20193
Question
{{name}} cuts a pizza into {{number}} smaller pieces along the lines shown.
{{image}}
How many pieces are in {{frac1}} of the whole pizza?
Worked Solution
|
|
Pieces in {{frac1}} |
= {{frac2}} × total pieces |
|
= {{frac2}} × {{number}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX18Eis2w5Lcjq7NHcf5l/DgRd1GzzCiU3Yuy4r1JR+WtRWih3oBiReExyST7N6/8vNAZN8EbOBAiNrL2qsStFiBT85k77/A6dvquQSuqxYRTe7XxDl5BsnCfKdGWrstiAYjDIZehqnLn8r8uPiQbOBHRyKHCZbUDKc3R8gyiHG2UwIOiKdnzFOdTtnwmqP/sp/PmAXNJj5Zay35Bshj8Fqzgskrmzi99WRYKzAQ6/ZVCBOBUdmXLjwFfTojej1G8gfYABOaKzvZc8Nn+5tqc+D1uzhiYqupzUjKLBlkt+XBIq2Fxk3yphhfuU7Wafz099PkxnZEjIND5sd2jh3A6AD/+b2g4WaT2JpPipmi2/Mhw2SnCVzLiCN/i0FzTFdgisTVTtigl0+1rEiUTPktQQGY5z9BUlEaUoUFGz/g2yOXM3lI/8bPupcM4qEHmqMwjxMW+ZiM1DWoZjQStGBzjJ9/aDXMkYqe6gBJ3UiE9HprQfBt5Bzp+N5I12lOciC14FQBeU73h3NgJt5L2ByE6zlbMWaIVksAOV+HtJW1rTvyFS/PHcQaLUZVJK4qJlfgdmJyd6eIaBMrP6TbPi5zVtfZcVSMDsd4mq0Wc5LxwoDBhDqFJRsRMfsccTfjInv6J08qliMC98lgR5ZCtqepC7/p5zUK2xTAbRVUq+pLrXtzPrKvwn5v/apubp60WT+qrj+26DQCQUZTfYuFczodVzhSeDK0YzGlNNM5+SkbrI0eBhUaavN01rMvgqdaHnj1hOjHUeQOxktQP7yeiCPuIhk3XygswXRGxb1/+536dsvmBcACWVm3ZfK4/5daybxSg+4AdW5fXIRaoFq3ravwDjG0NCf/8l94HleeuHUf5icC1sMrHFkBqUrGInDZVDAf+66/l+b0Aye8O0J4SGuyDUqC53nBDJyLsfgb71VjOf4wfIaOmkSYSik02npK83FXVbKPa/y39EdMfSPEjFJ9uMidf00fJ5mzeoBzHsarGlNVMFFGkgp0ANVSpahhCYEigy3RoRkYzaiRtPOkmrygkYZAxeDwZefeHGqISjoWv8Vs0u7+VH74pU/Uum4p8g3b7Em4NgnNTemVU74KLl3DsG5kqnGX8M+mr2baxK/VD1OEhjIAywqw44+w7zlrvhTLKca+PqiHKbg38rLb7zROvPOrS+lbtyKXOxiV2gxZ5bhAqB+BA/wJbBHUFG4KF1bq8EANgv/RW7lcx9U5uw7GoCvNDiHu4l6uaNeJAKv5p2e1WrsGn10HhOM/dtTlpenuPZb60qt8hL9YIJxte6ekk3FkAISQZyCaaF6IcmzQlCRL/bZrXnMJ4hPbIamcsUz5wH+iHLzq1nAVc8IBi4eVzLumnOdw0lSvM+YJXv1hT9a/r8+w9XXK22Ns92UZNz1NcJ2IZqEwavM56gwBmtuNXYftR8/0g2Cni+T3j1Sx1qmIB2EdSdscakXIf1nZrFjzWaKqDUaMX8+KF/BMyVvFQkrkYlzYZTJtMHKiPEvoI//PxPpDUGZ6CPqPzQwu/S+TO+J2SX2FkHJzIepW9F76W1EfZBau+i22+unrpPmsfmI7EjZ8XvVZpVpbG07pDid95CYiRxodg0NSsc1GYoGK2qE26nYnU2GlsSd4595hJdRU9I/RRFOa1E4i4+1OcsQqiV4M7P11xmE69k+XYLxkqgVf4pvL27lYmK8ONGkaFA18s6nSOuupcIiOQIMmaYXszntGdGZLJpzK+odBjoBoKtbLEy/Rq4ONjD9kVFQsAmumPNf3RDUp6q3E6aaTylviTVoe9lB519NVupLx0pvRFoHUlrdo8Pvn9RoxXHUv29O8tOSJVnApx2/QTcDAxHsPF3hynBYVRn5DLf+MyEDSjSxb1nOOwZDp1FKJkwgW6wp+qDWxE6MLKI++W0VOz4kJ/TBQOMkEmiw0PFuAo90LhEFEdgRNxujYxqfwnkOTG9w5fEjucUqWKGTei+GFJSIuA20RdfzJi50IlCfxojuutrzIc1v2Kkfu004Ak5IdtrctQOeMBFrK8cEfA2BqfT/vW8QXyRg5Ith8grZyEl0Z0IcEFezqH922Hae16hvVfY47jqAAZkx8JR6Hb+a4LS7NWbcvquGaTumVwFSjc3feyY3d9bi+nU6tNLB01Ziqx2vUbi55VyE5aT7QaiPY8y1Zg2qjXw+fFMl3xSVyzEx0jwha3obqXICqSOfbLo12/X/WlGFufZA3x8D8RkaqpM6C+pXaOR1iLgt2ULeAdJ0StkDC4OLGmQw3l+pq4tRZ2g7tgQUgCN6XIoPct6PZzBIQa+JePh