Algebra, NAPX-H4-NC26
U2FsdGVkX19F1TWKIXYBzabMfUbXvLf2+oDn4KTmwP8HhLotbGc35vSL7HgCRcVKxP2L1HzfU7wsWcozhzQRvvJRRXwieNAF36P/EDkiCb/lDjqIa5+O/sBA+Buv5E8T/wTVA8FFSIea5Ff69MNzvt9jJc3/caZf48Udep8e40B6nWWV4xonHdqQlPxnpAEriQZ1fk356KLcbNQpB+DxIsUOUjQFYqyDp0bzuZrCFa7kis5/k1drCZTyLRfm1ifpGRhVxlmMWULpfh58rl3LRubfOPHsBMeuF7U0Ib5Y9zM5ccWbGFnQOvrTtKTWxNQLelfqC2nA+eYz7ofKVRJ3C4lfEKdHSIWA95sfB4AyEMjiLKeEpwgV9NJ1Gz2wG1g6MWLkjqYs4AxSh5yttyhQ1Bp9fJIg4kXJAbwOU36FMiGr2Mn2vzolPuenIUOABJhPr9WlUcaiTR21gNOM8Lm/GetMjzqHeNGwy1S9B0l5rzX+iTZsDVYLcX01RTQZ20jBTkJ3sDbqbfDRFiFH7qWRSdbfAi1ffoIhq6Kf33NEygU+crJKMU6sUX4ZW2XRyC5ixCImfFWotdd+3hqFJMCJkNDCig4JmhFlbWk/VJ2RV37NlBT3oTKi4b9nPsdUR/NykJmgmlXfvFGVC5pJQtnOZda6NvL/ixuRIJXazBOAwR7s6IJUoru1zcsL/pykDB7k1MDVF/T9q8jeOlwwzbebZGNXhCYz4g0g7Fh7GRzQD+Duevg/XXagOcUnH7l/a3Phgzq+hQjJP4iDIUgKTyBfSqzBlIQKV79/htPBDQl4qBDZoJ3UV9ACg+dAEt6GK/KkgBaU3ZvdoL7As07jj/dwt4nwLJLANlkjiKRgqTp6Xr/0HY5lclEoPy39p/Sf+DfnVNHP/4JOpaYgKNQAOwrlGu/PUkjwKKw8UeJvKl1yf/i2wZoXs2L2okR8iDptwrvoA+qFgp8vqDfXZQC/jLc4OxtFFXfmf4tM/D7mPOuG/6zmp9MplS+qSMf7OpZGArXQFgKiSGkZzIo4jBNvO1wxoIyR+IYO6FbP+7lpy3UelSoHxNqtDo3CeWmGxPmHUmn4kGySPM2q19NUEjxsKDlWG+BfUUzAlC2s9b9hR6ol8tT1FZ8D8LewGXYdeb9xWO8mIhAtYZAueHsazdQvNAviaA6tQuOaWSqTcl0TwCDuizV4b/Ach4KvV/tFzrn1m2da322gIBJWiNzOcXutIdB0oe+Vpa2ZBUFY7LU2VMZwSr7x8xMProcszqsnxet429661HBrQAXIUEcoD+HKHMbESMSncczhSaQJ/lSZ5fae5QPGl5FONB4VdRHHSNi6r+65utgAmDp/RZFoqJAvV9dc/K3rZn+r0UMD4yz/sA+9wdFZjSkxzLJSYYhUnYA+tw/PJQi+m9L4j9SSKZIhVA4q06x6LXCeFvOCeKtaovIsyiuIZTuuPD5uZzNSwv1+W/8r0SBsX1Z1TiRxH9qRJEUriJMWvBz2rqZqKTqu52LRvdjhGKP9jf9YtHaZZyrUGBIhd9ZZsRDO7+HatmWimxhyhN5Ys7Q3erGrCnLdcvajMqAd23eWKl4XaijlLS/S7BsvuudMqDGHUDMfjg6dStT/jHF5zBnGw0Cur5p98G+b/jkaJ5OWUmtiNSszlkGey4tL8RVUiKdn7sPnVmsvtU2R/jQxgi12FvjawAQL9bgDVV8CFcxhC7dLkyMe5vJOVIa0QQ5aLGZC4dtpMo7EnDeXGm0GXIFc7j6VLhkvMtyzUayj45tnVyHTcTCKbsZjdsAZEGLKXrWCXUgtKu+RmepG/D63XMblWRtGuR4CQglttXOi1NHeaEbUjDX8DnsZcyGDxP+ZDkEeiSHiUbLeGsd1TFHg2F2nBuzugZDjxl8upwpBx+mCo8OhfzQn211sNdwkPZF2OgKr2fzNOJ++qcE2xG4aLMCfYdaAJkOtWxJo7D7XIbjDKu/3M4ErvKj9nBtOTJ3qejljYqkbTLsscc801RKynpVMU3ptn6dITNw5i7jkEkI4CCqjEXhnlJyYT2nAvH5Ele9bQtcB97CAOfQnRD60rtfQDTS+iGEgQhKCdehFNxZO9MF7ANLy92ATq9MzgkY1uzqPtvWGq76uh1V/KoGdTMkMDA9G9qpCSpRqi7Yb9vxGbEfyYZE2XnwDfQC6jYlEOI/SIraLVyUP5Rqfs+SJhuKvhfTgg32uPNCx67c3s0ezM/qGVLclEuL4ONDz4Hp/fOWaccZK/G/wOKyXJDmHqixBKL98zh2n6yEz5uEXdBFGB2yiVJNEg0g6bf9SgRxWQtG8+CoFR+eCcEsoaGFNryNNFB0ZqPBIzAAmUovUBMbBRDTa/s4J9qDlD++tZebd0QEY85RidePpGJdCupwScR+gGAn7TOFey2bltr7ZZy7d1Qli68NYSBEUnWkZ0pMvPNMsJftRwlj8zBAb2qMOon5ji/MGkQukzQdvVkUt0b76rmDtx4ElagcjX2P3IN3YGDuFi+swX5Po/04cum8bl8r5eJoqwZt2NPTuvbJ1hTIwvMKkWYGVv+cKGZilSi6UZVBu2CefGdZwfZrP+gQVO2WCzIMxbMdE+CUuC/GSMJeM3+9M0wi3Z+j8Zc06XVQq4QcftStA86ByUxhFzm/zQlT2sQHNcDTqJzlhF0Yyqf2nBpyYea7adP9TpP2pG78Ndtzz8D1cZ8E35sKNiQO0xiH9eiMnId4Om96fQxpDPXOsRafy2ib0/VV4xYGYbm+hhyDY6c5psnMMfFl2cuDz3jVkW2F+JhVR3tp2pzpsOnkBGc6PwuHFhjakNVFMT+MeB4VPgeJXFLAapGYvZ6USoRGw5VBWT2/qigGeoWHxvJHmj+QoLoU9sQQo/RHdpbWRPTu5U8+g9qOpllwKiXc8Oml3hVUO4NcN6ox3pYHPUdqElNOnDTPw8MpRGNJVsbLSKZDrU6FJwDmhyzMbb3JWKR7PQFzKYgpa+TVovAHk930osKsCll/QsD/J/ZzzbTUPO0ppOJtM2rqf0uuosiUp0Ptj/i8w7Z5IiS7V6luSfN+L5fskvuoHsHxonAZ6vBw/n6hmDIH1Ur7Zt3zX+uCrnCzklBhRAn8XLUBqbQE4H4ZrRuiDc0TjGNQOuGBIatGrlrAHlOtCbkQiL4AWzbfgaGDZ3cbQ8ITgACBzetJitELhMt2hVR49ZcLLuPYL51+cVO47UmlwC0ufGbQvm99bUp89I+wyUhxWrblBmnie7qteQZn3UiaBQvXOrpWksMMGvaJDwguLRjwFn/34rZChRAxb2sMtv0xuFQFxYtrZjNUZNpp7CiSweed1Gu+CxdboKuA39bNuf0wlgkTKUuH3JAZOXIk6C85MvbygNvSmUzYaRQJHmFeVvs2qNMOk14bnB2wcK1Ah0E8mUzuiAeZPBO6majeiyHGZa8fFkLHbb3Hp86VCVlJtpfGSmG/lOj/b/sqJ1TdI6+vBMFfiiYr8Mfe7Phwz/dTMnZf4H5J9UXI/f3PMeQSuuwn9AqjxSBDmxmTmyQEnaQMH/BCIr385b5f2GYJ9IDtv6y9rwa5UHEqWEXr7qz7Rw5WA60mjA6zNxicZZ0WofLgQ/mYrXMUTyhYrdc+yj8EHKwWKaHCMR29nZHwY7iV0e0QH7GdVh001WzG7MOSz3k0Z2MJ+TpfFBtmnciXrMKDoHyOLWpPj8PC6DeUMRqYAdzXfWIBOLEfSEj3Wsapxd5u6F3VEbddWiB/HXox6n7GidRqxg5YJCNfZAuyZ8mCj3I3gvUharCLhDI5XBWx4Ec6fL9KOobd2kpEcfXhuBZ4CyyqHIxgE2CYTrStkdaajBRiXwZ/y1Zyvi/35JoW3beVvQfQA4Czga5CxjajBSLvq36qINcV9NN0T/HCRmIY0yIkR6eb89qmtNYahOYcDlvDPn4SGxKtPI6p5kp2ktMYolrOMmXanqS1m1pNkjRs3RY4GnJrBLQUBSCT/x4doApaiRNveLkqZKtXEOHP9Ct9FAkZtUAlzQy+d2dYsVEMe9y4pCU9aauz3nYZdDPOQ/xO4eP6oL6wEMn0MIkMJ6HTTQo4bu+v4SoLRRa5/5jLirlI+hJw/9aD5pk7oIfrvKIXhQah4JPYQxc9ix0AUS13vQhbMxhR1cJnLSYRe6ACLjJqGHk+e4qZ1Vaybvf1U160rgqQDFwRBkrjfU1XPkiI2kCbxuyD969l8YsdI172Xa+QRG0D3X9FVZhVr8W+4jAxxapGWSUmcRe23hipZPi7cA2FB6vqu4Nnoi1xMxLnaWqf7cN+mK/8wzOXkkNyffP/lSzSEofXqI9WhRge6SNNXaa+0SfGewHRLSfg8QEOKEkzFTqcYw1Ja3CVm8/IQs5W+nFlPIa55nv29v+iI2U14nhAIGS5YAMRZFZcQc9xbdZVuYvbcrQtIzLkOpdUXtxijNI39+UqjbHx8yMmTCWkazQX/kR75C2Wa9DBTP01TYYtm8GCIBbZx2+LJdaUcH4DhkY+WL3R5heel39UIUHXGPnzTks4/sspcLseu2Rkz5lSnIlsRRcyQSt7NO9vbGsFFkZBZyG0f/5wairO1euI4u1IZ7HKaGzi8QVK4vi2pbgP65Sw63eilEeqr/LsCW58JXfe8VFrSEHhZyy8o8j3DRTwpdSleJ2S8xiGMQxaZzJhSDr3bt11Rk3OALrpy1FghOOrqCOCqdnyqjOmaFv4WL1OHERdcP/NurwsULQYzHh3V91n8I/lhWB4I9PwCmcJZxOBoGX+eyQDeQwlInm633+zubUO6GfzLX7kyo4YWhM5Uj2uBO73cxnGroxKjtrvBRZmth0WvMPl72Ej5q+JX74i7loR/Qn9voghxHQpUqPPRucjV1OpVo8MLizSCCRz1hMSmg8b9aAes/6c0NaMCqLE4k3Njc5W0s+5Ld2uRmT+jZWw/hHsFr/Y6P8vpq5GUy5xEc4d2HGTnGGBmCvSQeA1XgqdyacyZPVocvFIPAX3fuLdJX8hvMJJqjiR5MdjccFDI+n84Yni3sQ+7O92qihsY38c8Xdlk7lWHYpZqn1aVPqgNVSRFsLvwph5eMvm+LAkMBxyuJu1ONRKpjeImt0fulErSVsaEpfpTAbsle+SGBYsDep2j+kAxPNSepeO6E9O0eJs+A6/J1MVkLSKJTAcZqLoIxTStuHdA2MgCZCS4F8+YTONJ8Ajiijvi5Kebe7GAdyNMisPDuHTnLaQbuZEXBBmb1WNTmgX3XWOShe87NY99cAnv2hI2UEF0VaVQuqOduWnV7Zcl6gWZkbfuoJkf832P5EXL1L74/G+V6MvQX/l5c69Oyc6EK4y1L9XdUCogFoqqvz5YVYqfVfLSfeO1tJpZeshunnJF8Lp71cbpgvX24fRMqDPWzmllq1LCPCz2Xg7CsPM9xptz3weCj1CHWbjCNxsWBWiPcqE9vx7F0xjzD+n57lmmrbZ24sp03hSpw+DRdYEdbAi22NEQTA25PJBiPmcqUaVt4n9/K6kqxH7k4APqIhkj3HdxRNsU6vLfOQUfHEnLcSG4EaHkse2Uwp69zaGDCTWBBznfZCzfOwNTFZZ4diDqWy9+1z3m1+42/jqMvOh2a1LxWaB/faGK9EIUjPsHtX+bHChcIcnwQKcBrw9XDyrimlFRTF3lT1XCcCUD3DKeF5/ll27T2/PBf43yBYut/staaLcdyXBTBMopgMxYdCA7BDcUHWngjzeLIvU9rWEoGtBr+ZmSvt55PQxnnYzcAGvdcj7ZRDMHnO8Se9we2XTuL01Qd7YTglxQNZelsG/uGKnpk0Qmj+QMJbOH4+5eQBeiXhphzwaiNw1fVTfWHm2UuSftMsOh0w9Urxgi7wgZUlp3dKjAGIHtxIBQMGKB9Yp2HT3+HXqC4SaTcvr8RzvVwH7UjCdI8yWRoQbdOaHk8Tzu4sp+0N8zbNQ9A4vBIh20YXflkF/TQjAix15xKn5kBOOrN4+D5RJ5lRFhZqGz5hNF/qGl1d+rtq2fkouvxSX3fP/Jcvws+HvXyUVcLhIWGzVxpRiiokNgejsadaTeu0deTTtYeA7DnN1ZZCW39yi8buu9iewoKl0vpyQNCuUmsRjlrSFKpC53zjVcKEAU1C7Zs+BMNGZrmVT2z5wdTJyGNGaGb/P9rkSt1cOyGQQX7baQbJwewz6LHqqSQHrLCFHEu9xpRfeALpEE9cioXVjJ29bgpjaYVdGYAE2foftwlaSfnb9MH8JR/m59BuejDjRQTmYD4+TMUekHV7w+ooYfbJ9yVBiX/9Sn4V4lHjguS3X3eDdAwezh7UPNx4APGyESYieGap9MG2W1gKz9I6CWY/9xKU8SMDEOO4rHnGSDt19OZwteq5U2vpnkTeyoClCW/cOVla5AlPr1Jt1ySzkQjX9Ua5hO9Kk80cTICQ8OVdC/oUbPpcy5WM1NYE3bKYmJpAU58xhcpohJzHO7IyECJrkN8TvNQfqVCbHZ9CHvbaKdFsNAjDOm95o1lJbzIVvktdHl5eAXz+/DBFPl/QyienY6QB8ib7Nk4KlfySKNEVinZR8xN6LMODBrjaaByRTLrz7ID63F/YaZHo+bjfhSDaLJkwpTYXyAk8jsGN8dCJDiY5eWr+Roq/Zm9BEq2VFm4RLZBC5l61L1bFaPj4ooO6x4Soh0U1QIobSx7MWrqUvgMaUAe6pIbYskmioKsCz9BZibH/ihWKfYT6Hxdite72TkFqAr7gSYVzmWW5sjzswgaSHwy+WmwlcgnL17kL+HhsJU62CkFQh5lTJ91TmEfHi/5mq2/ISg8ukvD2C6e82GacrQvA/qpNppC29xFTWc7MN+xymbuXAFSFDBo0v+Kz9BwyIywmicT/PeiXIyNmPnsUqdKxKJPHQJ0fMlHg2Ai0LJhWKxje1vLzQzSnMX1yKbr43ETlzAZLtNBCNDH8eO5WwHlYkJMT9qjVKK7G66HWzaU0g3wasIqWdBQJtNjyFTH1voxmZih5VYfDp3hvf+cP9Pz618prVcwqhItihS3hG9xr7JvmlMxDx6dzag8B0UAsgLJeQXdzAyj5ylXzpc/Z0UmqsmTweiVi0bD8V+GYkv8B6GTdpdQEJ2FfpBWouLetznNf7bBgGidD05tc5TdSLeYz4G+52OxNpVn2batVli5197mczW3/Ps8ku4oxFUhuy1/gWqatnoCeEk4GUfcCCgQEXJ03+t5EJW0Fgy4mEuFUKtj2W4aB3sdy5+kkXQP3wHH+i2COME1SswRLSlagUzrXOUzUbeCr6T4/t9TXrJ6Dd5eH0cl65q3YyllYcJQFATjQjFRkXUqYhANbc2AoQBBWSiRLJhO+DEqskyVMP+lKfGXrbOGJF00v/1jBoEOl+9c4KWsfxbz+4qAaTv+ppzqSlNGSK31awKEoa4LV6fc6uTRm5ASHN4efcIEonYtvMk113KqV7u/i3unuQbJR/AXvNTlitYoM15SJajdxZHCTDcr1NNiHvL4QBEEMxGsUYTvXzILw1cMrXdgReexQ6Yk8fAejfw57S5OJ4fu+KgXikawHaeaA+jCiegFxa7GKFiBaq91R4Um13cUZEPYlvFDllMjBAmd04k2nX0Pr06CZcVPIibyEAA1a97xg6qpzW1mbIDqwYAMdUhCdjGqknZSMQoM9ONuQt54SR+mV69Nyxe+CxGjwviX6KjNPBh7voJIAqJukPcE6ZtVQgnTy2ewoXQQySj5blGZbuFR23tL+2jPDW+w44g0XpoYvhAhRdJTFz+rWvbpGqEKz94gJddiEsEKOr7lJcWO1kO7s5BOhCeM1fa2phlurLpdUP6hwJECR8VZVOAq519QqC4yhgQ9Q9BBC2gW5X+JoZ80B/pOxcsfnd3yOGBS9z/AmwdEFjJQJ2Z0oMuUnbq5d1Mk5R85Iqa91UTaIv6AnrgFwz9yjDU/3ryzA8m0HlTV8XXI589wmZl0XLFk9NFMQ2ylt434eqN96RebuDhiwG5TlPCWj7IBQ0rMzwzEQZhcOqBHNd65/eYBFp3ULZQJyyg00T1lykmSRQh5TtuPNzLpALGUFCoQrBxlXkKwXsmqNgvxLwhN7ii1YdQKHovnyKsKBpecr4hdruO+ePb2uJGgrbYfhk8ZxtzwD6WglDMg5rJ1wpJ1GkKk4MxkGj9dtUFYOnb+e0s+KAyiA97HsrSJPUqwiqv7FWKocgEIn6peLgWuVUkmgP9r+aZzgiNm9WcjqR+cjqwIMgnGj0V4c9gILFQkBkXzVshIigKgrr4qb8O8c169rV1ysW0xdoJeT/K40SvnTFSuv72DwsNsR4WQx0N3Pht7Ot6llnA83RpzvmvCM4SEC9pNQbBplBIParPkiOIPhD0cM4Y31zN+7EBMfMCK9CeCjtXDWQMzpbvR8sZNxXXlBGXdGdyLFMZDmyRvmc0Krgna4JabaXEDOp3JWDahXw3Cl9ReE2z6Uu+Mpu7YHHHZeTqZKCWIvViaXQyUfWF0W6DbxwpeRDEhFIwH790IBTlr9JuThbBnaUSFp+oJ5d4AH+Y7ohhKij7nf0deGe/25R3BRxZ3sm6HgTrj3kAbUPacy8yoOih1b3w2OpnSL/uMqBS3Iy3fHGxWJQdBITBR1FQZNyYaQPFECH8z0SJeQqATaU51aXyEKM8BV5g+ZuL1uaT59ZijMjYQUCy3478J/YFe7zYmfkR7EaqDTjWtlxpbZbaM2E0XlL8reD7DoJrLAptBMt/kXh/xfUJyt/4jbKJEfDP9f7IKId2VgYkik4D621snLa+BqV6DZsqdUUdxNw6noW/N5I7zgdh2zP4J5bUirP+7rPPKhJMlg0U4MotGfa3BGBf9EK3xC0kWVXPW0ULjv2wfHeJqUSnkschgSgDaYPaaZFU02MwhEZF63J+Vd0Q+TiSxR7bzBLHXTq8kZJ5pqPWHr58tdg9dUUQzqZToJmW/heow/FdhdlDwpAoApQCXHKcx2WbYt3Vqw990QnGs6zPdTFvQrW6hdqJ68nT14sM8bAEda4e4H6bbJLayoukT51W5SIdPK5dcvA/UC4G/re+hjknuzj2ozeH7biAE5jbkRW5VJVWqaOAflcKyzFrymXW3+elO3vQCeK063Jbmmg0DNmU4oaUsXfopjs0qoqWotD9OED43Dos5NkhQzRyDdWugMo/qcRQEH8t5aFsxf21OD5XqqSwrNykZGCvywJc3hBZmsqJlYsLoKiQGmeoWSdr1Wlp9DQTkMCpq2sBGrOBRJqdXRJZTDdFNZOyxa+wAlB/saacFLZr/ThDR3sBpflf3qUGqNtd6veK3F3whgLXgchuIIfw/tbItstQsu/N5dhFk19aAXl0ElMGhrKofesm/WDASxRrvrVL2L0YjIft8RM2bDljzyaPhJFnpqyd3L117AKSKpaOhLvbnAj71Ihzq8VDAbfesehKj8/VozIPtDeIbsNWr2VbUYWKAlel7aRPVqxmcKZJwaRUtHUcmEAbuB7ws8G1yIjMe/azhPv/4Q2KeqfFrMDLek6Ez9y9AYE7pDfyGqB7x9/INOoi8umClUjdIZDT1xgwUb4KyrjAJvmHy5qvgmm5Cj74CZyZKUa+I7wshsdurmCjdrLAeqhfRGMjuuPAjUb41jLh8J8Yh1qCnrGZqXLvqGlWdWlWn6xUduzxeolRmWerNZHeBvBTaEuggGRuXtySaU8oS2Ul1Y2gGUpspfKB8T97U5cqeFRPEqwSlcnD/Gs5vcCdtdx9F0ieIae3+9F2jEiVUHE2/nqHjJiI75HsOE2kDiZFPZsRw+/OT0CZvlEbus81FzYG58lUBmCQDNb66gH5pbY2xTu8/6m9SWq7Hp6v10KBmxdyJ3ICQYNUi0BJu+O/jiTIDH3feYw+O1T+ze6tWk7+xtYCYjg6MG6kB4H/O8Gf08TR80Y9moV8256lnF637YWVV8UIRpy48gJcspnQq01EvjnNuSqeh2nHB4Ps3/PrPZRb/GzMdxKOgwBCxNbv+7GnsFVpusXq69WOBokM9tPUGDf/aQh1M5x+ADClr8tgPgCJPZ/pxME5raxvF27bwwyZLEIYyc0CkRLYiI2aIDtMBmcjA9heoOtjb94e1h3Cem5UczyW5ehwQUijehD5DVsBwSkkmmWQtYa88EV/YC3ivPMPPFW95MTdTLTFa0La3dj8d20c6UzdDWQE4vC4XsIUFPjeoVePuPwpKDhXZBGfNDMm0XC6zjocxbBYxKakyG0mhVGYraiiOSp8KOSWHkReWWPs/nPqJ0k9wsSEvWaCYFN2EvgGz2emDoGue6F0tc2DXvUDfYdLB5FLZEqCsejjRAQA6KMJGmxcF7Lyv+yM6gF2ssJYhk72nLvXxLDnZIgBie+jY/cNAgFRLuLWg+uE9cDCns2SwVZZAz5dpmeM1+0q0wq3Su7nkvf8Pq12SZ7++zVAva/2mSyg/yRGey30/+zn4qCTndqNxEaq9jBieCwd5q1XRIU3VABQsMuQeJFCpVB6Qo4ZS3h9FvfSkHHAgsPUpzHwWgBFqSB6zhmJQWAVQ2PlRq6K5uxZWnIvur8yFKjFnYNgpBFqY9/4/RsUECcVEtOOCjkWQhDU0qOyD1pbk0VRM7QJ1q7S36t7mfAj3d5uqZgoWxOhe2eqEoJKcy6AueoqFGOYtIAjdacmuxayir8VfynRmzMduPSR22toQV88lHkXDhciuB0IGxtZNt3FkC09fZGgyzHwNPCfacErSpniLJkotlSdiWu1RFQXgy/8J8bpUWjOQpRHuI4J1fRxREomEHjhX51WN1xlLx0CMveDqhmUNoFserpn1r5R5B0A9JZDk4rsSgAgYGKYQwuJ/STQikKv5pvE7CvNhcREzc3T/7+aj42hhY/LFbNaYD9rzETk2Gr2/CVAJ6eeBofZrS1BWEF0b6VN5r2PgKOXQhIyYVdt/vyKaUknfgA5abDovnYcU3tyNOizno6Cdw7lSMDWknCMisM4TN4L39LoI4i0xY9zOaznoiKvJUb/n6Vr2uq9fefna0vg/Q/1ArSa7uPnBQJTw0FWwHHbKBeEs7OKNlTsxxS3IBPlCNQfZ8TfQ6MXJ97lOyq6qdASKuwCcMa3HXDQOBkIByekV+4dIWEvJDfeJEobBUJ2Uf5Rod7/OYNOuN2nZ5z8nE5FzBBicn9kHbNkqUbJlH+z0DAuIOMZ0Tbm+QW5KfAE6WK7QAZk+vwDYvGcJRpWl7/NPptXhsAWwArI3DyZ/cbi2TT1+CRAS8Yqy1RQ8tomJc2Kx4QG9EIha5OK7KMc/Ss6mlXDbK/BjOUkaEcUCfkn/x8u76qvNVFc3AdSAvt04Uz4sYak2RdvHlaaJAXWEF3YTATxkn2o2lDby9boTIy+J2ZBUBqk9Mfsi0Tb2WN3Mc2pvPsIE+GYfdo4smOgzLmdOc3mdtjVx1sv+4OxATgZVYT++Z+DvS+dCwu6V36mkmEy/d8wPfet6Amo7w9iF3O3Dw9gHu7MqyYsfYmG6kmINEnbDL/wXx5p60sCipQxL7Wb6bZArNTBqh+yfy08Y70LgfgdO7EUMjmC73du3aCOZp1tV5DzKjvJN+83P486JaaZeHyFEAFHmvFGHD2ljxPWNo4Rio/Jd72RjrWmGRbqm8kjl1RBk+BRnfVgl4XU0WdCTQkJ9HXuiMpprYGdO46XOOI6rEgvNR3acSi88AhOh9Hp1zKE8o2qzEod7gsnT7rd9/zgUZYob4jC8w6KxuSTnMxZ8VuU6CBTYX6VzH+3Y8cwndlsTHL29QB8WVyDk+STnEuY9CDWbaAcOYNww10Z80x2eAmp9VQ+uW0aDFNHMq0ebueV7nOXY6r9J6xsBKSMDW4ns9gEdhciaix7xFAhNwqCCEGg9aROwJ8y7mCIoZfIDGcLeTONBryEFlybD3O6dgKt67BvTtLdaqC/XkOX73mwkXjcBQmHky0jZ3BwOSwQ5FOYUd9qWQtiVzrHS3dD8gdGDgvmn49Ux6v1txqpg6ld6bfYDNKkoFuoe2IUv7DPfmbl92n6sH9/mTXJ3T5aS26WVTLOYMd+FoWyodJ+w1KkYpgjAMqkuUCZxbCmCWqV4j40jn24MMnEWjH5fmVsW+wcoBk+grrAKGEPJI8pK+Pmk79J/OjOd+UN09ySxMFTa258dgSpjK+w8WNS0E+Y4WykmMmOCv2y2RIZogCuSfubVTIgh1DiDfmayoOJKSAzSJbRoqkw1HbOf2qK7vhSTL9AAJbwulqUEq1m9MYTrS7cIZcruJFS1r1D/Fd1RXXH+i18/XOgNuOW2PtryZ8eQlb3r1Stj5wIwXNtrkWEh0QqMKSEONi0sowYYnni4hgni8SaoF5+Kb7m3N4wIbxQ4J5Y+2Fz6oGuUG9e0oxFQeCcERSFXLhMugSeQ23fFw9SeZ7Us6jSAeVfjjSccYcA8TUM4mcp9wgGh2+M1qDRoM0yrlKE2DohZZWC6IrzM4amjhjwKzUo3aeaNkp8UZkw/1jlmSDxn9oA401TUh9SsTzRLavJNK9Ar6ko4GzCoNieDoJc6vdAQpX3ntIj04A0deXoBmjBFb/MNdiNQ/W8u/IthhD9tSeVVdbjdUVqZ11JZ1Fsff5tcgMG2QHoDoL/7cbvcArdKTQrTBgGGmwoIjIkzUolML0BHmcPC7WwFsNnutJos6lpiyDWjjS8C8TWyxhNULw6RfGB2r4zrlHhaIfuY7eCh0hxkJ9ajp0aiAMm/kKOTT5SxevN0zswFvvyWbeF+oHAP9JOs2LjRyAGs5zEWuLTiGYIFXY0/DEnTgfrTMcg2YeTuoEsACHcmY08luXs1zAUXl5HjqomouP5F3kxPR5tFJB8zYsI2HGLclEbvy3g9rwOh5ksZgNEBe6ZpUah/bloekdnWp4YbhOBswn55sZnq5JsC06cwDZkBfMjIwEa2dKotpTlMA+5bYGHkftAVLhvCOcsGIhLlzsHiImsCPT/HI4a5KOQKlIs4mGjK35usEA0U8fPKO1RPRD3V53ZJdBjBNf7I9ah5oGenNOnve+9rqEusRVc0PIJ6Zac8Byc6EZW9WYHpWuUJ3+CXeoBYOIBo7o1CvkUgUFAnSgMIS1Y929PPcxSAY6sKyYrwX99xKWEz5OZp5m//S4kv6oRur5JnSTWkVIZCeStkcjRy9HUkA+nVDiDwMJ8al3aRIaOGqUUfshHWTQzOBSTH0NMk0puRRUPo7AtYAM5hzm0elDb2CPPILCqLRA9yba6Q1bihLyT8GC2NeOKzTGRFd8hQuFEN8z0Z7xTFXneVQAQSRU10ZkWxNKo+epAsY+/EPurpYEw5u0C5xS/qiEXeYZw11RthRiwPQ15DQTyMNsNwVPGJjkQuSzjR+myh/k1O+XMC8Dthh1dqmR9LDz31Zslz0/DdXv2/7o/wStEmtb8YEpmkOy8Vy0A5ZkSDfqoZK7bdNkHNoptf9NyQoaTbr09BIEUJ1wffYIDdehZYiEJidY7cVkeU1WMBBmNXO5tBMeIo8fNznwFEZnFj9ie7BkcXo4Zg7d8YuANNjo3qwAzxytA69/0yBOVsCBp1NiDf+Oor76HgWO07CNMNUCSliD6/osF1QAriBZ6aJqSiekVB7CtzLEacGyHc2NoUuX7CLN9HODVliCmW1BkZQdfKudh1Qq5GazgxEK6NQwngh1hJqCcRQdZKtdSpsyb3SFuQ00NmHDbFzuX9IiyzfQVOaNVSbupYKmo/+JVDG9KVq9zle5j6/1pfX4lA5FrGuOQd8L8Y+U3ppiit0NW0916ZSS5Emgjhk9mMB9tLXDm3+6ie2M9kLC2vS39n+LsjSMwYi3kMfSSK2jb7etal2od3NKki8//9Zz4OCPSQUW2lg2CjMrX7OEhPO0SQm1gBjpnBTClQAMucbCtcJCRwtMoxb7hC9lrD0ymDBhU/48ngFD8alxWzYnNQYOsVVvKLCQZr6/DDHrjuwk7amShtFpfyQiP87rh+wPZCxCqW50XM68O+d8PVa0NfC8mAEATRo0CvZh5Gcb+jYXTpeb3VO1K77PWT7km6Y5y/40JzYRItXHqmBoz9SJZZgSbo5OPgd/gg5Jy1Yn7618SKkTItKruZ98CD9BBypSWm0N92s7/b0H6mAApgcAgE/eCxZn81iKmsk2SqhnOutNKJDiWGAl6pOsnvU0BML+MEMEfdKGRquhyBv5KznKFBSqNOE8VzEVs1UXR0PNqtCGc67j0mh5S+5RsQxWcFxlWbT8N2+D527JPMLkpyYZzAPYOiGCqfz3mCko3Iub7kgzpzxjwEq+bexMkzcAThI9SuqdqkC/VkYlv5qYhM1PiTTbC7CMeVHBgmf6Abx6h2EaqAPsda3LGN1GxROejSO72W/qrfmuDN/OcqKgtvjNWI2SfN5WX/+yJ3JlDrRvLHwMVVQoMtxj3yCzi562S8wssbhQ/TNX3rDraOnqx1pGOTovIrwww8MVk4SVuARny2PymlakqqaCNqvxKFzTZI43QQJgduzUsez9CMPV0t4kUdLXxtBHcw2RuLd89ynN/7gbjttIFtFxV8sfiX64kX42k9KswK/uxMHii+E334EriWOUv1t/FD4ep9p4HIVw1VM4QPxZiUSc4bti4n9pez+cdJdajxW0h7ZZVtT1s3j8HbzRtrRpcYh+Px5pwLPqoDSRd5hy+Ntr6JuG+eID+qqyzpnoL62ZFSxPEPgkCAn+uJSF+qFkNKD7fUryztB8sQiqSjmV/eqaBVAqHgUCElo09+relNL/IqfLsZYsMOylXITQBvfpQRH1FDcZt0UCLuJqHSIUQVJGQux4Gh/4o/U+HlvltWq0HYUs1ilvOc2abYPAdBLbWX+ELnE9CNEfpJp+ufPzvXhvKwOfv8+QSSX2CKl4rOmHTHv42FMfrP3kOtRc0hX1eaw9Vc2PNSgc6TkCvmx0QyuITlAFouMyAsCf6bC8vuHOPjL0bdA/OAg1zBzikELzn5+iiYfabyT3qxGnL1e7DTBySPQIdARVXpwr+bJ8Z0tg/P/1Hd41ElUUo1C1HTZZ0OVDs+6lxHR/ulRpR9u1wuAMMNg1EuGa68vXDHkA/zijd9iwMc4r5nGJMeuxk/MwPqFAOaR/depesvwLXYvRZhkaQh0hUkcNrJiSARw6IHe8E6Jc4iEsXp/ybjkh5sqvG/gRu/X792lu9oIhFb7jmtcjhm0jEejm0xPgENBVBKNdfRKMll7VzEHaP2VTQp8m0gNRaOwwS/mu41ygwucTH6kGGVjzVouIn307Kq2nZ3p1CfmU15LNwEB+SVEm3xYMjT1+gcv5LbOout3J72y3tT/4CmHYoD5t3cSg3txO7E4ZWdUrHc867Z72viD/TveSnfjTW/EPtc2MFMQea4uO/q4xdRrL6UijqWpf8qmi5MapgGn3+Mvq5Mw3AuGAd0hCs9cTXCWpCF04/Jrp43VzeJuDm+rn96Ne7KzBvoPTziDuDEO6D4FDHafX3IluKMYHJadyNjWh66wHHvO3UDbY12hnO/ll8MaSr0KS2+ym/bF/saE7qKsysPuBZRHk1SD8TBtwAd7xaXf5nBXyvXPDiHJIAJ59aYe64a+TKT+PAE8n1FpgzW+XOAxi0L0dyd/K6PB+qah/BNOutWCqaSQ7MTnwrcXMA/bl6Udl+IOoFsyL5uyGPbYbUvmgWwXUNE+8UyOscTlCe+SuLGIitTjGOPBLOhFgI6ZqpTlHmnXs3/RW1KCS00LmyxT0MndBpPHF5pxacE2y/5/YRockCrG/UdoDAvCBgRFv3BtbWWgEVgXYWBzYehThzHxkBHe3NB/18dr8Gb9A7MHDdB/NliKu1NGGZ67xwgqiUtQUTq9YbUJ4mK05caPxuCq+6+oxgWEPwVzLhoUWOt/eydzcKNWX4je+tthyja7jPyxwNFbhpkZ+u4YQaSnlmN22iMY+IL0UXmpAT7yTnxUBG/5sSkTmbcllpGVRrwJk5AwXfceFEUn80Z4fa00T9S5C1ksUFkeF9bVyA2HCqKl79HEA5rCfx9EGjD0kRZF27QNj6C6JdMSz48q06eTYoTARCOHv4SFrwT9hkyoH38CBl0y8oB/Rqllk05TaDQUFG09YmAysqGKXNzvNUnaFU2GTLi8h3B6QbUWJOtvxhzGZWqjVjfJzhISUlERrzIIkznYTGXTuAMEVnH0sxfmAG5imUZYFpduGu/K6TmQ0oR080yLr6dMCg5rYRdvYt697x4O4c1TB3hVv7PyqLXsV68F79Zhy8qJ9ON/HqZSrwbZDnGly1FB/5e1d+bvjlnhfPc2LqCO38aitcW+dPBUCz1XN/5DuFDMKGoroIX9oZTm1vVwBPdpjnlLqK7wbrKD31dVwWzm2oHTzNnsesP6ARJzH3OGEgNmOGu3JhiCK32F+GJsxGmDI4DHtTs+HweQ/SVQ81CnSwztGPoXSUMR/BUC5FrIQ2cGZaqrfHN3A8m9OYjQzmLoqlXgCBQdHqoVnNuonvXOxx1RD65jfiD7zNAICN7dWGa7jxKFRyYc05pi/HaoVNrKiaRxXXCpSlCiDgYsBE+eNlGwu5VwGlZf9SabrPLusQ2iR3Ba5HaRGfF69pr11Ofp0DAoPIEYMgtNQU3XGAK+yWukxYOHvPRsb+rAYCXLCUA1mrjTmQqszII3X34+nzCH2Wlc6R/VkfCAFFBqV6QgDYSyRp2gStNl3jxMsCb47Y/QHECz9/GF58JflDWAmjT+kljT7iCNDjkpSbK9dRmgxL2YAHQYspMVSPBWjVzc7UImRxxsRk2N1dsEErWla4a+7h0LAsEcqhYKkOEs3+9NFWqARfq+gk+4S+16hWLBJq1zF0crfMrrheFWo28P3vNASEejkYvHa79c9+Y2LvsNfuGDv5eSJZ587m1OtG88dv+kdumUhiWxqGkWQNNuxN1JDnWQgeohJYaglMAl59LKFujUmzdK69dt71IotNX7RjmuIifG/zOfQargbedYuJ3A9Um0Vy6+r/2n/FqfRW/F5d9Fz5X/LUPW/7cNVIyQf4SrfDbWvjJLA7ZHUW9Xgj5AT2PF5e3Dw2HbXIPtYOEvjEC9p2kkGUqUtb7Oz5WXCfjcoBtYjhcIs07xhVQoflYv0bdjV2s75KAbu4rPyW8EHQhovCIg93PNx0E8/2MWfsUm5YCQLbXCimYW7P9c6dkQERVOnb7Blh5shCpS4eRrMaAFU0N0t5x+eiEXYQj92xOrK3oajc0WOzadPI3I8Ny+6VaZC1VmWsSUvqrQMI0+jogew5U5iMCVPgwNxZmC0L/QN/sNZv8s/C5IoEfUYfCQKdDI/SlZop/zWQsEum2R99DPac3zmHkDiUyqtdpCP/Zo2KMTIBkE5JsFRFctYKqK7vf9XP8S0DqUyCOu2WsZ667vhHg4lec4xni4Acf/bJErwVIWxiLP1RDkUCdm3U0n+zGmtnMVvJumAMIJj7NXhXI+NwhcYKTdhiCAjHXjtxSzZeHQtdXHHGdlKhS7BMjbh1AHDFOyIfPem7dIFAEFcbBwsEnhy/J36R+XtYA/HpdqCL5xeVA5mReoVer+WEVKDsvAkdjcp3mknUqw0RTSDfdo8kksTGVbHDZGkoGFMp114EKIcII/jTy250yy1G/GaYM4MeiUdg2b5xYSVsKpds1a5d9rVCXFeedMWUU5xCb/FlCEeR5xILYeA6qeb4lskpx4RbkAZOpEPAX1mezd94d8brPW+vBgnURnx2jul4dk1jrt6MtGq5OtokEoWSeqMcve2kscRWXqgWVFxM2UKDx3Bj2uOkaWmR1CR++xJupZBfiL5RM8h7jxp5OKydme/iejM94oC5YK4xehER8qXiojwl6qshuV+o2RfEZBZnPYTSVPfXlfImFTnZYX75+9WcTPZN8cZOwzDFrWUTaCf+ybot5XZHOm0OW+SuUKyfqxpfWS95Xn/jFW0m/5GotQ/TDZ9dtHUPm00CCbU/G0h4puXoipAuquS5wf7jY1Fy9cwn55aHiUxpFdtSYBo3njClIGYIYPjcVHW9cklWqZnivO6qWWqHhSjRerkwFBrGM57xltZ2nUCpLgrhQhjjZvE7Bc2UmNyNzPR32jYaepi4WuP+z46IMsBN0KcS/6PMRchpsFXHrIC/miQl/F2a4iXYC2CKo2mTaCHPQBMQHZncq8qbBSYkw1hiXE/3VZqPDZa27lBlDw44uHu+JZgEwszvG5GQhNFn9EtgIEFZ6yTy+EOefan7kV1vLMHePkpf4bBUJ3IKLQuiBYjNyq1voYRibNuzNR4IYtDXfMeotxY8Q1ERENwscITFctr0rIn8f9dXNUDSt++WiDsxZSzADO5oUU+ejDTr2hgAQJZnWl4Qb3nh1FaMxRJZSBUVO2JTMMKLgPQ0PjXQoZeC+6XYiiv/L6Nr0sakgdRThHNE+SILq6l5knQ5/N9k9yDRZHTWoc4PQ9gAWQNY9ZmPnDfzXiLL4liPy/Axs2ZaPURL3U2bvyy/vr/oyt+1RM8EFMKgp0ob83S7CDMnX8xwpVVeNmk0h51gAVL5WMPxJVfv1TtgLGoUfwMYDRGJxPAnTbq/4PiU7pf7a41ZMgS6XE5NGLoOgqSGrPbi3O3536CHMDwK4mZHf1OgZbV1QCLQ3H8canvdrGxAVyhEVP+pCpRMQ5Z3IMHNSaPJ3Z+PfddLZVx8LAYTB5vQHZSHQj5tXD+xlj98oUY3MVYdfEulGGYP6DENTmGmaAh505QSTfhXg3ED0/+yr5IsY0WRUDFs5IcL8jPdgCl17E1mkMXsIXpXiSdGT4fH3BXY9FfJZIyZzpq62/iG8zTCm79jPwR4T+sWWSKMfmQBI9jcXZtKJSNEXyPCzwB9O9Ui0bLd3qE0XBMVVe93E+ovxE/3YVTgiVU1Rs9NW0dTPf8u8rFpjUrJuDmAWJ52nqwez4sulAdLihkRAQQapZPv7bjfCApprKC8MBAGWkzem+jPuNvYFe01rGXb/yfQUsyrnuF7zGrriMWsNtBxiPuly7PFfwWQ6x/oDo0I9K+I90L1OWLUJ9BbUQjn/H8vHUUjcQ7ZBIJmG0maI2ETvjW28dU7dbbUxpNlbspZrKoNehwirjN3RepUKqw7yTFDZ+bQ6I3Q0Wwl4mP6Fl3rzX53IatE6WmzX9/g2LIFp4OL900PiqZaFNakUfiJxI6Hn4k5+FB/xlPI1N1K3rIjwP381dTYAN2KalRneQ3/T7iYycKZbYiTCft/vY69Vl3MQWEMJumdoOgY/YmRxKXCDP+j/EhG15FjAsMMGJ7VKPpKirweyVBfS4dye2Jdap8MbavyWT/zNyvJlC4ub99L74vmqfLlZinVPr/a/v7l5OgqOWgrNf+5AhBjKJ0RKAGu3i6nw7RPMZjoeWU5Jo+lcNvBT8t9q14Oirqd+K/W//Sth+/0KZQPTVGIYjlE7gddCamV4MSSCyWSuvwKrER4tLFSuSIoGk9Ve+M3fuSLXSPBTzoM2Srppyi3vo1FC54n2qL6Zvx+tVedTDZt8zowrhHnDdXyCW4PzKN3J6+yH1elo7kgcghYIb7FoOQRWZ2wKR8fqfViO83CXI+SegK0+v3J67y9mvkFwS4RagV5LjRkEGEGpsHOZSesV1IXJdcn0Du38X4wfneyAMMAy+e53rD6Qutn9YzAO0GxbozOu7ko3pY9rbv7pVpc+katTEn/T845wbR5fC4yh/ca4OUIVNlluZX5MJrPsq+ovFKtH0hklzdRGzqXpxOVxfnnC+Oij6xQyNofw/oxGvS4ers2UnFbCR2m/q8DWUlSrNSDwRWU5C+VO1JjxLvT7Jhm+0j6BL7Yjq0o8ZM2YJiYSuRYNMeOLiCpEP5ovDsjQcgMpTC25+TdSxHeWUG4G/sczqy7F1sZOoqvBW0DhLfkwMALa6QZ/BbgeuM3wZd9RqF1MOfWTkVfT6Wn3qfT3Q6Wm4KYDGUvqOgp9qFdoFeg28S+ZNTJ4LMjCwcZyilQ+674/pzMPOKAMTH4UeYyGK5M1M0ShsYTTXp47dJWdGNX6XcX9AjCzOih7vva+H4vYcmQAq+KLRVZDjbJNvMSwiqbvN2b3OC+0vVIPZzVSpUwJCfYabC+fWGzDvCg2E40lKlYsJrCykwDiiv54kdiork2/AbXdc1SANeO8188WeleC/PB/4y4JzLDrPcbyw9HrrefbyeH6UVnChtNUPlFZWMOJfQt9aiCDglA+Lb4aD3o+jRx41sQ6ZawStP0WGlLIwa4N39pY10zwHpjAZqYxL82MhGpQHjRSRFDW1b3LEE15bgY1oQNICD71cGRJIOk0pp6RCqncie/00MGUZY0bG2DMLrxjJZz6EOUcw4CEuwniY5NoDSw2Yo6j7OeCSvn9uWEgjq4LIP3j94SSeE3+k+5DCU/IeliNOZOkpZArtrOHoHg1bitkZAoKm38C13/UUlBWAHcjllx58OcGx9H0mSg5eM999/QELZpSakBUyHd+PwO+Cp40TWNY79gGJOKljiYCUv2PSNTV7qALHmFfOz2JbBAWi7M8kyTa6RCvITMeROMw4GZp3UGQGYyxoSGFcmB5BL70/scq0yIgKwfXnhs9RcFpjJu6fxpMdGU7o9XLZuLAJp7+UVTxImuSljE2f9HPPfYolOjIgMF4XBTfpMb2bf7SHs55xxchVQM9nhrVV6LcRlg9zWScbqSeCZcLSWZNRyUCnwRgcEtpYtateOEl4o7yaaW+yJU7h+j5B0s744vdMXNrC+/iQ7GTyQfWSCtjajoaPZAEp9fWNTFQfkoD6GYfJpltRRbADrLkMQREgAkRCcuxX7KwHdlp1F7Ari5c0hhtCr1/c+hO/XIeV89xk03vhyn7xpEYsY5K0QgSQ0KMgOnGKFoVrmWr1EBBHmCLO4/h6zpMwE2+7jQAbgtHuNnbxNBLM8+n2ZSUpOMKAPN+fAjsSbSddCguEcVvAiLYHipKw3ltq8K9ZhBwr/aN/dNbm6eU6vbVuBZ2CMzBWR3MeoV/8LLCzWp86VrbUj/LtZtZX31AwYlTZQ20mUGzlkSz7SYm8GPFTSdhrD/50JAHiS2dL9Isg411yrHe4BUJsupkNjLHsVS19TrLxALpqOBf22sCbUe0CB5ydp0RXpNYKn/GGGApGBkSjhfw+2eGmZHPs0fmmNO8VhUUlE/EWs6bE4ojey1WyEKl4fehPqbbhcWYy42rQz3Zrpr9uhTTEVffbuzUQhvPoRIbbbcgpAtIdOOJTssDkdX5fgMQ5JFg6yYHQMZcsuOOxh3d27JW3kJ5ZTHYWhVgaEmeWkigKCiW3yPiWaiaM5Gnh18grD4OJIqyowJ1Ffqx7MLdlxMw7u9VH8NSUZc42je6RreqqNYOfACcKBeC+RynHQQwe4jXd5bFnsOY+Z191+bRkjGYc8m4OQcUjVIIBCVRXAnD8Ha6IN+FzY4loEcnYe380dITpdUXp74hayT9QqRAp4sca+4XrLm0Z5zX7niucWbnSBnNaLCLY1msRqOToPeD6OyVoziKbP42PNLVrsdbcAzZhiekyvZymLP1gT0AvuUH+hSmJrTOS9jT2oJI+yL+mX5UEU/pfcrzQe0p0CWONtib1jfHUP7ynTT8njS5aZkqGGJYhCkuk8yxODzVEqkB31BwjJvr+xE1sIS1pv3qrXGdUuzF2dwvL6ADLidkPMa3wA5pk/h60m5o5KQaz+IG0U1sBBcoDok//VQT9jfrPJO+tmthGgwZhBdo2c5HEYq4OPvIh7Hc5Dl9m5USgH8VTBAFrZhcmq+qB99tjlWCKnzQGtX0yx9pnsPe0nAoawa/w38qz18Com/VKeOvFWUoH6dYq6sNATF0poDqpeLAa/4cK6hDxGoYr142VZdF0wOyrEkHAmtV8RBblzh8EaADM6rrbONemMYg2KPoxhb
Variant 0
DifficultyLevel
704
Question
4x=75
What is the value of x?
