCVAOw0dDTqtbobaDGuFne/SKNID3UbW9CJTTVah9dczzJW4GrYbPuOgmXWdfyGzFscxqytyMkpQsxMkCTw7CQBJj9HhTliaA7BxmqCLGBmTxYa7FgaIlA1tN406Q69cJIA0SVq272C7SSNDYUEBfBayKA0EU4zDN8Yj8EBVl6/t55k/l8nh47Rp3JEbDs1TM+w98WFQEZqsnjevKQ5gSPylxG+aCPcBNIv0EJYdC4OtndeTa3Jp/tawcOSQCHuJIcb6VjzbbBsOKXZgT3iqAxbofFXQTjNaAas92M2r4d1iD/KvPqC083vwwhDIrd95l4WAnbmLbc4rmPiKYNs3Hgi3E5e8hlWq60HZcIZrJm7WEIcwaqyGk5nzuKq/XhvojcAbnTc4gAd00DWC5tAEhPQr7YruF30bBTs9mrZ7PKMPnvkyoqXtrMGPe91fm9ljaihrBORbnBvokAfEnxP9ignY0Vz1iYtnvA72T+9a5es9AupKdWmiw6041C+N8jMm7EJBTcGLKj8c7NLEDNx0Xp+nMhEasNcFPI1J7BwOonNkMAssHxPSOuS4UtoeFWPGFRVxFmM/TxKOU629qoGVoLoqWSPpHjOzstYHYDfScEDfg/xjCLKzRowPs/tQLgoZRLLJID4HWEEcPOmTWsinlse7j0MYUZkSNX9xhcMRePjH2rXzuAZhv4g/dydeTxxJK7462IqP8gkUlemgxslkJ/hRjZiWPJl0Tp4dVwg8XCBXHoQwJIiqZkbuNn9K0dvVXBBpja/EyxQ1vhTMEQGqLYzjEgYVsbomBgeinBz7lT5y3R8t8QaGV5ceP32qAdASYHq9dgu9dB/Y/ZYO+BdbvW2oS1w8zRti271G9oBk5ZY6w99bWiURzwlAG9PkmsTxQpuGH8+5CIuhNuy28o9avgWDoSq8ElhyqT0ZA1CytglLBbTBwO1GJMLM/0mLvgoxlGe6KqHwk8rQqGQMTSu5UBhCOFxQMzren6Iqcb3GM2eHyLOCX5Wr46aLygcK5GyV+NQ9pf+DqNyg8ftkTrTHnAppWxhdMzBDCqiDXwu9lPkLJdao1cSMwO4KXO8Ds2T4XG6/Jrv1D0L/EcJkegLk/yPC3PuP4IPSajjeGvCL6ql1wsllf1JCVj0gggTskG7RtWRAd6ELWynz9+xRMpv7opGkcS7J6Fy2zNerwaNjqZXAsRyFdJE0C7j1jaQVyMqFetZEzijtJ1LOxAzAfKocgwESazE7vIaDwWWdqOHbAuZlUigxqqutA0gNRyItD8OVl+vhxTkALdbrU4+K/BxiQ7I1ejsYCZLFMNryK8d9mji1f4464O+GW2g5Y4/juFasTrVnwUvaASDbE5SJylEs1iSfQ2M8Ci+sc64JvTK5j81UL2Y05DqXiD8uFeZMEd+v2m9u9tFEMJatwTZgdD4R+AjED0f9nVZPTiPJnoS0JGRzlCGPfVM1lLzJd0tV/qY+0tmoYKVpKspllPhmq7xONWEhkN8hXGYYuXttAwMMcRsVA1dscjvfXqONvU0CNZGdJmxhG1VHs6Dl22jie82eta6P3frbJ7zbYnQvisHRTJn6IbexzGsWXJ60HQABSGKasHSsfxz/ULbWCc5KLmchO1QF3jgyzANotuftII9eUzSJkIPrfxPI0zH3fjlS0lhIuCABwTIvuLaBVmgKGw0Mq/OcLh3c6Dn+rWoNEXGXhX4ajYKOVM9TjaGIoTwYQPkC8Gqb+MShy4ZuGDUlfapkLfXjHuPMr6rpCKMq4CgPV2C7lVYZjC4GITDYK2zWueRL6ERV4DKn45EPc8X78kwxymMi2kNPPR7xs9AKZIf8nXFCwMzq8nX3rczCHhxKXxxsCJREiJCcWP5mJKCvKRvgY4T7BOGURUAMfHYoLimeXlQvNFnaWzpQcERxVVNcn3I1iuGUTXX9Aq/FGO1Y/dQ86egI/r6RNgVHNICcmQB54xEES3wPRSRGAfsGc4E+tM/2BkUj6GtTrz1zdhCbVb/3DIT5w0au2/aNQ22O31MJFg9/+6xJw5xMo2ysud6lrTmypx6UGVeOWGR5ZZPpRU0kEp5mSn5GfcHrpy2ZYKz2ES2IuOuL1KWwoZ0RmLmp58t8Ww==
Variant 3
DifficultyLevel
684
Question
A zoo records the number of visitors it receives over 5 days.
Day |
Visitors |
1 |
560 |
2 |
880 |
3 |
1500 |
4 |
2400 |
5 |
2900 |
The cost of entry for each visitor was $32.
What was the mean total entry fee collected per day?
Worked Solution
|
= (560+880+1500+2400+2900)÷5 |
= 1648 |
|
|
∴ Mean entry fees per day |
= $32×1648 |
|
= $52 736 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A zoo records the number of visitors it receives over 5 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 560|
| 2 | 880|
| 3 | 1500|
| 4 | 2400|
| 5 | 2900|
The cost of entry for each visitor was $32.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(560+880+1500+2400+2900) \div 5$ |
| \= 1648 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $$32 \times 1648$ |
| | \= $52 736 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 52736 | |
U2FsdGVkX18tNBc2uABB/wIEX6weMXXhz+dytjFxxVmSni8Y+J2H6qfyxevXRj7bbXHTyB6pfneqcIUfUeTPdod7KGVQFfXWYCxmNHwhUjwWQuHuOgmNCHvkeqaW2FilVPXljMZQWyrJbuNlHv7sEopyejZoJ3oKIJjd5bmKDHBL95N0BTkAxoc7V+Lcj/ZvV/38vV2ZRLsBe/MZLjvPKgWUbeclB9kD52Q9NBSkRE1ZnM2irgB8KAA51SMv/raaSLOwSkK+QuJKwnO7h2Zi/kC3ZKw9vWeKBcZqY4f/4ixCmojJzMr3hzxV6oGso5+BSsr7bJyeudlOVP3M5Q2MZqmszQ7utrGp3S1gW4dqJRs9PE1vzZAAOSDdmkzBP1JelMMsm7dECUu2WLIZWs/tOn/AR658rfb4zKGWPxPbwsZ3LtVvBorkNQhuWxUSICOa2MkEVgdK+GdTEHRDF+QH1Y4FRpzYLqJgW2g/omfyngE/fnRdLcfHwO22VSODXISyGl5hbESFnanzwbgcGaVYxFSaiGkUyoQtnrHAFi9rCVJjw4s3eWXJuqjATDpYKOhd1t3p3V57znrylZ3M0b3FUK2A2LlBL2H6ymcPIFOXYfPWe05Y9Wg024urrt9qdcYHCBn/ev5uFpePZLRn6JExYBB0e31MQ4vI+uw6/ZnYWHYmKJy7Z1Kkm5ju1kcT897J3pmfAdbRwyWxe/tmAh3gNP0+YbhcnxPRpeH5O7+dN9kXZ9Cky7fo+7WCgXChftIdTkuNodSzdE4EeyTXQtCdOilF8AZEJ2EgVYhoDE+GCgtfgFAFlVe+ToOR0cTBAL8SCp2cGQUWEQB4KYTz2Jltae3bKOCdze0kmiqp5wv06aG3bx75PNbL9BwoYHID7z9MRir3tfaMsqf3LHith5a6Ls9NC+Yo6by0de2/vVHtRCU0LkZDg0WP03jZe21Z+ZQCcpehj8r3e3aF/M6Ka1MHFXA3XToKWXeEK4GCh4KyoJ2plH4FDy8y8teYiCzn1k/tDggMoDgR4pFOnQq7EtPX/EJRoPMFjq+Tr/QjmI8pY+KwmyvPpisVBGl+En/my+G5Xul3ijVm4G22O8STiBfnw1nRCkWIysUhPM+1meBCssQnPqOckmWhjL0mTnNV7pAvEmNRsUeyOknO+MpVJNd9KUk687Fb0pPDTyZfsMPX2GZh6ZH2ZMWKHQTfstKlvLQkJu0xQLwMDi9no6zjaF/H+YeiwPluqf7/76Rws4sWICB9l9h68c8NIe8fAZ5fpERtYxX1S6Br36zec6KZV+06/1RtFZPnUCK5NJ7kqbFIH0735YCtmIhPc8cuS4tpN0OQQ1GTIH1MFtTHv35kUrpH5TcKwXnCx3IGmQXHNcmO0DK4ND43ptsYAYtUI4PN01GAuDTAx56n+oWolYaPVpO83RU5e6qkUGU3QTGEbqkabyIBJTCPN2YG/dvJTNgxyhi0+I7+D1S2H9M1mCw/qIszh9KSjVrNXNMotpTtQEridvaZr+eIFiaXlCDeYFsiEymMImJRdc+5OnLNSxdlQB99Z2lTH4B52Ou8Lc1rCbtqagAbrhCmVUXRY0J/M8lo1PGlCTSCTZmuZnhQ+Yg80JshLaXFKDVypUCjCLomMcgvw3x0XZT7KktOVUojkEg/7xowlTEAqJkLprnSYjIQDPKyQlEi2shoMUlWWglsglP+bhXQDdaevVqE5lRFiWVxeW94SADRCG6PjqT0yepkbHS8QBagRJyFezc386gO0KxZJ6BIg7GitctZ4jUOwX/l1avdQ2NookNJN6QM0gckG56WF9zc8BpZ8vWV5IW6Yz6bkw5TGaL/7u47tseMaN2D9ZwvjpPxXxReRwo+D5CwllYTpxR/V0+G0WiYjr4laR6OARLDHjAR2B5umMLkJFtPJSFMXPj+9khhqW/KxipQxWaURGn2AsBo0aPIDCmpR+Hty7eD407qnpwM7sC6MB67aTrzpVS95xmg1+xq80lpurBSpk3b8fV2xlWZuf/VNP7BEvNz+T8H6VOLro9TdB4DluDLKugTMVVUW8lg8AffHJyp5ukbwOzthXx44vJsX0Cst2vkpOZFMKeyXDlv8lL9FFBuEw3YE40woSLbhs+kku8Y4k5LQJsX189xnVnU8Vs1CXqkTduqgvC9ogCVyTVBrPWQv3QEwUom7B/pEiltfxqsbanq2BK