0Np2dh3tVt2E8YBB7oa6Fm8ov98CbcY6vMy9kZaF8atSZb0lVzipQipYIky28qvEu8V9wRhTTFRQ1fKFUsHjUIVl/rST5rb6WnH2pnqpsEtJwNwesDwx7Qut3m39+CfNLP+SfWFAOwOdFtZNImRwucfLx+Iirq1jIa2Yq4bO03TlJ3auQgn36MvChgKmCwPhafyktTADKw1lzpnBvMrDDQRnr88aM+LgqathIAz/Aw+jbMyZLkQwYyjrlsab0Xdz7GAwWSOfSPmXmqZaPZcPaX+xHt+KQDm6OMapizu8VyBXcqVL4ZCC15up2FlI/daUO1LkXN2zil/BhYNgVKTcQPr/9NvBSAl7QPuKNVYTwM4d1IrdMIihfiA8J52owksFiB7UXKBSTVJGBAWJOnboVC/0ylICuyrf6vBbiAf+SrVWDqxZG/mmAioZjE218jru/zawMIRmixiXWHYdNSyMW29xM4ZaRRYB/X6FVdpLQD/LomLMhx5dyPXIzR9UEYvNeLh1cxIOpRiVSeawqR0lCg7C8cJh6xn2UgE8HeJw8q63EVZV6QoBGBIG5ZqV9PHavkvwX++weRoBuFpBWqPB9aX4bk4qeLUVkM5mDzFZUTzJE4NBKnRAHU+bq15lKMcqr3LZQRjcUEO3SjirDvqL8Lp+b5iLSxAtMnnQo0ZgEcaGGRolbifMAx9DVKRAugJUc8jH7Jt9OKTu92SGmiuIOyEdt+Qf9glGCeHtYdkh67CRdC4o3Msw23bctawksp87T4e1sIBrRJks8UHedh/rNuhd30H5tRO47ksM2wyqdK4pkxngxBWStFlke9UC0K5SXIZrZ1piSG/bt1Sk8y2D7w/FTwtYxgnnqaL8W5OV8JjJLNAQAycnWT3kY97FjAtKvERgMeCIM34cJT+WaU6VElbDtog7gOyLWfX5BHkemo5QpDSzFcxT8ZxMjLKByyl+pDuJ/03Lbl36PyUlgNwUAvljfR769uY0ssSBNBPFZsPa2NdfATi1hjcobYmIKNmupO97arA0zKgxzvEor6ZNg74IA5EX58kHUlvo87KRJHCXdpcd1O5RHKZQCVuRq58jAs2vG3BFAIM3epVb2LX9oo7gqTtJUbgR4C/SdMsma59ryZavKaTjcdIcb8Igt5FeB/zEUOfbrC7zCvcy55WBZzRiSjx2tnWayFf55iRk5+a3iH70lJZpTi1uP1hau+Q031jJ3RbbPiNSFQgkdBqdewxsdu1OtjbKToe5w0aw2I+53ERFGD4rcAYJXcDpPTS7y+9CzSZKaZF3HPW+axJKQsUJYCiPidTW2MeLvECa+erKqRetLctRqbBvM43FiPzycfAA4aGt0Hyg2mhqwNA9baEs6PFXI57S+d+OukuoU7hv3Whyj8wHkQza2Xs/yngelUKZgAVofW7f3GDvmiEelCOk6mu3VqVRrGlGM2acOFM0ASFvW2D5bEdlpCE9j5v+SqIW9HmsL9ciAk+j4rbHemGLiZbbGzqywxjooCW17IiKN0EzKiBu3G220i6X84Ay8KpCHSqVh9ZSr8BFXrjaVVWn2ijJuScjzoxm5H6Df27gwN1RMY8oPjLlATCeVSCkmv2e3LjqZWbwe+uiIhewvqvMFBk25aUu7bgkAe5JcLNVq0cfAQeIarm5SrdIqY5yUecSYlkzjm17lry2p+H2uYR9aXZCCXrJAB2R8u3pK3TYESFldYqT/CDy2c8K2Qc+x8I6iDA9mZ6lDGbKMJ/MIxe0EhN0IKcR00RjEvCzHRYFLrs90MCbgTp6Mp0HdvJ2/QKOo4YU2XrJ7a/RXyjsH+w8ti8Jfp5t8hlexEoPTIv0BodAnWzqL2ZeyvJlUCuDyA9dml3kqp8r9JWEIofCdXHj/aCtDmAHlEQA7UpnsZBdIT4i855uaNxuu58r06Gu3j89XUsafhkt9IBf25q2BlExQq4LH4bSgfLT2e9OctWi5b5SpQuajFi9BFJCL+peROMc3CoSzMlGfdzHKN9BDBA+0Md0WBflPcToxhaw84w9llhSgr4We9OVWH67WAbWp1R65OBo2gxoxNzUFjZ+8PELswUQMKHxpjpk5Ygoy3nxTbBj/BXJXoJeX0J8u35lzSykxICrGIfnTNVod3nR5OtLM/Ygzy/JrIyoqn5tlwFtKLc1zfWXtiBZFA1J9Nl3jBPIK6Ww9rCfCCY9ogJTaQMsqmva5BXIH9jA52vaFFzH634dXSzddGvJGOlOpmZTtz0VPur1oA+0x2DwWfgFL29jvViJfE7pGERfGyIa8oubmtM6a8KN843ILUGALmPZIwLFAIJeL2LNmcTdt4+d7ZzTCTF06CO7SE/1zgqjPbEib6leH0jCeivuiYqmfFXwAcUE8QgFvfGq6FnOjkVURGvbxQjkJqz0eUrXWLfbmehUOJmczAXHLKSPZEyO7c/QQNeWeXrw3nhA/4B9uY2QStopXELnCGd01eU5p780IsfC7JzdZksmB/QxRSfx7iKmpqgKVg6eK3d8bqpVZa7MmxKWCTP6pboyfQuskBIdpSru4DAPQ8RxT7/rh/kOVjtl8pvm+QRCW4GdTf/Ynnvd8swvN6rO/ecQRpi9jAPLWip3107sY54tkfMS9sJ5P5UlxHbsKFDCovDTBGuJBw88ntrXXqb172IYkKilOAKiYbEDkvS8z2p+dc7RV/NmZryBZovQ27al9+JD+StBCiZGYtbVSO4Qa8EcFouec0guDcGaBOU9t0XY26Uqck+I5HuXZVHoK+Mz/+9zjbgwx2MYKOUtQjxaUy4/TvegK2dSlt2dLBHcEwXTkaCBfadG8tOG3m6rr2OtAJUHSvevaLnfgzwEzhv5maHzZb7t3JGcTDuyh4bBUJuOFSFjXsYP5oJIQlcXOPxlykhnoI1hWTCUxq/87UwNTyUWYITwj1SNf7hJp+YCXMc0zhbq+ZkQ6iSIjW/WdyvxEN7MQ3CcH5AU4CghAOHWx/4JB6QDCsN16tgFgrHKOaYA00GzSmRAjaBoHtQ1jRgPvrPSgBg48rmBFuedYHny7BhSgvxGbMIq2FV54mXatP/5Ypor8Pzx6JIY11VGQ78Oj4ecUrL+LicgJCXYo9EFe2fjcVIJpX8Bu51NsmA9qXPq094nMjc+xnivuaZ0iO7a4HyGEoc6G1NOyq9hSrdQlNc04dX/jxTXWSqfx2jMRGnjKHyTuJJGK/EIaqPguKv7mRpPiwWHOq+Uk2ecF4dCrctm/vYWO9fq/EvpYFga0+SmErhkIocQfZKXuQczyia6ZEhelu7lqyjgWcmCcTZ54RPEwRNEL/ckrHXU5gd5I4RXmG0RVvrIVrwGXho+P6xPIebcT8Na1DNd6uuUpnbzitqs/E9AGXwIlkBluXCSwmUA5R17MA77t39m33qEaOhLBZ+QOZesh57FHOt4LLURJRMwjiizV6YPKxQPqOrFpn4ZPuHw0B/My4hvjSIi+9lVslSR5qGJv67Nfxfs4ESQ9VEnd1YSFlwTPyZTj2loMPvrGX7zQ/ePNy0wOVpnzyDgV24C/nxm1fGUTa3cV8UuMfs/BPGMl8I69/C65oE2PS1IlRkw+tVY+Wkbyz4jGQNkqivPG8Upr9jqSMqa2EH4GjGZ9EW/5KlpEiYNoYGmoNuybvh+PCMcoFQAv4W2MT4rTItgXYkp65R3Xk9Bw4rnsWQdZ8HKmaQ/NOvGzOl9HEio4gTFD5e/8t4QE57ZdotN/VlUxI+ihVM0jYBDNQQ7dvVZetTzsM/74FajJDenb1/ZAEJBHClQzR6I9tgOmyLkBwdVW7QI44zW2mNz+yirEone+WBv5ZtuC9tnAS8PdzhWYaVc/xIHbJNRSuM/S1K50Lp4gt57kjGQ+X29+KcNtLqi9iXfRQE61YGRly+UfSh8uvuWm0iDdoRTq6wAkyMId6S1aEcSVy5jJI+wWMqBdpKRUSOL9/j/Qq7L68/vdwobJup1rqmZPG+dQXEyfmy/leWbuqJq7BBSyJs2uh4ylw=
Variant 0
DifficultyLevel
450
Question
Gary cuts a pizza into 6 smaller pieces along the lines shown.
How many pieces are in one-third of the whole pizza?
Worked Solution
|
|
Pieces in one-third |
= 31 × total pieces |
|
= 31 × 6 |
|
= 2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number | |
frac1 | |
frac2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/01/NAPX-K2-21v3.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX183YpyekFNAoLkNsyjmwjpO4UYUoHiBsiJ2Uq+O+/YbfQ2pDNBcjkfzFQM+aTgaMQ3MZpp1GaWVZxOSK6yi0LyzfyEBfIv1oRUOIW+GVfV1/k9iZVuW+57o+HqdY8eD08d6jDpNxottaXF6t9utdS1PfLf5snePUbzAiFHQVWPLvNTM6qyLCovaaFL8PUxUEM8pbzOIx+3i5UK2RkPqdr2YhFMj5lt9xpV5dHAiJFrymelABMPnps1hCdCmA0WIRPWj5LbbEOxnrJWf9Q4AYIwNKz/6vmDJtfB4TuZzWhLwIal77PrGSLQ6K1F1/exo4rQm64+VLY50kY1kqq2UdhQQau5wDPMfZluM/Xbkz9UPH6bqVaKeKvFGjOG66xBBDejrPSeIrprV4kHRPcS88anZW9QGobBLLrQ4e4mcDVhpG1qZyfLaaJvLAG1Gr+3Mt+aGCDjQNccPwdg7Fr5nFGGLmCEqachHRMKXo9ZfcPsR7/kLJRoNcgP5fDmsn5LKkxULwxixmCprAcdRE6ydjwgQEyUGefLETMD4y7oGiSaUTNhe0qBOOuecHKVicX8RzmRxehm/bt19iWICaqvjmp3tIqTidGA9ez8bjMSgw7ra5wIXhMUaNbnzOL5tuMLv8/GMKfXkj2UPqAb2m+dtONoRaoD2wOJPFQ4cI/LWKf7YroqdAroeFmegmayiBtWgdk9i7WCr470qOCMDuSz61bNyB5bgiKzvCvGIspOWfR9pywZOEKyUBLB2Gfn4OESCOVLtXZOjCPwRRZJXJ27GRmaStfiQLt5vAEdGQR3GHIgqB0REtIpMSsMrO41vsEMY1JbQnhtaFFGYnJCq3yVVOFCeg0RlFgVzvrRDIq8fZ60WxYUt5ekBR1hwQw25krhPP2qSo9Rl7K8VhknAZCo/HVyEwTv989Fn57HRnRKLam3Ai0yJVMovd26+HVolKOQVHxu/z7CNSB5kuBzlIK71QUKElOwlwnee3rfUNvigOGEAl6YHYhp9uN4Rb3PnTp5fW8RBJA98BJbwOGjoMwZ7dwG0XWmcw4G1OZ3CSeFNWlXD08f0MT1PeBBeJWlycgGVYv0pcIuBC4ap9OkH9UpVwNqY5dH/tb+XAi6CoTBYA1ggk7Mg5efmC0N/I3bBrduFzJmoMBuHk242jtr8xhxDvMBL3+yguNbtd15Ty+OA+/mNaXwAM7398n5MbZd2U8bujGrSButsqGIXR4TcK6Gt72X25unt+F92P9TXQQOQfYzlUn9qB8+vtL6M0aHjakNWjroT7di2N93EYDY2U+Zu1F9mk4Px1zDAOTE/JwOtdIuiaBAzUy89M31eyczzKWTlPnvqLfnNGY3RFRu3bYw2f/dUsMOfZIHPag6zI5jwG/VgliuY2Skr7oWGMdG9UCdcs9gifl14t6MUdjns2kJVbLCj9MJZf03pt+Jb/LVq553wVA+dqLB6HI/LdllejbvMg5nPcKhYBAFoWC5HFknsOBfaL6Bwf/1KNcUSJdgdX0Stk9cdaWo9LPy5sbC86CRO1e11nIY8CH4rPYpFna4kBEF56L2PkB6Jj90czKSGZi/BqJAQp90o8fhN2AxGJpwFFf+LsY58+09kgRpIW/A0AvQwOqBdn2DLxhVVdIXMeTUKevMddFfoS9NobFZX3169YY03eSxBnZjGdsHfjfjexPQ+3vsP9ABMGWeqxFYc6h64P2zwKTa2+pZ7O5PeiErs5FIHcJWOFyIasVfaj/pz9b3/Dpxg6v/Va5R+nFO5MxuG24lMa+2VD7k8qikGoQ/s90lm1WO7P1FzpCNGwHs9dx5i32StXnEqWmJFnQZRW7Fb+1/3fIIsers9DfOwBBJATI7e8vJyYppSdGdips1iixRJDRf8++VgfP57M0TYNegGXmOm/CoSV9gKwRNnBYfOhbeRWaUQdg42XJ+XG3eS6HEWzsXSOlGkF6DrJaARTfdk73mnWYWczQvtfZtgCktoXAUSbpfyouCR/pgJlZoFvaRj3dd424/e9zZO0WWf0X1eeqPBAgnux48UyyqwvAf5f8Aw4oiLOevdzMHFyaC4yK1bEKCsxQFIeELGxoJNZL4RZcXT7t/mVN72sXUk/Zf0kGCnRX/8fhuFyEXT2f1Hu2T8c0T6KTi3hTtXVP7WA0G1NNijLdXFwLSjMiJbxRpZnMGE7LuUD5uTSFAii5VMCP+++T8P4siy9U0vpFT6K9swco/IwBDgWfiK58YobKg5WKRs74eVH1n6zNvM1nJalfCexVnFnWLanmA94gggXTWC3ayTvzDlLep0TKANbVRei8zA77C5bQSCXVfYu4ucpTCwLIR1kOfxQg21jHt7g7thWsZrxVhv7ta+UZ4p6mFTR6TZebneokx0yHfHE86pwsH3JjEGI6Bw2Pg35GajVuBEnzZdW06+Ole6q5qGK98dxqq0RQNMKjeIwJdQAcX1BguLUu5HUSsABeq2PcCFa74w5fhre+wSdsZxn3+9DMSTphDTGV7CVkGoBxZ+lJXyDxW8wL3Cz6D7b2nAGMERmTsjWpaoWdaRcFIgxkOtwrWzOVlV7tp8HIdwRux77gVbXV5WJmaG+aTptLbbClkvnt4iUMUNzD+E0aAYmvH7k1mHA1709+VEwrMddu3VT8xwyvQFHtbs+JSVrUv0XkpOMcceRslQHUtn6TOTzA1gde6pr1bUI1/dN2epr8Fne65qtZcukluqi1FNVWc2vLs4zLuVgOamsf26K1d5yGWEDMwe45QSzXo8fS8yyDZvCymF0GF5GSDXtvxUQG9DRQhen4EENxfA/EuXGI4NArLoOa1nvq8CH5ZJXmMrCgxq/lp6v3KbII0M7zTRZVjDBLHNJ4CUOY4ZN/rG1tGB6vWPYRY1QGPUmoFsMtbmQXpL4XBIGdObqHikFShzH8XgS8tm9buJ6DJgJrn88M+QalvmGn1//IEWNwr8sF3/y+ZJlxR8+pq5HxiM44bjMM+nGpXfp0jbX8iGawtlLAXPeWzSlO3sGlo9HzE1P5i7Vml3c58mw81JhBzSq3YJjqGFYWK1muhVp+bEZxcV8iQdgIvKEHV+3YMh42YXWONLQv1MQVAQEufU27cYzI8aA0T2sm2R8dD6Jq/rxjytG2LyKQg9xLIfMl/LU9YgAy8G+/Xfj8E/b4r9lzJwJ/WUgXXsvec3Uw4i2Xzo1vTJdR57pVslqb18fTEP6DfXyNousXR79lNFFpBBqcsjGxcciSUL3dREJWZbkIR/eQaF432KCTsqXh6UrDQVIjX4GedGGPnQrm2lwIPrcbzJSJkl4rNcPle0shvAz63851SpJjkIO6N2ESjw+utR76obSIDazAm/sy6IW8F57BVDiv8Iu815Z4p5wkq0lW2uda/NOYOYZ3zLWJ9YulbfdmY8GGs0Xm5IbGi+9eiYV4IKeL1xMXT3WaZ+Eyisy68YcReMG64jXCL0cyP2ZcYSZRxtBNFj0sLIYsCxvtrLFu67zDZpEhmJJ2mle09jLMNRXGvE2DBkRIlazdHp25pa3e4pj//zF+sTj9n2hp5Lc6PQU8OQyj/4TE8F3W54oUWvlDWKWsmO5meQfEKlL1kJMY2WfU6cDnU5EXMCnelF2uVwS5WelRirjHQJCvz1XsK+Va5GpenZSdkx4KbuFHUqCZiDtlfyLU9DzvBWO8+15I7ggMghFmnrk/qWL2mITX+h17F5+GbzkYJAqxBu+xuzEsq0TQFua839xFZ06sk5EK2Wp2ZWR7T8iaXNkX/Zu5oi8GPaf3+dc7nCzaBgy5Jh4P2+sszT070+2SxLTIMtDpkVwxTQ7BbBq0RJzVQ94TKcWVUCYnT9GvmX+eWxfAESf6dcGaMkKFvwjtzOCkVzq2LY6itayxqaxT2W/L93kEWb6t9Ur8j39hIdn9XNMl+ga+swT4WaFZKtlNlEvOAa992ZNnOi4KTQUFaBlU0uLdeV7hejkBpg7uzj3+3BxbIVkkN+E/v4n7zP0kt9Bm4Q4JlMiRdxxKZwPbfldAor6KjqoBxEkafF2hs74GOv0agTANF2cgOcn8lTRN+VJyPbmNfCYyN4Vp2hK6N/2drCIjxOFcQV0rbIHn3ksuhxO5qxNOGGSeVOPUC81Zeb1cJIOl12auzpeSgq/GPWhrKoOfbl30ThrEdPoF+4pSGDA6dIGuDD4OzjrEkHRQip2Lf6iKkEX5TwtojgrHImmtRCImk+4gYmplFq+guqHGT3FzAK6hFuBt1juZwMdyaSzuTiHICKhK1s70vcITPf4I95gcCFCDmxi4dfbp1Vz/RunBHG7WhsTgr177a9JNGddv1YkVm46BBVfCvEqc9QFmyCnPobTVQ3Y21PsaO8eiF28rfahihz+pGvtCeRQWnhy8eFCg1Q4meWdSgMbT5OfH8c8lABvZFIZ4MiQA+JGbflTlTlsXE0Ny9koflpwVPi2Df1pIzD+uoQv4jlEPOU1q17nC7B3pH2m4g1YVUdTxWu3qp3ldw28T+MZsLS5zQt3wwnItsQdZzWNB7ZaBcUrR9InNMubLBKcPoPo2zHQyNvIizcaQmSiVfJLoq/zQeRShoDPC/SStbYqaIy76Nd25xQX276uEibgyTWp7LH3MNbAgn6QrgpOEfGEaA+WtJPbPnFE4+TBxIxk6J01khohCB4f/u5QyN7qp/LbGeosqNxq/i27YCbQJJ+fGsHMVoUZI4f4fgtS/usq3fkV4WOE8cDdS4ocEievypKaMMsu/SfwSwZBDvzCIK6Z8kT9hN7SS4hmLjiHV50mJLQ7XxQnl+PtICQS+aV/TrKo32M77Kfadfaff2tCPDEdIF2fjkxiT0J7SgS52Catl7FQKQsFJy6HX7lklZZQgIVawMzOc0jJ/layR+RCE3ukZ/U/LfJ46JO/f8frQwGEqg0m70Kflrdlnkx63x+eVGN9vV26m3WJgUA0uAgplh/j0HR3jB9sGcyibPs/obWn6OgDxjgSk3I5i8eLS+aRSZb/wLPQSikQOyqbB5kHIbA4eyC2yAf7rlmv6ZpZhkOW06qoumIm8RdoHMJIAWrb2opyAxXNnj3ijWYJDYtTCaJe1CzL1MppZeSVBigh1atMb41r303RQThDPYPTCQo2VYudza7tQ+jcpuu/oMG+eyW/r5VJaXDtlrZgunGMYDMwkr9g5EMXeXdBCWQDn0fCQY6iaHmdm3uvLbFdvd3OlAPLzgoclQ7Tob4/ZrkHy0I6ykjSOi87TqXR/TV2g/gr+G8tQ/j5QmnCloD+hIG9MOJdtHj88sydmr8lpaK+Lz6cmXlvvsQ3DASdQ0JzfqPJIAuH7w6f+vA4cbRHpLwdJpnKt7Mc6IdQdrcuI7ePkr4/2eSvcWiiCEN74ruO6yinQdQH6OLqLPKuceoTTTtNmBWjJ0pArwppsvAfVO7DF7KoEnWqHfl+NSB7pY+yAgSHXJbwjV724nWaPiyGmFV8fHV0RGp7T9NI14uL0HhflcmeF58Fy6JFs26uziWdYKx2uJol052JVxwCOLPoOndNAShcpJKqW8tU4vOarH2Pk9zPf7s+P6+JIczfa7AnJTjI1EqmtpP6yiWbGBV6Sk8bJTuujvUeewtbKl8mZyX7ipkdt4UC4sgYXVn1+G2Pqg8OKLbt9OGQPBX8J4WPI1emBeWZHqLsJqVQe/BNXsoyYlWc8IBodUTbdasZS606BxbfdSL7GgJCSOZ2jrekgeaOApmGNy2A+KS/QFnn9r+33xYgDNmmqbLEOuBc2TdRFHZ75L2NMbhRR8QoeGXOmqR1ciheC2ybPEwPYi0PQtV/QmtMd3nuLJOIkvoyYdEPYeqzlLP5I/T5CsS/xPNMkKu458L4jpI6h5lI7eaTeOTc+Lov4E54nnJ75hl/HZusv/F5+hLOJK6wU+5IR8KnOga3i60gk/lXBDMjglq6mUBYkG3tY0dLCuVEkqyvKLbsB2GgthjK8Hi0FP566eZQsJzviEbbR3dm6wCDbGCwQF03rVLBDQKgwkh4tXyoSnrVJcQ5R7+