Worked Solution
|
|
4x |
= 75 |
x |
= 75×4 |
|
= 720 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{\large x}{4} = \dfrac{5}{7}$
What is the value of $\large x$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{\large x}{4}$ | \= $\dfrac{5}{7}$ |
| $\large x$ | \= $\dfrac{5 \times 4}{7}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+fMAdDUzvZcXpe6I0bZUSJhtWa2Nt9fdYzPFj1dSU9ALuVJfyXX1UCq1x9fk9a+Mk9SNTGnNGS3Jlq7g1AVWhvDHiZJFMesJCuulXX6QIQqCcAX8Zqzn+D8IFoH3FIaB1UUu71THuAqQTcygyJ3Xta+3RMY0kXkLFnlFZNZkRnx3VsNefOOjdCvOyBGcvAE2tB1gsis9YCc8POCa0hcbsSunRDIErBIbxJAHHdHIkg0xGHzUeELEagVEavJZSEelySIIkyashbIwJ6AHpsW59+v8NQ/YMLqBYNkt8QYTHWIp0QOBs0x8S0YDCU/y66Is09B0mvZG5yN6reUGc9juf82TYSlxeOoTuuJWC8FXlc9AHhRcrh4N9aBL/77w9MCjpchfJ4EquyYhKODcGcI24Xt5IEDV9ikqBDyaCVb0/xMbTF9gQencMtbJaOcfljO3A94CwrcAETj7nk4STEHF3McfAAi6546+/ex0SYQV9t7N7eLsEcYVkbM1a1NtP5jzYXhIpiDR7Ph5pELp5NPbvvKY6zPiCx92GBOIXs7DoGCZ/zFmpsBkgO94sHAmynQtvqNk7EKh2zgIH5DmtAKLhc6OUniD+pdYDt1eh4X6TE/2KNPW3Rk3yrlpBLYcuYxXR6e1hi7hindeF8LaHg0uouMTBNd8nZ0n7JKlpdTxBEhRCmA+rgVqgITvptbVerjz+ogAaiSqd6HIGyB6zBYPHJYYgTmwGWckO6ZQdTWb620KxAh2EiqIgsM+V6v0vV3pzZ6s8Z8bH+ws59aCmH07JDdOQt8FcnEe5Dsm9glUGePx2BBAngxbzBg7ice0nSVDzinVbPDjtSkhhOuBkNOHigIEGCY1W53L/FQ2NltVGjpnr/1Qmo6Fgm4YVRQUhjKyIXmZThi6+vISf/l3Kru+Cdj1qVC9kducV7gD9zC/6Z8OiXjIXTejkwLnEARY1FSRCqNP5fgeZP721W2VvY5HGHuKREAzrkhJnbO6wLb39ZMD5FpLGy1cs8DvOcd+pvKb8cHKzA3LPS1cDNUmzWpMqiHngD3LRYOblWnQa2gS2Unow+cYp1deI6Bq36MK1iEBNTqOIeKV1G9MF666jW1l7sSx7hDgxY785Tg7zhMo1xwNKxQc2cUjOTh9+EAGMehf/8aLE0kL7buFzZTCgpTEATNd+qeFCifzkB82NDOFmKCyW4HnqLzDHpooPdjk23eBggOO/KlESmeY0wlZLmZ2onz0DF0CAGWeYd0nL+vx5mOTpUfbYwWZJPoMkU0zPkg7qZ38M8S4AJDu7Mpq+M3UDavmmO4bMJIqKHsAv9GUI7u8LWZrXsbf0Tuq4aKTRqdIK9DUCPpUaZzvTJWVAKpCHa4nXAfOQi3VUG/eWwo7qtuLPh0J05rBAwWXBwCG/2AS4WEDYKUZmHlcwRCpg3zeFEu3WTMLmbbGFBxqqtCjrarqwJ2JVATdsiBnvuKhVROyXunPoJqR0kpXlhqWSlHBc3mdNqfQdDdtcwRwn+5mr9VycrlJb5u6gJn0raHeJ903VfUydL9haUdzFKbnz+gUFOKFlTjA3I7bf0OZEYDBEnRwFkRbf6K1S+nN3o0Vr1Q9tuOh22tlXrysZISbfJsJfPuptZURqDWvAFLyk6A8wQcBzvqAUamFhRdiFjL0UVqcnhMzf+JlJHxMjeinq2KKN1H8MDPPKtj9A2eGO6WQa88vDwXBrd6kVhdbu4fCUBTeYar0h1da2tHbSBBb8aTjeV4daZgsoOpT2kMrZHDukH+j7nR1RpYgy2hkilvMP4+ZY/omI4Osdl6/OejMw0VqgBZ30fwYojsDhETd6E6HhPp40CmP+OmXUoOYI3mFTza8GcVes1Z8BM5LDRD5wJFPp0H+KtKNvbBQE5vaRdtuC8QyBXMsy1/rVigZ4Ph/FchGkAFp6/CnVhPbw1KdIr7lgeuCirO7YI6CyoZSDv1Nh33N9Bi2np4vhg77d98slwSlx11RSfBUKxo4qr2sJmabSLSof4Ue2+0JfvFaa37qZV//eFdE66szUD1RFZF0pq94cd34OzojYYqtmYHZApjCjH+OisdmGB6y30DKlUxujJjvOWAmRhrqd90J4tQ1PxMQP8QhEiUfLHOeMfpImops89nBOFbfBtGKG47wHS+5ZONb1TRJi1CKgMmEgJJah7OqNPRFrLvzFmzY6z4dDuwSQ50BmzhlBYDEnJ2WP19AWfeUsavlh/CDig7aEb0p1KDvOs+DbGq54NonxjYWZIp4I828iY7AbU+JF6AVCrW7j35fzj47w8Wz2Hat++iihsxDfn4xAjT8tYykeUTDorINkNdqQOJomieDIllZrdXFBBX3c202KEVwrIegyJSupwDv60BtE0cXaCozPaNVUVKOpEJMtHC6/o9OxHslJIUg3VUHocECqxyTjI4Lf/MAvCAQZIniXAk9r8ByDZJn1/WYXJmuBVxnIlNShgShXLTzKRVoVxsgY/ZckCRPQwAFDMaHCwFtjUPajwuBo/nUz7+GVgORHRWS/kg+X55947RMV7qB9WQDO2H/yCUHUQ4QfQrKWuo83TfcfzyM2xk2FYVWsVslO5vU8rlULFvrAM8xACBvMsRh4ioBk/nVXZeQmPhHNGvRqh8HAn0XWIUkV+Ga4TiHjk8qsDgNPp+A6evh5cQJGqDENbEWcqpcY/bpw9L+96iF6b9J9hl4u/Mcn6NvV50ytvWo5lCyL94c6j7E92906KP1zJf0wuav90EWShKw1RIJ7MeDwf6g4cfgcsqBKJxSTh3K4jYflxTPz69HPpRVLrUSzBn4IXnYr4dBkxtNoaOzk0svN2eCpcxLCplU22pfWeaCoZTXyi81PbWjLKBMiUEHziymsGZJo2CSCCDwbrnPkuCvPvxmNp+DM9/zJKL7KxIW+pHBem4ZAGvBB+IWS+MG0TLAawWfh2x1cNj/UGYo6CmgiY76OWH4Pa82WWex1Tcwf36zSwu9Z1kxkhJk3r1ih9ViJSmKWnnpiSiLT91A4zFiWtV8YuUTrMCjVlTsebkHwW0BtSrioV0NKEE5WQ7c8ZO8WLJOeDjtQwEzRfgsFVQ5nFhiDxbQbH+P4Mu9+Eghd8amWoxRWqe1rFOQV6kYJXy43lSRVzTX/R3xvgh7uV3AQX1vtAAhSm2GIKNEJOOlZNlHmjQepQpNLA4UqK62HSWoF+SDqeSnOxSLt+u7fsRrsSuaOetNPc4Mf+9KuPQzy4/OKJ1soHqseaVgJdmiGDFnxWmq/buH0wjmRrvHcAZnReP2v7cP3RR6CHUTqRigdzX6BmeAIHFG/FCIBtVguttv9Vsu4OQb36jY0YK8QkRzTiN2bFDgdT9PXAMkPrXXh5PXEimVupmiV70y0hc+LAyUoVjEG79Us3hXKQBLrE465Wi1O010IxA7/LcwTk2CG0qr+NjH3J/tq+ZTWzflgfi2ScYt1tPd0whIFLQHZtje98BzkdHO1zYkB9bVdPJUOp3ZEC4VcowJb4+LDionVR4/NHVzjjVcQWSfHDdHeI1zM5UdM2OkUU6YkDaoCk0QPp+RY3xfvbptMPsSfN5YoXdqLiaaaydhjEeYZhciYQttY7bc37RPo41JUR+MfEqBmFcyOABY8ofCQJ3t3lqfzLbO0wKv09nj7eFpGQikyZ2Kw5TIdOLw0ojULkAPoakKTIwZxHeQCwtyjeQChXe2GUdnB084bURzQUnlY22AY7JFdKQSlYHzblcfRtmkiluOTla1CZlA/IbvhAlCctShwYhLmHqcln01wnlsIE3SxeqxUzFXVA9tO+fSzc2GJVbbekqW+L42FyqH1xdufWzLq9Y/ja4SvkWvClDEgS8u5JcIobaNcBCQwvsvE10SLh0qyvoz1w++1EfJSLwmjgMYHUGzdj4Gq+enSdvUzqEpzYC7NJWq1S7QuyDLjmPh8EZ/sJDo8OCuET86KbeK8Bpyqo3inwuY+7Bjk+Wm2b0GWkhxls1mymOsPXuf4M/LYfyZgWfXr1oIwX1AZxfSmBzpPh8FQkHkIQt258DNjwxYmcsZS4svAUYBDj9tKro60A4Oe3kx6Ws0eZSF6TC01uY2wIJAi+Bn7RFwwS/QG/tyW1KzYIB3FzJoYhnX/DNyAbLp0KMbXR/TWNSOgDg3Bwuw7LnrM5G4axIhuBLPphpFnw5gocC48U2OAHVUlakVQ8qhMkeb8HfKtEOQS/MdSpwuW76fZF6rWl6zgBY2Qy3uiEAkifeqe1wjITMeS0vQZTRIqNeavIJXlNOFhC/S4Q4EN1ovS8e+hdjx0+I5uStbwOrqaz+UcpnkLsoIZqOUajCXmTFq9Q7ZkB+1HWMObS9xY4Yj0ON/lGwUfk+fJwh+R1j+ZceWfnuRqd18i6bjTqQ+lGZuTT7dIc7YSPmCnxX/bSiPoBB2YFjeNvMNpLulW3yhm41hyt1Tv0AWt5qHtbUMPbwthdyNkcc5RuctFXgGoRVzfZPgeiFx1KoNICiN/1hIDQAygbQSJkAspEcLnO9/r8MGk5VZzKJGaRueIAQ3Inp1SCTRonq6Jq0qzpcH2T7hNCsbMzf5oCnDHoJBgtit9IBCeesQ4ipFD3w1+veH6tga/UrdBZ1Rt+oXR1js0PemNAzRZ+gpM2wQQLuY6S/Hm0sjBbF5kFT6Uwn+6AE9lixhfm824+BEHW10yTJRbHQ17Nnmq0spM6VhoQ1WiFFG+2EMDI8D1De+Y3tMzuCcNgLvwUQVGu7T6YF11bGoGCqa78ts89lFEZfY/YHekPwh7P+ImU1NU6edPxcw1zuP+ramS9yEiV9gWelHSELw+Y0I6dMaPn9V8Vv1w4bD4AzmZ8GpeO2JaPHf9NcppZagRhgFlkBzdy9ZtpBQryd9t9xSyWBcwurFCXFNAUcipog1abqfzMO6seBtf68co9VsFJJ27Yl1K5wtLq819q5C9pOkJuCWuxNIh8GYQA4t0pftqPPvItgt1zD57qEe018Ing24rsm1TGgsQ78Mf1pKSATluZq/5OgRxXvQxHzrqEN6oXhoIcixEiaZ4yLJ15u2uY8k1Qm+NWgtAYVSXa8atB5r8DXz5EvejhObPR3ehTeac9rkAsxq4rMxKaLj54HrvWmhwAJp5sdAp5dDoIKN1Y9mrO/DxtOth+X21/KzzSYeW4Tn57+EAYIVQZzQomaFmx5tmyewTsvdW8r9LvR8xT3b/SeeVZh/TxqPq4QMUJPudZzQxCmqNxwDmcsfb+QaUN6bxgEMGP3AvAY1X9XLRFLeGEvL/Od3TV2dFiT18351Cs4jcYKiC9BAXUrmsKlNe7A0x+A0levvi/+iSbQFgaO7v1tstKitUptWWc8XfhaMDPSOCsKZI44QcAXLBPil5t0ika1bhp3s0Yza3ZW4+/aFscuTY9iY5E2YJQGsauARohTZTBxhdVcnDWObosWEEVFomZjcwjlz1tNWgXB3cpGpdS3Tes+5frFPwgk9YMbc5w6FWg7vJecQqAm+VRjkLN+RLXOCjCZBZnDumj14CuUy86esuTdqCGDi5784sFXpxN14pSEY8CFe6e82qzsoQ2LiZdLL7DBZNPGx2/8r92Lq/zPZAnfbPFOn0nER+TGK/aJpU99425Hh4kLzgZgr3KECbK/SmjUtQe00Yp91K/te/60hvMzglhfKqwbpEdYfM68ZAN/z2/YngNMdrR3u0TGRv5GAUdZA/I6vdk6nmbT61LjLiJPJhAvkUYEFkC/nBxN6vRBpM55Y8WtLjIN0B+mZgsj5uhMqe8q5/+28F9LgG5d7CXvpkBfbk/SP4pPJ67iI7KhmNjOOnQRPjFzLJFy+K/Z5WAF59uMWcellHJrNAuEMn4VN0izuDD6qr7JQnedMFU1NiUoFXaHihgiPXFXv6JhhGviLjNlx2HV6O+uhkyA7PA+6ATKc/H2HqpsbWzZPJrmOGv2xpdtq+SihvTKIamvJ20x0KhpKMVkcWnkCJWhUVWJ8jkmifRY0f+ZDEG3GT2MFkJxqn4zX9Tr3XylThn62QIwPukj8fpCIMlLYKkauGJ3ED4EOIwqt7AnniG4ygB08Nb2C7ArSktQmfyVH/Ag1EvA7qzUPDisS7smO/FBUh/wQPYBdEmYZmHai81WSsXQfxr401xUeaXU4hzAOvlcMEeTjutsac9vRVtGjWtV8lJY+MMPOy45NWVcu22jlztnUqKCEldNzsUW49jWN/OfvaOpGq1iFDyM8TUhUIU6AUFyRFJyItMrXyL2kkcyq18wkrEP9QQzxnjX0ksuGNYdljezc4dPyQlK3UqBAc8ZRx7RQ3/MDMqVIIfeCaPDggcBqL+AFiUJRTxd/xWapkw0858y8j8FmxCz99lhA/RQLHvLEtN8RbDd0L4t6nZY2/tWuk10uvUHhmYEVyHLyYhzBkTLDOIDfGH9KCns+iAkW2vMKtKpebNx1IA6w0lkzY9ekDpXMYWb2NEZbCngh4TiR10fSG5a9eUMB/XhbRR+GC81pOKfZsg+a76R413Xk7NPZYn8tJGiPDZJfN+bMCZ2CrXgvGTpM2XrRQ4gvoXdcEgSKi7vZ4mMvv5HGmX9ZWldPD+f0TudgixccQm0wmgwWoQfsVeaRzvpoyZD3+ULyT+fHdxcxOaBQi5wtiEB2ScVtpCsaz5d+rVXgEBdeM5Luvkw7sD+4oDnwuKOzBqrQn/bIEFIWAksNB4/TCf0IBR1yolUYd14Gf1ikrR4Ej4Q+GNx8GBZymnGG2raRUhn8GK9c/k3/nOLHw2/wimiXwjBWKThXp5uPw9ZjNeKrweAoWms7AmoQTnD4OIXY0kJE2CGw3lOU/q/pbr5yWsGa+7SZGkWqTzZV5K1j9YHzRNWNqw2wG8UaQoLAvE6tA9Jh/jXRXix764v1yJMPmKk9sKXpjHcESsb2g5szvR8XC2EO3uqC+7BG/O8PiDTDrNzZbcYbQnZFFQlhqQlWR/+r+a1sox3QE9y9ki2xky5IctxfWp1O1u4gEr5+ec/9QbkHEub2T7GNW1pd7Fwekn7/Hf8Azgb6mXWHWfY1F9Y/ptADEmTPfnGZUxzbqYaklsWE5+S5xE8xJToX59pTPyXP1u+YGx6KnfQCtO5q2l5mvev4tZk/mrIpwuw9ZsnlXKBhZlZJrnPA9G1GyCI+zr8qSWyj7kkIKpgHSVBiLhlaBLAT4R2uyy7f9UdwBJyXwpAjrjkLj4hMkQZ09ca4l8Zn4TJS5aeVQXJCS9zjvH+KWGubdPNK/ERtP/4d7I0GsrXy3XbqQRXK0SRUqFtRgevYoyZevPE59qKmeKA9V1Vb74D5KsO5mb8npefiAth8yeWVCsI+BjDzizD/q4msZJjdZHNJGp6qbMZPEHae0qvC6RWHwR/412Oqlkx9Xz13fkIZHIF2OXI56qxNzjmUkiaMWu63KHSYKtSzQn7Nx7XuWlWyqdjBmlNpOcPu3xtKkPcSrUhised6vLffx6VuXFMurNfOTiGTrXhhVZYbVUnd2WKEAc9xNpLyteP6gg5ykTZnXRmJec6wpqQiMb99CKuFOLQUE//e0oBeXkZFG7oC2YeqyncBbsDfqIZrqZADCAs/B4M++RqBVzuFFAMVlfhAXAOor9XFwbYu5sBEJiFr4fcr2aEZAITJJRbQXltM43YmmbD1k4YVyFLIfqxY/IQ3LWcJrvW3gnk00jnhS3xUm9Ql0m76QJkQNxF++Rlg2X5XZAG2vq2O+wxs4dLIF9iRKTgSfei89QN0sdErz/BS0xIeB3X6vM+oziFh7q3D2CujFEnXq99nf1J0AcZ3Vlop3hSoa0WMbWokZLr6ue1r3Klimozwa6jhQscdfh+Q403IqUs79Bm405CrzVUkC0/DLU8QZxNclwigVsWsWIWqvATWjGENofOanCXZcXoOwBq7eOHaQqNfl8nvjI+bwXT5ngxCddP2KlzMOEZBAVinbC9Ge2qqBApDlXKMn2MOaEl19/bJkhCc3sJbsJz1yC27MP6nkBQtfqu2yxDZy8K/kTdCE+i0wP9BA4iBf5P6ZdhEpVvChs7lW1th1ndfubSWYIUQ4+YaFUWcCv95eFbAXMvyNFsA3k65RpihCiap7v4BXzzkosq6l9iOMsyxwGIS+MmfM3gMLt+lIYgMms4Gm4tBHvAn53zWGufSigQN1YBYnm0J5XO8UM93nPx+dgQx9bCFW/B0/juJ5Q7pyIp0eVpQsoH4hqX/GyPuS2ygnSAWnhcjN0CGvMucRvnXKsES4MkJ2HJ2UAwezyn0pdr7dbfV6CBhUS2BFXRjRGybQ8yjLy0DNu2Xw9euf/O2p8ulsQZ8O0PcVEhsgYBTHmjSbWaVZ/X1Kjy6uF5zYjxnghK3qVAsO6/aZvCr86b2d1CIgmCvOKi9ofqirWBMMNJZFYJKfvkecjIBZ66YZjAjw2EceaVHmNtCzUoU/Agi98OEU3HMrAHtq6kO4zWXd98FQm1V/ik0drF2PYX7tTgaDfVGG3/xE+Cn0FnrOnrRg3FAeLVLHoIBQfbKVfiAyG8a3NfwHHL+pB6/4PYGi4m8B9EvbsDfU+Sk75q4TJCyS6Q7yPFqAyd3m5VgXUqtVo5kqh69k5S60guKVVqsFu20rt5/7C63Cz1BXaTwL0bima2zNxm6tNqNzg4lZ0c+BIHRNmDpQM3BrruoUlD72izKQWhiLpCKYsXIK+6OYJjiNV6CUETiQdnEeXQ4GSk9nJoUdcmM7ZLAZpXMVX/bXdiQo/liunUNvAwRMjOznjbi+ZiIuh+raQcIQ8wvFh+ReW/TF70xOGPv9KdKmq5fVA/ZTHEeJrk5tcMW+3UM8YXI/i5NrcxCmnB6JT9sFufa4AoBgSgmaQrgxnNpBTV735JgnP+Na32esb8Y1Ped0jhrBZgFmwheDNCBSFpIGbIh//Owf1mp4enWpxQDeqowPeW8P1FGCwJbu/yt9gb7Qcz49LkqGZLFhmXTdj0a6KyZ7jxm5IvcV95IXww89gov9ciNWm30oGV1iy61akZGmnRd06lWviMY0/XTqXW01J8/1hESh8Py3SXbPC113PDPoZcyR7U9345/B6JkZ1Scj0B13spUmvvc13Dq5T+Z3eA/bb5khbfszdAYgVqeQJKORD1YSHg2V7MOux+9ceAQ9aE0JIWXYCGEQBJ9xYAWl++I/8jjAfOCQDUR3WiPXZCjVfJOhmarRP4f/zK+ecUKvt9zEw0eaZCnOKDHL5g142f2tynCLDAeAnVy9lP35JiiP/GKqzGa8XJzNsymMZ4f+LPgWAQGRfSH+t5nqesUhO5Bf1NrqVQxqrGqFPPP9k2zxdwHO2XPa8o7nrupOJSOLPKM9j5hbJ5a4sCOnJ4e7vEGzT4iWknaRW+3xaSSVj6K4hBl3e+vvbYCySkLyvd/J493vaQHZz9JoYWye0QWjcUdCH1oESXfyXFNeN/shO3q/xBRjKKHlvPnE+jfx1q1L5Ql8MmZg7F0DQaayrgKCT8Axv16UTWoiQBbSfyI+IqpLO+Ik1oiIYdCXhcUHp/JvzAdxu4wTxCsCHkU4tnBgs6lbc1c7Lenz1DHwHKd0Y+9KRzks3ihkCzbz93mDmJp4KCyFLV2uxp9+JULhYccjSmbnTvMD3K/ejfQUDGC3dkSDWRSLiHkSALrZSH/nviIvyuvmUDGeFrTnGlw9/JLmDuP8QQyOyzt4tj/i6T0s77lnSNjQhxdvMis794t6OeyQQRr2sF4d4SeUjJ9mCaaYVLJcATntTJqfWnhDeMCWPwpDzwUsmtQ/q6X6TkYh1InElHx3TaJAAgP+0CDyB+Z53EC7L68rI6qBafUr1R6lN1b83zLNxxmJgGJi8z1+j+kmf+YRy+ReuSnX+R2Nr8mPuDmVRbVf8bEzdroMJmJt9MPrZffzRzowO3rtZyRC/E/3soFY2u0EymQdweg041m5MFrh9PpHREWA0m2BkBK4PHDpyw2vq2vy53LaQLYbsGOiVH4A9Ju+p310l1xCtWvx0zeEdE4PMHsBx0WM65XhnuYtpix8CFaoFOZeToBQbooNiwSV7ldtBFgaMnEAdNr4OCy8v3yIVYUgSaTbPEIY1EL3YqdYPE4RpMwKwmwwmvwNUrJon5QxBP0KwyIMoHfl2HzSYzQJgwX7H/AdZs9RQDRZz/7NX9yTDqvRZ92h5Z3WuQn2eq1q0Mwy9Ydtl4qjKbBg3OFwHqZBSjfnMIujRLKHL1SHyjkC/bLlL4m7Y6vKe6Vew8Hix/dCthB6sUViJAepbn1vV19Bc1yEFXiLOMlI+6RsXubkCxHHKwCi/RnOcJAqXHyhLScZU571lhACkQkbnajKXZ1Rg3MJBFSRrShqYz0cfQtgUGPA2JFk8tph2XXc64iiiSJgWkvXsQVb/HR/9hN9oCb5Mm3ExxfYusN83TqgjSIQn+pOd3SlG5Gu8xG/Ej2CY34J1bjqAntp6Xq6QLNkhQnZfoEWfgo96zO6UBejM2YJB7xlAiGlRcKr4k21biPMm2WPdwxkAQLPPW9aJEswHkzhwjolYNBsov4kOzqXVOUXRQWQ1MytULEVMvkFxTKKW3IDGcg73HEgHUArKRGYyzDzVYqs+o9Bnvw4+s/T5HDgBSY8Z9HHCdMQWn5r7eqkAsFrKDd2IqGnlerrHdEPxIpTa+59hBhgyAptwN+3RdeuD0OlMugiOlUSroK3I/ive/1I7e1nzBcDpS2+8dpRvwPvRWOHAuPJ4MxnDnL47iN3iPcpVcPq18vtwSf9yLel7qXCBMRd6O2SrB7jLMF0GcOhVeE5gfyqbLSxOFJdYAAlBscf738SrPvj098MolQ7iBAjkzQ/8W4YnRG26PiTVVVXqlVFCKh1XBQqliVqD9dQiGOqvCoZ4UNDNTqdW7NnM/gFCVBBFhCm/l5e/3Z4LUHQn+6/hQQ7C9pvbgujIHxyfQY35Rg0I6V/24I91VwNOPYa4g9+WFrgbe5yM37/mKESvDXhI10nKi0z/TJWwxC9ICngck3umoviYekPgYqqC6IYDVH/u2/P+AYZlGta4Qne/4xGy0Z365bqu/2Jm6Q1a05C7yf3c392j/HcFqMyrFbTiY9CMjPjugifku3yN0gSXTCs0wjb7SkU28lBgdq46NToIBx2isSe2PkyXVTrnm+AYEmjsJnSBAFR9CwtoWAmx18Pt3ipB5vWXv6ZQ7V9hHuFfzp5v2UGZZ8TlMEWeN40a7LZF/qoSIYZ1TYilK3Yj4WsaMyirsUH76SgJuGGGYR7U9cBId7cEohY7+vdWQOfZnmksnKxa0wQ6Vz6I33rK++sAfjx4/jSCHuYqZPXWCYUQNvfbyL0IwpKZpskOvWxgt00Ve+QKVQL6ggbV9mn4Icisd/PJ32TbtZz3KZ/P76RAZ8iZMTTu6aaiWIF8oR5F9Ar4z7yzofUFyzr6kG0nHjgtXoMrO15ypbe5bUa2K0J49SiyiFOawCmhDp2/TU0/xAZ8lUeiqvPZ5fxlFmEYNrAgv8szfTB2ukEKOWfjk5toqLvCdNVUnNabTK0WBgFpTos0Hhdm94RCPi7AJA5aLi3qTqLAD4XiF/shjeq+Ok/5JrspXowiSztGVpSK0qFkE8zQczEsEF4oDMHgXtbwU0bCggeA0sAWHSNvUPEmm2ddHeF+mdHEWrFkADNTzmRyx4ftbgYfDya6cUETTK21oRsr8UBgYa10VGpwmPu/nG/SzVrjbi01hnMVD/7RmVJbnXKmCe4eXPKwRncwGgM2f3//6m3AEbV3/FhlDC4zbSwfbluLVaEgcfOVYOdu+5IfMGxL9waRa0tNRk9f0z/UE+2zUu2VPdIpI/G5jzVQ0OPPkIKCdieamN1aTfWjT9MzBdA+aXIKE8wCUJuFwCAjpu8H1PZ6jN15pFU2ciSYDYA7bLR2OMdaLVFuUgG3FEyhpcw/XZjGSLhuymS8hsY1DddS01NBW3Nmk20HHLqgIT+e2qPPoOdzdTRhRC3Ry9Es4UPIkhpy3cdIwRytoCNqp6d1eo8LcW0awP2Mwsy02FEd8Xeqztau1v9MEa42Ul8pz3LxxOq95v15JwSBH1Wt0lOWqqt9DEJ0ltJgvS8GiSHgq5Mb+Dz5uV4DqzfNd2y1TvPeJCyUQ7EY4yMnTATwyxdfYWRYIldijQZupHAJQw8CMnYtzjc7cOWCQvw9jDDh3GVMhKBlFPhuY9Qv3dT6b6K6snqB7WphsEEgRjpQdYTrRzSDXtvNsWvygia9E7MSwfszjDWcq0W1uRAIimJF/kIxyD+BwF7ZsPb5hMIbfIKhYWHLH7bbDoi9jMUhGZAwCt1pJgAVgjq2cQax+iUYdfY1tzo3j9T8+fewfNEkbWhguR1dOwBWYKM3EwwVgHtFoWJYah3dAI8uEE7WQmKae0YRm7XZC1eLpOVPayQhUujCxS5Cybs7QPTH1mgQFPRfySdtUDDCpgcbVckzXn2LbPJGhnlje/2rJdjQcM43UzCFadGyu/mIxG+PoS3L66z/O1n7Lx/jaymUU1ApkPmr9IrObluthQ6TppL7TXNGelXukFA6NVfqRsYjcfWlxJbGaZI812q3+2EGDxgkm8B0hzuuDkTMY0pvOshxTrhGGoSGI3S5vqzDGJz60Xmp7JjJZcUDPReES25uFzsnfd0SGs2Vn+gg9jy9Lvs5LK40qUlfAFoS9m26T18b28H+2uKKuRC/TBAnM8qSeeC2oR7ULmMm8lHk904E9PT4IWY/jfYliovunPzxDgaLXqzF94MUpxzT64Bzmk+GSJ2zb5yKzLFUK/QzDiOLk87zPYvJpvXVRF3KirNzvILXdWMFA6V3knuIPe6PSgLRyfwNrx+tlhET6en+UwG6JMMn+M6r6cuULJWC/wIWl2LAoxPWcJ0ycLEljoGOnotU0mTE1QGFeX+gmJyNIIuLVL9n4My5+N9q5NiL+YL3MUgykZNovlJn1/RX1EywmOxFmKWxutwCtNgAZ8q4iFMigyqi+jUBajtTHydgPvWmTBKpZmen+LCRLlFwMCOFmGYit2rGG/bZUHeTsto6Y2DUneTpYU4YqIjC7pV95exuh6K25yJLHcRLmThhptlgFLIeSk2nrNJVe/pjj0xmtLM0WhtM15EKAQ+264NN4liZO0OjIfTXvYQ1Q8WkRI9RqKQCr6q/Jg2+LcqZMHDroSvZlqLbjYK2qcy5gG7P52h4NUL1in7t7UNKW0MhfLVn74+VHg8HgZSwYUNMlF+ym5LSQbE2yt7qK2QVrmk/vf0bwvW1G5Lj8KrBiTHE1TrnccYcCIQ099eqrsIic9ww/CJtzezuhJd/4llLBp4F3dX/p5zISx/b85l/C/P8MVMHZeDAklwen2jHXChMA5BPddBqoPP2SQbJy76cT6PFwF49H4/5vl/+ZLAzkFTSoVi1Tho6RdesjZ9FOq+8EsMaNxeT94IfD40pZ4SYPfDIdrT5Rg+06SmKtqkLSXMEPhPIrBY72MWBnn3Su99GICpBMMkc9OC/h8TCwcSBsk2nEY/ptbR5E+Z9ybZtcPXTrQfCfjFCvc2HSlx2dXHzN2L+XZxYFWyU0pW8+XNFt0GzY2Gq+GtpZMh8Af1Y0YqjcqSyntH61zSJ8lV2PnTU1OJCJz72Wb8dcCgwK/gUfJJhWdJb1ilZejopwa0y32dfj5V6EIMybpUfnEYveogegBf2lRx1vE/USrUwS+bC6+bZ27hze3f+5KRDK3vilCTpOTT5sSRinZGAtBeHEhqH94JSemfwoKl4qnuBdyd/0WqKePYgta9bJvrMPR4sqNlBqmKbIrumVzH4aMrQOfnha5k42AfXgqKdthlWA4OVvzel8+RTNH5VYpjgig59UgPSHnk2yZsqLk4dYcwch6uwX4HSVaEdWzncHM6vwTNIXRNsIv3Sp1WUTTNWi68XC19yGZCyAHNxA2ETzKRmd3076SdQYao40CV4bPcZ9e+EYD8Y9mP3ga7g8wxNTC7YgZZ/v1SXQ7+TwcXEHPOYPR1Feslzskau5eUGsrtt3LzQCAB8o6cE8jd6Kmg+zfYjt+W5Rc9HXnJPBN9JJl5fRS1uPJitwUZBUN7qjTS5t/YFv5P/bwb3bkUPFWIBd/h2o3FOB8rIyLtODn9gkaTmgRieGEcibfnIDzpmaZoOdHTyRmI830uHp9PnBfBA3HDwosbpqRMwYynWJfHxGyItLgNH+c4cXCP+kbp1zPYQow4+trxgoYiZWs1rCalm34Mj9CH/ukJ3ZZMq6s0x/xzQ5p0Sk9glR8Lo4xSVX0GhricW3dzqlXpWIKRU1c5UiJA+a54wvVGc1ymNDIdAEJIJ/WoKJXXy08rGBeo8XC+RdvjGaCKdfXcNZXGHiMkouBq6XggAfgGkf+/dPxNEKM7y2zHzUWlKk9D+epc4ufMFKjoxOWOwvMW1fB59szV1QA/nojFZG/XkmoM7AxzB6WFeR+A4pQSjG+FPVhqHW4yCfMj4+DfnTp8lUoKtN3K+8by0LzIb+s/58Q5uKrPMIff751g20caRLcilNm2hEE1nA+aqsGXZCSodwsRR4BegMUqCScLssq7ka5nBQvgqI92Hp+4tQGt8D57CwBK8/Qj951QAMSlEiMRoE8EW0DDg+nBlHY4Bzffqpz8D5ChRN+Sq0WN6B76/R76t4fojvH8i0Z8v1V3/kf0m95yYbrr4tQojhLrUFbA5TqwA8AHjk2I/qPTYk5fiQ7M1twfl/CuOKFcfTLZH7I9R/1sIvUpi57E0QC8k1JJFh8YRClRuRiaF7rC99f3iuWQqKIKPOjvI9c9IvrsGrqq/bhQXQyjcUV4McjbfLEGdbHuyhD8vRgj+WkxY24rWcqmG3XpSCdhuTyN9g/T3DLiPRiZ3Wrgl44X71lZ9h2+AQGRd2bzr9pImBujcgo1CvpdsTbhEb2dPUlz16Df7ZDnN8igGqaxQxw4Gt4k2yz+P12Vo/B37jC4RF58d6rar93zjsFp+3yBbzXiHg0XSiFtAvIqCuCsxcPbOoAyhLXH5k+6CAC9GNLU+Nc8NgSQ967684aOLycZuPzDsLGRuY0GU4FK59Ym2t/CGnJ1/db6LRbzmN6vRCDL/S6t+BIFMjS9N1alnWwvrKlGniKHZRrXn4RUmF32DMtONI+AA/BsCfJQCs3CuhNY0GTvWXgL9s7CjlA5Na46sr4APgh5t18p39o0vjfvE7Klxz/C4lytBXPVTC7n7ThqR0cuFFQGSvYQmIf3ljTvraUYUir/0P4KmU64In+vpw7j25ojnTeyeJkCJy7euANKs1kPVzAjgVVp7DM1k0dAyegTSdJor9TaGO28/JBZKpvBkyhWiRHptAaRcpZmgVKD71w25axVIC79O/+Sij+ysYg5l6XnXbjvphv167nAZmC1qBeITiLtIPMm7yp/x06E3fh6KgoqCykvW0lQfUIgT3h2znS5yIVGqCazteCs6Pb2blu6bXtLZ+kxvc2a1Xy32OxAVG2AoxdRrEJ03G1wB6vTyJrpHzAm8QfEDcuKdLQRfVKlmhcWn1jY20V+wvuMPuHAOk+o2Zzx/Y8xcw/JpVLy6J5S1PcfsdyAwzhVzBtb7KuveUJNtZ8Jc41Odr37mT2RmweiK03cuUhxQaiYt1XbpDi+oSTSTx/eR2hia+ttBjxZHH+P+7aKzKuuzcFG9yPb8J4VB0VICqHq9/yLpBPDrhZYh69CSwYH2WPQP/wkoHRVSnY8getgnH9E5xT9rEISicAN3Xsb9LzV/lYD0oO+EUb5qyWl+lRzFwe/acWp53PsdK0OJ2Ssi10Nwy9RmKnUb3Oz2QBlui4I6ZfZvlbnKkIpjjL9vmFtdLuu/eD2T66wDVPoywSZ/uKZBEqhEYOuz+sB6n3EUA/xFvsjvBByzrXCC3y857mtKj01rdMQRkGCGlRTC03bm/M1pPnwQcFjE61/oeCIUdv959fq3aEm7osMr3R656yo94sIVkZz3VOZhX2I8p4+Q5Zn7hycq0et5vJ21CtbwvWaQ0UUil3qD8MJUOtH+nAD11QNCaCwbvmLTQjiZ2DQ3iiJa8VLDcn6uvdK8r2b57ThNX1Hh6CU6DuAxPpd9ClxVZVRg2yh5hTtvNY7h/kr2RDshy5T7g3eZoJJCwGwtM2Z/YSfp27XfmkICEYjz/60mHrdwV2HTPwB//1qbqeU/tr4SM2VprjHoBP6L0AJKuHh9SePDgXz2//ZTkXUJD33fCe956qZEbDdvweQHW2UNVVCEyewH/8/rDO5huepJOiqLUVegAvVix0NtHm3ln/9axAarJLvueaBcJHjCIxnjZV1Jak0N0AGvLtN10SmQwOHvwpddBxtM6VJjQA7RStjrz0n8bHC4q6kTL3lR1np2s0zYlOR0+eVL6lsEcmnE93L6g7LHQ0rxYZgCFXJcmte0lYIb+8gX7aOi1bIdG8bq9kISijryFfMM0x7PKfXNjAW7s414DoyNUG/YUcbqtDhkpmsuG/NrKCgqAWAWJ3RESTwVbsyXNaN1jesknbqHLuOz/BVCTiHsXaj3rY2VGiNZEEnKckDOm3ERF3npLKWDKVhfCEZXeJySjH0uKr+MCjuOll+JoQOGLYwDW3cHhA1TVA6iokZhtZ7373XzF4A/+u9cCf7VAJB8XOilhiaxVfWJ9lIb2RIVFn3MODfKT7ARAFR65Jt4cOq6WiWIKd4giRqCNV2Gu/61hLz1XcDe97Sbk47NupkeieAFFM3JrPvi5ufbPjIkqkNcMQRH3obLXk+e4I1nW8Mc5rv8NdW7ZrZ57dlW23DlFrCS3p7MlxbLZtGTrtdwgbH3kwsNlxsvjDt6Mh9qXZRSCzOnHbN/s9SDGOjtEr5IiBHSLOHRmh/ct0zXp2yyggNcwFVOX7xPwxjEe/Dr458J/Axu5O7qORp9TzmV/5oy72ggEBM5JbUKwYgBy3tJ1busIHlqJsiCRo+66bzw0uAC18fxDedO/7CnMUudH7OFfESo3/+6RAxt+P0mRPcGh+dbrh88oEcZ1ZkHJWiU7qWngdBYPIoV6/gxQJn/wMnEXa3mPt8gzTUix6sz4o8AQ71N5H9zdbCI6M4IKm4QJyGw6gbU1B4dSyNtf9tzBnYT9HRV/eYf986pgVYx4KXCivDig3pycP989HMFUBLNSjjTLkOa/EM7uBcpLHSGVZjQkxhr8iNrZ570uznmfw2TN5rVAKKRh17Lve7Gw5DlHuhWy5jSNUUoc8xiuPc1NEzh2dvvyrRJPk2iRhTPAXDaWNTkRP03Sn5IT9gdB14PTrH6CfIIaAoKi0/66bapiI7EYN+5qJ6TbnZr4YpjP9suxU6X52I4PSXPpr6JSC6KntQazt4+jgRRUf4NXZF1YRAOEnCLDOjam10+/IWWzAbOd/pCuBdZUSL9VXrPIAwPk2fL6XZUz3j0FM1ZuE+93BsIIWRzXkF2ipayumY5RiQA+84/g6V0DRW75EtGlu0lbpjDytTgGhGk1/W6HwWVVJyQTRgEqt0xKo54czC1KwjLcf461P70uV6bsthgusttu2FCegG6x1isJcNAd/wp2dXzHRIM/1zkyp5l8y/OSxRMaQJ6r28bhi1VwaxtJiF2iiXI1c0ryCt5/nBGQFqLbh5y+Dyv6jbhyqILPRLEPiyrJZwmuCgAL1MmNAiOzpG/8DoQ1LQKlnb3nFcQbe82Z49YjRkfR+WzoiTKt3YUgIlmqUPv99HbUb0+td1hbNQ/hOJKNStAjXBfu51GJQobHbkdBLIyGklVnFn+SrQz0A1m4b15redsXLfqrscsfIIlHsS6NptYOJFTs3dbT3dhQ2Ie0UhxubHwkAsRp2uvZsSdG0rh6bWdTt9fXKZBteYCX5Iw9bSsVkKB9Mb+PCow7MCWYtvsXDjCeCjl4rBkmPgIxQVdS9Dmgw7+i2t3VhQ3I3vFJPNa5KSEp+hLvO3XJbCuml4gMl8X+XJdr6PQdUCD29xvoaTWuobcWPwlzpmp1DL1hA3YrzAsOuZsJCtULRbJdLFTlvb1XjhPNu93G3p7BdJ3U4tmIkyenqHK0faqBu5pzFoWfazoAo8rPekKxutxDKaUvTSJv77c5PB9jHRQIyl53N+uS5Za38HCSMqvzCAVsRLM+p2G3lqEDqXwocytdxD++IwUT+DzoEsHLLoTMIiaHiOn3AwgnNEP9xx7Rfw+nPE24ThE9mV2iLeOHvyArpnezkgu66tkWr5ntmTwdgpFjv/G/ZDX2v/1foxGH/hc/LZe1/cncwSC09e8plT7zPWP3XOqS9DIlfuO6P7/Svj2ue5UOYx06w4QaEO/LQ7rGR1iBoJ7VCCyKP8lgCqkhB2XPcTVgdTcE5LBfA68NJASlAhODvLzdj3x2Q06slZ8aABwubRXO0r3HO9a7IZhASuRhxiqVcnOCsNjRntucQXm4xYLd8vTG1JfkwHTJbINvegsFTi+PGfsqMYr+HEVtPPvzOwEyKqndU31AGjhno4MiSHERscdvnhvhpV9JMhpgdJYyKZlIdpoLT6gaJWkrbPtGpN+iT7YzIFTH2zNTK/V0hGtRGl2KW6QNBemOzxwth1RnnhcnxmI2cMEN7brpS9RcxVO3/wi7GkRXwDom9B9KGtPZMQYsiYkQ+0hvbEKUVjHqbnzNlBZfxR+NGTq3QzzzXySqSbGfAqDbapKzm00klHOsvrXhYGZZ9JnkGcyj1p7SAA06/rHjzF35ka1YM/NHwSsotPIwstZRmAHKJoz6OxXPJIJSPAtG4y9NKi8+QALo1luMa9FJ9M5JlxfEwXOzi/yh+l2muEhjO96y0yQUA22CstWCx+CLlvNxKF43n1S6atzHvI5vvkAeU+/pIyDFXGjKECtSAsKCpHE2+7qD/mmhbgNRyYewSCh35+tnAMQeIlKbVYQ+Zil9NWKEBslEZUx87dcIvytxEeAnxQO/s+JcXhCt/yt6/2LLde9ztd5uKdRoIDXDHFJgN+oBUyFRqVNhVkqDEpI784wprccRw05NJ9TMyRB8y/rdVzAItjMkGzwSvqUnZ+SrS/9+LNQZjVeePFykZ4Dew8iQhe6DcMKN/o6ez10a7VL13tn/X5ItA66SdyiOdzTYX4Jkv8/AxmZIG1F/7QhFJq9XseEX8j5KJ5LL+b5wfw5f19Msa25jEWB3n9Pw+PFi6M30YbpgCOeyou73wgk2c6CqNNXtaXf7ov3vB2CpVKwi6yTbxz4T5Dp14Xuh4wJuH7J7io8kJfVUUKabHEuIFUEhs2QcECBOxa6NbL7/E9Sklxo/0MI+Ubh82U11Nox0IHuzDAh3Qk0wR0SG0Pu5dSU19mO3M3wuKt3Fa1xNiVnMcCvW07gFqZrAhP3NC/+qRUESKI0ptzBkQtN6O2MX/6f/LtX9+ryXiGwsxRHOs/RCnRMkEelK/o1vLjGRedtQGWMDPvobVwAtnAgkgpdF04pd8EZBLOLkd/faw6iFPMTBfbH/dFLQEzjITs6eoF8viziHclZQqO8PTRfnCiGvrWjdjWPvizKtBlMnZIjvCgxxr/otKpO+hagS9pqys/QYqV8uKbjnd5XY63W7p/8GUdCyM7rxAa4juy0B4EkpRgmz/V1VWZZTDt5Krf8bgJMQKm0O5xOoGpQRbAqPcZ23PU3NpYQQjY/hMujOousSD043lFUw2DVxrydjShLqSt0zCsS/4RxuPhm6/edzXBJErvzql1vJeoJ+KEhI/TBs4ghte/HQufPd3tx3WjgSx+UuDvB5fyHe27Pu3TZSTB5+RWsrVnRIHOf7pTtBRV2DlPsskqfqxZROzS835CEDdbJ6/bcA/D50vhZHV2kOBuxJbaMTEkYjSzh3fzNz+oND4X7RsBQqZK8nvXN8ptZNqB7wI5VEqJXhlUUcteQFjoXZyjSlj2bOx2yzlIHSrmvi6ur3KqklmZu1YNwvx0lye0v5Vui4/ib7omzOzrRt3vOZe5y7AQsFSthuTDm0SIndBpzrJlsci443H6lgywRxFJ1p1JH7WNOLnSH/00k8cGZr7phWK/shl/C9F9h43pf35ylwluN0y/rbQ9dvCEu2rzVeiACndZk3If5I0rgi4v/QoHnh48hXxvDxv6gLa0tNWwEs3cjqTRBgL4WWCIphLECkR5yldJ1FDO8rSZYUjvBU6mMCMMQtu/gJgR+cdiHvVF7O/5XmoY8tDxDo/aGK7fQe1mf+3uCsaP8h/Ri88sSIUgjs2A/9jkdVwYl5/eThVUymXW7l6zHzq56UgdA8YcUhHRqkJj/3E3+kESwUyenDDZPEjXq8szShrpPP65pNnNXOoQWH8+xrdD9yCaUGjbPmcSkOd370DqD9ZEwT4GrUzimIKLvLl8zqQ5Cnht5c85ZlhFFBX4c8Gcu+ESTSbgkRbW6+gh+hdmtWaFAsCNYKK4CMIQ/TJEjiveElUE0wK5ycg4EFQGOVINJRjVYHoMe14RyJ8LqCiB0/0ufRcUNNgxQL3UUPHRHE9foYnIcrdYiTOuYgMTN7KzZn5CHAMH2m1FURMl25T7mfvt5f3Ogaiv6CP/3dUjFy+YWtLQyFSh0IgGRwWGve0FrRUBU2R8am9QT3o+8ku8GocnSww7jNUBZXbFsyP34bHMHEMFKVJbx1eaMBIovQwGpPcE4zcnqbILyUZN7VQ+OWS+8vNfifHtV+TBaLnrv/3nfnSOa/TkhO+647LPVGKD9LCec67eKX9n3B3mDqNVhNQCf6gRe06UbvCK0JSOLRH36JqjB/+9kZxXhaoi8RKa98adKOzAN9x/YU3XyP2Bx7svaNhh2Pw+uO0oMpyDvmdBgqzgx1xBfB6MlQTOz5gUnTKUPCP+N2VkjJ55vatqm9XN3sjlL3/gXjsHcsCaic8hpH2SGTapPx4jCZv9St6qqExmIvWY51Pw0AxHbTkDLexs76c526FLQ+qFIZfF5b7vim7kN/KIDMGslSZxZz3iHyq62hTth5cPns8WlavuSOAA8WXMmX3KTc/DelFmsxVJF9RFM98o9EgCpbTuFvHk+xCqWaK6B0QU3UV+gl5tZm2YXPAqP4b/63s7wxR4rRqqC1nNDJESaBEEMU2l8GGh31xQu3sXxHT0CpthsX+jW6gO/rnPfaxwfeFYO8RWsHHHgq9khjXuNNL2w5UaTO9G9IKbab9sxoXwIRwlt66qlKsCVBT6lfeSYMwnOTqeQm3qijhvZHcFVTlnxub4YiqUF0mNKIl/LuIspGLxEfV9TJ7rZdKljnqQq6kG1UfGTh6LjLsKWQcsFYBMjiwzxcP/RU8fYVquGI4lOIq7AAeSue7dYLuOHvGYyYY/iwECt2hyFIGFyoQScWIrLyzJrNIF+b2ajGSrf/Lx/vOjKnpSqK069TNG+0NSeCv678nuPa9oj6LvTEUPooO4znWXD84BImlFZsQVM7wpejtgj/G97wBSuY1Ze9K+XtXzu8X6hK61OdzaJl+bd+V5D1zhH9RV2wWrJ0OGFMKyzZr8xv+56nQowFaiCYybIUtyxpKi8MUnoK5girZMsAsK60dqQvx34rMMOFP+rbm6xkPDN4JQ7Am4eaAc3jc9dmevSx1Pa+CBg0D8mF1TIaN/GwmB7pfW7hJV85tN5hs4tKwlhvj0JxzTqbKL7YxHN0QHJaKqQ4hmAdq+AA7lyUEhWYKKGth2jTEJxJ4+8pVHFC9vcKWThIoAgyCTh26RKlvm6KwzkVN4lWFhufLLw/lx0LQ67AG+1+Rc7vhfONs7QcnxlTCmyNEcvayXKAmUANHRUrfRlmgdtsrDMLVdZSyav1+ija9/S01LgsEnKOxxGIQkEvGo+mM/+oJ8U41XCP18tEpVAsmNXBGqBHCF+wC2cHhSNMDAFp1CvO2jZ+f9ZlOhKwUgZMJAppzNNC7jf5lXuIEaKiawtNZ9EtSUcpTUmH99uSPiEWGSwmX8UrhyYBHFmvWSdCxUPjKJ/CLC75FvVaWZoP8ONu/1Nz3tdzF82MDbnBHeNLqGNTQT3shLEflbKOazVvtg7dmXvSXKT8XhHimpXSbiI6HDc5YnIbGOdrh2ol4KjGwgZnn62i4hmm8yEOClev0R9LeDRcB5wTSSMLtmbURKjdedv7iDLXRMZxbyGERJyKGqExg==
Variant 1
DifficultyLevel
702
Question
4y=94
What is the value of y?
Worked Solution
|
|
4y |
= 94 |
y |
= 94×4 |
|
= 916 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{\large y}{4} = \dfrac{4}{9}$
What is the value of $\large y$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{\large y}{4}$ | \= $\dfrac{4}{9}$ |
| $\large y$ | \= $\dfrac{4 \times 4}{9}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX194f52P7RH8xmupX/LWWI+U88jwLFjxdxKoy5v0MmNH7kS7CiJv1qGXSx9ZyBZXe3HThjnfCwcDiBIn+Ufo0HfQuTOHYPd66qd14ZM4YPW/DvZOmsC0+/WYHquJhM62ib9AY+WbuyFxSQKHw0Zsd9REGAD8ziMWHxYvpufZci/0DBQV27S1bCx9mDjLZ2fvzUj4PGdC/4dGaFwmxWzbc+t5o1DmikB4kKK79otYrszgo8XXS+8A+8mkcSzW3GXBYysHonu+g2OC4clmDevML8jAEUAkelwVdeLgeJcmLw87Nz9wW31EbV7EW6zQ30WPNrKYy2OMDMccnDgRSL3mmacqm899/p8fGiGr1WadBvEjGCdK8SMp2tCuFH9vYsJi+cxnDNq+bAxMUhwEaIbzTH5UKk9g6r6xWpFG9ar7aUp+FvFdcxgGWwAuvlapsUtmPEW2vTvksMpdbdrQUj2Ts8y+YgitzQZM92LDXKg15eEaIfq54aRQ99yeGmKUVVFqX3fWkNVfw5wJNXPJf2Sf1iOI4iRhgEe7+9+IwXjgMo2ePYw/88rtBtj3PULJ+cOi4tZn9Eef6cH+7SWamKymqaPtAsV+1LspRE3wnaS/jUjnID3fa5yHPB0S7ANNHEZ1DmutrV6p8n3aXkR6uGqNK1aK9t7Y/2nKpSz0+HUWToh3iXWx+OoouMZnSW30wMdw6fw09IWSBQipqw3MhlCHxjh4pWBz4d009EtvLedSJRCuW3KNZu67KDZ0nL4t1rXWafDFYpMrUi4v8ru8NuzL56pgtAwcv1jCsUEftTHvdFtAsMGv328NfEVvhsKIplH2WDAzaQ8ujeH8p4PfyKOdRjbd/1l4KjbnekBRc+KnvoWwOfiM86iMhrlC7+6WLIh6GL0LD7yrOjrHN5pzcA35xSGmQPgJuOG0IurxEGvnOUyuBMWOZzwriwsOMvRlZVdl0Kqj5dYpMo965FqWqu6qGi4HJP/0yf5rv9zss0aY031k10B2yzsKRF9HehmnPZZUCv5TjdgpxBblciCnq1NK31wrF0g5MEWu4P1K5LeX7xybN2fA2cIdW44CrgVskyDPDAQx+fMgacmv7X8yTGMBYw+WeeZTfqofTSCxce1oQ9yofjE41BVnqE9i+xWoBWiBVS6BcLBr5Zad3Jg3IY8RdYzBZKZvEipZ5S6s9acz+iwfbm6GqrZyJIRNwhdVZ+46h31/TifP1N2UFKEGQaJDP+sFooE3r3Kqv9Os1BjNreljmXy0W0hbhdhAXKwK7ndgs9CBvlsj+1dX+cl90dElzyTYhIUYke9FYEXZnuSPKyuqEduIo3hTdCGCHjyB+3BCMtNE5BLbOGD2dksJ3LuoHz2A7ESlI9wgneceeK0WNeo+ZMVvc9TdAh2xhP61I8u0jDny2upGN69ajVu2QOdVC0DHJ4E9dNa08p56TD5d3jt63+S/byZKG3+4xTFP4c0ZcspeR0bkqzsJR25uwQaKQXWj4G3WqN7ITXVJCi7J+IFLfkyzuXAt5HHJuqxARelITC+vk9nfSXiUgtB/dBGxJG7fpi6jDL4PCgW7R7Pb2wugMki5tDyrO4bFIUBrcFll06aPYg78nFhUa4uuihBREB8cvGz9cYCC2rGO/CRZR/6/oCLc0Pq4WdBDgNTYpL8W30jDvHyVoACoPYnXptNkDT0kVHU/dnJhheolh0t+6uOHga8enUW57qfpPvurmVpWf8O79EWiHroUJmuLxVs/2synmCHpWgXvrDinFNJl/om+IAloVYMBrx3FiUJYRhUP+fA4VGr9e9kA6uztOU0H6mCnQOGRxHk/YsQ96Dtu1k3JCKt3CMk1+7AUQSz24+rEK29XbXleTK0Vwd+MX2uY/nH5iYW7A9xM1QNqxVfaE6ALjmUeHZFjJZ68Eko1zilEu0+LgbDZ+bYmrq+G0Wv/rQOtzHWsm50fMJTHTRCFUYNYXMTIEVnDoUC2LOoLJhvSPG1sM+2icVbMgJnSiHobL/m4holUwXMKVeVtqJLsijL77JLO2a42Jm3VmjusbO6YSz5vRXaJaQ2WSU03l1Qzwhc8uaoZIN+3xgbcVOt1AlzPrR4Ps6SyAQTkrHQGTQ211iw2Wow99IFge6smsSQD6NypPC5uRlpUxGWlGmuQL0vdKd7aBSbLmUY/b0D2pTDc5Lj5Ff/VXaxiU7flNln88FutZApI+vpkhL2tR3MroxPqA8TckRdExoVZ0Myh86uRUElZhYu8baR2ALDDbLYfGX4Akyz9Ek7Urp2Laxi0VyHWpqe3dB+h8RZZwVqVPcejW9p/2oIbg0JKCk+Me+OL1UaCcKAwZWyiQmcUHgUW98Lr9g91egRdTz+oA0u8/CCmd0/vvK4LdAHPUt2s+wwF0bb+tRF9/Qh55M7bUBINcfcNkXR6kqdTHhPtOrUSkfVnRIfZIub4DqFmDD2ihCoxQwXYLMMbfwPPOrGVX/oq6RCegbiOtAKt02zpTDLTEdZNUX6HkIqJBD/ofE6lZiG5tWBtgMn/H1QsGE1vj0SEv0cNzYkaaZMKBNE18+0NkboKD5/cSRq8ODNDOKhKkUiQBps3C+DQA/RiPbQeLdtwe+e3a/emsxjZFbXc9LsDzsgF4lSzEGxeh9+oJGNVSlbelzNZogFgmy+rncQSk5aufVnvsRCVNkgia0HTiuEwLwe4krJXrhibO2yl4cRcr5AYZE2F4bJLU7UqBCstYe0Npyi81vzrE1zSp6EDcyAh2JzOaeifhs2gNJCDwqenujIA+MFicIOXSLSTXQfzGe29rVNExlfveGYhITNDWzoo9GynVHZZGNsPFFG06gUuFw1t9SODsEj+HQJLQ+tIrMVZHjswAR22HD4II1F18hxHZ9FPx4Gz261CztlD7CBT4CpNOJwrJGhmRqDL0zBoUsmFw4B86W4msOtuzMEcZoTS8FmSMezz4EpJ86l6qdVakGxXDCZXUDgFLrbnAnAG2WJJytxiosrmKukT/+EIKR2pSNhGMwUoK2nQ5hJVNVWoX0OJpBNM6id+NLLZiJfapfm6r94C6vtnlCkiFs4Fvr1aiLAXS9Kn3ZiaP+m/TC14b9ZYnt5Ixb0IbNVifHg5KwuwDe4GhCPyQEkFFIDZhHEB2euJZi0J7qjHWk/Rapo78ZbicYYR+U290LP42xMyDeX7LFULkNAozq4HYUFGrK37byZhWudEaGg9QPmin6HJsImUNJ21zOc2jykFz19fdRP+30yrWnjzIjYA/CLdOjyyW19SAm7jjpBZj4G80N1WvNqa653VlBML/N9NHgaCQWtCqvPj1l8NBgavoYTIJgAhMfw6nikj4diDCCySDfmJuNbUA94HzkmZzpLEqcO7LTGZzg14bo+KguZY5x8UqBrzfU1q97IneZiqqNIZrDN7OIqatg5dbE7Q4afDxJ9wWPDwWQfsXNP8Yf7+1kS+15r5bjBU/2W9FDwt4IOnhyNGXnOMw53F7mnQM3bW/R11VICRy0zcPhxmSRi0R0F61iCL9qyC+HQKNWbTnvddLI+kqo2TAFzmsEXRcyzSzKC03fPgdTRi81Ot6c77WJPF8XS3FsydJpXAy1sVZ7ftlUE79Gr7POkdhkAFYOosX15ZfX4BwAl3WWKoX64gAmvHkeFvXXfjQPs1wXNX3plHNWRIJLy7e1zWJTfkKnnArQxf59PfpP3wRZTAbjpk4R9c08lVoxMboRPsi7EBLOqQEa39YIzttbwhvERbX7m+JriXlBcx5Zv9ezt6cD/rnhu95pRBWndjA1IpooEMzlJQDwDbFHzK/fU1gCxGF63BebQ2qtuNiE3StVp0cnPXrz1aaMmXDFomm+rEqTzIoQpc5AjpwmdOh9C5RUeyYGg0z/drTQEQXrrQCGId+Lyhj8l+pwAbTekbkEau9WkcZSSfmoda8+wA12iwmMp/vrQdBz4UsyF4ytLg0cW9KHRu+p/fZoWfIY4lMl92za4pXRWyZV/9+i/sjA43Igz5vlZsiuf4F49uktuaDIf0UpYqUHtuBRD/q6kLwH6/7NBWZQUnvEdSpbINWz6kb1q1zTdvLWdfnnChCgixl2596FeG2pxec/trxjXrxbhn8ikTQI5TnmBrBIBR2Gkm/rffIx+4IwC90uMmZ9pRq8/0MSyIPVMv3IOcVGivJ9uqS9q0vAVS/Q67keS8D/bDrTyZ2tgpgWP06bY6EHeADBdG33qlHBECEoBIo8KR1IK1PRE8izVjZ3hX4uDQobtlm4y9chtdPeLAFMOi+s9hxLyE596z2KmXC3iwt4hcseQh4tELoWYG6lJfj3WwldC8tx5qRWqlAmqMyn4beimKpQsCzkHl0LqeRFNdKPuCKxWP/RgodUzJb1F3+dOZvnzperNbeCXTd8lRU0X9X8Ecgjn4Sq8Pq/9sYnjN0/oA53l8hmbFlrWx/3z+gUj0/X8DaN4bxU7vPLNM27n3clwsNDL7WsJk2fjzNBflEbbt4+UPpSmtYM6s6/qqwq6kTeFGYEQBzSNoiJ0qqINZsq63NkcLYLGpL8A0LRTyEZoo1h0CSmQ8z0CQKx0zcf1AwJyv5DH+IMzgLbSotjsT80RqcZvd9iH+1BRaeMazKqCYuQF/MFsDE6//I90aXfTkiydBkb+ABiZnz1PcFRDHWRjGWNqCE0mGd1jZ+WkNsbtBsxUkLBf1orzjF1uKFI7RQKHPFUB2QYta6Skn4Qr5qsANguc+DFMK2UusI//VOiCYapq0WEY9bodeSjNvjBp0k6Fo4bqbipTkyk3OqgaqsSTGC1fscWbrUfun/I3cEFMukyJfYXiRn1tec+0TZ1mzbJII8mHsDrfbeV4TIAdTtlPEUst4wU2uItbP9MRfUT4gQxAutRNzbOqYMNJxUghH8kQRPUyiYM8zkOIcRipHjMgK5rARdN4RvC7mFbaaWcnaspebR9NsrJP7q4xvV80vV+8PxCVwztUqyvaDWyStXuL+ly8zfaO8XGTuH4pM+JOyrt8f7+oGZuKYBuXHuGLjmGbvUvYH7fdO/EQ7tmxkoh/qtR7/IEGW+FeL1g9R3NAtA6L/rE4wQJS8p3gntwi3sm/C7E6mxZPV+IqIEdDQmHbcu2JdFdXB1IqEfhYoPNjCzB5hqo/Vqq0czeGNq6RRLsawwbTntyXkA31hfO5aRNvloDqXl2tqq+iDWnY13jxDkABH6oJg/UJ2VKj+US8LVaOIXOe5JaTa5cuo1L+veZqAROIu9wjyVNtlQhUMCMIqtcbxyW+UkPbeAz0YRWkErR8/DRQ+Eif25et6F0+kmMDhONrQJCgQBHHrT9vDMERSnNuv6hnuaJWjbf6WDMHqVKvyi57buFdbV42z82Qs09kHE6JGnPNVEMrKrho0u6BMv4B4bs/f9g5+E/Fsato0ZSg3BS8uqGTzu3CezfiaExrXJweMLI1tGEo4gganuGTdnb8FO/slEMueU+mMT9aMI95UFNeBhwYYNO+Oj3bBq/cWQw/0/+MmWQe9FF2g0odsM4xS0DbxWPhJl7yaWH3IyxYw3EfACHwoTBKpyKk2v9+in8PnDEm+kqO4ZNZT7/t6+efy7bp+qA3w4Y8qYcTxyKrKq7dl1rgPM9gl9dTEWrshe3/8G2+nCyIU+GyeVI9ZfwIjmmyuz3amT8WOk/7xftQGfyjuuoufYEZQk+YtqlibditXgmDrI0wVhib6d+oYdYywPt9SXUJVxON1CQRloc6nDGMfMhQJ0QmjVBEkaJMh7NYwtC0po0V/a96+PD4aWb+s5+kyHwmtA7vQU3W6QL2e1NfVeIBuorEYSkuQed3AwtpBNsinBlojT7TJV3TWJn4x0AHVilZBnuVaLn/kF4zal7uQUmCByfAuAYKjmfP8UxcN2MsEZ3x+0flCeokBwYJjQWAkytzmmpDyOuNFmXyvdJMTak7OYWSJU1NGuo0ZPVI0pYwUnmc5K5LA/A9x7eKKSHt1no6VkaWM/dLjw0ra9n6TNBhRJcgIcxEj4O3LpjckelxKrbDtLpvpOX5azQdDMBBJX2ZyduNOnLYOJbbvFJcn0FJPo/daZxnAf65dV1y2MH04NdmgJiF3EeNYf0Ag5Sc65hcTQVoV0C8H4bbYVmunzAs0IHRSM3APkHMqR3jTZvvHJ7H2s7cZJOpLCrNyKP3mbF0TmFjnn+AxSzoQeNLBhAHsZZaPeXfhU6DTFub+N1bwJ4r+nkF6KYz5FCc1BeOHRbhI2QYvbBxvqMtcCadgirto14O4snKlnFFouGtMYSV+DzI6peY+8MD99KkWc0/mdgcGkoeJCQxtYFVPEuugnokQcmWdTRVL2Zp16LbfY6aOg2wyvR5ftq8Mwn2UNqw2czwnz01GOxxJfIS5NywSPvGhcjiwCVI1AUeBSSpY0+TL9rSAxRCR5ZpcWUL4YtRpEpF31cUZdBgLXgIvZh2W74T8BXAJdMDh6bPhjPA8WbIFWRspHZaOI2pejR1m/kMZ0GpJbfAfZMhW+UiEcBHssKeCiU0OuuAsmc5DcRTRzBt70eMTy7oYQZ/7tZBRAu0HwrVa5uNMebbOwtNnvmXELmOt4x69hw36mwNQAmwVWdBVYtAgwTmqB+hIzzScEnKr+eAF+F8QWot+VR2K9KhFco6FyWdl2dIPDOFI6CKA8DigmQ1HIsxfOP8AqvwpSvKLElD8okdhlMcYCpvIHoSO5+cxgZaLlbi8vWp98EtGvUPeOnLaqLASN1FgGwtMk/a9ETsiiJlvIWadGb/1u83DUXPEVVZDmo9MnvD3WNvOFeq3qOcqfISOaIsuC6ZgpS8NoiV6F9OvtjO2gwNLxHLU/p36clEO7qzDQA8GkabI6Ql5L72k6yVExuRf9mLBSXnS6MGY3FTyY0qQq9MkY8474phqollkRdmzSW5bochx3/dGy6dElUXkSd+MlfCKWtT2p9rc9Ii1cxchHETiLzc5bDGZHrbmy2OY0umFp+VrcvENoJCzjRXnRsYboDBEVLe6iH35+a8eIDeVDlQ0qRBmT3Jzz213Pm1/cJ0I