4D3e3CuSMYhcuxijYEwStxqNpcm56Q9Htykk5rv2JSd31JBlclstwg6383I89MbtV/0r/NRbAjryL67L3TI4i8+DVFD/uHc74S4WfwXm0VOhIHJXFWIutEXAwUp8q2WiKLrxSRpoYmV9Is+iV9vW55d4uQnEriPUtf9AR10nWDQLvierSV4vyroLkn4T0Pu8f03KvaAb6LrBVfihMfEQJruQp7py8Z0uMLo6u3eKMcL6OUSjTa9cURyt15ulInauBeLpAm9vQAtRpnBTzhq+ra9VrXL1pDS7M0tNQHnp1LEVTJRbOe+suhMtxQ9Qq4ZZOg1yhANLoPTpioJizHpdX21ilAwjYTinGNc1thANwvdNftJ9hjCZt1PYpd7f97g/ExWaHKJGp/CAyhTvVtDbSeWYZabx3CtNG8fojfNWnYG/d2xejNGYmxwZaAaMm3LuyIpjG/kQAxb68RPNlhd8wAMrRJaCdN9rfQWlqR37Wvwag9Qb05fOTeuB93Jm9b4Tbb4NtqgmGERuVhPzYFpMI2Y/9OVhnE0NYmREonk6JpnT8POPG3Q3mYvcX+3RcEDFirUL9bPEQ4c3pBAhnrKCIlqKS57xZbdYX8xiEWmz5kWM6m8u1km2rUz54kYZIvkhX8l+7wnfbh8x+KO7Bazk2md2/1T4BW0+961TiiwU7zxSyJdmOfNY0Q2RRfGis72WLSHROhQuYxhYjPHeqCNM4FMRLQtV4W6YhEQGvZN13qVudGzh7o/jSEvXq4vut8pNQ9BDWuMoAzfNDkiK0+/UzX5bRpWb3+5JJkacg1VMZlq/aE7gfCu7qSXBz87EJ6h2hGiLSnb8g0gLCZMdmQYtVTRYJ2hk5fq7LKbb+M0x6Hij8ji9g1JDM/HzFHPs9wGt5BwZe0SoojgxfJ4UFdu8TjeywXraoBOuJp+KGTU1gfKlgCfHhWn3oAureRJLhLT9Wn6rnLbfbJkhoCk+oGduTTrqoEgEqcZTzUYERRhw1bj5kgYt3M8W4k6ZaJSJQityjsqqZ+6DQNRdM0ZOk2xgEdN5XN3c38b6sEp6o12oePXgSNSLDAXHoJcxOWiOBPpHQA7YlntoAdVeSsmT6N8XevF/PbtW+O7D/lwo9xc4PB0Y6TqUPFg2Pj57Oq9fGT2dXtdezhsCzVl4egB2bZFnHzB/CpnatcNSRF+0iAJEtBK5mVWzw93sdKv5RnkMC6Ao/nToXIYRPzb/NnvM1F3yADwXPq5BvdD7RE3WsZURbHi1z+MIXvd3W40ce9XSr6xHKgMVCIu7m7Iwb7niT62YuwzblIUbHejZWO8GW6tm3+6VUka22JDeCKMlk/UChQ89IapOHKuVPL1dimbBkys/ie4iI34Cul7eWjjEQU3mquGR8PdR96NhqE4V3mv8dMbpy7RvnMu8QsC+sqk+e2mDaYXfe/y7htryPFXKqYzeJEDu2oBBRIfCh5mtXMwfk2zyxuw6Lm8/KXlVif+D94nLPDirbyT7+3rfH80Aktm1f6wyxpv9wlzxm6g2oI5zezjbuMcDA86Ysgtfd+5EQ/bjcDrcVuQtYn2H3IljaD0ibHmCvAQ5f4uO/uwT3q592+AVINAYxxlCXO73WF8cYlzw9geZgqMYuVsT+He063aBLKZHuqb27bRnprqV1m46s2quDlUzrhar9uuAKx84vGE6kCq23IgHhwlSHOL6zfRPRtlzzCa/XQ/eEcrzWWFlVsqTV+pZ3685/Fmt0Bp+BUrKzQZUdQfNGQZyhLbxZ7bxLchJeaeL7zMFdfBv3aE9bV760uqn8Q3PL7NkXbJOnpb/DTJ3vNAIRE6fQaSG9PRe/BX8KWTXD5F4BwCc3s+DkTUEZcjZwgqbEGafVUflZ8Dxe6sFxsUeVjeVQeAO458FvGt7Jhvo6pG1x69JjMQBaqkgHv+Mt2k2ZWRcj5gTy4PwZCaA1QeWEgdCX5jwv8YQK6ppdOd19JiWDSroY//qw+ZmqAAvMaVcDBaahDI0cnj1qqTiT1H+x2BXajEXiI3mG9XEGkNZc+5+9Jl8i9FnYJoqkr+oj6rKEyESJn2esDWliRPlik5FGZVVIptMUDyb84Ae6V/qqsTRu8WEzC6/mkYoWWgb2ACjUdTDabd319G4CwW+XUlkoMH0I7LdU+Wfs9AlkBbBAUVckjF7t8Zt1BbkfaoXq7Eck18arXUfVz6ihQQhhCqSATSqnFtqCF9Bs/E6PJud+0EC4bRWmeLSOXoXi6mlsN/Umg1c4N55fcV8+HmdWq4euYyZZCFSv86xR1uIJptGO6RAfpVXc9m5j7knuNx3jYtM8OglsuWyIj5BbcDJW3wjHefXy4j/jZAa3RbXlMoeoGWNRytYJKn8KRp8A9fRJ/c7q8TmfzasU/20uY2sGEzSxMsPwi99OumhY2BKBjM0z/rnmS7sb9HYcjM+TkLqXjO/IZYBpW5fZcKT+aVx3PTHe4K9AUpqsN614rYA+1W3EZxSJ7agLe808Bw0pKisKsGgyaelNG/nOudcxySJU1yx4y+Wi9Y1kmgNcUOwsU1X1lQGthX01OVVAvwhn7o+U8uwbY0MHnS1+z3NWD6Q0d3JtLBzem85SnbmafhIwEJNzemLny9OlhHewvIb+gKs2BsZvXcpXjnh4hBVcU8plTjW45Y72KWIdZ3r2apYW7DNRmnTDNle6i4B+1n4Y1i9NqogdE/FjwwlGDzsxdU41x4fi1o32dfDhpxkgJ738NGDw1XDqoQLtdMcbRD8crtIGMgONjp9KISQNbtDfTx/+Y2K4Tj34Fts/FZ2eXmDG43a3UiC8KwJQdyDFug+Lzk+i8HbWlyJXXVrASZP5iwt6DkMC0LzE0UC4gJg4NRxo7gXfkxUOtgrxq29N0CjkTTggVwKWD3f2lbDThmWi2N/hQ+Gp9Q4cqLAc9LRU1UGUlqmadCrYGV1LAntF9O7PUKkwqnOh0orshXsMXlO0/F5BU6Ggh0LPNtbE8SMphRVCGoSd7BKanGgA+uCwk8LhMuBV/xByBQouV/ig+icc7zm3K9527IrWMP4+E8AO29vY3k6EtMtvWIAbEwrhkk+YzXVkyyp4a1LW2W3Yi9c1GKzs4YvDdXJ27k61WrANAx5afb3VB9HLZIppRPSulQrp7XWLARbeGCoyUomsCWlFPRd90neIOd01D4OPCFraXO9buxaiI4B3nHnzD4OxHGHDfUS6CvDg9+eKRHwvXT+hKxj2FBtLdmzuyRclen/dcgd70fsHiezDJdKyZFDE4EwGwUf/yw7xy1HJfWGXD/S3wJWPZMiWGjI+gZ/cZjnwiYT6na7N8L64TrWakjwHMaO1g1WC2zRFqiN5hvi4rJFWfGUfNKV4NPG1sApjQ2RSAq5DwsqSza8IFl423l+6mFsZlZfyK3tPo6x8pAtV3nsmXI/7jOhJrFKTQAUuOH7EKUJPdhvDQTROTC/j5eaMB2uOJtfoGiSlHORfc8Yy8/iLW2M89k/qWPT0Ij+vrBbQKWFIp63G/98RndEPrl+Dm5WLzBADH2w4HMhH9ISdRb3xVF5DEoHqoa5YwZtaWz06he0BbQi/mXJo9UnVJik6oolrJG7OUuSiut7QsecoQ3/+RfeCp6FN/SiCeg8nNxCjMZNQIs3ZafH7GH+vnjBMQSAU/W7Om1NKpv1YDWLOuiBYpvJqEC1B+/bCxGeKSJbVigXoFZqpznFbGKCHnScjnYLA4EXOjrT1YhMycRqOrSv3QS0VY9sMVpRBWCnb5E1lnOn1cfKCVgaqeqhVO0CWbQcuzscralAklujuYK37dUlSbWeflmwrd+L3Qdk2RU7LyBVmsa1rpaQitRo9B5/FAAkl7dWLbju+pvqkRCP1SvJT/CyQQ+IqaAFGvWnrlExtgEuPPAuOQTMqDkhtB20JlyW68S1NaHbYBbg9Daw6dDEUXzNDiaInV4Wb4WF5cVbTps6/TR++wyaqE15Ga0UmmxIu4hG1Qg2iy3+PNWCJdOufyA8uDeyCC1lcqPNnj1yAXZFKJsrQULJR4WGlJs2vS0BPLYNWFrlgIhkJIqBhsPcfpy4HDDjQyCPu728Cu2MM49F/1yGHFYK5YFNG2w0NjNnyFvUo0z+1QlvpphZ0ifoFdPYtgZjXYCp5s+1SjwnNkjt17kVhR3M/dAURjT9f2Qh5sVYDxY0/VEz3zX8W9NUsTlI1njDUWGMSNYqaPQsB2oXj8DVKRle3Xx2I7bK78G1DBZ9Tew8/Ul4j20v9dlnqwcs7iPMaj6hlo7PD3Z5AI9hn5CQfDuAqxtaBUHbCu1pQTBO+ZtPH5gayoF3zjzOWrjeBtS72M5rQ4wV/VUeZxssedkoUR3sCIVbjklnulhQCI73NTBPZpNb0Po/deG4wxzekkdjWbsJ2HLaV/EdVPVHguMfTNy7QTQRqaHgnRqSB7hBju7d5nScPYQgihHET5YXMZXW99x2RTZTosCdh2RF2Zo0EJpSCk852JzQXpowjQP0PlRGeeCqdpfstd0tT+ftoKpbn1ZoCIuSrg6mnn6GbRCFCNI5Zcdr2ad+3CmBej2VOX8iAU1JFMOoIlsrDwlaUXqQJiiltlB+FXeIX013+Ci0bEuekNWH8lRnHLrbOmdivwVcsaLCAEHHqDnkVzHBa71BNf1WB07Wz0RqphdNFi2+SsyD8JuDrVzW+dhGUdGTRq8fxsTB6GObpe7mn4xHag06MlzyOjXmzHSyk9/ck6KKJvgd84ClGWauxy4vIYnfFabxs7qwBhcLWYlvndQC8BBsD3oFSwT2sR6HQDhrycTJDYdGHa3IdWz7C1mYW2QKRzQ5TSqz4jQ1RLFSmCP9oVYeUeMJmEnKX1LcRPwbJ08DtxUGak5I++s3X1WXXf6ZBmij8RlQonUErgvlnsv43ItHL/iunQ49hfGqh88w2IDD8EJhVMg1PeWC8zH1weN64ozCButP88gNWjgJSuacwhqiPBfAX2jkrz+xFNmFKUe3/IsOjsYyXhYjU9vWkP8JjQheYNsxPuiiotTGc0YrHFr+4qjuwbHDn7lQp6WHkTosBwKcBChvnfgnN6jTYYe2DnTwCoDndwCKN7VVwdaSB+Sw8M2QHx6TJhNsdZAl0KoMufwB/HLhpNQz9HXz/nTYm72wdqU0ITd+lSc85oBSKaTAQLO/wF9cFhmNvFIuFEYdxK+S1JMix+NYXQ+hzWbVIC+BHMWqY/sFvp/XJVXxQbGxDD/7b4hD9zzboWl/6JkkJ0OnUGlfsduVcDn644v/PmNtYzi70qirrrBgqz+H9fs0fvWIttafBRxQkoFGIaHEAnGEtXZWVUK2fuW8IctAfwzDDC+pAKyzA4Bug2jfXnSqNN8rzK1ik+sqHsJWL7Fw4/OLvvpdkbJI5slDlhrAA8I0Z1WEZAMJVMWaTqAcieC2WcJWxPYwNwJ7eVqU2Y1SBYDZF37VkPa5VrKLqFUzgwe80hLlc5oMi5Z/DbArLcau8kIcjBaTeuU3vtpc0OcKwqLlLN7OZfJSksjeoDIlCek5N1v/s9B/DTEuf9QZxOd2eeih0OfR7VF/v4XEhGhv7NcNI11PbKYn5icX/8vwQpPPTLTQgVyknQJZAdEl3ksdAcK5us6CfeY9fj16onH2gtv7vXHld3+1FWwlAAjVKmpHFnt6FSr6MMjcU6CRa6FgyJTp5dVlLWH71PD35p/1SsOi87ZF0f87CPkS8Ra3eXucQhlgi77k/QJFUkotgV5QlR94M9zPhvugYE6nptrg6OBfrSGUo6xMV0Sy6/tQ2xgz98cELhSzkFmR+LjqRFYj6owLgJGEi8XLLeIZUXSwKcznLfcQ7idLcSZ+sia+XcM9Es5J6XrMN37qwmQFzTRBKUu/fX0Ir8Mh+tIWZtRnZr8n3RdXUK8gBEiNqKE9pv+gcIKwqRquN+EQdVasvcxdW3gGu3FZEp/Mcpt7t9InRXje1e/Nd9S+NTc1gOyHXYPkKGEoD4UM6FXCLeAjAWkOrCLGyjHuqliSG4spznrDpJf1tZfCdclRmCZBzaPWOZ663NZ1F2xst5DEgtKkdFPrFQe3L2f3aYbQ75WboeeF7ixrkEIVHLvYtlBEPL5c/zhdXbBUYv1xCxRCzKygweCL3mv7P0daY4qLj0o2BoWBV/CIwAQWuggT5gk77LmaRH5Gglid5CB/7P6gF3ztXz5yb3p2HTCV4aRHKtom4JkI211yMUoqMgHLZd+QOiLPm/M4wRuh7IJqmBWjN8NcxZyT61SQEXDhf5azht4S9jOatfwSVctzX/W49PTnA5CtGQKRzdN2LghJzFkqOmgP+7IT0CrAUzr8ecUYHYFQkmjZyEzZTrMqiOZ+QXhoy+fCX0IKOM2joW4sRtD92WTEuaccCvLwuptJp3cHXsmbkXNQzB0CZ8Jm845yZv2w2CxzOAo51VJ+o62jjqBuoa28w7r3Rs7cxqquDxRgSnedCd+Bl1uEQJy8eiW1IL6gCx4uSVD68SnZeDhp7Oxuz+5B9LHrT5PtL9w6VmgL60YtPmFE/nR1BoQmKciMx3YlLs1Y45XdLYxpqU7hXPMVbQf4xZv9YXNp+N3qnmaHV1qv+FB4dHqsRTWKHybMdDy/TD5yiZypfTOn08A6IOtpgnGPu8SbKCzzXmEM3mNWYrN3gsWIlfzBg/ekCL41HK8VlbWlnEb/RH85DwtS50RH1O7ZwGWBuSicKF1wH9ez57oPYpA4Jxc0pSQpmzuhMTb9bo4VErnHt/JSMykn8aaIc3VZUZcfAtO3vIl4zsQasFZcs5tpcuds5lmuhdBoKUFfIpNo4mHOuVUhqc9BeiO27w1xio6T7OYOM13/SUuVIEVhsFn8/TkR9PTWHy6DMRfRGsPiMYiO649Mzx2jtnwD9kVsyMyIMtMdUIfoOFFNbOaXICT5ftPFoPOIuExNZKngpV9E2sqWt0qSez+XDvvieEB30KoLXdyxX2ZvYQVSxVid4yddofA/S4gxjR8EFz2GL3m+ToyU4Q88s7d2Aa93tXzyIkFqs6b7SxLVwYR14PIfbRDoxnXx7UA67CGGuTu/K2M17b3J7iRYFAD8Y7IOWAJIsYlUwVoAeXeCyHigSg0D8yDvgLnDTwCR1x+QnZKttygzXztnPOnr1WSF9GzT6pm+8oih5igHpyXjguU/WikkS1xrd4yQ9y3ogjihU8EhbzmsnaFqdREmXyD0mL77J18DVX8f/1MlDt/Rgn0xwU/5QwUokBhB+rJswf0TZ5q8cTK0ejI4cyySR7NpcGVodrBIFSLlUqVkPARnbdrXPYxlCXFNZrogqsMH3yKHdxxUTruOtuMXX8jrFGr91tI//qtkaVkoyvfwHRGdcdTgszyBkgWx+IaAZsTGeJ24uAhnNMhuRiIuWjRv5i3wcmcRPypz0T4KtVgPQLO2ZAgqElMt7qq2V3DUHv1i/6sYxfkXwCvgBfyTkLduGoYqIHtCl+2ycokHFY0l15VXIuRHaDseTNYvmCIKkOeUVjDA0hUqix6Bum2NO8AGdpwFhnYmrt0Wy2qbeiXJXOUOUCRLs9r8IdPzLqLLscf5E7LXjqAGcKtGOPaFlvp/Dr3lGf9vItL78VdkLTQIkj+AEe5lUfeemllTwwjig4K176v4nzA/Z1tVSzsDqICn9XhOmh55IGIiZMCSDrKilM8M0nEjW7g61PQ9gQzLnhMa3l4oLm5CMyHH8ji+CS6zOK8+9ZO4XpCY+Gu0L6p9YX/dULNfulcbbYGmPGZ/+cGBQhBvNum+5SGkMvaNpmAJGPCsjPPrqP2R9XuKimxWeMQJnvrbkqCJPXGzY2aazd5kZsqvQjmY/5ixZgxa8FgGO+PcVtpieDaAXWVG+acelga9E0h7RjPsIsh7FH+m6xrX28XoDlr9Fueu9JOnbXjswg3QrjV3jUw2osLHRVeUspCZlo64MnTFSuMM2zE0/j/GT2yj+PZdHvj/um9Z2NVJsadpopk1AFcPn194dKUF6i72H7jmbS2457QXoDFz49BDpM8UWvQlciGSWCv6kN5VDNvGC8gN9pWn2Hf5jXZT5q+Jp30xU6DFeUo6hIdHz3UQuqACkvz6YRB/Y2NJzvlyoXvQjvsFG6CvRXMaK3+dgs5+5Qw9wR5EYbnYx882RS+iHquS4rq4SSVNv1RwTao666Ls=
Variant 4
DifficultyLevel
683
Question
A Universal Studios Los Angeles records the number of visitors it receives over 7 days.
Day |
Visitors |
1 |
19 657 |
2 |
21 300 |
3 |
20 900 |
4 |
18 568 |
5 |
15 700 |
6 |
24 600 |
7 |
18 449 |
The cost of entry for each visitor was $45.
What was the mean total entry fee collected per day?