hO8B5Dgtn6Sl/CnlPyAPmvteWa+KbFt/z+XwvR0Ov4mTHSVCsbKgF0ak31LWr3lOUMIu9xac6uzFQmgre6buBFVX1sejl+VNxkwlLDPdcJpJuk+Q+ttvR1dZ4i9jTBgqC8RmTrdeZmkfF1Qsyvr3d+B6kJNAusIXR8YASSXZhjvmKx4/sIGI/wbMejX0xWbyZt8LgTkzuBQIo0vgAYqWdR/XCdgNLD5m/7hIwkBihoB+H1lJ3vGr5RNt1+rcYefsmaopnRIH1t6yNtf3mb5VnsS//aaVDGC7MY0+CtCrGprunpjlNvXeMQnOct5wYtBbM9a45ojnvQvZVEFvrh/tnpppx2AvcGWSW4WenvgBGrMQhi4t0+6IgcGEOnxQ6TsdDabWV0ausK5gGeJq94U8IJveWo0evl7Dxnz+oplm/aJimN5XFPC/Q9dkaxGzVmwlcaKf1DU/Yf2Hnzac/g1+/frh1zD1ZAyQZrpyd//cvESUle0jDcORn5M3mNT7ALn2td85gFA7meXVZAabW01fE0hgTGwRfrxPI2Bwa58wsKjGWV+1gpIX83pRNw4E5HJ8IcRD2mTIgPH0imZ1D48UNoCnTToAYS26J6P9f9Rdg/k=
Variant 1
DifficultyLevel
450
Question
Chezzie cuts a pizza into 6 smaller pieces along the lines shown.
How many pieces are in two-thirds of the whole pizza?
Worked Solution
|
|
Pieces in two-thirds |
= 32 × total pieces |
|
= 32 × 6 |
|
= 4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number | |
frac1 | |
frac2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/01/NAPX-K2-21v3.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/HXf6/WGfAVs+fz//PSBNC+xnDLg5Vg9UM5PlaCg53JWAdUa2bGouBq32h9JixZWV4U+nMCqf1HGGrTs77vs9m8Q9ecJ7nDzENIBnp1+9ufghJZ4OZmRj0lXMShKoNdk/qBuX+veII/qQI8Z6aQXxbdw59cDuczXkSfvIAJIFiNOi7ctwwqutV2bB3wYtsgy9olFQrEprXua68fLsFqIECp1wLXoqo/S6+dTf3DT0h5jZkHVpeCBf4otmadZED4t3wt+zw/ApPwcq9DR1iZfdFBrteNfXVP+9UDWtpHAEmg1ePufGgFgRZoQKUCP3SI4stgI1b/GD2MYjAx+G0WZ78mkC5hLnpelNG6pActOvLr+PwTa1W9Fua+tSEiIyrxFRJfFjQVkhnlUh6x3vc61kuywKzMlye2bdvm54yYbjERX993fePM2QkKBb3DGE4t+31EeHEJLsbkauSZsogKl8RIvlzTZcOrklq1lI3SXxXdqDUArGQ5e1ex6S73/IazswSRfmblUO6OgaRP1Jvm2ki6yKo0VwPrPjXRpnv2o6V+tJE9DDJkHkglvhgDOfKD6+pHYMlLp2QEyFbqBcePUVwa5zunHevsvr/JCQzt9FWLvQ/+VbsoOMNcvpFXP0tehh+NhEzDCVCc1hp7PCWXlkzP8MGwOULGiu7aKranIhhzYmdEptAIcRlnX94l5THcyBizDsLmBiEIvNkNPDxgF0aqAb5nXngi/wkmp/Ozhl3tHc9OJpBHVqT3XZnNUznKO26pR8QNivaL2WH582kcMCZmCMFQhOCgOLFo9dIFsEcD9uz5LBdzPvK7MKj4LajV/wNDm0UEO+dDWobGCViahLmDCp/MjS/sYFUIGI8jdCY3TcbydQ6nSZxtwADPgLGtoY0u5Q7Kc5DRaRSR/PAPf+ClHsMKR3SLiYYQ7ES8hKzKhuv5WmUKlEb8cLxpSF8bTX+PMF7AUhIfw1Ig/N3YF/cp0cRaiYAAP2CLks73X+o71cHKphH+eWA3tg0EKILWSI3iWX4qGP6/TddGU3eE9WR0IEntpBI9xhSllvyabUamgBbpsudbkYyIMVDtiJ4k1cASJwjvPZD/9pd63FIPMisXi4D1P8Fm4YUhfTDz9hTJOaGZlu0PHpmizeKberl8DRHBOjdItIoLqMCvOyXpkqBLnDVd2T13FXe01O4uFRoqUaJJk0dp4nlx3Ol6zWxuL9Jl4yTQ+qXF1Aqa/8X1PomXDgO1kSl0uVlGTYcilu8Y8URsfqkHRZbN8FvL7Sqpqf2r4/Ssqmi0cbGhWbbIs0FieqpWbWtYEoVAjvFVkGr9MjslGge7YmlB9N5R7xZ1Fv3b7jmJZyhid2PEkX/0zGdvLKzbeWNu6TXdkZW9hO5q8YZH0q/e4Sx3eLNmeXIrXvg7NZIDRXCqe4/UBh673p1WntQkkZMevqJiciUA7c5qAjwRoCyXCxjEuTVIIlQ6E5Ns0F55j+ObzR3zsCnrVxBwSl9bjPy4JozfcPNfPZhnH7F6RJAaUH9djNwtxqkWbgM+Vvz6PC1rsOGk0I1asbcoociu+1dXNiVgV6QL74gvkM6DmMwqFOQcMlamVVdMAvPmhD9etrQRwMbWHXlmDlUrcFCDcewAARPcve29LqnBff7itGaLZrq4/MfXCNogSuEKJvvsYhW7klCfBZzRDSKnachFGGh2SIfCsiybXTgBI2JJFV5IYZotTiXw6QF+lQ1YgpAABtFpVUuN+zvnT/qAhFI8pliCr/xVCrG1Cz8eJdT+w2lfs7SSSmkCjQjcXQlmsOn1+/deMy10IhFfAD21vLcEblIwyZqPi1UEG0pUKILjfjq65WpuToq3xS9k9YhNyx7waekhQEqN0tmx2qOFMUxmJiwf09gt97bVXZ+VXe/mYq/1X4sVjE2fDZAAue5WoiUWTbWRgNSm5KKcv4SmpGcHLmNa5ndaiBcFznkfZGWacK6eatSCVQkT8bJtEHNHtmRj6v/325tDctBBeR56GS2e7QtxbJIeuJqLY9OX5C1FdzbX3Y6YPmhteBPDMsio6TIzMqaCc2MN7Y9xIZWZfN3k7ymkcTcQz5Y2o8MCp/fFqy+5g1YKgKRRRO2oNJZu8rfWvDQC94Z+cnRYhkk70pEPU/u0S4rZTDUdKOHOEXAQn3Mg020iIFFkEAWswqAYZ6YPKKeQfNtiKOi9g6jXnJDXAKqSDngJCujzuxyoNiiGN3Isp2H53A98ALwv67fc6WLp0PGFOGX1EIZntQNCQS16/eg1mBejCupCvvL1qPct0HDbgdkjmZivsNn2kXfq0H64bRgOpr4f6Tzgb7tD4lg6fmPoMaaDiuREb2ouXGZ35ClFX5bvTeSGmuvJnN8iqCKXYTbAsM37dEzzhur8BzRCT86oTsigFNCWWeO9SrUaAy+rSxSVLEArpl+//Il94m+6QOKEpOnIY4v22ZN6SUgtpqM6kF6w3AAC3QcX6bnBCn4ak5KulURlzrML3Iig/KckkR8ByggQvZ2f/AMsRb12iAHyq81+QOiFX7C6Ffmx02OuQiGV+0h2ESbpvm7cWrhhfgPF/lfVAVKWy+o/wSZlXN9wOCuf0Hi8q1gMjP6RJO27Xg+c5ATSaovB3hdYwIAHIxSbWXXQN85nN4P9bP2MmN0yT+P7szBL+jPwe9RXlQc2HdvVPJtseAZHJJry5MkNw5ofsr6vCcxPz+9EIL9OrMAKAefUys+FfCZZxV19yybdUXS1md8XboX4ustVOf+1KYZadD3j3MQxJJ/60MdMJm8EpymCV2M51na41qoY2WMFJrJ+TNMYHST9nR61tSnTxVrrscSF0Hh13Zse4ksBZMPIvbeoxw/XaPUaEpP4bXCh0PfL88fw6RRUUGrFuvcOZ10z6LodZ+zbmAtZ77kfQjYK4BCbNVeR4IkSpHe8iL/1dS3uNQwzitwf3lFY7OtL/VcBMRqiPu+oH2Q3y84qqBhdCyPBHcaTCGs7f0xW8Kupb6wFchSiXRcS7108As+FmuEDburcvN+ujyZJaxFdtbiqjksWFI0h760xl9hFhiqBHjsL431A6+eNpNkMQoXEJGcJW7Tr0NLc//3BoCD5vSZGAaRDiqVDWmDxf9zZc3WefQ7Vbk0SF4mbOKlJQn335lSOzR6mG5qDHFSGyVhUbvrZSNrHianJ18JlomDxY91zGKMVDN395ic1JVMpFntB3LAkqZtlLrJH7wg1RmTb4wCnKBI120RcQariLf07NZgcadmmGg4F+a8PprckIW8QcYWpEJ+URQxRW044CkB/pN55ZuRlgKvWYx9bdgAzmLhR/XxfF9oPvUpGHUU2vbmIehbOBTRp8SjvzUcPFJd3eymSHdbX+9wF+kg2je4XlUAN7q6qi5IJCr5BOQo9hkktoaAagJkzOKYf721B0rmSi5YmKxlD17Qi4PVC9/sndbIg9rom2CN1my/OsKVzzGw2fQx/quDQNqb2oyX3oTf48kz+cW2EcSG3kXIZcC39nODCxqnGHa8UUVIREsUoAVZUWPEH+vYktAGWQ10YCrbyMfPY25KS3EEiUXBlBJtgTOVgfRajmAi/WLu73aXaou/r1yRwcRmxKQ09V7XLvRuDYlGd5jtG4rofjyNWchf8cToLNl2ydWAXTmudMcg0ViYl5fWy2dAxxjOyp9PmQDFp6Fx5ztVNAzJLeJ0b/SPsvP2tdjYh8pOlTP7jYNaJeIF1xbR98xhBMMvEhwWX+g/BfGxpTfrCU3DUciGED8TbpG95Oq4X92vA1sHuf3ZkJYUeUW3zr3kkNcRotfnr4M481AQH7QcknDulfTZhlJ+njBi7g/qkZL5arqp8efBs30zhGJ2Epk8dfWPr1QMbiVNje1gozp4ZWu7LlVmEWMUlSt73NLmIIn3lgEfOvZy9nEz1yg7PnWoCBiTnUABZaO5QqYqfmYcD5gnRwMOVZnD0XdqgbJzbsQAHtb7LKTa1OqR2GYvWS+1tWYHV5bI09MnKgPJOExYOF2gLvYsMyIZ8bvnC+T5MOOOb+g7hqFCK2ZgmvRxrJVCYQvW1v4raHqDvX9yNzYpJV/hsBvgGeEVq0N6hSuYTyuzXTduySnrICri27lySuDR0IHQQWwcUB9DfNG7akjShuR3SWCpGrMpTIZnrSkYcRdnz136oWiDLXsOtCq+nsjZUFYmvGo/ZlPHO0qldHTnvNjHwn6J6aG0j7vGGpxsOI1YOVbpOMGXY3hv6EIT2WYwQLlPM79SGQhz/BvKPIAST3+wmyQ3drVBF1If84G2ZXLF57OoDc8ClIMsXt/T5V2/cVZ36OPqL8/xRczrZOM44xfhFTS3astmndRDWB3cSpua0MTfZuBPcWV0dMZsZA95U2JCEic6cbX3csj9mY3VQMO2IgMYFm2jTvytk4+VGtPnCFEDUmJHIkbBukPJsgROkPcqhFGDWg0nTUF65pxiKA80IyYLDDvbNbfbdLmRoKoK+rg9gzP0Feqfb+A3a96LynneKhN3JmJ7sPRyzvU/JcI8sdyxRiOuXMFmmxgw5zyEnKNQKhsQn9tJElgQFDOZLoLCU4PwH5iOvav1GhDjl/hMGYape9ubK7LCJy4txM6tMuVlMZW3jg2notoRQpex3R9qVaG4bMchaT22fIdADXiFw9f4ZZNkacGO7x6tDB9OP0d7WexPCX5dgnnnyY24uUsMpjgu/urtZHfgzwtmrYny5gBQc8p+hRiloVEuTtGDBCEGuYooVUcDbrty0xRQkl5nQlMVtXlk4XKZfqvXOHYLa+k3gfOdJQwYHvJyjRuF4eRE/zOPpSIkFGSZYeBli6d9OnbxN9u4ILY/y5qB3z/RxmGo0So9diZsN3ZVcVmwu2T8sIYM+Hy5Ay0H+OmOu5qdOjafvcLVrh1vSl+wHiZheh0X8jfIJhuBKVaGQ9CZmEpCKYKrpw+RWa1H+HNul+OPj3u35k0EbBnwvHrX+ER6KKG5ELA6oZeZ3morqukKnyNjm7GxKWLd0vMiDx6OnD1UfRfvr62yqgX1fBN21wf64ESJZSX9MesFMqURYZUemmdL4/jk9AgbzRRa8ZlYd4ScE55dOqtLXWMGq7i7vsAq/C/a7Xci/8N1cg2zMdMCwJYbmT1LlZbucxwzG/2rVMdl40nyKhn5OZvtLJDOedgUG4Y8deihB3qh4395hcBCj/N0ZUE5HFAM7IhsH4FUisBTAIp7nafKxyxVbHSCQ+yEDWr0/VYGqDmGVXhRbh6h1FjlD0ES8Amasxog6/rq+j8qncX8HpIU8+KCJ7hAgk4AhUFD4+nXtMPgwbH4MPIRkHtE3jcTyDkhw4D6rBLytKO+K6z8SOR7BXlfze7VZPP4iYMa2L0Uy+oZLxHpq85nL9Yo3yU6dxlddCZpdCR09fx+XA1EnIx/VMPuXDoXQ531r3GBcqZEUZSE+jNXdrzYa8lHYZCtKV+D85IRTsXd0NeGlokCucBtqe6ydmVDty50OnKlNvJJB2hltU/AGsoLm+jCcvgMm96aztRVspiCkrqXOVKYZXJcU51BMCzxFX4wKnhS0uJvfSOhZNW6+ElKBGSc/lzC6Sq/PlRhcpvFctaT0u6Cz3yiQpi8N/vE3+kWYO/ltur2YtAzFaJTgtyTy1Fj81pCJpmhoBlL4zdeY/RZ4aMiwxn0dLrTk7xbsOKD8TQRgw7dP0tYApHyg37hEh3yDR4FkducgS125cc8YUiITmNWwrG/gJmItZ2wcEaNcyWl3IEb9M9pQzP3tXKIKbN1BPcz1JNtX2yQuoW3HFOd/PoINrrJ+IOLkBNZxfVpewfHxckj2OiA65odVVulllcxdAwbqVssE1vvI62a1VjeOs4nBHpGXG7j3fqP7vWPMsE/4IW1UcgW4dqxc+83v9WOXWfuKmIKlN4zc/sH8JVDIIaPBP+nV/WyykjPBt53xN5hupSSk3f+yR9bF1TT0hIAWG1NcJdc5Kly1I9tfF7YThDMRHwhwx5mAIB5jABnfKJUdLA3/kjV80FOvmcZiEEAltrkCBCr+KHBEgjabe07jp79WpzFqCFBFJi7Fwdf4p3+ilil/5zPgrmbsBtps5TXTZjUOq7MjpGKynEG+ep30zyL/Id3DAakuqhGHnTSxuqBVdo6HNw/5A/Wq1nsIyCDjKVCosHide7r2bZaLrqXJeHyqr3A1glhxEjjwDI9+E5WeZTwTJ1BFSTJEUIKkl9QZtmtYSi0iADJ7EdaB8ymfzDkTJ6gjCT8sYqR7gkesbHzM5zdBSkkjH/b6lNDkp07TIzSa6e2+jDsXg0GnRUn08gvRMLrEZytNyOHt6wOBZCK08OEPiNa72CM
Variant 2
DifficultyLevel
450
Question
Mike cuts a pizza into 8 smaller pieces along the lines shown.
How many pieces are in three-quarters of the whole pizza?
Worked Solution
|
|
Pieces in three-quarters |
= 43 × total pieces |
|
= 43 × 8 |
|
= 6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number | |
frac1 | |
frac2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/12/nap-K2-21rev.svg 300 indent3 vpad |
correctAnswer | |
Answers