6v0e6b4IvfyMvpGAPcK/juZmcygVFPosaNEhKqpQ4HIoX3DbS+fIFZrfihtMQ6Nr3E3sN4e1ERsfGXtTrfHWWaFnB4eV1Rm84Ju5zAcqp+HuVdKTaN54KrhnipbqyT09Tj8LWUfrBCo+ascznxcdvNWOEGgSoZEqVf2uQeFAhAfWcLsOR/Y/4nRT6HzcSbcrL9S7CemAnFp4GjhOI5YjLcPxIvbRIi48TfmLkLxFs/SSi25J2O6EMxngWaZNCTbQMo1rRYQcSGQeSgpDc15PHfMW/O1JlxAKNC1CcxiR8k2X790NurblxLxf/5sDWAyIrpcgsu8WqoNPoSFJLQGzrag7lFRxoJVzeCdNGErNrzZK7pk6rFfEZHykVYc0L0C+3oxtgk76DGy6rYqmNZsCu3wytNxKF41x1/13NNGhQBkrQ+/yw7moY3u+BL/ol1ojZMuAEBJQ3tgPcU/G+hDZTvRC6LorAuRrglDaLkI1O6pwcKQLblbM8uMsM4jaQ9OWmPZAN+Zi1pT+oFf3eMFjh1Hrmq7oT/X1KFzbNzZUEi05EVp/Od0aOgF5rtrX8xBbAyLk9aUFaZGEOT7QxniI2SeZohvYNGZ2ruuoJdSpnLiKpzZMGqItBv4qwDW198MWcvxtn5CipuQqrNrsyLw9AJvzHHAV/EcsLJfL+ikRGdiZ1TMdSOG85WAhJDsH+wWK4NHjCTQv9r69btW+OhR9AsIwZi36ql1gzwEFg7VzQYE/ryMcyTOHg+aFs0gLTouDeatJByyb5VVP0h5jLNSREOOe7O4gA8Wc4BLB+qtrzb46lYrRBmPeFi+u+brooAB9qNnWyDnCzDyHMTDUvFqBx2CpiPX3t2XVWEGWTYvewU+aVPGnI0YG8EBjm7VlsKKAKnxjafW2t3YLv5pHiWRQvPIufGl+nJrg4DIkbKBeU2LsB7fbounSnvuigWlbjX/jAyeBkgFdPr9xt2onk/YIjPPtvZwT+pNQfglSSBUYJmnC/klWFyZe4g3IuNRgxrIoq8pwQOWlP2nKF5rELb/o+3+HJHfahEY6ztgienEmVYauEsWPPGf8TDqPEP/Y1i2+um2D3zi5c0RaZdt/BPQgqX8AVmln1VeoDm8mK+wao5JSpaQClPLdhDe+dZXU4s/k+KIDNKyqbi+skWq9OreGDxl+G2ULf+pdri2VydP48Zjb3U4QJCONj8404PE3NyYC1w7up2heKPBeu5xOGlG39KW8Cn0zx9ngBKFbQEL+cABQLSzk7+Xxf1+bGrvdQo2oHYM/ql+z/1tGlyQNNDx98OvYrVO2p7HPTr5QK4qNPHkvuN6fj8YIxccYeYvcpK16WJ5D+eNnI6/OPbL+6X3LOH89npZPbPqRwLEWDQm1Jfgb8yCyYLhCQM4snReHn9rSpCa3uXgB7WaeVbHATmKE0cAIFN/+udU6CpwuwujOTe+PpUm96FiWjz8KEZELrVxbRnRyLPwaFZdjDTjiMdgbSYrR5/YM6lpOmvf8W0tbh7DWfe21/A1YGjJdZoktFM48A5Gyd/1LLbIsC0s2Cvn0vhmcrLqKJpHleXnRXS49WYFQTLgRqFTkEO6/Zd6P3hcPy05bxNkOwGpVTqOmJza7XkgYSmX50HGPA1g2hVMTI80Rdn7O0DCHrZpSfbcxfktqIwYnb9I8ioAWcqVKEOg7l85magP1d+dVZKlaaNJh7MpgLXWMD+3DH7rDTscQ7pg1eBKaZE5q3BMJEa6JTdkJaKxDMw8nRwDCGQl9bVZpDMMSSw5gd8gf5VfFzbim8JKYBMR0aRPikmPvQHskKDD4EXMDOmywpGpNXSi/UKMl2SWmSNFGouDCX9unVAc2zh4qk2veCscYuBUg8iQpXNwJ9VmeoW4IBIw4qpf65oCju/C2oeDUJH+ERXVUdKA3ZBO0jAZntzXC+65FPdmdz63zWfLR0phnEQ9Swq2p9xlZ4l5Z4eLWg3uVu79gPdRKcoNkPhb8NLATCYfc058OGfcUXwKl3/pbn9JhNqt/UWkfMg+ZLegXub1LcgBzEN6GcefumhxvnMaT2ZuK6k1lZOfp0Wu8nZsjsSwJR++7KWJ5v7Quz2seFfrBf+ZOzNpzLV6Iy9jGnOsnC+3PXejBRgBhuo7ZtUV+7P88EeLqWRjCIxQmRXrG+hWjCM2D/GfzmBw2mw/0hTqIdpDfGNf6Calwv+uSktDMR2+yHElQLSW4I6+8MPFFXNwMVP7doxIlIQKiBmQmfZiY6xFiA2dbuKX+gb7nbU1z8TvfInKwc5WhwxId5isoyzTVRHS2kl4G3J4NI0H49B0SFTK9QsnSr+eCTWADimuXjRXozwR4YLDhsP937FbmB9TggCYUDxHwYeFNujUeKn237wxY1ObK2BwzSQcAiVtfT5cetjKCJHvSBvsFKAU6GauzP7XTirfrwIl6ysO1gQJway5IG7YA0wsKbZAZnmFQZ4CHz54aPf8g3ywuyds1mfxuUhy+YeT+vq36mdsQwvwnP0Q6erVKNpnDFbzT/n/b5ur1Unw+v9tDRDRmq/WVSg5ia5u2IkyhPcQn1Aa4qLW74sI8//3OhX68s3f2Z1X6ElgHBIReYajCHGZPDtJ2uG2OvjQ4bZjJq9ywL7OIv0FC33L+n1Bf+QsuulH6rtPfuj7Gp3eTmF4Px9o6mhww4bf41KsOiXEp8lafqIiBWYgMNJlvlu+dpJE9zyOUinrvA7Q3lnKkoXuMXAfJ0ucP5UeWweomq0WXhXyYAd6o95VoVel61HePvW9OV6Wwmkj55LWDZONHzPfL/kkqegZfFtIoy203HcybC5r4DF/L5zGp/NZjvOCuucVh9x8lQHhQ77o5kp19hmAWvfU8bo09BCmVXY0bunI/JTB4MRC1JZAidGZwSXK2fUQWVZ70e2udcAtCEG49xcX1dlmkE3fuFWI4/PcxWmBtGiznDjGU+kD1VBKE1e7H8OMaAGKYz7/OpC/OKoXugX0KsAIIOLZZPrIIhJmr9IekJM3OXyyH1ZtpuxzcaUh9aSFimcNB7wD6Oa4vQwnem3wScb3e61In+wzIpnWqb6Ep5eb/1w+lvHOAyqIWSYExMadSyxgxGEMagM+IAY9zDwDanAMe5S1i4MkAnLpqxGZDVSBGQdtIE97LN6uFPdXInh/rGlhae4/DrRj+9F9KzbvE8Qb/tBrpA7aIXVX3FoUOpVXtfiXPMlyQxhEDF+u2KDiJOFSUY2Hl1vg1x11yAzyImxh20wplYEENDvBO6YA+HP5D4k6OyN2HBBySQkrHnG2H2R96gktXWqT1BSFch6HXo0F+EXeUTS4mAm4bBl5VdR3wenTzr3BzZmlUCZPUrgnx8nmLzaCU3FFJ2Udr3eRF23bpwIBf5uyQs1PcM8gq0+ScloYDaN43IMns6wpyXKHIQsugmMVsnLHdVn+01C40sicSLZPUDVEEJMEOusVFKqCqNXkSdsl07k98EswoGwAWlU4wuOD6XqNxQxP2Rj9LUabezLgbEhIlh3QYhnzK4HdFMns14xRfjgDL5dq2YIcrj97R8mjjmkTXrOrpvuGqQpbu+ZGAIeiV1ABBo4cCpM/50ypTkf+RPESnaOkyhPgtCn6Zah2hooUQcWIpKpp0t66e8GGj0C3mJHLukr00HWU+mIjqK/20FIIG7etVGHoavIym3DaVAQnzj0LqYFODs/euvkZwv3FCkvW3AmDbcQSLljMzueymbPPcTQ2ymvRgnpCMlkX2HXDB38+3at355xGURQYiNtphVEYngkjmpckJ7xw11iGlNPTz2uTZWmAnGKgzMh+EdBGIm32MQ+59pkQgesL6yH7R+qFIxnPgDwv/zfqNQcfq7+jo6fMzMmZNKBw3Spx0irSVn0apF0thJoSScs4uMHfu4QKh4T8SZyY33eQEXPwTAYgIbR95wrbFMDTtVbB34NFRM46n+MFbWHB1gLMKhoJvYeDI5qTN80VMpYbl+sbdAcZ1ad0fpVPa7eYJQ7iVwbPFohCynXwlCf/aZzcgVmkflChcT7WtzEFid8C15jVkyyqTNqMMVVQhoWRiJbD3J6nlH/Af1U2InqNxaSw2+PI/tNPuwTYggUid1/2/gTIIgCIpgKJ2NvrR73qnIzIrgZu3yt1VZl7U4vpuxYleoE4Gf8C0mnqtL3DGweYH83zYOzeJ43Z0ssPC5/Q+aeTzI88BGDO/Z+G/VrlBbm3Vj3aQBcW+JtcmcVTZAIdpWLBRJ3W+T8V18k7y8ySRRB1ndIWm9mbEynxvH2wDgzJS2UgwyN4iILEmjoH6uB4n+0x3A4Yy2t8AOJdyNKvxOoDyR/pWOD0ytTdXyP6FjAEFdPAwbmoVlnDn2QvBNsEA8Q5klG+0lNvDapdHScwTOklbgkT1r1E4s8xxCGpnX//yQfIZjCELxnx8pqu8LTCGnTW+EB6T9ltXy1Zyb1Ikc5LkUSyBoLTerfXdAjy+0MHb7EVQLi56yetELB19tvFV4FX4hskXwBCA2S78bS/JTpgadTid+jlnfNcBYP7hdBMKU9RLy6SFP58fMOSlUPnWP034ddFoAbqKzHUz6MXbMoRYUKhBb784/ruMlXlc2UglA0YqAQ2reHgUfemRs7LHaZZp+aL2e1+XNJw7oFj+/MJKKK94/sBTcFqikJzc1BKolM57fX/TM17lwrodGwPhqGSFLSepbG4iZ5YvElLbXs7DdjeCUgj3LkTWWWbuEztKYAbmt7nBTht0WGYcr8VYQvecINWfMHW3Bq0FLpNT2SUTD8eRNWZnP1Q/xYJ32gYCd0fkYFDQZtG3FIasRx5+F20tWIR3whZ/P+425msSjU3xVnFIov5dyqtEPplQ5uXxHAvKNxPV0AyJNur2e5Smgr9FAIjG93V4bdNn/2EXaF0ww7uY9gaG+mtsiswyvF05+F3iFIr2nuZPXSdGNDG8qMXDFAxmCYU1H+f0YTsfhi3g9bF9x+lHilaATzZHmetsj5lgsMfPEqsSCDXBiPvMTRNRLf2fGuOhcRC2LvnmzGefjn+5IM6DdxybarAAmTTWBr0EjSfeJJosdbiiNCpzsCwBL3w2C79UQU1TqKajyRDZ+BUBWxemqvlOPz3DLpYGBjdILqj7dx6ivyhjR4iPRoJVuRH5qCY3ZsAjkG+WR/GcnqSuKAN0CAC3Wp+7XTqG2ugzR3qRe56IXWp7ncXL3Lmga7KD/0+wEJF9XB4+TkSzkcdMXh9qfYPcu2XEcVg1rsHRxbPS1PhMOD/YTsAija4DBnHLl4oNtAbl2eHOHwq6lW5AyFM/jOOH09cg9VEUwagwZeKW8Dy5905pbZ4SB1B19vsp+Yzs35FY6a8PHz3y/X/riSKCcFxvrL83dBPtFjd2SKxx1mdoHduDCyD3J/8p0IQXqtmbUE7SGucUwJ6kFeIYzDQZYnwjC9uYF6/hzkwEvIWPeGLMwbxmRfUKq9d060j9L3eO1GYlynpapsVeR3zjKzjY2/KSaxCjHTy3f4aByicgK6YWx8U5S5v0mVVAQ+FiV55SLD0UQktTBywM0HXgk8TleW5SagZnU9UzGFimZQZ+HpreNz0HkW17Vr0vJcRN9SqJ0BGAL+TFyF9Kf+gKFZOgHvJPDPXkCivhRxcPwPm9EU8KH8Qxg9+JrJsgpgUxKCtnUmTz0Ts1lvBMSICqLyzTjj2v1VUNb+oziNtCsB2IY+ZA9lVLyNfS9zNCI1KdG1jdIqihDxqwlyiOtu56O0wrIN8pQ5axYcsQuHJmkEkdt7oInWuHYvv2BizFd8DQSgvpg1VfhOMVwvDzsmcH0L4UsKqO6WV/v8CQYEqiJpLdRd2gBIVDQje03YCT6PAu36lmHT6zgiQ45Egax08nZuBWMZLpmx8HjKOGs0eVYC/iASwifMVFGbs2eQolOkZy25sv5pc4IqGyV5sufaaSmpRB4tyHANgw64gyJieT9fAj3N6NbICl7BuJoeQt2z+d9u6XPBHQvIkABvjsjkzYwbqnUMrxQKTCHB6xBd0LY9ycpiKg9nZUS/iCBovK9TDEAHUneuBsdsxawAvXXMwvNF3Irs8Nj5pGw3JEywvqI+0B2BLJeDUrSOdSeZtkhV/4wboAV0Hq6Vex6zEq5C28BUslOPPa8Tq9kmLN0T+C+WIaXhYmFSyOjLqW28mhkHK9WcfE6yVpGl+HDkvtKP8yXjmxEagCz6uvpmmk7cMj194UdbYCqxgHV+rEhWzvVTKvPO5j5d0p04BLzZjr3TMXjuCfXJMJi5rXWd5F4X+iFTKAs5wRd6Q4pRPns/g3Ogdp2oLRlP8UlW0AJDInDW0iLo+O1MrJFySaYcsQZ7AhllnqX2AyDHeVkJdw6hAcgSYwyn+l8NUuIL1bYwUQdVP3jIXoIQq5HbYF9qhOVbdT+7n16/CPb9VCmvoDgAa5gG2y68/AUl4HkehApcrz6IMOYZRUlOF94fBPyEImYWsnFthzDyJ/gtaN36wCvmd7PrxTiROWUMAoqdL+pl9na3RFfEkDS76KTHvQb1Sca4cuUby/keoanoUr/Qc4eU3lqT7tE26N3Qk/JXuQ8dtuD4FDN90WfsXIYMYfBl76HkJ494HAxlnZCEvJ7g+j+XYNSb5iCEoU81rk8WggCtQ1DtqaXuZcqQnJT0hALg7Kwm2FXLCYY4yyTiNfOtTICJaSvIBeBbeOLZ4RK4kCdc9fhN9mHvGG3iHSyWYDQwXsg1AL+P/NfkJq8s998Zs4jYby81XNcDW1QJGz62d084hN7MuOzOaZdYntIrAEens6+LV1POVQqrHtFJfsf+xehlGZIRRw+GBvlonruGTuVxlAhjTPo7ZCKVywoeRcGnGxF89+dqO+lEO4adqNGmxrKBUrHjAvP+MJz0fIQf54a9AsBm3cZ1ny4PDG431z2rmwa+AYnNrqZ43/K4eUlxOPhpv+e+qZ8mrgUHjoHYP6Y8Apd+OUx+9HAFu+washubdNQz1EYXaREvxeguR04TUtOy4KBE00Dmfeht7X5PXHra1z9UfHwq1DMbl4WMg4nb0jRhCqum8UaGNsm7qf/LBMDhhicSW+MC9vBPfysgPXf7RPRzOHwHcn1IoQlb5XXFXpZwjJank1G+TdnKubEDLDZ5SDNfIkolA4ClkKy+uReQRaPq3pP0dBLB0nCR7AlbBVfAOv3nwr32LV5ATooFnLsgN4z1HqsYj27QxN3V69Y80KTLyqQX7qxVr4GmBUZ/K1N12H1ICy2rxk2hF+UUFDCaDd8RAPYe+tRkn7iq1EflYagZDShMGrcxnu3vfTiw1LfY4ESR2C1/AdA1+2yrnQnDrXAQb7B/2ezxdsSz/JWg8OC7OE4Lo51mhlTfEamrTTxptwx0FQrTVtbAqlFtGAlYnkMK8PsBe3Scr5a+xPUlrzl13thN2enMNhy4qUmkr7g69vsAyLgpSVqNttim/pa0y0P8OjwCnP8M1ezIfDfUULW/VGWT+55ZC6rggzRgT/QpXUo5a+NqfMHZBDQw9tHbrXFsd31F43KTWB0lHEy6oV+yG6En4JJC7gwGogytQsX2+R+hsya40BrjtjVs8+hUQaAuesFJ+LC60nqaLR/AHWV31WWCRFgOUCzURDBF5HXS1hsLMAz0QgeGPytoSEq5hGmV3prgIYLIK7GAfpVfF7VfDKf89+Zi+AX8zbQ7OZ0euWbx9wBR623P/pRUVCzX+VxVbYN0fvUd3TBOQpUTOR2lj2lpQPFf443NPZTaB7m0vNxnH7vNt1IC5udzC0aAycIl+KvHYf2x4aC5a2VEFSIRbT6vtptvK3FoGPTiTe5RW486xS9LG/iKoQb7Ywf2EDJLl2t5bOolGDFmUrLI2B+KcTP5gENpwnoRvYClVL1S5AKhvECF86wvHtzsv96Rc9fAwmbrazbwE6A63tCTxZ3p8lWuKJtdSETmHsurcRCOB5MiYFHK0xoWHa/AF38zoo6tPX/LIlVKxI7oK49FFzXvq5BAm44ZhX0864GAtaN+nRdNfwkwrYYnXthCB7h5xbZH9XBGrzn38V5oSzIX6A8Rgz/M6Y+zWZpIWyaZD0cSSQbtFAyYJw4YJpz4GDko9jWfni7lt3HeQOb5WWrVDw8pIvAU9TbB5b/xTe32ot3RJY84EpUrrBdtJwdUkotkLVvvyqbS1bELuk9cIm4NqH7RS/EZyWIlhsOR2SCCAhtGKz7ZA9i21DgwY5o18Wht4A2AZBJIdSNsJHZoHJWdbVvUba9TqRCX2GP99OugcnMs8nDZec2WbJXqpiTXDp8+NjFZNAhKQcm7V10N+j+xriLCcxPm4yvj7rOlHaUQBMeTtdUTEHpidfSMsm9srrwb9Ru8EBfGtKFnq9avTwEM2nIi7KbPmhUsZjO3AGSldfHKKjViVRqqTIo+VCOZILK0QuY3NhTJmClwztQ0Q7Ly9T2U2FvlgmcvrLk+UtouUchgxWEiyKiKKhsLfE20No8iNmST3fKUX/Wlc+eKHtjjnTpgnTS8aQ+IlEIsQySDDzZuOIml+D1hZ9lywrK1336JaQfjn1PDwFKj36Z2u4aJHGO++YzsDJK1OkQO+NqIUJyZB79B1JS6lKrGytX7qU3cL5m/ghVl7UCbG7B5TSxCuYxJ4Zb3lUx8rFLo25diGab7PM6HnutdhEuV4ogdIfnZknFmoLbKG28j7ipqimMt8TXMmwL//dyKof7GG2HEh5ai55v9VdR37JHKSQN6MHFH46MahmfC2fXlJABZbKTTm0pkIIiubFadd+7TzsAIEdUnvUzrbrra2N2fkkR8sgILc2dnI0T5ZJBqDB7EeGdZKiLWnHR5PSYnZPhUAdeMrb4trugq+/jyU/hEKNv05Mo+CGxc4ePO0er09XukWSSZlpD/7lcKaKGxY66kJ4KSEqJiZaHwwuY+uxC2KDjZ8cjkBFA6E65+D2JXUiu17VZtTtPMKkIcJmjlclJbEvtZmVFSWCyI3YLFgN5WScS4ViTMLyEruG6479sYSaCISa4cSF3oZ0y6OcVSB3DACJxFwRxXYLxHipKUUmy7BQTmkZAe4bHTn+DtH5FsmeEQVmmDMS+xwgYT9/wCXtB+QoE+u+lEJs96ndXwbvxt/wRofdUTzBvEp9K2xz6tEszyTgkfnt984qg0CO6uolGqX8O2B0YV5NTuA/SWbSnnDJ9lnql84Jl9kD68KCoMQAB618S1+R6fZOAYDFNQfaq9Ui7caXSmvUyls1C1bX7TIF2jjT2rLcU0WaqSKtAGZZHljdt/74ZkjV9bhoQpAURgeoCPkatDYzfj057IIQM1MZaP/fNUIs7Hm+e0cRKJ7PuWFS0dLhVJRETX7zVVlDamqtdFnyOPdEkylVr0mIklQaL4BLSFqlZkvKxECuw1uClHUcA+yNT44PLyBfJSoFJYfLfp+wKhBW6g+/FgAsWZpOgquVykYtv93sdvLkmM5lLShM446xVdLjjeSJlReofpGfxSThhE56MerB7tRi+oG9Xheg9d9mCdyBarp1OhwbgFjiCKVn4E3fSMolSHXMqSx0G2G0ikHl0XgI9dmGZBPqg6PrscCKG1UBdX3NFClemVu0u+Ooo5dbIil9c6VPhFnh2isVoHlXoIu+1OAH7ELOnK8T+eNmqOw8HZSBem2DMiyaInSpFtuDMXJ150I0gEkMoxnAtEBWj33bVZhsJMkY0wzEXnQsndLtgZmqe/bMYHLX22/tDRWXrIxYUrUJ/JV+UY2G1w0h8x/BNdTWhnfKNRrwwqFiWM06lj7haMRLrFeaDWxuFlX5Ev42MD0tOyiNyGtnGYKmrEskLbQf5p4upwBUDprvPeS+440SK5p8/OCOBUcX3aSFrNiMN6oMvHUo5uwpjGhZ0iWHRdQ4CabC6wpRd18BqnYpQKuhvKfd5gVIDev4rQv5ZAiXSG4glyMAh5NaTP/WYEHmrJ5i12sS1hn6uFuOELTzb6p8TJDzRLIzMOk42WA3d9RE3Rxj7bYi6kDG7cruDR6NVC9r1Xkg5U+gSkr8H1bEQ8jkf39ynRwcJ7SoQb6uIAvo0TT0ZRbN0QgzHUz3PjkN2tZ5ulBNFVEbbUAabdcPM7MhV5HAxpN75L2fGO+QkFdjvPS2mvr6v8IeLst7jm83J2r6qI7Eq3WgmYKRBjqecm2esliYYkPBWs1yG+qgOUUPg91sXUd49fP3yy22Wwm2yeLzbapRLeTWKhyKBKjrA3cBmggDku30ncZX09v4lUzeKRHmQ0XNOZHKJFDnsoPPG+Su1x/U41Odn3JM5Lo0dRb3tZJddjNpIeXC2x+wBwAzZt/OT8YdfS7IaPRP9DfVGPzByxOn2daG1r/+oP4wu+FWjmz7yHyVSFAiXFuhkGnJlV7rHzyt41TscdoqPXt8E8UKO4V77E28+5R9taRnBGOTvCGlVSgHbJjq0qYbDgva43w0VRkaFKMtUNf18z0qBOsrjXMI10ttuGy/2a66DPWMuU5KdL5rIFspGS0XpKHpLHv5ZCwa7U4uAgzbiCPSs3PjOrdbe5J7DOcvKSV20cYTHvO62Wj223SGk1Y6wKMshGb9VPl1wFuM5MKU/q6ss0CFlv67CZlVroqCfG5Qp/+yCclZSWobPrPcML4VSh/b4YmD3/YR94cvVU0TTqX6rhns2DYbQbf2XhINci98LgK/I+bggmbZAZOIxFuc8MS76sOXvDAhGLccrnVzRNfgA2zFMVvZuqafX8OETd3Hn/pLpBd4ILJp4EPPPJearJiFV+rLnTxUGxcz70WjRA+xYL8COtbw7cv5urdSo9n0XGdYypWU/HIdTP+c+w9IPB8j3rySdDbdPl67ohN55oRpi43JTtyh1tL32jUyRefdmFvTQSyt49fYfYV5gCHMaJPQdkMKxtCBZbemiWTk4I30/y6glLNIUhqCQpCLFEPjk467Ncc+Ml018itWScPOdNdhzynX+LzJ0mR5Rej898s3Ei5ia1D1D1HK3aV3JQQ/w8gWZcjH2HOOKUBNtQ1HU4wL4JMTil/Nu+gj8ljzrkat+LQC9K9/Kil4HcAkROUaDxdcboI1aKRnSsPU4lrbb4wx835xFT8xtKE+tr7M6V7OOLI01p1clXqpx1pdlp/WXFXfwhI6QjgSTYudVCBoAM3XD3ZeOvIiRoysDbYsCXzqgoy8FsPMnTIRIoJROPRMJ1XTQIWOyPKG7HNOA8wSLZGBM1aK16NmXlW+MjtbI0tX5C8vUxNbiT0sBTj+H7FYQOUmV0xmPBThGYr25yKB6kp/cXEqUcM1ItpRbwbUB3u6hbl0UyyBJcePa58QLZPqNGinVBzo8s+kd3+MARo8GxLZF+CUqLLRONE125/sUkVvR0na82c54F32Kla4+P/P4K7fdePUpRwhFbbEZehtfnrOWnUrixcB3+7w97F6yG/T7fDi5K0Xe8k9TvEzx/u6oIqDumzcbJH4ba/Ug0Hp5xdBKsZoIOliMyHvFF1jKus9T/4M5wE1kz6dskYYbKZNW31O5aZNNJGj+S54KgDZKal4/76skOBfV/uPP6zzr+poI4Watwd0rgWmoji4tzqig8+baXv5WhvCiLicOTxZSzXYdVHBSBjq78jSw3aDvXmh7U7yFOz65rT7h/E3pO22n95bNeAxSl2tIm+16rQSdGAdTZsB+jo++3/DRBZu0dZlEdBvKsRxMQGfcZSVFchdsTimh9jRTz6uYanwH4LQ9zofY9Y4+ev3E6mcRLdBe1AQGYbzVXIDQe1KFT+a2+kfEnmxXBvC/94poEvY24/PixD/Wyu0z2AkJI4gacfH47iC4RFymunzbseely6yyzH2HtRPAmxHv1iGvPfIAJV/6O/qbLU9gNUvOpLryEgWXFCuOf8KLVyE+XhoPE3gQPA8065tPaj4ofgpCZGwJ8nhgEaH1UnqTpZYNg/tgOZc5tCyICUZCIJQIPoVd+QR1vZXsw21S8+kB0EuEQ6xDFGCfLVJhKzZWQdYKlAPNtqLZyASHxhC5zZBMmFPvCW1eN0uYHJPBCZCxzYoZnUkxhaz5Z5PWu2328VXC+YYTDach5CLblLvJ20dBaUbf34ZFPR0U88GEvL1XY7wczDUay0WldbXr/foXfjhw5N0rbk4nVj06x/WsYxSU0WfusAYofLm6fN0bWcqZd1aaxqDeC8Hg9mMpXyKjucOxQQ/xAOocWXjfgNl9qBnFZLYxaXpvcDvkFD1UGzM3UOCOqWzoL408rnndOOtVAydvQtbCrp/EteGo77N6v0jNy6A7AHrA6R2OtX1MQjOurXpy+hI5K9FCJfagWylM9CfhZl8ch3l8t2z1fOrAp7YpB6w65DS18ZdRXY5+CYx0e8ijY7qiWN4Vc3Q5RZURZmEFmCWdbS+i8q6Mne8xKKzPIbmWWkmC+GsAzyrq1fkXxdiM4jZzpZtjPCnF4BlcVzClHUhfUZiPO1zmsTDmdTgSnMm8Fv/kvd75x2qZE4gcI6QZIfm8muCF6FnGZz+OHpAmm0vMwhTGRm3zA6JafpV+P9EYBku25N+2MpMq52CIYSbjSBkHZ3jeMY6I1cXmbeuXZ4GvLpgpzrutCYFJNkyPMdCFQR8RVT1/qtGkUXAfDcyhcLVNjwO1n8U7anVp2E7tBIFdbhc/IaTsnsHSzxFgmRxubuFR5T3XVgyMyFktIsUyU3eayFqztunJIzpV9WChiqCRcVqm7x7TVnLxCqdCZc0gZGID7p5DDcRlyriZ0itohJHtYtBjyXC1ixF4PPGRRwlDGIfUdef3SNrskDreLsETVTN5wf2ugGdZtOkzQQG9stoSkTGs50VpTAhvpYpInmBXia4iJCHprLWg2/BnbvX70q9kmqVBetzf8fBVIfuZG/BKmD43aBpvuHWobHG1pzyuPBtQ64UhYNynlYqEzbwaMxajYQSDHSRf9o8OmRRqpI6/ByRvwD81drWXHgdyT4F1SESvrIuNmj4QK0ijsTEWW7+JLhc6SSt2JWPgPvETWhNt7ZvnWYUR+XJORFur8L5uga9wkMOQqv2hseVbeMUS16cUeZrA3B4ywnkExvYpKqCGalWaSVkNJ7qctQ2iirGcL8knfqf6nZnmRFD47HF6xCwVBNFySo2eyaVtYJzT+MzkWgGbM7VABglWl6LNfynoSk4pOQkGmUSxo4e3VwAhmZd0y4yFu6jMaTG4KSGuZaHYHEHtjNAWDf1KsCPElLFai6nCZ04zLDdMy6POgPH7ZQyLawfHHKD/SXHfi4YRHZImmejXk/FuDVr90t06G9uFY9Ip6a+t0Fc3GOIS52ZotxVxvqYMjeqWhjaoG2oi6331TFM7bxD//lAI2Wv8ADbZCWtqhAGTZaX17JiMXonAVRyjAhJMdgFPbEF6orgmGiOuELAZ4D5iukn3TVb+OegotdRrvvhEzmBHSv/KTLYSPNiSF7yQEX6apc2aFgEj7Nc6jrZeq0fPe8O9fs5FUb2M1oBP8hq8CHCadifFF1osUe18XRECEo7tEjZMMQJVhK35LblcdeTfpURsACY0MeVxz9vWqwh/MAGkkn4Cf6/5YbdMUcALtx5HIc2yYW4KgnNTkzd2pGyTl4NOWVbedCgDONL3vHJQyMRKqgSiIwf8lToP5T0UvHTswNjBWM7JBKVgrnDt8AtTM6RVyNNkNA17MTcdKL0SB/B/vE0TdrEuwcETf/azK/fwT7Dxz0/XBcxraxkmerum1g8PlTk1v5zvkawq+2x8aLLLkrblENTc26qQAAgMywVS4AKzp/55S7kvWQgrHQKKygtlQvgjGudsd33l6jf/Tk+kO4aciPWfpDC3wDv5o8NYyvwF4CjQnNmXQ/JwWPiu5D0LGgVsyAsMcwBnRlvAjrwUJ7qGI0gQEVRsoTGJL30C6bk+Q5Jv3qp6VQDrWtaquap7AVWsRnfKRdXbwM/OkaEf1oWqlV/v1rBWDPGsSFsfJbd1+MBZYqEIleWSXhvjHwl/JtY0XrYk5ogaXRwDG6gnjwnS650/I2oAyEkcAmP4OPbKKzrreSc6IgSuV6kebYEej3xnP2dq4SkFx+1RTR+AnOQZDuCDy5S5fYGkEJLDTDKUcJo7tcFaqCDEg26Dz8fM3jj26idWsdchxyOPzPaNEmbGHjVITwbKzSLs7I6AugpTue3gchsXm1UKGxY/JiXQ4+adZ0au7ILcMGSQ8vMgGMYJdFMipFudDipIcdtC3dJww+DhhcpaDFSmX1eivot0WXQMzZS5Ip7bd0JeYk3B/YJz039qQyvk8wNX0c5lsktXJiU00HRzyX+iyuhcv1SlZ+aOhbWePgLP6AxXXJLptVsmPlinMym5dpYkKzBkVgPg9xoqkteg5Ssw2sHGiI4xUtGsT74FSMiRW36uBK2yk6p2cqxgD5fN0pDHf2i3Qm3bNjVI225qjleEyxLMsvBriODbM8yKh72drjkbGyZsDNYRdSzh6i3DVegnG2b6aCG9TBJCRUMsT6gM5TI7J0TUa3fud1z6TMjMFAekZ0El+rfN0q+rAMgvrQhjJ2uUMHScOMSKiTaoLOQF5REWVHijnz8lC+q4jEtIz7dETillWUfhKXiNuDiGMSq9/ujQK4305nhc10TVoqWWlYCqE6G65UNGuen6abwXBIPaZQwlSZml0SI2jT9c15wDoGWRQBwQNAwRz+QZlKWp66ZiDSuybQsA5u0ysvQfEtMq4ljtAI+B1UcVVbQuPK0q/2WnSsmZ7VLgRhEXJu8VPct5jLS5VIlIbtiOD+aeUSJa0xt3lWZmWLauCIClbTDkXM/KaMozBCtCdW9dCr5HZJ/6d4bjeBbX+sSPh4t68XXt+9Pndhx8go+r5jgHOoxwF5YyVyg3lz8jB5uPtIHY12ybKk5t3I3ME7WoE/bX/o=
Variant 2
DifficultyLevel
703
Question
7n=95
What is the value of n?