Worked Solution
|
= (19 657+21 300+20 900+18 568+15 700+24 600+18 449)÷7 |
= 19 882 |
|
|
∴ Mean entry fees per day |
= $45×19882 |
|
= $894 690 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A Universal Studios Los Angeles records the number of visitors it receives over 7 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 19 657|
| 2 | 21 300|
| 3 | 20 900|
| 4 | 18 568|
| 5 | 15 700|
| 6 | 24 600|
| 7 | 18 449|
The cost of entry for each visitor was $45.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(19\ 657+21\ 300+20\ 900+18\ 568+15\ 700+24\ 600+18\ 449) \div 7$ |
| \= 19 882 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $$45 \times 19882$ |
| | \= $894 690 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 894690 | |
U2FsdGVkX19yXP0VUCugUrV1suz0MHPlbiNYTmnooviP9eHq/9vev/9LbRGZpdUv4B3jYSd6R+GwGgkM6eGOnMPCeF89OQ6V2uY49fl6ugydvq+cIfVuTqDizGxlPMZouQxZkOTlJUBAEy7E6wOVd/73W3O/BKiHympKl6EqIDE/oF5zkQsbUDhtDNXOXcMEhwa5quC+GZ98vZqhr/jmN8SKDo544MqmDeIcJcxpVysjWVFPaX+uXAt96jIy69DgHxTGyEZYFQs0cmNZ4xmIjhLWrhouitNGIvCEBr/w3vioFh16k4gl9zihQlMPpQxRpVPbW5Yr35MCW9CtM27MowBi5UIz9Jh5CvpHZwX3KXbTPsD1as0DQ7oF8mkdBI8u7fBr/hYoGTa+htZBXUmhICAefzjLDFvc938LdTrzafBfxEpYLPmuTeu0IZRb9AiEowskO0tfWcG5Y3ZAe6Mw+ChVJWG39SD+ba+Wk+8SIqPQxFW0RcvIUG0Ledtd8M6RTancxH5bjp1HqtwAh8LuU3P8YTAoYSPQnPQptjydvXcqHNNwVq61S5kZfM5/fU4vYRup0XmNvTk91vey3c++qH78ovxShGbAWPWh+ueFXW+e6593NqGRgC0DrQ6Y3IKssgNDck6uKEYbPyKg10mB/tNuAAfbY6PrTGL3urOoBVrORx+8/0oQjzT7tnDNQ1Cqukq0syrr/ZQpMvT71qWfYHMyqKgsHLvW5/BapsxeIVAqre68q2O054EtU5gZd9oF96SvImLWejB925JU9P0lcPqpRs7bwQnAKpUlra1d7BHQ9d/uilifdzQF/Cz6LEUb1/lrsRmKJu919OqqvIlP3Roe6OZVkOVZ+JFFrZktnIQDQeLkvgcnK6kEG3S54GDjKk2ua5OzzzvGHk0MDQX6Qi57UhsOJc/++zzJPKBWrllMOJNsWH0s/4f+iXBp0rchkDGH+Sabzu/uGW9ddll/F054yMyN3tZMrGOziFzM/Hgs2Kg4eyvrviT7qkVWHMNqpDUhSy9Drv4SLYClpI+5CidFDfBdMc3AFchHCFHL5LvA4tCx8AD+c33xXO0ejJkmNt32MRa/dQ1NyPqKkYTd0rv4iqEOO7fQJUJsajfQ2TSMuh9DUnQhDyeFt+qvJ/H3A9wel3X9GRJnZ3xVGL/9nsJM3EvUT4g/WDE2dcE/+1mPlWQIA2kTVIAito/q2A/nWrNLVyIS144BHYfwTKVArJgrQ5ZuqvFD3F48yOVfhD/FAPxZiSHlG5LqSSf5X2j4beAQx3yj/1Ue6JmbOf+b1ZJYH70lLLR8/iRcQsqWGjXl50W5GR1dmjV5CdLHXTyUAomi0Pdeb52Go0vYUzOGSl15sZ5DmwXXxRmoduhH7u/1UZlNvo5eMXhVhKneM1ZNQIr1XzZ0D8lPOAIkTOzR4hqCePOSqCXXGAeifUvil2FUr+DJcwGHZS3pCt2nI1DHqnqeZH4gHIKWaK6CtZRCBRnoUHX7M29tgxTYa2M5dpdXECYa/SSy3HdDkUugRBXM8VdtQtjDqjlY6Wt32s7s4cvX2l3EnjFXSnIyl69t6zRyAaw9dLg+fs+vZCZshp2FexJ1Rl1qwdKMhXfEl8skRxhQJ6zdB1emjtCY35XybcWbnr+nsgXVY+mpxUBiHV3yzVbkkD3f3z45d2512O42Q+uedcqzjz3vg3Rk3CxWNUsx3NtJmi7zAXSQKtEuqXq3wuEho0XHPTgCtVv1CeTn4WNvtY6VOUrXEXAL1HsLuC1Kr58cFIF3dAjXboTFaBs5CzbdSw2QhfeZQVebUyKFa5GhB76KIcDoHr4l6eW8OnGV0EQv2b7swkyGOAsi6rRGDjVx14D83HyD5Ca5/p2CoPam6sFVTDsfpBejKIhFmOggjDQsKStNeDY73QnFVwiwi/C9PBw0uwKGxosRAlrJdK5XZiKwa14TX6pGWoh7ZpB1m9ypdJoa1SC3L1ZXAaOCABhEkwWzjV3xPFcE/BVQp9qN51ytyOcDjXKfR4wxrw0KjJOXPwbj/G48UN8PgPbxtXTAEe4Pm5mVqAvNVUwdJRi9QquVGOAMlPKEri1OOWlebFCaMT+UQHseMOzQuvoyIEn9iFjQRWTBJOMiTwuGN9eQd6cMvdr1Zh7i8QjL7Gdsj4jzvebnfRwfSrDfkxWgBj02GjVwbw45w3T3xhjyOH/GY+B8bcmqPE16012h+nMhm7Hodn3Te7EqGP7uSStJw1eaEcRHvtC0zjtyu9Qp8Mxa/b7NDlQs2EHT8WHbCaJoMtotnL7U/Lq9i+R8xKsDVx1/2N/b29ZI0dK75