Worked Solution
|
|
7n |
= 95 |
n |
= 97×5 |
|
= 935 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{\large n}{7} = \dfrac{5}{9}$
What is the value of $\large n$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{\large n}{7}$ | \= $\dfrac{5}{9}$ |
| $\large n$ | \= $\dfrac{7 \times 5}{9}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/JseWGt4IjKXLJKOMZEXR//ujVe8PmGQBZaPUgzNqoZqnaHCDbeIYDENkXrWvLCvcIFZeinpqayIKsH3k0y9pM/0B33b/SlsCJ38Bd8vIZuuPE4UkwGGw1IeXXSF7aweAd9fVkfV967qZTjFgsPu6eVez3ZRTgIGfWTbo+RvNh6DWnbmTTI9xHXWJHy6GOsgAJhjn66Wfdeu5FasimNGJIyBYH9IC1Y2ErAa8sc+q9h6JHjunmtIYo4LLNtAJErJwYzcejMoeiXu+VHgSx++neAUZiIzWRudWbjXf9GzoZP9VrgYLTJnaTcofqaVkepAHOZC5I/E+79vC25p1AawHRvlt8D4+sTxwu6P3fdQ4zZ5JcEbfID2dliSMqkWAwK/mR02nWFWzkYyv5nV77tIK0fvMKuiOOkvbHqbNt0QRo2P/nZ5Lh2Du4tNafKnSf3lWhs6GPmv8gnxesJ7QDs84feLxLeCp1Nh+UeY9R3UCNGM4+EEQTGN06oNurzN4Q3hmKmLzLA8xgfyWf7FE0ON4xUH2GRSkPA1FkQVqD1gInWqVbiDsSLuWUjNfQLywUU1P4FN22S8bR3A0OAeKNnK+XKbMu3Re+1F2f+KjQ76GxEkiNRL80QK0SQI0F+2bAXFJ5prq7BtqHlWKLVnwAANDhCPXxdPXoGHwwzLrPZzQ7sTamEF4Zjq9XdKakj8sM8+eBGBG4222Fc2uc7SsBdnNkX8R89LoUwV44yPRlEeiq37NvTD475UORXcDsT9NcvRKLvy3WxY8iDGRCqfQkp2vRUcNs9XhtvOw7034DTw3kqYmqEPVx360DA1bzj5XV7kf3HJYHrilWP7DygrA7h5HEkuNTxhN0DAa2/GiCSwyZyoEjPj3cDxHNqQLXrK5GCTkozi4U7pdNs8upqvyqqyIn5XLNKstSL9RUpcvu/bMPuxFmwZqptdzYzFFD46lCcPL1CoQ627zQwTT3bTSRF0UO+VrVZyAobW7XzoggRMZ+hRpmUsORqc1jlk5zz0MXp85SA6oUXFFZtajKuz0yuRBt2zi4ARJyDLP2kuQ5x8tGGRAnnm71Wk48YcrhLTp8SJ9v+D8OpLGtetDG6oDQ4t33ETx0LOOjFXXVE0pgAOt1F5++EmGnq6lFUSoqxym6UVhXgoq/U/Nikm4tYzQqxEEDfvCQXQ2Rwc6ON8OzYaVZi6xO4yT0h1iVjr79uzu/CnQbby2FNKXSIHp2NsF8ruVBxPixooFIfsw364DhHW5PaeDvjJaYHAuyaBdzfGZKUEQy/q1ktczjtvLGUjz88p+CuVIFHrmsc0olCNe4IODxJ89pwU5JzbuhdxKw+0erkR4F/f13mSOrWMxaNYlzI11s118WmSRhCIJNBsKVjnYg1twHv2KeP3kcyCzkJ9NDv7pmYsU9hABreYvL2kf+pNa5wz4ZsZMbkfCqIbQVjfK3ifWaPKsqE7sWgq91pMPk4f+O9NBGKy4VVSX+EO60yl8Diji9/ejHLxrzzwHhI+CWGLji41gcs4yrd44DWu8VV4zyb5kArQFrelUcTb9uuJ0LUHj+nhamPQt7n6ypSVd3xggkweanUa81y2jjbY9ui+yk2R+py9HXUFdXEGlj9PE3MsespbUM8j1msyx7XaccBysLuGEje/FyjuAm6z57j7yizJDUelDopryYFPFFkcy2fRlS5B053v42GtFrHV8Qw+JKISUWJy57TKPAZn7dyJy6XYOwPa5IQ2wtH+cxM4hvFSfQIqIe5ottu/ooLdzDesGnK6/MNpFFsLmWrpwTEJAVDY/xPceeLwluGfBV4pMDI8c+CT9Z7RRl6GIubneSXFC9aDOxEl8WlSsnNooRaFkbK6AG1R2NoCzQdUgCEZP2UI+0efzegoMzG/l4bsvproFPdEgLeDS6Vy6mYLlY+BQJ9ODtEfLoiBm60PygDMVbhJx9nNmyFK/vLmXDqygiA2WXrnloS7j5CJFmoaRaWMudIEsfYG9ADKj+SjhHT6HALvG94Sh6AaX67osO+rWL65iPDwcNXYwCG2BL8DHpGGxRqtnXVlW8TxhIcaw8z6MdJMhR4BzoVt92GzWYSMmrLgH0X6jRQgfa5i5thAD8JyJOEDk2dHzDROT30wDVry8Lua9gxwW2ENvVRm69E0E0Kr5mkp/K/VciL3FlZO9J+H8pEi8ji/okQuXgOeTwtkIZXHY395vW5S7DGQICbazVCiN53KVJ/O2EgzEvAQc5u6rpFrINMPp2NnSo+wDxKVSjIClSuu8lXFIg5qKo9QYi5uQo+/fKkT4MD96rcyssawhN6phS3hvj9R9JeBwzqBiTbv/+jqrD8URyKb6yqOByVj2p6+P60fUodR0kfZEEu1Ca3DSlCUI34MkLrctdo5fE8JSRYDjNXTWC72aDcWZabNUxxib1TEtR07KApmy4XytPXXICIj2Dbpv+cYYrh2CuUJTbU51PdaINShJIQzIm9TwLt29M1otN8faV7IyiJfw8yisU8udFXppsqRCGrBPktEN2dLBz1b4/Fh6oOfL2KwQrV9SE/Oe4a7XoZBxPzS9gsgLfBrII59UiQ8RuTpLjqmNWnq3VkaKgRVjb7+ixqjkTJqP4cMMGhyqvy29EbUxEZQqwjOL4D9zw+wd34brpHsvGQkLxuc4VW9ZrDL0r4ujurnOYP35j/VrTSII2rrfrvj+CvsQlb0e4ZTrthDTLgbVNZNfhv+Ebe4KWXroR4wvL6PuPs7n6fvMPEdXh6sZcnN0up8zkSwq5inxGV1w1OHda90tS0InCS32tNj/HnO2znnJZYwQrxN1ke/KlsxHsx4UFg5takaHxAjad8uyjwDnMeiP6yoxe/9xpIQxQUuokRJNmQbCmHSoT4+LtCKw0QkgXrSrhTiCXZLLIkwV9KsVrGNsZWgJ7RXcsjGOkta/PVMTKF5SuvtYPZLj59wETqVpbJsq0HRwEY1so2qD5m06PNrSMKNAcGghfXC4Pa07zuQzSz4U5F2q1aHWY6gpKTqi02A4+iPCFL7eaZokyU98gZMAhmVL101gPKUIF4lNMxbbOEqeoI+G+d8vIKi3XPEHqiMnaLcfGPluFUAtfAvbwKJ213gjoAjDVpKYKqpNZgWo2KBwFssot9lB95v9l7N+V13D3vx+vswFRRu9arIzdaXRbKl7VxmFIkesHqhxZZNofna7K+uv0YgeBMe89U0SvdZNiIEEmPMCHsnRebJfXqKXMSY0KDv1ZP0PBAvQdS1LJUm18NETpOznSxM0ibIlA7pDtx9RlDWcJf1fNTcTnhOpqTtlemvMHtLPk5Cnjd4wCA/MLqUxKT5/pMzc9LktToiKsLJUdVx5m8ptyzwOwQ0fPQoA0GWCT8cbgicT0F1MZcaI36iP972w/8AQbxfRUfBwcbyprRjemdSDl9hUn4RhsIlWZvVTlfr5NINAEh0kzt09RlKXQXWsf2PX4qlS3vzpJfzC0wx/a4sayBb7zMQe9mTxtd1FQWRocuAlIki96SKNmZvYlc/ckLkFUzbwZ82JOS2UGLQ20qngNAl425xjDQL7NlNr6KvM5HCXsTi0rvf6F/d5b8yJH5Kmw1qhhWUEVgY+ynzUKlba99BYtHhTyng5m1sUHnSs2ItQam/3ytuoxnrlr70H1S98WC/vgVcUam+ZLFZiKW5i0hg6KzhWpWdRnf1Zde1GdCDQ6pMoRqCjXFMDAhcXjjr+V+Sg3hlujqtN3N3prp1bx25CPHSlJhUhGolC/ciD36/d772dgNxR5R8MOOFovGqiupKuA3TmD0LQ6gMi1dV3NNrIFI1JqCVeezF4/ArJ+9dLWf9HEbFgHeZq18oF/p3zlVdCrXle1Ng8E1Lk7ZLuzE1b+DAFPV6FmHjHirIsOn3pnsYW4j9GKF089VIX7uc2kIUIwtqKwe973yVNxSf+fI5kX+ZUapuYN0C0n5NkzeZ+qWsNtBpRi9ibzrEuEugXUIN+D5vtR34qiJlWwscftyF/JefkrSfivKN7zJfOX2CLLW1YV1nepyZtCveyw9DEXdUZ3ofUUmZOjrmkn8TOm6rw59kHPtnxsxn0xYn9fp6Z9656Y8WesxMd9ZVuelmWKYR7xGWUMcv+jpBcMc8qQ1KQbB8qwhJ+Bn/bm8Lm0KG6Fo4Er7pJCivaYTGfxxV6EcyjXDDxVzpHkuAoy9Z/4oUd9inijIGPIOTZ9iQCf8JWb33HOjPVSufxYp/p6mvMis/mDE63oLHWJCOjLKHOEUPYse8BymEKYbWeqrnKXnq6uj6Q5XaiRIbAvFOA+5Uv8YVw3uwnmgQmantiFS0odIykLOE707FL3ojHaJl/+SFVuwshSx6R56pMlZ8N+H97QZiGF0UiJXnV6UZPvzzTNkSamCJ1o85fhQ6NziKoRfZP50xOZRVDlUYlrq0VMHLFTqDMwqrSRJGBWP/RsCeTN+jHQl6QJ5L/InGLo3Y78jOs82Cf0O8TrISa0LRVt45HCpTYppiB5HnzJY4A8EgHDvwdap7VeUT8HptRTFtJ1rKTLyLEwalbROVmGMsJGe3Gx1I62Pnlst642NyhDcyKbrLe0V3un/2e+rolW7EIBD69Z76IOk975xBBV/V55EUzLGPskl2j7wX5IwOZDhyid0y4y1rSTfrOHXhbTHKtZqSHQFTbpI7vVqWqhBZCb21F0pe+Cj4yLDPROj4YCUIxlcTvIvf/zFwAaqSHSppb/pdd1p9jiVyvQZ1ZcjKfNPbLXmAVsNbOvcKaH2BPO6xBVQlqpVYbWxo9K4HTnHclVJSI1dxI4rXl0HFpRxPIxYwQmRzKs4/X3cLrWyeYrrsFRZRzarmtthzE30fwn+YTl2mVE0dz3aoAqZIxuPvgjjLM/3RZ/+RLGiMT442U6RwHWbJ5S8P9HUeBhMKjJ5aawyPkeLsOIOBTRqcuygzuZ1Og79ElTj+2MsreNmS7HpQoG7KC8J0NVlDgayqhX5eAeWWlo6VBmXc+bJcrwgPyTE4n4ijr9luvE2vsYaqQnw7tuDsXIFCzeCHoAz1+kvOHTb6+17EZPf0hJImsh4XRogdksvQNLcMYJJgg3kRLp8iZ0pa+aQBJRDjSskX3m5Hom6oXuvVZjsOl1yfmKuB5nW1EMtlsxFfrbhxExGoEg8vJ54apZivWkjD1hM8OozlZpjhW+mBwEuvwKSt3mlbaazaoBgTKmIQcPPrtVcuTbBpuKeMFwOKIYlmBE5oG6aeNtAEi4hLgb6NOq+xJeCP1beZPdIoFoFmjV9Dlj/4gFV1Z2Dh2wg/jeFstbsI4tjcmKHdKUdN5AyGWJNTEk5uX1Kb33TEQGmJr4ow5UNgEYV8yKOdk1fuMYGN87CvMKDQvezPUb3fNy5LDYiXUHHKL6KNjxpodDkSktignd7vLuzkNYmJD4/qZsd/ysK7l/TUp2JHiBT4D7f7fek9iC+vR4fUzaEY/hzCet/ZdF4bBOzwzJLlSi8vrdbH+PyOzpCpswE5CQ3V/xaJOl1LyErdtTDUtI3NESm92MeP2TB5X+jGC46a85sDif1CB0cLQmUpKoKbl/3GPGNOCpZQOGIA7kKmQ3My5Cg/xQebptpSDQfz0bdXdocEqkMw7g2KB05D0QRk8K88Q2IPzs76qwplg86Hh3OtWGa0gWEKuARdSJL9yiVGtHXVkV2bxGphlnz6QT1abDhhLJSPxANwVPRS55Fs5SJ2FqUJKMPhPUzG+eoz4tUXiFvVl1dKWIdGkmeFDAfuASyd5Yv+MdrvHzJuSSqNL9pQMvD7sxBRWBoyYhXjiY8uRVk25beIX9z6VynxalcAjroDvHhmGBhmT3lzEtCzen3vMlrlsbRyrphVzUcPVhm+fvuMqaNv5UGLKnjVvUylSafz7IRf59eQyzB8/I4SwOj7klq1LXrXPnYo5dBxm9YoywaYgNz7n5+sMFXyhA48JgR5dLQ0bEB1xOM8OPtZcX50VzgKvziNZHNdjcktIRJk/TQvzo0b4xEgHVVfRfD0OAX5IlMklfd3TWJDC+28JyGMusvcCHp7FCHk2qMdn2HPYF0gGATkDE56T3XoEIe3T6zbF3HjvnmjLFF1Gs4oBXrNovmZOHFWth7n8I5YGNwsPiRUSPflesu8eDbPLdKDNe+uCFqeK9Gm+d39ny0wf6v8uZ3OHE3kGk0/gKsiyySXVc39NisEX88Hfk+GoPpFoE3Nz3g0x5+hUGNibiQB+OCyBx2HafKiBaJhsHdwGVIXSCktFW7jQpGq6oXlWKtIKRtVvytiBViSso0BixdTc+BANfbuf3SFBpHHgcOM/KihcgOzL/+49QCWTQaR36J13irqBX1Fjy+EpFk/CSUeurG2KT6+/2idrPvhlw80Auap3kfJVmVj7dwcsOAWOW+hRXCvXmJ7gVmX0U594SY5aQO7QcesKnHZwQMGL7C9+9KCMZk9ppdeUULzs/7vMEY8Xj4WRKhdAkf/VxJJ62jlvQnxulpqQpkRTFjsQY8J5TcSv14oTMgjl+VzHII0xB8BMUQUAMQJGI2hGLxapPM9KFsTQlJz0wXpP+BaRKvqPB7HVzaYyvUr5Boys7RsvKKVS0V5vaRYfRjK8+IiRtsj9Dgc1GsNKoPbkK+UsydXI1gDRPm2NHbRxhFXmqUUmsNEB0UQcXh73S0qX3jkug1c7RgUf880v4vIGuBKFco7H/Ny3/M7AxH72w1p4uegQoAA+f62qT6qYIWcFj4knVaYZMfYT8dSNTxDtYkzXkAgT1Fg+ZL6EG8sOe6zxnMW3BzksfRJcfXgkDXVr7mxJ69+lYUUAP2ftFuZUKlVIELLIHTEA6Z3WrOeQtRvKiwFXrwqb3SWUmZKeVfElq7AVkWdXTXcwAIOY9rPtyEtSDeeEX3PMyQdfmNAR8nn/M19QekOfgtHQ4lwcdlRax4+C2iKJGw3P8ntuS/YNIpZwOU2qkdPIwkrN4cw8FznuentPpvzGpvuxm5kP/62mZgNggEqGVY2/GcZ4l+tTXCPRJeCJ8lnHq4gNM5N5RNoHcMNa1aw/0lxFe83aZ428+hmAyuZPsGe0VWMRgV4h7vXkCoCUrHIpo39c+vYXGrv+pIm8g7Fxju6rrpBFdalCaoFsbTzhE9T6HoWg5IMjJZbd6EFlrZ0r6sZepOsO57I7WPLwH7hn4Tfp7ZDCOCcjyBu/fC2O5LUdY2iJvz1OstDt6X1+0K2CRrAyjnIxhttV+BoljaiUskvKH90+g0SI3kqV7CwUZrPxIKhP/9U0AJb9TtUCPNRp+GPNTvJAIOdDi+RbYn1Iv7nlxIwS+RyPzwHVVvtZMKWU6j0k/4TEpWwin2gy1go22EIUSlr3/bOmq6R8RLtct8wBLwSJdpUBIThI5m07g8eukUZz15XHX5WrnNM3zKTuSRp6PKq3xTRepNC2eWXYTiYyInlYDJW57df+Z4zdNYU8rv8AMxPYrmbEGQJa7CRJecwmnqjd39NwshM9JkISl4O5EHON2syjHXW1W7OCBVpOEfqM+rcuERgoXjA0CBhuR78/kdiB/YwW1nIMnBNCkszsZZ9eP4XBr8+U1RLgs2H4t4VD/WCdv3DXKQzbCLq7E+/cOQxcYoq89qO8zdSiaS+iO8s98CfFFi7ADC2Rptw6cpqEPMTCs7Pxqa77UiqGubwx+lGJ2S9jAVhi1HGA0maC6V3oLaV0H3vUSdHbL0Dyzm9+majCu9kXrNgswBHCexUWBtOaeKbMpYbRUpkui3hAUB1LXtwFO+5bCDFE0cc3DfAeJSx1Nx+p4JcXqbHgiOtyu5cACTcv6cJ2wwKC4JiouDGKQ33yphCPeyUnDvDUkNO0ObrrIP7XKLEcev1hmfOz0TSa8n8n40PIc/yHX1wzYkJcGtG/irC5FhAHOjavLuJG7rCIzUDXTnTNiSqFv3PHDGO8kuDyifJFfNl7x+MhH2105Hj7H4IaqddZZKm0DpNZFRfizEflxWisdvf7e2OE7q1LcolRb5RJlAWtrhx8qbRKe2VzwTXES65cL/zydLMsUcwT891KSs73IZp1VqkuTLqz6Ap4csoo/iJhmNUK91YK4Ai5r6gQ/cTnj5bFTCqMbd5bNNDB0SmQc3JcUjg7v+xUtVqY3GTLnArU6DOWW5apguiNfsNjyqqRtU6iRT9B7+mO25P1nzvnmbvePHFdDQhwfTcHGWlLfn+IKfUkmbU856ukxX7ImRpnzK4ZWRi8e8HTIzT+IbNmezVJrvQoXJbhQd3JfpEWKTOosEpHspCN8I/RP0NZG/6/KKYDh4NojgXQLZkRng4CIJMr8k5CdjKWKg1vGccc797QuMFM0GEfcCrchBs5vYW1B+m421HebPunop/YasZHV8SQVlKFdrpnxhVUsy9OMi7oAtO+vn1wUFboU9pBAC45iHl229N6N+fgRz0ex18tm28RpDi9MgnUlrwGIg/1w8BOi2JdAWzL1T5cHyBKtno74VSERUjcmHkyisfd7FRpFf635Nhu3F16veNSsMkggy4Q/N5YP+dL/6M3VjbpfEA29lD0To8TDUeyPrIXz1xDR0MJTfZdNz+RY0qrmDCIX46GtAv+NrXp1O8IQVzSDOv3a/mTI6ozjbH5DqVWtKkDFEOS0q0cXw1jT3RD9yTgTNtX3aYhSLuyfQjAnZnBtQzUltsi1jK4H6OnxKs003SmwBb62xR0sg1K8NTnIZVZR8G7r1pO/rvWjXMq7ORUchWgvZZturdsnUNDnpL2XO2q8dj3uodeC78pTDiGrOW46XGn8LE+wM7vnprGaZH23qeMPZ5qHqKtTaPt4SSGY0lJMeCbqgMljHb9SLaS/T2WSi3NNogN/3TVw3CWjHov4LdyjSAXnmbD8Wv+DPxm4FKB64Sqfs+LQiQCDvAwxG8+tYVs0PXv3IqrTD1C8A1wn1kX8vIWOdCzip3D11tvQ4xz3KidLkTZyyh/ivAUZ50oQmwT2Gx/jWfFWLRFHXMT6PBdfjQ57FIpR//PDsGWQ5/LDHh38jxrkkNZ89XSq5T3pbZhO5yUu/89GBS+wviEfqKSA9Fbh3AU+cy8PbBJ0xxFE6uYUxPpciR5+qZkTAXidesTfD+Qo+e3Q64DzpbOxf4gulvw43QIcqgdEv0cYJRKC72RT3fCibXQBuaX+WdZjLtG9t1oAYiJk6/k2AnAl/S4jUZyWAnkqRN0f9kNOI+jMmuj6sJ/Km6zdD56iMWpsrM4N9l5Eqe4ewhMTzEkYfDJRHzgkr4N8r2bYzaTUDFYlpk3dImqWovu6dJnKORcZw+xxSQ1tvQGk9lDktvfSJ1AnLbHrfKHqTwMlO3o/eRfWRwxHx+fMUBv19PkaXw0XiCiuhpQqUI+wuJzP3eSff1O8FQrcP0OCboNsU3i6Uif5rk2lN9s/5C/+fj+6RWNHZ8GyS4+c0zHFEjmezXy5gntNOC3zyIDQOM9iIhTBu53hhEMzvveOCCK+WGCUQjCFp6wZ1Ic6g5P8NxGWABttZyu3btnspS4UZ+N8o6l94yCnUj3ZdLG33IJGmu5apYf/r+1Bmh/AIf0PO3DCy8OiOUaSmBSOYOXbl1QjLEDeC2UHuzOU6wyx/d4MjN09pfwz6o7P9O+CLmK+I6PYvSx/qegVyiRaMP7vogQv5kpbwCLXKTD3eTgdgAVy/qinBJC59P2vtsq5cbPkZSC4dYuG29vWIUN1BbupMmOzL4JQt7kQSdX+86Pi9pZiNTeXgaVu4eCnfSK5UHJTcF3fYcA21/48lU0kPh4szno42J8JAqqwF8FMut+I8vAh8NceMLmBHi331wH3CTbrnzJreU1fQj2zLYlddsyW0gfCefdmSOTp8y9uIsn3RrDQ/PGKamDq9dR8z+IqwJkiJBafcZaqd8L2SDqgeC/ZqR5b0dYfgxCLItLoIfz+qrRAASXkfACLwFAqsTAfCPJUDiPnPuBae5lvPYrg0JjhZ15JkCriuNQCx6VwVLxpOQtUEAHvlne997Uf8RWnsX4dFBKJCdK7HwDnv/h5ImeLFVfZL1rb7BCdWtxQUn4Pg3uYxrZUOg4cSXw5kFgs3eB5jdeymFddaNsoYbsYzmft0AkAcEyl1tAMrLp8ExJMTSIWCZpg9bAssIGYAFCvUb2RxCqE8OkpvXN1f5+7Y8VHFCQEpzcSljpHAXOq/bAxwDv6qgYHihDvIsPXjzzBxq85Jx3bP2GhQK1cmq+wL5mHlts2LBwx1pksTssLu5kvUHy2OIKcEWlHg5lA4TyEjHpwza4zEYTTh3nZNxjDO0o+SE4Tz2a7JR4X8fdvuBhH6IRA+2oERWD0u2Wz9+6vsOGW/NxbNc1qhxjfi9GkizCG50nZkOjqwln9eHIVkI45ybUBSmlcG2WNbvQftfaNY5P1Zc4QlZ/XF2QPSoDWizs0pRUBT71xOfkbiJmG1luC09eK7oyn+2Uhec3r04hPhA2jUe844ysakj9y9N1/xSBLD254XOgNb9wOLTKuM/tMc6A/C2y98V9ajpew+zNOFNastd5FlvECFaQLJ3txwBnzB+v7tk5FIJUUea5XFIlXh7JCLhQl9DajUWR9Vj5t19pY0NTdB2F9nhyVqLhJzEAxgvfL/YzbeVm+V6LRCNBi57vQE1ItM7jRdcJxtzyfO85Wbwid2aPxiJsVzi/TNzzMccKfLPlfD8dXWvexVKBFa4i6J/0ruCiy2DINkt0DVhtDJrWUTctoBzm3Rf5qgkPat+yTfhLYW14EI9Y+mDD9L4XPQ+rysBxvjQh5Qu138uBfevnlFJTgcAsforlo1IPpKrPXcIEjwLd/uw6BhB7yT5ZKutQYL+Jsh0B2ZTC58jTllqnkPATVe52l9xsOlmamr/etuKYSz+xJzqIdT+5C/XH+FyhJWGeolaL1wRLSOth3GFHtRqnkrAnHZiYZ6hJgExg0ST3qhvmWsKXPkTKV5uyUhqfDDJdmpMhOyJ41DYVxE0teCfudO5fIh7e7ztq7/C25TVI+94pv1yh0qHnKHosscPHbvjB1kMT2m7Jgt6sW6qHmP7zFW0RKkXl6jtjJg+mL2wmuSCjRGItD1RLr1IRKGEZvc5rej2xie8uSvUvvBV6vTfwD/5XB4G1N+2aEHj/xIDJceqfvVqb6yFwVlebzj6Ucthrq7BYy/rcRDE8+H5KuCctDTCkwXOtXhf+3s7YENcJgHO/ZiBrGmmgujQ38+OsoIcSaSycFn4vQJklvmKiuHxUlaCKcQIM1VYwVidSE671HAf5b0Xz3LzfH0F13B+cjtm3rB58OVk66mV3qxitSz2hF768Zxd0SupW13hF/4SXu14PlP1+uL46s23dhCLHX0fWwbRkTnnR2PRkX9l6ismP6qcHXqMqnvdSVRNJ3dK4WInOqukCWdcsSfq5xTjo8hOWGWMgUi5cRlIRhtDU3pRLK0F+WL5hky3oKhePXU3J5Sla+96KzN4PS/jgDPBdy81xuLQ+42yFpSpmoHJt+OujaKKT0ZCfSnC4vZuVoVN+bCUcijMvZuTsrffk6YrV9mZ7RPC/OOGqSR7+V8nkGYm6vobJhHZu6j2jD6D5znjQg5AJwL5kQ+C9r1ystVBArnINJHnO8R1lZP55R28iDwnLiGVhFJH+dylxUBRIo1Go4YtMLw7O4WipVzl22BIzaf3jyvhVmUA3z9KRYg+Q/WDM8xoW2ElJ6KI99yIl3V+Bm8Mf9Gp5EBCM2OQVLlSEC27B58ErF6XHmdfqY3ZL5gALlC6DUtaEfMG8Swgy3i70aHtpQzG7CSSP3DySuGpOGi+SXqLWUHpF3sj3bWqBNQAevuaMdWX1UbJ0xu3hzfURxOLZhOgqYRbFd6KxZ/z5c4HHZgH/QSkiTbLuL9HbZFp1gt2pBRLGCSdxusoFvdH3/hTykxm8bb5l2hesGOIgerN0KhJ0lrMp71pHX6oM2wnJeGBq9QIlySuLg1H28xCChYVegqpmXq176lw4x1YpMRrxE2Dc6IxwcwSUYnkXBUA1u2t5iZbRW5XwqQaULguOhrBYYYR4SBV44hMOQH6Dzn2HihZFF4X7DR2xt95tc5dyfS1QzcyD+/yxbImiCIT3wLc3GjeB1RHcW6no8REpFC+BUWhejIKy+B6oFaSt0QLnwG1Gw4wdbNFSteQBgCSQ0XpBAgJqyen3TmDIT2pQBNR1RHFDiZ4fwfhB+gtvJyV0WBGM1al5sU+yarAIAsNfajRNVg6Fz98kZS6Wlg1uOFZ6z7HCyLZeuMTPVAPZMmJJu12lBxpgJhRqFIS83PR+0pr/S4uyeFMQ9a2XBVL0jhOFZuZDKv+GBIHUUunzCznxMee1flHR8ovX+SHKMB9tlfdAlBri3SX3csBz2+qSrWWDvt2IgfLjRgOZt7h7mtdgeVLnyeLNP0W3B+omyJZxMoIh0POp0XRbr74D+yZHcH5ukb6fQkaJ0wOt0rcSzIR4eBdkoT6sW86rug4TVXloEedCnYN61Gmdy0Irw2X2aH3aBuEWZeyb+n7N3S49aMZRJ847+aJWqIwjUNbLX0hDxsXfG9dP+Ig2fHTWkxly0vlsiMk0VeJe+DsRnkrdQS2oZJYmR+kNZNmomRgxdTVKWF5khMhluQ7jDgnTzx/NVGJIjk9gL+BQNip6HOMJmU3/X1qQe2HVlpXLgIPpmq8hhpLu0UmKtxtfY0MI9cUsLLIKK3Azh+v77ZmjX1oy2lMjNVXg13GCHyMioreIbudgWvWlbiXvO5NW4WYb4KCYe19AFCPYNkAAJ9PrU3lsikXU+jVOS22EA7UKtrWX45tSTWoYjCGGHglQPukSKQQzEbG0jkiPvgarLAWr/Y5MOuaaz0K0ZTaGiz+AszMMhhxvNXNnqNudI9xkbrQmyAVulNZr0byTZgqGLTIZaP1jAWyNkz2oH/OZ3ZpmiIm7yx9bc8SF39UFyl94mmr4xKmNjKPmBASQ5mpuCOaqCvPQ6l04nlRgTqBQLEDaLYf15XJlY4kietlDHVdZP1LB4IJZbOe49aHc1TzzYwHB6hLZWXFJYbHuJPRVaJmAJkjw+pzWr6JJlcDrW2rMI9zaf6dn4NVlG0a7z5gh1njs3wuLxhFgEsY4j6O3oWUjNwXCpWWtTR7D/HVCyq4emgEMG0eFuFHV3ng8MLFBrnvRNKSYaokX9rLVcalAgNCQPtpRDEfZrtv58UCmgl9fnpvG7EhF35wRSAJAB4v+RgWGAuJEgiw+c+Wom91Km8ecO2o/KLW4tVKPMtwBUD/IHIgOevi45Z/Ekhg1tdEoMDbRvMr2X4yhiJBIseolmSAbrWQnmBPAq7F8KvIsl+iE/Tjb8rqU6nYysfIVstQE2J7u8QXTsn5A+Wyh+8iXzvp3kCrEBIVXnpSdR76TLK+rAqDVt+FW70drMj26s6W8SuH+A4FKiPJxselWpQWUidIuF9jCeJYSXkoKmx9jSHnLfEayEcQub2rP4EZ1kCnoro28rQvfml9/3+kCnHZjg43Hk9srubl+MKaLec4sNCv3cnSmTQUgYrPGqLIzDcHq68SuGwsUdsHItYLL5gN75go2tkbtqDXBVAzWgxyCjlx96yHBqc+u4GJ+dHyX0u9VdExLWZ68oQvblCvNbY1ip6iklh+6CLSDizbuLZJcGW6xjgD/KJ7BHuoLfaHICD6Xa+dbfoS7kqOQ1BJQ30+vDQjOP3Oe9VWJqJ1YxRmlj3YG8KsKBO9ZKu9ebsZQgCSUXMoWMdwsH+h6QTrdPS+N8ipGLZDPXjGXAIEB1GMlDse5V1QVivCNT3QFBWK4Ki1RoMtXRjHPTW8KQGoYkWaf6xmHhd+BRiTn+FzCUBnc3+TIzzWrF/f6QWt9hDI0dAi2T2+YVymB2XPTnQahMaKOhT6AiLl/fusbM50J/ugN3Kz5uMVj7TzLvDbk5Q/5GkiBlFuT+RwP//qMcl1TYr+CRHG155Do/7znM9Rs3J9mjJxc8fHTU5nBmTgzT66bR+fOQ28s9HJqX27Ap2koV/lQxuV+jxzu8OJs6RQt//8lLK2wwDGjjoUQZBIAGKFzCCPrVVHuMlOwh8c+drUaE816ry21Omt4RwAXLeMGhAVlUcq2SaMk+JLsWQ5tJUt2F64KOWrkqXqHb7hnOjDPmcMMMgs9CJ9pj+COaeI6+H0O2+lzfFr98PwIrSIZ7lWJ56K0aXGM0y4/sXsw676Lh3tKgvqeR/yM89qoTtXYJ40Qs1wVgLfBzjmn7gEW48ECQ0wWDTS0rzLj6aryhWTBC3FtgAPhluJcryyj/RpHyvAOVysyi1yxIJIkgWll2V2YG1WHtNhUKtgJ979T09sszrA1Uf0mpmt2zOsk5GwrZNMr7PdE71n+l1PZSLBnIXrvjHCAT56nniq2Df58J9kpCeWpPl5q7O2w9m8DbIu4A8ixVEVK/D4dAbkHY+RBfK2GCJCHwJ+AkZrCwOvzEzsowPkSTfBVdnr/ELS6vc/i+oZmfEkJZW6+XLcPRviaL4P0EXBXTdPMzoz/WTT8/imF9BI4ew7kpFRWcEwkBkXmoITHM7En6zYV7L/gdtqqIGkqRqSVBve+RvQjljsp5SOGu7VJFxcn4N0oCb8R27YxCqYzvU4UjEBn1a4Ik54tQBPmQ4UlWK6w4ODqWTjQBsskkpzhT1rEn2IdjmawND5z6r529ZYYlBAtvxjrsIyVSzj3AnbAXt2hSBusT3F+oFBCEz+HCSW9ynasoLsiEbgzMmU+PholXqnY2qTGWbxUk4G0SWqpylJ33jzEdsTDOxe1iEcB+j4Su45SH5RCgBUggIEZ4ms5M9S0kChCfR3oSqur8vokqlQP4xzxwyCL33hqY6ubDb9X7h5kn3ZPY/Gj5wHD1/3YUWF5Dp1x2M6GhPOg3Qzca8/ieYwGEMW+ZrF8ZxzpkD+5+L6y3wCqmDWdgGuw2yyXzG5bt+01iUIF2F9VAvdZVe4dbAQmgRbW4fyKM+nAZeD6OKKfPA64bKmxqrnGPWQ0DBllJBECkuVTmDC3+FrdcoE6lTp8vjyUvmvdhnBVTA1uz06ai7AemR2N3JWB/M5z1jfbGt8p1QncGc6Glzb3HuP1yHtoqz3CCTjn/EhzF30CUCMKAQE09L01OtaokMg26frv8/n5UUpNfaVs4FtkQyCJU/VvYCd/AZakjuXKXpItm4cPne2z6TOeWnfc+Rsu++dLfkceIQGJb8nmzRpk22jh6Mk0fS1s07hyeeCDplz7TXP4IVyK6Yw0LZJsnoq7i9mgoT1YI4FT/ja7Aa8qDJ+v/Pur9LjcwwDEQkttUSHbhU2v8CWcqPJPTVIMRxqyRKlacQ7pX8JzBDq6zgU8mLegi8h3wcP6f6ZZR/42l7JuwhvKCjYvzMEAZTFKuiorEXCuYT7ENQEZIa7e97CUQkeGdtFniexXDoBBvUA5R5Tq8PjYI13+DYUy9o2YW8as1Esnu0BA+2T3FiVoX4MDs/ysIOIqMFGuJx8yaHMFXKgm4b8Q+Noo2Bi/eC6kGG7zGy7PSAkheX6AE8FlP/ozxFmjqvKEnEdrs26hAf2IL+vb+ke2jmW5opazUe0/t6tmliZaK0EQRZYHjsoTWkthmqctDEjTxpkV11l2ZLX4DsKotBzaDQTspZrKlwiivl8C2GdI8Rv8FcF7nvE/NQ7j7BjQ8uzdaGmMmjMEmx+J7u+NR5MkTQT4Xk58+QcEufUOgTwrIlUDKbmr/mRWtc3VvVGHVViA0pDzsZ5PgpALqtkfUbcUzPqT8G2K0Sh1fWFenHcHcGDL5LbnX5aS1ZjH3EYSBj/oirmZkostJLcrVDhhm+78/0POtZhHXCLZ1RxWqcbr+1PprdW5ztGvat6DarVhfUolun5NvKap309cvkGADO72fjY38HCS1q1nwpkLj3BePDPAb1C+uqXQxuhPCP6keqppC3NqcONVy+fe6NBcvkVvFtVivJvcBpm17Rtc7l/zecI6G+0lDfVv0t/lxovDfKoTEcxrl43WCkjhU8hx5X6LvCj2Z8rt1wINcyVKuChW2BpMRQUbjHuK3jgPmqChdD6vZNQgvybqow8njmx1FMC7fcKCyJKXeFt6082fRsdRW9sZ+LV24kC3Dhpq6wOirTuF7IfxLQvJonsSCilXXxPQaMk9sbphMZv/ByQmj/wPNRCtLznuBuaByPcwWNnkk9qogwU1qVzh6qwye2CNNK9xCM3Idb62AR89bGFY5XhgJOapWNN+3xBrI81iuI51iO7h+LkUUAogKp+fyjClDuwsfK8a1KNm75b42u5+wWexzFrJWQSe7iLBm8UT8L+o92rS4fzufdO1H8ocagFKkCO7K5pOVUt6oHZ/hpfiJdGq+SHqPtodBDNXnsJ0nMCEC3syBx1j2yn1n6RfX32VH1uqym4wGuTYJn3t/QX/8AfiffReUNMFlTRz/iY4JhwgxzqOgur9GPMzUgllERvjWGFbA2H3YO+eSHXIDG9/qgB1gN4t47Za30oVq5oAbOj0scIVYsY0+0Vir0bUJYs5876CmY/eVkNx5xePwAGyG7qOLhLgN70Kgo9GenMbZRpPblE2Ktc3Qx+3f+afmYsWkukDX11OqoqXsTPvbL5rsOTPHNrveDw2aFXv9NRi+Y1jJim2IK8PFTssBoaLKEF8Kpkgcktp5hkmYXRT40VJhjFCsI2h1JhGryy/RT05y/DV7Mr6Q24e4A1ugjL04K2FYixGZeI8MX4hs7VN1W6guiH32kBWT2TcUiUODFQKNJHOplXvdqXNvWs85Am68ZNPtTiUgiFw4J8Dmcqlk6+vc27wFe1eNaghqObnYu7v3M0Ek97/CFJfjz9LNx+LC6/EVp+RbeWQD6P+iOo9Z2fp+iQ/jxn16Ux41hYW/q/CaoY1QWbE8obA7p+y5/3gl1SqbLgKds+ovlBym8DRsFzfSG7p+YaF8ovIeoj6KanqfGJG6blx/xuPyVmTEF/GkAx2EBz9c0d2U+rBlPRysla690biB6/OGjgoODH6zozNBpvEslrdbMEQfXpbfqxOAmuibR7pmkSin5tQJHERMK49A/LOFckoeHrRsYYfj0gnFzPlVB0DqHG7/3VTq5f61Aa0UvMnccTQg7KdnleTXP2Tx5l70rRSMiRW35VJnpwhOSV4AZ8GtttukKjUNwkOm1fNinA4fNYM7rhtMjqYBsjFEn/rrXOphhJWZ9XLCUR8Ngnjj3y4OkGD6eRSLSaLu0mUj3KobeFPu1COnw/gqTM8gfdeYEi1WuP/NYFEtfsug0nWchHKTEQgde1x+xzI6ru5C3OCF7sQeT/FPqqm38sCF+D/A5pmRucMTc51OfWds+7YlRJGcDzCeVFnGKwMhNJfdfUyjXRv8KyWzL6BXjbyLIFrXMHA9eNxR5FRMNV6uy+etmuRfKQFTGVUSU8JQ2IgKCY8y1ffPpRLhyrTiIPyqB7JnMBd3HlA7Q3T+tBUjbqsUn2T/l77+sE/7kaTeOjuMikzCcUSHUmIM/elLlPWLK8fEYTHYhzwxq+x5GbPdXLH4/GAbgclvKbcIBI/mjmY+BO5wuUUmW1IGE4NhyTATZrLpBuBOvxqF+oo0Mxk0A9P/CTOr7QrSZdtXjcexCsKgZ8YD6KoM7oP3HGsVVz2MbIbJHXlEYNEq/wYrQQWudPy5QBOHbvUwZKhhXQHIBhur17MW9S/fZ+NLFC+382hRSTTaGAvqSOQRhA4n1qIb1HTKj/XHhWffqJNAjwvOKfxUoCGM9PLoj2svovvgXKOBycLMR8h1l9AcBbcsaOns6GKOZ1RdmYJ4o/3pxY3PBDPQmMr5xWpFmhrlj3gyn5XUvBpvz4WuPY4DOCvotaJa1AW6hunIBJs67mf+b/5oMn5HAzYny8hCFBGe7q4TVSqyrAad8q2r9/a1OOlORtvP206TsHUzDW2fUE0Hc9H6d3qEcGJ/YNzz8xX8nAByPG0O/BYwS1DuuqkHsuVedeFsKziR23o1ie6LiNkWYpEn069ciL9aK331QeJLp4Xvpb+/OTyRyi+hH2ulvdHW7/07gZfI0St722ZBqkv0vm1eSQuamc67FJ/f+nyqQLGANTh/sYwhlu55p6CoTy+8deVP1JiTrd1+uQpTp1lFoFfbRWEYInf4/KBDgwPXf83WezWzt/k6XkLwXw1kFsdOVlcG3NIYjyBO2Ur3z7fnLEZMVZPv6+koRsMbKaSje2tRMRnxSmQTM7TvjoZoJSB36uUAMdJ81SX90GFkKIZuxiEgj7/xtPVyIwOiTgV5OpX59QG9kvyYopQXA2VOoh2ygUHfq/acaf5DoaP1mksUm1BjiH/YIhdo30U0XvkkTUsFTGyivz9pYkdXyuXIqzup12CzxpzUJbW1wRPktakFM0sj87b0+n2BsK9Ebc0SWUWJ68sIpjCVl2KgG5f53kTEFhQbq6z+fqm+zPSH8f8d61UR4sboxdorP7sSQZdXwQxf7pZYSVw5RiIF/vJInJ/56kNwyZznW65Dyps0xG4M7mtYCjCAHoN0egj6jZd07ZMAxcEAE954i1eapeSDDVIpT/fDBPVjMBFlAWHSF9J3oJ8Mx0ehc4gEcccAvtsxxIYdoiSIF+I1eWPOm8+F0vjNSvFH9I8M4bbpODw4MKUT00Oi5LS86k0DMRIbis20N/KVoFprgGZPUdw+502wecIAMM/CFBR04/tKFpb5zU+XCuGI3eK2V2LTvfe2PIshs3sa+LhL4/atcA0XK5yekogzFDBXFceOKMmr5bFimI/x/50u0Ba4fAYfXWYODtezj67Shxq45Wp5Mlz2/nAtw38upqkGSzVIzp06iTbh3Eg9W6BL/Bs1h4ME98FU28RKacOJp2xO3/9p01FrUkD4o5X21aXy/iPmbqA7avdlv0WxlZmB8FfpfLKLtUwqmE+rFQGw9Pp4HZ3OssHfMK+OZcNx5tX1OuPfRagQykQGHvjQFANreEmqy6TiSquwGlak+ZybMTkQwiiddi6pE+HbD3Mf5zTZMfaQV+f3zRZZYERn6hxcZumqtpY2+DH8yrXz6vDO+Mvtc46IyaFO9vBOJOkEUfd/58Fsa0A9bnL7wHaYulc9c4VzdxmsR4TYrhWcXnwIORN0l7JCf4xB86fFbqw5MUjIepws7g5R1PLLcDRNiL9qQQmtf/9QANExrkwQuDV4g++HpIMa9ioZ93nzt82zHeZKMxH6FeTGZPtKsYF6jSxGlK9KJRPyxlnC9ebIkuF2WQAhgnjF0ZJp1S08/D5uOljqaQLMH8TNbITxl6Ezaq6dyp/mw7ayX5HlcKUUkxUQ6/pM0mBlxH7j+XQBNtiFhUVR73/3URCVvXTEeDjztg5dhMjQ8adwYIm0l65CFJkIw82MWaIUlvJ1xN8B8R1eQemMeM2NIMzp9GllNhnRq8SD2OcSas+Kn/m62aHXBolXu1aaqt08Btt0c72hRweowUMuYEfuN6l7SmZVsTAgUhN0fFwRcksnAtaWWvRVS2+EdhMD6rzUxrZYxowpqbQB5CKBhsZ4lxLV9tkDiAlTVOUihl/h2EmqYkVLtcZqIePxXcF7rw0vENnRLOD9ndbSe6EiSGJXnMN/CC+TEGqcBah6d1PXxh15xP+htLiUs/JI+beIDr9nATB/Sc/pBp1h9/fdY4mjz/w3839n7brtmF+CnO6QpfN0xod2zPC5UNRjCLHbXQ/Lp74OB8xOyzejjmO0/An0mqIxGUa0e3AhvozoAtmTZqlXuEOIAeHcz+oQctql1YLVgwkKyl7ewCoeyn0NeXjeWsZUtRRoeBqbASE8DDtU2MK+NBiJhQLme4uRV9VZv0eFxigDVc1HuwmoK0MO9Mc7mkYQiw4hBDy9LHZR/ACVUw44FQ++4t9XFdUiEyfdW7Uwu8SvGa9LlUny3FcG40i39ZitIHbM+zMDms7vZNWBOUuc7X7yAdfOVKpm1A3koNi+VCxVZhtB/ujQGZRkiQJanuLSLHVs+afNyOI1l9I282W08AFz8aJaw+lczKrq6n9f78SuymFkMPoFPue5lbgmaGbVsNqALZWhRr+L6em7C4gZ70QPVUoiLRNPCycpYreCLQVAh9w4GtLzCYne1SfzLInnz2pzHtiXag05NqGVIFhDC6Fnf5Cr/il8N7tqrhhLpZLZlh6UTpMTdsHucO26Kxf1M42LMHG+QGH3noJQuwPUEghtS3t8DG9hijLc4bs5n5huUr3E6PTTDDYKxlLbpFpfpfPofrAxVE+kXMn2kdg60kDwc4swNBU6lEDp79ZLtJmLCybjRUza8mvcAt09sCtPqnLSlWsQOBz+Uw8vZs8VFmQnQB2uPjDSZe5StTNka+WueAkC4w6ROn6JbYsYseKW2DWxV3AWofX51BPvWiT2trGnFKkim4PxUOcZg1Eerebr7792MV3AUDtoxai0ksomMavw2njhkolIzN7HYC0JIYAURhBQfmox8PdZil1Pm9/M6hOoAV8srRMXpc3LopGaylAG2dvMGwo013QzuIKSusGL+1QysDMmYpXiiw3yPbxQiLiA1sCf2IqJ4m40oZzuMYAxWLi4muHXH745kpsaGoUdW46OTi052a0koApc1/LGq1u/3YX9RyB3cahDI8cRD2jTaHdkY/DezV/vOZYkiQo8kKQW/rKXm19beaoTRqizV5U89kUKbjQlwor5XPOjaVrs/tePw82KXOyQVNHSmrS8BWmFuibfeNVSrgc4MqnlGUZbGakj1zlo5cG7K6HQ8q8QM6/riQU7emrVpxSb4XIiRX2JbDe1ZqKbR6tUb1V7OZv+G9p+pkAVq7JhpUI7Vm/5xJHDI/IzTkPl5f5sQKqLVHt+WJOg4bUcr+hccmdZikuKFdsSl1CDTYYMPLDCdJHn+GC5UyqvbsYHCGdNjJRgTZk01NWYo7snTVlGozSsW/hmzFlyLOfhciMfqNxIFcSiGGLHISemocSprn7Nz99z6aCPNq12chXLM/4mR1EcODfdsqPuUstXaCaFM5BTXJ8YvlzrfInphMmjeWIYXqbaIb0dkWE5N+9XDPDcir9faEMIh1cA82akR91TG3IOzjKWtrKMJyTrAa+354O95sAklg5CkgEor5gFXYnYlfxlj3S+WqfjSisjITsgtWVdJTgh2ZAlN7VPC+IWtP5eiP8G0PlSlIAlpInL+12qBCrCfwYWcGGOy4TOHUApT2XZGkzSnMd7kB/FUKgWyh/BwTL1b2PQg8vGyQbZnQy3K0JybwR7ValHHQ3CPCPPyKV2vupjba+bF/Lxdaak68GEwvbImfsXYaDWTCr981K/Ifr4lVvlz4cNvX7SU2IdB+ogrc238XLeUKJcNlT+opbTYLzSto9Vcg6mNmu4qcrQtTLWW0EqASFCRxo1t+dWIlR07i/ao7V1LXsGOiy8o5uusCK1sSeS/eCs1fi4HUO9nLjvSjlwkjMmdNdGfk+2z/3oZ1SdsQ4B6jUmF4ScghA4Sl9VPjoHT2hO8wqk30k2L+GWRXh3FbPhWIBfCtAyeSynzWR+PeYVB+gta6C5JdOJwk0lHVANILmxA/acaWmPHtoq0U/toY8d3M496mLnoiDYTZRYxfyfbpleTA1jcn39yB2cuklOXWJCF2vM9hYYW25ZCYnkkx/3j7kjFXFYd8apz0k1wXSCjWojgS6eO9a6l4kKDux7Hd2QBQyg9EwXu4o8VP7pKgXay3CCaS3NvKXZiBH0GZAkx5pjgyGpmVwgEgCUu3n0R7jlqTgVnWgg7VDpCqsGnfhVXUFd8qKWx+zB/75Iv+ze5JlbvdrjYf+Y6FmhhGRA9ctFZgMt45g89xOu5CaObmHWG6NtR3rphJzv6azyZBuedj99xoYGF6cNLKpQQImhy+ydWIfOOha0jHYgWuG0xU1t7JpNcDvLLMwKW1gj/u5DORHZwXGAod06XIIvaQAmf9p5dQnCEGBPe9Rb/4egWZPR62oz91J16/e3Yy22patljezLnoJWGBJrEhFBY2oJ8MaxBRrUKjVvFRKVq/i+PHVGXE0pGUmX+5sdHPJO3vl1+5jLmChzwQ==
Variant 3
DifficultyLevel
705
Question
11m=52
What is the value of m?
Worked Solution
|
|
11m |
= 52 |
m |
= 511×2 |
|
= 522 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{\large m}{11} = \dfrac{2}{5}$
What is the value of $\large m$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{\large m}{11}$ | \= $\dfrac{2}{5}$ |
| $\large m$ | \= $\dfrac{11 \times 2}{5}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+2cC/4I1VCbh8v/LS2Jq+m9j7CeInjdILbkWiJ1C1U0hTUy2ZgzcrGSm7dYx5rkKblmn/2ptHqCa34lfRuRn6VyvGXgGN3X44hUTz10OjOeK6g7RSWS2r99OsyCel9J3bxE2U8jbWOAhn4DhYDc7OFKWf/bWoszSSQ6gvxtkgc0jephqsJPFXVpCVSdxmfBJS2yQcm950NKh4Cj1OTlj1yopjg2A/4CJELXSJ+r6b8q9JkcDhS6GhHVQloXXKH5gd/4xvcCNJIqn95+QjnA9fFsXDUilFpmoeWJqaWPFJBseX+QEoQIox0srBh4i6xeqqfkMWApfzInbPj40qBAzsJZwXawxUXh9aL6VxWUA9QgAX2g6MjweM8DZ8Lamt8NUPPFmMU9OWEyAsUOXzUZQa86LK9fW4py59Nq0HvYk8r3WOP0M9JPVAuOF5Kag5Ub8Ptv9j6vyefamyRCo5oFOQJ66/i/+e8w58VDqpZRJEcVsXXLgIr8zvJwaSULhYqeMXF02lTomCj7xasQ3GOvjGwKUXBWU+5mzVnrwacBhEnjqXbYIxt2Gday9CiEgj2FSPqUw/hNR/P1M2s+cLeyT8WtNQpBdirkLU0w95wS8Cwp3sU80Hbbm47ZCLSFBVdalyFY5kLApODLIjUbpCUut2OyKgaAYr9hQ0tn0iPGMv5hKcXHTxMuD6cTKQW8MbDK134+SQPN9QkHBu907fz2mLe1y3EiqvGwnVKMj9CRW19YgqKwZDQyyVo2aVlDXlryhDqDXGg4tny8PSjpv7f0fQcl62a3NL1OevVwdWkKYKK7Nm4kTKOrO+TPbpqSieoFSR0eYFVjN+vY60cbYFLm5SVWGtrIBJOl2C39wP4jNABW4r5EE5r12bMZETBpu5e+rfkO4C1JvzKp65MrpP3lMiMF9n38UDbQI6gklbB5iiGsb97EleOQJGCYoNtap39dxEmCX2kevMEDP91yyjYcYLPZUo75h6wxJezuNt5C7x7Sv2W3XuhhKbeokcLaBIJF+UNGQSZvm061rRRC7WlRWuF5AzBgxAysjPRdcDm0jH2Thv3vh1j5YFEFUkw2KjW8Ur/UDO+mKe7xc6lFQ6O54uuF0DurEKcI5lCLQpowDj7te5Xp1xvrnmi0J5EDDSPBEtrO1tRX0lo0Ibq076uf83p9H4ei7yRu/s9k8TBQyKxXWUAJkSF+WMZxWIPJ3e8ay6DZ8NHYOHKX4gbnWdjj6w5pEj/pzEXt7i2jqcu+1xIaaf0SdRFpZcqAoEjK3fdorLdjyqDZ/1XZzDTXonMr2DEslkEsYbOGJaakPYKZS17rPhXO0ZcttibHxfYc+qbnZqkSrtsevfQJVeC7mIK6UYl4o0E5t6q/uwXARGEaGmkOXYHRSZxXlMyB+J9ENE6Plf3pxqtSiD3LkmwvyJVHMhrFT+kYlD/DoEFCqOnZhimbQP8hNiYD2OlXTY0AFG7tXR8zqep92PdrXLaeAXRP/BMNydqNtULPuYjjUffDIngilpIIk0BjTaaYua+gIHXMy31nDhq3XPvAt2e0q9NVYB5W5xAlb7enBKaBglgceNUJwNrZqLwvtCW37I7SCHr7yRVCH0GH3U/kdGcFW1KQ0hWJC39UkPEVvEPrl1ay6c0AJSSzS5n/oFuCdJTcikhHYbYRmcKs00nEkLS1PRNMGAWsemVv2GFdJ62gqhUK4htIImO+MsqCJoOehbhYRMoKR3xKT5YcfMgnQh27BZmZpe5q9NqYb4SdYI53VSF4VQHTKdUWuFnOLmu6h9p1HPyya0ITmSED3D/+A01PYQ88DQFrFY08RVUNobE97/l+aaASQYeXnG+jjS9bSk/rPhaOScFnIeNkU9cZih/37Z1p7TlRZ+sEiL58QXL8zA1HVnpOn/tlFNxGdhdJeejezAL0OFt1t0YLwhLs81NFmB1FF1IW8Vl2OjS2iO3W8sK+p8An9gnROKa9rMd7/BnBG9mC3Vccyt8clpNp0rbjALzm0OQx+NNei29o2mnsSOuJaM2OJTXF9XQplhe/xfbK9TSQMjS7tidWMEEWvAOybdL19cZr42tPGZ4/OT5zQAYPWG1X6/4hMZR9ElNrW3RaOgYZmU1sBqAKBym/AKx9hYP9nI5MblEVjJM1KiQPauj+8eU2FcAZleP7/Lmd0W8G4FqIDXQLT7e82ruIlYcgvkVJiL7RosFhJEtOlbX9S0tjnCNY7rPHAKVra/wNB9iDCZlnNgF3ZVWTknZk6yAcNOhWUHc73pECGIfNU85DLm50qtqZENU7GNkzxezh+f5DmBPrDBAN9bUhULgpXZOUz6AC8adQMlfJji4PKTN2/+JDtNhAgUkwaabbdv9UaCC7JD4OQUOy/N8ZKUlCm5aaFuZFw0/wuQrG+H2s89mV9dYFdJHO6N+5LN/SklKSUeabzx4quYEfx8Ccf2FZOCrpxWQ1T/WQXOKjJdN2LAhe4eN+7sNSOWRJA7MoJ54/zQfJ4NNtbkCoFf13DFib5VmccnG7GF2HrKH/ZdyWl/VJkjHF9bdKLku9pj/o0eLZ5SecBzraSqnqLUZ8NKd9ZeZgWFgvGDKObAPjCmyzRBEOY3zGL5Yu7M1RuJTLP30PLJ/ZddSEHyE2S8s1JZOPR7TXs+ziu6IstneQ7UykG1sWxJJns4QeVfN7r2HkxerEyoVmeSxzQvYL2B8m4+5geOrncndlt9EQEUE+HZsrj6i0M90ecicxkyAa2md9IzWmuzU78hoG+5/w1n34A+W4UAX6+txm7au4BQ55o2DHDKRYwGF3L+Vn76O7QAaNuctI3x2z/sCUhV0qhNJ3O1cM+sNVa54g3DTk1FW8km3mqyE8jvGwPzfYQ1h3a7GR86Xumsaskbhkg+WFg1fUCWvSvzZSFzDBb/eC50LyTM1PQ6b0kMl9dxEwiBABRdrY2eyope1GdMUC+G76r3Rxs6NNcT9LCZ6jG1bz0CWjo+6IyUO3fIueaAzDF8WFKTzyPp7AMY0BBq2X8JfxMMCAKV605al7QGI6CUnTp59eQ6UkTz/62HmCA4fU9mIWFW9Bcj/i5wRN3AjtDEQz7PTmW5SB3h4O5qkds9YaiQ7Z9/cDwOL/hbHv0kisDcPSG0u3OBfSbImBqD4zS60qiW2Aoz0PGVgjFRh+J7+fVzkFm31146pTStOfi9JPC6B71/zwhJD9aUAZZaOaMjKr4wH4id/EzoHumck1dtVaqdiYrsTezmL7a0hpjh/LzzvNZIrAIgOwuWsAi8ynAO2cXMcq1j3Ng2vkl9BN+1H/a/3ec78F0SGnqc9rE0Ogu3F5o2nzMumEerNipqgVjfCNEXP0ascB6CvAENy5CjR0Dih8kqgQWLIH10GFVQ3jw3QEM3orbT9eZQfbk7r8y7aFSd5eyXBf6grP4BMvcG2nHaLcrE5OQgQEjhsmC7L2XMcnXJN1+EiVQan3sZ2SSjjsZAfxBH+j0krSuVDP82+XXYVfU5b6RLwTK6BfH4dc9LSQ1JIj1E8BJWLKrlSAf+nMGNZmqiIGBUIN6gcgEZX7WoM+T5oaONOPSBj9aZpssx2yktna54HFgmF/8uueYLZrs8CiOoQY3dEF94EIrIZB7brZIcUE7FJej4VnGfrtZohDigRbe9ERKrer7y3cUinns9kG1AAcI+f2q9zlVJBG4RmJtM8zVNKF/y+W/DnR8OiS5N7fRosvTLETfv24oF6ieMR+CaOmkNcLZKUIzAOU2o5E3+Hhx/zByLwSTapgpIyWxe391jGK9LOCuGnVmklZvLIFHAIii5gCbFKsNnhUAFRl7P792VSQWncghB+rGT4uk7zPiJrP7lr2apWPF72vEDFxFnJrpT5Kq480Ncq7C6AVvyDLU1Rwt7hWvj63cRK/ep/tLQ+jugQs/IUU6ne6Jr8yKHhMpRQ8z0idqlzZjXrhXof63wuGfuIz4fO0uQg56GfKE0XFzzNYoKaeKTOSTD0UvVJb+leOWpduqtV/OZq8Ra8DSM8LZ3BwhBSwx+Mdie4O9l5JW0+VNFpZ9wZQCrS6ppmYIMNmrtXw+v/HtaogxsPFmpKgvSfA711+z5FfFie3Mz1JCuGH0nvasb0WvcDdAX3Vobqn27Gsu0Ftv2DWNiAY2ckZTGuoyu33aEYi22k6VORbqpzC1vGTaav3KkhQL/ikvCOKpl217e9047PSX6njGRac4JadKZT/EEYMrCvlRhaxvjTrrUXSLrcEWnl4ntsUeI9dtdvn3e6+OkPHSJN14ADRwB2VZ+bhad7KanExaEYhq5UBxw9izKe8PK5Ic7lCekNur1TMz96XzHsPdJ2Jyc/ttDvnmGhdheIaBbAsPUi7Jjhi0Tqqzyjcsxx/PU7vRd7OeqPLq+DHRF66j1FvsMQTUtgJ8wkscAB6ra0SecXfb5vbkkVVUJWCRzd1x5RhhCteH0Ggtu/xarl9eM4GxjnK644j1p7A2EXxoAv4QPC0v49z5kFe60PEKYGrex6Fh/mP8lVwFWaJG+6yFLfZd33SOk4e5EKY7uhAYUicR+AfPwxRWrwF32QL1C5nCwN7plEf76jhDlCLSQKmfLIZ11BCURlkWNpq+0fZtsV9IW3rcJa3FYjwJf+G+M0PATruKwjuYOwJ9zh/uu+7IUAVpPG3PynzAzhWSTSrLG4+8cDIzgWxnh6iabw3SAQrhCTvSAzDkFGq9aImv01D/xkn+0EkgKNEE+pvqHDb6/6iGTOISosDHmaRCzq3f4gyCsbnFnDBw0S2xrGmteRdPSYHFvQSrjiIKwYH2x35yRPgt/BaBYXfl1DkdAmuwDlLNvGAN82g3NDsF2/A1M+XxHIk5Icfs89vUKZeM0CZt09zyNkBcvc4CRFKTvaMB2Q0mNZYJlDlHxZMHcuwTF+pdHya7htSkIxzj8gNBAe7f8XSCq7YbwNdsARhoDXPenZ/fOSi8Iq3AiEwaWhDUbX9dcXr8lxCo0xh7mwnXUfKpt5N/uv87RLEOPw7szSfS7c5BDQli6/dBhr9t0Mmk52p9/u5J8DIbFzWOi/m+fEOlmYC+/VYNL7XfgL1j4/3aKE5MXp77lj0E+VbMcfVTRI7IOQ4M5Xs9aWxGs4ApELyTIkwJmDXQCnvB6+31wc3919b0Ce1M4WnPcajLzra+psbw3Fg7cLhiwlZ1mYQpp50nEjNapMNpsB8x1Ztoo5XojlvgBDhlT8kq3uIRxsg8ha0OoyRiskhW+sik+oQv9iaveFE6P04H5hqkMmHUplqw+ihn1che7OiGV7JBVAzZlOOUWSIDBWSc3/EI23u0KM81qvIceDZom/yQrqm4gdS/wFHLJugVMXlGERYp+YK+XllF0gAlxuMHFxrINNulYL/kz2H/unKCpYzqwyqJ4e1Na3YBUAB+8qSDDy+o8bgySRLXwt2sbd9tmfEyFY+oJ4dgzAFLl8xTwt9rtC/Se5CtKswegnNxpDAhrSmIz7LVt7gUEVmMVjC28w43NYTjwKDrIkDI3DGZfSDoyoOM758H6yrhULcFzCquqUwTCZI4z9rQB9GOX55uCwQnJITx1DwkPGxoWbMMrhf/OSseex0s0vDUyPfivanZTQnftnqfeuw7U1g7388c+VKcSTEpMti+fXYrxC6Khhn2cuN82ieuP4+XEC/fU8kMzJOrRzwieSS7NLAuZ0ds24oMJ8xC83PFpTnUOoDyxKxvp7c74lYgL2Q+p7en6TFUZ5brCI0p55XS57LErYrGJiuur1M8QlxZPeunqGUFspnzYcQsVqPcqwhQcufTTRW7koFqU2Vu8S/7IeKpdtR1oEBs9gzcCkvfq8+8n2v7/Iu7EYdat23IzZrnGZa0HsTQ8Oeih2yz42qgDLbi/pWuvWgEpgCULBeciwek6BDDl73P8oUKa9pvI3Jqqt37Zy2KG6XkjFh8kIara8iPxgjrmJUeAzJ8g+t0LEdIZqkZrjUvpQ1nemOjLDX6edYJKb93FI+2hG2dgiToocxsLTiZZOcyJ08pXGnypfZ8agQfI/fLvCJrmhwj4Zc2NeRNwPmo3JFS+9iCikK+PgFlgveUMTNggWkVnV1+qjHKCEKX0BBXYpQXDmwAY4mIRW7aFdaamWkpVF/bDJ95O45Ow1wtG/xIUiv9vazF4IMgxhg21gk7wiIuq1vRURr0D2FSlFdDoTFUyruYpJFEyU32IbtM2GN+FqN4LNj5CrMToppLoCYn/onsMtGwxB2mQYJNxBB7CijlrFtNFg37bKnMJLFQ+QWbHxd3+o77ndXNO1vNsIa3Lkbs1CvA3JdYHeSMvyijVYqPhuJtnkrS2UcqDna5bvclWylyGqSHCk2KO3MTjpT5gDaRZ601mS1Gw7/A9hvyfCl9gh2u3BSElUstgw7mv8FasrfDxauTIQyBit2bF25bBVcbvfhHziXJE18xlZt61BG3oFbvb02sdKfsNTIY9t6R2DgfWTCnZRM3dr/XmJ0UZg6/Z25ReV2mt68gXu9MPUi/aW9QNR9dYT9kqX5RJ4goXczpnsNQuypH36/H3cf9qMQFLdWCO+5dh4ELbC0sT5sn3D/wAIYZ9y/clglayzGK9ioGXxzZNjhebIhAX7KUG/4kwSVDJ6syAMnXDBPBPswruPBMUEPX6+oJMD0LbjXmoBzkNQY/d0p7f0x4uknw4eKCJjSOhohP1DRMgXRIJIFS+lIxZ1XZd1amkPPNWX2kKSf2v6z5Orh00lUMdfGT5dKU0RCDEmhnmtKomVRpvDh5fbpSK4cWEtMoYdWZtTWpRX8pTU9E1k8v65U3Lnq5lr84uM2zY88qg15f2iEnEkamxZ/gIOSZ5yurH7xJiRhkqyesVVK2K5d0R9HfQ2AsZOaTzmsm5XoOuj4l2iwxzctv+g6Yo7BYESqrUCqxIs9BDVa5L97BMhbGtJEXsdeU5jaOvcww3wgJttEnMU0Wh2URvHMM+kHc98z/OOOnMK4vYNKpCp1i1bIPomXkd2v9XhCBAIpNMbEZ/l/RFm8ZnuRpw+dMAVQFpERRa8XUn1CPJBW0RcN1xqeHPoW/568kiE9dCxkcJrd5tSDu98VHpqw9ZEQTujkVlcpXs91u+kcRfS5lJmXPfA/2QX4G5cFAWNg7Eg5vDv6cADYdQIuOYXKQx3TG8BV10FuJL3T4QZhBeE2OxkJo7pkZ68wg6OqRquNL07Tn89QG4iE+HABIv4pdBays+kMuicPFVv/fhh3Xms4jAaRJsTHI0W2TMB85cZqvRKIA33ggySHb3w+AQdMUScFpEeQB57cC2hBXQiUaNZtOFm0OU91ylG+cCKZSoErbx8C0alumVFCga+7rqNjg5ZoVxD6Fm7X7Ijyxck2cOpazYIVfzUw6VvEz1JUfh3cDrs7Pe4kVgLSdOOKQDAaTSfPhsSoKeY9tvS0emGG+ccXL4zlFAy4E6SpKOIKx6lKO70qzfBTDq8/soLscJDAAWoYc5o6A4oPSNKPiRGAqe4NLkKbNTcjkGTAajPyamcsX67+vXCoeFOtmOt8mA0uYzNwhV0ClDzif6eMbNKhyfgA0H0alG7fToyt+HOiDX75Mgj5d3BVlxJO18UK7K8WYRlQvUm2JSfJ4yJMQUW6rOErliZ2w9wI3k1tadW/ezZU5pNskZGLLG9pVFC9Ft97J25WwD7u2Lo3aW7ZV1PuNJMs7gFxNfUcK3t8zw3y6ZAdNyV/lwyfPzfIw9SCsAYfUuFu6cbGKtFYQpEyq5kBx5aP+r04XjgRDgqmbQBDNijWHUaP8GniuxOwi6bEAhzRbzlMymn1OA2iIbxT6thiidvTUp3U3PI2ePH7wjYYdiu0qNBL6OjWnBjIUW+sfM2ow5hE/tF5c0b9X0aMOvHm1VKBgqAzBvv4QuEtkpnJ+Ha6dBK/oVlG7/0KckpTNGKJ4FnT1+/dsNINXO5htbL28oyD6v+D50nSvCaHlB7uKedfd6nDzQjM3ogdMxGBw9pcZea70Fz0DXUeyQwo2VGDkMbL3GgXQaQ1xibAIfeexO04ba0EtWnwckmMYACJnI/kww45Fe1bdjG1a2Crx+/bdK48yizlUn+eZP5amQH3IK1ukU7vhyZbZ4tZNF9lP+A3blzTn8Ze+jUHCpC8VECuKrxw8BJlB8FxV0gAxqp+XXeG5dXESQUL0TkQMJZpPh0Q9F4jndhOHZ4riS52kxgZB/PFY6v7J8m3VWJiVWXkDBSKGdaKMd07b8Pz3YqNl0V1UHxJJTnek5olhX2AaVFfZIYhq8nT+fYm3aHJv6ih4F0btoh4XGJUa/FhdJBMiKMApJsFycYNwz2w2kkeiVrNk/HfzFWMowKFLC4pfVXV0IlHAGW85u/Sow2A+EEHCsVpB8gI3ZyxiuSsypl0MLSLoZVygFg8Ym20V9TFz4SoZuf6QYphCelJciz+wawWvbNMZjoDfhiTe3Y8qFht46d6X4cpwOPZbk+7FAE9sFokpHYnCqG/EX5g9ctjO3qZ2SZ/XEiXv4W4oYGCba1SAZgpXaFSKeALT94kZEcojuRmKttam+g6lSe05Vs+sWB/KO7Mi/UqeHQqLaXwOlWqni/sxxdw+iK+h/hj+pZNa1cg7zGqV103dkIUt1WNLuC5EODN/9T+OE/D2qnO+KIeXYSWMIjP5X5LklxjFSugisgwT/nB1NYN0pV2nJWOpw3HwVj8CJfw3JvN0xq9/bjP3zC3Mcjrefx38YuoGakfk/UsnPqLv+k9TUayvl0PJFEGCQMt0PgP9yUIEWS/0koy5h+tmvNqsxPvm9/O52ehIR3sYCjbEInuLDYkOqa1hQxBo55IqXge0OZGKPijodUM59nVHQ17aDWsKyLZavXrbLT5t+pJFKjthC2OyKA7v1BzPc92++BRbl9VoLcwAD5/2Yh4xMRE3uiG4QZ4XyBen9FV4Dm9HACgB6flS/7EOmLHRA278m4mSOuz3JD4eTGzGX9lSrUhZmkoTa4nm2JUW/ZodceF38qtTpIj0jZVIJsDvqwx46zut3srAet+Ck0YOPfOMnc91N3EbKVxOoX6XDzFnt1IAcybnqoN/wUDJHH56cuyE0I3ilpFspQp7X/0zP82Hbi6XQoAuZr9cwFDYx4WWzvnSTbEogmodIRARi2VdLxKxt/XI5ZiUFqiixIvz5pEKe9S4X5oYpl0008Zuc3ZySemv1RaijMH1PzJRMRPhJYhPhe3juuzlOWD+Eo6gHKxvxZ5NuNlFRIz8P/HACYbcO+NTJd0oHbsGcbUyJqiaIxx7E6pIP2lUc+cu3dgo0lpLdXLSfkmWHWcsOYYq53Y0M1LnRwX3ggeHkE6HGme/3eHE6HYZrzMXrqAN0SKDVAiI4YgB5wvriJenaXlskuewO47BExATYOtrzMV3ABnCYtnCKVTiHHxnqqoZNR0wnJW9rXNMNVayOXeKAFJK35quoyqvotnGWcraQeTkfnhVyo5LouY79OwhfThVQJKtnV2XB+eGmRmeMPloLo/0Gl986DVxA6whiMfGMI8c4tyUuHKmA8hB3E8TkoFn5IpzNmVjX308aQkmZDiZbA/8iYhgGgel5O4BFEoEAxGoMK4GtoW20r9ir0BxrOX3ILIJf8VZJu2A2NTKNLXPGhXZwkwwfCD4+enLqJ5j/GsCbRBJoqvUQryCLZ/imWsVrNDMYJ/zIRQV63wkodEklcOFurxAsrJ5RlZyWz161pIy3um6LhHUB69q1sWL+asBZNv+iqpeg0isj6LIG019S96kBk9LOcPEShksdK+ripLOQN0eKUOag6tAAu6RpXZ2lmzH/nVEgOoO1so10jPLxenzwLEGRiXo5Th5jEF9Ltqdca3eaYk57IqAOCozIUvqFVYdqSA+JDW9dvxjWEV6J8uFy+gPy9jQF1bPbqphrtjKT9ogCZeSpY27EP8ywM/AHP8TjDTVuRV7hevl9jUazv6FbKpBdI3Gdx1lJF21YZ6fUkc8Mrt/mk8MY2ePnis6h2U7frBBZemtk5xcOXYDhTYNtMiC170PAvMLy1aN+5ZXijmrmr+n3qlQTCLD4Uv+rrnYtAHCFPG4lwn+BZkBY4zb1pAGgmZlb6Xf81oKoU0n98se8UBBbW/Lhwc06nu8kQHeNy2zW4aHzCMij/miNGVhidOv6Sc8yhrfcFe8bW1DHNfLeyt4x+6BB33SHzD8zxkEgmDxC1lDQf5GNVEisMVbAF/ZdEa92j7kYlnAqmRosGVJyr+vY2n+rJPlh58OY+NRq9Da1GeJyQealH6WAX8A/R1S8C+RwpLLvD5Z7V8duH+MuDNN9OWcmEjE3EJxZyC/1XkXD9Ljrd7ZOiaVoqqMsi8xHYSYKAPtKAIzalaExi8iQRmaYuEgwhEnB7SNHSsZf9lp0/KzyvZH3YpbAfXvpovcJhnuo8PIHEbv58y7YEHqobusE7i6r1b+QQi3gxydFzp+3q0hJ5qnxDyorGtxvB3MwRnl1/4GVFg1GbnMM3vGOvpIqGEE2llR6KiU3xceBfGN95gN+MfKAOrO1GQbiQZdD/4TPaIYYxH3fT70hSgj6JayA+3CRI9gJJtmzoSqqIwBABPKPAVzwKGLPZwxT29SY0ojHNXU3NPvY2I0OWAb3bVOhY48q8HzYEWJvkUr2Bxt/6rUmAH5Ce8sPmFdQa33Vpa3qgu2WuKVWdfJ1zdZocPcyZzgsk4TaKFP3Lf/dpSOh3yM/qMo8KN18BhKcwBwKRGxZmGPSCgP4jvAkAV8TfphSElWSRBYqBGhea7Os4o1p2XO/uoxFI57KFRifgHEfeFMKwLVKDayKv4d0nCfQu5qzVMh3wdZxvgJ8iwx4MhQ1tXc8D2LvGY6eUAM4o+zpiKip+4hp5kCNXiIAkSkpqQD32nS05TvzSxNddSEJ060DiZj7FoU1KyvrrsNY8PpdQvRgBnG8mxWz2HAOR9gF1zHHliCE8hiNqgi0b6iTw64KZ/JMUs2kj/w9geQE322ieF3eaK4CyRtXMp8/svN8t4s72zDiiUtn94bYy2IgkWx6eWyGyzyooe/5srTtLgSO1t+dI240r9hZQ9tjoa/yO84AN0Q8s11oitRH1Wr3p94+TWjE6/kb7Ls6f6leLqQwyVUxkX+SWme2jfYzDV+njdTTyOTM1BgwtfzESnB1sJvUHKfqyEWWwxM1T6lyMOKrB/cKsu86xmB1bghnuHbrT9JTzg9s/eaw5ptyYL+Z/D1HgXYLtwlSDW2QPPTL4o7eSyisuv6PrfNYo+ycq1OPk20/8YLEDyisBGymoB6nTYgiyIOtRmPDErf+8E/aPQeb6FMIzEt0T4hRaZxkkr4d5hg1FVlduk+YDosKtyePl5WID71dxE6tVdbIZcAEJaJF1Zqh3GUzT/4ntiKuP40wQI1UcvDM+QvcajfaaYsGan6o6pU72GhpFaA1Ex3WepeVWCoIKiTTjLle3pI4g5ufRb49GSPkql7datTIqTd5ZWTrBldtz8uRsf4NN+/ykbmz12ce2xbgVGckRvTgM9CvVMrU7GPqD3mgdV3o3IdL8gI5dN26ZwVQQgoKYUmxRcqhuaAW6xCgDGBUuj4cjcdbTnNZ+bc255BHeIex07Dt7UEA9e7f0xIe4tjACEM4xrgsWCYzwds/0FPHLnjiq8YzoQz/xvpWXO1PNjxIYb5qWbeQ/c9OZx+glD80iVhyFCMZh7NG28E/KSROOHvZJYHuPBqK4NmNfTVs49RXskzGLDzAFnfF9SQAZBVffJojEyDmz2jJpezVCLvlQ3Z8VVdDGKkNl9cahck20pTSW7b5XweIMsfWAPcg3CU7KvqMEyt7tQykWTpnqR5Ajtnj0GMRVZUKmj/ritLJCS3gEvlsR01vrcCgxbGt+X2Ssj1wSyteHsjROuSQZVgnthDiI9Yz570gQMtJkLf/NoHIkSPp0KaR6Px25CJ815NtkWKxqn1qPKdAu4hTA79Q6V0Y/6pN4aG+DxsjfS5Umw9XjV3nDSGXtwwNXe4AtncM5A7CNi8usRWy3SKvXXze4I7x8zbChOg6fg761PC9DoeDBnK9HxVm+4lgePVJ4tdso6q57GYK9fp+8mzb1vngMj+fPry/SX+tFNZh7OzIor1ZtIizEXR6hyjbKqB1c8v74NK7OFMKfs/kUY5e0r0t9hh/hMaZFo8ejjU6S8aMawQkjQ8g2mBhMFROtyHyuwQFfmomuW9UZ2GZAAchmZq5SguUuOa7dJeTqaFRhTrqDT+7rWC45kXRAGr9xbNfeM26mBGsQcOk5hj7FDaY2qZzJOpd1Pt2Fp69ZaM/rg/pypsJw6+mtgdA6fpkS0DBOJMaWDnyXQSqygezMeFQSmg+g1VLKaNnlm1zRHz8/DSNITFzBnYdOUXoRte+h9V0fBx8g0k+/mxjukQnYGIOaRrdsjfa0AjCeh3Rf6aLrRhWwTIWZO7iMk2XN+eQMHKMpJDHqLDu9jZuU2qO4JMU38EzBaZqWVO16OvLvsrH/LkuCf0xQ5Y02Hk+lJ4rT6C7uGHUzQrMHT0NyYVf1qXiGpA3AlbNT0UkmqiQHKRGacwryu8UQKufTHWEO+RDKm5ysPEhvjle2cTdwxbXmE/O3OttXM/Hse02BsetTBEPfqW1uyxBtPL7k7Qj27/hoImTG/Khdd2RoUJf2GKv8Ud0S0zLvwc2XIBMdptC0+Jf4YKkaPS1UCSnf82NHiu+V4qDfKCjqfHEP9Z+BomSewK1f/uerpmPmQw7OKO1qLMTJ9DoWRmTaaZrH3+XQFUs8bd+aZTmwaV1ZZVpSYGXUWOS1aLgQH2YX1jnujU4B0+4dHEhzfBPG+SDbd25lpM3JIxMpUKdKNlBe1MpGChlEYyXAHAvrsi1/TQvRDnR6N9j2gCWnOMqSwcKnwOg6bVpIuFZsEpwbz5fzky31rCcufmSD3abi4DC5blP2dkqPJX2A69EDTdbXmwp4y2pgJcipECpFwJk0kr0BxW/dB7W9La5qQvq+Sk4TcMZ9TQIdZs4naZ00uJJdZSbHhcDAa7bBbjibTgwxmp0Zx3ZKyf2NAT/cGCwBZT8jkgSnGZ6LTNDbUF6QsNXZroWhhL4t6ZEq7cAyH7eIT6/omDfduAUeE5qdTLifKGwjjVv/FXxGtlsM5QFVXcgw9kk8eyIvSq7ATebPVRgJMczwfTjtKXzj1MQtiWNv39vAuUg4sHqA5POYHPXwZPjcG1JdQpd6IblsIMQcjs70ICdC/HB33qp0f5uTkHrXgumVpONhb6WeA3M6h+BFjipCLYqDyf5ijU3a023AmSIzAVD/kL12RDlo1wHyvmTVPPyJ/95lAj/9rGOOi8+3+UB8EAWxUDcc6bClHHzaLQOMqgIp8TzcyxncN8CdD/m1wuxcneYDBR0bYvkmbmIaXZinI93faDJsnTTTyDZUOAjM/IkqAFlSNQAxrw7VqIo5v+UrkV6oLaJhJGbkrk4JfgeDOUMW6ay2D+yd8EbICxcUZWjXzoiwaKiQQrzm/oPf3PX8lRi5SuJV/Fu+nKpPFna8B9NsqMKN+aizL8JGl64l0T7b16lEDLMVXsO+3+GRRs4RG4jr1CCocU4bOQEVrrcehwiNYsWPEj64CwoDVSfTsZ6I9UpTNNt+/RkKiNmXShr7bwPgUNKcs5wMRFwY8tgmtg7ArgxFZNSkUSRsAKaWX+cF6sfeIGGB4BjqaMfqOOacB5rkM74YQ2R5VoWKu+/uB2FTaeIUL9sgiBCWc1IoppuOF8UCNlFqLDihbvu7kXvkuuwjRWe75CKHvFtWt5CsSr1VtF6mAFNmMkARt9AKQYK0zP7a95y5PhK/wOxPJaOpyPpYpk74Y+ULSn/kPSS4Gw9S3OzfWyYOF2kKRXZDfdvlrATHee4n6b37Vve73RpFv9dCehkRSmFNfYhIVLbyL+ZR5Y78SCZMzRLJGVoGEnqsuR5lNjkaGJfwl3IsG86f+FZye/afjXm7zPz6QwsXX08Sl/st/VNssSSsxUSKUS+70IGlcbfGJSx9brMTg97WyJXsztaLrFmL4Z1n+1zy1vLlZeoI2TnpkhAOy1Rn8DTQT94jbVnAyLk1G3VKbZPLPt62rKEpOMcW30BPzD7CwH4TOHZ9wuFgXbhG6j9H8VcId6oeZhRVThViICmHzzKPTfZAD66hZdjAIEySrTRqIf2WQCJQilPEzQsoeeMu+qcV81e0F8O4hDuj7jvrepvLG2nBbP6Cf6v/evEha9DYlWdh0TEzKkjTQNa96QBAk+2RJtFAF0qH/E7BCH2VmxcDzLkpUJ4bYy4qMsi1sULb2tzLDSlF5Dohz+tyryIT8qQz1pdvx9T522G5oB+9gCbT7GGReCSZjn6AntrOguY2Skv8z+c0M0DmWETKgMUrsUGgbTqyxy6PFR0hS/l1w7+gWq7e3B76sjnAyi8s2imKVzNv4wvajoluEip0+e+3x3AxI4cgfFDQSykw+lI7w2NeATEFeXj5xFxQUyHZy1eh2l0UApbojyKkJsGcNWKnW70aU/18lbSgz8Hdiy6Sb66FLbbwGb8t78z/NrkgGDXhLpq6aDW3MPGz0yU5uyWwHCceW8YGF/xFCVBmyII7P1fOFdRxslVPFMKhZi4dnEnCql9QylJa2xONtckzrZiDy7ygAmdlQlWwPq5AmQYltuinpBAW/qQ8cv5Ewfa0R+JqNRPqvGZZHhl40TLNoFzUWk/Xmw3XSdDP3WyLhbSwYGs3h1Y4xam5Z4kBNh3tVRD5O0aVQ+k26j8dEmt0ma7WbaCdRi/OOetqvz9O4yL1okglLv3UKm06CKaZanXqP/6sNrYStGkVrp68ysSlYnvh5UfPoeRsjGNf7wHGuOTSViU0m3q9womGJbUR4LzA2cNt8wGErYbr5dkT2c/HJok9sPEUFu7ZjNTGHQW9aQWa2NwZYzdHaEGBU4J6n17/DzXlaph2EnCq+V4q9YEvSTtrRtvf12lx4XYSeaVFnsgw8b2EFuz58hyj8wCUrQtRs9h1zWblAJT2iozr9CnlUqNk5C4DHH1EHhHX2iwaJ2X1KubrfG7q9Pivo7oLFc01ub1RR7JfqhlYv5p0FUoQt6pzweVBjUUJ+S038U4tvOx4m+UhAy+N/P+QU03P95E6hB256KS+FO2xlRYT6K0acJq735Ab2P1IvcPqSa1DWMutKc5qBkHKJsu4MsQm8p8HFzNB3BoqD1fz0BCx4Cd4iVZ2NcA5IqnuvuYoi7ttIMDLXDUm8/OJ3UUMAr0tNYvLYSiAWSH/d4HB6CQIhJxkCBL0NZgE0aPuNiwkMzJHWrWURzNkrus7XEkk0yqQThfVGozO5DuKdYJJXUnAqZp0rhWUjdrVbWRUKQEdBDTeIPzdIOMyhxBPtw5FPv7mQ6/GeAho0Km4pFX2BnTdrLklRpIiZgl97o+ilFxZsSkzXXj4M7hzez7scscte772u8ayj4550XgR747xIvnAMfU8qH5rKSbDj5kkY855NeF/UJH/I5oaaUhgj6XRh9obWH5e2C0EXrxLzP+9arhosdjiZUycutd2PgwIBOFfbNx32972HK5XIfvPvfpHVymMe1F1WoUGOKDHVURq0weTKVy9eJDfoyntAhBr9zLGUoAiu4GcniYpZkbIPcdZvWwNW8LiOzgMqHGy+sqM5UElUM9/Gct44sQnZTe3unjPM7R4U2aNV1CwSO+12JoGHXNxa9ce00qC3T3TErprfxajvhTKYyDS+WL8Zz0rBNLhXb8mAg7ZWs9rc+44ora0qe/qAOrJ++gjPRtamfhvhL2o8CzCIxq+wMNcwE4ZthepDs0IChaoKVLSr+PIostF1/WrBKL/LlFzDhny0iSFljIxhkkLpQvVjL1Rq3f7WgYns7mPmMMdhpAlBN1eiCftZXUu1FBY2lvJZD2OtdyOCehDxYmOW/Zh16qmHBmUo/3aSZJefoEXDwy6AVQzatYi36GpF+DNmtVYsz/KeGS3YObJH/trjNaX1uaOOP+lKapjjkNPDLwU4/lbI10oK9XmLYJW4b2KAlnCH3nBD7v54c/n8G9UzqDKhHn05BVdjNG9BhTVrvemIok2cShVBM7SxzqXYVKxifQcj6AFEOvtgCY8/cqk9N6iPPKnM3lZFteqPRzncMacRy9PZB5pXBY4LxClkTWljIs/7teAnBFnou2Su15a8KHZkZQb4lekBmLrkfXthWHms7Z2ZqM/nH12isC/5X6ohhQkqXb/LBvSMXkAONshoQ5SlnLNnyQDI+A1Vi6lnhq9g71WrGeYtzM1dMITF2CcK5FMrH04V7MM7QUkT8G4+2n/uJZgkN6UwFaROyaBd9JMMhywnBJDdTaGgoR6AeY/VQFTDFW1cTkkB9IvFjKTkgreLlXMOHaTDLrm8TZG+jDobGT6CSGFVqMKxhSdB0ISLXMCofUtg3qyznuZzXR29JMYUhEnAy+7FznxfJfpXD5AlWyQhUFiuh2qOAVTXefQpxlDoTLgdh1GJkyikIU9gdgFPbusTgWBzaJWzj1QAFk/8oM6oEJ4PeplvaRiDvXAGFJLbdcZXUDCn9OnJLoeFZT/y5LGEMZFv2lH7qiOXSfr5zTBfclZhq6rEEoHjp549iN5Q02aswxLiEPFmh6arXOBKj+J3ev5o/fN2qpQpzDQwCPyaLVJ84uBG3eR5Vkn6q8Ay5KyBr3U5LEYm5ksK9dBunJwplEdmzA8toSX/L+PcPPGMq1bZ6LKl2v7MruEIAGoE6ds5wubO5E7Zn3gjoW38ROzLbL/1UxJvUpZMaCfRK48N4xvDJrPFW3mIkkqhvIFuwivdIDyqevcnKeWqBWbP6lJLU6sTDHcsmrMDYCk8EsMbKIQLdfO65ectrtH2VRqNODlJ96KBvTQwOFV/Zv8G9xqhhI9znnwkP5HpGVXgb/hxK/Gg5lw+IYl5ZnkrbBWlXVFki8oiiuPsOFFIeGoQKw5Gnc/kK5A9shLiIxzoCBh7v1PN+jYTGVf6ACrtzWqask4pSayNPYedFNh9FnTA87ms/F859