QttayzRsjcIJsjkwoCWDw4WKCiQRwVouPSzgSB/UfT5cUVRXxfBRPjUDSBHSLZblbWhuMLB4T6M+P+//wyscG5F4P5MpFgGr6BqXJ8VnWJ1kxyPmi+cuLU5/WbAgl5wUlxFoPeZVmRRycUNRkwAb9dc1M7I0k4wjcHKkjmJJl/wXlZQobTKnOGbh8hhdRDyIUU4NqCGvtpODw32Nc9utExaNA0vTYKAZeCLJTBDqKUYmLUmTTZ8D+PCk3Ia4DNSfASFdFKtXcbqyi2YrUCPOTY/KJS/LMfkOGlGWIf2BWgWev/uOgoUpVii+qnLemI44dIRGrIlkHfyLdDYRkWjZvGNGeoCLrbXo2NqfPtQtc6LsIFA7mL5FnKT+/08XQeua7xESPl3CdieaorS+qIfROx5yuu7h1gXUyHbas7cYMoF9AkfunFCVE+slYeiWfvLtg9YuvIovLqrE2V2E1eRpE3z1J4RpJRDcNLuy2cFF5roX8DNRervFplXFySbzUX58pUT9o4HGF2COaM09CfDXnAM2N7SKKOwCiKiLMEeHOE+kZX5Wl7/6a+yHTueEha7omndqYgHE3kpz/Ulmyl2QY9u8BKbTa02nDTbS2WWwKO6aIk4g+MgvMg7ZT2DDM4M38KLycpEH+ueYf0CXdM81pbtPvJHq+FJmZNsHvFqIvLTisa3FeC0B9BdOkN7Fgu+h7ScjS67hkDcxbXYeFBKzjs/d4xebNu32klOR0c+KnXbgleuMjh1ewzJdT5zhk0AjFkiRQnDHKix8J3+juqicqgaB8wPyEVMaYhKRhZzCNYCIzo55Te2hr9E/7nYWYHBNZzEFJAAIorGL/JMOi7uk9hLVtqeQIvq719xlx4EOdGlk18csxzNgEaDhNhTV3C52D6vgk9te2Dm9BnKt+bywNxsAf9d5b60ztaXTHWTmzcvD0Cv5EpYEXmVp4zHNx/xcZvVLQK/dhNOIE7NG7Tww1pGsi2pb9xcCoCSp2uW+2D1RQL0Swz7Zh0PNlW1gXTHuX2Htgsf/Ab2ylZMC238RF9813i9xLTF1puE1nB8vKfxqJlHjSgAO2kKtIoU1MDzy7s/zwTQ3Rdobq8GUv+h5+vRd2R78q7Sf7WWgoQBxWYGgGbmgqrMdP5LXjvowGDFoh2zOlxRJwo0S8p1qhvR8sbrCTQUc5T6nTiInFGzKxX25BbxvJCL2DkRunhcCr8zUZU/FMVCv1xAw4QHT5n22rHEiKhwn7UtPb5S992EI8UdWgNqD+8o9/bFOEWC7iVCdhOBseM3o0A8edQV6mB7PiRGQgkCykh0im0cTs6TEMseHvDABIfelRB4c89nFqBpvH0AZzgf7KfPIS3M/jLZEdTx9V9v6qp1hwh5orU5TfUxPZTrkG/tqzA4TfK820BOy/rNnpCP7cRoI4ZP76CdfFfRJI9jBic9ElL5FqXptBcaCYKIGhwk0okggOzcnDzIr93ve7CYdPdJRPfLbZQR0L9rnFTNZi4mHRlDj8Gu64eXamN2N+fwnWmuJ9dsvuXVq1ecB0xOIZ9oZAtS4acLJ24kVqhL6roe6yXLjq4EBs3zF08HirB1PE5nZlnzN3WFGkRfv+FnPTsA7pkX/RUQNRgA3GhvtSN1XV2ih3sJis4/0KyzFIoi9MnTZt3piARWjjxNOIvt3P78LTJ28I35RW5HTVtcN6KgyuVvPypo7FE1dlXWlacW3fODIILK/V0tRfL0NmvDvtWtN+Ob9KFssSu7aqlrHe/40p3cb6A7wiXYwe/zNOV/topwXEJVIw/qrZDQTQmq/nop6PROdLkMP9HfWULrszdxJJVBCWhfSvVRxNcEgLEeIueu3o05+eGvJjDn8UpIa0APMXLTIffzJGRKa2qJRJuQWyI6FmXiuQbaCm9y/dt843tEHIIg5FOK9qqD5pL3IDw4Z3EhybCSuOQmCjhF4wjhFbzxavA2YRH4oB3vqxqLd4X8vPyqAVuR46iU3XIvBLQ5ha/N1kmvbgPtr7IPnGuciAPKp8t9k2mvRU4XGhw9TQ1ydX1/g0s2qG1V2OCF6hGEMRWUW8HPy+NToUm+f2nEGlk2qGRMs7UZwcGjkxWOCfXmUpEQoMQxSsLNRm47E6gTXK8FCFAumfCbsxrHfxg05tiaQFW5bReuhATxFfnTsZr6VayCQaU62b53hhKlhrG+dWwB62qaH3A55tKZfnFXFUo4+qPqz66kyg+AEnh5ajeTphAbLDa7/+pScY0FE6lr9A6fTSOw0/Njdhl0GZllqBPcIlVp0//SYXuIoojl7Ew898Rnx0+Ftub/WLICy9XL1vc9fuOuYa24l2MxDcotRti8Rh/6NQsaHf/FXbn6tIzZvJIoSNCO89iE3P1HpNElb9tletGRtTPyBu97+26lqme0E/19ERlyU/idevEWE8wfjUc532C92gS/pvqXhqvQSS1u0ZYM69XKXr/IYma2FjnHjNE3xgvOcZry3A65BpibPmcQcoG8tgFhIUjhXbuvHm3dinJf0aiegQc1g/+QslDF5vH0QmD1ibJrW0tUlFg3+lW31cScd28oICfZdfwgx10hMpJjCl+WUuLwrT/7dIS8b166THBlSofxFKrYpE+K7ziPNjxRpIJCL4E8LfsoHnfKPsU7ivFbxb975ByJbnNokkVxSdwS5Ej90ptsvuSwIbJKziby0j0fpHGqoG8ouEFKBkUswFr60i8EU7NuuMVntvc/tmhFqE2dhuAAbyMY5A45bA/crlUCPUBToz2m6gsAY6Id5/CWQJu83s85JYr55kXHBN20f/WRKkVmGTTPvbBsONjw0WAu5UdR1jmYhEgv57SVO0RRFYtkupO5nYLkX1iD1RE1GfDjZXskpWasZSl//PSLm0SMPVZVXGcdmDIhogbYJFC9xq2fDiUm3ECi2b27uUCCXam7aZilLXRuxOryb4Lbw7y2UKM57/Gr/FzIMjfvJw0GE8+Eav0CY+M1I9cofEra57gp1qgGmJtwcoSEdRcofNHdUCRrLMUktr32Bk1sltQ1qr8IU9e8l0DOte9XO+NU7C23Gk5NFmpPHNx19iKNN/3kgdwW4W05I4gbKL4MFXaONerUCE9Kx7I/IMHKG6VAyInmRgaoRDJ+AWr8WJQoHIoZ4NdGwDiy2RzRqLL/1DZJbSXTi6e0v8HPOh/JHUuIKf/9BpdtGd3pH6G5IMbSKgj6aXKzff17irYq3G8UFo5O0nfFzx+7+wM62O2mpDIfocx1QVYRN78LtbsXJ3YNGKhocmKSMMJS8eVMW3vrDWz+fddjlT3EAXI3FVUKCZ7Hc32boMcBkaWrJ6ORg6PZQ6Gm516feXHGjvBWTsW90Z6uwaENaYVnz3L2UHED1RjQT/ySC/qr1RF5wDXjE56Kk+JbVQYBpRO1ifRWpJX5QWfAR80Sy12xxT6I6Kn5+qa2FI0pmKCrx99AoZ+EJkGZh3ULFgusSoWN7cgFM2yPdp9ySgGojAIqPsZy7C6Tf+92LX4Y7OiUvaOvFEmGncO1Ib79TACET9eL/683/GBrY/RoihRX184Z9e3NRZGP2KAX2z2OGw6kNqBszedCt9ruB2mL2B/wwKB9KAmDxOGSyBoLeBEId7g3DhAH7eWEDoM4cHGd0gCWItA7k5ysf6dYQNNkt/a9zAg41W6gVLuLvtCN7jivZNPqt3rdd38+2hSVtcoZxJdtMinK2RB0Ih31s5opq2Nnan3u1bFAMyeYn6tdkbYzg9F1d7SndqJs4bimpkRgq/q0wXmm0jk0S28oKAa4wCcv3wD6cD7fTkYv9MoxnO4xYS9tDMa9btA6VxsgDQJOfCHuc2Qn6YmbjLQYEl1CGlHKvjIHZJWAvy9TeWo7qeus/g8x9o64YaLVvE+FlFEZPlhveWcQ4o+F0lB2SQa7LFQE/XHk1gi4zU0ANRoTNaG0Kvr8gRJNBxDZAcr8FrvWgbynzRzFbmZa4gM4aC9js/Dv1Ee56MICAye0FNKeqIFPGnla+uKFF663rYkMzMLJ5QwYvnPsXKoMe8miaB0Ii+Q8iQz2yJsstPSlEXFBMmaDsLq4akLUkLSttldkE/x86aLmh+5i6ahj/aTglMQNW9p61/e4kkk4vaQtsH/4wcgoD0XLVx+bmgu3TEkjMfYuTf5fpJ/zKRYc6yEZqoIviiIIei9aeEzIXgMRDPprI5O7fB5xckYi+KGg2pzMV4eIyggXa/eck06Knr8KcChzE6tTTy9f0NelnQVpMaAZEswFqSGBrNBxHNZQDkDD+AHGBkLbfkZchD85oEsOCiawfW9mq9Cbw+tRG0JxLBaHHXX0F+WyXjNVn39YZxosWUiqT2K2tcvZadRM3cQWFaf87owIDv9DXLPsljjiMu/oHoJgvT8Yoq4GMx1CFkXwhzuA9cSTo1fLLAW0oEPqI2jz22y9uCMZCiBtl/ifGfpw/j7bOOrBhQ3wO5SMfFUDFExhyGRvnxSC/azdHw/ZhZU6y9UWZWmEKGMtk2N6pAzavBvZsRBgoYkteTRZ42zfSCpcgfmQche/Kb+FNQ4594QUpsnw3Cuqh1DH3kQvQNxJO7n178KylZgwboJZo/GGpz+TR/25w1sM+K90ksjUQAHP8yW06KP4pAIbMNBK/+y/41LmoCEsgUZDRif5KyKvA5z1NzqNzQZz0FinaCwSb0pwK6ZhADdp4Zwgr/WXmf1oqitrpGcM1bzP98p8fBpob1OGnTneG1hiqkLf3PmkOQzUUKStf83IfCYGzbSLmLNIPCoAkzmUruXLqi3kM+vuj3gfLGVvJZos9QYWxRXD/Csv1AhGSoZK7AMXa4NwRI6mU1dhFB9GeWzVjMR7/xqguo5gd/pFFJj15rx1o9RMzf6X1OK/WdcVSVLzcH3scXnp+K7+uQyfNg6/DIYK1Phqsgad8TKW3bE3QWaBdkOogAXyBM423PO58NS67VPSbXldKH0OgJ+ikl2YAlJDjVJ2DkVlXSwC92tbjffISSAX8yJZhbgHvXLvNc9CluuqAsUtDwsKAPtpS8od2UPUQgGuIQaE3TN7joleoTUHDOAibfBP2qDG55YB2yQ+DIkHkTPzoWpRK0Jud4Aof0b3sX8LrwpPxciaxfK5AAR56B/BEmknKKWC2G2FL2hzuHgxujzg8RDMFry0noQ2z1kzMPzAVC+v7ubC/vq6RaM3dW+JdfEU0NxfigWbJ8Ac+O7pTFQUMxoLZro4Sd2+pAmA49F4Dy01
Variant 5
DifficultyLevel
675
Question
A ninja park records the number of visitors over 5 days.
Day |
Visitors |
1 |
72 |
2 |
68 |
3 |
46 |
4 |
84 |
5 |
110 |
The cost of entry for each visitor was $12.
What was the mean total entry fee collected per day?
Worked Solution
|
= (72+68+46+84+110)÷5 |
= 76 |
|
|
∴ Mean entry fees per day |
= $12×76 |
|
= $912 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A ninja park records the number of visitors over 5 days.
>>| Day | Visitors |
|:-:|:-:|
| 1 | 72|
| 2 | 68|
| 3 | 46|
| 4 | 84|
| 5 | 110|
The cost of entry for each visitor was $12.
What was the mean total entry fee collected per day? |
workedSolution | sm_nogap Mean number of visitors
>>| |
| ---------- |
| \= $(72+68+46+84+110) \div 5$ |
| \= 76 |
| | |
| ------------- | ---------- |
| $\therefore$ Mean entry fees per day | \= $$12 \times 76$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 912 | |