tDetnzpjgd1ZbYBpkDnZcLkh18e2R4quwoTCN7ix5jxSB3Z77p09Kwi8qn4oXjvHb8ihYzCvrz7boFlZ/pn6yGwxvzUmORrqMGJuoqb1ci0Ns7K64m24qgTU/Yxi2w4/2X6yhBIxtF3bEQj9F0knTkd0AuTwHx8k/C6X/8Yj+iiR2pWftw3DdoSyXeKalPTS5XBYxMxAlwbYtV5coRZfGvnrs5412vnpheSqnPr8Oja3wMg56v3aNXlEYmBsEKxCF/9m5GyxtsjXzXqPWqwEhshurk0vK8eB0J0BN8vngjamqkudabDKguNHeOoDbwV0bJDlhJApRFh+bNEHra1WCRV7So+JkkTvc36wRqVnpk0dd2BJJP3UzwhmbKmkVOIC2gB5vHwt4sDXSNEkgkNrFWaWNDDv8NO1yz5GuOLXPZAQkTWo/0MYa8RYf9WwssMC7nJHRUfgCy5Uf1wCkDQzX2cqnzrVhliu58VOCP0+5SLYgWl/tdoBdbtxLtnv+a9dWHtywun9P73iTYk0FHoQpzkY99Ru05ZL8aeHaeDJT44sYQjOSGWVx8+ph3qon8voys007RlE/UexBMsXNSAUkHgdtyDbMizAzitjnO1ZGVJCt6A1/xH0sKEKpxWwWVpD7QSW7PE1HrOqFHbdWTs5MZkCbhJHftOFIJq+jFL2wmIkbyZk4mcUwe6NKK53gr3O7jd0Xaj4RKEk/8OvlmlUHGRbaTNj+1vyWHn2dQL45h28oYxNojei5quO0MNreg+TcbDsLVzoHX8y3Gkbxw7jacITNZWTY9llcszxjPoCyZOWTQsjg0tReRV7Xeea7dtplm8F03USiz5F9SbbGR4h/Ra6a4qA0aC3QHVzJ5QXRl+Tnfu3TT59tR2lwevOjM+KFlH/MpmrM56dVnuDl1VnsiZ+OckNdBgQE4sDd9GbcX84jW7lyjUKkXMi1LMmM99wMK4JQFTtoLcRVQ4QRxFfC3U7zrIXOYbeVDj7shLk0emQp/Ot3tyOQZ+qbKPlYTH54DVzBUMgQOVwmouVbOZoYuQS6I3cGJEeYMFlnDKclMO0AJLoDLcpj+1pJ+vih7199o1UhdPySY7y6V7piRwP5B08Y73y4IgkojAodkJQkKCvU7XjNUMdp/9EgzkwjTQ0ZsDPePj8MTqqnRvVZur6dmUuK/8hgb9BQOSzebU8eT47CfJaVZTK90fmrtVxUQ9Tq4/JmOBLucZdlJ0ajVjfLtHp/8+Bp5hCa13kUXcgXL8a2EBmJ6OY9Wh4ZYN+qGY1lllxDkr5jNZvS2PYoEcSggxl4D6eCe8vhjqaw0KqfLmGL+pZlYoWzzh4dEFM+x3sm0Cb0e/NAU7HKfta5bsVGLIBSyJnHA8lEmi7tv2bmAFKGM19BYF8bTrrLIBvqhAYUAu1R8ojXE7qJNjl6czrFz8eiQ1BRqFsPdHhJZ2q1zDwtIItAvviEiaAaMwphL7g1XkkXnFkWL2pNnFSP0vx+8K0pAyBWqGZn5UngE87NUYDSDJ4OBAQL2kVl4V7/KKPI1ogIaLaojmYzMpfzDwtDsThU1vxxq26G6bqdt1mZ/cynImU+ymFcLJOUDRlR+kHC14R4dM/357mC0aAnM4I6xqfzCFe7z7R7It0Nc42un0902FQLkdoAGuKL4SlDlLcbIyjC5xcVAEYRxnkyLToS7vhBxZmj5ZPg7EOALUhT0LkhJB1zsbqHWrK3HMzdwky00bGO8aZtO4jlxtM0Of4rhwFUiBaxMX0yRFLeXxXGnZ/gVaI/+u33QVijuH2BqDj9MiZ8zRFbprrM23EVzVd4R8SamsepptvCBAw+gAQOWCYEOhI0VltGwKYGwi1hYPN01ADoVl12OnJSWSWTFLSuYGab8qaShUM1GEbXDXI8sUJMbVx0mneiZ3jTy/EyGar5kbkD/xNIyTHcFw/iUR0YTs789BNq9mOwaepGytIDyUr1dEdtNh2Tw7481p0VOnNEX/ZyF9yStRNi3V5Q8jaFCDft5KUJ2AonGMKIw2KDSeA3F/WR+mvmKVldUjQXdXrJBwUP0EPs0Q6es4NHHS+HpsPDlJZDmu4QVGjPzn0u4ZC2s4HLheY2Wb8abYSg6Md48qyDzPdi6J+wHm1RHZ5Yb3EayqQhTkjiAZPETHPIIM8vcR+eiZ7FUNPJDLbim/8sWmyC7g4F8VBl5JJBPL1wYfhFgZOg8tEw/w9qNnZmFhvBCMPByDxtdpISl8ZQ6D/VQMlo112CYjn/zhKGxr9UtyrpvW2vkxS90Ro1w9isKUBDYBiS5w+qUmQdeN0xOo6ZdllAnmVWEyHk4atVk9uVP74KrzXkCCf09L3Vd1+bb/oXKsGpIG/YBdfmFKB2zpzg9C1JowYAXC59BvAHIdsd8yCH/KBDYNU+gHNcK6EcilWtHJ5pdpqPx9mGFViurFw44u13uYDCUpHcF/PbPaNY2EH0hc/8LOgkhC61llckBD0IAcpsA8fCd7FzUiJ5BaQtbOKZmJKDmjXm3o2Fq6w0e/6x7ObkNssECVMpqrJyQ0hZrHyP5lntQWa8XRqYiYOV9vo+agfaeqsYvg2Md4OjBM2CQ0CbZql07mFoT68aqsXaWmtx51bi++UUiihkyWtp1qqMyx9RIZKmwnokJCEyZMELy+EeQ8nttoT34rGolBwmQFwhMBqEMjrNnV+SbTSJL3/AFWXnVO2PlYmN6v7m+UD6nCISUiDgkGSlxzjS/S62jWmKDka1zT64y2OMjJE/gFW9NUwf0CsSgz4soW1//VZNrVWqcVjesd7W2isw8573FcDJKOrPaBO85s/FMwOjnShpjbwCJHOwprumvJ6ehCzq8JMdus+MlWB9cFsG3jjxnLGTIIVTqdUvHFMqbuK7mIU7YjvtjuHiKyJ7y3YPbyUdzyDvKqumrHjw2V4g1Q64+SmFjlYtz7emY9ShG+FjfSbwk/sGVVT5zfKKBT3ULWaIn/AUhJE70YEttglpYdmR++YfjCoFOiOWf24r7jPMZtNxFNdInlEVSCmfpCA/h430RKr0Hn+U52BBpJdecpXPporVVqrOfMxAKyccItG4DQEd0o1BhX2MDFydQtftH7Z+BZPuASW37NTkh59t3GPP9MPjOzDt88fjFOSG4Q7UBsyx9TMeYYZsK3fd7xrEcPAD83UYqzyoUrdwgyLk2+oF+XpQNikP0/3Hl5r027e1G2Hb6cDuMhfOBRdCRLHPHcB7v/pQ0LlSsTuB9U1NwDPqjL3p7etav6PZCABjZhaqZZ5YkVzFxDIQllYJ91aKxbrbVQhueYkja/oqH10clQLanGV7598NnpNRDAZJjaEEgQrwIf34k5FRSQOS2dD2iDXmu8YCEkE+aAfIY3cNK1+8mrk9Ty7jClrKUP/Fel1XmlLPAqbDk3mj8lhXlkrnnPmrI4EdAdMqSm9LY9ljUJafTcTvr6hP3i3s3HGLD/+W+Qr+xFUsKElxMupNcrowTiO5dPPsmXNat+Fgy3bMHFH4a+xhUPg2si9BaoK12gYW3322atmEPOO3A0s0cRTMFm10bxapMfl9Svcw3YnybQdD4IKVtj+UeaBL9/BIp3x2EOFrMXH+CqC9o3l/CkJSGhG3O/qt8zRj5cV9GiSJmvOZF4DrWkVZlZDv6bnBz3JcdNZxbRCAZgH5UlSCRM125eutwQYf/XYuOcKZ5fvQqohnkdphIHy2/5vXSh3gkF8Khaw+NWlYbWtF0CMO161z3+n4gpAlY0//zIhexzRhllNL2l4fiDgLPBsj/XBizN99RGUtjubfIBtJwnmX8OV/5FVnYxrYgA5J8W5EFobgU3fA3yKyX6LMcuzHFMOM19DwWQ0kI+RzEOXlE+P0uNqXz5bAhm/HgCItPWTNnrbL9ZU1YBVdbqQeN0DQY+K9t76HpRN3hHxXToEFzDtW8QCAgVGtfx2BukpOvpASNOILC009MLeJWef0DXXYUaBijkZXd40KWBkBGDN+vEmYDZ4Gt5xyGk6LQhD5y04yIN23un/QJr0eEAXJ//S1cfVO+fvBR9sVRFA3nx72yv/gITilBZAswXUuQynDEgCHz6/6tfd7HZvZFKr0vdjA9UR2Vi2914lAKpheKpmfFK4HsNaF2TcynGf6VQw6omL645wpd4XrIFd2zFN38OzZVmuxuNEBiTd3gmr2Ardcz0coN9+4wC2emRpGnFGUAgXzAnPFwiwIlGlHupzmDdEUQmTur/AyBGtEXSjcHqxPDyvm9IQs1fsxZajm979lgJ3mREAGoKAHVF34+wNXm+3Tw+ul5wJFOKgyEqD/3SiCNFUEHoimN01yefIWNBo4a2ok8qi519yaeRaqnLqXss9bPdbSo1ABJ/6Bfte1ah8aVg9XvoslqRql+NvCexXcNnUvsHY/LEEm3VLDD729k5FoixFMMIErXcNalgtXrvEDV/xCuINc64HsM5GRltQLRwFAHujtnfw7N/cjpmYEKhZCkTeO/it6P61fyaNPhUhj41hgULxc2F3zvKABVVCvTC9yo/ROxtkS6fZlgPw/2PJPLT0buPd+9MDL6fqvLW754bQxcdx/5hf6zyNSk8iX6YOFgzhwmJ7hX1Jg5cYe8waPOHu9k3o0+4tulY482RIIJ8E5n1OSFfXt7H2J5HF+3eIvoBr1B5FSbe34wjnV4ij5yKPqZ7ghpDJstHioKga0EmjQwZXfqQ5pQ5bZevX4pTEI0KVWWHSfC92IdE9E7jyQWEc8xH2TRL/QRkgKFkdZ3cQd/XiCIReO/YPQ7W5/GCv0PNcGP03zUWJq1NgULXHxsNlPVWFTU/w7SEPA4cYs+nCmwWcvtE7mm3zS8MoZjxxvmcA1W8+XHHTmVinuIc0zclfkfxY9zMbHXFv5E7eE6vIOnoP1KPw/zpPaUFQ+YnVXo6oWaJOjr9FsxLjYYnY9/G6R2BMztVWpvyJumKtU14z9RbY4hhFE1q58ZiGkDPEngAr9v6px9lFk5UHCrxmF9qIgb/voGFZpmbz71le0Dx4oH/QUuN+XtVfqElwBLWbFgsVy+3qyff7SpDblxxEMBaJqTr4aOz5Maad78XPUFAfKcr2mOXjyPnWBhIPzRDRstgchbdOnjZFHeFuuGBq48nLFh0Q73CzhApkmqG/jJS7eawoAB0ZjKWepe4QehZJ2kHTGZhCk0eVLjswxsEH1BDyKUPqUYBjO+OwksDJ80AlUGyRkJGJhkNq/QaUt4EtHE/g0HiEOAI+Mz+/FV+ew8boQKh1xVrnnHcwmEWBXAHUMrhXNIkKjk/JIKV6wCa09/9uOErAOjoCjy7JSMWh6UWnmXt1tJGAdcmSpfzIeN9vtiznzePHfs2pr7F3O8jhfCmcQwio4ZdXA1DATO+EmVwzjkwj7y1t56QsKK8a9wxo11vaSmeaHpI0ICcnluKiMj/7x4JhRO165eLLw1WMp5JGyoQQ1J+O8kYM6Ya6FFrDlArPBp/rf7pgfZhRDnKb7A/DIOZDKrufwFsnSh6CiTUlu9uYYgYPeJkDcQVd7jjyMQl/YFhZ5F7XFlOBElUdt9vEF1Fx2yfo0jUBW8bjT+pV1PM+hYLfP1EbZoUdnbHw+Xonj/0VflsrwH1w07OK8tHBNxUODcnqXxZMSmcJpPc7ErYH07jgrgvOJf8dsV3tbMaccg2aCCNMnd3GMrdLCYAcojTMD00mNzNtSXqAFCuMX/kOb/P0G+f2T0KvAh7EPBQstVKtlLpXBnYXVAcKYICkUmeL5PpUArjargMzGYecGh2ayjzHWBuoP36RwztubZpV6GLZVtTnmt8mjnT4iDEKkrjhNU8KMBJoaFIjZ9vgp2bkDP8WowYXHdTw+bS7Lrj+D5YmCeflNUp8YY74Dma6qjVYyiZeVxUaxAbme4r4nQMPYLNrbVryeaoclYpe/pQo8jddg0gA7F1m0GKphbxscGCudUXS3mYSleod7LlKWyxaSKTanaI9onIg6YsGoBR/KzRam/4+/mKnrdImLgjfcm4f3w7TGcRCCmBQW7EZUgOsayozfaRTUJjfA/fnS0pP5Dstiov1y7bCz2hchBqoVSZCNGol7mR/iAOrJHL48RFKv8hx0HuM5s0Zm/QMHcJOak7R4rxSv8A9o63HzQjLXP/zMFmfiFgLB5n8FoKkA/Bw+Qzp44fkrgi/VZqrsFd2jj6FkQLyppdRAZg3c7gbgWLZ6551//oxfxTkUIx405P5mHFZqJ35zPOkiryyVYOW7DmOVFhBubtIMmIGI0J+/5RDtbYKtJrjaCVwWX8keWc2pTpSbY06/r3qaDiiLrs9/AXPdeRnp5X/bAYh2Mqst9vFeXF4qiK2dIgJQIeGXLTlX0m9VDu/a/hHXuaNtJaeuapCmbmqcfk51IV1nk87ytr4ivyidvxUvrvkrSdlIs5raDMULss0EtIh/xjlklWWGUEr3joecTujtALU2n7BnCzUDbD04CBpbbBEWvyT2tC22EIY+sQlxcAMzoN8MCkRK17dgvxw6vYNzC6erIKb8HBthTJy4PGBONbOIvdgpVCxqcGYOrvSnLR00k0YQ7r0Uw6qVEiFrypr2iHjFPDfEIfx8OZ+XdPPENuLq3Mh5KFpNSE+TQC00MjNhDLFcjUZRElnpvj2et1R0ePlyH45a58MGqtUZT7+KERFh1rZbQUZZ0ik0Nunrg+2YSGukCrHveHk3BIaTzki+6ncRWklLxvkf16kqqPVMcxyyxwYJITVq5+aB9+8iODY/3EFe9PO4I6igWR8/xbOmWhWvjnt8NU0AZnEK219r4njJxKi7Dt6svtKJIJ4jZ9qJmWGSq1D/yAND6FoPjriOSLEiZFS82lxmz39cm+KV3WvNM9kSug2i9pXpy5jgsrhr9qXYu6dAaK8u5pJymLFTkgaYJ4j0w2ziyArdeWJQ5XSWBJUzvZr9HGQijKWYA5OUE7mmT7bdEv/y4NfFnhlGBaVznJi93DTgQAVjeQGMt8KaFnFnUB0/0cu0aAbZyBcrDF05mQIJgk4rIj9ql0hKJ0PgvWYiJsxHIVfZ5ahuOgQtpsr8kISLbYyBXSgk3bLUk0hnhyaq4ONInELoaUMgUjTleW/gSwFVKBPLrlmzNWsIis3TQEzRE8xeli5HMeDvYDvHQuabHxt+YZbQwWWrcHVUWr/8szWK7s5IugPLMGJ10gsOfMQR981PpxjiqoUIBAO+tg+3TyZFdxZQTX6/hMd74pYzAJFxj+yPeMI8i0y6s7UY9dsyhMeLJAJM+t/wp/4/KQ5qsDcayaGtVEscFv8S1aDvPv/0srswXtf7TTujaw7QPUAz3lNxkze0qcpwWjCK92m31nspBGhh3IRRd4z/75RMomqKKc5b4ecmfoMhr9nYMSaGB5BRgUOi3z5jfcEEhjjncqfYT96VUjsGKI3EaVpcXzScJrSTj4vrsa0qFssQ6srtAntQXhrhgFKpfHrN8h5GOU0khE5Yj3NyWtwLUnQZiwqZlKeFM/JSrlyo8o13tkGsXMJQuMu8W4FbNsodJ0izpq17vk++mupHE3YuVvHQNBMNpGs47NvswKQXQl277T8G/oO9exH4MutGFivPub4ZOR1/hL0NHYdRVaZWO73Wf5BSBQe7k8qNUAhCTf5gtt9oiUF8UmHQ1h5fyczkXXfIEzWrLjW+6O4FPNHRVvFyDLyGjTNIufIHEvLcCClwm/RsvJ7BQBc5pecqqEN65DrHKZrWSrWfmDYDIABtTbiCJky7CfMAMDWPbTFgUQuemcUOG0UeSHKQ58aYU5iOOpM0N+aTnXnVlUfWJvmqDim5Oc0FERgd0y8vU8gr8GoC1UahJQ7RMeRwFaWDzEevd8fGJEnh7htq70g8ePGZV73UuF3JK0maz463kl1txdzgnAyk/Tt0QyPh2TrD8GLL0W18gsFJ7fz03L0UgSjauDorcEIHLBrSQEmURcyxf5N1gjGpD1dieyvsR5hW1GQbBINpRFdoT9/5oBoXDCJEkDLTJZ5xEuzCqTQcGiV9r7ySaVs33ZevcZxT4i+duMuMuDygEZ7b/9IflKSc0ArOceMVoJaigF/PgULonPQd1LvKf7fgq17n7vtP5h6KPqcjHFbcoSUPnHiePDcZJT6T5w6IqUhJB2FFtN+Ln112s6XEzKgw0sq9s6ds7oLjo0PXobl84RzcNc7yfg9uA/hRD8VcP+kdcSXFCx/OfQTdMqJvcQBuBQ3Iy86Dbf5I+Z7vYKTtPdq/b+067Ui0Xa14izvkRlcAaC6Ax+ba+6swyOLxRltvzzOWiTm0Wd+yF6bN630V4RtfnDsZFtU0aUVPcccskGafgDhCUlWa8BqUm6Mzysz7jN6optC1cGHfbglqBEmaliVCVrSoResUNohcKw9oJCGGFUb/YwFZkRbgGxs1LwgDRVK+w0BzeVvfwaiZzXGVWOAlm12rMKAmzM6IS2FBkQh66mrYm87IS
Variant 4
DifficultyLevel
715
Question
83p=711
What is the value of p?
Worked Solution
|
|
83p |
= 711 |
3p |
= 711×8 |
p |
= 7×388 |
|
= 2188 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{3\large p}{8} = \dfrac{11}{7}$
What is the value of $\large p$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{3\large p}{8}$ | \= $\dfrac{11}{7}$ |
| $3 \large p$ | \= $\dfrac{11 \times 8}{7}$ |
| $\large p$ | \= $\dfrac{88}{7 \times 3}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18phTYDThOr4HreeLTVUrXjOwSKpEJuB4R9xa4NAWGmDlRFK5jv0r4U7snS1So6grcEGVsCleWYtphZPoUlNlnHy0IuYArFiEnmMYYLi8dyE9A/F8T2Q1iFj68UfxhQORgSiPzSgZ6flkkddhsvW5U8prk+4w1wn3s7QgfHnVWDnn5R8ibo7WxGK4GBn87WZgIZmC9PiyOaJ6SRIcb3HC4vzXDbdJK+cyJt+Jaq2iM2AB0qnAq3U+HHy2GAj3JAzH4VOxuZtPPVo1hUXjm7LJGJRgCFClpjguuhkPGG/zRjtO05kC8pHTbQEjgBLVkp+2ZqqHIKTjRcLj0qrNwpXMnJ6oseAMKK/YECSeeNLd87NOdJxtaEMbL3S4XqlSV/WdyKPLDrhohGR1kCwK5VF4LM1NJGRTjPzZvdiL6cxfsbnfvOEq5uDBoD2f9YqwayJqg+AWQvE9MHmYid7w/P5HoE0kdEd2M/KCgurs/o/JfiSOfzXxQHpKJt7QvDEIIAEHKU5Z6+k4eIaW+4SzrYm7XiyVXEgBboJ9D8gMJ/boTpZXH3tsqyXimV/nd+npzOYIAmAFMZGEDT9Vlpw20DxyFywR1rK7hEx3CQCus1dMnLC9fCpMLvL2BsYnWm2x22HZc/itRTjgeZzKeS3Coo/UnjB1yCfW3SfhOxsOGnupuwfqTVvuFPa5EN5Qu6HcBSOzw6J9XcQxrl1OeOok6+8wL2Qhfgu9EJW7SZckRRL9AoQcTrRias88N2GuzBS1bz17jQz098ALGBDCtR7LWPiw9vMDAq4DbKbFIIwzM7rZdzQDnbC6FcS90s74rhGXws6g/4vNEZ+BcdBqfU8gJrg4ne01DHlpK/fYxSORDl1uEnPk/X0+R+DEe3imX1Qu3KdYXFLrnG9d5Cys+4mfBRRldh2CYgagZ8w2UJHUq1S2Uxyy59XxSp7fd3tp59049PJa4dsD05ca4w1yhJ6wxRmi/1/BeVTD7lMCoh3VqXoi/BsbPLO0AbskyDfoM5vnm/pz6DqEulF2eV8f2Tnrb0Tst60+Xth2Ser8bKMX3vSHGESdt+gAC71ujVTKpHYdINp0fZTpKZzhd6zzE6832WvH4/fht3Z4JkCxWdZrysO1TkrWouk5RNht4UCocMQNNviKc7b9lSKmXYotG/2cmzMXEJimUqwCiS6LBTAy43Jkj4VBOytpr2eTfmS2SJH/oZZj7nRV2+MVgDwk2WywUAfJMrDWH0tbjMf6zCyqDD+A215wKcc7BjIK/S8sO2L5/UbLozw1RmVXXfJA9UR0DRKIDXoAiq6koM5+JDxCEeXX0WNuyyjl8F3srYyMff6ZdotgC0VyraX3tYjb7y9KgdjZRsCfBkjkBtKH+b8dciYB79u5hRJk3RksUSLSiA0sHxpO4Zu9XXJEkLCKl/7kQrIuUOycUo3DIkKE3x/jqrokcvYqgYM1Q1YFiInAy/Ms80vqIlq2InU25Jd0WuIO/J72Q72j1zPyMZgCAR3TqiDdvzuSElF9BGp560/hN1ENquNH8p5QErybUpw2WC7ToyA0LB0FDbQlJGO/AU46+3WCseXKq3AqTrYYDrAfHvw3oXsUNEi0dwOFPEifW8O68D/2bvmrdJH25/iyowh4NMBx0i9PE/5QRNFTDEdgf1Q1O03MgiuZg60ESbB8MTzCT3JzAtLfGHtLjcLYEE4jUdSQ6DT2gTwHDHOs6rPYF6UTWxnpLqi7RV73aUVDWLCuzzelkQ6TJ3OgNP0Bpv+T7sVzRCkxMSQb98FokZA+c/j5dzMZ9Pz7tnvbg15P2mUgZ/hMxsj+cyeFbfU5mZPWllnfoWhlXkv+R2vpzGEvt2o8OiE3Oskx6ZDSEZQFaMouI/r4RMuzwUqekAt9bSrHFfzxpVNM6H4lOruYHQLubkCy0Cmc9XZEMGvAaAWytJn6Sne28SUE1pZsfINDu+4xzJGrst/craiE3WO4cbuqEwCOP4YKqzVCxWi7WofHQvNrRyhXcZV2QliFEFiVuM7ga6OE60mBOPpZwsKI0UM9rhnKCS8hz7LoUtRLnDRmXQ9YjyfQC09QfnITQbKC5hnbSMfaO8j9Lwh0PPR9GcZlIpIPU+J1u22F79conB/H329zmZgEdzionccUBlQc/5AAVf4S+0DEh8FOhIcZNaujlKYBgvequbgevcrRiZ26IlM+//oIjLebOh/6anj4GOlVs4hzzcx60qK2/mIYGWlmiSyQwSAcgWBa2+4yGXOPOK4grPDzMjHsy/gu1YCBQkgTMvuatsOHQIxJ9jiDakVYd72i9O4xlJ6fSMCIhCCt26Lr7R6NTrKamdk6xXuadIEi1LhV58XN0rgsmqrRALDX6EElqokVsRy4Wgp2CqyJsE76na6HMYIYs/VeKrych7wvUW2JGjCtCGp7ZMHinIPRyG/6L7RJhQIYzZRtHyr2oVju2V+OO+V70S0LzODJbfuA1LzyiTDO3BWtkyOmn1H0tILMblaxYe0+M+RevO8CdIHeid4I5vTucuS4JU9Ov6m7+6zwU7ByRK4KwayOGeNEAgbHKgX5RG5tLwOhb+f954KQPdIzAW6/alOWNGT0OfXcMULd4fMoMebv4tQW1DLOLjkb4fCziID+HAAMuuTAYwYiksXHH91eKmx0031nciZKLQz+w5SPkQy9tMCD5h9ya8Voq7M/lFWcy/3Y1UU/3u5O2v43QNi6mFJLY05d8zLf5wwesAwDoXJ6cKnKtxZtHtxbJaGnXogYZH8HTvvX/29KiwpJQzCJElMmW4XedVqPaFkSV9smrMExEAHFo5A/5fjw7uFSfV7U8bGikmqQd+ZIA/aMKFBntUOi5QKd1c30+m5KCQ3waFdsbrBVs8OXJtIZB04ZBYDwsRKkG5MGRfgiuZdfAeX2hUxy/uVJUdWTL0jkqjhka4+RfKXaL52tZcpyVIR1PXegKSN6Is/CnlSGsu2XUZ5zLmGGrSf+YaHRsjwKblpbK47QoENg23gGtYn32LFJrxpzhhTS1pTZWUse2QPSv6l2BWw0AtmKddvO2iMBzXKJD5KE0xoWzmOPttkZUa5mxq1Fm1qhtqWe9vFIqS+ndkCcKHjW2fzO1uMkEMY8TQeBpT53Q4HuCbF+ICFmxtQBc6GwF4mfH9O7CWAwmOjqd2ycfiXQTSEjEEFcYkROiFETLsR97XUpyXq1OUAGAqBVub6JDh0R4SvEqyvS1Ks++RbGggbdp+KkeD9zpZE+t1T9jucDG+znbxAn58rEO+ni3BojhN1dY395ZzviPkYHJmrKvxs/C7JKv9Zz2iLOxi1KS+gC//YKwBt7crOmjgokx5XwvuF1MDOTqsmNGjc+Co8/G0SZnNK4szxlSdO2suK5G2ymJVoMp03sk7KJMLsFIyb8vvmwoeOfPfivEh4LxYp9gRb243MSJRgjXz2IEf/CUaEmeDsxrd6jlOxMTIh6fUPsTLsFTmNGRntwG8NiP0MaCcSuhvm8Px873tq/JPnSifPpx8PNQTGGzdnKHcIkoD87tAPQ39ginnhFQmOEMY73UXCpqBXXl7IuxT94PB95bJQ1o3YngQKTe4u89UJQe3k3BcvDty2yZL1SHMuwqrxx8EkPGAHtqleSeavBPj3DLBJ/CoU9TQS7WBYRslmoLobDxyn2tOQ1GXPf3J5IAGLPF7cHlqkR+CVffZYajlWGZDUPCsq1172th2ppmySh+ikusN9G9GqLAOkj9510BVSJaPn5AKg3AMm342bbmRtr5sb1f5radIB9mGJ1IuZ5YqiNtGFVE1Y3Y3/HEo+vDoX4CeCarSLuPkNNzA8s4vwaDpkp1bkQzSab2y4+/53JK89zMl6GkmveJxccXr210usJK6CWniglq/QTYIonJNImoi9cxZh5riMnI/9+dcnq3gbXH5Kx2sDogDdLDyZ5PxwiemR72qcBgwlD6hdM5v7W70nQESMZfh0ozMgP2TvUYcUlqF+SL1cs3cFcz0NvuyfrzWh10MOjH9iSibqa9mr0G4gpbC7Q3286MvjYcBmanNL8b/KPY4dNMUSuBVBq/6mYAVlOP1L+gcDVWMkZKQtDSv7k9JrGuB3ptabnbsT0eQ9WzgRAVrcGAXOivV2ghqE22MMU4hNBBMCvb3WYwVM3IAF9UgiP8a38EtB9DFRR1H4V1LlkQKDtLDh73LlG2YnTKKwjFVJy7Vr/zxTltgPqub3Gz5kd3XxqXSoOZWAwoi9J/y8repBoq1fEudFHq+SuGdwT4baemof6R5nRyYVC2rXZ/VvaAOv9aQUxgG0VOcyKIqKxpbfUNXr6BkXvnUJGJUYAr0ByRP+V9p2ZZGHYtt5ncqdGDehy9twvWljWJHjT/P2Jl6Oor4AATLGBRS6/U8t9ssXWAeN5lQ72hFKHDgmc8xWmhNHmQ0v6l5mD4qE8yhkF2OpDs8hDPlJFVJcAPl1+v0fxSbeil8P6NZqCXe1iz5dGsbqt19Xp+TDyacEXIl+C/WJU1UtkNl1HSz6P0IdwEjbiD5uU+eDxiuNMceuOD1BmanDXt8Kc4ErmHmk3bxegJRuRa1FH9jpE1V48iyiEaMtYzAZjGh5RYzgEMJ3HDqRCwEq5nP+7HmrQEFrjAUqrjx0Ga9dVpRIDpvHnRZCsDO3raaiNIXTWkQE9Ntl+ZEjd0T98QHMfOtJiBWSiLXht8tSZjEzVDfHEnj7PRumK5+R6HUxAgW5jtTi5ZBSXNMXXmWNlPmtfezVNi0w+ORCzMPTgTOzaLqJI/dnVa71PNqSeuTO1B5Yvul+iQTblxU39+uGD4RE1Ap26QOwtgaZ15QlxYlFSk2ptw+Jmd2cfXA8eMKUmL1ukB+Wa8l6dXfimpgwBAeN5fTWpE1bbbJ0d8vfAalHvei8OzyMEy/MEFMrKOvKlYf3yn3TYIdneGEP0L3Gi5QXNJjqdLP9CSzUX/TXZ0+cAwhUlZ08HOPXK61splA3ln81RjqNwfbgp1pQdDU87avM730SizHlu4fnqnM9bdblwWSjyHaNIDgUbWBQfPZPQoVO4EGTZm9dPC0MuMbuZkke0lAuO8Y+UkXlDeFekhJKZTSwwaSpdA/W7wePrs0TkLaV7vrhP5Qmt9imf5KrTlHq0R3KTSbAkKypI4TCkyGuHxljI/raFOyZFY6cwkhx6v6UiIHom237ydzQQcR1JNT0CtYUSGTP/c7uv9Tb7d1JypgP3zo23OV59JBQS/8f+vBf4+i8hMvRJp4BU0yUoeyrKr6Lq/XzU2fY4Xo/bbZBTNoOFvK86R+dQQ3ihvirdtBZK4zWg7kmZfKwzeZGq9qkL+HUEhi2dMvY7cMg72Mk+qMBBGfYaRYiBYceio+jQCxMRBnYq14GWDdb+v05KjQ10E4QK+OilixKexpDW+4oMl0zSmHNG5DhxF6NEdLFchyhA4GkWzs1N304J5qt1bp221SUqS+J0vjEc/7V/FvGHT7GqcWj/J2WBmoOA6RB9iZUeeQGCIX3G+McKnw3SxCo/RTPMhFXmzCS1iOKTSDzBXB+YBHuzseYohjuFKr1CaJ4DlLbxXB1x0UrvOcS2nqtdD5RLCyPakTzfU/tod4/0IvyUrhogpZFIw5v4H6dTuVgOBKIiSS3FsNdmXV3c7WH2pKco1z5sbxu9vIroDgFeobkNusDpFHZlMhSxUnfDo1JZkNW3/hlqYRt7Jbyyj2r6Xo628ZLrt9AF0UfF1ibjdnPEV+7LkqJHLUDDx6vuyuKjKU9/WQCpfH7XbaW1/aGl7X9wc/YHtO0AkB2w2nQ/Lf8n2Uhd1ftyj6Xl/W2bGCZgwMbNix9hfqlbiF0XUlbj5KgsVpiJFQ/AXQfXuPgcaJvzn/5L3tqhkLVzDotBTNV5DLeRdfkOxFN750LtoF42uuHL+ZDq4HdhTl1QAARyDVXLyFI+i/+ZR3JiDWLVznnsLgKdGCamYEdatg7/Ep3jJ/bSQjtesipZdxMPSDj6L29N/+NzYN+hHhwH/xHvFH477ZIn86PGOJJzIq0Sc+96fFqmNtsGRfiRmZvOjFTS3O4uBzEIgeRbAAnkhWBNY5DoHw76C+Y6tJUWX/0R4OvxGmFBDft/BMItV356AEPo5smfsg5lFGMjEjZplDD77bkRWyKMzRtNqTrdkspLIQjl6MS01H1fpffGWP5SODhZaGF6S9hxV8Dt2pFhgqLsul7Kp4C7RhyhREWPPQJlBdrfFKdC2tD7pW4kYdSypqKK7cbmR9r665Sa5YocKWteHns2YnU1+EzJwzfei6VyGDr8Yujk7ZTo6OcZiKADOzla+drsM0dhxvELcdFiHZPN6IeeHb+yuf3GDAHP2li8AF4XyMomwj/GTuYSGhYcHIDAyKDSQ9AmaMrJQbrxFkNDClXb8pZ2Ir9tCoitsisxpe15a6ll9YmAXMCx1VG/dyjqoG4yA7uMW43/fPVOwGXRXtgSbi1kEEGiXl4q7BUZVrICZmwTqlnYJKd3XZsvHS8rIhQIEg2SO/Ub9G4AaJ22P+OVvCTcIhyyfd483gNYhL+AhUjFzLD7GlycqJ2GK2Jg6R2/DByOWAHhqyml61Xx9wTksoLT0daZ1aBousNQq//b+UK3Pv6C7t1YzRUyWdFy5Zpu8F+oWyGu2QbRD++4x/rlZrUvXiD0zSa2g5j0lroQkJcp2BbJTXqM4ZuR9Zdna+7g1Mn3XBf170idy0iY7s5Vi0jBH3m4tPMNlAwn349l6DF+rU/U9peWHkXPkclBY9elyjCSHHqNkQ/36u+WobYB7shDbeFwjAskxpXNSSVh+sFpTbCMO/M2UVPq2leVNsitHBPU4ogkFuEg0b9AAl21AYO4n6UPdcTepC+R9CqZjuUvUA3Kz9rFALOF6FV9X9KJ+ufBcaqXwBKa7YHjbgemG01AWPq/YV19RGiwDLc6THyhI6Ch/xxBM2WkEODUZQTJ2tu9oItDjB5gIwjyiGtHPk6XpVbOTfFvoFOQljDsoWCG1J9yPBPQVzFKbUkppR+kSYaCi7tbjejlxoJ2x6rsRLQPxKVpWFoCm7d2j3YJwRiwlzUCPFLIZHdyQ5w69c5Cg/ZwQW70bdaGKnpUklm/6QgDEgOsAtCgsBBm5fiaoCY8kUWy+vEObWIinKjjysXrCi2lXfNtNwFw7akLdtJp5zpssIRBwlNjsQ7TsvcZWsepxcsk4N7gqUe7Uhj7C6XZVa6YzPxikp0+hv3YI43vO3oEMPDfVTnszWPZNafH4hiZTt5ohDC0W4UdU7CviFyE6aFgD1ePM122VQTJVQkytR0TYQlPmQJ6t7ddoFZoOvlWBPbW9N6hTM5E1aapO9HEvB2lJPbdTZrxjXujrjz2DP8tVd6EWx+k5W4D4XQXeSzJ3GDf030Se6doKYZhVhL5/VRLfRH//OWhyG7VaVGVaaDtoeZtkaArDolDuJuDLzlIU0WRBpkVMvacn7f0FL9GstvhVtHwdx+/QMs9uISvuOTQontTdq6rzdtHtepzbOMR5UMCNA6Qgo5vubCuy0JhtH057iXIfPNAJQpgc/5mzButRdO3pS4WAyrCmRydMoBJBLDwVtUCpC6joRPT9Wu0BuWBZ9ViBribXIbpNxWBoeU8OlGpKamQGLSHfE7O8YWZ4KcLMeNbxLXLakQ6i7wKoIWWtjAlYwnbBQg8AYrBkHCyGJ7VRM+WquB0oObRgX1ewI79yGaKSN86VXZGyOLavFIJrfpHcTsxBfZcqCeqHot+t8jaEtypN2nw3MATYVncfl3Euoke2ry89U2YX7hNsD/TSIv0GVqdPrKznNZ6UdDcel4V8wPbYN63cHdjw8GqrBFrcp8/KHynBi5oLwGNnU4QAuTRhHbNOVI4XHBl3XytNtc3CDdtps56dYo/p3G8RxQ2yD3ix/8vGuATzvzbdrcH5Y0cmqIzD8qTvIKy3JKa/i3JOUrdOXHPNOCpF5uYqsIHB0hNevm3xvMdRRxT7kyQL5hfjL4PcwqoJMj+1VFXTGTRx1CHPi8VK+X74faPfYSo9ORGYl1YG32oDjuvP1bBkzzVvhltrCV2fMpLMDLwtvwATepFrLBE8RYAr1hy0zcL/Jpfe7SGKVWtz8olBFHfh3iHQiJE7lXCHt2i2C6eCcAQO0yu+6NzvB9eEVIopvJKf1n7/eGW+EnbaMJh1zbqeo9rqlRAMeYXqJYyf62tmDpsWxV82vi0sMeIA1JUBz2CGylV8DCGBjZg9ykMsVedA9LQAFqUMQr28sk3tQKjEqHX73f3lDMsK8VTA40YoEAl3pdy6idgkAxC9LDssKlcWVMA/rmAyPwfmfMkFUtwDOQyJYdW3Z4y5C2Ap9SIAvjYHarGxx3psqzFJ0fX8GCrlvoYTB5YQa5bRX5v8tUbfWMX0xC7mukpNgsmfzopjlOA5xfn7ANUl3ZR3U/zLvrTmkv+tYLn8veaPjvjtTYliOEIPu4QuCokxnu9+hY6tN8/LrN0V7Mds36DLMWnz2xkG1lxMJck/ysDjL99QfzLY5brmRkIYxs3NRTHTauiM67401O7FUrvryIrboI3YG/N1WGzYKP9Frw8yP5nk4ZOWV9MKZQh0UNUMbmcMLNo4L1WaFX8GgNVFjERKYuGK7n2WpxNvxk2ofPKLfmIyroBrNdazx/o29ju3fENYud66xJjyRoMWbyx6qYtmJ1KIgUikyMxQxa1NH0GN4DVLGz4E9V4bzYUNOWjPrvo8dBDqhD+4Ds5bfHe8CZH8oXLokEumoQYM4QgZfvBB61HFR9Zc5opabhvOkoKwdkBeQjL7sFOKrLNU5ai3Zj9lB2iK3T//WI1HC84YetnsH/mSN4odeByHLb7+h02V9v79HwbuvmiLcT49AcOP3asP70pUglrrRBGtOIFq0uhdctf/d1Nir1W81RmMzvaIDoupDrvBR9BhJMQoiaE+JckUfKo6bpwGpy8msZGK19so3qhxYhs9MnLU/pLpqohKe+0bKtvuUGmcyBQf0pvvsTpOomkv+sC8yNAdcsv1s66LcMD591pKEaoyHFDDC0UyGL5Gc5EXKK9NtmbWiRqW35jhr4CiFctKeEd3Y3ljVYiijCqed5wqbO0rkqfA+ulLaB7Q1Si4UHw1/LxLvXpppRUWHJrBYSgB6ZMbfJsdw3+uhwX+iHDsEiiB/OXZmw4PpuS7XGTO/+wrtcSYyeBHK0WOswlt6EpcwYToXcHiEOmqErhxwMdLeg4y1GdlMsJkxz4h7mU5JKTXq+IzQMUa0MMAP6m23QtMRq/2iDW3Pxudl2QiYfTdQrkQGycisZSv+RfzFBnWoE/hZPWtrlccFw2Uqr4KL5a0jUZR/pWOy6Y8sguFYNs2BbRsy6g5JqARNj7YhH0ZnhPWA75qvit7VbtlIH7BhogBYA9JkCuafJG4KV99n+yadC4cFu7qPmIYbV4jk90Z4RFaRY0GEzKuI9al56sgDEMjrrbh4Zq2GhuwTMmQjMiaJp2AbHjCMf/wchUeVAwrXcS8fNIVvmumYVYCbtpxxeUPQ8RxVNxGfeUqE3WRByAU6l1ZCzO703rfkWniUWPTQsEFBiLp/g4ldWFO7FKoS+UZvMQ/CleIh2l/KPt1kScodZw5ebnV/Z0PiozM1l9kp7G4s1pQr5OkjoUwQ8tTETrVzP9aMpr0/4RvC0ZEhL9GyV8hOzmmCq3y8gvvZn9Szi1ERo5UegCIikFpqzrnzCA45GSKLvveEzyc/rGGwhat7PCRrBVRx9F4sh1guBeT7ZjeAi4cTiiUCGWLjha9XScqmlGr9I5BA+PwaPCxsklzt2/fUUpq/8ehXFWGGGDIfr+vUc/WsHWHbgzDuQDn/XOHl1BCvLhQdyGKLzLb5Wg9NXKx1QVC5LJE7mFIZWIo49FuMGV6jml1/XQm2Kz/4mgIXJNLwlpF8yczjtRzSiR06E8BjW4/4h6Gasn3P+wyMe2MO9Uw97FNPCS6hKDseY/rzqxRLizd14wd2T3zksgJx2Vfg0Dyn8H+k/zo7UQxHk7ceD85TIH5vpcJ9QHQJlwdFJxwhoniNTLRnUovvgbzqH5O9wZqSOFrjmC3rm+ec6NDfY+F6Pa/tr5HESkt0088Z3neyjYOeSHWNzwvOj/9qFmsSfnu4bC2j3DtzMRQuMZa3I6x07dD6AQ+sgO1TSR2ie3o5W9xcwr4R2w0c7eiJfD/Trx922h3xRdlePsfy2ItT9a4CYpsWgcBvKoGHrQn/sMQYpuSt4Qz7/ELN6ppC6OcJucg49BdQxIWDgDZ8LSLvxWIV6gfmZfidcw8cJ4e0Ve9N0lsYDupDhttw9j1iRRFXyjOSGseCuEqRT6BUF97QbectAvRQ2Cs7EaQfPdxa+HgZHEUX4fBst2SRt06u0E/xaNDdEehoG35dLWAuiOqFQBfIsFNvM8PRWct7nTA8KhTUb3mhIFZQf8NJ2Fc7U8IohgEJC8jvaH9VvOHIkZwN/Ff+bROaCtP0GhmfZD8qxgpr2YsOCPntW0J8zPEDFIHch+4OCWooUZ4oTalqDGUS4LiniqvJJwX+caKKnW8MpVEvc2fJwlT86VyI7Vd6DLEEkNTSwHHwX2n0+H9kQTqU26/xjQ7sbtlDmkBNgA5MqsxeLYnVfehaCB+mZK+wOB6CIXx74UZVqKtHPZi2LsdCOZo4XTSoE90XSQuvnKro57zZOrrx8CZ77qra2ZiJaUgUQaQiHw+Z6+voFWY25EiCZPQWfoPQDhO+UMINPMGW9xTWGeZL4UE9De7nfNOvCuJ791Z5kih5z309WSxrMYL6xutrI6UNg0uDoj8EB3NI72rrdibEBMLn+xG+9dU4EAPWoefzXfYwJE7UtV86R9TlaTAROl6+rQWjJroeYrThAepUwJCGXGvGWuKmqb8wGAfgZLMz9VEhZ4G4MfY5Wi2hiOrQpQ11E9zrvSk5kNGd6T+NCPLHRerRxcliYwuN7rCOLkr7idFV1r3iniRpwFagnE2nIKyNEBWcBhwwxtR10pEdxeFneFhK3K32NZsQDzKEHXt/nGKC8uJCUT65d3GroPw7KR27f1KCZ5OSpnOiahZXBvhCpix7dipa81wAwdI/gPYXftp0BSL9AuuZsFwlwEkUOKaLgDkVM2DjFflSCdKosh+ceNUfpYddb4xIU5r5des0NqYpJP2JOy9CJ84s8LccMPMyZQbH3MrvBbLB7dtrnBc3/88sQPg/ZnVGkQZGbQBCchNf9GLvwCio13e/Azzt0x65izydfPFSpzCV7un/BY1PEOMUuVPsWMDWRS+NXTzOpD/SgJPfr0Gawt8RGUrsH3LiLihpBHLJ/gCzkWCX0Xg/aGDa2SQnXdOQKFBWs7LQbd6+Ok4v7OjjERWwHOvaTtvRga/5qtWMx5RKM2oZKB4v+tocvFTlgZxryJdhbOZn4E7n30O4nAOt6ioel58JBTEjWkpb/Rk1qJQFU3Iu9V8diiVOIFGv/l3tuJiWNxcOHp5NHbyzJ49k7n40hw2c9dkROuY1TsfEKNUu3JlR3UKqJsNM6xBGbrVFxYEwKbxoaDcphO8jN2Kg9zNusJ1dP6Ub1mfPa+/OIXE/S1/QPtINjw2ZQ/LU2+K5GoJTftdhP4ZOvPzr+3ecwIJ5JganaDXg0CFZJcU0XnBhUD4bJAOn3N1z++eoVRR0asAVc6ue048IXAP65ThPTfxgsy1lmRJmMSAlLp2JCQfpQ/pYtccXvYlSOiesfGhA2geVfxBchJVBNjstE9xld8iui8o+QPVgRiH8DLB2E+XIz6kUvFi+njqE5B4RVaqX7il6wHuIBm1XM6WcEWtiPowN3mR99hffxD7vCQ49sh14ibEvmIojH4ttnY6s+p04bMmaop5DNSKgbATYUQe/zYYPC0LVvg7htnTW1YRDvrztzEaTAn+6knCvookH/Rrxt/aogNLHSuRXUtecsFtsXJTw7qRLVHz79Nqtr+fsw9VqB1aBOT25REWWuJZ5nRDwWx/1spVdReXenen9gj8EARUZiI2OVFotPTZLkl2jguOTq2NiBlnaguUXCgendlmUelTD1LMjrQOeYUfMy/otpWgKGekwOGfLOSWkwejCQrFjf/E9PkmsUNHmns2Tsa+Hvwtrj0JP1K2888UTg1xlRdW34qdvXIoJqfvzE3yr6VMi1pKQ8a8HNbbhiIg8WG3pa1QogeaJLWfCJ23ERo0ZhYuSgFrOsFENiLrQsYwqg4yLEerDM5X7GoJbhLvWsUuwZMD/NOCbcrYxOY9uyOtQZ5Z0ezMvTVIxdPiOH/SaHLpm4v4l8scnvdtVGdqFW0DMhjlwY01uiYvi3LLCbyvKlv/fFn47xR5drz5VA7IvYbH3i5klqpuceK+e5CPTavj80fQjMwizTpwcabGFp1+BrZ0LhNB2GPxGStGuOxCzMxpuxZga4wuvvwDKtQE0LaO1TYjQ00pPH0FwF9LTNenWRA2MRPTJ/iUGydIVjsOgBXlA/FgckseI2y+rg9EpmK3L+Er7yUMAzMpQAJ/DbpSlxloIS5L8Q4CQ7Yt2u9ALbmCDkZf2LNvU0xM7p9qYLhC0Iv0jYAtrI4dusWtj3Yj6NKQofC+UaycHhwqqnOobIXLtgD2Ma7sJj1BNkmYB/i05C4RrB5fNEJiCB3B1MkoZA53bTLN2auQkIqOaoULSvHKfBJjXzvEJ2MjriM7QJn+DxHT6R0GjeGTcTQ8P5Agv0uWNHY/91wbYhgPojMHIZs9PCmj+DLCS73SrXvl/Lt69psN7Izd7wZtW5WdUYhGKNpWqH1J0/jm7raAfBnbHlRgMH+s4E4tmnG3tgkU+aL6VJQ97RLUUS5sZaa2x7krbuxGNKNA/VhRRuaOo7aJ7ET7z8gK4KQrmb4yIjhNNndrVMHpacOAOUMX1boV6Y4gs0jyIjHhJC5wMAfRoVAaF1z1MmZZ8yqKPW4xttIAeSE2usHVotyvp9YNTjMcTuiKrHC+jeoPkuDoO0dxsqz+vk+GYeg4aKT1xpJjtaaGjGL3Y10zMd+ZOENgxmhCOY3lS+OqkqgDbp02bUHjuzhOeoL5jSeOCtH6IlOrEn9RdfPM2uB+0zNTjJoOtBaU/MhaNcy4MM9PLcnbNyHKDzYhfvFY0FSjgD5xD0p/DDS30/NSXpQc6K7wjAhY9uwSJnz3m73fYcVqEBAEPTkHZbJmtWmPR5HvfE4XIPb5ju+KN1Tvk/w4tqkJ7HzPsu3A+8XXpv+EBUXsKQe3C7PNTYopSSlc2aXnJQEeE9MLGyw3UkUIhP935HR6JEVl6Wy48VA/nUNJpE13oWrWAKy+9t3bZ29D9rFd8IQICFFZBbSFJMOgLsQ7dflH4CjNebIiAfEghNZSxCQl5YZn1UOlRGbFGweF/plE1XVXY+qGzB5taFamNZpvi1oW5bV8lJgxFApNwjZPcYI6DT9yioL1FiT5WG9hIY//tz6WobS4VyAHuIe7G5s64YXuPVyD51kRt1NY6YuR0Erwbm2TxwkCQasVDUcL9SUCuS3nAPp4L4/9bDiv+EFIZcEbtitGp//CrLkPXLLEtXjqnWIISowJDcbBYRMRJiILYITpqJr7jOuGEbYRm7Iy6f0Mm2Peh4aW0MVmRdgZNDYJ5ENmft4dscMMHLN4imOnD/Ymd5v1PrHCEaSav2z6/OJsMibMIDyXKcU5bf3vdVBSjO80yX9Pf/URS77PJGccmMlEii4i39X05ceXPITdJ1p6YNGjzkDT66Xpzuxm3LXXgYuKiRp631vSKMBv1YDzJVKQFRJI1X1fjMw46vuJzNL9MT+UgoDKZiyIVa9LxHUGWIX/A5biWOTUYPFgcVHoi8dAml5eelS2qe0qq5dLFrln+UPKCCcF3d8UNNGj4iOa8DGWHtIxQmR5CeUBwHUySxzy/cgOYTZOy+R3S3FDbWpgZiT9HVvgneAqKCQy02SsLREGJMTL5c3LNjk8Cduj8vJ8Os452lZ4g9THEEulzPGSJIfKwFfuNj7TEGyk8IJEEK18mFE2xWMhqBiZ7BPsZfd2FRBNggVQHS05Tv4Vfme4hFySrtPg1siX45YyAtTJjEd/JjAK8x6z1QumMeCNdy4i1DV63slST6zj2lbhZ6zFokohiTZPu7UctVRMwTmfFfqNTWK+eV7G+wV0HDJ9ZKTWmfIF8h5H1ln/4zblb6Msplg1oOUxyz8WQgwRArFfjHXtaZvjA3dIPfhT4+QJEU4fMm7vAz/so1PWOjyz1Z4TfFqDD+MBc/ITQU4emCHyFoneENtENmREgm1TIhVKErZvPa2iWwMgCRYaInfuyK+S0T6tHfoD+ucU0n1GXrOmIuoCZQd30dUnt6L8b7wMOkfxDTGPPI1ho7gXG5YCAgFWRuR51ypzUD+ZROUzz9fUanRFchPxPzenlVKin0QZEd9xdgVLHJndTGd64Ash2+i62t3sOIlSa9ofPqEbLlVrPlR2k4cS2n+8ouXMemWIUH6p1z+fZyKfU20bjqMwjrpXaRNJp8FIK7aOeCGmBPAKQkGEa5uSVh5JrgMalTFoxw4x2T6V2+FrZr7TYL0yP4aAoy6q6E9IVKfuz4x2ZxVm0ERBJSakNStTz97xjdaaUK1wUS715/jHZcybfjqRxp8yJ+ateYXhiRA7pSC4YCcsWplgVucwWVjPldW18+OAhEqV88NLmPsU6LPa9CoEZ0NPD/haw5iz6WwRlDuualG0atNNS8qKlo5sEvhR1+jk/gpJdm5o3E5sc5PSfqDjIxw1IMKEp2El8wq7ctkFNOxKDsIZCA82ZpnpGY5SZgX2sOc/YuKmbRuo1lErC2i6HlABnhZFixNsH2WjHQ/hrzr6Tqq1q23pzKGgxV1/esHRUKybqh1w1U71f0m6Y2HVXF3qakScloQtrPR8Xrg9KzNiv9F2kMpTgZnL0aVaPOaMYBHZInTaqxZ7aC8PAJbnpWw2i3V3qg7oDAPWSqbdEc+CeRKoJuSPj+VwWXSyiaPWqBmtxKWg8bYTStYHsbd6ajDenlPzW7PP8Lh6bXkkIYlJ69sKHH4nrFBwbRSq4qd4QhL/c1lz+hRC7g+7pGuXy1OC+n5eDHWKA+h/Xw08Plpe1mqkdO1y7xqZ/IgDIzaUgThShFStZihP1pyCTHkoA4C2use5NqAGJisDx9gHjMNS7NKihGx+SLX0SKCRKt7ptB47zTmkdxWv6nTYf3zjPot8nof6iE8VmoHqxpIg1FcO47EuJt5bmxjsMspPYluEgL1FTUzeAz/mBqECekR1Qqg4MmvKwWi2Z+g/RJLKZq5/qEZujNqzvLGZiHh/cDsZRraEgKPuV01+xN8i2eRPptLcQRtR41yXHorOBMUvKxOQ9jBECbWViOrf/DLVX/4mVVnB5xCngn0xbQiCjqljZM5Mjf1x3wqrhXUYfoNSViB6CrNlDEyiwTWyf3rIOJ6PsIf0uGFR5Bt4WBKDdlGFGFg9fk6ZBl3QT0aI7nMlBH8EOzXwf6ZQYJv/Jf+xm3saqq/tTPVWFMLPMtBknOLZlUxjVJmI+dCI0DAfmVtuT8kX6gJB47IslfCTT8IuGfG3MBOOQrmSMZR6WUh5KAMq0+daydGqLxJZKI3GVAlLddHZCusYsmcAdsPuVA17X+332GFTMhf391xdLkABZ3QgCZLg9ErkGxxBY4CJkX9bYgGm8eTVmGyf1nEdGJyExlTFo6Op/m9nuy7mqrvrleSbYOKFcu4a8dpNsX4IOTDwPDqu1QXC4Waul03YH2/2iYtB6iY1jr9qWZkF5AwlAoquEb1b40AM+9jo1lRg37e1nYiNuHSAs8vepgP1HCumB9BnQxVR5Fa36G25/RsjXS6GKLhak3ZvSGZsTpf1B7aEroLrD6H5JjC/HcWUTphPKzyBoiaToXbC+PxA+4NApmwXY9jhZpL7PSEqAKmIAsYa15QVHakswnM9eaTtELO3IGBCoe3CXdfzoniPRP3p1790vdycOYrLfupgE/vi2zrCZTkxMIBR1vRWuEVUvgjhdqN/eMuLdtYuHtkgMH3qbXLxbP8U9reCBSXlxsCTt6wfjT5Sbi50Qa5k4q8v4CwrFP62zXQZUg7Hg1Q9ALaAOFRoqni4xIrfeZhDfZunWUSRqjuAsnb3RItyM5rVpHET03VE9wCJ7qbTX1tpYS5FGYi4tUcK/WkfQp9Mu74fwLTEljbGtDiI6um1CJRtB68tldipqwI7P100fDPDWCrCF7aNtvG+KI7I9lARYeknouwIrekg3dWXOtYs3eFqYUMa2lzhgkZUsgnQkKnoBPo69J0DqW4xMjHJb+tbXGCpe7BIT4mGWBUhNN5qu9tyrDhSBqUrf7+z7xTJqoPKij5AdPjh6GCrAk8rHKM1kMh5P7bOZux/9ymatqLvquFutxDumIsJlPlWKMUzGN2vI/0Vigfz/S3Sgojdq5KcjsLUDY8PxDGXgS74DMPgseZ0mZf4EWqtvFKyBplCYoriw2nSpbLZ3M+cvJIg/8kJfQHtElwkEjdGiGc3ptbGVevIw9+zMw0kpdRmrCLxyfYx0lJ7WtiwoZvkiTljp05i6bJlCgweL/k91xep2vRj7hVkszSf1o79jS+lQK8Gir0G1wcmMEO5F76yp+toNwEjtTGC1fQCLxapwqn5SMw2SjnopzrXkaOFJN4j+1fUKbbrzx4tszwFZ2zJ6l1vpTbArupHJptNfJc9CboAXc4NU3P+qf1rTHyDGc4BGv7cipJveWs2DrQF9QWA8YXFBgCT6SZRjC5m9Mbz4dlRD74Nnk4z2dBzYPIgtD1UJorWYDThoqXtyVajxKzzq2zOixlOG0RURqoavweQbQ1lXsl5vMQ344G2Exh1KbH5mcQwBaWghAR1RmyijMwWUHuxQIR17FDE1GqmGDz1iPdW4z9s71legDOV1WS1vCrWpij46pat8+Cc7pQ46VEyMYoH5AOsfy6fSns0ECmNFzKm3Y2K0pLxRg5NrLT/lkvNKxwWg0EBC5WAWd8HjiB/sBIqHwOwprCRq7J5Dpc4ssnja81ayj6hsgCJdJV9q3cJ8jhKGt5xJJJyMjhMys08fRDc8xvPCNX8K9tpDw3W5TTzojfSthBdKmRqFSX120Jxd8oPVht942DaGn+tx8/J5TjxJBNSkSoFh7L1NNJrFEEu6iQGmsVXTj1pzQoIcM8YMuyUS8QmqYWuBin5zOhV5VaA5Rjwy69dNeB0sE3gHuBbDigWlHCyFq0UUUKRFL68LehgzKDAxQFeaRY9U4WNUUpG/ctJs4++b7SBNFzpGMx7smlIBTmHk8cjXcicAlvITTHG+rr+ikR07cWaKBIeNvBIaWben3IzMeydo0wxBhoHmMtwhOxEECkrBycFAjdLgI3ZSdJKy83vDJ1zsr9lXmc54HdwJ4KIwXgEKzqikJdSqOC5wQFU8tqpB4T79MkQalSGXK7tYBEc4U6bu3oqjCrGe4Za2B705hWUhVJQswFviY1ocVVrhxbntKVOJfQPZFA1rugQKvYhiCu3IydJki5Ktbs73poFzW28KUXn3XZwvfIClqnd9VKDtdbtu10pdu8GxP/rayjAOxVjQseGdrE4VNRLXbGW6fqNA4y8mrU1ZNN2MupVOLGzHo4eL6Is7JrNGiEzKXN6U1VS+fhSTZ9b0okq93xTdbjCkwJsJrGqpoVDYqSNNx47hiMFSbcdWaOwKVF1GcA4A/vDxy/nCnVpuYiuwALDgXmo/sx6MHc/GDXNWjtOyuCo1tx5jze+ig9bYiqiU0brzLwIC2DWhwHUFig1YN0f+LecHvyrGYNFWxjvEb/o3t2x3w0XEME7ryl9933+5K/J//5CGO9GN5JZj1HieXE7CwNi9ZW6tBPf/DryYSuDJTKI9ENXqZXZ3PjRpSgAuwZeYhBcb1v/Nk/ULljWzAGnbn8N7yWABl5HqYCW0+7uYkR7ZXLp9lER3RIPbP2Qo4EPzfJyW18QuJVcEDw1tlnJP6xQ95x89u3t1lCiXK7q6I4VuQo7UShZ+DzPKslVWfwhaTu1ylEnGzH3cFYPG6vN/nej7wEoXANoHqxxqexDYtQxtofq7RouziksF8FnpheHToFGuLgihk+F3gUwqY+XDyT004o3wpWuOf4HWWuiw8hH+07VFTegOIr7tTwt+KcKxw0founOHwzmKsQZwhPEbNIV2DUMcKbNs4QDnW3EL3UnaTsnee33PiyKYvnrIyitMbgyJC3K99bKEUK3vpEwI6Q3amJwpEvU6xb/Z00gEzkJTDzZw1ctf4rN8csH+jAN2ZJbXzkDXf+X+ydpwV8/cUEhlj6Xvb2n+02sIMjT6K/FJJhVCTHSh/iUIh6zDsLTvbBYjj+a1FNgQfb7tU4MMwiJXpJXQ5VpOBtNmPQ0M+AxjT1tvP15NvTmg5i2sb8apXKxOFVve8l/TR1K48vL+FBN1144PuhEPFeJRHMJgKOQnn4JEt1svQf3igJ6tuuNi9jvXnUoB2+/Q1OaQW8Vl1KKM+p6bvhmzgU8ZmMrRscqwLMDMNA1DHA+A668AUAqySa+cnX3zXG/2eIL5QgI228U7Q4u0XBYwIpJ2ptknDZd2udo3u/b29atdcL1O7DX3F0kAZpWYo6mS2qtMvAHDhz5aYwRP8iWXMGeKemK9x66AittWtOFCT6reSn7x/MWU/zcqPv6KYP/UXwIWl0eFY5qq/JNls7tyKJX8KrjVAnYT1AHQ0er2pwImpb6WuhnPhPJBd9i3LlYPKBR3izrKW8WAwkkPALU6/21L7o8MpOY8xj2XbnVbRQYEt5aiMNFdP4ziDRNB/T1Z5HYEAbWVQQdiyuc2MSrO60TXxZ0LaAjuTPJj6HxpEMPgYw3qH1rxEsiL5FmwKZGYcZYPN6y5eNEoeDTt1CdDxe/6tPcDRETNAJUUdAlFojFOztHh8lKC97U4fy3z4PdmcQcGejJwM0gGqi1HuHPAx9ke46JY6x3dKPsXVsyTaNCuSMS/h6lh5290gYtkQD8Rg+xkAm6OoXh8pQc7YoZz6teFHrQeoYyvKVs+W7beObjY0DlY2r19bOZqJ2Uf+Ld2pcDNJJruTguY161INmy6GUNmRv2rR4RK3f8twP1EBrWcmKYatHRKnP9L+Xl70WYSKEQFIOq6IlrT2YpoxD9CRMDg93a/0sioS/13cNFuRO5GpBIcqyaF7bgkjsQwRRZDnKDEbLeqsLoNA9P/xktJ7QiSIG3cBunfAhxvhtLosMdGb9pwbrGT4TF2+wknKbs84U5Qw9OIhDqI/WiweXEDZexM9xBEibAe/6OeN/XS9BZc0zOGlpSJL3YmrytSnXIDrJHI+h4mklJvRDbex4E9Ca7yOgDArTygr0vIfEMRAa43bDYN5KLvcA6Ilx9PUvqLKTfhS0E45c9i7cq5vdxGrdTr7GAdbJU+h323LvoXuGwe9XyI8mrlzHQj6gOMQD97a7Khv7+xfgfRqUYhWihL2gkKdrG95QUVFwMN23aYwGVRVP/inosMw+lZEfqxTqk/YWeQO+dF8BnAsdjHsUh38FtGSoLz8zpQV2yIBr+e1SsoOvfzzHjNrwnGy2MNwwE9kQXYV7FVxQ6xWiFHUHMBdByL2TJg/H0ujQUKContjCa4t0byTDoWQnUApew31KVaZLBXtT2k831sOubXilhIa9e4QUmaOI7C3D4yJNoUaOr+lNyDebqApH988ROs+L2TghBDDD+9Eu3wjP53beB7pE+rPVlCVMQ8wUg4M05/qW0Mde/MzShzfxHnfY7KDKj5m02lmmqYn7bblpI3RNKcr/nU4zf/Byw3D+RngWfZlv5hdb0hLuEvBxt6lmNCqPPf5t06hmqmdf4YtHNGekuZfbb0Jc3UQubI3X3AxxrhKzyocbnPLl6v2K5QMoJFC4+gHWxK9FPI3A6PHGQqjAnI8ydNP26lRF7V8y9ryFI2J3qDCXMsGYRUg/jShGsDo918wVFxkjgCdl+dJgaLEoNNilM/DbaHhW1iZG9K5feg8c4OV3X/N/KHrjLwxI7hTjHFAawn9aNJwWx77jBlhZ3ScS+9uBwUZhHd4VpTA+mom2xcaOJCwTn8L1dFGlmtVvS3IiRYFqdqIq1Z+pPS2n/pM1CGz4c2nG+/7+0Is8C+dh14FJ11TPTRNgXOqfLCDhs1+Zgj99TczbYlobtWazXS7OGeXFGrwoxCUYVG2iRkZo7dMKjfruJTWZkQ9tDov9NvlT0wNhyJ2d6az4NLNXXl3HnZgdlyI1DJlKCqn4eOWBTIS7bsbL25PTvEouceXvgckqaSutMI+bjl5pP0MtBXwSatyOM9cDl0tcCOs9C61z0Oq+YBPDbJ5hGKbPhowiyC37NWIbWKrUJ2R7bw0wGQCk+aUeMP9Clx4tKbYdlPqXd4ZPPkZ+ItKsxkdCuIgk4LxiuNO8d3oDnC6qVXoYe++STZwDDG2m59vi4conXPVA9sAIxplNC67bhHKpeq2sdhOhPketTzhLUgFbp/PzK+EXSNz8+ofqf2rSs3e6iHsVQF0SFymi9uFEiIJ7PLqP4cHtjPMdMAGORxc7P6E0r3dSE0cmoG4HbvF+E7omgyTDN/nCOYVoy5VL7BzSZ/H3WL4uq9FwIz/mzoENJY6COSU/AxkveCNGWmWDKJnBrJqeNa6tTWMyNKhsahXLnbEWZwHQaHzInDC3tjPEixubPNbqO7+pcX2Zfagrt4qJYKyrc950QvU0Ptm50AIEjQi0isfg4jPieBTd2db2lJ6kXefInP+uDYR04j40HjG9zeTwnasmVTsqQCx1Aqp09+SBMGDCNtKXuv5/wmiFJYMiTh/yg5MZLUdMZlKjz8IHqF4Ln7T4JcskNH1DHsVSxVcgFtUUVrTtEAlYsxvyiCpkeCLUJEPfIYchSZvVUf+dNbQ8LZrfUqj1NbjWGTRziivgn7Xn0WpsbTJjnjWHaMlXDwtspnrCxKCtKutmgPX1OTG0FbuFWBa+u2a4zJqRUh6DNQ30H4CjS9NNUdmMqeW9JzB+3NdOOrTv4kWzz+IyQkhHOUQZdxR+rZABLsST7YVuWVFA91lZFFdAvPzmEioG4IIgRzETzLTpg5KaFZokmRRCE5Rs/rV3eyWn5YaWsHmCWy0Im81NsVrm+EVr8ck2oLUtMSLTis+m6ZjAbf/Q66vrwOJy3Adb3iaM+pgRmkVNgZgI8lQCmG4ZytQ9g2t2CO8rqNmkzJhdgR0zJ4mqXipWgfh5gVpxK9bX5JLtObLgbik1/I7UXBe6CXt/4K8wi1zJQUdKzHdV1hEr5gpPgSaVYRWQaa1MsxrMUKTbpD7IPwdKfb0VgWgh9myZZxc3459ZGn8oPuw+1jCJ3hlpviB5156YcLinR00ubxVvxcHzXwRE4aYHpI6AvwBf111zsE4Xsd86mKrIafeRN8g8cLmt7o5sSzsFggAHPXEIipN1W4vKUcXPr+SIIHYryHQpPh6EeGnNQQyPOYYImhOGBbTrUjuiUR59JW0Gu2FXHxEWQAMOTgd/mztN4aKKa8YVQ4W4rvCTvn21G9RO/Whe7mj+Djgrols3v1/1lS6qpzwnScBtay4k9H/aqQejhtb/KcOl9mymlzU3sr7P6Y4I5NAwMqRGjYShmpY/PBYYIzcSfVbnWbQ4UVRkBJgvgRsdX7DR/pJi8ot6N3LMioVhph4bmXxJaPwsbtWNnhNC/3Ei88xTWPFD86BLMcqmmHZsLH9yd8RDXYYKNFBqzIYXONz2AZC0GPTv3ygUyNYRECHBpGq7IZYxDnNrhIjSyV1ebYMeAaNYAiWL2H2pMl2Y2cm5csLzJZPfrsOi82z9IYRIQEL8TZ/8fGgORKWp1j3uJoAHz1zIYvd2Hhz22//owzpeOYC599ti0FCimGo24z6N/8ZIGVLnSFnW6NN/pIWVZENgSk7+LvXkm5f4kC84PMbfHlpFX+V2lbPeZvwFNygwE0GlnrlOj2Hqhax3pYFLoB7LE+3ABjFO9EhmPu4Bj5kuw2S9RI+EJFybJO9aiqQgxId6fZ/T7viHTQj4V9JoFC6BtmEsTVkc2YMSlf7/kOrmx8WCsZx80IYh0fWAOaMIUHuLQo1mhz6VrC2Ax7AbWDwztuxk13u7TtGu+BRtEdN9DVoLmcTJ/zLjafGnwIaaCXmmz2go+dfqBYCMJJBNyvgo58ryLd/SblekLDYv2yWDdWI6NZu2fw0Iwq+YsrS8vof3r3afhGVg7VO4N5dCFs+AK7q4jd8mbsUU77azuAUGPZ/Yjm9L+s2Ae2iPbMZgmAysEPjlelvegrmtK5OqD/neE6wU+gC/JOW0+JBEsboMFZrmck1ZmhYu7YvjbCJFVHRe5323OSzj88on7zfVm4fkJrso89gKOOTF3m9SzlDPVinAQEAkpJCYfmXMdHDM6U+y5yxQztl5FBY8mM1GYtKSL/MAk+lQhTh5/08NOrpXaZWbEZJUPQIasD6W0Z+osZ3+gAzZ7XDk8L+5axLkitfLiYrBeWJsfq13AivS9MWEkKR4gP6f297bXw2ygfT1C4CP7hLMJwIjyQWZI7I1wNe+3EvZiSImEPdSZt838khffDhQmFj23i4/5E4iWkndMxZZ4edGnr4eknRmO6sZ6XxkFM3fyTG3qx/SlJ9URj4QPSUEtSwG0F64ODAakuoQMuMVs2BXNwY7ro7BqxMGMtXc1wTMNd5hoBEcPaRO8wPf5EMxlIgy8LEFHcQTcCbppF/1asjguQNotPdcXThBGIsl5ELnHanoxUJAeEQnXqZxFjcNybfaJkHLTW/NrFF1bmuOr0Dx1eFbb/3IMRo/N1BKeQSm97k3dW1XGYNJ6dpHJKGBrH0kyZRtdC6bkYH983KvPyR83gJ9EuweFcSYWaCWt4Kkw4Qbdsevj7mcfgGz9HZ615DBNcc/zhFSlFRYdueSPuBYR2dZ1oQwXhUBYhPA2hhjPm6udlnJ31YvOp/V9v2CIrbovmSQAciolgtJ4GvK9A3ix2QFbnI37FLGJOy9WkObRI03exjm4+bev+FnLDCcJqroH3lO19sX+Py6TEiF9sm9zZCh+YOSTeJNagnvRxx/qCBARP2Ia2yx70L6YP12LQfyyOhJOCSXplvYG0MXDbOC4PL5qabk8BdYaEZZ2I/z8dpRgTLxvY0Y9Wom8csUtk8OLBCXEMlPY8FltEPImfcwXpmh4TrQjwTMZKG9MOGwBH+4WARKpbgmEwtMH0oUlD0HR1xrc4PtgslQbzAltMeiV2SpKeCm5iSoz6DjkiwslyGlqxGY2QnmCjtOTfM7qFaBPz2X3smnMhwVQpdNIrvxA6WYWexJJfLqaqI3+6Zv3x9h9P/pPKZo3bOufH+iePOwZ+/yzSMFSc/6DRA4Rz4K+N3mCj81npQkTmU159umEIWz8YHHvYU9H7nuEnrl+oR0gjDTuR2Rte/8q4G1g5Mu1JxVPNcBs9gIZCT+5p4HQKpwGJwG3q0wiAR7i/S84WQ4EdbPaiyVSN5lX52cc98c7NxUmkj47cilYMyfO9VvL835UY1ybmzCfhZr0xTlzgpsefMLh87GCgEOwMfNCyx6K5yaV6Xo7IjE3gdTIW+1TTSwlMcq2uy0H/FPHDvwEAEStLN1j45RWXzW4AV73jC1BXB/M5e0783Y1vVnw4KWL5iOdfnHE2Mas5QxGKFoEAoiAwLny7TGNMuqkPs08+ovX8yRn4SzYU8ba2Gx1Glue4+3Qw82yfNZVJcAVjm2uQhi+Am3QGfCKvUpGmYRD6ebuhlLrmuQj/u3pGe9ou3neU990QbaPP/bvNOYFHBrmYNmgGYBNOsu47ekdTIE2vA5Jl7PZRFM73GSwNWDho2aL6yijRxXc0/cf7Q9Gz3qkn01w84RXMQ8w33jZcNRokQCl7WB21cpogWAyhPbCT2MzHbjMA5Sq/dv8jobKfWcKr3vsuzXFy6C0nmyB0DnsAeryil4RNWVlpqRW8YtP7AjvaMBhZSaXFN0mTlCTkK7kMAXt+7q2q+FKyjuYvs5bJO0/Bikm1ByVpQnjIdcGp5Jjn7CSr71GEPpDW61ru/9+hEile8kOqiR0g1IE6GU1ylfZDq3yfH2uU1NnJhvP3ImBTSutcUqHC2/e2rzRQ5UfFIBy9/6ZE1z9x16feJhkOGyyh3HSRMAFqyE5b7JlPLUTOtmVymy6NOajv7T4c5WhHuN6vjtiIyWQu4zI+OJphTWp3nLGqjV1Rp5VP9cuiR1bDMo31zozattoSusMArTqkVYs98QjCsjBklu9pP9AUVD446Bcv5lWk2QT+Y2FOyks562ihhc9IP6bXD4FW/hsM8CfeEezSIy1mwYExZfl7oGOd2dHaHx/rnVDDMZZFgQIYrIfOnp1ebCww9y+UVRNghUwpG0uR0qwIJgeJ3nDPuPTOJ2rbUpeVtMqYnWRGQ4qbulMoQO09trxqEXeSOA0+iPR0FSyMV1U7r+jpNpu8JW+9qeuz/nzyxGitUNqu9WFGShR/cjdcEI2YjHqKEERn8XGSzJAQtHVXK1Rc3cXA8v+ki+YOPMCwcbvEZbsyPRouRcniacvUbuUkHxvuUXkWfiXUKUBAscg41IKn6PGytedsQC5s7Wf6JPy8NVGndqjrImPUf1FXETm+0DFJIkQrUx7bjrdqMdlU13sCdqiH+lB4riB8glwvyehXzP8iU55MWhxejj3YmRyXQTZ7nIRIaRVmDl4ZgOzu4lQ2J28lV7CGMtawDHZmkFDN/FvZH2Xsw2LXj1pRAE67xNimyLDi5kJ5qchOrgEWuwSx/GUt+yzq+DZz0eUw/p+5wJoeowt+7Uevqw93u0K+bj4tD5H4aQJu/UTxNRnl8ikhCitHpFufUb1ck9peq4rJWulRWEjpsplt0vBF81MXDy9Bmr5B1IN07fpbcR3AJY9FcdEtTelGWuovvANkJUq0WVDrl4bmAFSi5xjS2xYRt0DewHxOekF0Ssb4lod1zBu8XprHZAoOZc37nLm31IDS7iIk9breoDRL0hBVtrfSlKtwjXqpUw+EF1CxHk3wixIPxMXDeHppDd3mmfohG+Irtn8IGJdPGTY7QHOd2YHoqnZKNiv1n9wdZnT9/VyAu06pcOGuu3ELFdb7K6xYYbI8ftHMw7MtB/bUF72FoKu/O0nlbMnr3ERRW4bHzTwsXYS+XIhuQeDAXzRC+abDHsQb7RPyojTaRMW/5t9TgEbGEi8k5v/WwxGS1ix83Nlq5IZvw/FA32mg0jo1DYNnrsY9mpIZ6IBldUH32AJCLtn3DmRjkFeMsgW1Yyr0Pch5
Variant 5
DifficultyLevel
715
Question
32q=53
What is the value of q?
Worked Solution
|
|
32q |
= 53 |
2q |
= 53×3 |
q |
= 5×29 |
|
= 109 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\dfrac{2\large q}{3} = \dfrac{3}{5}$
What is the value of $\large q$? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{2\large q}{3}$ | \= $\dfrac{3}{5}$ |
| $2\large q$ | \= $\dfrac{3 \times 3}{5}$ |
| $\large q$ | \= $\dfrac{9}{5 \times 2}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers