50155
U2FsdGVkX1+a6DeMDetw+LLVajJKIyFjBwsfCCYEFtYwNvhmSqW9zwmzDOBf3mY+eQaE4ywacEuxFEZPwfbELeB83wGEU9JfYu+GXYUEAkI8n7YKGlZpI+X79IHSjQM38HoJYtGUYL3k9ksh0vEGkVyR0IqxA06AygTx/He3R5vPLf4UJa6Lc34rwNvoNdHPpSfPwOR9CcjwNjyNP3Jdlaa2aouC5V5u8BB9uBDrp6Ov9S0t/19/Zy3Di51GumQKjJPwNscOqx4gk3mo+9qcOJkcekGnaTWM+nl/xvrXJealL8tPHVQo15IHlrYZgdy/bLF7GnEqgjjQ0qhzvk1bJINp7jjwq6VhEgBaU2Sq6kugaBUCzY32OVbSZvlT/kHHruoA4wujRytNSUB7+fYSOxEJrrwvNuX5EqGfl5LNNVj8K9bAX9xubih/7Q81Fh977DgX2Z+9BkxuDolXCMOp5oLC3jyPPS/8kwRGxLTxLKTDUuGeoDGhtFC1Qh0k89trlTDB1BADcqfzHN9jDxOTZVAcVggs6z+cWyT3DtYSbTMywrTMyLCA6RVl74dkJ7ifMWJbg1SHxakCpT9UqwGAxzSqorf9aOYeX+iYrvYTROR5Kx7OGeaA9V13XIPQIL/BvJqDAz0cEG6lUEv839oOOmkkFE1whuIlSnGcRpVMB1wYxZC8VchQI2jiicizAPK0XtY6iNkQKgQ8A5nHOk5ghwJjTyoHIQldRvNRJChKhYFKnwtdT0B5WgRbOpGODP0Pd4rn3cPk+HxmxL/pG+Md2ZRlsiDj1ZKuFR0AMnnNg8fPq2FotHViotHIDftpExfHkykw1rGDRpGYnHWhKivYBr63hazDIn3+8iGSZFwjmbiYbERoIU4WYeah0/fEIWi6rJIuuLZWFd9wZsYXaQuDx7lIiGX3gKfeVauuDZQ/JGK5F+1hgBzl753oHLXtqQD/Om2A+Ly/BQESsw0LNz3E7WFkYsEaKJc/T6DtN1qyT0Au8jpzaBHPO9XN2F/3w1rxBMEGXpGDjaEgPXHD3R+A6JmJ4x+o5dNcPbb/WftnsMuDscYm296dmvm6VpsvlJEMk49EHpbpN+MA+kRcwLXsXvuRW/aAO3ovsn2g3leznVaf4pPBsnn3TCd4wdYcexmF4PunRE84uSwpy7QtW4TJPnnafWP4jggm/iv06LNBiu9N7AlQVDLfEdI6Zm9YIz3G6y37WVBxJFmqEYe+Ao4u6EtUEhvp/N71WWtfk4XMgkWn2vQyzq1kdPWnIX63HWoXnzvat4s+JeJxuus/g/JHD961OPFTX8/h9E6vNKzrbtIcpzsT10Jx7+RK6ilS1WUDMDUXIo0A1Ml419OTU4BzAbD/tlVd1q3YUlzkmtIv9F1rkuLBS8h13puIVO3oAZxfHE1NeImP2o5jgbKemKqwdE3QMCqkfBfljAi63g3FZOpM2wbaVQl2GO/wohxYLQwJqAWAl9OFbXndOS7k/FkQy9FGGJu0nXYEZhsRwzzgyqTEYT+ElLldflMfDtyJbJZCnPAIZpATffWwoDUoGzpPK6hIbgnM+iaIKzKIdVj2bIOF5Wy6TpL7S9je4L65sXRefE1AFywg22h1JbLax6Vpji7Omcgt/OIAXHQf64CQ/UhsHhF+2dRnMFefQw9Pq+ZJJnBMm0wIuqU2rTkWL4hcmcvvlpOKh0A2whm1USmnMpRbDv7yF9hRKEN9382/5ZG/DHb0D5YfzHUrLcvGjnNXV5X2liHADPQO+TcK92Ityy239RCAdKT7RAcMUUifKc+sCF6zVAY18tt5MnkvlwbD7mGrP2LiyIBDm41KS0oOX+BCV2p5nygMwuiE99maNE3TlXjwtfxV3HdsU+rGLNC3vs12rQIbQRiIpFFOPO9raAnDMSUIWjMtQaEP9Br5xY98R6dZFwIVJJ0XhlHL7Jnl30KlXIADUmLEABcdCsGU0bxZzGxkfQp7BLhSJPbZDuc8RceytxC+FdBMXmV5Vs7I1of8A4fb0pbGFpjsSHWOmNKivCP1nq7zgIArVNgplqCIjv5j7lj8eNCGB1W5/SpaS/4JKiJqDMFhOuxq6D8uEyCBbngv5O+nLKsG8r+ueRUwo1QNO7tJIHmi/hVxljFpsQNI8QWOPR7rQ10NPA0ly5R/MlqeG/OOBIXkuwqefTdh+EmidKLNTGOUu549T6TupR24lZWq3GyesPN/T1gcpVJoruge3RuMd2JD2vybxpboZ+QbaJHT9DqX62HSR10E4MTXEdfLwWirrsPh/NuZX9fy/CIEiBAfyhdEiNMYGzvDlffg4wdbplq6ckUl9PsK8iQnDJZdoIyuC1TJtMuXf7ICiLlcrrurgEBFfOtOvFyeKnzJfWOqLxuGi6W+Od4NlBLZt6DBD/uvxchEr1amu87uEL9IGrszFRiaaZ2p2iJjr96x0kFzkrWgj7vhqxlXC7EJOZMyr9pTAGs4gogzcgTF0Ii6cbzMBuCWMgQK2BgsXCOMYKoQGC3xnq2klLH67pWUwvg+L/HL9nTXEvTKOuPtwBQKSaWslAvFQzcWxNiAuDTqUmfDsUx8TF7TvQTyRxjo+Rm4A/n75d5Vitx3PJmuobmY/zpqG1gTzC6oSBYNCv9WVQcPgmKJwhGjKFIZrQuBalQPXMJdj97dxjsDnjPZxAxn1M2dHg3cuJFRs3gdS2vATgYwQpQgBbcQ23Wq2P4/xr9SIk+nlQd4D/tutLJ1GHfbiR4Z+TgiBgJx/dhBcZD4b6YetzvhxcqQMuDByT05OuLvqPQ4ymZvm0MSTkt9qqqx8MWm4ch/IRMnV7OgZm01VLtFs4o2j1cc3FP5zyf69juuiIzPHqUnEsYuaJ1Sg+7+Bq/q1QKIkmxrlu2YjfiA8OAd9iC9r7wAqtz6Xm1RLPKW3jmZ9n8UvVauLrzHKm8JR83IttDk11azISatox10qGN3ZUbiatzNHqRBjXUuXJtJDB5UOHIgOiIUkyOmEqOp6ogU3UMeICRZOcadHfV6GUeJLV0uwNTDmS/LspIxERPiqDb/LBnYjzNR+2uJVL0TUMLLHlx0Jc1dUjk280OQEkoxj6+tw03QvaChm6XxSYETI1OR6APnEXMwoHjXXibW3EfDxeF+eflWo7So0v2WTZbb0aOua6Ky4+1HfbXgpHxqGn2i+H2PgkwR1qmGHs7EmBJIRI1CDfXddgxEK0ShTjHhLjKVC9Sc6su9l9L6nOubOXlTnG7KLOQsqiBGUlyUXXc88r07Ks9nj785cHZR8WA4MuY2n4+RWUOcS3hX0WtE2GH/8wQ6u75CEyTlHS4zJpCQt38ZusFYPQLa9eg5T7VXe0F/78QIYH5JMt+J5nyhAwal1gH7TT8OHz9GqMZZdlFXJs41fN7fvZRNrAw/+ex4IcD8nDbEl5DLu1ccXl+e29lxFJv9tIVANy41q96mOB0Dw9HKvalK23nEuXZBcZ8/w7LR/0uPYMf3HAyHNiyzn/IA7BxH13b4Epb6V61Bu2F6NO1IP1vLeDgjYdNPDhCKd3XxnsMVA2e9YqqX23vq1U07H1OFszjrJCvoxg44EOGRz5kwvlhMpBLWbQLS9/8u2XZdbEGw39cJpycRZOq0MFgg9HeDSnLnyPjZL5rwf67VjMSGc3jXVjfbMStfOeqFo9PYKkPVkvi217u32w3qHlxoTCOqbH52aezXcMoPX+QDjNaCx7J42D2HCNX/cw1RVv1IDUjM7orIIr2eFmOX6MMjotYWFA9Xmgee/YqQkk65OiJ3OIWIv99R4n5tIlUVswN3d7tt4dmsV3KzCFr4tMuTvuB+097XQjEg8emInh2D0a5oXuRLOZTD34JLpD+RYcmcHmZFdy+ZDsl1mnCNfx/jXchlwP0jqj136S3rdTokRF3ndWylwuQw+sEKB0road5ohvMiMut5zXglEKKlhlnckGcsxV03QlwA3bi4oPY4x9uIaNdUX6W1R6VR3MBOotpvVe0OhopyTRGOwyqt0MRZEOhKH1gvUhCRY2m6qvFja2RevsI8SgmXq1mv5YT3EQVUxk3Mm79ir9QFsPjk7N+pmXXWSgl/Ycth4qdSt4Nvhd+7bOhzf08AXvLWOlxn7iAQqeeBvplGOcUuWS8GOO2c7SUf2ohT7KVZP7BsugB/VkU3qRi7xS3YoZ32eDQ63giODLJ9XCYmqWiSMj8qWKfCr9oGMJBtBT2AP8eDleR1+uiY/1+9goNMetCVy6/1bEuRnBZjbwptbUk4z0ZVli3JCsWLwvH3onKlYohiQPX+WL0jQAvRqch0pp9EV4CeeT8qvCoXZKQFUxpAd11/JfdMKk4MVi+nYt5ggXx/sN8h9PAV9ubNcTpszcy1HPnR4YSp7a2I2n8WbS4dH2KbWnVTzqPX1tppV6xbBXbQre1Gy74rPPiNdhuTWcsfU80Ckzidm9odQazyT5mJBOzuerFIlNO3JVpQt/Vnpm03vPU9M/8hJQXgNiq+Sjj3h+zy8OTEAk5AkGzk5rxCPFmcr7VXLrhBbxnGGYasucHHsrq8OfXnCEBiKSocHmEcEr06Rcoeaav0pswd3y9w3nBUcblPAIMMx+LoCn7AyI5yaPSmBGhHijrWxseqNtmQ6G7iDP0IugJVHcEhpBVp0djJQk6w38TeQgGg7E+sjiZTVlTOnQ62hnOKENd5aTA1Nb2iRm+Jd71HSPp8stvR6QVlmMVGqa48RBusb3kauJeAKEw7KuN3G39DPrCXpzvZcY7/9fPJpjKTZ8lZYGd1r9Tzr/JIg4UL97hgoZTTYWvHKa3P5+U0n68R9Fns1hS1mCM2jZDp9NK6G7o1DA/obOnq/T5xB1THLFFjnK8S1PJQnguJBdWe0BvJb6A+nhKpqJzlbRAQJjOxyLo2nhuEE6gQqKwRR/v43/ar4E6TNRGcB6jTKxOD1eSzByB+qyRGKwULfYNVcn542zKI/cg/yqQ5BbQAdakD14yTZodpo7Ys7YNyyOxFMO8UVA2LoX6Qwf9ZcKwyHkJHP+YVGUtVHOUAXDXi8sKkUENdUaBjDXtiyfSWVDtTcMNVA2F5oereUIPoebz59EDN/UT5wIRBG7omjw6+CJib68golfFUJGIKA5bhqqxA+bOlkgOjEiALTse21bb7d3KRLaWiECD2JNMUlYQyTXZAr2gkOAR8qu8amsE7AY11UJYzvr7sAr4T2Mg5ZbqM8wX2Wq9OA/RAsEZRBBiv8CcI7Xv8NhKwqEVcvI2ZoKoLuCpGQ9RqtPzgScj3PfTntbhU5m/JNAbT6cSuKAafWMAkgIYXQfshL7EA90b/f3ZdgL7VaIpmSNRaELnbiTfcNkHnRYCU9R8QrQnA/ZX/gsmlL857iBo5W6NqxtHknSzHQACeNyubaY43CRwNWtOrWME9IHY6T5C/WmQfuFWVpsQdqLbB1FySCKlQ8YPKamHblIiBmHONjZT1dEBE2MiJpym32YxWnMYDkb3q+vpWUxuKx2bkyyDey6IZN9ExB+TGbOZaLBEYriFBXY/NyXWnqqEINi0DYS3yZlIoHHdMcG1oTHiC1cTGe6La/Zovb7czUVYGFJggKmHGy379naYi6p8p6xp3Oh/HkfQdE1x/+TNCicCoCYussafmpqYD5fTHAq8faXkgc94jshdfEVUC9OcK4HP/vIsOElFy8ZXEOEO/NNA9CpiPIwssfn9uuFpLbrHfcwqMcpmAf+yHZf2/XbhZZETmcjbzh7Y+FPQeKuEhHa8LOD5ft/gGe1xwqm4SA8JQTAuwNOSSvKTUPX013juAfh0+jQk59m5UzRiCBF/qwVVYegd+a8oHttGPxRUGfLuXLf0lG49AdmI9+covnHb+LX8HJoKNuJNe+/i+SsBcqkaPGZsgZ+eQbsqR3Ps8wh53e1VTi5MxTbddV+Hvc3Iw5QxxbQS9udDm64skUszTwrsIzst5wVKRx/3/DfiR4Fq4TqY2P4i8IjsVD7HJa7LtckDEkrbcvuJ5etCi0NSaglHg/aL8xAohYwN6pGdRUZ/RjRxVBwwaAVUa3hD8U5xBDlREq1Pd8ItWmCuCBQOodfGofG2RSsfvAyzBxqtg7BPZDbYub8pzxEoIX8pafLnHZGdzdq9X/MYnzRhJO8hFs1rwFbLlL5IYeqpgvQHA45TwMVqSTnNarYfEL2Th4Fa1lx1g8hQug0T7aLNvNyhrR50xiBwt9qoMYGIRPVf4BMgmWxy4O6BvYXPm3gHKG2lxL1LXcY0PcibnIN7YASouuwgBIs13QE7oLbwm921CzPFFH+fN9FRdvzTY1bQnoV/sO7cGuOIgBRixyLV5VAJcFV5X9IOfXbfpYN+FuWWWasCRORAQz3th7dK7Tb5kCTzPcVvh/3+tqe1kTLAefNYiOgM9LLFxDauOPHWIFJui1wDwOyyc7rluzjzdpNWQZud8w6iF8US86wOisrxqvjXrXEf71NEfHa7nsbtE1biKEKg240TqoSqMGbLGE12pn1NCcPbI/nBNfAp9VaRKiVDTSxL7Jpyv0FbQMPOvOfqaBx1ejtSdGHv23yyOM0BQCVzVf/qAqhL4mhfWtzUy1RbrytWj66HUkr3/DzbinIEMbpRLYGkBfM1Yuq+TLD2cNKGX1hD3KhF+ewRq7UUFVPmekfk6k22NZ26n1EL2Xou6B4xQOjuigZ1o9EGEvpV6jN4SQmSuOUtvVzSeEl3L4e2gNHcrGsi+QSvcGgkB6MBJJBN70s5cB9dtOlekBkQ/Ts0OUPXETFyHp2cCvwh+3jRZ2BPbSEAgB6W79T5vnOKq9rVsdDiidfV3pC0NGYbhdMNKZFfhchbUYZJD8aq5+aBc93HLr/M6PFtgzdzOjsGSrlRclDVwCqVqIvSyLXzdnw7orchsDfIzYmZVR31a5HSNNzmNjIxVPaia80yC3ZjOTX0TAzkX+K3Ysw4s2r5zrCTQ6ytSs6R8ZrzS0jR1EqydMgd+cYTvgKzN6AE/aTGFJTHoi9uXi/4JSw4YgvO4womygrBDlMV5GlHtHKMK0J+sB86iQHuDyOZAXply5GrSDDijE7x/+MlYdMs5+Sb4zuFkWowBKMb25NOxvqZDWETqg2erDUCBU0bwXqIFU6fyY3lpoHmb24xS6ZPAmM9MG4POiCYhSU5Q9vXZEDKpeWjTJnt9IDIOBrrruIlVlHKbO64YhwQ/0gYmq5VyMuVuLH5ZkLwaIdpgANiabFPbtTPLN+7daVawggUE2mnE/JoS/diRrsVuuPhyhH3g2phiZnEXPpqdoq9MnpRbehvE5xyQyA3i1ygFV6Ap45qqgGw26phJFtMcujuBkK8qao/DoeyD3laPY0JjZ4GoikEuu56GF+vNKQUAVnx2Eg+XLBImTnmCOZLPW+o6QGLrcd6N7QtNO0qon2iqbYXKyu0Tuo9nMRdY6rrWRJq7sL7ozKtAt4mT8pvc6wLki37G5dUhLMA+ytxvE7uvecpoTb+/T0/CXkH3sLtp5/QP9IakzId5oiAYddQEEIqW8ujYAawMevAuSS/WZuDsNXMFOCPwgOfTK9EajbJ2lJJXAt1wRkCgF67EhKaSr5hwH2Zz/XydPMpfjqL+zZ59iXfD8r8rXpQWhgQdnx1ln+u2Jp+Ogt5la9wRRXb/VIRwh1JTZ/g31jelPVkvkJVjW5Jbwd99v/mYiH44vwQvyFORFxgvFgdJWOdQJLWFymUXESXAdPwpBOjqM/XYQtM67kajxHqw14Eta6XaCMRg4JQwVhT1suY9jBs3VZWOt2o3qTGTpI7YK1pYjRDGUFZQDWFZLZMuIaIiT+cluHkA3F6+NLp1mi0XcjGjcXwWHpueXEV3vS9q9jfh2v8eutOJc98toooDKnYSdg0ah+0jbLKfp0Hb0TllVRItJt7Td4GPNNnoN5b7kNpVwITV7M03h8tu5p8jlphHyH9njW8j3es+igsjbqXYQwsWlLH9AMseS8x74TecKyh6uC4s8yy2m53PWx9rls4fJpUyErgRaey9OM6yJwkTHF0S1S2Gaw9q372UdPMlWCiJXVzEqLZlZy3BwUXDc9i2DK3pIWSn+y7Hw0DaYnDdcErW111YYmpNZmE/cXUEqvpNn5INuoytubGgH3kAF5P2os7n68M/8eEXe1g/PcINkz2xkwmpi/PYaODFFcG/CHdQIwWC1hV9hqt6heq5Jk2ZOV5ol3MJUSgIy6V9yg1bz57MNStFVILG4MI2s0rzDe1GNHfZZ4gaX8uxb0+QcMvl5Yoa+LI1tolkrVnP0TMYwG+2T04R1+SOLBAms7sgs4pNFGbk7wnYVihCG8n+4/SMKv6SBz7DSpHHLMBdYFRs9b9EHDZkWrzCEriYBUn17vReDzlAHmrLqvI2oWxBDTlK397K5k8X1VaZCJE8sna+jDMUG0k7MjKjP8QAp9Oj6XMtC8FyxJ8tfPxuz9jR5zE8pN8Vx/LDe3O/0OznFkn/Vp4vsy0iLj5fEKBpZMvm8gvkPGD5OEWcSGzL+vf1+9oN0i4wKAsv29ZTmAiHvs3/SnyDxQ0kXhn43Wc4arXMtLuRPS/KkJ0YUTowQS3FyLAx0DBWMqB5/Ty60r7p/U4fo/VKDd1FQJtlMXKROiBPG6VuyYyLmGFvl2tRyDB/dsNLf3hdiFMqbuGr0fpKhOje7jM55qG24N9tzTPcjT2n52fZSzS6XzKf6u1eISx0gIyG7sMk+sUjMxJJXbxZO97CFxDaQdYLNaPLnlVe28EwSu9zeLCHtH8Qi3R8heDY9FL2J5BrIDdtcMWitQjHZX+WR2wq75cJm7gZzKWQ4/Zt0n3zhX90nqknmykbIDi7gk2GEkVCJbAphPpwbacPIQPDBPK8uui3OC/vfsDkyvX6RDJ8xn05MP/6fxYFxSFx4VtvdeUUrdoa9XRI25Axbtk3aPvoZ9LFIZZqgfk/IGMpUKtVcrU7sP0cYdFWLlxR1i3dnfkPI3jlBPopsV5wzHmrYEwDXbCsqih6cluVQbyprfrLKjny2XnnTKmY6HowiPcDz7J/sh/YPmgUNWrz7GT9V2aDq8yIYeer4sdvoeLvULZgBvWLvkG8VQppefPccM5r3CfoMk/Df9qVUnZn+9vJfsmSH0ReLW8J/tisgw1qXbPreqbPI3eAJqg+QKn7j/dplII6mi4nRhBLibFrzjinxuFVnZVt4DyGFPrttAlHuVt4st/zpCJYvV06RN/9d5vX9XPp0ES9E+v1E7YheCj1o+HK+WaD/ESCAjJIU4j6NBzr93YOC0uhUAPQAAT0fs2xr0BQkiqXjROpZkgmgzjlVccYk81/8kK0Oitd2swXpukRRvIxnBZODwq2aDq8RLMYwxh2nFQ0kTMaqev3HK/aJy0c+48O4IIkWD/0zNaP8P8ihscK2n6lME3/QPmrO2Hi9tqe9jesYIkGc+B6uZ0OMMIK+BIpqRuQf99wYm8LD7pT+hKeEGNjDWH+qILn+Q8nC8NGWjFk2T06tZKl3xGDQ8W73hSeTX8PXN7PYmu8swbvO2dzGXOu+xWfqdTFvzrR3N2ZS241iVn/JgRC48TQnCd15otVkHTZg11pX988mZl/2h5AuIVMyuDVgBH4oMKJquz6tvfhWNRS63YiC0G/LRVV1uABEwDvrPjtTk1wKDqs9mfuui89+/ddQh1ZRADwgvd5xyLO8Xo9vIpvGHlFvapAcpu47cH6wolGs3N5l418OJdSeSOa+bQrtQGbfr+5/qa5V1AepQdS17GO+oQHUfdJJbufIt8mjPhv94sDmmdexHF3uG6CwwMfcY41JZa2OvCvRRa4UTkdX+kdPD70tn1bPUmmQdZpBnv2e4XoS0TQKKdAUbIelU3yth6Z6OAACtulxRD9tmcsPtETyodvlO00FI2mhBpZSBKThYXH+3yx0EOxcfXDBIPZS6oAZYK+0QWWznMbW32VOoxDqCleP9ouYzQIoYuBY4NMEHbdvziLLw4F/tQ74bFpMhJEUuOzvW4pgnrSZcV7hNiKJVXFES0iZ3neJa/SfZwz3G+RA051JjaYDeWpCQ3/W1HORqqLPxFmyre4Xxuby+Sdyv+uY7YZ5Mc2jdHPPZrlgFbSOYxvO/rWDLHQ76awHKuo6fiPoXVXTfiuV5aCJ3f3qjZD/rbcSLb/DdyPPYY1OFUoR2pYkc7JZ3KvoZEOZaOjq1Rz4BPKakyXz0fk05UZ2I3bsxA+i8KZf4oj3rgnxjqwaseAnMOhH+S4ts7eQSNMGytCRCJBw7V4OWV4aLTSYMfaoBMSg5zEwr1fHfQyxD702F7dV4cyrHRg+jzSPZnkz5L3QqQ1uBn+Fy8EMAv40sOlnwpvgBLHngM/kyK2FceyzsZOJOqg7e3t7YJ/6jOTd9fNG0oMH8SBopgww21Imf37pvQol9C7dKspNFrGou2tYKG9XLTCPGKzTkZi01Wx8mZvXxvyoNvpcmQ8rRQ7McTk3JhbgIdBSWhqtCEIi9MYolp/GroWMYMP2XsPd2p+SCkpd4hhwWiNQhQnt8Ny9kWwRd2W7UaYUEfNAo7aSKkt2VwU8nRaJk9DgwJ7RDI0UIcAbOSyQNTKcAPAgsVTzTL9dMZY7I1VEul4ah+Io5ZfP5Db7xdXHGeN56cndZBLBQ+XjXbR41qan31D23+P4ifnWkMWRq4pdKZjWQfF1KTu5R8VMK9xlLGe0j73HOaSiQjKyG1nSJv0zzQPAHks/CcB00yfC49vDzeJvCvnst9IrvJqtnbZ7mEsx7djuL1wZjrHMyy2ZOWjI3Cx9JJhBcEwB4u7QgULhBV53cD9KxO9Fu4PdN6s1u/rutf3SS4nLuwjxfUoeOKxnRU/qDJcRBG4y1IK5mL3I66t8IsazFMNCq537NYtX+ew9lptbBFjNL07aOPCvbgW+HkViXtp8CahchZGhPgApWrbJG/8KbaIdN38sQMzg+qLUOs3S7fQgWlCHRvz/oLVavep6t30pUUi5QX3x1i9NnU9hF1ZeVTGronIVmZeq6p1iTOKDE5IHRIcyiXnCo/tv/vWVgmCCWx79O5GYNvQoxOmTJHEnW8eDfER+k2dTvCqZHiotsg1r/4R8ZJObrOMUewU12GU38cSVMUQmkxQF4zfeVatRTk8CIDg6IPPXeXgFMdfU1FT+4CrWJHDmShrrSgIYBdf3BKv92CErBcMYEinvwly+kdbwr42+KuIE0UnTP19MLR+2KyIWg+t1ruXRxEfO6KxS5ljiwQ8MruJX5SASCZpqQnoUtqzTx68PxS40IIYSkwv26pNc/3veEoYF5QW7qtyGHt2WWgG7O8CIT6aKtsP0ZZEGR/2sVCs39L4hg45TiRUjmrdCIXiwwPcLN93YDEYTADEjI57vMtWnNP0/PF64zW4B+ORbTq5MXoS2eV/awATjk2Mxdz9hHquz1KhtA7zC1jXs5rSL1HcfzAu3gBaDry1t88lGBFMN8uL9/7GiWGqYvGo1OgcsOVAl3iqP/W8oJDagMlzkPx+QnFZC6NT4mIF+sMUHYva2IxhaEEPnQ1VX9suUehAnJ6WoUu9nboOkritDxrxZLF51KD3AwEUpRI26kfCOiNLE+MTHXMtWTpMSXbGm6BmSLo/IamIwiAepWvg8ZWRYqEsZsG7flA9/I+zKQtVOVkUR9UQ6pzyKaCRpq4I7JDVKtUEu4nRcg7mGqMO2Hdec5iCofqcNyjaqF0XjR5qdOfZKDsaeYvGf38mYMp7u2G2bSGHKHVCk9fKYO7pNViFY77xGxVg3rMZ81xQMvCyPB1QDMleBIJOtKZKvhLsxQXDF4tK1hcQekvEKhSeuxEYcG7eDSAKtFt8dBBcNF2QZOpYEyh/hscUDU0nqLU8DZYTcltYtxyY3z4SOihsugAVf/T6Cg8+UdpUcJgo2Jaw2xWGvjyswVJrNeks1EoEnDlddwf3SV4/p7sbIKcg39Y35cVpvQxcGcHuzRFKJng6mOJ8BosXCFVpGr86nAz8p8pG/DOvbWjHZwm/vAwHh4xdlBubAy6KjoJUzkgkKqG0CaVawdNoDEWue6UwfRJVRI03CX9g6y/Cw2Bpj1QZUnJ93Do3Izh9rgBK1LljzWxrkE7422ROdFXI1db4CEWTtQulA5jTYZGhwAOAWq+ei1L7Who/zcSEVOOprHBmKzHYKQnl8LkAZrkDa2Gay/d222uHtCvlxqFMR8qFQ7s0AuIhsnEqjFAyJiEcAlkqI/EE3HkTtd7wV0Uh/TuE9iMb8sTfLJHFtPZvLxMfJHYGAcz6qTtCYQv/Xv2KC6C0+pQd6BoJWtRwcmrAOTep1hWJU4gcbwyxcgFyU+cRGzkHfUsfYpdyXUdWW6zA+GICVX8G6IQmnZ2uE8xXkfubaEB1WDVYmFBvfRAHxPUVullg0xgNbVTIJG7Gh8i9WdHCx/x3mtiTMUaT0mXk2s0qmijA/ZBlb5EZcxUcWwnBytGmitf6xsG8uYfIUpQQsQ2tSMVSxSjXQcE1dz4BuAa4YTRHgnSctnigfRYK7LL0qkG9zrIrUYuFsCrxtIx2VTezD76UwhkZvNbPVjcdEx7M3POTHwS83Kwt0S4gESwDGqm4dfwxuuC3nSNfzvFk5O7Yn2DMzvifKtzuzbEG4FbiTkG+swJR8AsW3bzdzksGPQJugzEejHEdNBHTSBvLiLvmiDI8cXhsH+IRK1TEPUx7yzCmAuPR+NFvqgG++VdVBUHlyRn4CMszpkzCstLkvQY1eNlPBdqPsUph7BNhK6bq2nDbz1b3xy8P1PzG9Ks4+7z5fK5LoOnqY8X7b0WV6tnaTzJXNB+xxWzylvRZ2LxhTqRtyTVmEt5CykIf6sDbgsQoDsXmmHt7b91b40xQ8AqV7dHqxraBpp45eKky3u1V7155LuI9SlvJiQpYl2f/FFcEAntTa+gVEqssXdr+AiW+RkOdbIqZhJalq4OcFYvS1bGA6bjM1EWPfOmM98q708HJB4FZoKGzqtvi9N+z0LAXmKrJkdzZUkK0RV7mWT0z85/wiMjrt8QemYY6SaagTFJtBqAt1dy5wvxbjQyyDk5+oZzoLMdv651rPPfKNd71708QDG4mwRNrA1jDZM4rZZq8+RRdQp3mq0UmycdkeA0HPRapNO/QogOzu/NRWibT65tmL65kFJTTP1lhLANxMIsr3ezyFAmYr8KLjaV6C3UlSPjss6siQEObZpAn3Gj9zLXThYTjMSALbBqSeNoMVKSCI0yfht4xL386bMraMEbQNR1dAlcOyzX/SSJee7U7tozp4VqyUo+8SATsvRVV12eRsvF6LS0OoPJS4SbHYO0tesfWMFQHI+/YtSv4+kRb0p3n+kftJweFqnIeSB+m4GGIc8Drypxx7lKoh1JWrwkXudAHWBVqwlSAa5TOyrYdOiqnVUDJ2xk0D29uuqhKJPmCX3er7aBpoOej2keZOCaBRrr7nHueoxZcp99KwU7hm5kFD3aIkcrjH3Mzg3tcpvnZF0cfQ5Xzv5ejpPnsu46uyiAEifF8sC3pZ8rSfkCgLzAb18ceEZede4jLzrOxwJkUSnnvJV1v2T9o6W8OZ60qxe5N9XRvoAz7IPLYpxrc41yocNGW7GKtwRscWT59Civt7AbrkA2GUJLXezplWihoEB3wKBIH/hjCOFbD281XMGJ+SRhwLCL2oK2VvnVMhZpx8UDbzdeZ99ROuBEKqBDOQ6dXEjc2VIge9ABaEylxVkInAlVKNVxavWlvwY0P/6jC+LheQ008GJ8kypp+LLUrOWgRJB49Olch3M+syhQr159dhf0EKfHHmFFr0SCH7xBWq0byxzOIWnSRa3qmA9cwVFjCW+tHfzq6r8LdX3gOufZDbUsVs+It3a4Hgunvv+xugupM45U6e4X8Y0v5tu+zbAZj4u/+/o9dojprspGjU9UTnC0/nQyjaveBZI/MBEX42wlTeqPb4GQcR2EgHm47HakoZB9ZWuJtDLjJDMgi7FUlKUGezE577nkhTInf6YGKiJR6+15FtowQ20lnNmJbTiJanA/1rWydff1n4/Bb2sEoS38iAL7L0uCornCYSiIpMria+B/aqVhrH3DTJduqH4xkXDGKagI+/Yd4ahXKqGshbDxwxSxVXzVdOoislWjXxXDBRNjRZMvvnGQ7o3i1sOj4CbmwmVVIEI+bmv/1VHE0esM/OX/j7JnjubE3bJ2s/ZwYGiD0MMQp/ZrSQZreBrNvZBM7Xj10TudYa/zhC0Vs6xMkY/nK7uWxnrTSQrJh/NYYPOzFyCvaSEvRSFTnQLSzJyR6168d6X2nspYx3G+e88J9PJJrm3IhBL6B9GstQiIhZK8wfqGUQWrQ6Vsi7c25ilta50jDy/MIkh1akNEBV+xsZZFIBPGdj8T71iUaUZSBvsx/z7o4EjGa4hzIKUDg77AKVorIg4sGDPgiEIgKOiGZTod9ifPrsvpew916dibVv7CdLUeD3h+ZLRnD4yMR3raKfE3T8VToHt8xhwSiFoBysCFZbiSL0ynL52Piz1TKZZqMocgYFC16zKTYt72wwyGPi4iAksluFcrz9eqAmHyDSmXGegoodXrKdnD5l7Ixfca7dqL+sfYq9LM3gNvdqs7b7TWguiIfeXbAMVkbKJuw25qO+gBRshSTOKBkNh3mA99NdWLK77He/ppmpqQD2mHGhXxBFSng0x9dNzUvj9C6rXL4nSydlGYI0eNV4p0teQ3ds2GhZz7OWz2GLy3qX/Frdk0qOuqnXDNwhrd8SmmDMZMe5HO4nTJLP97/9n3gcNtbwrRq6W1uB/eWn56fb/GusV6uLS76foYKgNRI1MyW1O91rwrSsImBmT6Hi4Xafsu18xZ/JrCNznW3aurKEeztu1g3Er6Ojg+iW7ULZhAeJENHKUB2u3vvPmzzUS4kSr1zgLH9VE/9V0nMlccm9pueUvAeBhODsPt39nrNLZgY0QDyredxgM1NXoXE/BQC4OFlFD/TMLxi2sNmZsAoDOCy8fdM9gXnl+FA+QA9ol7/c4l8BSF6RvUceJ+43DnMLDz4DfDDhxTxuKuQMq81jRpYj2l/Bf8a+vT2IhPmGfDoYE6m0l83crD452le6oafhx+ok3P8VmmP1s/Q/VIJAXRW+1wKoaSXOqTg1AK0FUELS43MpvVQqkr+Tw0O50cMiXDohaF2KC6J1dk3E92S3Jg0c6oGFjKQZBn2suxbdGgpL7TYbgt0mhrk/SrXTaZyiZ9rR/Ong2TAo1UQnOOR3Fvx6xokvPKrIzhlTI3DjdN0/dqNVON7bkbPstnm9ng02GTlbHqxsIoN1XQPltqkAjLycpMe/lz2x0QyMkEmSSTU83xhhUTQm7VI21IRn71Hhw4yn2LGGbngsk+q6cUOxgvQeOpbUHEM0K7iXkOogs/z9PlRIuUnIo8pToTzGUPOWlz7sO04Yhp/vp1v0SRGLeqNpx6jFvckA4fOLUG6+HQVh1PrfekfkiOfbqzuVfe3TYD4mQ/k27QbQNHI4vWvbtMLe0JkQZ2YYO2oha+rVkytSTBgefXpHNmwyO6lbEyHFz+L72ZU1ChEHSiedNcxtjTzoU47i1GII7cMchiLo/Iw85Qa9OqTqnZshJnYnI77A728tAF8zIvTP08IQjX99Xdc9HWiMVEJKpZ9SwfXxRhy/RXY+28+vkXOeJagFihdv/CoUUTWb3xkAXeASllCJnxvgLDpM/PWx7XQrr8fZ3nnaQgMZ47uaj9/DO47MxMCrf6jWrNxDB72bSLtjmJ8ZCXXfGhiHQQSyqKz6t7PfO2GCo2d06xToafZwvIa2vvccbzOfrMAnLl4oGptGFiAVcI0Misybi7F3wpDHlh8EHok2Nlnir2XI7ddvCamcBVsG3Xj7mnhCwvnSZlAn73ur1ulfdbSHVpehY4sH7YI1NZBy7QqeXiNMrN8320vS1VJKYHIRSWZnW0B3HjuCLOmPAY/wm2wZ1YASKTBC0gcXaqWpPa4JVcduov2s/KCJVGd0hmiK/FgqTaOAQ1ZTtB6/kbV53hyJsWhE4uK+UROY6B1s8sLP+tAYQrfrl0c/Zlk2/ZRih6BtGSyrcdnfzlK9V2lkF1WHdoffeeJDiSBVwdNBVHlPr0oOL3r3F+OICzz2bCTfOa7vcBg+OYRrjmztGB7DlJdYjDF+SbwFO0YVRaCvETPBbSoUGN1b0GlKkt6YJrl3xXM1oA9ezbZGQHvQsUxaswjD/zdOO4BPLLXIOzlF+iX5RFDQj+pi4KE3pMLvdCZiXAxl9y4Xkxu4itBiHu4hh4NQK0gcq6Pyd2TBUpwpMrgZIOWv5wCu539zw8AjQTMc7vjlhaO16WH1KSDJ1C2oU5ymt13k21NlHZjRyFKtQk9tAFSFA+5bWcdmR7gL3NSoMqweNECPA0HXajQdBJNkPnn8AsSU+WQAmQYsS86FDgwU6AaXt89feAX/RaaRJ2V2XaMwYOElxPTlaQfGXOYb76gqM/YpdW+Z+a6ZqyDLLK2zuD7M8gp7mISJfMUWOt4Nbc14jQyW7k2PuLY8cbQpFzyj5huS9xOt2+qHgn50CiKmWsMKKVmtd8KtY5vih6ykLb0U8qnfI4g5onF6JguZ50FYSyxpPvr897aJBKgbo+KbmS65lxvBZ/wqSzIxhuPgbwfjwCapk7Ga/5WP0jN+OEmdVY8xCwyAtjm41/rOga2Z2FKfcvTEUiczCK84Kh09se/erFqueltoGzmajcH4mEsI+MUvmfi79RoP6PFGVidPdhI70adb1HcBfWMOMoTETXiphh/pb/J2xgccyBhq5GhfcIWwFdixQg7fRPaBDvWVS/DlfrgxQuXIr9nTWZwfM1EA6DaC/6tKnBLjvI8qSfxd/uHzsU1bZ53uugWyA6Rtj9SDWdmxJLjC/ZXT6DDdthqbQuaj83THSQ1IS9HmnEeoYJP4SON+cImezFcC2CDj0ZCPfcu4qYvmO2WIsFyVqwM4qw3Aa7NxVDDvmKe53/Wzr6QLq7cQhl81MLFn6mSfGjBADLMaICyS12TSVI0m6AH7OUUbOPhOwQvImmeGuEnVOEkhZLOnjJe9LXCjavELULatO3wC+e76HX2DEDRajO8qdzNS/SfUSwyOJfV3kYLR+hbKNseoP1hNAMc7XO9ICiEnoznP0DBLopNHAu46rr3iguDnCtX71RiJ+fPIWU/Gn9K+PSo8ddMR6zz/H9yKjyv0haIecnNH6JCyWeg/IGvcDMXDew4Y02AhRmrxufxxuFPRpJHYTiAaX7INumHb9U4VdJH8jA/czpL0vf1WKzV+NeZmU7O4qbsfdFjmlf/Pt7ENaXYzlB5mVdfYSRCPQJufn0OIGMGD4b80Us0M9OBsneonhqr+k02nxNzRGYeafGVZVPbZroZjKp3OFS0IL0ubagIMN5lbv9lklDIrMi/tDscox7oOL0MCdEVopCV7eWj9Q8r1tz+RMuea+Wbk2AUM46+1iB9l7TkZdDW3TdeJlL+3dwDc6Lpz7q1z1QuJw4FYRDxE7z0Lcw9+CgPZDbo2cKwoGQRuhfaQgAQygJsiV0sdgwQwuqArE6307DhD6OYZ12e6PwNgsX8IhS/XBuNdPrRWTlxpoIDRPJ5J3x9loOrid6CBVCmJD4qM2DXJGH2wpPPRI8zyIrD7qm/Ikqn4mu0Snz6KcwTE2ky62JlxiUcI32Of5EVf3ZHU30AIwmMeYAQ7oOyUCK8khKmLZ+Zp1lXJMDx/SM3ueLv1tfWLfFM3O146e6fN7ir5fdZpcyJcwEY3VeFUK7oyBjGZuZ3Ek6R66p2D1qU90yi9n7d7oRpw5CuICqvZDLyZeh1dl5CaaX4MhsAfD96ykqoV6SjfELKv3O6UBOVbtu44Xuga7+OidBobZSxLwxCStKcc3Hh4CoYdVnYztlYxdF8AxFsnl8kGsQjydF8Et9U/DYIu/EkHNXBs+qNBJS92UwjbT6ek6508NdWEV8Feez3h/TSflOj3cgSOCoFuiQQ1iVddgvBLAuokwJigM735Y1lXqu1Gb/WprRqv74ay5u0kXF2M/4aGI9pWidDAvbQOQnKJg3weKXyzh6htCz/R6Jjcdlc0f5TA6NAfVuxmNix4qltvtnONklqE+T/b9VtNNUSXEiYOV1T6qDujM0Rtg+hEP8oitfg+T0T2SwqcwetnzyqDnrRz+eU8h1wVtaqaC1ID3l+ifTGfcYwDc4LGpn3uNEOJMvJBK7f491z1BnKRV5myz6ObffdANb0Hdxw3e2HWP6jgL7vHyUA8iUfU8YM9hqtrBV1qvnnSTn+40uzaSHxRq4Lu+xoIP3onDln+EEvSQZAEf0vHngYfw+a/weD9jDlg2/IhbrRLg/P6f3QcS8l5gy7hBLjJHdoEtSSgKYpZWeCoibvJBU+cjFR2Zw3qg9AZR9KzJx4knHirrzhUC5ykIXiLw2FJrat+XkDbtrdLDIkGGen8mo6ts54hspAZDHA7J1e3IkJEUAHIcUT2pRsThs98OAlu9PYgJ+VyyPpn0YUuVVW4Re1UkKthSCtic/hTbsNGE8vk2QD7R+MezA6fHqb5TRe+OTdvojdOfotc5+SN+NNXM4JvTM+qG6IT6w2AOzWyQcYktWHqUR8PcJd+QM/WU5rMfFnInUSqkZDcuqQwzNvF70BnHlFSjNGwV0NNfJcaDGXubAw5F4SCNpJKECxhIUaio0Yz4fTzjDFz9REtNh2/tI/SuoUxwr5HNbGgLvm0KNvIRvDUn9Q65MDmVTtY20S/KiOuWVsdI5WjmuJYXhQhFU8RnToyEUlrcR/2o4IG6EwSglzVMKH60e+wXpWEE0CG3DbHnxzMfJBXKik64xForQL+ViLEiyou4S4VzbpRhkh+qtANzztoUzGm0bE62pMIzlmPpvV1lnR/BuT+W4sLqCB4K06vi5x1eTg7b7ogdia0AMzdG85xMt/8OCZh4GktBxvLzgTRHwpy0hjhvE5NChHO6/s/uKRGDmL+6GLSQT9rycHiQ9VbhgB10Xb+kEHgFJQ1QwIDiNDzzBRZGmK1fK1xRTJgCNFv2rRX732RAP4UNMZQ3eaJOtDj2pfWWK5iR8ucW88n5OAU8BzpEZOF25bw9B772qNTO/3rbLzzllQRmCl9rtowxqIrgOLsrWThcCI0+XS4O34Qd0YYl0xhA3uZHX3y1U2kHLbGyKNqFIEiUKxc7GnBi4oyFEwwyohPU1L3TsWVDICVwrSOCfSztztjnkVAOugKrLLmVgHRKKFiJG7Hj9yAVcuv++pkvX+/3Us9OrNA2gLJ1ZEzMO1cUKo8YJfieLoYpy3cXb+fAoQGw6c2G3ljiCWU1whFD45Luxaikytj5PnngDkTtF162DUVQTQ87ntqLm/u/vrYBh1bMc2EBdZvj6W6s8rBxC3VBUEVD5g2ftljuwHxnM4AEMDSomJoQFm28UYc8LwG+umFFKpFrQUoOfKEPQmRBTvjmFI1GFsSWHiH1jYtwA7Qw5LRaBT6lvxallEJucyJmCZ48v/mDav6msAQI2R3RfJOHY4SpImQON40DW1uA/lL76FpzwEp+UMi9yBM53GH8QSp8MjH91O1zlWmU+jLRfjnURcwuqrkejCHmPDmTegk002aa00ra/XwFmT3K3aGedhQLU6UhtUoLiRnmB1yvN20gIilxvq3p9xbB5VyCBXPlLkDkpueKpwgdcxTNhoRgLqcLSQ4utdbox90SjEy7FayKdKnRKEgqyk8jVicwX+Ma32pHNfrzp38+HWdrFTOeq9phbWHkXDARjUB6j7kHBy3OO6/4pWgrDswl523+TfBOF7AWr73FnkCdYd8GwkZTXhllSiJzcdz2r3l9lbqxmf9nzFmY29LUV5+K7nOG5QBfXfG//s+rnlRguqNVRwnEmuwoO6f3yuGuCGNji0oG/paikelgZlCCNFbNqWVvCoQI8L3VEJQbQgFqyi7i0fybBxb9ar0E6Xxy4zt/sCQ2nzRBqnWPs9EGhT5NX4KrFL023DUWkL0h6z+Df6vrInglIQq1x+AI0XyaAkkOF48XxvZaNFRg131gP5MeoBa56ed+2uxRP+zwBvToLCbEvEm6t+zJvu9GQq1iDvN4GYWrRrkQFX0TizSXFoH/sO8znYWm1WzhjzUd6L38/OLDy9GglyKcO8ucALdVj1yPYSP+d6XhQOVQ1RmiAHFdnlexhuCQ7+5618tn4xvPsvG9pGTo9KdC70ScuUNwXPZsfE3RF9RThszvD33lQqEjUiLH7WA0vIiA5t0RBzoG+LmQNXwqhL4yhjkN+VxTNkpWpK6EBiZzvmNdZ4CpoQeqwhzgA6Nz3MtLKVk48nZNM6swdmFx9HjsyyTdy3Cg0BMrya7dp5EFdsUk5tJ3H1jvwYoz+3dnKWXyxdE3WFh4WwPhrd/wmzE5X/o+SwYLn0BzgP6scod2BWZYP9IL0pmSgLvE7/JvvS94CfzBZoI6YR/iNzSx9pLRw2r1Os6vZqr6p8OtMdXDqbGikbThQUESOWPxoj8gKnPnblcTK1VcB//qdWEkdPVC/AOLgWjZYRfHmwHjfsd07WC1LmNe+wenqzisK6p5h/xg6/IIhonIKj+MBVBPw3h6nJ05X1F67ZscUnPUU/s/NdWpcU8hLLyGMAMb3AUOhdVCFNMweh5HWIXShlhwMWDqeFnPKHm8fAktH7Er9A2CMKOUm4Z0DySYmSC0SgmNm7+uBMOMTCy2Kper9ngxGYMzTtepyfbbI+3nicoAMXxVHXrhU9ShuJVCTJog6R2aMa8/Gh4FL45o8qdqYF7DMUIwRlD0cHOD6+q1eevJ3bI+1rAEu9hIwZ1WzZXOP67udwI2MJht2Wd8HRDwCQi62ZtzAVioBWxp+gezgtPOe7JABn73+kNqwNDdZavf2PJFthBrFmmgeFEsEH/l3XXVnFZZrd2ed0muDPl3jN8NrUITIj49F+HTxSS4tryPSDOSpud5Wp52yJdwvDflFx2IyLOCtL0MXmyheFGQAC5t9AksgN9tGDIB+KnTKTws/IBeIkr7i+2NLseUbqfk0HCG1C8rzFHIiZymklq+f2GQ21k9ADErCegqfrcDDFVmvFmkO0s+oaEjILwSJgv8Ht3kSmDQgAiAqJtiZuoHgMKbuSRFwyy2KuJfuRnYHvG8A61ciwN02SacoCuLG6RlohUqc5jAe3PHInL1IrAMmSx6Fh61NpbfUCQhF3qXF4j1tYkfNHeru9CiEhd+i+SM3LqfdgmTmz1NIkjjfK3UxkHpFVtnpXyooFmbb2rU3auySAdnasrS8rcBvrh3y7m+TYhz9rf2SnlhnlmUJ03I7r7SR1spwPFC/qtCabn/w+g32jixjNKLFq9H33O4S3z09Y/gl8XSYQoJIJdfrW/99OfkPvdpZD2i17gr6Yi2l+539fZa/Husf4ynijXI/uuAlx4KW8FBkLivKN0X4aFVof0JAxbl6whOXGAaxQYQzrnx3/bVOzjXvYqw1tNMkHc62oozEX1+LnFliFvIQVai7jyrW4RhJ2Gj5sMEK291N7sJaSeja7XIVtzu849p4nVqFse5DgcOFPcBSHwzJq8c5g7bav8yR/YeuRJymp2mg2+UuK9HkqJD0csXcXTxkMKIGQAJfp8KhQLfJKszsWfjo32bppSqDJ0dTU7dpbymEvVO7bJwfOvAg70weuH1BC5CGFsjMbTtRla5eawL3FvMZKjm6PCrOYkWtu6Ak9wT26hZORRikiDgkx6OK68KMTFS9HdIWjD71pp0Y4R2W/2vHTQVgC9/rR7QMkVVnaYQ2QqTIDevlkgnE8I/RM8OGk4Q7pM7+tXVDL5Z2GVXZqoT767cNg3HZGj9JX68OqsIqxU2TmYXGkC1fpZR/GOWfCLMQjWV1BjI88XDrstCI6Kh6MM9exI0U34oG/Le4H6t0D1SCWZsivykCBq2hdUh1x9LjIsDnCRIkK630xV+D2aHhjeQenZLmgZhtbrLgDaNMafT+A/26hpnAAhbxSbzff31dEp9ziNu9Mdz7wMRARz/nzD4oQP+RM65b/XtcQcu1kiN7Oe34/e+yK9PizckQH9cZE0G6knA3XdosaQm0tLCHgoQLSxlYKWU3exFLnsjP6d8Np6JQO21S41fdnsJoivOyN7h55Bm9GI7xIGeE5s39qmClOtVAp80aw+/BMoRKg1HVCgRQ8kMuQslS/yEB7TagR5RaAtARRh5WEBdGMXwZ1z9SG1S9JL5hY9W8ZTTxnIW7U+tTN1gesXSsKm+tBSBt9dNv5CZrQCSjBRNwzZoaWw6ywSKZNhkWfOq1jO6ix65w9jjjt/splbumYP90lBFFy3MFhH50LVM8PDkm3Bq5JLan+KJ0gOdwX7d0HaCCMWKzt2lxtrAZOAhmKFQsQFQFtDSQh7iUHcA7QitxCMiPGgYVR4AN3FakY1FjmOd52O1x2nMhfvaehzRzjrKudoX0qqaHx/rjNMp5by+5s+tI33C+LAOj2mjtlonvSWWhRPlVqxF7h+KHBceiayOTzsx+w3Zmsid60JQZRxkuLvWpipp2S3hoDBJP1wisYVorMCm7ds5MnL3Acro6cTSIIWYlXRRBTco1C/hZCHNx3B8i4bjFj793GYPIO9HmNfZ2aIQjYKfdDpdgrdkdONqTsQRvaWmNApLMXSjQSLuAeW4EbMZTD1/FDEvNGLqr5fARPiXpq3hdlVlqxWhFrZehaoUrOMQksRnOy4AdTjox9ez9+RbbYTCSB37yPrKVWb2PLClpl+/ZhfrNsCVWt+kUx1gzhWemnA2qBeGiSUQn/pSCf1dSs2bHk0+34Q9/YUn6/vi6z3mDuBc7Sjp8AxmJlJqZoVRhSyhLe1lg6nBmolmOJvwBUv6Mdcc8nwaqxvA98vbvEGGhQRBuiD4fSTsvacpBRHjYGBYleNaim0zvwbile+YX6ZF8JWRR7DpFLWfFLiXsS6zpPsxo4E9hqlqtia+m9Y/lYkEittfpIEIiFsnPJ51fRdV+SoXN1A4/XG/mECO02csVtU/hRhlFvUmqkyTn7R7V9x4AsYpJU+KkNGsYWpG+eovNRva97vwEhx5HpkZCBq10jwc5H5ikW5lOs+wh0yBHwgPtXl7mWaVGxwHqxZCRQnSy/OZzBz6XCSmzcEvRZfxUmRdA/CcEX/nABYIR0s2HKUekuCPg1pqKB9zCdt5utMh5Z8st054Y5G1HROMcevjzktWGfl02Tc8Tzpta6lwJDV5gx+YJNZC2iM9zyoFfhhDYRmq5gabqPH8l6EA/OGOmAyX8HUkGrEX8UXfK69T3p85GJWrnjVNzaxUctYFkDwGIQHDkra9AtDmaDwrhEQT6PyIdspKUuW9iCQ/s5hHPWp86zV3gAjMVXk5g7nns4kKlLHIenCu32nfVO86h9QmoKSF2gmaVCRReltKvw+oRh8yMLBBX/mwllw+ZPrk7F81XSH45ztn13F1SRANc/QgQK5PhMRCKyuXzZESoS8VhMP9b+xadN2HAMTag5jAj6SQDECRIlKnsrOsUNFoIMINLN8YCYh4pQis3rHo8z1v5u2+TJDLbHUrA+pqspJ/jzBCnHeigeNKeDsPkZ10fcTRWWyAN/D/4COEeaU1VtAz4VrJWR52YaU3NPh5cvtpkQNXC1eD3cIwp1Eb7L+69W/Q253jTyGGVIX/6TZQQ5XvV2TuEAxZ8FnujJcd7KOAcKD8qxI5XiWOs2gYuJTPdWSSrPFhEzS6/rlsVuSJ6+3EKt2Loo9A0cXdC6bMZU1gd6Y2MukzHi64lzdvT9FLLaX0GARpSrooE8YjpVo7hviFM36j3L/t6DLB3opTmzXGDwCwjmGFZ56CNvQiZxNpYBAVhDIM4s7D3Kxm2VmUwIuTv6HqEQLu0gBUlwsL0AyKaUFO1Nhqx10a0IUpzuPTtdxMGSJJwV9uUCrVUhLKyHg/fBHoPUORVDI+BHJp/b6cXCXyGNyRl7AgmKZGQi2p3z46wjgul652bb41phF+EEQL7Tj2UR6pgQYUM/ksMSG+rFqj5HhUxMuOjhUgGZA7ZK7spBv0qTfd4I/rnSC99YnysRzaSxZ7EzPxCBwZgDzCXqG3irAMnPvBgsjlEjv+GQ9E+4GuuYJyS8qc+gYVRDeDTNUE0BWshloin4w+2My28UCoKsXhbdPIHFOa/kMLvjzuh0EmwAYMmxWwAbdzayUasKPt0P7APScjvmnzInpXHHAHfwD21GoZbA6NbJtCJOPxJ33HpZEneLUL/IpqpwZp2ZL3D10cSudpjf2hM43Ir/wlwbUkfOX3pqsmtP/GJqrpeCYrHEdgOiRoM+E0ohh7qyMKFrIdaXgfLL7QgwJ3DDuTXdoh0CH2wd1drFzfXcBZJYOVURh0ACLz8ghWxIJG7nQIxlgUf+FYem9/+sf1gxdJlTaGmUfXPpZmkPG8BfGZf0TznSzXDYcoUBoWy0Ts4mNSI6H4rdrg2+r5ZxeshS/GG2q3JqT/dQVG0eJyLCldkPHWdZVJi8idXspNy/vjBbPPbxu/lL1bkRQCGsW37IYjQ32uzHDyEl4cy40EqVMBf1nUedaWI+YOVMyytZp5c0Lzi6lHxabUDM4AotkZV5rPyS1WN1UZNj17RLLqr7nODhN5eUE5NKY2h6G4KvbR8bm+sX2NMjGa4npIk2L3xn2pbHflwfKz/tMe9mh89kJlV+Jj09pb+dD7CVvhC2UD8Vs5s+Xus0QZLNwgXgsbq9hoogwC47agYwrhYtdWNQB6beOCj6LBz/TYbxGolBZyArQ+/TCchD1ZjwJA7Zpxk8V7ajI7lDy3bVa5dkl8loiFjM2uV0vq3YvN0HOTWVp7X5nTffoKbKyitWq7Ipi/y4bN/cDe5TMG63x2ZkFH2glVD8+nUfKzZbohrSqa8hDoTUGgKuEEkId7endpOeqmZP5SVnEgZO2UTA34qlxG+FTOM2czkTc5RFQQi4gQAUFyY9gHmn1VGLMjdUwyJYELOz32UyHheIuPlCTkNFFl8tgqUJkfPmf8L6rNM2E3W7ziE9qW+rp/yOe0cIHs75wKNzVQ60I2tyZjJq4mjgQ6Io8wpC+o2umynY0z47W5HdRkdyJNWyI9ohb6ET1IzvT0Zb/lxMXEHa9qhpXEd45oGkgjxeNBs/6AXBHLowFIUbBqe1xBbYCKwK4AEkjq7Hv4e+nCkD5RT5pIUzjvTR0eZXvrN3HYrvDj8MXzzM+VvrVX/MyAfYRDP2Qd9FOE3vjIiFhB8kZfNr+fihYpeLJU1xYvlBAvt4Z05xdxMCBw25Ircad8w20hyUMyk25N4UZ0Km9FOAN9hChad/ToXuiuYe3qbHjbcFWkXogcDy6WKOhOgLQrpgfdhwbkzNozV7UdtrLoRrjhgOOZnTqOn082S6VMvD7ompzjvBNpaf8Hxh+/iMKxK8sOBm9G4TvOvei0opaiNNwVRwupE3jpGTcCPO7XAmx7QXURzGtr64ULiYvNMze83CkOhX0x8Vj7NqqVaP/6qW1sS3tjUlFAGCOX/VQcnPFMhqVtqUPiTsUT1jw+gK0zyiHaBUqABw8P83QiQO0oBfL6t8tKQ/2ws/2bgtc7DqNx+ooJDZSeE1X7ieckNuneaNPfqfN4/VqIXHdsP7R0EtN876UHZmyFHcwQEMQa9smj33jlALxg135GJNOZBS2R8SL/E4JROtiZJXu/2JGsQGNjhQEZCjYekznVLQya1cIepuCSaE2Ygex1nHVWQuHY1ZrcAB2SEid4tMsFgi1U/tTRE2m8v4Dvoq6VdLWD7u6Brdw9a1d0YPYFxqUSP4n2gedFegODU+RxgX/sTGSjmYwbijy3WrNbS3o6uJpulP8Pj7dQBJrxm9Ch43Evk0cgNP8QZromGq/9ZUwUFoEdBD0blMMCd5gWPI3Inz9wqFjxnl9k3R6nFVeFO8MetwM5VUIvNeq2LhbUxHxNw9PMjRR4Aog5DqIgG+uvh3UQyEP67YYFXsVm7AWznP+b+KTBMHJm43JXCBWfi3dHVVAac+e9Solmj1YS9Hz5ZYxSLqrvDD9MSkhNWkGKZiMp6S78skZGag6HgZbmiJvhi8kql5PVdCIHr5UvQ0dPa3TDzuXTywkz2cpUcvvNFuVdNFPPeop5BhPYISDzRI2oPggaNfs7EMMhRUwepV2yrM0RXeOXaR7mfy4m5hdWInS+wesmJPKqhq3dlk64VChBlLiEwQ7v44CWHEAnMWOvHaydsGGyEQF/pGqFH3+Z9R2HNDW8cVSIBTHzsow0BGgaC/gtPRdSVO57lTUa8WyRpEbknVd/LwNxOPppP3XDooRPs2hC1btdBmn0sqEtvwqPBCmFmPK5g4MCe+u5WGnpNet8CPE/xeRTBvLXTZ07OfhfsFM9Hv6uK4oH3vZN8V+fwynAOst5/1CLxPYGz+VX9toaBa8Bae0m4JjN5FDHO7p4e+khXF9px8e2IgqWH/DNhbEIq08Tbz/ZEDxfFBwjiOyVzSTlm6zENTbf58VuRa/yDIpRyYJdyI6DQ09CGZagOpc5t6CjiztS688a40HuMLUV1DBK0VaFWGAEAudFPp4NOlIz8L8hJ6SUqOTU0yFc4bj45qTRc7pJbb8sZe6g6IjKHvudU8W6S1/080jdMMm2EiBCfe/smEanWsxGDCKt7kpZnpx1NcfNvLXvVT+F1R19AAA0XjwRZXkXjXIa6n2Mi/xvYsav7OfYnkVd22CKS2tvzLbXaZL+mncpHz5ZGH/JHbQTnlFcBZWO558CMA23cs38BQkCxAiMC0OsFLnIGdl5HKI0zKV7DsN1LPBsaN7WPCB8GEC2skQklB0eVuxTNZSBL9hWPlRwS9ZracUtROgKoRkZqEkSGJe7TnQnq176i+fRsbHOmP/tGkEgaVSEo8ZHf1P8uqpDQ2KjCjQ2Qjv0GuyG0z0WGP+8D4Yl0bS6UPetDp1s/Vm7VC2Q14eLU+dyZQpqJKhVHNkAHbS9gS9glGNP1zDER00mgTvzTykejzInSvegX+Qlr1yyb39eEsIptsaADnFd2N/quttrnsrcmlT0xcx7ugnP1OaxpRVPJhpKexU8GSjYwIaoA36LsR9XVYR+PyZhjBZMN72u7ZG3pG2u9j3cTHpE6wQSkJFDESNftmOc8DntsECZRkua+0hqwoO3M2C3BoAP4HgllBNNNiGnpmfQFyQesSsBQI1SCgt+e53KFu8F2E96MiKBmwVk77cz9yWudk9ovjrPR5kXgWEVAfg04SKHCwQUX2PBPQWTgtBA/kedX2kXyMOh2zLWafFzR0ZnwrnlMCcx+9cEzpC+nZb/eqmeyoT6lAMl5eXTs6H+85+2eLMs1I2KcVFTupa+X19cgST/haSwFH6nQ/AE7T
Variant 0
DifficultyLevel
569
Question
Here is a table of values for x and y.
x |
0 |
0.5 |
1 |
1.5 |
2 |
y |
0 |
1 |
4 |
9 |
16 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = 4x2
|
0=4×02 ✓ |
1=4×0.52 ✓ |
4=4×12 ✓ |
∴ y = 4x2 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|0.5|1|1.5|2|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | 0|1|4|9|16|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = 4$\large x$$^2$
>>| |
| ----------------------- |
|$0 = 4 × 0^2$ $\checkmark$|
|$1 = 4 × 0.5^2$ $\checkmark$|
|$4 = 4 × 1^2$ $\checkmark$|
$\therefore\ \large y$ = 4$\large x^2$ is the correct rule.
|
correctAnswer | $\large y$ = 4$\large x$$^2$ |
Answers
Is Correct? | Answer |
x | |
x | |
x | |
✓ | y = 4x2 |
U2FsdGVkX1+zE8/bDzR3Ed5J8gUR6yOewARGcMewtNuyilgRYpG6nOauHObWt1zmQYb3stXJqLdLH7QldwsGZKsoPnHbrEJqKrMMoTmnXFCk0NQZKd/WtLkbWrF/cQyz3DVtJB+1SOBDs7hh9zerOctSIQcdV+cRN1uPszcnANCMor7eA9rRkQPZ/WHfT0cz6Sfd7YtVLdDmTsgWR98Go+zbX+vSknpNo72wbMgA/O+3CENYmW3hXVM+kN8nlgBlOXOh3lrTVZPMOtV0Uf/e6aIxio1n7tpwplKPB2P8pzEcWLkDGRGkxiL9mVIZCNIFfIhylhzeFDt2b22zhg/R6T/tFlbQpJGpmC27qWqiw5dw9yflDsJ4XuShgBx7dclcUQ66GDFRJfik3xlyUxjZamMroPsDZ1TpjdPvoLsPgegcMe94P6TMYT7iYFnIpzBCdMJ9LZpfePOJhFSvLy/hwNilG5r8LoQYPyvNTeRojTmpLDRdIWbfODCgTH3VEwFiO/wk2SId2o9VlOhMWxzOqpKimMpguFXkFyY2pQuQigvX3AhYojkmDAZF3cKxr4yikpFjAEXTiEUg9a157iVNNHTKzpuLn3GDjj87uBqSkQSj3lY5So1eX3HXUqq8oGrIu7mxKbwGh7jOsDV5Wz9KtPNyXAFAFGFbm+8bFX+SgNkuXgZsa8hN37Xeq7fjZZcZrMMsTres5Rit8Ze0gbqFQjZnRbNx46R3CIUZ293SCzac9gGgd/ng3kfy+wDgD3+RjgFlVjJGm0yv6p3/+1fgf57wH5rGb/nVkiTEBplcdDKr30gMBYqUhgJEoqwJNiLLYo4HwghCF7lj5mGWez78+kwCyBk2WrbHBiE9aGp3/PmDvA19rsa8cH/h2vjo2IHwJKkoOy/+2lqHKrJScfIm5TmpK36h4JZQUqDMdlmGGiUivGxEAFff/0GMFgkuqF3rXnsFIzjn6VwZSs7PmVnPdWF+08MEdgyv41hJ0t4sPIFpsbH80sN29zinucweaLHvWiLVCi2oPJqijQWrlF5OoJQCd3uhWMhjrQUEOw79lvGmLZ3W0NVjeBQghtz/SO1vfWxNMenGwsPgGnwZGmfzD+Udk4m44AFqZC2TKZiSaguBCryMcltc7KJ7NRfv+qXDS247Nebkszp9BKE9Ypv+1qg6tcxOdXfSRKhZ1JOxGBq1GBsyyoVdWR6/Rjzf9F69RAze/WoOuXQzPbYRs51ZR+htE4BZhZdxkR9ZZITV0pxmwGBfoQQWHJbWJvWUnnkijQc4V4yb2xs70PD4u9i9i/M2g9zBNqsw04acJYtWZDo3j1gg5cwjJ9e869fT9gnJFAtaQXh8t8NXTDK3reg76mdsLwDontxMAFQ229tnJuz2A0Mrmei/t24HE74gSjyjNcsFYYzeqzkpZqkmwvVBAGpcNgieXYIfcs6fKz07VW4CBN34H0ydJGdqPHxetG4fM5zojSplSLeTR/0AcmoeMHjti5FcLShYb7TOkhLkugP9l/h+NxJ7CwpBKgoskhTDxGu5SdvDy8fIJ+aZNBSPqfJvMWo8pNTCwujFMzA/HG5OY2mMCncL6p/nxacIA6R7oYb4+DGw7bwce8vdJioJzFS/GNh719mh/r0yXpo56r3WJZKMAY5I8t9GH0lTLncWot5aJKanuZXrqcSQssnsWmAGVHhs1BZNgvayYyT6LW9vwVAM8uxJe11eooNXRxuxV6bbczt4a57Y+p2mqbQIBZhGYPoT9qG1h1IldxXQCIMNZZAFixoDntBw+ddezjg2+mYh/MuCdcHEE0/N8liWir08H8ppWIC/5ikhk5V54wVA/T/4doDRs1ZCP+TNSwzBQdG+Kopufev87oGfxveUZQo6Mu7fqU3E2sml8OMxr5XwmvxO4/V/6w5PB8E2G5aoc6lEl35hGwB92SXprNBH73jWI4As5E5sIG4KS9K9gdFa9P8eLplvp+8vfhDdLUfro1BWD83Q8FKRQhOda68F08KrJMhq6xo1VnCx9MF4vwS/3h0fQ05ZtmelfdUJQgkE4BRN1Fu6xRC1bgKTG65drJRfWs4hJJ7Df4DEulBi/ABCUk9t3FcvDQSxRoy82xkSX4BllkXlCAd+ieUcQGjydMLMC4B1g8S5sysWkeEn9FL5mo0OWpFks1vDr02MyMTEo9pdqi+707dlP56CKLp2/ejzOANumJwxy2c0U2iqbIYGJcTHaXX86i4BcD/Hsw2emUFtUyk/VtDyBfQN21lSOl1jkaC6W8nuc9BmLGlZxL6uqpG1F5sSQz9NgiAfCtuZSRSTo6tUqGcY4VpNMHX8mqI1Cr9K9WlDeqpUFi4HA3IuIvosejEOJnj9ERWKCw83piW3bgd9S1Tkwjdkd/1lJeoJEqAVtZxX/Secclf1K4LP+e0J7avSFaoWaGqZuB3TofnZOKu9Y2nWQKIaDxPCpqaQw0mwijsxdFUIZqfCfIe2n0+hn66fK9vMjdKfmPRrj0NXYUtjXz6aqYhYM3IZEXY9gr7JRjIjubn83QUIvI9RZaJIADZa5pQQrJnw3YfYDsr5+Yaeo2Qu5sh1YP/gRo5uu9Kl7mTENnxVL/fR+lOr5a/eQ1XxFqvfS5JLrPhEynSNv+EIX2Zjeq0nu3s0A9V0q6BP7FMrJO4nHDQYB00nDQ6DNLlUb0RxYH5CJdhhYIzHmkgtYsOTUxDQm1ewO9oFVBwlAsCsgkUyMH49FP5SBW+kjoUtAjfoX20BRN8CBs4scYNWQyoq/F8LBOGT/kkCdNRNgLBy9bM8cI425Gt9/qG86b7ARgyvD+aJ7JPEiJFBsR/HUDjvDV/deTKSNWsRAzx8YnVHxhtzI3UzsjL258y8HAm8YBreRK/dnjpnjLwoQrUg4WEUIiUS9nYLLZSDWv1pX25OMnw2eERrfNKEx6tQLQ++3sj08PvMevAlfoYSiHn4Z/QnpwTDh6PM09dMNHr9VuavWDy2E+RGmwriBm1O1QiKAZPgD9KqxVopT5GSCTdmIvyjuYfCI/jThGSiop7BlgONlD4aVVfPp0sMrR1nEvxS4+1rCn30PaoGetjR1BXRX1sPDK9Lr5PxzHE3GMs6ZQvVZtcotRP0ZphYFNwzW6lg2z870xibmDk+ABQFYXs5g4swNSCfWUqhla0PcbK9kzeHfn8cTam7Uk+0ZV9EDm55oyTP2i7+7Fqwh3saz3p/9iBPGLIn5sQhQLP1JjcMyDrjoOT0xkh1nYh3ClxJw47TUa9X/qlck9DAvDRuQIWo8dLzeAoRLS03gKzNN1NU6nrtXD26gvJ1x3uNIAPiZ++k+TlSdezP379wk5Cvmb2sAwKbe2Vp2xftWGAdaUWQEAatIRViAVi85g7RLomSofbBlAn3BxeAQPAQPuOu4Lp6+ZtjBHvfw67yvtJVIc2L9PqWVMVwPhMOtw7JRBZoTmlaiktKeS6gZXrJwVNOlzZW35iCOVqzRUzt2bcZNs3vyepO8uuSZ7i7SRYnELKfemmt/6Zl9sBDarrTZ8MmzOpq+/L6kYxDYPxxOYwUp7HgwJECV+4Gtphnxje+2ckVfUB27/Kvxge9Z79ppn9Eht9LemyNi5rtN2kKQGwD6xJu5CT0ZTcudPpw4wddcnoh8HBo9XF0e6wVmr4e7VrMIhFp1wQFS3y/5T4nK1TRfR/1wkSK6q4xGTcoY36Mh3RuVW5W4TgZgs4zGw3aUE8IbIvptWiAWw9+NdFp6qDsSPbqu9wpr7dWvNSIY6gu39WOM7T23SXq3vUNLdK2XrZUZZJi8I+NNT91mghnQJh5//CJBQzbA/cBFnmAvMUvI+EI49pSlw4qNjJua/KPq+LVUsAi51ANp998oPSu0NXUJNHdnoR4m5fiv6lnlV7U2oKqzKYHF05SUDbaRN3J4aEuGGMcGpMXBfeDInwBxYdIefs/4ng15jLrEMe4QiVI/Mp9ttq+BMt1yuFi8fvv1qWN3A5aVZ28+LXAAqdZOMVDKV3UdOrvX7ORYNgPG+DluXN61ThssuYDxSagfJ7ybFocze3ANHp00OQapzWa+OvJHGoLn0xFnImSf+oAx+EQGxQpY6TpBX9xB55caJ2RfY3lT8kKvTyePniOnpcCHj2JHk9o1/HHxMfiOvwtD94F02nRO4qZ9WEB3hVpafitU5TNEWdtoKO0nuAF6l6RS18Eus8LMTMqWoCniDo1Wk86lZe0b0jbLtXRA67Kn2MBOwGJtcvqtOtfq6E/U3uBjcMQ4zaeBS7RH1u+2gLiu7fMjTZdjQwCEqyo12aZFxL8HR6TtPdYvB5Evc1BVB8I0ijh3hUIomEsFiDqnyNd3YDbEzcDYLHSOshvycvQtQo0Msf9aFAk9l7UyPMIzUyMbhALmVnkpkYY8zegIqfk50R4gEN29oOMWg4MEOLYiNzG4R9ekMzTEnLTIGeMiL50Tg9bjtU/SEWuWHX8sYLUOaWr/HBr/vLH1BkSeOwUlvWhj1klFyM6yC/OS8nG7TGYprCbAnSqaiqbySOX6IrdrG3u6malckcAIHTTFrHNNp3SkT66+n6T/IWEjnQdtkHD0Wd9qwZNV8HlaNS5sM+LhpnfQVfWPrZrpQhCU3h3tsg8Z+uQuMk7nBomQM9xOioy/0d5/YSLJjrRVUEdpD8sRYt3TEtKKc/PnGF9k/pAgAxexS9czf3CQ227RveNDjcT7lSu+G3Rvv9HGF3fZ9S55Qqbdu7B5XokMsFc4j8oXy/wAkkb39/gC0/uN63kO2rDBmpNVWZCbVN7j/UUoG4N9CNL6/yYF1Xxla6almuFUQdwOlN/MueFBeqvZET7aNrjv2uzniN1BCfh2W6D+Mngyab20UL8nXvPEZ2zZWCbVczV00QZo9xGDrcwQWrIHR0rcZt3J6f4buXaS0u0rLev6qsjKXOW0O2nnzWJvy+BQwbQA6dyeR1yDHDhOQHp0x7wFH8FFV+NdaKmcWhRxFOijYJQl6hFfra9NbAkbK7FJCp0kztPVezwCIJr2em0COKTv7T4j5LXxOZ6TFjzuENS9lDzQrrbZXHx1LlLksPledw8M3pv/iKlkfWi+iTFDbOtxtf2GQociD7sNbJwTbS2G2YuCWcDRC2B3MBXZSppkXQ0hO0ZqkAJrsg3GqowksdMsiagdoJZV0PTt7ymv6CODA6kGv65cv5Eza+0rVMYmymRRecwXt4vsfaREqggkdUTeagk8LcNIMUbtZ9M4ZcP7PUiTqIo8EsifGfFIyEgIlVCrqIGHaHVHdcHdL7FtPXNm+heD5r2nDnFHsG2spa6yUPN/WkStPoGwnhD5RmSWnM+t9tliKhwuB+rop6s9VJquK1J14NLZ0SVkj5+e00jYKpoETHwjgYZQL3PwCZoxZyiizg49YKXwSLI8EBEar6vCBUsygCd9H6oW4WYXj84uktwXL8XzwcsIRfNuvMEZG54EvSkLYw4Fb1EErkNoSafLu4SZ/82+Hc7X56OwJVwY2fblS06dXxH4ZuNQdYIs9wRZGhdiy6UwGiK3b8nx8ZViGgmsvSOYZDZZ13/B+vIU5vvvKmNDF6DJFy4zB+xWwxicflIpzbe4WCxKaz28ZwUugDLzBPe9Kgs1XAi89cQbosF61qukK2chjaK5BoBw/nK8F5SjQRsYJMVkAlbkZGnGG+zY/yYW0dTmuxxYwihY3L6hTkcrSoPG1nhHU3iCt1YnGwYtjrlYV+tkuNSzYxgrQKhBPoZDi/VXoWpTqIxXge68oupGCIU2w3mii61yA0sg/DtPLkuxicHl+iSu7+VPY1IkbEdPfKKma//7uqBVt82o0zn6AnM7qn3ZAFSQ2+Py9mCja4hWR8dzs5YKeEKgwdON6i4f4flOg9AAOsUe2st4yeq0RXxjnHUdS415mWUN9OSX8TX5+Vu7xNSuB2GHAh7qhpQqN7Zb43tX+Bm40oosy2YJ0o/tQkmyDUyN6Mo1ya28oEPI+7SAHuu9jvkPhG2uf1Pn1fttNz2YJ1O+/d9ZuDJ38mqnbjpDZOtjlu+X9cq1X13LZprfBiVomxclkKQwutpTBd+7eMqHg8VkvtmkUbmefhf1x64+LBtRe7WVN3iTP8iWPYB0SvrnBHClhSr6AqIIxwx7fjLAptsNXxpAP3YoqukPoqMrhWKPEOulK8lMzMkKc/TOgvw8MzERMDko57hycb9vPXgtF1aSpn58wyCE+MKVG5TADk2uL2UhpkIRrDGQcNDKiGwrka9LIj0/aHyQ+sAhcfxDKMScYihR5p2Ei+sBKIBERzCGWfgHV8sFEeU/6c56ioPAsULZ/AsAD2FIaA63l0ObwOfU66aZuu2FCQg3HyTR1AQyWfwBRV/LJvjj+sJZ4MJFt/0VYCU2ee5mlZ55qt452TEolAC8+Fry9iyE419CgA4PzLgPwH1tykqW764dLt6hhY/0OomSIhQnEQKoVUrfCFHqwt4VzZ2D4ZH6Lowiy/WDZPTpVMa2sp3gifPLQQtOm8bLEcYu6s9F1zLo+V5P10mVqgXS2fqybAM5JBN1lzRFW1j/nw6lVJbYezog9trPMBE3o9HA0YKmUOVkcKS6atNHNvZVNe0HFbNqcRi5S5u6DEPNvJ3m83MQrv3mtUB8sUmsG3Q/ziKiDxlqtMWaVnuuuITAfwtORX31JxtpAD9WDHqkTDUqMZ9jQqOjhfIIb9FypXVwAQm+GUXqlKBIsCnNpHnmSlsYMxK6Ddj5TLTNKmDoHvpB5gS1oZeq7FPO3T+B1XhaWOjNzbZ5AFSDcwgvFHr3eQKPJr38MK3QXlY/58hSs+Rjft7rZ7+pRi972mN+xaaPuBuAa4q8BTwBS7QoiUC4c/ALcKvjkjn4Gt/yHoCPaLLPqnKnm4tf2CLPHcSRUYwZK+u/8BzjPkBUW7t3CcK5eHY/crbwlbJgrrxP20msNZcS7EjnJRg3eD7BJvot437XYLDrvuLQqyc9mNQdjkIMGmJZRJ9ADnsPwjaEh7MfwG2PvuC1EanmIqHrZ4h8ZxP/hwtYe8APz9TZQ4voik2hd7JESaz9hDl1nK3jWbtkV8wuo9aS1iCbKHFEaZvqtyl0PmcgQpAM+wRpxMptm5HTIGTQN0mVFE/WvWtFkmIGmOcOHi+5Xs/inJ1whJz1tyNc1aZP2ubO9fjeNCmNJQidh+4dTpLzyj5Kjx8hI8QJMmdDkSwnvCU8OgWD4Q8hW8G45g+KL1tUuT+AgRmsug6HxMzSbEWaF5Ran4Tmi9smTiyAg5I3UOdy78p7meHUABJC6RemYIu7s2xlkMi+1Y9mH9NeLcCUR1esLwApt95wAeK7ScHhxV7MDJQTNjiSGZ3MrtBZrEsUEXL4dyOEo9vjJ4E6UAJwZ/FmRNePfqIk39HI5gVxBglX6hTdP7wYjCjA9Aa33iM5r+UuzSh8Th/NwUfpVfqyxgdywNRLBfYJF6MgAdRthb6nTIMQK/EG75wBjPZvgXMs34Y1vXxIYbBbOJmFtJWTxV3g86oq1eiH9Pr2KSl+hVGh7vk4X3NUq2onCSENBNlQZLvSKIHKdisn1xjmN1HIaaP1Vhby6e5R+LUGVLTicciCycHzTLHLdNyF+8/it5csbUVKwquZEyygQOtzAlWvi/skCTrE42kN4s3b08S9FbJMjucKlEr+V32UfWy7qYUQta6TG5gg2jsMpaGLZZQ1q0RP2JW379gZVJGz07xumwhkECnlZwjsdH91cDPYDpfn8jr4CVZKB7NduoOdd4Prx8orbnwNxzHPpPbzVksoQGBKRdk2gjfhCLH76fK2XpXE1Jk/q7JLuqKDcaLYQEyhchWmIziQHZfttHA0IVl0sK25AcDOAoR6AgBPsVKUHNEqDWN62BhYQvIvegOHMioPLjRVdcwQ2WKaRq0uvNQJ4ppFMorJiM6rsParPJ1W2zvRclxYmcZ8gagDfw+wPVptb6SjP57P1DfKhQzi7kT+qI6io1ZEzT5Ii9KeAU+AVacSQM8IF31rkUCfhtaZHawi6zUCZyG98M2fbVvaFbL5NPMvB0+VV1hcn5ntXx+Qam9uY2vxhLXHpE3pIFDf9MjsCSRD4Qvt3G0/sf7mxjgi88MGrrG8sUBVQL4qRkIWaxc4GOVEJd2axQ6AWrV649PNHt+dh7RsPwwkaIpXRKDiQzYFDrTKanI3UK/+R8xW8tRDVIXSCFHlmnd4/0qPY55kuKW1jnTQGqU08XieKVTN1Mc+b4tUxYPVOczMNY/9u6DdpQMmTVu8bbMSmO/T1xmRZqgFWI1BQ3/GO3j4fNRhRpQkHX1N1AHU4Iku/EVesSZBq46e6RMaNd22l5i4u1nO75Jer6Rpl4BVB4SU+RnaGhI8MrKxYeG5qLDyQ/JFRbbD6384NNwziKi+aixJag6U5KB1GsQfr3XiM4NZwMJNv8CnYlG7HYGa+8V1/CdCjw7VOesQ9Xgo5jxWpfYzuXbW0z8WZJZ7a+2l/dhaCRxGRhz1BLDGO9wlHhJO2rcRycHoTwxnoSD8LAxl6YrBtEEPBHT675khMiqfqhilSAPRon7A09kMDWeiyJ+3S32llAy7RpI4EdSk1vYWneZMNpzZYY5LuEevtzj+TWOzK6VJIsFTN560upYb+y03CR4O/0RDDZMujQxZv9gep6wPCmaCte/LQ67CuWOOK/g0n6OIjpfABnHLHp1r2pPerZtxlfI7UEnWGIwBv96yCV1+m+5wN/Drnq0dGH/srFAedx6Ozq3iEpBZFx7kMPae0soObOCp0l5ew5uG1/lZoq27ieZFPZPNM0OawL5aqBuBXo/gpK/3gdBBDzWfj7NMjbd37LYlOK1tP8MWn0aR+M1bFnRSj33IjLZJ8kjbJr5yW6PFA0gXfmD0SHYF/hq43p0vb4XbNgjjBMrtTQz+cv4dqmI6Xd7W4n471Jw9wq6048oS53MogwZw/WNDOltUjOzCwh5ghkf9/g31/N1pMwQZRZmhtUIx2cfYWp0eAuBsLOQB6p7pzWf5jUbKN86wjARXPfV6xnDwH0toODYl/b5CeLZI+EQ60Tn+2aU6Xcv3mdrCT19pAUnIXpEU3MQiBZAOkbbrCUvPR52Y/g1rKCatTzKqDDMwqmm5vsaf3DLl6bffCRDYLraKX0fJXiYuLoUgcKoL3mFah4mNijPXNw9H1LxsEq6hgES3qQWfieOm8zZ8/VjS63fetEQ17pDuBO3yNI8KJ7S9jSaVJxF90RSnt03AjaDQD399pTH4DK9B4ybDCN6R4oGBw1HgpSDmwnWGn58nXUgvV5a1fG/JC85EEgIsNgVfHKqhUHQPQ7vDo3c0e/+VhVY5sPTUHJTI7JBYkRLKIeGjfpaoukuJUs8205kojz6q6MMX2ofPPuOCZFmIsjoLph1mLluURyd8oBXLXxgtg4UURNJcHDgyMlFjGrQgaGdF1RxE3gzSnom7jSrt8Y+NUGQUZwMH+n4TPZ92kKLPXgHZX5rcLgOxy4B81v93PlWQ5uXglBYz92n6TuwkwMSPf+BbynpgKxFXTSGvnaDM7Wp5BpEclHTSfuGsOoIH5P1CU+4cIu3orQAnWsJs4oR0tjdmxnZrrurK7gk8DbL69dNDlckvrZpLK9yTI1Tj4eIbKa/tqyZEcSvlv8gNjXPvzJMdA7p6zop+Gcg+NiJ2sxlDXZX0oxKM/uYrjhdc5bhdjXL0BHVodQ1RJjjUYHKFvZNmabqQXKqrE6BpMa8ak1HwCm7AF5l47HwQGjSgbIgLj/IAREokLaE6nDzv8VEkJCsmLUdzMoJgWmmJAWVNpDqTzkCE7cgfAV9WmOZYkdNaBqUwlxMSQ7sWFsMCgph3W2fqhD3iVyVEHmGxuVirQnAOf6rP3UA9ROQYr6RBi0d6z96l4JZNI6qAtBWOhFOgNrKDmDeJ5+JHNq0PgnD+1tzJmzhbrkW+cnNpcNqyKwCTu4j0gVE3Qko3G0kHu8D/SpNlIOpsba3wSlRA4tVsOtvZUfBm634gQZHjb4CSMCk4oCnBGIQrh9nttP8DKQVK89fkzSaZR3ENXrVmKUGLdTQrvhpdhkRW2AhSN5Go2iogGRlDr9Y/2ZfdM1NdVVxmzk4JPQpZ9ahbtYq++zQ8yaycjHQ39t4+pgg/8xIZpvqe5t89x8Jm0DkaLANelUSuU/cmKdxbTXjc26KxKTVXswnselM/PbfMNNQlJncUCjPtN4uIQUKZi1b0icR7+z47XKTT2AtPDepSEytJPuujO2YKkURyoAnLoR2Lh5Te5Lj8KnxMTMHbwlpr1ZHHZK+FOeJRGr6zdlxDJQUKf+jKgGOXcPgR6nO7o+VPTopm4SBY7NqkkFoEpLoAy8t+h3PhBis/liqRftco5RHoCoWmc/ZIPanJ+F7kXqW4ZVUGhRcr2UITIp2aUcHRff2PQN/6XgmWa99ZMLxF5vHzqIef+o6Skkd50JJnw30fkkZGIhaFHxd5CP15vlBEYEf4fPp1KxuwlVHSJVwWQIJkIYQkLPCteB/148/49gq37Ka4vWDOwEEq04hVhWj2PJh9Xy9R/Hh0N+v4cTrMT7IpKazJZSSNjvkbEq/VkP7HwSzjlNGPjJOad3KFop9rtg3YLD4fCIpgzvnu1bvQQmI/RVgdHnZhyoenMNhNP5wDvoj5jISz0pPCZLyhRctraPPwIpA2q3/lGwBR1GP1j51nZyvcT9wV2FPl1tTPEgcX56DgVCEY7lKnmXNDwUheymZe2xT4yiNFgtMzughtxK39eZX6Toc30eAS9z6wOPmb98QLG7A5YnnhfVcuOHSpLWieYYlBKUzg+/janMY5FXFla7odbvBZokHKWlTBUKFbCZ3KgxhqI3nW9kixBejJdWLraw7FdRXKUH6Aly4nVa/um7IDx+S7jIBMdhbG0Gycp0wRJ/cqAJOcauwPd4M3WDDRgQmKkKpn2TJASgH2yqtdJgEpJ119RBhkSnDwVbSjzqOVuoJXI2iHzncAlpM1uJvqVwBQ+b7kZb/kHFAK9rjwYdSM9CNVN7OB+Y/O3EB9KwwtbuwbwUxXLu5q4hCSQ8ev8zY1wuxqwPnGZOD2VSnf2VtfkOB5NbesucQq7ByLVfZf3Jbrsx5B1M3GIUnLX9HVG0mWhheVTLwP+EGtKKHKSA/IQ5MiIkHVLbzgVE+JXs3n2tubMX071aAxFWI+TgNFcZJ12lzFzfnso9Uf3rI0nXVXZaOeTM8wyxAOi4fkf47nqwP+q8AEF6b1KP9j5NhPIulNQqHyZJwviT07eWLKI9dbkQxK0lZLY18FGlue2YHIdQpwql/c3lNRi2T5R2P+izTd05wUGuSrwxFki0a+qrwp1ko+ZAO4OBPgkKQT65HFgjyZLKKgcmas+uZG6KMzRZOy7HfYxji+8upb62us1QiRcqCOrDOEh2tJhj2QKQv4mXjMh85ueDtklo3j8bnZuU/408ZhSGHqsxxvoDDqea3lyfQVnt0hwZWRqEaR8NPlsCJQUBNpevyFQdSLsbJ12lyarkGKegPmgmyTZcj2tDSH6C2leLrdjKaqNLap9WK2tQ84xOHlopnq0pQzCFZ70Hc8N93WRFiwG60oiggs9pCUJUEm83pEYPJrTkmQSd5u81SPsaOl5PmBJTiMtPLksoyImTwIhcLtnMrQtf9mVgahKnNdw8vA/L3n9pOAikB1mOnbo90gec7mbrB6SDXOozAzX6q4TXbA9hdeMxsqcZ+wVup6tD3i2EvifLtfefM5CtdRQ4J1GyfGR6hkXjif7coM3WSIgyZQIBsoVY+9Ktvj8Ir1FpCY3QLPg9D3I3lBRHl4/I43l2WYkrkFYk6ElDO2M072ZQ+khsow6fxIc8N6xUmGXt92nbAs4Sq8RDlQXehHiVFPjxkzvPW00TB8Cfyfctoai4xHjpJzY6inDqtRNEEaKN7Y5BR3mIdXcROfRggjeQzsvYW5Mf0RBjt/pwy1QzggAuDvvpNLUSsQgvJ7KSlPX9x62oYCd4B5kOHzOuTvgi3K1zGYYgRWYJKcVb8DefcbrOFoAtJwZPyjIAz2UrvOexoo9FzXly5Z9Dr67WR9/h0rB9R//OtzoMEQOY6LvBp4MeQnjLHmP2E66RIY4uRW933HxgKanvtXBiZ5Nu3HpF6bAIvd5TBw9qhBrujCobHflS3ZfjSprYGjL9wbH+WiKCtWTmUs9L3orCnPvge90Fsba6JRtZUNRuyBsaWronixBi0iJL7DNCI4tkJyxlg6ZNRXonhT/C0TK502oZ9ToyC37AQN5sFNeU69awk7mLUdiX0Oatsa9O1r078DJ2GbwjRL+UVIMabokXQjhYIB34sokh8Sd1JT1fQgRBoBdTorMdaaNnbQUjg8KLN0aVnQ4X7UqG3tyHlsquVtIcIIiVPMfvSdVOuGEnIS8mOlRVu39O+yTte266u3QsQ0Ka0eBitsI/MNq7jwX0HnKBVQbXT7Rj1iO1KFszpgRxET5McYCW/2lMewrEz9imkSRNhZ0OKE5dJdVadnNrJRGj5/I4ivZp7VXlKGSJRYIc6kPq7RRVrbDLcE/La8M7Eog9cHo5DyE/+Q8u4uZntrsjw80bjnmAE4Q/ut+fGKBbPWUknujoth9fSbaS+mdXH3884w2b2jTi6Jeh/WwI6LDePAzO7W4FT06pGEkNJ3h257ASiBPg0dOvDGZtW+bQ9KnSM5oHbVSVAHYgxIzA2xQjGD/GO938zfeQfgaK1vZObVqd07IlIatXdBp5OV4UvIUVc3/+UyUr9QkCHfhvn8hfJEoDRauowl+nbwAQC253fOWM37Xyybbi93KTvRMFlJQAR7svPpFnBMNR0OhlkE7CuSHk2JEWHEy1/6/lnBB3iJPLBsNSVL59sIaL+JHK4YXjrKWjJS4ZiezZ+W8ZekZoBLnW1vZUIFrcCIQvTDGO6A5GVDtSzeyFOzvl1hlS/sUqkCEO+FQ4QRWllE9ffB5pfMuP033lb9Z3vt2Fu8V7/hhqUSBm0Mm24YCf0iZi0+1R2bXPpV0NllWRVGQBN4FK0JBV4zeMEUmwIKTnzsoeZgjS52N2fR+HLnMaOp9eeO2aqS5DVhScpyhKrHWd5BzAFWgdMsoUmDFzlv0FpBXcnV2M+ApsGRVkBPq5INcmeU9LqDjMjJm2KWUqzkGoYEQBOt3DJqMRdnj2yVR3L6Y7NftrkcTbKRad60trTbS8pKZv8wpZyUaeLQZmnX0wjqrTxjm8xuUy+VUeUJs8qnYr51O9OEmFf9pNW+CM/32mxXZpv4akX5bt2Fi1xmFXqngHVZrB2C7vz/XtxhY9aGSBl+QRVc0EdqxcNjKo6595OiriKOmrM29hd/B+jYCitN5Mr7K6ar5w0WBi9LO6pez0LVYu5ZA3jJOGYe5H+bDaoEQdiHqWclK8bx9DTvEqsFpXgO3R02CqeriocjN91r05hyhTNnUV+ozy7mNp1si+4ilTHXrChF6ReCQ7C3G95k3iK/YbqjCPlSlqaMhQG7phfrodOxHFGuMYnl+v54kf2GxhtzYF2eHMBUwjOmSjj8Uc8atZExVynV9NZ5XpDo/az6HsRscAfHu2nNsgwBusofh6pjXC38vASNvy5kJGW2JL43aoYDmGY76yQ79o5AnN/VZCLm3bcRpQW5Y1N/7v7tqJBeSP/wvmdxdRdNoCdoGYeOrdb3YTVXdgczfA1XTXEMY32aKxJxbcfDKaNyaVk+XOrStzUEdKkOyaOS8NxfK6x3iktwJqY4fcuelIi0lVSrDFlzf/ZdHv7x+megMBaOUYYvs/uvrvwcirkskEfj+42QQOegIlRj6/QM/hDvSiK2AJkm8t7GuGe/cZ8xDlCO1dKNTvwki2ThELG9TTEgAVicVclqbPYixa1CQWQCOVUW5eln55c1E3ECdTtOg0OqDZ2sFS37JV1Kl419VOvzxJpwbpB/pIowgowylfOyPlMymXOrIw9RjOgWylAM/j75xQ+8+fBYSa+bcOuajkLSlBrsdDPkaNh519ljzENUiWEayMN6qS1EoCHFG7tjgE1LsG37auhvyR+oSshifbWcSa6G+vMBzcZF9QXx1mlwCpLoM6UTJI+fsQrPZVv7michgOettgF1IVe9zeF/mogB2hyfZxQbrw6rLFa40WoYTk8EkWaq0NXoea41C7HdwxXqNWlvCRp5y6Z+VnhLG+Wyh0Bq41xIS19nc+627Poe7Yxp4POpzjAwR4uiVDMvJ9yLYoTfXF1t/036tnGXdLFDfaF4i699O/GqRJvtnGMwuBiog0TuBuyY/9eAW9Iaomof6hhgIOZEmnI1d5PLBm/JtgAjh0RKG7yeAkzj3XyPUH/XGkeIVphHJ16H6IlDM0bAAgN+h+pf0RdHucEjZl+CCbcbWWdKiLH8grURWVVPdSHrcla8baCzsLzzIv+FR/HASP7sCli3G3a+7MH2pe367X0qW64zJDuD1nC9DTYdbUGgupaxuoXJ/Wbds31ZcglW4McIiOhL2RU/7gYPMkm1NSDdRvIo47lKLgCm4YPMCHhb/8dH8PIHkxDiu8zeZuNkuEYbS4ziAbAY84sIXV5hZu2+mm5IMNA22bCAOHxtn929B5LIR4AKknAlJ4l6KEYJgV5qoDe7s8UjTDIs8dKyUPfSHRcW6eKpq16PN2wDINrN1DgM2qYcnqHL2UguAJ/jC3M6aNPQh/mKSBcs/kPnBNgp2lLd3MZA4a00CWpLfX+lAHvkCkoKf790M3X9OrhGcYgpFFiERjidyzihfdbI/vq2DYSY4z6IsgoNyqzOVJQ2rBBXRnPFLleCoaa9+wKjTW3ksQTFWgMl6UvFLi5/PNzeFTZu0eeT2o/6GBgN9xRNkT2dTPx2JTnEOzYJsF7Kgep4reLwGsc4A9hlpVCmOdiGZJJiAHZCbYb6eA2xVgPDT2UkoAYMiyHn4uQvBxY0z+WK/TUqV82BZ05bKfqnGRH6EDUUyA7mJ8CsYVdAabCJYpp6T6kvSWkLd/1LYvnDVyxjYfo7o7NhCCA0eB78nH1SFEbH5VRw2M2rt9moNJVJrl9O0VVAFAsfqribZpHbmozGRghUjGE52+NySb6+0EOqQ8bAsgGh7KIUDDNzod+GwRp7NZON+cmwwpd6j4Rpx5XsHSDsx2r7C6YUb2ym0AthmTmj5r6cwyhmdJHLdqaL8Irz9nX6Kk2sA0kcjXRkpRbTHLq65GuvzNX82yWcK90PN/u+Pk150SkJCxpadCcWbhSudMyl0/Fx1UBenu0x0neDB07oH2pCvYZ2fcoXW4Wt3uKBRnmUMJeSfLlClvV284QueS+k11YGjSY1jxKmARQHAfNhMS0WxOEwR2/oTXT3kT6iMIM6LfQgvhUVyL6V+IJ7kEbYRIu7dAZKZ7bgp6KpdGw70gIwO91DgCPFz6mJe5KzqEIAz8qZjVb2xS1HZImErjEUVsFtizeggNr7VvDoSUG/R0O8mfAWsdkYKr5ZeJf6uBwZShtXRPuyAgwclF/XF1hVHNjKSdHKeK32wSsRLPlkhmOR3snCCpiC0Nph+7EFFJ6DasJQtVFaXjGmsEArrB2M02WV0wvwEWOFe8gkxu+MIIj5hhG0gWumCRmLquVHn3G+Gvn4rEucqZ3s6RhMhiX9por1qtT5PQZ325oHY0bXfl7ZkHy6Aov6hgecfyARD3oNCvHFBil17AYIOphTD6Yd5WkoEJAIQQcWtvEx9eMUOWzAHWCqtc3VxjFWgljRRrGwIpiqLQ9ozpK9KeGRArFRdAKVbAQI6KREkGxMebi4n4gZWI3UJoYXrjB8BslPhU/yCGXhJT5yn47SvOY3t/Q0z7L8Tq3haO11eWexYI3hnIypxtxnkXuglzWBZV2XvJep2SvX1xzWYowBo7VuCEd2Yrme3F9yZvjq/5C9fNHpWHZ1mXeN2LZSHH/6qPU+UdsViu+0w/sOZTmws869CfOKRVD4XFHvxGXEgSsFfVdjnxdyPLGqe3fHkhM+a9JaUNtmT9W0URhBU/caGi7Ww/XcoOfbVl+y2FOmzWoUsJYhkt9gvV+70S8c7GQb1DIiqRBVjJaX2LP9f1uN+VkWAI1IZKNhSlLH9E0xu2f2lG1Qo8aa88mkiMPGxDkIUc82MlO+4DlX0n79FLFpcl3S48rrNcJMMwiHmSoWrogTH6c2J+wpU4Z8bk7gUNjvKBGykjzwN58B66xhS27J7/MwjTpp5Po2EZmwcoj49jFDZqL72XTfJZ1OmoVvGfPOBj2U+f5tHdngi4M38AZiGo0J/AUOnSqEeEzygL1BxgERSgG3FyewzvF9YxU7zmhWElYNZyUr1emHKMCgqRov1rWQNhuoXDVzqrSafIkaaObhFh6tBHEIh2nhJiZcPiU2LglQG8t0nFJUmFcWAvQbT0ZVGe6j1EHh0tmVr4DC6K8S+hf2Usxsp6QQF1VQBSciigCVobhoqOZLUKVrofw3s4FLk7kGNg/fE0B1ritSezzLGWYHj+9RBPrnm5SU1JjI9MIErUMY4q7DL/y7Fmc9rJAnwwEadMdUEJ7jXg+3s1SAeGILmsIRdP/bYg6i+0niDff0eCRC7iVEUV/EXB74utotOkwn2tXrNHOrc+F/09tv9vffPZVOoRje81lBZNPvfbW22ziNgBY8lgQKv3MJ7xyEzuu2vE1KUo2SWT+ir2TYrlv6eBsM1G4xKlwV1JOl172BuUDQqsbWBb3GoA/OBpmdTTSpWfqgAbJB+OLMNYsICSZq+cJsYgb7JMeZrOCFbstdCoUNgRRQweAKQk0EFvrDmubl4Z4VzFfT7C5eUIu09pKudMr56Z/TE1MP3WXEWFpKGfoqMd0G/JWM53CB+X4ziC1h94ru3mgAjx0pex2JiccJVZANCWKYr1mx9E5JMt8zM2vPWMxghtx/5zH27y7jIubhpIVxWrNWBegt76otMZ+YBKcS/lWsFl7i6Fjl++v4AZOeqln0kHXK670q6/kKwU3o7v5lQQv2rC517OsxhdbAptvksdreVj0gfVae7Ki6CN001msE7D/iqj0r17298eu6EZbVNYgbCuOWHcetbwkg4FWZGYXvaYd24ImUV9CrPP+3ONdN91xfDIwDwUI0k2OtW/PzbnzWkZCU8oAAZPCyohieqjhohYkPzYqTfTDezNwllHZ771wuxFQDr7npI7woT7Y/eXfoQ5hl76dUzGHU/aM9Ia2+9Xd21WEEGYEQCUV22hucvel7JLWv88LFP9WQa4FghKeGl5H1hRZuJqZ7A9mgGktSR0VcyN+3DuXIzcmTHiKwomLVCjL0CUzBObRL3HvQSUHkH8MnEcd4Y00XYG2vknIN+OPDmfSJQW3tVvrjBnFSU7XP1PnzKwi0kHzG+gwW38SAmWWR4rA3xdJ/SlrqsJ92hesDNuWze2s3ilETWj7CH2oejVN/QBJlEPRXt08e36vh8sJDUzrVSbTP5OJCY+a2DK55vmApwPhvAWt+8uXs1uDxyNVCpfHASA9nlS9BxLpcyI8fVxKQmoUwW3a4rZgpKsN7U5MCfyuNTuXDg66LwfpWY5+aTJ68PbefnV3oDIZHptStTUGvBeUyx+okJBYjYmH55yZRATczDEqsHXvOVAekDsIMKmzQb6WueSrmLX2gcGbJXpTBuh5mYIe6HAMbthrGi7evJcW+WZcVM3JONxkGn7l6OUe6/mXzsu5oYMHhrSR6xnTChGDMWoCRAaqM8c3t/8AvIxn8mQCVP44VZ39+w/t2uhNaR+lMYqkAN6jNFtgvCyYecYoT5TFdQ3q1+fU3YD6TeCGuZlOCTvPfOCXHDLqY/QOGZnmw6aWG1CSoAAftQbDq2VKC/v+lN3fITSRSyrT70Kmj2I1YhnODROYI+I+1QciDVQu0QRzCA2/VpohI5H38EaqfOhU/G7qnx4lmdBtm566/gofiS3Ox7fzL31W2mGTt+xgQlNQFRnxdUIhHNF7Jk3uc/oFb7A6b9cTY74JGXHQ9X3UMJaB8UgR/zodQnYFp2i+V6GT7kPE5uKOcdUDikCiv+ydHotv9newPjuUDA3SdXEy1hYSeYiNvhl5155FkHGwZtQXjNubFwMfq62NyV1kKtHSPWXLGQS7Wg3aiwhztlkZRQlRje96MeUJAoOVTM4Y161OwCoe2k/zVksUXHy1eyHptFFG4IgzRvwgNvPix9ajU+xY/GQ0N+R9YqL6JavvvsTahCzdRG1K9YraGJTnU2KD84zBoWwUB5cZHzvNZr9UUhUoALwu8oLXBtUS02WUw90Zipf5upaQ3j34ZMxfi5XGTygglx0NYZyUyH7OB24ckJhXzCoBYz3mCS6uuhaBgUy2nHUrF4bidgGjBHslAFF3SkT1BAPXbuCBaVVANXv7cMdZF6OQMmwSrYTHp+kZISzH4e9MWLxvEjprLfNSwinhQ8kDbsIBSXiqqzzgDxoIVSmKvSH25c6NkH4CV39FLgyjsRhS+Muxqsv4A03uDX80QdktdzGLHGIo9bw6HBc+R650duVX4JnmWMGM7F75n+q07PMWskrhIm4Qmo3KBtaL40dYswYCMa4kcd4NGhdv30wNwnS5+OHEilDa7aZk2fNf18TPXUuqeuumGUPZHbFW8oa6GntnqEi4By+uZOZGl7u5wNXCQTyjm93ydzDwoctIUpSSJYML4DNazXASHQIlwTu0MiCcTznZCH9bcqZhAB2MC6rpc1nZvgdK8Jeu7TLsCDcv20zQyZr78ohtbZ/yMwzumkP6U8i4eNrBZdpqNEcQarIdk39YnvbGiofFv7YeePEVCmgjfURhLNOnFqXyI2tYjzWULW0o6tyO3TcCvluz4L+hg6wOxvfFfMaVupuGlRYSCFoG2YBak4i0zra1uLhQZ/AmBvZghj0cacCiSCS41+32kNcJBAiuThvNygTsOnE9p6fsAJ6hW4EntzgCGCvhkMuFFOge0+FLk3vzlYcR/k1P9yMKbUfiaeqnjJycdllfGfIa7Gt0KIuMVNz3ugk+P8n9Pt2iiqyM6HNa1dd7dpOizZ0NbrXRKStdnqyetrn3v+/e3VpnsR2MD02TNMoVtlSUXtInhq04fPjDQrshYiRSDeXFFQ1sh1GxVpaUIz4k9PDwbaF5chHRyxBEeN7IIye1+1gLppxcjplynSNA+QktEa6wrAinp5a1c+2guLbeeOOTMlQSPUUuwIKcFhp1/IZWP6p9S/05BsN8vJo2gtFYYL9jMVTwEOe/pdTRhbcJafgqJVMJndx8CATjJ+B4frMH9MmYTH95FX2a8b8kLrECNxgKmUMa2Wv3bFKzJc2/tLUnfRwqWRAYL+RpSDi38f9pmJAuFbW4jicBStg81hbrkRRyb5jm9msVkGlReCywbNnFXLkJJLCkycqAY2kHu+U7+ZyOHeJ2a24hCn2BKxLXPo/FUDcD8VPpu2c4al6sz11mBdkyR69ndji+PMLsNdrlIyKKtOYLUt4b/lOSAxnba99qvSZG5I0bAnLA/ytn61MUGEygjq0+GPd5vxS8OWFqG0BcokQ28DFbq28yGRVONzksf/ePHcme6akdz0M3RmMxof/43+Sr28pZJSM0IvRDnEet1MSv9IM7xpzlrJbl9s4XTmbckhBAyAb0jP9PJlCiaqjKKKOdi2XTbNLcyt4vbpNZsil/RtwQSUdZJJbE+sNtXtPVJB0auMCUr4mu+jQEkhkWw9RmyvjzhfGseX8rearZmEKByX+p5wAOd5Kb2y2cnFJJP+hJt5tzd3owRwzB6Dc98OIeW/UNJ06SFrEfef/T09mgaFZHie+lB63DnguZD/pPpUGhq2G+uSTJKKOjYFBhlindqobB0GdyAGH+iFLPH2yfpQo7tpd/8gZYAQ8d58h9ecRmfefMX17w/XQuOI1IWBrN3XDCWmyQ7Y0J0MnXP+4QqjhTlmFoAfmCE87cbVInrxRGo5GjFUoRMFP0P4fhrpIn8TPFD74+CDMjJfHoLRLfRs7nVZTiYOUU2o+MueQCSaU1RRblwF5deXK37P/64kABeY6eT+vBX4L6xdlw9KzKp3bYV6fTru6y5r2dV7Ne65Yc8NrcQVhkFhcr61nFwnKPWXe1nwZ70P0prIrM88FSiCE1ycnyEzYLsEDfVu71u/AWCDZ80IKffy5gFaR+zJM5WZYh1N8m2/4UHTwJcoReX2yfcpGG4j4U122IzqUW0YB7qD9uqLSvTh+meBcAHT3u6BZoAvbSkE+hH9zTzfTP9Iao/jrXRT+xcdsQIveTXs9zA1Y1fEuAaOUbx1kNLOpms4IwRXqcClzbdyMU5W/fNoSuEPEATOjcWSzDSvz/25tT7wRov1ztinVPySsAbUhEMQqnwTNt35g8XAUgur6/QpSTEeBzZkwMItExb5kEAXAHhY9PRGd62ie4f2abnxsQzdsO03/Dym6NnI6R972T3YrbinpvFWbcyY6kNLGKbdZsM6eZEZPTgqt1EKxz3IcMbknEtRhMrGb3aEVNlyD9F09FdUJqxEdZAYx+W5bEXsdZ/vEX0y4oU2mmYxovWVfVQ4pRCMR4PjKyY3L9SDIISIV8W4T8XJgrO1LhKaoHrYI40Q1/yApIhSQ3dGjRM6TQAdga3SkonCQS/T8rzENufUWrHfMg7y6kKeW40nMoELcrWXbarTNc/Nra+9pSZaWYgX6FkMtDodlZl1g6WAjDP8eKaoGPtYj+0Rme32anEqlaOLUChiA7//Ge7Q02ogP5oimTIcmRVDtYn0jApqzdjgt8BmWHKCk/0J5FznT6x2yZrNrmAaHb1xAd5o9lGPrHIMMeRZ3VJVIgC80EGKeEf+dke4JijW29IUgQ5FbD0cVS/RDBWPHIQ0GFxPwhXf8It+Bc45y4N1M8p5tLIjPwSKlRjcIw1gAc2CkPepJeGOSI6A273yvO2sv7o19ontiDM8VSy35ib5nbZ5nhv9QmofCuokmh12A+vYSIEnlkUzHiuP1/r6zxAN3tJzc3ScqNQ8gKtIz9e4Dg/k5iPC6FwsHjrLryiAkB9FPTJ8aGYsAGS7qBNyup9KnnRQU+uPslQkDqC21fntDVG4mwoBvdUrHNA1v2fDv1Rz8nKPfwYuFYSF3BVih377IMr5dGX9wdQHThtlXygHshMS6xFToBLeREA5jMIz/LaTpqkSf+04/DIl0/i898jFYje6oQ+kvkZRkv42jp9SGW8aKmy5Zxv7+z8HlEioITJAQI3I7BSbcy53JHwnWLJ2ZrGY7Q91+AXuT9acpvNzyqcvGueHk9+3TKmlTRzD38LfOqA33cf5J2osg4kIeqVtSFV0kFKLSheVeqdL0taKqYHSXTfbnJNTJBwgHFuM8VM4id7VXFN2tAYJB4sSWLn+Vumtt7S7i4HY90ZLCO+6+dBqsycMXDAb+7sCprj1lcUCSwQSDJGIRk8+8+qdEz7l3R2rJ8aW8iHx4vH4t9O9FV8STm8ttvrU7gHIgS11r3oYSj0SRHNBf/zlVYoI1Wr24YqpUPxvawPVm3Fgvz6sAiBFibRX2oS1j8c64EkZ7dLg6xqerxsJ/ij/UHXFVq+hgdUfZKUrIvmn5qnek1b7wYdx5S8zlp1y73OYJfNdLDCZd1THBXvlhGSF7fZ8Tu2GdDrVHC8VMUjDDOIcC/ZFWd/751jo1zNvhwQqM/+XVUvJMY7lgWvJVqedVzbe78Upm+5hxaKUk+xy5F/lLtB+8MqiBjLCSKckPXsFNjjmj1hT/zHOFSJ+0fltX6t9eOAKdEZQT8a9KkvTebvf4fBuQSFhSND10Aix90ujtA8Ez5lek1mIqbmzFk97rqmljVCDnZgxUDXDi8GKznmE6tgAihrp2IzPC76mzFEfn7R+A0LECu1a5tQsNtNWOHHbAKUWt8Km8J8HSOAr3OGMt6suygaADPg5+dnswm/7wbKa7hBW+RuYmKqiWpNovQFOkh/k7PDb8e6X+H1jswtfHfs2xquUd1MEDmsS3eeBWORA8Kh8Vx2/DNIN9qHrZJky6vjhz8o4gnU+xIa0iPrUA3s77z9Pvvyi9FjxNQImi0GnQP0y0NZXQCYYxaMXR/H+tknPDCAqGz2AJ3Fd6mK/9+O6FiSd2rS4aC/zFyBt7o6LlIQVNhguUk6Y5C/tESGDt8032+D/5JC0VdWwPnLBMbmI57XzLlN9DR+rfpCtquYmOMTGL4JgFkdMFz+cQTBedkCkAcT4xpyymNvpZosujpxz0kXM6mk4VGLnDU813hSqV7yYG+bpJ6VZNwIxWS5RHJwLlKKGn+ErKVY5YKmA3zXppiHp0yHzLdwNnaEDnSdJe1kcRrGjhq1qkDC1ZtsoEFoBCzAkUOoXYoPDK5k+gepF69Ebj+9wCqQXCG4ChMXQPtS91vxiESLyqfUK4FElcJrMmJLneq3lvF3hjo2h5G+tprqz+K1OY1zXSfjEuq9ZNcVvJVeFBYrwKptl59YJ/h76NIwrctW5oJ83ubijyrFHJyfrJihUTFg0cklZeYi/PRay6xkEcnYIzWxcSa4AiGu6NCTkd49FfGWe7cLeWU/UTXA0TxU+QLtzxGQrw1es67PxCmwrPBpDroCAy4y7VuTB81/hMohSx+rDjj78dCO0Qd00DY/+erc5ooDp1oQJ7wSYVvmphUih/cMMRIwsP7otXjvKUCQmpOpbuop7ShhvkAE3z6yDbXCckeAPj7B4vi7o9mp4XhCEdSol5vs+3Lkd755YwulVzK7DGpQ60/KP+hg2e2kmn2Rtdeu/g/UkfdP2FvPfieeTmrtXiWIfArd9+XqGETy4M4YAF54mFYBsaEuOHlQSF283XZWuUYq6DjpX1XT/BBXlrxkNcFVK2Z6lbQe7xUlgPz8mbAimlB7FCGeHF3RSAxxJ73RZ6RwNze6ABvaevzjqgYEmAi5q9ylM0sup4UPCXyc/g/DoG7kYi+Ms+q2Xx+thzgT0rfX7ukThq2qxX/ltH+dNIwM2lHjmIRFl0StYabCGlNFyx2JXLywK2dOMcpyL+MfPBL68+nHQ6oodpq2qHraZOAxQyCpUR+J71aJrAPyJsHYr0Kr9RTotEtZZcDS9lD1zCXMCrBf7PCiD3ZcjvdPI7wALsfjkDC+Cj5mnBX+87rPo22n2hGmbJ+WNVBHaF3IH25cyPy7F4Hke5cu3DPZQvOKzI3wDyRN73ZR0EHUjxEceMbd2PGfnhFPlIovGyoGfKw/cxODs9VFmhirMOeK0cbplTQRFgI6TniA3sBVNOIQ3X/L7S3NYNur/Gq79YMBDK1ePzPlrmAlouh1xXxZSbnwFYqbb6dCUIV1Xplo/eJxKGHIpv2Ntq7woXZFAXMnQbqUD66vAsQ7juYjN5cftvX8E95lobSvZKdRp2gbyxyXpwfOceqEvRNvqwsMLO/VZFHPBW2hmxjekSYJNPJd0+fKkWVSNwQWRV86hn5IaLqcdmHNl113EADH6hAw9RkDCIq9bW/d2dxoKqpKf4NTNnBu01uOtsa8Qe+OS/Bit3xFKtAELBICK0bWYbXPK7qykS4uUZkdLvc/271nXpeFESc5jINeQkZdkMz4RZEEMyu2eVX5vJ7ox3CVJ3aY25lmS0FvtmKAnLbWSvm69goTkGHxsDk2c8Ukg0W7ixpK7yW4Ax8lTs2WTClQ8KAceXKd+fsOsRMS7YaNaaabTlTnz3Qw5xZfD4IiQ3SGKYC4J8hzIWL/kJm8vMv2m3jp2rStw9yhbqO5kUQwJ5yLjJ+yuUklAH17W02Pl5ogGKSOJ2Fpx4LQi31uGR5wbNHLTt0efGI0Jtcahi0j58c+M4s+rC2ZVyStW9EzS0Fqgs2m6FiCW/5cLYphCu+7zVDo7+NNCa7b1/43RNLRYIWfLIX+IVEXu3RV2D5eQ78mR2+i0pyaeKDnKQniJnh3bzRgPhdM/7LBdrvwicv/wIQJQxNLtcGkHo3iSZbgwLFyA6Hjebp+T6cKNab0ClrEUNS99VrCsRi0YSNTfhKbkexqYImxG+niyNDP4iNsbEmW5no1Wk/8lzaUlUoC40cLn7bZunxm/ojx0FGpYUdfvdWeil6ZcuhfQZWlf16l3JoZZrC+HPXDvcApb+WyjMt/v9e7hV+S+uAUr6mu0oypwmyCghjwfmq1/w17wU+Fyev5tLiNbnL+UoRpcDnyvYWIub4bANDd10Tm/TnmxRy1VM0PCilXyE7BjztRvruILrX+9AspFdRHUAbnkdH40dwtpuTHzPyHX3EqaOh8I0zdpvDQvfVLfBgyhbFk4qQlHZQ44bQ2RJbkj6A+WWPYY6ZoLfaRk021ktaWV/2UEU6oFf9gXp3N516dkcGEXSCPcB1GYpKb90CsqugVME5RuzGMKRWKaioanBIy08sKXdod3QNwM3B+7BsH6BCGY3xKXS4lXxNUfpDSojlZ1z2RaKygmBO83Ik8axsPhPX1h8uzfh8bwHYq3LkHkh46m+ODy51Vu2lqkrXexaCZD6I1IgDkszSOBXKT7k2mn0adVfqrBBrDXuZMScC7MLzsW/QF+IGuKROoNADGhHs6iwrlUpShhW4hpOYUG9fsN04KnmbD/kOyVt+XYRwmyLrF32NGaEuLt8KC2g7WnO+h2gke5eu9FOddgF3mg0ac1l43On4QX79Xyb2mN1/0B7gVZS4bmoj+PCOMm9o3H0FLF9txE6FZ2P7/X333eUueji8cPvOE6xA9Xl+VxRQUYaZzT/j23NWlSIAggpRvtD36JB2+RqFkN+mEcoipVjh0VvHe+KN7ahPlpiA4nfbkM9Akru4FsCKZeZos4nv3Is1nljKIA/3ohNxhJgssPX0HpG+KDnYjc0Jp4FQDCGTO6VdqpNPfDzLwqulYKdg6QuuiRr6rcADFozQfQRSL//2naSkbTprdSDqtevwupRoM+w6uR/lTd6A70z6IIZNDnIh3bC4HjaC/B534VKaOoWFgicZT/p+HIA6UhSlsa74MWu3qGR2oO579MdZ1X1IiJxoBytDnAgUwMNmfEqsWzc0Vr0v/i5n9yVA5Ja1K08t/SNvvxLVsbnawGb7MVFEB1avGn+Radj+18SeTS72RHNF39/t6He/EHeQbFpjT0pGDhg+zbqSCTuiMgA7jI70Lk1THXF2XZw2AyIrb+A1z7fMazo86gUZCUiSC1CEYs75cfwUJAa67QJdeZpJ/aLs0DFy/OdXAVN7nj6v3RMvLqR3+X850FjgDshUeprVc3WHLbGO9krCrc/e/P4zobHcQOVr4BnjA9fPRyOUTnITxKSXVnHrzFIt+WLoUX6rtHOwE0QA7goZfT3pYMo3nf1uh/JCUvWOAXWsXYSft9kFTGOso0GyDJLO7q4dER/jGIpVeZOt7UfRHPrNG8YwxE0I4T+HS3wuDvxLCMLR8BomuEcR3bSvJnw5casINH8hmFT5rbsnEW5wNX5dROitZyvawqJWJDVt4vmKry3/ccVzBMgSjoYIlCfV+Fb6sfrLko6glbJCfD81U7sKbtloZo5pklHv/XRAPLEwtRjP6viRbpjIEapbPH96Kkv7O1ShJn9THV2RAmlczr2/alDsuy0sw2oF70e8HQR+SrjWBNeitj0rRF7pmrbZ5ROPgw2e0fmuO3aQ38GbZuXQWtCL81Ib8FwRBo7+aDmxPxrILRSto16tbOSemsacM5DlGSArEfKPb+Y5ohFz79lnVrTBtWKxjX1I5LF2aWyNP6RuG7ZRFAtCEVMqG3qYkxOyDWj21GslyrQ0froVvxW4/UT+GWzug05ESwjk4/MBldvwS3S0oaW01ighmeudqoVS82FcAgySyo+9c5gCPuVpzc7yqsjH6N6ksCFu9uiXkiW2FKodC1URxOUQB2Ot7MHOza5U5Yoy4kKcHeur5XrDEr2PdX87GXM7BIej/y00ohvhNsVvv9aEi6exyph/ehLjfHTtJF6WecIZCSpywb4xhJHfnSa1ylmyU+nyRRRRv7eObhjjRwcR1Cn7Hjl8Z8+SUgPvOrmeu0gjyTutiBXwLJ7kg2ALHbZpR9qfr1acTKodaQ5IjQD/rG/kWFlTPYS4IkNHjQrvNKfuWL5rTIdvVZJLe8vIIL6+oyp6pYn+9t1h/fkkXpZq6XLIBHE1QRds7B6lL82cRJwu5xMGVLBhSmgEpAeixAA9gfTjUHZgmudmIy9uy1dqalHbDi9psNCWvdPbkFjF47frMVmSUMk4b5CJjnQptCCiBkyA85EkPYFOkRxnKeh/gQtGF1f7lSGWCZIeZKRGu2pwbXCLMmsNj/fb9uADHIlAnKy7RT4UF+AQ3tO2oVqeaPucQnWKhKeVMj6pg6Gi3/WLMht0/+jA0RClUUVO4APgcJDa5Wo5IsLA0tPnTTRgVM7DEPmLr2757aKRtvCWgP+YNucPCERcHVGJNz2dkTqif2ETuKfH/h1OxfMrOljd9V2iR63wVlPbAuD2awbSoC/aOONBjDRiHhdheX75A9FvoCX9kQtIGOiG25C6bAfdM4kzLi8tpsid6waOdMNZsLb3C34/lzM7SpWPpF72I6CSG7tmldCJSJhW5LY9s/+/Oujea3k+uBArBsmZbv6OMG8WqgcbqpTfjVkK/5ZjKDvxWC3PuOc7v+sff1BWfdTzemg1lhRJNIj9M4rfbchu45MUPdzLQYqZGe/eTKs4jsrSH8cb2ZAl4me6/Y7uAkNaYqKjEI/OMp0bFAoPOt9bk0ucmPCfv07IYT40GGOuPKpl4IF9NPXPIAbeDCKuZiJPsOYpNELRYSZoqIDbgOs6AF87nqPMbgueY4TeMmI7XmC7lJl7xoiQrne3IcFA9rsQZJssokF/LQ/gkGofiV2uTyuLs5ZucDzNRnjdipoAaahswEhfcPbCYphUYnoz72nlyCZyXVtDpAkzzh2QTfs7aFMfTmeVj59SFkpcAWMaXNUF37ySLfaVNWY8y9EWejF23iPCEIhPtJFTNe+gLaB1k24MPdQ2huXnBlp6kcVBbNlODOOwl8mVs9F5e+ro+/9IIV89cgu5QrM863WXm7Vg+I0tvi0q60+5hNah70uhSfglMuErxVDLjIDrRAMnWEWeqSaGuZwOihFVMfUKFOABEEFi+DX43IADl4nzYioxKbTZ+2TzjOPWA5kWyiWlAw0otrBe20Iya2Hy1sIAwTnzT+EvQE78AKQzw/LWM2yHLWTU5fiyUo2MUhFAMlkR/oagaVOAvOCstycVAreRSsR01XCns7dehQ3mxUsUwBSCfCl3T5T9zw9nLKNR/H8KwXTto1d/Kb+1VHvBUxjpNxHu7+sHtJJc+iLR1MRCEBcBWtgoMhpjQaph+koa9+g7ZgyWn/hipkw1LJRYzek8pLX0FKltmvduWaxv6tpk++lJN6IU5qOcUj2aN7Dq1x2s
Variant 1
DifficultyLevel
568
Question
Here is a table of values for x and y.
x |
0 |
0.5 |
1 |
1.5 |
2 |
y |
0 |
2 |
8 |
18 |
32 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = 8x2
|
0=8×02 ✓ |
2=8×0.52 ✓ |
8=8×12 ✓ |
∴ y = 8x2 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|0.5|1|1.5|2|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | 0|2|8|18|32|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = 8$\large x$$^2$
>>| |
| ----------------------- |
|$0 = 8 × 0^2$ $\checkmark$|
|$2 = 8 × 0.5^2$ $\checkmark$|
|$8 = 8 × 1^2$ $\checkmark$|
$\therefore\ \large y$ = 8$\large x^2$ is the correct rule.
|
correctAnswer | $\large y$ = 8$\large x$$^2$ |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | y = 8x2 |
x | y = 16x |
U2FsdGVkX1/2ysdiiL5nCyMXGCB39YOBNxDiDb464sQnJ9ZvjF5TmRSlFfuPt1PT1fx/NeSKM7VFjId9OPZ5QIszThqKGXhXM/W8wbHdUaHGbjRRLA6YkJ5pF1lR4cUxFGgra41gAL0tdexWl/aCeuveGmZxN/SI11PO8nbd2ADdA/b32dPeEx6MDlDlJ3IigRlRSa89JH5Df3A1Ivm3fDjEVHaYSbKq+SoNKKvmsf9I5OMEJtkPh2QVHcaNUCqHceEw4yud/pdLenL1HyPIBK4HYNaacZkQ9QBxGEojhy2MhWQpUCIh6yyaoRneVhOd+l0tGjfnHCxNq7Sr/5tmrk0y1WbVa9eN0lGtZi9SHfCo5xVPNPylFXPsqpYnRymcc3NkGXE0CiwDjAwS4TQysi8kc95+XiWfaJNyhLHdSVWpMR1U4UYLxkDHB0T6JyeA/VnPHut4tat9WHLpzOCju8p9IBaP2GVTeJp8EGndxe4DUOYaBFnWLpOT6RL8vmcV0+XlKkUymM+y7GJG1DdvFeJP2uq7azJ7pXa2XZAwwE+LbXlp9Omg+yzDPocKnk9pWkpM2qeXLgOSH55DmXQOGUgU6Wc1seDw1aWN3RuBZZ4guD/I/kaSgZV9fHkTmT2aOTDTlDw90V7CxOdw/Bfbej49eZcDdtwKZZ0acRlYApn9w36aDQXk2ol7hOP73mfodpR0YKfowFLdpfscqjXYegy67owLfuAuKCp7em4oVudJEAfAo3C0/CcviHsI5/w6/jw6ohZNu1w2XK2poLJAT8WYUJixlDrqxWOjT7J8sXpZE2LOOHSvw4iHUxA89UGsp5YBcCFVjOsYMryo1zdk9n6Q0PtcwMEI+SZqB1gOBYGNEo+MKna1/haHQknesfnY9StHYtdu1kYjRGkM1W3Xeu5m2xaAVHuNpXFeeXTxAS2nXH+kgiInUEslMQxxjWq0Vri5/Q3VGoB0dtvBjnaixRdosIrFkxGxSACiv7+UNt8PBzk6pbQU+G3/Mv7OUmT9JgQmMlYgoPhbUWN8z4W5aYWObNduPwl9YsGKrVzYCitvjrQbxnLHlRAdxbMq0eV65X9pQ3flzL1mbu3hQKt42/kTIW4CFhceIMuL0w6Zw/+i0/mar0t0fE4MlOlgUhGRBhQKQONF162N4xeYDXTy36da4omsDfXCBe804EhtI//C5KpFjBNMCmOeq9oAxxMfNqt76lNPOVQeQjJlA29HFKVSqWANT6/O/6ji6zwgfCKvpXH5BE8sHc1MDUyvc6lG8g5K7XI8sC6Ud+0mSpFEvuMPWq5F8Hs4kqP/yIyuHMOpIoT2t2ZkbBhH8IB2wXjbVI0EdLcMsa0fl6wNHnRu9ODXFAP703F+AJs8XivwSpHY0bvpV08Bq4blolyFDjevxqltE8+x9nUSPGr6QT0D16U8q9f+t1Sh9aTNb0k22TKhlIZtnpwpl2qhy+uLs+VXPuSEiVlLY42TNuVXja68HrViYKymgc1hj3SYeV5jQjuiMJ54nNSZeex5GazmaJPvq+F4ap0hhC6vrLx/vhC075GslIw+0M/DpIuDyYdvTdnrIvdPVrHOpCBSe3DczcF+l4VWcDYS97HW5T2J/GPtalx6xosJx5r8TJ+AcheaCrF9dSdNAhzNVNRpnGhUyLxlDTuH+rGcCKlk2i77rN1iNw/Q011zlg43A8muxQ4vdCMQTHnhC+OvcLw3swRr2nRQLjnWGOcIiE/sufbSnH7hmowe2J3cb3w99AtMtiWPegVzrSmnz0xzh8TWDCeDaisTa/k2ojeNi1SJHwPlbFmYi0nfWZPy4rTll0sYiduLHsBgBID7AiBJlrMr+heKPEFiJsmwpkGLFC/5sHG1lyAF7XCStuQw+eas6erYKNp3ortoI4AAwQuJcm6HTJqHGp794uaIl2nBLe0JkhKMnfTLfgrup7wF/VHNX23TU89keF+CpfSi1N96Z1oe54EpasFGdVC7Iyw3HDUgNy2kLIL1ToCQ6SK9D3fCfUXVOm7cUZ1u5k0IGjls/+ef6zjhmSpO6mpAH4D1nNy9nrh3wZog45jwBGGDJzvPwvdXef+pImFmjIsYmk8VD8qTS8IjlCWVxrtBH2qeTOK34/mwq0RCTUN3FI/4Jf8w3B5smcXMNY67tynTmPgwsf9IzwxCMzc5RoL8Bj4qnGG0qzWvUWYX6pvWNytjkO7tBESyjDXo97vc/+bSPR0X0YUobAkDKGR3xbxt3asR8Xf0T5A81I43DB2jz24A6dWNLa9KSUh18IX+BWgA/NBqwEfD6Key0PKPIfMMwu/t6cm0kbmR6OEqxkLdRVu5PhnDmBI3H/E6KhCAhKqZpZX3fqcnR5ix4NJjGGI1jj99CS0Y4C0MX6YAzIXCY4BtL14tfb1FIUwLD4/XCOVS3kLw/Coj2K2VdTsJiULbahibexvC3xrZDx7lB9rOICozH4P1So37MuT9eOIOMtyDPTPhJAQmxaO23166lbX6IJ0ZZE1DXJifDpnXjUsnZ/ONexkBNcmpPXT4OxKDbv4G4Zy6ADREg51203loiRuQz9uXJEr1bKFr+Hrl0arnaUQ6vF1Ll/lCQ7aYNRtxayYfIXaddpq4M3ZK9/1Pabr0F+PlRuDAQrjs4xL+TnSMZutGWFrhE86JBFBffouPxniOdVImmclhAsq6a6PdfzLSMHRTRLVKvgNA44kadDEsLyLsn+Tuqjpxszay00CDlluOIXYKmTkGQVVcZlH1EfjP/u5CFHnYwgq6uoG+sNiNR9Y91FifGMO1phebZLLWoSb5f1p7pLRGtiKAtt374GHvwgeYC6nWfPXKVvjLpPtMwdb7zUaFfIKohSVhY+zCymRnINQnLAiBI1V4U8KtLoTYonbooVwG5b5Lj9GBPagqEnIZz8sAarctclPHtwFbyzDaGDKhuyZFj4olwtOAenAx+HK1ZJUbuNBRt0zxaYmLWqnSO24CebRPnt7oPEocw9oyplRLD3TrrTXYYuhhv/AXjReP2mEsYKKIiSBinnTZPDiCv3AtZcORiyPOs8wIyCRzfqtOYWPGAV2N1J75qyR+r/rvhdL/G1h9U1xE2Tnaih9VolZWNF+I4n+bylpUxkluO9jV3XSQxMmbIKGhAwQBIUcX6Ek1aMklajnivlRnVZr52CHBWPLkay4idNshF3eZpfav7Mo86CSvJXP/LqPIO87P+E+hkA2Z0xw+6bmbP+hvZQTM0lvOK37tvAmT1xPsxjLy2E/npTbEsaB3Lm+kib+RoaxeVwH5Rakm1dVelezprckJxqPlJYH67oB17CXNMqaslqFyC/ll7oVxdyjlMCcgtYfe7yQSZrtumAsYHorD1WsUSAsfMVsF7e7s0yh5E2pVnzCUtb12x5yVXCbttWiDOausP37dZLyLDbhdd3beS2Cymavv8pvU1r/IJeGmKPZQjuA2KKWgNQAt6XAFpeECNHn8SGd5rDB7ZB3CpCdqplCL0+cObakfbWnH58LFZ+2Cygn8oWptZB1XEZ0pPlJI/gX9csCoLIyuuiyXejzivNtxRppId7afi9ZK7H9B3Y5Qigi13gPyZzJIzWPXGeDIa7H7XqzkRQXtFqYat3SRn8fnmc+M0uvfG0AVPbV+4H95xMyPx1JFhJ6sW9e54pNfgdbpbd4dhulCAXhv7X5q0juKKucYjHNqgkO3Z74Hpwt9ph4euV+yaAR19FXQ1WkCP+S9sCVahxPaQn6vBnk3zLXXMrUFAnB2inFSfvGDw8RTsY2s+SRIRsS3b3zphStjs8AOaBIuuJpBZdT5+Fpm3+YHACz8sxPJBlyQ7leY81/18ZVKFWOEKQBSecevDypCHudTwcN8t3DGvNDAnFh4467T6rTjBnRfpwLGnmoush6huPNsUFXe2mLC4YsbZvSyZmX4MnwJJkHpd83DWCf1Kor9xK07xMhflHmYvRukwhCgMGQgflQyyOe0NFVt0YxsxbToSHkaHJijzp1c5CDY1xZ54p/Z4n+vbPNtKXSQC3wisn6DbSFX+NNTajYzE/9gbAyZMde5m/mxDRb1IitA3VUA+Xx5ykK4R/6AbsxuzoCFYmyoyWMtMB8N+Y/Kld9aAwNzeGZ+MitScOk9UyloiBf0r70xNHAVdmGT0ZwU4TZ4pVw9fv7HL8Olx1xwYY7yDgy3LEuvLBLzvacq89rfGIjwvu+tkYwTzZCzt8hs1wOzAojRfbCsE5Ut3897l4H0sX/hE3RLnA2VpvZV/K/vrwzU+DscoQGvZl/m0Nmur4a9CN1tKvbp+wFy+pqhp2h5VN5D1YKzXGDJwIiqN3w2efV+m+luIfwyqOkpUKvFJUlgO7/4RuO8FQb7eTjIn1mZXO5CEU4jg0rdtTIQ24fk/eZyis+fgjbHZgHgGPYsBTielqTFmrEca2RzK49T3wtba32c37jFp6XtVpoj+1EiJLLULB19TGRjW9Hy7hu+ZO8SSOVHhrvTXwVj1Uz4+NT/uYUULriWxvy3Q3h3/f8ht8phBLMqq5Z8CEXLsdbQrKBDE7q8MSAVmXPGbYX/p0Aqk9h0E9ARK7bIKomQXjijfYKPuy+w0aPOVsGzMVdLNU3V0mTfPm1l+rDnkJmOM9+RgE+y6s61RzHG4lFAT4N9xSat/O0U1Zg5EYhGG3xpl0/QEQuX9W7BqJfoPS94NGQguulDkjPGZtTeiNHNKiMWm7THg+iLYZ4kWZ/ah/W0vjZCfjlbJf2ps2jQ+j19bum94uMialetM6hTj3CybN1fH5qqVQ5FaxO6eUr/L4xFA5CpJhTJ9SgSUEmz0ibXPgwBEWhi5Q8dQBLseDanLMsTwUSKnbKKxgQGSRgOVPIgYYz/3NuL97UhbsNX/G7agpXPPElcI2co0WfkxVVU4/VVyGOWdBv4HiuCUmEDXYnnXUMbbrqGxIacZ++TSj7YvFjwfkoTRD7OPoIbaTeHsJMJyRluFJxGKQtKATyMcPXJaXnGjr/kYH1Zw2xBOt+Iqm5wFOHz+9Oe5jdtlll3pQO8C3avI8x9aSuPm+ZoG2rIzgnfo2pCJcjqCk8JDJMAg0o3YqbkCeXau3+NEAQga2A78KX6PfLpCvCg7egO6K7yhk6SOxkrxU3bc4fZFiZIU9LQONgx5BfzJZABX2dzotdcpShZ48hyDMoz8JaAzLfCbli4PQcDOt1WTZBqn3S5Qo2x+eM7Kbs36IG8n1BlylYMgtOUo32Vw1ZgMT6vFARqfTbRQcwscUxtLUpfj+e4X25DMbxtxvzN3e4Ufbt1Dhp6Wwgtv6pFRRo2GhE5u/rUzUnjF7W/bm9MmyzlqQz73m+RfuDx2doEroq+oOX2piVsrhxtS8y8BYesOEI6+qWnSqAb8y5O+DawoDczGHBkxLdaadf3711ZlFaTdN7X04/Yd+k3Ohcmn6bENG5Y2K0DcF5JfR3OgKwzQFXBksvCfRuU10DX35pMwaZ/Z1yG7LFeWWCPxAsMvfWFQ7gfZnkzfHTKDmYKOxTaawfSOByTRVuMjjBRRkfnfGOEW4Sgi11YAokZaerLN6++gB0mfJJwYIjky32aA7iF2cvbc+V2Nxautj0LBTrX6EbUmnfUs07v1o2bZO5r0LfhndYRDd9DwUv38oqQZNQpSS/EKdDvkHx002QqXxjHWkRq8ymhIdiU6Vr6uyP/8bmSJLLW7auHT1Qo3jVyHUhNkzc+CUpy1yCTV6LuSUw3ZpN71DH1lpZTgA0XYiSas78am+zTH7kasf0AsQSrJJssjUxBLTocydiEtcUEgnwC+d2fK0mQfI8g5E9AffoJwGCE6U3Zy2AqxS7r8snDvM/zbHSVL3S3CH6dZe1Mv65ywxM4LzYXlrlGprRJ/PVQSF87Axwqayw0EpANVN0eSPeZUGGiyi9VQ6bCl6jI4l9PAkN1RmrIXnhWJqJvntgJv72MqN/uM7iyR9EDG77X2sucLljdwmqF5wimNXPOEm5eVSyFcQm/oPFbGN81uMqYcW8RUelxnh8x3eqywmsFETWn4t1+Hfa66Up8Oc1nvXxhvVDE2R2Xozjp8Mypf1dy74fVCmEnkoHfUZy6alCGk8sPPHS58XQ34tr+hGkmCfRhsgruPkWE3KyE+myZtPrmEzPL/D8k4JjWcVsOPovezU5sW/WnN1AOG9gmC0ie+gwgWHbP8Opd7g7kX7XzlmDfyaFiLBTZfeFdiNil5cojP9GD1bhQRVdgquFKJTQYg6/lFw8aJj7nYtwkqGfOWis/5IDW/Ocutx5MCuzpBvRipf3gOSHWtABTaRLCqbfdLkrTv7Jzu7gWuwgsuDQhBF2YutvrDeYgJ89LtrJjSrb2tapXt1iO/oAx9jCu1JVgZFbwfLchBzxo6y0NgZifrcDfLMoG9c6t869aERRBMNr39dlgtT5lZa8KszDtwTqYxnEgftJB3VNktOPGwAYhgi/ZfT+Ow89Rkh5q9oypdweJLHpLA2nHU7LnUYx/gGKLyjqJdeFG/Lo02QWppN7T3qmleqyNJtEEXZMmZTkQWkojhI8tOv5+uNoJsK2eYHFmxgyK+K2+3qjx+9N2FgyFJBhMxUSGC9y02SjdW/NDqzn3kFW98cLg4ikRfNqwanj8/piwMMPJUbzAPJlpfwCWv7HPDup80wMCmcGsrHY5YHYfhYoowneBDSG/xecYD4EdOSJA8jUaRHgEFlSJ8pxArAa1gchbl+F44tY0n7HQVMY7/fxD16mDQSoMNYBom2fUpwI13yI2GXAeClJhhzqNRIu/ZyfB/e4kXN2/fBidbeIHYM4UjRM7xHBZ3WKXM2rgk+ES3KRX9bhdnqJFFTu+9RPuvlVjWF2/4dQUSw0OT8oli2dbtcAIVE75m7jOIHUHOQ0/che06li8/OiD+bIfKxFwtOoaBuK6e84qrIBRs93g5diIww9ihgiUwuLoJ9OSTnM6b2+GujOxo1J8OD0U8aKufBmI/yadCknKUUHLNDS8M8LBLEHq98RCVl/I4izEDd4p9iPJrsvpkkl8vKo8BHMcBd6PtQZmQS0zART9mW0p5Wmv4Z3ZVEvCu0+ryZVYEMW1fLgQHB4K6XBJIcAR9UhYs/U2i3m9XVS0B18OCsBlyijfOztYghgnRiUJztILt14XhR52JVFZvmlOOO7T7Ba3NEdb30kNBCfFThVC1hFYJQ1eCu4VFKuydxBeM8NqG6474NDdYFxehp7dMA9Y9xIf32Djc0wbrrZJ+G/UkvLepRWKs6klsmLMMg4hpWokz3Fx76qRKHk3Zc0twkXh7qdkkeBbxjuTeGfiTb41xXvTO3WN0AsW3orbrmBuTZ7Hdoboc/FbYxcYCjWKmhxxf5Ca4hYbvO1/54ZrbdyEWnCCP+qR8pBVDL8fNPKVUalekwY004+dmbSz+z2Cj6uust0wVl0rGTP9/cI5Z4RcgUqc7Tw275x6r39q7Vu+qAA86891yMyHbremfqxn26p5lKJfTRIjyTESBi3UBA1B8BvuvXElDF/op0Z8ngpqoisuyWNTGcwRyS2mmYOid0uo/mjr+4YLwBNzhwLDANoOza1dhnN0yj+OiGutS1igHuwrxfh3DeBRqrfMXGChVteWvjPo8e0U4NNGIGA6pYOCP+1RAU0CG6iVipZu0uYvPjkpo03GuoWx7g35xoGCNeU3Fa/zhattKW+ZPVktE2lc40Mm5aqevWa81FGlWtjAwu26xEXeG2JLSMTFKChhsyQjX5nDlRlPpx+s+QWLf6tkD3t9N5lS4aGlNe5JrA0XOX1MBAVZVfB3PYen6D9pJsIwdLILwIYQdX6mh7iPedFwtjPEDfn88fCFlENSVehBda9YNy7cioK37QhqND1duhz15VlqGN6rIz8MoUNSEXLsGnzqll7Ss++TMktG34tug016DStUdTR6fvzE5T7IjNMFdCiTsgsG1v7mDBjkpB+usbTuKB34mJTCzkbtWaAlqBt3UJqiByasjEmCrxFhMss5zxdQdVbH+ckMIm36jEgJFqwFM3/SLYcfIQyu3VlER5EylKNlsev4QBCSBP2zFB4bCmcBGbv0kfNvNee5a8/TwZC1qC36rKthMxhtWSvTmstmAF6siq8Wof++P9pf5FU71AxT36Ba2vWGBLuj5/7pRjnCJizu4FL8kpBq4tJZ32ZGC3TIu8hXYIDZ2eJz7QMjRShMosm6hCGugra7lB8E9BbVRhfVIRVLHAzsr7jzfHH85Q5HkBu1FQ2s7acdYja7caLGo72wo1r/Gl/deM79vm30ZAiaZ89TztK1FdUIHEbZ5DPWLjTwoC0rehlmROt4EIfn03Zo7A6/m7nlyAxGINNv6dRpcBk3YlH2gPuy+yVT2R0q74KBLZzveXiCFF9acGHD9e+vQyo+unTt+cfnkmpT4bUJhnjoWb69sNjFUrG+12mlTbuY+gLyTgrboOleOHBkN4Lv2AhxI5x9Vg5t63hYBuKyZfTy++uiL49yfGhu/xBWCtEFmVo2K4eGUAOfJk3crbmKGhfHa9MvFk+iZCpVa+3eCK7Ia3BXDHAKWjaE3HSctH+kX0WYVKPuX+zq14OZ2ROgk9EtFMJEtz+hxW7/DFUieCZMkNp7CbY3m02786bOUhfoj/tXSjmclmhjMB9dtc9N6XkAbpF3gzPRHWB0xmgTOu1wG/uaE+sFcWtbuUyK5uKVcLYN9/cL4cFmLYWUVLIBTKCMVdqIR3FTHXMnvsdKnvO+jHJKqL8IvEM48jOP5zQKl+gwuEvRGY9gD50c7zeRSUU9q+OepoI6u/vf7USkmCmesVk0HVpFmLwVhgYe1nDO9wruBb2TDPiN5g8L8cGGHoWiY2/3X+eospt4TS8sp/XeniSaBlaN+3gy8s6iHfsL6NgCO8ba5nz29ZsMJ1xDaf+ArXaJlufdNtCPm3Ub3yy11cYWiujjvx++lx7YlErU/IA7XyVsUu4aykKUwRGgnzR43F+PFBMYEzemdSsR3tashtaC5CJrCJAiE+gAF6GzS+9RT/5OKICMCovTt1F0+S9QFctiyS/tE2TjuIURViqDrdu6/f68bLGzukSSU+whBOwOTgSHWm+qdaxkKaZpjPnA05UeflSGrAgczBpoHU+PHPonVeIp9ZC8Pi70ASnow1wWs7FrDxb895l9WOOX/PSrQQ/1cSWntd7l3ezYLbEdRCzSoCIsyFTjg0EGB0iuWb+U7XISZbFV+u9s3vGuTLsopS36LtqUy5duE1aWFmXjQJEM3t/sFWsagjMKQUxNi51fCB/ULG6SVDl2webzz3uLKrurA6RgcFjc66kaGQsjOpDUM0TWO3F0s/XLUdDuWwepSFPZdfC1QkZC1ZDL+EH6cNf9GYaOXEn1HCJoEKH8rq84huDFezk72vrtRDq6+eIRVnmhhImNiACvEC3xVnR+d+wJzQzJY0r16fAtgLa0xSd4O7kY7jll0exMoeu8HHeuwrk5/q7MunNganpwP8Hfgk/GboJ727I0d/soQjiRNe0hZf7D83redVvC6g0E2i0MCFB1oU5m+bFIjwogTDhfptrrJtrUMBAc8whFCk5el5znC+G3rcsuF4jzO38NTSDa1Gpc39wSmCsLfu6Bt6/E+i/HyotNeXDZ8fid4YxH9vyOLLxqItiURYf8CLwCrW0EItzkmTJf3XFaRlkxcBvIF53vBGoP7MI/k05/G32q9eg26hiKBIqVrOk6W4d3kmBz/YCZt65uHn3XupCMtZznsPLRfCUtcX4ujgEze+myyaeg5OAvQ/zqzh7wK3BlSpUZ5O3RDn3c3fdYUYSd96scDaZ1uY0DewdUBDliIb4KWwl2a7E3g2BmF6MT1xkfMAYgslM1Y0g/WfsTXU6DVH9HDnSY/PIDwJyktm2vV+MdLWyg2QMnNuHrRAJVLE+mVgXoD7m8t5pLcTneYAi1tSxK2xHb3Yvth9/Rg9OGLuRxU5m3r7J3S0vRMpSL+yD9ZRcpOiWlaJXB705yzP179omg/0zhCEHpjSrzo+tXeOFsxZ2PHZo3JM0FsoX24waWmh0gvoDvCHnkBwoxaSFd6N/fNjfbMsZqMmCypo8bFtgW9Kyu215ii3AtMzeH0jdfoOfBmed45zasu0PN3hsHNlDLSAjXpQCASv0sqOrNetydzh2Fz1KK6uDKHf7ZWo+7A2G5zejnBMpnUAL7dOEM4UIRo67K08/UnUkvcEe7NX5U1v7Xqcc1VyFFBMxSkFWfKz5sMzbq2z8IhoHSgo5iNKlnm0Qp2eNRWjsBtLbpLtUmJ22wm81eq7lJBLXoVVm1HNTKuOkF6GKuwGOUUrhENIWyjBjVsLudq9EdT4NFCkpZmanEeQ16YsI+N2rKxIUM94HhYw3OTD9ZZ+QQ5IUooadLLZLRe/ngVkbs1/1VZiyQzVInQzr2qUpUbIw7RRl7sSbhidGm5V/LYic8GqYP8o9EU0shTwe0Cp14hk5rRJe25DJeDJQ+7SNUOXVf9SFF58ULBSH1+FPIjpRablksAAl+47mBTXsIVQAhD9eFKEjy0heIBH3Lv9Ic8tq9f6VEPffG7cGYBKCGZsybdg8Maf1MtvOMB24SUuxH76I0jqs8yHRZEgzKPG8QPXg4Or8ihLrXPAtHRTp2By5EC8YAE/BY2kcF2aIEOpwtBm0axTVRJQlNF928bALUBAGS7vNRIbvQseFSMF636QVjKm4sA1ifcIIaTWuyA68ktjuhcmcwyg11j548MgqMzWSfG7cTjW1eKOgE67eTstd3EBbBELtrcZEX29KmGtxbWAqfM7iVMZnYhNxJNSU6ocBts7CNGVnR3wE/QQUdxSWcgTjWQu4vZwEaWVdhDtxiN4iLQSKf00x/eFrS4jfsrDuiqG3DkgiYHkb2Tw5zHmVGaeaAa+R8BQvxe8LG42F+DNhFbubeCHuf5rSzBbH1CReA78i3NK6IEj7godgB3Pr3tWSuREVLE+SBFXFwRoO7bfRmmxurqc22Dr2hFMnnvIL9p9x2vMBXR9A0ig48R+o6AliZmBleUiDK9mKV4c9I+GekZYe1lri0dwllFpBKJJPYqbvwB3nL9SLVurAexX2rj+ZubDycQYElMg78Bpo374eL9wxJYquM2RN7EZ9rJ7cKHgaCJwUj5cPl6787KO/hj8fwxZK+iA9s9jPwKya8Wm1ROnBe4gsODW2epJA90O0IYMAN74AO9FAVQCwvJ9df6wH7Q7KXlSlCBOf2yTzeubykVCHdEbcb3iIA6JTki7K6CrlOYL+vDfbQqzQ/gEvvxjivzVLWhUfFxHzh/2idGqecZeGlnFUTuBe/uS4GuxxSjFZSLmB+i8XViI9oqX4CABm/MIsViFoARAzRYoaQznluFlLatcm5V2E51sgItDxJ6zDbdzdOp3RZ85xADyNDvp4k/fTwMSaEYnTrP+LmhKwVw4tS3ZQ/zC1TiuQg6C2Gm90ElVf+u2jkx6Lh4V73oeW+iZaIwhbV6/rufI6zBpofxbHsm+CncsOSUq386FwKMOVHTHX6T5mHj97HitucesNj6fD9w1U7lD/hNSnz2MoDLh3ogO6aa9U7dxwnOwlKgG2FcqYYu7XflHN/YYCnlbsfkm+l91FU8QuPzZ6GSSclz2immnny8UFIHtikNeo+Oe1kI9YdP1CYw1YH/mIwzmvnVMO7FAGlOVKDI29ZgjsmLG6y2uXPy1V/5VhRQLyv9uB3UkLHQIheMhdzOeGNC0ZvX+/YR/s1bd23XnbxyVXvgQbXfGfNGqK731ddMut1v7ODGG6mVMoyaK3SO302Bl4AYG6O+4NlF7oEfCPs1Iff0AuApmiZo5Fw0QNRacRpWIzaMC8n6KffiGP3Qs7R/xwUw9pLclFYKwGHg2VFmqQvo9AJNXv/E0YPi08KzoQ2X9WRe4xPl4EWR7Wb594VCsshypLD5D14sRQFk/DN490Ldw5nQZhXlJMN58RDamHDuwntG4x2BFbKGydX7IkpUfa6SigwJhYIgYYQ1uDLTy2raqiR3+7Oik0juXoLo3CkCMR+zp1M3PfiAGzTiwjz+MDY0pF+zBltULppYZN3k1pcGpzEzfJXT/2YVmpLe3KfKZU+maZmAq2Qq88ifJIrKgRMxX5oiOxuCPCaiqzgJePkwyEfngQkgqAdxYIl/v1OGtFSFwIepOa/SPyr9wQWxN76rTq4TkAWzR+TLKW0fHUB3qNFkvvcTq4Xn2dCjXH1D6xJR+bkfmwDplwbZOjCk3xGivECX/owcMfLcVZy5NWzJ7U997JhlYHC+hiVAbG7YWKvqLVn0eAT5fmGeyyjfLqvDM1Zvi9i4hxAby0C0phZ7yzo2LglXt1kMKfBXOpbam3bw42foV+1M2vVTXilo4BxF/DRItg47LQIgUwamfMfWRITZCsAzaAdFP6VxoxrPKw1HrSVskrvkVmX6vxiCmrdqtLDLURxoiU7viXofy3PpONZlP1Ypg8/QnSvKCuhaOGUE6edJvSiEGAr7Tzx2lbY5V0g+R0gCI4y+2tCtc0hfigFBnM8xuLoJmRlq/jdyBTUNnCniyOQlzq3/kUV1EDNUsckEkHWXE+wSNL9p6PStm0y6LoMJl0V4s6pOsnwIWmM7hMBd+rSODCNMSwNiBHbCeUEry2uHXJniqV3f4/hMQvUZ2HHkOwlVOYaTIxZJSUXPTe79eOjrUKWBxYnzIsxfWkEjg2O/W5mrv3xSPvEZl6cwsRHsXoqU9F+3cKSiK0VTG4OQjyRhCHtBwxIoS22Pot7CZLzSZXtgJxD1MbMuMTy6cU0Cjit4EFWBU6xgXgId8BCS3IW+njg91cNOUt47G65xZZIaccFSacLr/8HkQcWBwm9QyFNzsKKzfPjqvg2k9o7XYF/KFV/C8GPH+wVGGFGfIkUiTtnwzaL9PE8I3w/VdwlVtXeJvYAw+M0/62o4eY6aN+OlzZC8WTSdLRlSandowAL80KCFwZVYqPgjzeAy0BV8Gp1i/V/AfA5f6c4fEAu6/8NvbTMbptAMH2TDRrlPL3TlOY9gjDQPcKLZ7YWSlH8G8hiWJYYYwV2urxhgcJkUn7epfM0jornA5kdsOjVu0nW0anohOAA50P150LYU7WhY3LvK/69OmdR3vucH6xKcQ+C96frmCtZbzXIowamq80+CWn1lyTDC2ZNoTCwguQHQR4TE/yCAekCzYGp6wr4+pOzfUY1sgW6qOJEFd0CgMqBojNu1Cabko7DnooA1szD1jeJWFpEekH7gZUWCU+Wf8Pd2+QWIJ16Mcx83pGwCukLO6sFX2+iufrpTLcXkcJcqOJ8ixGP9X72/+grsDMWaOqX515A0v+z9v0wa66c3UelvEElAlxWOK3U4ogG8XDef49Xi6IS5BD1VJ7W+Tg51iaZs0JbdiLYwklsAu28qWCI24QfO8oigzB72hE7c7/AqMuoqkm3gmL/MFzAUyAXlCn/4itGUjwo+74VbiCikWS716+ePAZNoQzMMeVA9hxHYORHwLE5yk/0cTaSgUvsGHRU63J0Bdr0QlUBczZYC9izN7P8Ejcs8GcXQG2jdr0802Ivwj0jNm7fBtmizpMDWw7rNijdWa0AM8QRgU1aRGSNYqMjZ61RcdwncKVUUbxAs9KFdRK30Xtn6u7C6aoVGF0odYubjfhsfAZsepasw9+09SekTfxXFOLe/HhDKkx2DEcEwDLrehyfdMkqY+WCGkr5Tymx/DqxtWRPrEh0WskZpt6WWinrJ8+AgGp17XQrSMADTW6Gu7pnXBDYkLMFUY7Xc/gs7VGLL4n+PjbYHD8UZwaLlsCcs2iBVz/x2fmPNyj5Xns0eEmHTSZIizHrPcOma7xf5mLPrYmTxEY3qLvwgGamxqY4cVj1anunXiyR+Jh19C5L/Plz9Tls47NSAaaLhg36Mj1+wjo+nWwOy1Xx+93dLFyTuodJggVxnmVaIK9ny49fzy59qBdLX9+xyZUUjiLNL2PgEJ6/8ej/6mJrc4h8kcRzxtFDMIkacX2ep+cjyaHl4SD1mgtDzIv/QHWOjnp6OsDEJ2ZVH5loMIKC7evraIozZIoKtcODbBXVBop2VKIx3VaR4vVAVwfj6gAm6+itKhwizKwQCFkwjJz0G6FUOUXjAgMWh00tbKAyO0bHe4zAWTVGoYCC89XyjqJz7MSE6j9TbgUWI+/wiC2k8TjtELDxJb800sAOKB4O8BDZUTpuLVz+lIBQwmC8unBvwqJS2KWoeu6SvBxyZcmI7IA/wuAiryhdr+/Iq4cMbSP/qVc4C6ytjgfrcxhD87h//imUq5EqLvNCvvR5a0rywM1a+dJxGrdO+UVLpvrD3HvNDqTmr/bU9pkdr2voChjBUC+PiUNLA1S1CI85bxJxsAffq5DXKD0eZEPa6x4zCkUJw7MQDbpGhybEUigd3mRJWsgTJgEBAo4FVMjXrb2F9XaXFUrtMs+Ht49mNuOyh5BIkJSmFUKfZy3oN6EnyG9nBFzUUo5HapB8xAWMOfcoHPa4Nm4JdrLU0xMf8dktu9o3L2Emz26dKVfl0FcsTkSAfXBYnJog1aivso+3nIWDnbLHxOHXsWTriZMsZg8fOC+cYn54uEm7h3XwOkuBJkrzcupBtl6e4Q/Aqf3PrTr4xBaURIQ9rhS2eVBeFvSCuUlfjTnBAvUa9xgIoRmhE6iAAfVSpvqxFh7yi0FEFWvCxoGD126onH6Nfx2a1VPkQnQEM6bVZ9OK5KdLKYZohIVadFztb5BB0DXXgnv8QkIQt29s2FjTnMYtzeKfIkCZndATpHZtw0maPFG0awce9sjS9qKKoyTRJC4RnAPnXdlB4/zjhyQ6zNSigQNkIPJS5kWjXYMSxvHDZWoUIOG0fljpwPe9dIakyRzoBzgwxVDDTE0l4Yi/rx4/S9p5/Du5dPjnIDIcFVYP70nABAbppTHGEZAa6NXL1E0NuTTDOvnIcGXkLCXAfZ6F42rdPK9Z2LvCnZyFa4SqJzAMjJ1eD0QTBotCruLp33jbOA6LcBB/rWr22OnVWZV+bt7ShJl/Nc+sgXHpYQfkJsp+CGYovgmjXPS0CXVEWGXT5fCQ5evxTtGNHX2FaTdy9MP0NQV4EGtXvrPuc4XoHv64dtxUeusceM/9OTHlmArOVBDGWytSC5ROUf7/CL54X3ntZb/F6ngDEMwZdAY+ml70Z5O0yuJg1ry/NstypUu+2/VZ6vO+ddnCiu6tCHz3sSwV0Xg9+DWRTBhQIY/kVtTTD768V7k/l/2Toa2zXHmv5bNVy41RxYRHLuDBS/i3W0OEICEPZZi2ag/QWDf+sCQahaE/ua9Zcm7AoldAT4NUt/kQsGokc5H7unkaF29cgCT0z8VGiBKcofNa9JraLktQudEhbZIK0jc387AR6JlcqfYYlBgswmcH7k9flJDWXKSTWelxxXZ1qKXTXDWbwsCwjHEJXuwfjU9iwokPRtPkFtfcYc659TqYZPdyLjyDwzTajmTyGZ2ayM0BZEXkISvvrj17TUVNj5y4F7U+AO2uNHD6WYc/1iRBJaDbMo33PCWfnP0wQXCNFY5H/C5Zn/E2dix8oOSi2qY/8wbDY9zexInZh5WqOQZSZ8qmgry0wolsi6BrcjkIt2W3ARaXkL5gQDFaxqIXTadGCicKZbqR15q+xVeNa3xW38dq0B59l6jTwg1QqfFR1kV2xZXVNxbH03ZgA3mxxZMzW83m4OGL3dc2vT19hBIKk2RX5J2Y3hWOCadQQGTdO/ORLuBa/BJil4idnF/IPl/Lq6pFEkLJ+5+djsFRq1bKzH7iRGvyL0RHvIxYoadf+kpd0zNFzPiHYKqsi4H4zoceMkX9gTGRSceug/XcBHp1uaLnvE0hDaIXqC+eEYu4kvH0eoVgMNGTuy6QsOkw0nnehYo4olGsALExtfGcKaUrnQPnxgAinyYyyko8IugyBPaGR/68bqeE4FttsLGyBrUJc6wTvH2VFWsgvvJCwDLZsg6ZiOhAFrOgmT/u/WS7Ituvwfoh1gUEDdfTrS9D5rUR6GbMTo8UCI3/FnogpV60CfPdE3U/G7uXKTNzzjkyCRI27vCtDLDmxAQpz4ZMzlpxC6si3zST1TzArKB45ItTm5srPuYpu8DIrbBkkuCGdWJgWGAP+N0/zSl8Q2fk0RtDVjvp8BM1kW3yfsTzzXZU9OWb5KAgEIhFqj1ZSJhxcqPQ3CFzvRBOXPKqoecHCdzpks+4wGRqzSI4iZ2osCsldOWW8hQlbkrKT1CowT37v0fluVNRG9Ub2f0SbRLgn/rM0Vzd8Cj0jeoC/dEX4P1iTZhFrwuyTG7PGA4lMeOS0WFmPlnR/4jKCRy/2zlalQ0AQKeBXUSHw3yWY7hfQ6YE2jKO9YZN6vvLP4nLpfCmZZaVB0o3Ibc09NNnVnj1+byU7HLO52wA7ncWXPjIe1JlC01WXVzY5mThVb70wLDbBOAjc6lFVYzocXdjR943Ka4KESxXml1HcObFGyvLq4pqZFADEAZ7CnNMpLBj6SYpK0opwkSgL6cM2/j1zQRfNZo5BTQUyO2X80TRO53Ex8MgCGn9g9dyLNVQfKVbgAfMvFJmge6hefVrzoz4os98uX5Z1d+q7jcms55+X9yZZxXEvA83qqbHQIRM1b5gKvT2qAqUvL2GZIY+/TRXXe2AlyA69JpEs/zoMfmmKO38y7PVgEur0sRu6rGW4ec5lx0XYFuG1PboWQx78rs62BNJlPKChs1ZA6vWyHAYIr+w7IoQbkEDLJsZja+6vJKDFlwfKj55oGZTxiIrMkj93BODNwTA5Hdd8lz9s2XpvfvUMHBjjaaRzpKWcWDWxKa7Pvhm0sX+e+oH5zAQQyD+v5x3XvokS2nlp+zMqn3eHQZlzSvWdX52V9einPFA9422Y6qI7HifGz5cDphtZT8M6xM7aYkzv2BJNMq+cnHkjt0MlPxgbvL8ZBgOCusxMEdlLMF3PiqvnC19CYkqkINzOf9N0EdMvhUqUdZpZ7sZ8AXBqQamaBFiMuIMp7wKXit7vcoRVis1IxRWUxzDN677A0GGpyYgcMvb3iGR0HdkWGIC519/Rk/aoK7kNo9yCoff12NI8iXuOvvtxEMjktp0DiZ7eeFvf442gtZdFuAr3pQwGe9+8WYR+qAefBVXTuoW7fxWEKIsSzs+i4SFE/ajG7SXC4gCjPMF5EYuMbUaahZy49hCn8fsmp0hbxtwbGwkrCHgD+o9V6lSFUlXO3mW7A1c/THowYBz0RcX6JUOM66tSw/IjC3jkAhC94f8O2RRFrvCCGlGdc8RG9JsPIHLodtKXv9DYCuNkcyvh7Uo17LyIafSaKy+eB6mbXM6+wCgPc9oWLz83GhKhYP9sudJF31WVPsOtJW6i98C7DHV/RcVXdFIA9y4nKoEStrusrTfNnhKpLjLTTdyWcdFka35SipC8snzsxKZLBzbDop3c5gjwhIu5JAb0q2RAyPRYhsZBFTonXiCLSk/KkXwxF3OI9JvdIrEl2VGHz1UJpxtJrC5/O98osKLWroLsYlWIr/HuUCjs/JBQwOSYVlVmPHgkddVp3stW6BLSOKGIatyTPy+1Nfjyu+FTalZ/NDmqwWErmtOW5EK3QB2E7J/qVVUAq4dO36NBdZltYwnaJayeC6D3atstSSX2ArPvBxYwTFfR2pvt+l31cRLlaAXvqjmF+9o02KX4c6IimFf1ePP2IbT3Mcmd/SQg8wCdVu7RBXtF/dsn8qOUW+3zKtpXhDmYA2N+kaZdwtnUqTdRcv/x3LddtlmQ2AppT8QLETKBCSg1dAVoieBkj6p3bY5TGEUFrt3u7o5qELsBFpugvDeggOz07y7pkXOII8LZzgNmqOC8XRkm6tB+LM3bTGgllo97JnfL/O0zgdCW7RVE5zPrJWHTTJ4LzferlVg3zvLQAZcTvSfTF4vsycRthGfKpBv7WcmYjBm023pNNEUXUH2MXMBEIKoa7M4+jsilcjSGOJLSDESKHZM+JIJEJUW2nn3tWq+F2WoZyY3ly+nlfuuimYBBhR33WrFitx6AUd/lsg1dDBavS25+922+PArEggW6Wtqkyun/zmvsZ5dADd3agh+SeaFFcWK/ae/kym5GbZtVFe/clHxtEBPyvaHhNLYY0wv/06UWEa3BAjVnmHpFEhX58/kTRg5TBnDSUyW+9ztRr01FVMMf7imljhyru2AqBMVlsXRAYNbJt5VohDIT0VCw/lB4DKkuZx10PKekpUl+XkZoiMRx4U4ox4xJi7p4B7UTcvdAMsxvbJFqIZKlaLWYaX+imj9iHLqLxI+cQjS4nhLNsbCbYjeoG75ekI9aSaF5Ul6nTDp90LCKdjPzyMPeiDm2U9DU/T2ArpNTOBouynfyf+FdlUblYl6MPQPuU2L8Gpj/Z8HY6nJyb02Z0+GvbZfujrmNo8+0Nie+8q6PlS2yay5rK7tTBST/P1TwTN7bMayGN2/OC6NYtc3hZA+UhYpuB5imXK73XdRxbAzshinjNM+ojdhwRhqD1EvBdaVlJcAvqLmelw9SI/4i5UwO9GkiiSQMX2lPEa+kOdx6tJh78GKZXEZBFnXnAIajoEn/o4jftS4POGnAmdasTU6RNNfh71CsKn88UNt/3FnAzWGqMhAa2E2GwVoaHzuEVVFpNPXTgDdijs1RxLGa6t59vdFmjDPAHzVCPyZpYBRfpMydkegPNhlU44P3K4mAyJeXbUhHy+kP8vcPd+AUUneoxe/CostT6DkqwmORzjSfQ4+cgEs7PDGy0u0SBOp6tbhzPQjPg2yugwP6nf4MtqLqkSreEluXGermBAIW1XNWuWo7wUljDrXVjWP83K5QPz8+aQYcmAQyTsfx8tjEaVV7Oku0vctHuaxupJfSLjVH3K4pD8nTqIagSM8nYMyeU5AluyJ6kMt80PXbWY5yMW6GVADQ9KGLndEJoGFgX9zhxNldFTrxvd2QUTIYmiSasYRsbseaTC4CbVgju+9yBDpsU6/UxW0a/IthuIRDYMjvYbm2mQ4sk41YKwgBHK+7PE++DXMle4S9othXqNsyCUERiQgQLwYOFVV7lYkGKYp8Ui97h6MUdXKIbBO3nWgCd2fS3Mvy9WkjDrdtLQTQ4V4coyfBpWxW+NPL4uFit6jujqJ69f1qX3ysqa2WHQdrY9Q+UcE5/NUDDB6/C/JyVdUigjCtI0SYxwIc6Ov+5QhirGbTTMdGcaVAPhFq+XNn2pzXmzD3MNbarunplHv9hQwSV4gK3vVwssOaLESxb5Lx0iVJOKFMCd9gP/rc67WAovcgPWw02Smng8gL1knBrMU3RNW+hMr9HQduqkJVWtuTxLiGA2nPRMG9MZ49VogcxwnVxQPsYaXjaGuJSIIAAbK/CqvaGIVgioV/ozjmD4+RlD3cOz/MAF2EwEeBt81Ld/yPd5AVYz+MAgtk9sKRl1t8w0eszD3eF7ve66AB+u1gExHYxFijf/tru/sVvM0Jj+kFmQ7olokjM+/mog2uoJywGUh6O93Th/QYQiNeoCk5y3/DKZzIOEswMGd6WmKwLHk6waayfjyhFiQsHOV3Br7wfgBWENKMzI7tHJCMsFVLF9IZCSQFO5RAzZSf8OJFAXJgAhrmJzvHcZ8B8Ztc3VHvyyrhueZSp8SLiXTOLu2+DdfHP2K8/rHVzNvp8Y8I/clEvebvuiYtpl3m3CA8ko+o0tX/vGDjEDxqJ7Pf5S+/mBrh37I+CPwkHU+UwXrfmtVemzfiMWy6omJct/i/2bxsqcxia3vtREJs4LIXMmGOox5/OTygvVENmj5+Sns7AO8xF1s0XX453YFg5ckWXgLFZEHmWy+/ecc2m49Lk1CQ816i2sFH/tYjDERwOb9Ax2pvb60UfSa/ifM9oILioQG0pgCYoYnchOvvn2pWCyXA3XE7giu1PJt+5NliP9MZvS2LB7w36FCQrZnWBwttjgMfHNO48DJ1NCO/cQcCLqTmR195vN41f5dDjkVkCuaDHbhVvGYh95QtQV/jNxr+0OfxsGhZTH/gKYp/YhO8b62v6BI6sPJ8UK+cVVTrU3bsyGiaAIDXXoBYDvev9u8LI9VImqA2FHnOONPsifNalwwpDJfqOkaYoM0ZAvk5zwF9YcdkrMdhhDm/AHwLRJykwK+zIvt3gS5Ue6KZwwUE6QrAos/X8av0Bl/mb5EUO3kQgRGIHG3TwaC+BO7Ykc+H/rmI0CYz/emaLBvb9us1Sxufy1+iKpOou2Fp3jSxhMmJcJ2iSzpadud2MFvf6AQ0is8gLZBc3jChVa2bXJToetTYCKmwyUtseQ8rb/0kns1jQb8TsWWea+R4HlfX3JmqtjkoLaNd3y2vsOlr7CPB2SP6Aag/1cYHgwcrwosDGtxjIYizJc394EZkIN1VNmKrMjdRM1q8SBf+20+sX//PLCpUp1v/IU3cRmMKDWF018GScTZNcbRwUlxZdfpkW0sFxTLHOAEar9dnflR1KvI+XOxrATRD2G3dBFlYxe24FrYvRNr48c7oFlW0o4rjy0KtnhpqNKHiSnhXXwfLHZ2EeSBXCKD9l/npESpw0frc0OT4zUfSA8HflDPlxXU45qjPiGy6G1/TD1IYvc9zNfaK5iI56rwbfRbinmFpBRLc66O1+tcIHbZbjPYb9kVy0jBUvEcCgrZwmTHk0zwQwfCtQI9+U6wmq8Pj2FIpMYULXe4uEFSKRFYgXnKYfX7QGYY78ra3UVZcBJnrkqKFb4edTCarI5E7UqO+uUAMyF8BGkXHawNLV7SX5nQJOYLfqTI43naibrALwMNCivwDH5MRte9xn6JwSpvXD/PzNOJFtCmQMTCZt1vb1Nc79idYieDbBqE5jf4HZF9zGnl+5Dd79EAKCqPog0MCVaTRISqX8LHD1cvjeqMECJJw0nYiuYWoSrrBqD+Thj6ilNzYe6Dw4YB4oraoS6uAIr6iNDm0lltvguNbvW9PtcLzfjSC2PU7ZqD52ObwGTSuOKE3N0bS3DcuagBRIFVQy0t/75OK96r1Nwt+PO+wKe7kh3YMAtTPE6Ccec1b7Uwmx2sudorCWGqPQ0Gd4+ulrHO7RanSpCJR0QquJ96tHQcV9UXFING6tk930mFHuX0+RxEB2wHAZ1vHB9hwX8+a+WvXl5fZo0GHrvb13+bPfjPRJguMF5+ioVNrp1cYLpfsm28dlsuZaViMb36CZTtORav12XkkaRapWKYYQpAj4ViJWjqdQzwo/9Sh66159JhXjuMmArAPof7QGzBRXpQP8VyiK7kpQRimTySkA5Nt+uJj57a0HVhZ+SmgIovbOAqg3ONFPrxSYkhnhMPhxfpN3EwMWJDyEaGO7qER6LVsEBI81jbSaZcCyabiG1CdsjhepeLdAysJPboS4w5aW30rlWl07QiJKiZlxANCOdylMzxk4UDQ/kPXCPyJhX1CaEg+WhekBDAgiIZjSrzqJtBdKNV1IwRo2INsZonTKTpvA7Kiev7m1re2fwOnQ9+RmZS4FVKpFIz4x8E3poS6BN/kU6npb5+vvIr6QAdVE6UmDyrLvFb7HnGvJvyPWl8gZ0/vgBJI1ENPpzmDHVJ2bQZNqHnnd+fDShyvr5njT98iTNgTC+rLZaFThdN0p0TABGGrXKjPQVPsFY2/nSUgxaESgX1XF8/NV2zr040ftu1Ys3qAhMOPJKe7VR581mwEfqJAovwcWHWCRFakd12Od6Jpbo2sBkaUpIljVQtr+DzuIQDzH6c5KIo1rJenhBiPOnJdEFf49b+WXaENpNmpqM5iwnz8msSMpTb/9FLSyr1ijOm5IGaY0rwvxOdA5CdlVeed0CCmvy3qVv8kAN4J8CeVbdQ6E+bCJKyVpCMKzsXmiZocYGpXJ4OXMWmvJQr6CMsYQAGYuHPab7q7ouk9w0J2N4AvjrHFMyzFzXt0E5oCCpf8t63H+rP1huPFQMIxXLXuwPA6T7JbOd3ubOM0hoOiqfyItQrDaGP2IfAAZ59/QyPbIBmv1ykS+7PS+S8x8fD2IlkGpWL+EmLSXWz+5F3w0fPv0vlcx1eWnTRuw97fpz3GYhQKKiqEPn9a18MPDH2nyzkJS7cdlcAV7ce9YP4LRRU+ZfUhAT/MehM1+KL0iUGuhl6uHP1B8KXe6Hr50G4c8RzUU/ZQQUca4IIbLeTglOAF1Mty+cWMIp1SbitIL9VqUrqtACr+IOR9P+bNwiwTPQdeR8ABk8G3zYXBF8O9ZDCEZT/uxQYXrkBPprkCmxqgPqX2n1jyR+gvJy1PvsCN7wqWQcIcA0prHLGPs5QYo5F06EVLliqCRcveteNYS+nHSep5I9evzyV/xggrP/QUK2wzQ3kb3XCoh5YD37wja7c/f45c1Qk5Lp3Eh6O54UuG8mGKTtwqQSF9C33cNSoI25XnS18d2ym69Zf+I3S1NW6JkBeEKwmlUgiWpGI6hJnhchkNtPv1zCEK1HHjjyt4/1FZUfvqGjta8dpplzo9DlC+Vm2ODg8/31Sv6E040JCPj+zIaQJO/m+KfE79bq/VhLjjSNZhXgbj8heM40cbl6m/qXZbZ9k8kyFJASfvswt1vfSZFqDVzr4SxVP3dYETNvEb4MiwTg0B/GVMS9H6K6EH5UlZHbcNhf3puNzWyLkF3xy64W1os5pPoElp8K4fqJ5uujZtH3BOGDCZ6sFpAmkIYfWwsoL1J1UXtzMLzXAEGNKAzzTbE7/osAzdhIdkIKSb9OAUMm2K+odmeEyBxxWX+gDmy9JnZS6UGjGKa3rYE/4v56qUuwnDEk9kJZWrroovpW6lVM5SS0pD/GTY450kvU+zltBIe8VgFLb1Qrpf3Ut/ThqkjCK9fJKXOvjh0D5MhdQGN6XUxo5gg4OQdaIeLknj/+ARbIxZBbqc1EGh3KpG/KBB7oBEkNJ8ZCabIxX+DejxLyQCCdX1EEXVDh/Cfg/BqTI1S1wtGjCwaiEKMZ5XrBR9NZ9FVK5cGXlwwb1ZozqI7w/FbvH6+5oayzEe/Zw31C67TGNy06+JTx17TdegAn13iofl84DtgTGdLX0dWv9aMFK61/JYorSC4cPkxWQ27tzwR2RkJTB57MGgIJWDcnQCG1BWLIFnL3Sh7kylVkzazLA6TFESP/PbOjgAgb73Irrk60Rx6NET/7tV2ycGwSKWhnP03zk6T/SDuL+AqwEevsv3pFqgtN0vIAE96Ln1/4l/nmOzWWtQIjp1238pNql2mApCuynPjCcgUb6LrTUO255ku44uxASm+wN08u33vKnnvle7Ut3Xuk7QyDghnxJxdbXyKgqPBJqrpm11u4xlE8EHHJWf6fmJ14i+TssH8rj0v/qrJf9iuX8/q0jmVMhB8+0Zbb8THdESuruteZ+2lwMu0E3csFoCl72c9FC0aiyAkftWiQg7x1rgrizHOkviC75Brqauaram68SMtxNBk3urYIntGwqtHJzca8Y5ddxvARQAvgydbxrRUZfNjNhmfZSkfl6nKGyq8B5wrBfW5hfGwiGBM9nD6zYfbNQSAe/XuSU8/sHnlT99tmxYajKFHUk3YVi/vXaV2tg72Wv9SLkpkds6HrsO5+JeiWZFYUYOJRzqrWPEP5gw6ZaGnKq0G/szzjSTWQUYGU+2uSLR8ow8TFc9z/Twr8pPgiBUlL4e1f8gXppJcUKD6Ak0cWlwwpY1PDOOapDuJCSX5yTvSQsueloth5QUESUZEbvFnPjk4Xh2+E/cjkJ170NSYKAb8fOgNEGE35JXREUyj/+9NUrTnoSif/KtW1v59QqP4bmX13A8MNlq9HIknp463QOxztDU369LnjLLqjho+FZOn0txi3WowfmH+Hqjxv4G7tPzGSxt5SL8hHjpO9K6b1A3tPB82czaSXVGVVLHXhHT/8AbyQhr+3X7XDmd1Hzyb47P3XXaj8GEJrIgMea0aSEsm5AWjIeGy16aym9AGImXQhIkEgOKCbmgFAWS8DQEl39B1VK3t8bmES2nbCxJq41xsU2E8Xjif30yPWif9B9ujz0ejy+P+gatgghHDUYC7XebKZ9dw2m/i3lYwezQRKDYtY7+whQOAMNcXo54TZ6yNzj0H9H5Lv3m/dRRm/jUJGIozeqK1Scw392DDOMsUVUCUHOr9xiM03hp3VPybCewta9qS6DvUPuDrREY8/D/PXyotmJt+YZNzjb1Xq2oOphU4RANDDMgfpwytTY1sHRf37gBhjq3842pPAxuFOhmOUzule18zk2IyEFG8bVpy/aKL4EDiv5VKCejDdo/72VC048ceoLPR5kELDJQHb+0uR0AJjog4tsfzs//Q+brk9XwCs4Hl6IvTKPSDc5ttotc4jBgg+X+/CeVSqjexIFJX/1L9YVytxOe3XlGclfAtoMUd/O+/naU1orwN0yyZtQnEMQE7Nk/MPh+udl1gsg/RA2WTOMmNY+XgU8RyqBLeqUGPzFP8zyynxzB9dAsh8zK6WFXa4KozKjYOhCu/oRqlEPv0piZqe/dnO0VUO6J9W83sGtAFAsG6/pv7k59nYmgvv/eKEO/QMSrN7a6yPu4MEKpcTI6zs7nm736ptpNs/NKK1J2oZrhoY833AY1f8xHdQDE0ljU9rSn8eU08vTk8Yzqn8AIILa6df89uJr3E671543Is1CfwsmOE0ZMUYSGUG60e+TjMX+1Vk8/02HVhW5c+nLFcvp3/q0NU/tAqMGGjo+rZBioConwY4FG1upm6tBXJYeLeY+NSKoRls8N8SGcO374Qvw0XRZ1yKMHLwSD/5TX/hkAy0od7ZPaJueHOl+0Jdj1Q4ELC4E205HulcJMQ7yBn7eQjDHEddxS40EJ84uJoMTDCeDx77vd7KgcsZm0436226b5yob9iz1min3Sostla0o17IgXT7Jv/VWIUmgbHHY034Dwgb5GCG0RGVG2CEoSVx3ldZkpCfPWIQPdUDyIQ7rhSWqEPgyepKxdKMl023JowAFiT49QL+u7wFhJqUg8ba3LFLMRJXaPZTxnkG+OLqcrsqMHYnUXYcZCp3WqmLTtu0QvSglzGZL2nnePDt0vJAKWoDzKADZZbaAfG+CduuzPgirFqeXqjiL3K/EM68i5RNV29MG9ceDegvJU5KzaCZKGOtYenYgDO4akQf843v2fcadJS9Gdkg+toZJLsPg/sAg9g4gnDfdD3of8xpiqHO/pPNkmNjwlfsBt0R3zIR43REIydVEnVaXllETxK/xPIhoVqlDmC8bIGUwEaJCNjITFPLRlHHPrTB1CRtZIt2ZFUdttB9oV2/ndwSqTMsfYx25zge8/kTSr2LPhSq9QXM3LPlb4AWDAgxV37H4poHQZuX7w19BKG2EUqLCp89XNgl8gNy6bH+GKTsUBB9Vtr7vwu/smDwuA4bRpfUoywg/yUOcMpRMGdKg2v5xW2hocBMxc72cOvaeeIObLOTr6sGMNVIXEhJ7ZHu2Fy9MCfFK+ZAWSCybUNt5Ypckvg+VRzDIfYFXDEsqUC6WXK2oPkzg1wneNsDTX99DnufZ3Xqd7GB/Fw2CMv6NcRAPIN/zrcnoNZZyastc+NCcXX4zSoLxKnpn0CiJLFv2HkNlasnufDstyYBPG2Edd1codirbdN1LxHMZgeZh7d3TRQCKF2j882jZHvqJpM/ODWjTd0ClArzD+00xfyRZOOno3tyYUCDjuY5zRUsgNI73/uxPUTYIOj2UfV2K0rHePj/bLrTVMQ6hG9Ng2I93BrhYk4nW7b1cQPgj3Ei+j7ggc618OZ4PieEmqfoMXnebIOJiopHYh1RuubNtXEU/unYJKGiQm7ISWTfNIbGtcLheBDdZVZseEiq//dBYomXIzhSmV4PN5qR1zsv+Cp96xAbFGmyb49bwT0XZWMnpvGkE5sG/st5WxyMyShceqGQ9V3sXfA/nFSFiDg9BshLwcV6ouNo9V6UvuXtK1qFzRa2CL4G59j34z5VCrfisPYGNWvr/qSN2bw9hoBVXG6Fmdkee//YwrhQXy3Oc6reKVsjjZdFKIAAl/0TYtOuaUwFUq+H4Zst2xr1s2/jY+dR2KKcvwSEYcIxbcoPCqxv5dFdyAJOzI8bFiT99VWoZM7jp6+hlbm9lR5q7FUYhokP+tzyxnMDHltURs6XMU0MzTbMjjQnezz7S6nugwVkJ6iF7c/s3ROlAKjrLMCW0v+dg0PtxKA33FZkcoQ2cunF/9at3nBaVy/1fqZ+/8ZEaenKHX+R5H0SqSZKP7OEjspm/9Fbo3LcgLvi5UOWwO7ZcwwSscr8F4Nv4qf4yey+X33k+cB5euvQJQa6cpJ5YxgDzQZon3IKBlBdDZcRQJ2T9Gk3uscME2hNaNux98/09gSR5aKPruve35F8a9Ez6EGq6gTxRsfdCktZr3JgZJruPK+iEf2NFRAAhd4w82oRiGLZIYHkGp4i95CCqQwXO8h0SxDo2drnqrvI4NPscWuFw1sJh3v1VROt6U1WDCIDvwroKrtWmH938zA1F60b29lG7BYIrNqVnxsK5lEFG15Jg7WJ4NnVDQoTnwYbN9+B4clvm2l0dL2RbxUyktZRDh9yizL9cQelkxB+9y1JFpkNdnwXnTrzKU8SJxdlc8nh9RRqBs/k4U0LsjS8Vi5JpQrN3rjTqlpvQRtEEuDQFMgmlnn4iSP39Tv7C+MF1CVUnhacbq4jRgTGQSCc2ljwGky7UfylZCuBrZ3X+QCuAPS8xdE/JyFrmKcubbW4TchvJC8X5x5TsGb3YQ6rJbRER5RsYIZVRuv3njoQzv55+INBSrIaO3sqhW5T2f4LApDdumJTF4t2JVKr6c3iQI+bxZ8vtxY5sX3QR/G0FbuPptJXbGrLIstcI725LaN51afh4zwUi0PP7J4pe5SVRfd9xxTKrtmsRwtN+iba5ZFXaZ/xIAmeLbcxjx8nZqgY1MclQtCV/VZVp9flSYpd4g3VqQFEmeGMHHSAQZTA3UsTy3fR5OeQiYmhNS0zdx/JGIrkctLHuL/7OrApEkePWnjRSLEO/NkbaHZcGzeFTzRKFjaWsbk07WFpkXym7ubABsAVXYWLF1Ly4zDE8gze58KjHT5YLDZNzIe+j7dHwqxZM2mwkx3wjk9S/7d1c/OO3byxEYVmaAcHMTSGgjc4gnMHY6Y92JQyE8Lt5Mbbk6zkfcZlgxEl5aY0Ze+KP7Mn4iqqjXzNjDxX46qdebWkIx4fq1kL7jVN+/5W00f982usuoU97GOT5gXenlqWFFjT+3s7OJlKLtfrHIOsudnfN8ITU5vu94xZFfLVncp2+ThtO4FOeIy/7urwYU63t4hEcOt6nztUtyC82hUKkFXHi3F0DyW5R6z5JoRCqZ9CWT3zNdM2Ka+Ru4/TlvCs49hOnvvCWsnEt3XCQFRS9daG2rdzHiOd+QuLsNvBIWrCLMYylV5BpwwDev4S6BPRYwA7FdaFB1mMXI5VBu1ZAvs02jZ628dv0TXd4xh7Kfjbx81oNDIJ/BF6TVI9cyc2UaS8tWiICbs3MlemZ+vkoioDTstjZmVHmhx9NXwXfQQNKDIDmD+LJVT/1ajYIuYsN6MMZE9z5OytGCd43SP7FK5vFpUBI7Y5n2pZ9n6P10yNeLmGtXRSr39UT32RNCwVhoqaEfE2raOMC9IH943uYgLIL2Pisqi0Y/oQJVcoaujL3tDrvwbSMhW4C+zGSMAR22vyH13ExpiKNVvrRZ1HT1P6AKX7PoWCymIXD6eoGBknm/WZu3p6OnxmueNtcdCrEZ3GZqbVxhDS/sTWTJ7RLGFP9jRNIbk6hYUd3JL1MpZFqaJ9HfSnSKG2/E/QJxkW2z3oWL/xgzlpB3TLrFZoDaQ4RSoWg7Z7jc/5ipvZkwecCYOc7gjOSPdl0JHF2N8B16/6Hep1I+h/yO6bUYQ61E391kCcVrgn8MqSLsWFmA3Xf5ZRMxk/SCpSB001o00hUQJakmaoJD04UtL39pTk6bRdFbI4t25WxtnQtm4UDasCoCpXMSpqFlxeCV/7jCppnPCxLv0v7cdY33PRrpdZs32va8z7+zSpyVysElsDh93zczB9Lt5zzsrV665DhoJTSny1GeROoaO4vrlL3ErzCwd8C5cdgXgoE3G1m/xdyK66iEtKAdZ07430X/ge8pntHF7ohj2n3MrS4grJmQD3Jzzk95gXD2lGYUuJ++9OUWB+kd1nXRT/buHPE73ilFg70TxJFG3gBcXTS9zGNfHQSyQppXbTgauB5OU43ijRstjfova/SHitO0lVP0lCs2E0DVLHekpXL+TF77TkhYxMsZuLUBl+sW1PN7SSIK1ujj9vrqg8Xd1Hki99yEKWkODZgvfHnB5RiI4+WIKTLz4bSRBROHPxi8/sXvLNU/3tFCLjgQ1FHq2MJ51MtDgTh8lmA3xIml/8P1MpeSE/WFT28sm4X0W52a64b6Aj1MZOmfq1WdL9lskuzDgep2pYtiaVSfT8pqBfnpZe7CjzziYtaWfxBx/czXf+DyiSF1aQV2FOuX/UW0iTtNwDkkoYrnmamoVOWpbxOuGDrcpuBVMftL+uYV8jG3xSnx6hBOtfVed42Yb8Nfb/yR3b67zQ+x7Ia6xwZpGbFvpt7GOH8cM685ahBPndW3rH0vI3IAwDbOTMpodXMNQgFfyN46i8pXoOrU10sk/KjQaZh8efsJuUAmrDIf9fwDL/F6/K5qVlGUPK5T6iP5APrWZybvWuo8Xya/uqL866mKDmnvRchSeiN5QxjR6E4vdKbue+4bKoWm0Tc5Ci2CpTSibkmMpUZNj4mPGBqPKSbdygQNUgt82UlkypDffUXXflY8vLjwqlts3Ux2OJ2tKbO3GPDHujFMyxxa4tw5MOrX82HBgSghFelCAEWcF/wAhczPgTEeQd3TWkKsQjj9Oq68aa5TjMbvOfefdIdV+cuoQkM4qOwg6/V2NaT7Ff15PjyrBMgl9w3YZBU/wMDpX5zt4az60af4o+pAsdRJoC61aYFsXMJcMa8P7BJvRgLYDHFSbwbTY9bbxZBL1KO+myWJzp3Zn28PhsaxNDjrEv8DOTE/RWKtV0IoIggWcYu8+TN+J6GTd90SM2jxMl55854JTELvxMVREV3/0cPLQtcIqHAY5FZVlBe35uX4sZ45AvAolN1N3UmjFxN9FYxD0NPEewoSRb1VZ8J8Ory2sDLDHPvUbKEZtEtNYFzWYZzxwbTi8E3tW/Y1uIobfUEAYqrDBbf1tqE9jZXBdMXDIoGDdlbeMF+RuLzQVIWGE3K6s3bLRZLnpPWVqL6W5ssgh99frUXzhwu2WCUUcduMtw/Zjic1JEdT0l6VQtntbvq1tUYU1IzHm26h+x/kKr9janNsDqXHVqfsY4gcdlDUvR9ojpSsA6DPpkgxaeXeFnXW12D49H7USO2ZQPECwFkZlHgBT5O7I+Qjp6JPf/GuGzWD+Tf1qFFE4Cw8Icr8Jh/X7YRodn5oKsW8JueWWFeb3VQ0hFi2Gr5H1rk0CrADkDoQUKhZ07fElq4T22J3il/UkIlt1HrPEbRjD65o8I85M+n4TyePh6CyEYL5qq+1ctTxXv/zpjLBoMYu68r3uMuI7ytP4CK8FrfPdsqGUzKIpKgUGZjGvBUhv5FRAzxka/Gix/KXYG+CBHgpN7KUcKCJ4ToWrzp6I+UOzSD6l6P65gggWjPiqQwueeDHOTG+gx6eN8MWjiShvCUQJXpuXdrqUJys+/z/TjaEUYaaMEdhtHHfEK6QMFl5h1rSDEST/A/YJ6bc7kVtMTGy4sKdCbc8byomPOH5nrem/m85czAiZlm0mLaGrtwO84/q8LK6T4/E0y++nam103tpHxkuZSDxgkGJZvfpptkeoEpEbcGnn/AoCsc/p/L+Xv+M5RxIFQh0S10yvx26UR7ulclKYpyiFe4XO2bX7Lnehd1MzE7pgo0vCO2x3My9yz7cVT42i4r+9LKC+HycSmZv7AF6Wp4u2ttRFgYmB4ZzrdGphby6nIgz/bWS+ZSF7/qR5KbM49YKq5kFFphuIvsaIq//qRDwsrecjZ15nacZooycICumSivfHLPe7yTcuPiVB1Q3F6LNxpBvanj2QUK0z/OEr7P3aBpKI+3zGcp3ksav+Fv2M+GDw/GLQFYRRQYrioZZag1dOEm6RMovtmxxNb/b0L6c0au9TMxRQRgzf50FgB8BQOOIRMcWLInX5ZdZv8wulAlg25Oa08CwQyEeRZzSvrVxnyhCltATMYMSj57VQSzj1QAJXkAPrbjUohgbQ8QKbfHRUZ1NtK6JU7BbpnFRJbWdd0OomGAbUgTCxajBqt0w27k2i0qamSewMra945dSju9vrxGR/5W0gorzcJE2CgusOJx2XBU6k8AK1Vnc01EgR67EYzsy6UinxISZRLoPb4Qz5lQmDP7EafPXarsQU8H/avDypFfwj2KPaa9z0tMQheJ+xu4wPnPHxqoxaG8AsqQAv9k2xfByVrJIYPJFA/1HwAgAA4AhXAj2NHZFA6Q3Pzf3kL00m8nAjCIcpT3TP6KKVRSzqE1QyqoGz1HQJBqOrq+cWGMykO6D5pome9YH7yzxjVwW0qYNgGBEUgDeH7C8/mbqmHxKd0bsYMzc4nxVxrCf+GqL4BT99dV7LQ6YW7AfqAt0UsO7aM2o0tu+Uw3+sUtSwOu4QY6BiZWnOlZ70H05BjEQ1ZbRSA4hcQ/6MshrGp9ItvA0lyJsHW4pVZ0dq/qRKVYj+/ygx3V0P5qxhpv4AjkTkV08VGcpa9zg6FQFVTglDCjAq0UKpdHgoUsEqNrA82C/p+GyqvJBZdnVFeOSeMjIQYuzIf97OCYIG0oXVO0U+Yz6/eOiLr+wIyGQRHxrX0eehvEF7t4dyQDbr5rRzWSdJLXaFgBE7Dh+TxrvtrZG87gSunUzN6U7mtMPMkdnSYSaE9HkKRbOFsxvzqWJMEjo+RZn3YDERHrmSnRlvoNUjpcrHCKb6pb1l5JGWNz0D+dnjNKvnNkiyoOtIMPuo9uhbZzYxEQsDriGfc9ib9Q7UOBNnji9HRpRIOdaYmB9aQTLBtNRBkzK/Tb518DHbHRgeQj/dsUli3QLinJNtaU+422uFl8M/DKUSmW//9DM07uyRCzjJgYAO0OViTaTFUEU98qqX8xRyWUGEA+auH5+TSVv/fuXqogbYeAc1C6DtfLzJCMplFlctk7UCJXihQ5xAuqKFig7cOlLR+Ib//jc3CK/G6QwF4GERVLauCi59PIuAQWXUksrR038KQGWoMRHsldvfOX+AX1AVofMfGYQlqaMvDv2hSkq/PTTuiAXDCfwxQRJYSFlAJZHHw2oq4evBco1kmQBLllPTE0m3Hu9dC9W4mPZKv9kk8Ih2qzzBebeJLCDfZIe9GPykTzSw5Ko1SbXX61rNZmm2mPa31iE970RYAIvIM6OSP/P4BIeDR0AsTGA2ihLGowdmkwHCls4vmqrubAboOAb1xUt+EmkoytAlm6UjRFci3eFNATnUuOYQsB9HGs9EITbW42Tg6+9dj1/wc85wxtfPbNFcgCEIIAWftNuzCVWfjhpG1UjFYiWdLkrNMftq+QR9Hbk7KiGYOX0MqxMYZD6+z9bHQxDvFvuFPYnozbklkdgHw+ctxlX6PQeam8ecsd5RDzuFHhACFRzHpevIUp1Pz0CEZjMn6teeglYVPGphBP3RAOvobNts1sMm3nU9EWRmpgwEI3JmRFWWR5O9sf3sL97BKlCI9j9EWvYVooLKq1MYw70so6AX1ZPxNzW1qUuEQ8JcdJYZ0XB1Ay0R/I9C8mr2W44g0jXJWbAHgvuJzyWJ85YSZ/CxCcfjcez1myUbSl/364PYWm4I35aLYC/wtnBnDIDJEW4cV0mDH+NXZN7iXbjHRbskxadRfCOeUuMfyA+W5Eb3F3P0um3tSvPYElDTKUTgF6WiWfl02IvTy8BcAfyi3L5QBmjwXI2ahwJSI2t3DWhYoQWPqQANYeKq72MPmROcpRXLIa/a1QRK7qF4891EDuAy5+Z1p8/pPRCnaJMUNrk0lHhlY5OC24BcYXvXdc4se48OxNBAl0OjB+mPTSIxIQT33viGeESvQsKDE=
Variant 2
DifficultyLevel
536
Question
Here is a table of values for x and y.
x |
0 |
1 |
2 |
3 |
4 |
y |
−1 |
1 |
3 |
5 |
7 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = 2x − 1
|
−1=2×0−1 ✓ |
1=2×1−1 ✓ |
3=2×2−1 ✓ |
5=2×3−1 ✓ |
∴ y = 2x − 1 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|1|2|3|4|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | $-1$|1|3|5|7|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = 2$\large x$ $-$ 1
>>| |
| ----------------------- |
|$-1 = 2 × 0 - 1$ $\checkmark$|
|$1 = 2 × 1 - 1$ $\checkmark$|
|$3 = 2 × 2 - 1$ $\checkmark$|
|$5 = 2 × 3 - 1$ $\checkmark$|
$\therefore$ $\large y$ = 2$\large x$ $-$ 1 is the correct rule.
|
correctAnswer | $\large y$ = 2$\large x$ $-$ 1 |
Answers
Is Correct? | Answer |
x | y = −x |
x | y = x − 1 |
x | y = x2 − 1 |
✓ | y = 2x − 1 |
U2FsdGVkX1+mGhxCER8I9NO5F6uKLNeYk32y262tmxj1EiIV+rDBe3ULqhpfrz7u+/51ac6csc3EI5XBCehTL8aWGdY58Ri7hbhy31IVj1VTiqq8hu4uKb+fzCo/2tgXwjkjSd98YUBZfPZ874aCc74whQe8RigUX1JNhDM2LzfexXbIyn4c4DHamjDkgtnhjry0ufHmdbNj7KC3l6TETvLxWI9MkVXWFDbI31vsLit3jjT0gfmhn8f/l5Z/SxQN6/QKnChx+XT/A0O5PJ5WeO6S3iQfHh+Nc41xKfJncwzGUlcuFIs2pKjWCijoxYjoK/BcxzegNM9XH666pk4tHVbke2/9tCG27XY02KuAS36V+94BQ6hBtJN0JX0RqNc+kwskJ0rR/WwUdbLdtsxkinuR3ML8/wtsXjhKTLht66RrqxTr2WJNvVcgp6qgffm1HiUCWDVCwGpdYu10exetbvn6C2flIufc9zhMeQxcXzO0y4UOTUOJcY3o02XEw9V35yWMRQaMm0qLizmKheM0x9p3qjNyADjMGZrSUK2DliWLR+ZRPGRHOYbTufg42djQiHyj9atbIutZiD2bvvRsZ3vnbgiiu4iWhyPtaJT28/d2ta//m2TMjjcOXD07tOUJsbJTuMIs3gRT8zNDDfQDdI0L1JAfDpD6UqzgdG6wPvSjqgo9RJyNfnJRu2IihUn3jNW76I4MebRGEaiwVg0/5hL5Xul105lraG9MbcRDfKZpEBfiPm2eiTnTj8IQCgUcJ79G+4xv9oj/PcLCh0/qqqTKaMaX7YlDhIuhaAQlNushB9vWNuR/kSmlxzO//0IdXjEA8GtqMMY7y4YBmQcSPykDR+TCV9hxUKbX5+e4LEVkMW/KXwVWJ+gsxWuGSekrPt3myRj7zBHl855ZjTa88lou76t6nCQxcm6AEI3aCe4LR4L6f2UQXFkIbH5YWcbjU3j14XNvYnGTdftTh5xbmLNfyNy3kbtQYRqaGAu+9CK9KhWiDX3blS9uyLhNX2p/9yRs7l2XXNYAfkeyEni//kgIAYGrPeLwyLrVJKYfgowaGi7sG3Xt5QZTUzwDL1tDAjQ2JlZtfoZJYAFN7IWmO2irC9aKexBX24gw9D6pOEnkO5rUsBZybVIs6wCvNOksZghVg3yRUUyyKRn4TRT9sTNcs0YVzP8FWv4MnbFYCa/09E5L5fn3HDP/NJdVxYpG8gPUgo3F9gREM/OMYfrgYptzNfnv8xxp8UybbaxCfQ19jKqo0/AwjGFasptUVoHbZjzNoGxjX/tI1y0NWpaO1gk2CsTBLSmnbWvr+sDT5Kka08vqw4ovGHDNhAlGWFz3LFrrHrQ6cJax/geWjMMuG560rGvGnBLT0hXMlu6bevNtu7AqwNiDznajj5Ai39ar3VfjnsyD9MrK1v1CI8a1N8kpC+vwzz1/NNuc7Q8Jp8TzzYQ5o+/vOU/sKsJt24XYZydJxFJgv9ArZlPQw5s85MFTggR29aJL5WIxr2g5JuhZCak2ML9qeMN7MP5cpcSfUhSiJD2K6uQlym47fn/YJ+gobK5AqyQblBGN922sfhoMPLuvSP9gLVyhpzsZXXEBXUTtsoyu1t4idCHNDi7GRtZpKNKSkC8FLhtq2wOXp6CJevU7UtjfCeOS4/4nhAvetAAjtKvGO3xaYtXhFyuDBqMun+z+H6LBBmLk3L6i7UD7QbhdbQBCf98DupLYP2MZCtK4SVeB5Bsw3FqVloNli+D8Cey1zJncJ+5HDZ54Z00kqSTTsJpzJ/4pdj4NL2VirXPBgKcbYbvbBx+kgEfbaNzOqV4Sn/VhImcJ9CJlj8+5wXjjVIQxUVMVYQgTEnRsf6Rmr7olPKwbUB1MZk9LiQ1kFxEZjXN7ywdmvuUSr55fH2Ommo4C4pSR1z1gOSev7Cu5CXVk+Auh6IP4NYBN/D6cVOnm/iCEXoQ7d6FA8NPPLOuBxN2h/U7/+wuKRf2Ym9SSnvLtKXcyWIJS0unBRkN65CRbYFxugadCoPkjCh1BQGvvLLDalQPu7P3TmO+v28JBnJ7lF1fZ3kxR4QCsejtyfC9A5KufLgX3pZhAIF2nJoK3CaTgkunzeP4Ppn0iaD+y3CXM8v99n4tRZrqhjEv7WLgYa6T2VDi3CnI0Bjm9Hui7E1SU+GieX5Q4+JozZNkH94und9HFhvTQF/EW5anUA3ScZS/nVNJA5OHqgntDN2SIpInKk9maE1UAgKa6wTTEgy14G6qKvoSRJ67pZMzCJS70I2kLWKt0KkP+K2khDPBrWd1fWJzz2w+BIQG+eiVyxAnDG9Da6UwoQcNkm6gCR6y6nAZX0FD9DxQNvl1MYfLSkL8WuuNOoZO+O0k6g9EBWdJaduhMeyquWxSMv8juYXW4dYsG4uB5bkzq215Nf1EaKGdjKM0MEpHOPmR3Dbl10qE04uUFhMdz2nt52/OXxzcsfnUwEV9b4dpoaKX7jQOIcnGViMklu0v2GOU4Tw5gF0SIFtr4bDsDA4J/sOPLWGqMUY+HryyXk+AokshzJLx1VNtD3diPsgrv+fEZ79QeL/5Q9ToGx8zxgyfRcEMOUgehk8E7MkTR2ugUFdUwm5vik05Sdt7kpg0tQgf0qc8jbQO2I9pNTPiYYJ9o1B59GuEK+EG24t9LPjbo/qORUyHo5Vu0mF5jg5Npw3mFtTR1K8sDURzpt8rhXXEaGaF3kndq4kx3QFeMFPaMZ/KXlrfqXDRjIFG0WjB+oqCDQMeMSjBF0NFDLDdHktQFfwUAhxhgoJ/48X9ATrWo1VvdH5nR6Ws7p9Z3e80wX77OpdlPQkDQxJv1mjh9DJEwjpzhge9zyd3IUJhd45XGdAzUHfHj4wmcTiqQZ0e+8/Pu0GfB+Z/WXmuot2GVD/eWbwZ7Beqx3OtghADUEDKyJjop08pzn47gnP0ujxuBPQWP1TPTWFr2f0FTK58SQh8zWTxIreN/e0U0q7Ox//sup4UMKLvdnZq/5JLSHRs7ggpIz5LX4cce43fuYJkKDeu7EhA3uVVeBE+0qD7c1tjG0t4Kk0UrpqZOX4+/Ni2mzNJj0r+kvYok31zJ0+rmWZaB7V3PcFNcsW0+sXJjX3Rueen6F6xJZ7nF7euxm6gA/6QfuXnwHwffBO8Dp6UqeyN5397v5p7kO30Es58ctoyvYafOvzdv8gTevEPv5e3FQalIU6uPfY1j+27GSBCvqDiySX1bgIuTw+aNIHbZEoQIP3St0BuUo9rQhNeJ8CIS523RthIt1DqmeCKpL7owVbXMhWwRnOfLRVHm1Cbo20J8P6QYP/hRN6dCL+CAU/jcQt9iUnNLqrive0oaBY1qmKhAZgyXVWbeyC/rb4C80vbqE9bMnZpsXqla+nfZQbwGWPELywMVqu6hrhv0u28vYDSzVJoxeKhqIjgXwstgLRqozgNPN2FHY+ByZz0kFXk8Ml2iQllFxEZKAi3SgJwmcDVbZjn9/ToewkT8uMFh/VTNnS3BBPdbTzHkykjtCqcQeXChjgtp72+Ihd4adqzv2dpNabGll8Z/ClNG9Rhsfz3CrR26fLrHCJSPJsz3c3HfAxS7MQX/OJDfB8iZAxhJFgEoK/vqAWiRfGD5g/YDjl3R0Zc00qV/xefHxknVZUDFOVsWSh54xP1VxaPAVGPZD+cAuN14kf8NQzDPFXkrs752u5I6Uj3tU8N7rEce/ktbS4gnnhs1Mli/6I8dsgAVrW/5XuzCJt4mprsAMNYbXAfZRGRCXoW2RFXb4QyRo9wU7HRmXu2JoEaFygZYkW7UiUEUx8Uhf1ZQUExZo+7wAyhZLc6LFj64P6fcTMpd+lCN3e7s1tFrsrflohvw40H98TSW1HMmCfDhKlfvs+wnkNT+K7pdGnDkVTk88f1nqbC4bfsVIfuuLlpqmDuPjEzyAbDLyb9bkJSQpwqFe2jnUvSZjn4KAnTSzRqF79gh7vvq8BtCWbInkSb9Rquj1++KUDbELthaTskbfH7ytSvrzxlp6g/Amw7iXRtNpA21PkeiIonTpwJ2+J9tbkkPq7+WkY7RueVZ/kPR6az6lPrHGduSEx8GMv83GoQX64vECyplGppcwGhx52pKbOgZ6bf/zAE94rxcSW86ymhiqbsaYzAPp+FiVu8aOfZ5kBNkgmI3xJ1nuCPrXgM9hjpvsMUHioXYSVHLw//D3NMHJhldWkHgLgNyVHPHoyRDhBF0beW/m4L27JTY4iRZdCiPWwlMovwb0YAaIgPpC9Jw47zV+TOdw1hZ0SKjLFuqI57snJQj/VSClFf1uhkcgDZRGpCaS76hOuIc6BqGeqxuHqSzxOIeFWQiihKavVjeJkgwxcZyZSzEWzfEqnLSSCrB+Z/Zy9N9Maof/sHxVONvGCWFdyTGeJkPXssGFCWkAgzhfLQFd0NQujKFubkYC1hs5RbhGIhGaoExvELjOTiFy6LTMMrpJrQESReTaeI6fGZUtY9l2ST/NZVj1bcKVryrA5Uls8ufsOnSgk/WOCZvZXpz0rX3C+MO/1zzrmfQtzc0hnctsP+we7om/o4YJNZTKRjstch/I6kXJ9Up8R28oWdoa0IX5FMkePMWI292Eo0S90OW/dLiCc+eMvKjobUKhzXEs8uHcZqT16nZGRudijL/plc3MQ8y9nVMBFLRTvzzqhY45sbPzUeW/UraTqFA2u9a/AetghpL8TShjLohz6/8wazwpjyFU6EkbgWoBf8/9AJw1Z4wwelVVfTHLtfCH9iDGrfDopL2nqn7nIsOjwo2HLl1sXLWJGBloDJya0UV3R06ZIycL91pPAYW9JsuTYqB5pCEQTQRClp615we9gSnqQDN7egVptPFJYS7VvPZXVNGnqQBexdtXupqnh9eAg8PAyzjMhN2eFC0ZHtALyFXIRzgqZpZRMnDKHWe0OSwKdfexFjZmaLX4Kggfxk9yPiZznnNG6mn1hxi9QDA5E/8ILjFff8dNy0lg9PdhVqpnY+ZPuEjEuv9M66ytilbmy8zy3i9LGpSj3ybyp3BHloskIwDoKoMbbexsCb8gqa6rIMCqTjGF46YqcxwE+OUeCxNyPbTDvTaOCXKf3ohQQuS3FA+74UCZC5MDYkkLTpUig9hCyWA4u73GbbfJ+EXe8WxYQ2FN25xw8qPCeSUMUkjJoRqc7sXtaxvVJa4b0zQGakp79WcOcP7ycoEVu4gOMvoanKhJviGBaFIKHCn+vxDg9DGJZJmYSR1g5i/VzqZEqXG0ok3UKL55oM7K9dm+dEx0jsD3Aawz5aB0PCpF84BP8qpkwaSIH21PYGEpSLZgSFsB1PuL6Ja23pWacH0dxmkD+oE+krURnH/HwJzLd0pPr4W9ndhoAuMWKyHY/1h8z9AsnBcpyNZFD93mElOcSF3pGfjvNaA2YdonoL9q00srjon2sn8is/Tt3ObTRxPhaXTG0k1scQ5A6CXa+TxjaMPMZVcpp3R8Y/81Kk49+DqY5WcjgIZvtPwEl3LDVf7cyyotj3aJqtrYOpiwOMv2osqwPiOCHYxK+qHVzsOBksXqQVu4La+y7tgMa+236RSXggfLK2Lq0opZVA2/0wElYD77Fcij7IUuiNeqZYrhxHlgf3GQousRmF7Ag3iDF5p0oBnbBaK7ZY6xrjFR2KUDpW2MZGvn2WDq3W5+kUkwN+dqqd+Vnm8aUMyvYUPyZiTP8PSSj2yu/uJ+KyO8k1d1YCBm6wQs5ZaN8G2GvBn1trkBkwZLhAino1EMiWmQE/HhL90zZ7EVhRTCoRfelyK7vfqVap1JTKMHELkgXPrnVfuck5Ptk7KuqJ4LygRXV1U/XOi2sFhJGI9OBqM04w16GWOo7JwYC2AKtny/722syKMOJTqvKQP7lfqx8ipZagio6EMD2hW2/uYPJ0KoAY1qK3GHFS1pVo7E8zGlZwICqi8O1kWSdZvGZVa6378u8aDJblnreetGGfX0ypQHAZlUCbgbreuJc+sVCsg9eqK60CSdiTSfUdsf3coXfFLB6JwzoyH2FrJfd4yeTlJp2j9XvtwU02DbxB9gRQ/LCOYNFw/rWKAAL4gBI2u6nuIhIBdPvIRSoKq9lItBAzkrl6HOsUtFkK1lLK16+FDQiDLYKl5ik25fZAyBJOjjONz5vC1SDOgu6/8UJ9mutq+FqjXsYBd2Ud9W/52KnTAqckJwtIU6TOViKrszQ+Xj+eRLJ80YyC6RE/z44VCh8n0/44Citv0i8x3PreAt9gxmQjShvPlBkxQiKgRpWxZLBxbdSaoYTVrDC6Hhw6kwvR95f8lPsJWpJJnWdPPDjivgv4WphAA2zkGx/4U6r0uaePZqh1WDGMF9Hkc1D5zTmjItJx/laMqPApYJmAGUxeWtEjwDGAEOkxmcOaLwUhMl3tqyWGP55MFCWZCkXVC/wqPCHfFlxicSiGxg1WA1fKbTx4XLRiA7jJCoTFzfE5pvY37Iffid0uvsCuRbt2XZLJ24Dt1gKEb/DDHlu916Elmpmiep5dpNahaHJGfD0xuzBA6YQWu1f0nxWSV3NQIgH3KxRELFRA4UdJWX+A+2dfW5ebDoded1wATZ9X1wCaTT+KI7ydVOV7MVnEFgOq+rBqg7anXlBhRQ/GrR4NZlubC6ZZHI1NV+8hAXRK+31isoXiJ4TKftG+tPhsF3tx1fGcFjNNkKtC0fFXAh3qBKOCLEAzLftALDMugMXXzUqeS9BeK/G5SglgPgx+LJNn/PXkXHZBfQP9X9w4uOHEXGZnC7+Nz/NCEj7luqnjGzJP5ESr+KiP/TVLgXwMEGHZLLRyJazO8pBeRQn+0aZCLJFUWi+GjTsUkU8Q75jgEVCccYX7pHn3DWXCt+tq/y4051pmSVJNKxl4i4u4N9awyu52HGRWeWdHI2DcfqegD7jSPjv98sK3w13IX7GiQYsbGZKXx91gddO0ZWLiUUV9PunA26M7MjPVhRdcWNqLdC0Ywn/W1HAriU/jZecRjArC6UbAo8Fr2abdeqGPI9zMh1nGWoK4dq7cGnm+IP/l9sv55ipuRQxf5nR4Qtp5LWdbaMdk5DgTumiXc70ejISs5v8HpddWD0zmxaQTmz93FhTCQp7y0OCqi/Xkn04g6PKU8sz9idc3yPK+bRF7MnOlLQuxdIOtRADDp6MHzG8NVBPak9RA0TPUokfy0Ooou0D7ltYrntBNvqxUhAcggFCUEEwNev7SVZYjJYM3VM+CAw1O7x2pKSqq5axw+konD3mUHSnWswMVqNBgbk/OMCQBAKad1Xwse32+pLkLUN+c0OlgSJY0PqFAcTJ56XW7rIRRUP69du0xVf23XysI2hC7hqkhAe0CZZIkUODAFi8Q/KkaIfSBZuWSLeJoMDuwLDKE3NB4AWhlxYatiux1jya87q4GQy4y1itWOmSVEAfYs+nbI52EMG+tQufS5ai6zf6KROeEE+d49aOfw+JYPd0fwSDwPQKV0XQR9rPYPzvlql901t+xh2Cy7DWtqebzU32pnqzDhJWDF4wan809RBmIQHNuVwZe52qZ0lyUppzuyDuzUAVAIipqesOn9aSnl7WqEBrUr17uNoT60uhfyIh1ugwyYAbuTHUNkCFGBiUnDWEiZUd/8TZ0qgfiu7pi3XAJO8aNq7UulAEiJRoKXuQZQj0uOq/FXz2PpeNkXjT5AjvWkRl6RQD3/7ZUEUDleuS8RW7HWEINlMMLet3m55Wz++UoXQGNhs2d9I6wUoSblArWj5kyb5RqPzzPCYmvPQKsAX+fqoVIzo8QRW0xYdO4Aau+LjAsv+qHF/h5gdn8FhJWH88NWEU1+6iyaRQevs+KT0V806P3RMcYEPEv1rbJcu6ZrwZYz5+oFD156LqZTb9AZoGXMmcS/GTRZsdnw5eURK37sKuLtHXhE57a2PeJJUntx0E0Fm/tw3bhRrEOtl/QKYKfauuJWV/3p5+fPj5lSfTOgvU9QPzR7A9KR0zAKMHZB/dUBCV3Gk0Q/yNBhv6W3O6ReCmmx/MX/dIlqTFpg/U7KM+bsGW5ZOd3R7Wi+VZJ0rAEm6OAXMDem6Vf/2Ni+XJhjNIk1d3/AacxJp/CU7zx+mk2zimDAgJPJayqsXI4XEb+mS0iHW0ACqcuQ1k/Wqj2YU3uRaSd6TTmjcl7VHHBuqqz/zMqboo+05/mQX6tqS36/oMzBVa7QqDh4lgd7FeRHbLU27ywdVEI6J9DILsPSsXMLfuLg1l4mdMx+4tDu+uZbsvwlnmjfu8uFJGTgaZws93Y7aGXd6G3IQfscw3bi4T/KvxOmPIVnKhQgqJfnkT/HdnWo3F205T7cYuzrjQWq641Sd4mLXdVhlQS9yyXRMW8BIJnyyNVsW/gs/NJh+n4gywhcEdlrFXebHDLjrXrJQgAJsbKdsqhLc27dZwCrSVyl0uePL01tr8p5PaAUWnYY1mVELv95/4K/aLEo9CpHxKU0f6iZB124M8Je9ZuWhPVWA28OSo/mKeIkJ8bunEvMXrXXbEkJAJFQUw7swlZQS2php+B3vw5k9m4k2u7atpHv0e/FZfygkcqhwAJ+Xg5g+cZcaBYVLwMOldf2K0rtQxAna7pIsnlcFYT2rWNIITXiLZvhZphN2ZCOAk2NJ0b3lch5A+NEVSl6P2edva3cn5M1ArJSBrKbfdlEIfsydHtdZrLbLFuiRy38Emh4K9pX7MNpRh3xaCcsOMfnbi9iDBurQbUK84bBVJbMDiUaDF4f8v0jsFebUC+mr1DUVezRhynLdjQpV8BFKOJKAldgfWDG2mwK2fhP4FtqCEWtQqLYxwnAf30ISd+u4RrFEBORf0FctwnewtPmKOpbAm9lKA9UnibY+4D+iZ3olpEkiSltpLYIn5jEyKclAYOmC0JR97tcK976Yw748i4tzUEnlbpw4mdhQN7RVrqdL+mMuQjzXMpASy828H3AR0nezH+fed1YvE/rwkrIvchwWhGhE0EnHUaNJ02I/kYNzKWW+Z1ws0agQHWaNtL5CpH5Pra7PX85s07ofr9q+xJpmvvc+qOn6e04MVQAzX6xfWK9AFSiQ4IuyUkhgFCmxmoYRggrIqf4x9a5Tsks+YuITsVFHZa5sLxfWLymoTBjVR3Hh3T2KMDJSL187GJViLBsW178//7BoLX7/HOLHtmL6g7t1qbBZj1oWEDW0hhXQrY/RbRwl20CwKPnFFO2uoM23UH0SH8N4BhhOjJbRis9SlQGohp7YF84mNdVQMICzOMMNdu6iBp01t4KgQuxcRqG79jHTlRF2zp+h3nG0wV0XLPj+AcggIvZf3roFQDrvMiTyfdSWgi9rtjWnOTZBztp2w8TEiM0ZuXObkV0Tq+0VlfTkxKXio+/ywlHxMOivMCDHZulI6lVv1K1rY3Ae3pinDgIreadmAxPFEg8jUYP+ckjwSb6mT7YK/IfU04vlKyGP0MoM9+o+xjB6PZwEp6B71BK6vifJJJcDIrgS/SV663nGSdwQDnwCF2lQFxmnQD4B+1dc5s5WVy+YAIWDM3DhWVy6TSqvXtrH0SCHDkAYqv3aoPyUpSR09WQdOmHp/PUVn4+UwxcHwEs59n3b5VPMCx7TJMJ3L35JQBXv7l7nmZvQ111TjmhYWKpjKhtUuVDEgCObuA9RY5ZPeyIj1NiGxfImPn6UgG7px9MV+NoYgloZ9DXuKXEaMkcOlIZnGPSWWMhP/4pHibh5QNhncdOuWioA3sgsOucxkRrYKGcx0TGOZsdVLebI0r5MdaDlA2Bpra4Xo46yV3J96w/1Mp8HGEYjMSOh5hgOz4uLpS8BlEA57iBPHqpRoxpGxVoBq1NDunGPqiPbUnnGAUgF6i8P3M6yDuU+dRkOV85pGUFRdbdKzoAcsT7SptTzcjyAzS3jGXXvgVz/ddVp826vq457BwouKx2TxDsWi/Y6ENJSF+WK9HWp/brB+Eas7TEo1EDL7R63puzLdDVwpvJ9XXuX/Hh2unavFWfUZ7WXg36g4Zkn0+XwA07I05kfARmdjnUiixN2HkjEbX0bn2A/WiHccgKPp5P6YnV1AgKrPN2fsfg86mEsRhSkqRTdQGB7i5eUq8bqnpZJTHg0Agu638i0rBH1cWJ2OL4LFu5KSpbfSk/+dInWhfvmvqE6A5THXHl27QomC5ePRWRwxXiyIXLBoD9z4rPFd5TKknhTlVzOg4cR9S31MgEjedTHbNguYCw33le+OGZuBaOo+L8VKViuZC/PMxG5bzUs8Tdxms5vgQlv7qzgk4CLKhZCF06AKf3k2x6o/rdqk1c8D0wPnvp1qRu06D09DthIUEij8bV6rmRSyDHLONcAfkzeDjvyBaRBW4P0AX8taLFcJ5ws+Y+hxHz5UxXFpNHjQqZxIvIcGUY5mBvSk66YIVh50SK5eUD1cI4/FeRtitVa4gtuys2ci5+asKYPvoXWYzny4eY+ZwtxcNF7bL1H4Ik6uDw22bVjzLrIHAZocITpNd02u2d8Tc9zpAZsdcIIONeKjRlM6ABC49UdHe0arCiUiwM7QzZN+80uWvx0AZd7XU0LXAoRP4Uky16NecjEpZAZCwszVq1sdJAKz2zljDrlnQ8i/zvaymev3CICQT8M+wKTtuD2deFG9KfO2neHJ/OvKJz+683jzCNwLS4rg5G8V0myEs1mH00tJR8JoVMQ0/pSmdIDgMueZpG9U1v8jZSw4IqiR/QEvQOHj61fviKrx5ZMi7vLvsPSSr8I3pgoK+/YWml71di8YtTxJHzTZw8aRo5/emqJuiLKZQUKFh1qcFFCL9D9esnOr7VJAGg1HHwsoRmx3U/CdvlK0nZ8SChg7u4T6S2UJwUa6VErrpWKRP21cCTJT5BtUu/KDQ9nEJ5Z7Cp/LeCWeF/cjLWx9PR4HRJyuoLeo4sc2N6rjrmc57niZFLG4KYptn42nyoxBxhvuSd/N9rUiSQnwR89x82vTDS0RBVHi6HZzg73Rv0RyuqYQZlHnrMEIzr9mczP3pnqjM9so8dWPWaYaCtkgw3Pd+kR8LAMJhXxnjZT5V0/C9BWBvtjnlC2PRwb3/AybvTiL3hwNrLaBPg0TO5V0odzX8oi/z9EnQXoFdC6N/glYlJ26iIOS+E/N+kvcddtpqRUGmDB2lJcsG3A28EQqM1otDDPPMchz8CRjv78EIgs5jJ4RmKmDf08u1K7bOx6zIyh6XlqJfGuxgwWA0ME0mHbll+zRJ+PY5ICaI4mkv/stYluPoBAjcPGt7ByonsuD8Sv0Ovc9F5kx5bbNKh7aLEhWKhO/+xuNGb3IpsJ/uISXvznGiPiO9ArgZDBzbbS8cf4XtvRoma9rfOaJWxviIRUrXEm8ODYKwmqX+QJw3tlhJzRosDfr5dJrGZVPkySj8/w3d4bddBOvV5RYZL9tqtPKwvecmjNAGjPlaJRoJPcEtvXKcoKtedGnyqoOQdFVoDK+jh8GZ9UI05663T5juByz4r8the9HzYO10DRTAW0sfUqKvKSnkoE7wSrfpJ795qch/2NfL2w1tKZhqoIGA2qz5cVx4xoErkBsAx7DP84kbfOkzsArKfdQ2N9x0uhm84LOgAxEMg7Jd1hBtaFeIa/DMkpYCQFKDPrIAslbFGPWERSBxHe6ePbl+PAdw0AANmo1POSfcXZCzBT6ZlJbOwAv8/ndIlgBLGvahftKhJ+EINEIxzfasZaxXeGr/ecImhis5nEBKgy0Au+TtJAGAF6tZY8sb4JGe4PWkR3Ija/xQHDfKXPlKbieqjVDTdgnW7w5bQRs/cwXiguBKIcAtDax0tf+q0gP23RVp72ZW/w9lbgtrD00KHtrtmRRUEP5PuHqsMi8ByvlXeDlnml8cezVNK1m1aL2W2BeffB16xAvAodmx6U9pmgXhBvA+9wBnsP+vdQktpOm7m1OlSA4NN4ZJKLX8q5D6SZCw0/ELHHrWWkDZYrbqKHYju2pcFkJVHKnAQEaUpMCokNQzvniAKQZKn2pUJOEZUPhbWlXVtQCQ1NH924xyYR/29E8jXS7mXnWFhlDnp3ynr0mT/zRZEkeEbgVfD8nCGtGOMWofaYzkGEfSoSLEI1IwisCEFPJhihe/Clit0w8fReDEhCn0pNt80T2VR/j7cihY8fxeUoBb5nGDUgv7POp3UfjcBMqSeeu2xaPxyl2px/O8NfL+nEfKTQzvvDeMYYlecD9UYXmUibRl+K5elN5sdY9uVeihS+Sux0QQPS7DkyBa17ZqeHWNpikDQ2+Yf+77xdow+KkyYW46i3zJOC6p54Mh01I7aeL5DWqtHhgshVBON8PrV57X/8pi+JTchSuIwM38Gccwl2I4jcJeoDrfPl6z6yOAZH3qM20ciORDKKiqdZb8vG8Ti8bDkQ4TVFpdBJPDttoYOH+MUVD4+VjII5iMhtNWovzmR4K0wkTlPbzIER+g1BIVfOBNbd8OZNGJpoMmIOB4Va0ZDsOFrFR4DRDUYugQ4MM7LoVxDZb7GoMLD5JeAFiIrfzeHMH4+STDl1xxe8RQSjOoHhuz4pycFltFPTey08HhoH6J0Eoy1zRinEiHhLQG6CR1YuQud3Wez+uXy56KZEnBiiRTlxcL5XizYfhj2itcvJSz9Z76I+pt5Rizdwkg721AHgUAPMii0BJOOKTCvNBEwB+Ca9sniNdTsc8KVDCWS48uXMAR5jq+C2vcoeVG2dbARJN9agaBSxwQ2rNtA7N55RWo/eEX6jde5ITPhmlkZcZM/FgS1Sm0KOWRXOCjxkLrHb6z5O47UFkYEcUZc1FEJnpGkDRcV7YpGMRn1IK8P84kVy8xlYR1C4PRRGvZKgcgxWTw7QYfNoEAkeMTZElNebrtTH7xxpyG3kMjXDekSuJtRN2Y3XvJ3UEiG6hRPG/ZVVXGOkZpsRy0S6EIUzfiCnwsU6Dfj0qPvIUPolMepHDWTw4O0HXiqKCiSpopE3sYj/1j/oZhakkIp8fEKWkslBHH2ys1rvSZ1GfXwE13fGRX2zqw/HV/K8XMVypHTLVVOowRMwt7KVTMx7GNVEB+bYDYo/c6Qdg3rEm05mXeWgK8PY7sB6KYlFSRTbZneaaL7eevLHmAxTV+BfxbP3GbPXzhhHejjuJLytn43wmH+T8kN9g+W24bqK0QchfuabMN5UGEVGcYNGMOBH0L5Gye8LuwTdB5q7wGYNHSB6Qre5yAbXWTdjh3C/UMxUdGWQxsmNe/DpYxXQx0WsuGDKfk5Q7del7xjs7GsAyL8HUaulndXVvHOfWhkmV5Dx7qT/We61b7z+BvjU68DnvcoeNgTUfktNeGYEG4P4hibDlJhdHRzev5/KADvdxmYqPzaVWVJXOK1jjRnhN7+FVyKlptEBOtwy7gjOZ0Ea9kOZlz65oIMCdvO2HpmnvuIFBmalG3s0Sk3bbdB/LPGxhSJGSNJ63lqkatL0fljWv6/ysjLU0pTu+pDuezuGb1YEPq/LO+cjPvz6fMUCXpyF39ol0ZeNbN3dxultkcjmtoKy/fwzjdhFTpDsLqmtmWgjC/RZ/xt8STZdh36OI08cEhLbbct2b4NRY3jLh+HoX3vczZbJfWnMIKSQHCkNwjgckumct4mLDIGEuNDpN8YHsCCusrTO3wtLprLQrphAR+YyBdoPNif4htfY0/fgo19M0yIrpV8YaZLuvEu7pPnsaBFt1GxqbIV+V/k+q9gEhF3ZcKg+cSzUrqGZoOuQubP4rO62k8BS0QeiKboVWeiWx1D2utHxmOxOSk3FCXqVEP666OCGDFdOQtc/mbA1J0AqxpEfiQMjHQQbytlqjA8fY6zdKnFr/AaIMg7oZy5CmzlaE7Wms2AdU5AzH4KWzJ++lU7dbNiVgvhqbeJRMHwPkXko2QRaMHpUnYs+2pKH0xNyMHdmrXB8xw321vhV45dBObwqFC1gyfA/ceIp59OZ7VwXrqiRSdQYJXNaQJ+LDIy+8U35Ih65N2UQ7jfBG5MlrkioSTx2gN8XU9R1j6pCaE5yuDBo8PBC4NoWLenEpiPAxP9g0iwgmRvTBthkzJOczre+PKnNUhoEBaDc1lnWq2y9UpPfNKrE1bblTteZxEh06r+Uhpv8zqgNWwTt42AA7mEKTCcR1ph/BQ655g3JVzDCc0WWPU1pSefXgX04tiR3MkFdg60gDM+DaKC0Py1KdUiuevxWLP3RdiSkc2OEvAi0fFxmmFUi8PIgxQOvn1PS5Sv4NGJRGDkjVLjL//WCuQc2evjYSThTmxc8TNfeDUCuPBd3ab9sAxnvKPCdcq0WK0b8X6pEDXyy26cuYb9cJMTEuwXCXdZa5aJDnhMwhV6p4GeAd5Ie0hXBzvdGZcDb1mfqWL5ap7qAD11+BNdU5bnvzR3hSasdc1Pk+bKrVnmNy9oY4FxsKI6I73WIzVBNU16dm+dZSf9WoUHIsGu+wNMBMPs+y0XzAKsyOX94zhOmwS96M0HmY/MUS5uuW4EkhgY2Pj3rLKUcbsqi3xznO58v5j8zNk25WabFWKnvT99BjVzlrrlkgZx9bjv3idkPK52z9ofqX1him6bh+N2WUOCvhydofPdLuUUdHmt2sh30apGIVc7X12orRuBvbkhLvSWn1FAuq0yVQ5816+0/g9lX7euuFVw4WLv8AYwIwsyTcbhUwRTdUZiaknnXITS2+jPhXzJJP2Akz3vUFWw2CV1iad9Tj9UTUeK+bJ+8CaJzrG+hKW19M3KelM2yzrjEp12XMkMRdMxib4mIbCN6uccED19AOdGDDqA670xSqTyXgKnxanqQMKqCcZAoUXumE++EPEyjAZf9yglzKiAg1Eyz6amKO5nOL0OV6djgQ/aS3iN/PJtt4gbo1fLO+SaJ3KRDAolVgwkuCOtgf6tefs9xtIkmNfqVtb4+RAU+ohZJ7rRnewclsyJc7tOQ7heApMSuhIq7vKfnAfQt9drER1Tc27UsEDYBUVXYe0pdlRSgrxzIwjNlH4dO2lGvYc03hu8kFHT8orz2QesTdK+cKijBdPP4kWCUCPQBY5RuNVuKIysl6wpNG7TKDpFxwn+1BiNU3xeGhgzqUqXyC8qrGUjLfjY3CBOD6mEDXfGjFYJ7Md7Z2xrj0EDRdKOFRtRWr/Ko7u8hnIPg9HlDYzc8xat2QycWTrWnE9Xo+W9HGd2tDJamo2BcFfJlZbWOnsGxbNXKHQie81q/ZapIR9DKC3hFm91AsnCWwpEfLnEANplpJqU2CN6NXfSTb7fUP3U89NfYmfTC2GcGGadH0f9rouZtED5bJ4zcln81Bd8112BgZ/iJAyvaOsnZFyLR09qA5b2LBeeATO2OrOQuSoMhlBmANU2jUAiDyDEEeFwe4Mm5cMwq8mdoHj94RQE/iUKUpZvWrf0PMbD3ukCdQ+BlRNHP36twaKLsbNFYeAvtu9kc4mNoQq9zdSMifz+TzPu0W0rJ+UgQnzsUlEWuIeDVirGKPpxZOqS1PPB4ScAIYKSc4Cm4tb+/gIaPQZV0qjkbyxBNlvJMYZRXNrKBrIBrl4p1uKlBe8V7604+NPJhIr+Vzn2BIxRbXIdKZ6gL08hdRbNu7eHFPrtG6STGo3Wr/l+pNuCd4uK4GT4wwS+tYEUdHediM4E6J1DJRQPFn8vFX19CJB2YKJ18Mbvw3zrz8h9/qtRFP2x4s5G3/kdHjMSnnUwk8WxjwjRVoRMyfG/pRUK9hbuMNpPvLHhEcz70CUW4/JoDX8UIvvSfcCG5m90I823v1SUB5vwn0r1nBv0h/zAfDrt/Z+MbvY5mNE4HpHwuVKStvEmVe8aNzkm5oF1i7KPbe00EJz/FJgdRAqyfUExdGO0/U9ysCn4o0RR8sm+hBkH7fdX3KQn9I/oiP5GwBa7MW8TEPsPPYu1p/Y5hCBngG4fCIp69IIyMZy/UUNgVJButg/yUiZXNj81h/Ma4Ac7ZOmioyaGyL58UK2nQDd9c7TJOLmZQJ19qxb2Q/H43h0QjR+Ox+mm3/jx3Efu2163W+NTblT0i709e6Pi6D9gzRbAZzEC59zrd8qqoMvjYBD5rANgWHkQ9iPphajnmmz6+1ifZ62pTeYHlSU/VR+vBTahyKS4e1ijvF3JSHJeH1N4MeJ0vBdx5JmSui/qbWKx67NyJ6X1ExM0er6b3dc0CgRMtPyPJtAcbmp4aplzIv+qZiyIOJ2k47d1TwjTC7mMDeZs2516YoEw969oLul7c+vCBoPzi3vfMe+89RWfWHn/0cMw3akzGeeQXiW3dLNJEFvOIkvhB5KqO3BdpDrEXU6zCB8AucPsyarZhRuCPL2qff/EukeEMwxI/6eWv/XfFOX1/l6liYhFZhZ35Jw8pY+68mev6gq4EoPvmu3Kang0qHkss+Y8N+yVZZ9FSuHovTtL/zsqU/sEDlepMc1WmS2NJ71snbIkxd8TYQQ+D2z3L1AwQdn815to+zxczIrC1WIGDJ/2bO1Cpji8h1f5zgH1j+yT1M8LT8uPtJAlRgC7UcxC1io6QrnEi3hOVzNv2Xs2CnxQa1mfeQRUv1pOaRdCHC+PVbQ+TQSIR90E7+QdwRoVgqCIQJrT79lObmorilDk+rdskZKZHWLni5tcyiXUSRxWWIUIv6JcFddfgMuj124XKOPDMcE7Ehz1g87TeeoLmHWdMrBr/XHfe8e515TAbSG73h21raFPBk93t2SLfohGSIzL405TtN6vCL3OEqnS6QarLheeAX9uchp/PptyTPAZymOZdyvSlKHsPrz5ZoMyr5TOthtxbGVV5dUz78WfvA+CrVsh6JZOEf6CKGnRZ0gsSmRcWS9ADiDjQl3Xde6ameR69ghc8okrGIeOlxgzFEZ6v5yvzuDVurHFIhrnSRUKVTjad1MtrcHztAftsMWZ14Rdp/cnG0PObPqB5To2aLynIJ787OJUOc7xY0Zca/2WWLRi2GgM3d/a6XYHZcj7cLiJlRQIMymEjMEpiiKQnm9jWODusVK5mtClipi9tjAvchfkYPbWVZRrNvRlP0kwR12kyLkM3pzjqj9rpH3jFRnLfNd9z/8LC92H4x7mjNteRoDyh0hsV6DIGgxtpwU3b0q30WCpx7mxtualOlyBMRufEKvMeW9JblE/GELTOdvYhDfY+p77naPN+3yKpLM7aQ1bE/UMyPhDT+3QUcw8KNw0mL3wxhnDtSyOjfR+jCLWrVQ4BMNWecn1SCjsJJkt6FOKYzqM/AuzIjbBoKm/OSsEWzVlrF1Feof6K/Ire72cT5kOOVMMtsJkd22CzUnD6x4fkzDwELPJVB05mdqjo0Waw68QUt269G4UNCUCiNsCMea/iujBaRxxvS/WUHt8w9RaaToo4xaYlOTGRYoo7WQjyQYqJOlrcM7bis1iCQwdB0sdKMXcfUrAYE1x+13KwxulV/ZszBRVj2/QKkM/xvLP8qHuTPpiC8bIE5fmIVtfRY24vQDXk/t2ChIbheKvjI0xb90mepxlDZeyRC1VCtZvy8x1P8VmlZT9TlxT3wfu9aeCG0uR59zmC18aCKeX1H+YvmP+ugD4NxTtVlxOJR/uxML0nfFdsFeuOumPGswMwdBYFeg3703YeGsyefIN946biNLRg/suxpz5yaBjzTwUjGmNONVEozN2zBMvrqu5nGhnaU/4kIS8vxPhVKd2CtiilyEowh9T3iNzbB+IaiYlznSb1QKV/wPAJAk50G5+996YpR7e1EI7MDgNPEYTHGByPKuvXqBUSGR5Rc9ZXGTTLotJwODNmwxelO6zls8QdwWavg70XW41CB5XmGB+wf1TUEHnPAc3Wa4j8lTfWGx3NfBxY/0bmN1crpggvj+LLFR/rLFSw2R3NWX5v2bnftQa47GEkLm2SFkm9sMURxZRkrXSLaJqG71CtlbynWAwR+AGkpJ3PMi9LK9BOgIAUjoeJ08DVEjupEMR+oNKGjDYILIcUImMP0SW8/TgUBT7qEUnX5Q3Hu4FWYmQqATrdmQtmyYrzmomlHld+nhq0hm7EyAXaqvWAUwHDNafNW+Rl6WXbJfU2jNbDa1fTDOGJjMaRUUmImem5jm22Xtef7WdAO/848nEwCTBdGVXlSw0hR1xdZ3pxEY/7Sjp/NPeICdM6Qg4qHbhG+WMsz1lPeFLR8Ptei8N7wP8sFwqM/gRdikFjcUOrgLp+e0NdX/NraU8gtqnvasQ8CVCrgrIpGizZvQTSvJRSd1TfWVnYfBHVnbNmrEIKITuz0+GgceerTAzj2ElkYhWWd64pmBgQ2ikYzETm7Ah0+K+8s0CcmjqiHy/hs4dm3Xuev6L+rfWiBrs93FxqSySV5eqtNVsaRavCnKTOMWZbtW4cBK1FMbTJdhe5s7nFudPNffWkxWx4Huvgx6bLB0rl+lI5RMHph2rUeTnOdVqvYx7OcF/eelDz3poXKPW+pI5yk/r+yA15YRsRYBZLnuKMbPJhduXC8/4EG9zb0xJ5nTKTCt+OaPI3dVHZrb56Koq59u0Y+D7oaFKGizpiaw78uKLJbOpVAqyGxs1yLqIVliyisyOQvwnoSNDX3d4oFDw8bSRWJobvVFbyJM78hrirbU2IkB3fQqR/U7A1w/5AtsKqNXotbdOyeEDBVA6qN7Hl31Vilu9UTCso887b+4vSvK3oLLW555YSRpCYCxXBxM4h9ouZuezL7PeaoGrOudG9FgeZejdHx+UC+Y95YVXS+qZRWZqtKtC9fs/5Iu1uO4R+pqSSswmZ7FQ8naHtCnvQKprC6fRuH62Q1PYkknVyYzhpHFxHcJ0LszhkGWD5crpOcOHM1Iy8LfkxpOj2q8bYDjInoUeZq7Qq6RD/+vckmgelmLmOCVqfM7kZ/2p8KQsilXKcay0hATv+VbzIEv62wBGlZxCoFc+dx+0KgrNhDdnlAIWaNRyM+La0j/XIWRDb6H/7VuatESa1Q4bBFh8Vai4S/3hs+8fzUXJK6nRmo6RwFR1pRaazKMuOjU+OCDNZvEj+0EsOrPritdkjPKcL6vN2A08S+9t2QBC/SqZwqKxdqgnX82n+Hjm5qBmjinQ1trqm07bJR4sMudNHMesQu57SD5Erhi1jcGO1FpdIwvmwjQ0krzRAe3XcgaY2TlvV15qHrvy/snZyK+ZbrJIyKIBOEyIrusa2eQpYbp2KkrQs0pCTxq319bdYP6HSje/FAo4DBbVwg0Zgzczkf2UDConXDFB7DpE1InKA7AENrHFAzZ2rKwb8byj5hm8UY6FVghjE7fl5BFVfQesqCwXFNm3NRarnvUNOVePOcPLRIo7seQPCmzrCi+i4ZX8uAb5SC1ouPPQMKvpCgwFdNAIdP1rOauhRZKPHW2P926JSB8kZfc0UdOrnT+YG9+hrrTzGvV4qIKJpK1Tc3exCXL49bVHM64TKO/LKiLVG5RLxLeTptvyQtb8uw2BUgkXayN1lThTNWZOslyB54Y5feuNqQGrwVrOxbOQ7lMFhYJ22i9tOgFgCt04Oyx4idLLdBr7XdGKIXbo3RNn09FRBy0HL4i+TBXTErvENAKD5b6XL8raRXLKUBh3Rkl0rYq405GgQi9FEtIj45pPKsr3GU9nbDlFOKa5vWwFHGuWauh7bPaTayjPvDalHjf7k16gLxfBt9fAOogdEP6g62AKm0fCDE6+o2tmtocfrMjKxo+bVzIr6K6NRIGwtHFz8aApLHLljm93B8IHSJumII7JlDpkZ2JaV+ukocJ6fMN9MP3vmidfqogvs0pVoMODySiYx/PWU1cJSMcewlbroDgYthtjWvrHlPuxq2mkxMrXdv8myArCo9RR+E1fJTApIAxooZkvgDlDXDEwrAGmxnnE0mOqxzfA8dXWK/mD7Do14MmXYOy6b5tewLd6qpX0xbIM8NOD/5sykHd6zPmvG76f60YMX4Q/82y0Qfk7ER5YvoE9xC/zojRYzzAohQd93QNAsHJSIOm3TJJ3baF+EgJ2/nqQdpvhWWEd67bLj17sFgi3cejXutQKfUxQJZ0X78O46hBmoRAeRRCrUCguyPNn8VihkVlYH4vTdJDoYPSGPzqvEykVj+yFoHHndZcfGNq718MpQm2KxH9KKSaCkQNlI1pWseIZYwsup3k4bb5MjxaGGs/NEcHfDNVNQpXuch1YAnrzl+4y4jSh+OD1KhtcpscfT4NRS+lvoOU4aJkrEZuEXoxSNwYz8hbptl/m1F9V60nm0Y5aQxC9pi5zd6fux01YCXcBL86talq6XBvNZOk40fWL/MWQgZunX5NzMXXEoHLRrvgCrWo3emKMXgm8N535HDbqI5EAMLZyuiV2iBmzKMOXY2Etdw/lX0DNLUbdAsYmw3DT0yRZG7K90KEaa695maLIMl0sby7PEcAQ//Lc77ILBgGjCvuACPVzQtNkBo0Aj1COAZJPM3vIn1qmjRJlBk2AvIQaf2/chsDYyxMGqF5k13oL+35uHW/xDYdBSBEnwsz3HlFGpBtdyoRd5dZQuDqRrYRBUJ1/ql/4+KUd6lIez6xeJPgu3GwFw2y2nzKC48t5KJ693yhFLBiPt659QI80DPHcUHhcjjJm3aZIZvnGyw4vk+R291XJvdXuDGFBKWG+mX5ibvPzCirVIsxMK7taQSBVo0fgrMP2NEGOJooDIA6XtuIfg4MSGonfM7U48M3bJoDYHs8RiS0ezy0eGZk8es6T3GIUqqtTavA8ddEGMb0t6ZC7rJEJKpp7y3hzP83uAl/AfZMMnK/68xr6TtJ/rEA7vIK24383RQuz40MJA6EdHEHoQsfQYnZfiX4hWtHTZRVFmIEAXIIW+8ECYsW3XdStiE+LgOwYusnRJaAtRtx4iN1O0lZGAZGmnGecgAEdRUmvytBV+GIQ3jM/YgK0zqJLQhg3qluBQ/x2xj1sS8lcH269O8QHyT1CQQA/zM5/gEF94tQsF3E8HKANS3ha2SNfwbN1BaMbdTFNCvn5q3RA448cLlZ9dT5I2RV9zPT5jRzo4D0hO27zBAzD7axeXS7CnIWYN+rYecMgTcaSW9xI0qIGxWKGSva1FaN3oXL+oxz7HhUTA1XlYIeTc/GgbAa/7CLQ2y0296EEYgNJqS1PGHCOzA4733Z3dd7kJllJav5s1FCZPVJaes8WXozc/jXm7xF4Wg/2JCHqPItEF9JCHygG2sAdiSTuLrGIRsnsVUT3Vo3AOt8CzZBanVOk9VnK3bTzWlrhqPwL7NvoqMV8OfDdCD3fD94Qu/QO1SVoJDDTqj8w7TV5ceALsGK110jy5OlmTJvWBcpZeqqEm1SclQ8jzuoY+nAoATjEz7PJcx7qmyY9tomyNEYxV4LWQ5i17r7PUV/z+gu7jyNBGh//GWEIxkJCaqZs1gyvaNppjUyTemBN1eSa16a47EyXbOvanJ9/vdtWPUrNcAeWUzRgskJPv6sycqjhrj9BENzSl3Y8eZUabLX7oG0REW0icfd1dquAjW3nSahJV6WyGW7XBTQd31StD9eAKdccZamu5+W7pOdkqytDQNi8ZAhqPQDL0V2JIx6eo9HjXNAJioMjOwWq0ZUr2O7RJzuG6yZVNp1+/wvHF9PyTD6DB7kiLaRlOuDqYXwZ7MFi83FI2i/et/ER9h526cffzOx+bAtftP7UExYjmbMhTpF1h776X++NZZbQk0qR0bAlnT1WsGc9CJ9pInnv1Vym1uQn+jTgRS84xaawrXGxPWOBIJ0LTdy4iAXI76XIE368bhr7NZog3V9iP+5Pkx1q032YHuMgvdVWSFhTdmEiq+peFvz0IPN0CS+sLqf4F8CpOx6UdcUqdooqd8xnLTfEj8AwKdNkLFQLy61fxQtLrDq0QESwcHqi0aqExt/JAjehsohQJ3GE0Nn7CzHH+V7IOktcQMRkHHaWpOgtRMl4gc+ObmFOjngJgVJEOFgrelwy7sg+rOw7TXFRjhj0trbYYuZNb+xOGNQ2Hplx/FXEaWjHAUh0it/o9/X0HBBH8XupGxVYSDW5+r6IXDPz0culdEsMPr0OS2F4zXHZlJr/5uwDxcNylefMi0g0yaJ51PC8rllL4SVi+64alX14Hi+e1EBkIOgE02gw6rh6Ih0mDKRZ/BIatiGlcmgMNASZZOR8B/6RjEZVkFMFVQ1KnFVuLqyETYjOlAAmvpdunFdjQgXjnlcjGaXwtB3HHPenk7A483jA02qYxxxDVILvHpql/Z4VvKkBIlCRXuU8fkKZKsD7l6LmuJNgeM6wWfwvUVbuBWuR72O4I7mprIiWSDiAqOZBOEBA6Fxe0Y9D+h/amZsTqbdLdSDSI107d+w6xxe+pKg4bMTX0dBFcWRGx1OTC7tk165SYLJNPGDeZxKZy9a3xbxbpLDTNltSD+MJ7B4uj5yhdZclV/VgA1Fji5HpRQFee9Hf1hX1uCqTTVi5jF+2LfxjkqPGEuFhPGFWDU0DlYS1jRr8YbV+QM74jLHwtZlatwO3sE/Lcb6gJhsLKI0mZa2sHH5VGQ2MjPK3XQlIS84jUo0KLkbiQzOC4UZ5Mn2tFC1fXy7uX23iQfBNXVc9LR5TWe2cjkNUHrDe8thdfAV2WaJT99GvYLuZyL3w757KNdK8Mr7LMHP3JMCMPM2d7F799hYYhmkXx6DBpVyvhaCQHCcnJQzfGBknLahxo2sRBQMM3whZ0pHm8Nl224M9OCfIr6W4z7gt925r1jN3/uAOYcfkiTxXgX+ukLbMvUNu9LisBkEqT6NCzmD+cTafxqQ2xj+PgvAILiPOZHJx/5iNPHKyF24ZeXfgyxgyuKE19sCosRcTCzL21G/YkN8AezA4f+r1Ed6Rd9P+awNzE6iI2k0qX6aUSq5BBPsl65i4G0P6wV6FGoPfyhAyBMIshdEN2Rihv/UYwZhha/qD0tkRNhq6n43vtwKD5sfbNHvUuCqoWzd5kZpA5vBrhGZKprukpunQCaieX3iig/OpG66TqLBOslB5w/22czdsMQtgq7g0uEDD2gNZcSzq1iP0EjKyl24SipDLbRKE45N53zqrkFUD4K0y0czD/FNkIkbu2rLmeEz8NCtwMa2468SEiq8ILkvtNgVrHc2qSqQyV5ZBL+LbaEnX6LNJMcKNwxsoK6TdvXjDTjsOBPvSQvAkwXXtJNMFabIqAaadMWNN8h8y6+uN2DprzFKYAITJOH1PDPbacnocyDSnT2u5ZKPPpsvakB7udeXJXxw11f79VzlOXTHo+2OLnrclYZvvK7ovPfkHmpe2y6Rfk22G6usyEm5gtKIZvenD4jLbGnkSwVLfgynCRMl/HfZeftbGMPKeCF2KlnPA/mSaHLXHE7gl8WDhiR8EqKDksYGU7EUGb0LeBjcrzXBW1t4kX6Xqo3EElmJeESwxcv+M5bu3kNN3tak9O1iZhyOQHKJKhghYw4UFbko/yK0O+v1wTAcGqed0U++5v7tFTY8JVIPtUu+u2auIDISdRyuKr6EZZOuxvxYTTFndQjXu6vxCIh4cUiPQjtODzyrYZlqh5ECu7P5Flexr2KlD3blgfCpaFd246mm8btrRJ65aJV6V6KVwh37RKw+GoMsTm8gfLAeArPMkgIW1Z9haBFb579ii7SYuQN28Nbz2U8/NtcopVJMSwmYi4/le7VN1aLV1/NmtVrXUOsMQTEovPIR1ZOvRctl+nzyAxbQvFWFpUF8XW2G+OqYHYCTFp1lTgRXm9PjOZB1Oz/QuICqpPHXw5ZPSrW3qN70uv2qCN3r0Li1OtAXRBe+yoTcrCw4oHJzMjLGXbMk10IrsPt4hBuina5ZdKCr5vU7x7ajV+N2NvVxy2d4PA3kuXRyu0G+4DkaFZ84zpIFEvW3jKvGym5dJd9l5G5XopB3F+GkTVJ4GW3iwnZtSbQ2i9JrcYwhmNqwhN1nVRfVX7xRAqKM2S0OsfuUarwgyanTOtZjh8aySaL2KqFqmILg6VSO49taSSJJML9T1zh6jpUOlKsp35m3HRplzFfrc9t8XMXtkhU8V6LV3CScyZ2wHOSp1LZAdmmnOzeeeH9l+UmimqXajdpth0/AvUtrZRSHDb3X040L1+NGaT7qhJbFfu+mggy6kNodunZyFGbscgqdoBCO+0S3OanqLd/7GIEcKd+K1NA3B2Hbsp/A9zubbksuItbcANANDpwVuvyORrKgmVlVLMk1vZKKFYhxooHeFZkPo7ASeUBS0LUpRur2UDiKsDHLcf8U4i3+evE6Xe/dYW5KE+k620QcH39O0zKm7c4n03MnjIJjS1lNTB3b/s58ViT0OFE9kcI97Hb+lK+qH4xObgqqXBj4ZfRZwVKxh4sFaznqwa71pwAvMOxfYXkCnqIvwoWCw2mVNKz9MA5MP7LALXyz3IlnscYxxhO3CqSWgpAniuyimvfatTQNh/osu54nxBSM8V86DjKq1qCr3rPdbqXmAQfb/jD+AVmVp5b9W+8CwhUittb8X39Gp5t1CBM1LI5xPcvIcBY0/toRE2dJc+mO6Hcn2tLzy7k4aHFtInZCKuEP3TbArK+mL7UC1oKVApu2Y4W6/SB0OLmLbE5WbynR7k+qbcCHVcT47KusRmP53ul439fYqH13To4omcBf0wnjVilUMUKVOyuKdJqAOzLM/pgL7j4B4LGQdObym4PsLXzNDUVKq32CofFg9SmVk+6kfg2p8Ca0+OBLaxcIlXuuo/ky7V9EV9ZSR5k8HcHsyB3ohGV1w8zOkEdrNfjrtmc3PIhv3FElRwKvDwzn6p1AXcupr/ZOfvb+vVaQ+XmKML8IV8rBOexP0s67yR2GZxWUunZUT8njgxBqyDCOnxO+TpVvZUONYjaDWnWZDX+dqkdZDZPzp9UuqYk34qqAEuq3tKIQI9lhS+QBxzwJPZ+rf8RIrAkiZHxfYL2ZborDwYDifxklJabEz07pDEj9aXtf2b/1jfg3NwJYcIGh8XytAJW7jXWlPZUndvse+DXtC3/KgeT+R4QuptIsD+VADv6My+jrfmW9lx/vfN2GggL59S7dKXeS4i6ExO/vSFqeO76zsA6XdqMjnCCEHtc0xkBEV5UGDpyCFkiGpI2qUhMvNgyCMrP5Jx1M/ETd0t9OUCt4UkRCRpe88X7jF8vLhIR4vEGhqCEBArrbk/+UdtQVPyjRwo2cL+zZxqSs99DqF9HNHfKbo7n/RU7VhRxGzWFopbfWsLhvLsWPF83C0uPCE2Vgb2Hj4oyTx4enh6IWTm9s3S+2jAyePmsMq0C2pAEpUsnbTYm2AUKprnCBHRnHrM8LB7g7JR9rSJxjyMP6CgtSljIOowWYtmTh/ksAtNKuQauLUvvMty+X8HW8Hp+1x7fzMV5lei1vNsXDjPcD7xS1s/nGoJkMFf4DLUEb+NUi2J2rB6KIfG8ard+WFxQfnTazmA/cm1/oSuzUt3syOK/6qm3kXMO2UwiLPodIW8LEsjGvcifzpEml967KElurpZm91ckq9NwSGHo7/VzXA7xszrNereQE4QhUSub2g3z6JYF+aXpyqIcfrrTYlGgZMg0ptPtDKvz4i2o87VYu6VKWsHor4zzYxdTpt/60D+42KxJhj0tY7BW0S6strMKhS+7CAPm9UqfnrMgFQCK+OiCNPZfeZkBgFVX22ToLo9RMsGsASvfPgA3IT3uH098byZ97j1Qk/nJK2DM+9PUrxh/oTvuqqeI9DlUQKWvGF/Anrq1ph0ZBHGDsXlIspGVeKZVVUntqvVndZFVL5kQks9MxxP3nT8CEE/iBk+aZmLAK+Mf2xFirsmGIOPKTzcSzFFa9ncAfqDbUdlW9Q7QHLSn2BIfat1JET/y8eY5Ld7B9BEh5ohakzES2Bjs7fsztNblKSyF9C5WCoAUYrEDvCdK/3e4eRbZh3fmoZUpL9/s4RuwTt+o3xCD9D92buOp/JEWxa9ZcNeRnV9H6oHYCSaqeYr+hXpz6Pd51f/jPEDILtbIlctfRgcqIA97ptsm669P/XEYk9m+q/pmMrosCizOcu8WOnDZHsyUUG7ehOnnJFoC6E3t4b/31ethJ1UosNI+2PcN3erIKlCBsYOcolm0JFk6UnWs/s+muJU8GiSKRsjXmgTaCITY0EIAPaKV6nwp9HVqlj0wUVxm5HUs0uOvgtvOwGGfmUtU7IWrP8K5sH6Kn0y+dDswLiN3VWsgJ+/+zNQxfMNHIFO/9CUa+++n0VorrOOcoByozfmTRsLYphNIALCH/y6rNUpF6Jc4l687wsTYX5WdCsQmlS1xpAKnD27PA5OPLwGgr1AeztKNh06mvLYtdwvB+PBd8Oj/IsV3owX5UZ9x25meCkMlIJCLAVU0Bjz4Ot/vOOLpRAAiIY8eQxnt7C31Ws2broqDCYflVy7x97XWS2YwscyHOYjJ4thoYVz7knO/a1GreHRSp0dDSYIUUOpUnb24b0yW0Ks2xcBsDxqMm9FBm6AQDr4W3MJ3hSs1H/dc0TJRrVyfIds4GVagCix4C8WzW+i1TCIfUfqTfaNR5JbCefB4qHyzFFYKe1XZ+S3M9ugTupEZAAgXJnCpkxDE0MVtXExeaXGy52Uv1EJx+Xt1G0i7j3lULaB5kvUVEp1WcwBe/VbDjjxDlXDJgXFa4+dV6gHaYa6vC2u4juvmotwxpnKT08HvpRaW8yIa15Mq4jW2wZhN621CLz3CquTrB/8i3F1dqP655GoRvJdW77lkvKd92HWqgO/dM+fzgeSf/VzMOvFZwdZzLjcmucPQhkbT62mBt8INicT6B6PbdeHUlzKh/x7mLTjDKOIFIvdhjq3Dakkk1oPymaoV0vj8W1dp23EjtSJ/P+KGzyF6iP+5gdsuRaygDwEb2DHfagFDhPrWeGI5B7QzXh/QhOIHuoTUqQRVjgYD8zJPcLTeAzAN4dy43tz9eFoJEAHrkKex5dxZcehimnuru8SKP1n16f1G1DdgSpxBQCkCjFU+vMqvF7DZh7uMsqCGoNdNmExA2riHU1ISqqkForfFOsAU9G3HcudOILP11mkYwgmQc1kjl770yELE95o7VpnFjwGKgI7bvYmfPtwyW59rDbqpFgnGWB5cxiGBkC+qqLVrmofGsQ+yJsgS80vFIPODBRbQtp29wjqYZHacYUM3lxgnEu+OIXqQ6Hxf43gmvRTgDgyDnia8h0iheaITiTra9LWnFPvbfl/yH1+o+xdiHLgo+RkjxruQz6kuCjwUYT1E/tsNUOop7rfS+sMUc3peMDcv3q7lkZGjftXtieQk1JIQgHWKT8AK5MUvhOPrM8R4oG0doAlJv2eLFpT4LytqPrBHThwhhdxORo7Q7demE3iLIV/AQtqaf0uYTMHC4R/2GpAEnaWyxyzVKS/gAZKRYbZyLTC4mwZvN542+KsIp1sE15UzwgBsSFjJAraqnHRAsOvDbHvsFiMH6j6tOi6OwvrUJwUmjchzcDXElz4QxaNxP4rotFpa0zFfzFUzr2/lWSxnqLzo+ukdMeWqYwpQQfC6abT2UpLVTurq5e6M2/4X3UPD8sSGivA6wdwaiBz3KlRZ859p1NTAJvuxP1paJNnevfKW0nemraQKl/HcSrkw9zNtMMFc/QZYTAVfxl4Fxpz7nFp8f29R/RO7Q1eiIrKn8CQr+T9uc7/QB+GYkfJj1+L9qvqc7E88oUaiFpdR1n15JK/Siz7G1b3ZHaS/PZPrgO/Fs6udh1Z99zVLmTHBRq0u+cP1Qg/ra8ytzelbKQYSHMrd4oze/ku1F2IhwXkIeQm7LdbDeIsiW2SFQTNdqaHe2UuFkhBUZBpzVyZXOeR9EWtM42/Wk2NPwN7KbdeyX0KpqNs9gveBNOXw2dURMPIaLdQI5yeR5WFAgxPFKLVJfyPBhSCNPYXNAC0N/dzQ5ThgeuUkM43tZgf6SjRWgg24igkOmWAiGa3eh/KijAtn51tQTQPtrQlIo4PCNWx84KDGjgo7ge1DvMKe/oOGtN9WQjkfReT0ZRhsH//8MtW1THqo3QalLgxrFditW8W3yVL8F1MjV56TBdh6GKgJbVViMOfkiHB9VfiA75jAop2IzTBOvYeK/rhfmeI6kGtGMnI3inj+bjQshOu9oq2Liet08GGC/fo2QNE4dq/pM448ZtUBOU2n9u2IpXLjw3tCzQsGEVIZdtWIw4HajmXoNqFRrd721i3Hgroq0zWMvbm5VUFBR/7PVmqWRpGhypyiqYlNjTyMKShCeocbg0OtzfGMk9PQpDiullFp4ctnVsx6JK9fbzd1wDpnkY1QhQ/EawMqlxax6sRTRBXh/BYLzBQvPlvdQqO82PdLiEtC4BOGKqL5n+CZy3Fx/CXsLQELjBGG8NoA7B40Nx+aQbdb3AaI927YkqZD9kr9w+yB+k5nF5XPbmUmWVkW4uqXgdDqhuIB3XY3pX/GTUJhr3fDe9oJcVzqNdFs7rk723ibOwyNGsaeXMfJrssTOcbfivie6GDkjWKzNJaw9mN3eNejpqkr0uMPrDBsbRz2rb8AFtmr4kmBgIOJvzbuyjjtC2EiWbIDc8rab/0RmjSzxZiyGO82NfOhee/U0fJkKeLRUj3A04tHBmRty8DZBUyWwx7DnnA9DGkonm/QJKAs7GVnpEEmU8uaymyI20AT9LXdad/0z5LIpPXudVwSbnyKeQfrrKSzhzssD8iAwnRnFjoFllk+8A/E8Z2MtlVNN09ofRADrvX4yZ6qCTCYnizLWKz8SZcolQfX2nC4esPkWHPOUZOpje617ypjviHvxvaH57vzA9xG6k2ATgcTA71pEH0dIbmW2FQ5m+yTZ9bj313tDv/pfTgshpqgCZgoyH1z+sztlWUHs2fZnG391AS9XkPbghyRfd0JvTk4o6D49EC9AbdCXDdbjeYsSWW6/C2DitbPJrgcnsj0XjhfyP/OQm3i2jvWlL1id29FWb+L7RCEMyQQRKDZvGxZtNN1q35lJBE7Yu444mythpoT665CcBXQwpA6V5o70EXssoGmiLXGhf592tdxnieDnP1BcILOWTDHjzlrc8mOqFexycoGP/+cfuwVnK24v9V1hvXjOIoZj18KSJ5Rw9wtp+F6uk0HSz17PcnceU0yLqlDXYN1puwbkmktF1pxp/IjysMCgbsDQEzqcfqUyDLykvh1icl40uVS+zZeeUp0bS7L5Tfquh5eKzwkTPGOWR1SZjz+0SU0dzhrK656Jq/fesh3c7gYVPjG78V4PmCpHcXEp0HvE3r8Y7fyRpiYRf2BMJfjViqGRLaPIV6/ONLTw9GthYau0WoJ2Oo7GJE6YBKem3kVZ32nYI30KuUWCgqMPSzmyDqaKxfTY3gCZuUrjHwL9h5FUrLznM6cFVvU7YuQAl6Kkttlep96CiQwC7YIkK0vNRMSVHKY2QmGRtRYmtuSLfyxWLxXSFNUrjo3lJer72O7xaFzkzcDE5uGLt0CYFG06dgu/UtuCfbOiGBYka2NUiM7Xm/UbZZfWHPG6+ud4RLZJK0QEleaNS/igeV1yYrip8ApI1GbFDq6fpgLYfaqlgXKuCnsIaNllFFRIgCnzuOJSHFjIeOA0jU5WMBDLbcWKkHPWQLGvttn+quUif60HMMMr1S9CDQ4Ze+37ytGYE+Ypi21LDepeJFm5mhWwi4weFktIYdEFtc1eVFxVL2C6A/lYuUtb4hBPMiaw5UPua2G4LzjymLOf6D2p2/DE1mtQWpCGNuGKkLeTp8DVkB13IX72jqwOiEzKQzvpChoDiffexE41RVp2VpspMIaBK4xsV7o5PH0cNuYM6dlr3+HYPZ85gQv6GKhhY3EafFWBPsU/5C6GfG+XEpV8ydbkwqqbGAGPpI1ZRhpsEjEZigDmpnUSB4GZhtvf+e3adI7K8rkatoo6M6mWMyofwUTNJEx7O5EiRM/Cl6b5Qw9Oi82YABKQGCC1iGboSk8O0ZGTMvsfp9UXvUCPEmW4+/zQnwDs8TmopKhjP6qm4BFEeNBsK15eYR1/+nVO5xE35v+NzXnikKjsXL7iPUPQE20IHoUu23A5jdoopwtlJFXgwTTqeLqMDeda+vU+ihniXQgXaGz+ZinUXAaFBE7/xuF6egjOFEP6zGAWK7JSZLYFdulCMPgrcS11n4MSuqeAG8N9qQzQLAkrXxki6xNW6fiDfVk103ZuivIK8gStiuEZAiloMJZasrsD5GrbSxn3CdPgJsM75iZwnIal9MfqMx1RE8lC5HYQA8zw7jUAoghDko+1Yh7F9naOacQhhtr4osRoBQzRB6FBUnIFPG5uUYd3Y1Sbr/SgRQCGm13aeuOraQV8oYLeO/Aqdu4tpNFOW9i84lTkIKAZ+7sk9mw+VANT4FpqfMbP05vHecdUBP1vmR3eUeyiO1g6EsFsLavRkgWUf4BsBqGN4xTNwVSMI7lhEtMTL7YXiykXpcRgKh3BESvYUw9H1YJTQBT8PVMSEbHnj7wlpRGQDGn++UiZ/q/P/y5IRr46bvHUD2oC1gq6NjQQ1U5amminVlzcDEUm6BCM9//3G6xIkG8liMLNiF/hwiOfnfz/wG9oUMr+tfDaAp/8yPcdTCUYUxuKxzqGAv+YE5p6RrS+D09nv4MuLv9wq0tCNCUBe8FKFRZpX+CULo1hFzZyaH0xH8kOD4638LXmobbmwdiyKIaKLKgUPgXrcfXzZl0aNMMZaN8AipP/rRuf8z5HAd0XRhThiT+LWp8RZfPbByaDculoMBS2kplgSTr9iK4TDNhFOu+xCco9Q3JHktHPgvGN/cIJuj2N+5i7AceEjwPeWFko0aAzMkY7q4vFs3em1GTF6PkHfS+2f0rDhw5KlbNt9M0cnb5PwhNQtByOjAw0R2hnXBax9EbeiuvaiVgMN6qCfVAzdtN4Dk1g83ZmU1y3M+o7dh2ntNd1Vi4Q+h9vEJOZWlkByivxAiD29BfCPhaAVYlw6NwpR3wK5akjvsGIZcK4hdK8YBmoTSxTdhupaMzR6yW+XdgGWBlaBSDJO/ZqMJ0/BBNhFGgUx4kJYdY24vy+MLzxRduBFZXoWtH9AEXjGM7+XvBH9/0TfYrtHlJ95l76I+y8goxA71K+rn4QzgliLPl/0A9pZS9siAOfjRaHDigua8XE5aqvJ4eStBzBWqtXailPh90/jhq3NRoMQv2T9OQkw7k4AwdUSIjGvMYYlG3Mwp8jdr5+XGkaMjmiL7gHDubZEPrVrKsPHxGHzqEe4ogqqI9tKeP+/waF1VFE07dfBiefCbkEpQTsdrMMrIBdyApOMoYv6GpIITbr7DHujnt/CEnXc8UEH4TNpcYiFh7X4T9F3NB4VmE0g88f/BC14bxtdofQ6Eog1o8VyIAuEyTJovCUEVNHlo3s49t/ffB9nCx1dF9wtAELxcPufHspiMMNMM0RGmWD9d2VDuLZko5KOSmpTiEoX6fWYgjZ8BuqF8RxuPAQbPGuhp10n50knymKW3OWcV/fZ6i95gE9GkLI9NNCr41FKsxTenVygeszsWZonCUnJvkFn6INlCrDslJ/q8uEYwUfr0SyGH0jTL+93Ie5ovebzN4pvcED7LL6xTHsa8n/hLWXTPjzmQ1MoAid/HPvI3tg5Njk2pomrZsmi3FmKjMrnzsmcAX2J3CYYQUjiZ04ymcsIJMYsWvwiA4ukLDMUqUtld6ynD/FQTg6B7wlBMZIqZqE/gRMgfWZWAZIoUrNWxc2t8vwZuWnlP/n9CpC1GUiiaNZVeJAPN6H3xtAq6rlHEb689vsXfWI8OwJAetvjJG+D41+rwu+QWqqpZlycG1CYJuCj9Es5dS540pu8Edxy7Ar25ZTi1V08Vn5d5t/hu9dPHtqypWRhAjoqwxVmMv77G3Y8p11zpp8ipnfCXtirO2w38+7/zOEjeMgxZ6xxa41SE1PGfuX8MHjKQDNt34K67T9T5aMKCa4F2SIEKin8vITrj7u+Y6DreomDTo3D2Df1w3p8S1uivh2smiZ6Svo4TEZE4yOJa1NAARUjA8Iu0d6Qd/LKYHy4MJmbIMhmcqPkFROcZgpvj0LHj7vxem7h/QKpnTbgGl8NkX8N2hrJlRSsVv/OepPF8fnJDGxKKlTsgt3ThG565T4oXKT0YEv3T4bVODm3NITvyZxN2Yixipbm1Lt/sjg+nuH2JPoqGcDJgRM0OHaIEV6+vGiZ+un5V+kQAN1r3SUFwN2Gxll49D/AURZ4u0aYVXQBQq3jNGN8A9cLsEkWZ4y9FuqRzXBMeKzaJdKk8S3JCrGQuIXB2IGRIsJQpJ22lz8kEif39nSOfNzNcuLcX8nCSuMCjpuI5Kl4FG1OZqA9Z9t0juNmosi6RHEzmXIDbmChYkEKZ3ysuKdMX7i9r2O2KWJKUGN1sNrHC9gwYS7FMeqm+xfKRIlhV4LvpzbrvwgDvZUpeseZk9qb7BBMAmcYZ0FZcnsJtWf32jJHrO/2uPiN2lwj3zVSvdGq3UAYfCBcNhpceAHRgmTozJ1sF72izNaGr5rAeQw4PcMyB/KLl3rRpWWfNNLbgL2e5lHWx1IPuljrgsnR/ZEUY9KTIcnf2pW9HOuwbXBRBb6of+ovWG/TreNrdxSam78la5PTPfqZzksKNW1bda5NLYT+vBNzeo6l+vPuQXjVL73rtIwERWHzq4GewmDiVTPmkWPvQRBkGaYLqf64wzCaN0H27COGjFDO9VYlxKtofwek0dEXC0O+REyZznHq9omrer5LeIIFEBMC0MsmL9tOuGYilGQhk80soEZ6R5U5eBEJQDSjY+O2Ip2Go1XyT9u7YhNdvV0tntrEAkflzKQyzv9oh/8hX9sGRzWUwlAiDlXFlzagoA4X7lWihygWkQLJSkfiao3Dw0uEu4aXmW+X/qTCjhW3wM78UaMbiG9LxP97ndEIwHSxqKhL8sHwhhdEnxdz9LL2dBS05DEeeGDCb2kYlh3Judnlv6z11nlrWJjO820K+9ZMNPWm2yotkj3yUklEqB8zYLUWEdzkSTX+SUKYlZepoX1yNhPM/zp6PoJVj5aqmNnSku33DvXuWpFV/vo8/GwR0t1JeDqJAXY7GN69uP9ivKmAmVPQc2uiRKoVzM/+Y5TbPKh1+fSPkVrZaoldPFqcFDrq+fs02GvUA44pb12+073qNyZWqN4EVxZwiBlMiybh4R9f7/jxITgKbQaLwIm9npWkHEaXE4iXrWA3qDEi6MOcVef2rGYtmlddq+vp5zohieMGQ8byWCoHpkOEEP8Z7qEJ2mj6YxtJz/sodpeRKugXhW+D9HxHbrySQ6VO0sDYK5Ng9lCDI/RPWeBKiGTLlfdmvBNzgLj2e5owq1ed0uWWvS1GZbpRKZjLKQ2EWcN4D5IeDEoNPfpYCt4JKG0N+4IOS4KgiJ5D0DiDT2iCC4OBMsBsWbYoLjwx3Nx7C4wmBmN88D++NZxzq2UNuXOcMOy6WN3NVwJUsULuVNFyuXp6e89LoYNokq7YHUZgeXmCM3/sNIvJ17LI1GER0EWWZYzSxurzvIv57Wi+SuJIR+wa1IEytQBe//QZC8CbkntFtXeInf1ae0hnx+fwXhvK+7IUoNGIkdVSp/DgIFsuTqYg5vwfUphwBU1WuOxo6acZaf6QplE7g2KPEX8zT7ZqQ08j16NyPHAf/PpJEE4Q9LuVAvadYkcB/hXtYZgWRPIBeZTraljIHqY3bSsYrvuBmBYFwxCiIaGLp4gAqPvTd/MfM9zoA9CNhp/EtUjuoQrkG5DqN/TsOfGnU1ShcblmKTwLGaJRNoMEXBfWGtg/Ci/+qU2ncclDE/ygz57RQAHJ6aMqp1gWS6RzL4vHXdgsqQaXreJ9Q01eG8GGtPcZCZ//jX5NDcaVVknq4Ybxt0HiTxnT5uM3h4CbHEMY8IrOXNP/fpVhsMMqYhoP8TRT1eaCre8Pmz/gZd0j62Pg/YBx5QGsgieCWgGW/0ll+Bi/bmgUgHVXBtB+NJjhNEDileTUSEJc6kgw8O7UGUXGOkR3cxc6bKlnz4Ihx2o00qobytlrXliJK57a4qUFIn8Xhj3KQTVLCCmLbtiMfVPVWtlFRCGLGeAQ5Q6zoEur5j45uNDTET34VXEpKS1aG/yT/LQIXGGpSn7n3MIkiSz53gMNW64EBZ/IeUZkIGx4DaKI7bGad87jrI4ZcYwvBAvmi6H2RQZ4Yr9VEyuZfYCSMu0sg+PbSfAYbVFLtZauZ6bWA239QtxTMUgavhWpanqXFhyPCg+9mLmfq8NEhlhqx63NwZh2+pF4jdUO3GINm92sPIYFslixgoKVq0wYRFXHH4XnS+AIdOa7toXAr4sAFh3IBg83i/ivrxyl9o1MWb4k2742pcHHJJWx26kIDflnSoKz1Hmj8Mf50hifaWlyusj340OVQ4cGRYU/2NG/LcH4rACBaEU+846JhjOK9vO7evPiLEfW0KRkDKMJ9HQVLj8o3TCPR6NkAZ+nUAolMramEfhyZvH997Xv6HajZ+0J6UCsHPu/44p/KbGsVGmpT+3l+hOs7rPxLZAyV9SRjZwHoxGpQxZ39bbZ2eKbI5FbijnIDP7vkoBnM9p+fP/52V5F/f+4J51Y6E78RL+Pg1myRWMvfE4DrZ6vGotgYK5oq6yEvoV1dDhZJrfzoGDDP9l6foY77TmBl8jQepZ6SeOSWxk4q91Fy6nBybYJERVSUFb6Io5QdExB6LcF1YV54Bz50f+zRdZ5rSNPNpgQODmQ4/AkYRENKrztOD7GssrIBFZVgh9/Dgcs10Cg9RrLa60yuH2m0CC4wqV35ytbA1Sa7LrVdzwZc9easRIop8AwjwVvIpJ8KDhTpoGvdMMSikBr5IBq9eXsRW6sl11pc9VqXBVITC6cBvpbAr4Vi7HfzA3heRByQnqdSZOFpD6eS4WdBvdmFAkMgPCbt/XEbPAPcTe2XK5YPXi7Krkp0XckhRuCSXii02NbHgXMg1QunrmSila7iDkPtRzclYYbvhfWWvRrME58CsAMnn+kGoojRkG1fnZdf85969N3vYvlidCRidrZLBqRledv08iL7XNhbzsGP1wW6IJD1nsinwsxXymePLdBgwF2z10CFNH6Cg==
Variant 3
DifficultyLevel
570
Question
Here is a table of values for x and y.
x |
0 |
0.5 |
1 |
1.5 |
2 |
y |
0 |
0.5 |
2 |
4.5 |
8 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = 2x2
|
0=2×02 ✓ |
0.5=2×0.52 ✓ |
2=2×12 ✓ |
4.5=2×1.52 ✓ |
8=2×22 ✓ |
∴ y = 2x2 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|0.5|1|1.5|2|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | 0| 0.5|2|4.5|8|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = 2$\large x$$^2$
>>| |
| ----------------------- |
|$0 = 2 × 0^2$ $\checkmark$|
|$0.5 = 2 × 0.5^2$ $\checkmark$|
|$2 = 2 × 1^2$ $\checkmark$|
|$4.5 = 2 × 1.5^2$ $\checkmark$|
|$8 = 2 × 2^2$ $\checkmark$|
$\therefore\ \large y$ = 2$\large x$$^2$ is the correct rule.
|
correctAnswer | $\large y$ = 2$\large x$$^2$ |
Answers
Is Correct? | Answer |
x | y = 2x |
✓ | y = 2x2 |
x | |
x | y = 4x2 |
U2FsdGVkX19jTDgY9C+NpzL0OdvdqW2EFqUjIieXVtRTE0sNn3Tdmqz8U5DI7GGmiWadLgUCfrJvptH06viDJu4kSUV8/9CVqpSw7M1UpDWNpiZ+pAkhmUgI3gKoMfCMrpDQtD4gDX7SWFFJk+9rHDcAd/bxC3m1rTmkUTtRt/VZhdhXQ+KdILAKOf5BFkh9kcGFVBL9XU+xW+pT6xFP6CWlCIZHYcf/w86x0wEerOJBfAeppP1CyFaPdxMQyfy6WOl9422+5Jhtp+FBkbEAzcajyANb55wEc0snaacafQupmJZbCjdUc9NONMheFTi/NR3r9kS5Q7IwuXTVVh5rAHM3KnBsuQ6byb8zeMUZagNVCdNsUGBOqdYbbo2CX/ngOU/QQJVclea6TczxSrefe2NEyzjLg9nkn4lAsmLtVAn5JSvDHlkw7v7gKpkZJiI2/7r50e1jmCDw1chRgbbKWBgehvmHsE/JOVdw7K9efV6fH60h7tINPCDdgh6kHCHU+vS+h53zPSH3AcXFvW2iBdx4au2Odv/4i+jsk4w5qqt6KPN8OjamdEdOq/kuN4s2+JW9pym6X6UUV6fFrXOkNdVQPBWCscESlMm8MCZ+FzZPYMKc9VKOVJW2svtFuGCN9nfuyY0dtxzlahroa3XgrnBZZF7GZrsbERygvrfPx8R2Wg4fSfqiRvTLGHy6L8to86UfFcnlwc7QKBZ/BTZzjE+rQj2tT2yW8Wb4gLs/KXsWyTVHJL050ygCOYXQDFO1udmEOIIKVj6zd5KpvLCWPV1ihtggEBA9LU0wNVewbCZOVA1uBi+HFq+4/RQCMQ4UT0QjiI6YdtTs67uOM4LrYd7xyMqb3Grb54FJ3xAXlfEbB55lhFh9sJeXd/Q6QUhKH+sJul6+D0w9vyIX6CHws1iyaRPruo4vEzSYwnyqOcDu+sxyManXe/Lraj1lJgDOsSRU50opkNTgoPh4HXXWHXit6FiTiCiZZsVKjP/UDyF2PIflChc3cN2xtLgEn29c4Lj6XkxVVWWVZClzC3SxST7hWpQZ16WJ56KpLw3kFxTI8JTtHIklPRMGYD45zhZqB34sS2bTNSYxP19gNbc2cLmTsmsK1vxtsz8BFOva9+dqqup3j+j4I5i6NkRksFIvM2QzMRvOUle9LmqTD1TXMlfzAguEVy1tU5AmhSAPJA9KthJCbT/hpNxVNts5L+494MA2F6l0Td0j9P3ybGjjDiXISahOCPUCgSJxTExX+Q0f2oNeolgZhS6MuWtKLwUW4pf9gHgWJVUmLS1qGYTOgvCVlsWUhHb1ZxnNXGqudTzyfi0CT0TYBIeZVRsG6/Jd3VS6q1EbC3t/xnI4ObfDRScY/jJi5lMyWN2cNA4cZXjg6Qks2LR50nLPQtirX/PR7u9/WOY5kX9RTBsgbOX/E6wT6W8bVtwmPwvJRc7Mil5jWk0rsAVHeonzzg/rsSUY7yalx+4NbI0f5L9stzx6EJmw6u76fs2Z1nrEvxv27QGS9yKWH/EO28BbKgkKRwM1QHseRJtxau0u6JIIXpPbLtyFk1T3T0TlA3DRWSRjfx79ZyNEUVkOAQwUay0UWmOUEYg2cNWXGEpgfAPy2piBeA6O5+iXkCULf/hxUUyaSrnHfayUldvR4q1cJY9yxQsVw+dDg4cygan5YaUXyl1TUPHgLKdd+UCYOuRcScZEsbA3MD4bToh7loHmixvNuClGIg+nTlB1NgDPehLET93dOOHPnudwsxh1Rn91AZBF7hX9ms2iGoU3Y/X4KiokF5PSXiaJr73vorQR4yCVbg/2NWrAui4m75kh9j3XbxlxRpKEE0r/6DC/U9cDy2oZgOq3uAjmXDxYVhUNp6t06LY2gmesQB2rZU4l0AT7gY2aF4Erc57C4IJibCxo7qnKWojXONeSaZQBSfT9bKWAUrb74ObXaiHbAPkMDseptzRLvW8AY9DpxZGlIUxk+vY1M8odQFzg4+4RWCddzxVmnGe2o2NtSojdjFilJX8hZDSWXRWWSE0OHIcg7ad2BrNj7IbHt5Lp14wAUi5NRYrqSAk81X83IWdcihEXpN3W4ZwzsCrAZJTs5Gd0mF7QrgJ8GDxVmf5kD+13RX+PSzUTQz/3XmEL9sGdH2PFkH0+LWZ+mo2ABRAsGySy1ZzruWXDdgYbBGs1K1PXBholyPkFVE6k5DQKW8AtzxgISfORlyAMqkluchckuWON/nvr34rLqMCZ3q8cCzRT2LzwgV3bq0wKBLE6e3EVn3UPWv1+Dz0oh2UuIwNsoxPKPftI3l39dTMVjKtxRoD3rXJbvjwale/E702JwNBqFGE39ghwCJzM9By0BSeGL937p5kA/6uwy1bzlRSbwE/8BAwoJb8W+Rigf5eNVizw/jddOxcJMhY/1KSVJMuj/eCeh5Hld1xAlgndENzVIZ+doLWbmgdUSgoazEjVdRw5Uh3oLOOTUAvVsQu1GhjZCuaeYODdMoQTesZzGtuW3iWgDZibcluVWKCJ40xTS5by2+k0+3hlA1azYc685X/ZszhBNZHbUaW7YIf5/SfnTbx010TmCZKjWSNJEFr6stShpu5uJGCx3O57OlJUcWfs8m1M+Z/c221uwz6h9Sp6SrYNI5AKGqTpQ8ePCOcKFK8CwabBtEBJ9Z4ZE34ftdLEw6Zqy6n4juGsCrOuhtpO2tFfKD57MfOP7eUMQj/ktNT3vIuodSE2moMInLDtPfICHjX3SwlXuExctw0rWMZCFShM9Jr/3duzvf6QPi7ev3p0Wnoxk826Cg6ppJyx87Uf+YUtFk4vKeqR49qE+Vorr9Yi6FyaQtg/RvD8Yoot7s6UxIPvXDum2pCmydF0e7F/SJmaALj5g72ojYiS48YIPZhUJE6uGbdep7gZt5OG4TL9UF557onp/Yi9OyOJglHYKIdXzmRODA1YBr+inWvhzAAuWQqsB8jlAhyiDM8cB5/EGP6h0EAQJySk12+tmSFjgUbg6e6UgenjLT9gvRiVzIKXwHA6u7/ls/rhoHLj4d87YDT9R+aINexL/u9WnSNsT+ccgf96gv92th4hH1KS+DkevbRM//xAtDGwALfkqY4yCYOVAHHRwEKqyecjMch06crPpU6FU6GnS8WdNwakzwzGA2zWIPMjqd6HgmfE/Bd1/VwcQheh8DcumRAfxyvxvIgv8BGk/4kfv0XmPN+IxY7Q/bqpJ4OklucWG/6hms18jD3Sc/I5wQO3Q8iaoFxDhtbn6YV+TCBCEEIGzLYIZS5RieZB5d979kU8ryQct0DFUoK2yuRhInzaF9rzCdhPNrn+yywVWyvOnPnyI/M93ExaaYHm/vJfJnFNpHNCrPaVPA1nuzsWaUVCd9+0EtrjGRAqtdgVCZsphh4FnoVKgLNOXbnDFMkZr8BWQabTjfAF+bv4U7LT/Z2fbf4DDG8/RfMgSJ3xcWh1MjabrnnUK7o0oCg5aDYqUK6jh2J4gdIauDqFCIhRMwAdBAdR2nkkEQbJ5vzbuHbsu5pBG6wotGRGs2oZgEPPF9Aw84AOFkEwVW6oario45zXcXH23ZzvMXG+iw3/CyWrYRTQ9Y/rOCp8hGhFUHkw8Sp49bAljV9ohXRAg4fTO3UQOzGQ2yrmC7FXujkh6UCdQYX4lGb+Ulw827cVIQX6e3ja0VOEvEMDaLF6czyLE5w7d7e9QQhesWXACNnW05ngssyjre89vARIrHm1z4KlzatXJpevRwXBGfwNDxH+SWMBJ29z8oJvAEDT9BcpX4vV4/P+s0C7Dwos9n2ockJi3Tdj7rAu0+qUCkE878fKgisIl95c7R3RHFIPPqI18oK4i9ExLIPHb4Oxmi4zQBCuZ8fidmQiMTkGNRnxq8Z3SgGW2mCiOJEH6BUeGTRyQWSZ5R5I7RzTxCeD38vci6Wxsx70u4h4QfIp5VubXbdLWbmhP9W5Q6D2y6fCaTGj2qg86rGqkR2aKIcmkZ4FyfsJPEYSTuDhBEvmF9Jj6KgnQJlKJg6s6V4h2HzRoCtIyIoFo92kdinOmF0SDe2tbRVxZUZfGQ4PiDaHo/GGTjNUPAuNX1ZmndfiLAMfdGfC1GD4oHCvQDdPu4wL1KKbreCMlazs2o4j7e0ROx+Pa9gJzCBgYdNXfDD3/+wCysYuNRzVHGwtiN/Jr2Kbj5pMlfzT7+dQ9eDJEESfBwMvETjzxcf9GWoJlGbYIG5vRaxZXP7Si33ZPUJ4gOW1Fo7ij3fulOXV/o2fkJZfRHVxnVZWIwtYIGQVmhs8ud+Rc9dVjLr7yZfpZS2tLuny7AiCbeQ3IT/LA0YTBRsIv3QOE6viNoYmeYRkzSZkjTBfDMvzXl0EkPyC2vtyUz1Juvra8qeJ3txkev0XXwTABpHmKezSDFvbvOHQQesw1Ii4zFnINHdMeqttf8eMldysNCzv7rshxyX0S24HN2BZ75CXfWMK5ahewrfpdMu3I2IBdDk50UUFjUETH88kbxDrzo/jCxrGHQIPAzngmmIZfJs+14dvRgGxE1zJ5aCF5LGnqzbOxHzQ23JZcukEO5YpNyxyRTc+n5GTq+T7mKTnUP5t90v7i/DsmWN4ZN773/XElhMTG8Kk+xVx3PdsdJroCQ7hs9FzSpCjWPc++WxwCziHf6joafzJUlA6LSamdO1W+2iuULhXbeHXTGYcfUTxlR1rPfXXO6QO54C9V8G1YcXWXbAEJlVjA9sc596QhmI22hgObzMzITHTWypTJVMi4gwWtMLeA8gCsRGu86tabNoF2gX8RcJkzYfkyagMcje5E8czVBJNE37OWXGAiJliNHWDm3erPWdY56CA/JXZ1VL2rsBRR3nm/elvC9SLvaVfnrmIIBpu8tM3eE+/4TwjVfsbqjkxaHNGUUDw9lMcWU3G3fYOzIZOy1crJdQlkMbeMHKwCL+Gs1fyKr3OsFpcuAAhfkur+kOLeU14vvxxDMxhnriqXvSk4dNX6GlYZWyl0ohyGf1e2r7AJmclZvnFzORDfAky2Gegjg0A8o4m3sC8Weoq3f3VDNHZMYAwQw66MguJNqvi8flrkoHGgPzh2E1jBploiMA7kc58HVUDLYEQXrVGXLd4xXnLA5YTuwa+61GZJWDQnmPR/ESKtN0nbBz5X/LhS8zfg4+4LWtG+b28o/c5iH5vaPP3ZRkqSbWJrouEeLoit86DDHYfRem8aqbkXFwiZAQ+xtiyIn1Vr7A1PmzdnkP66gjl2jkGrmGSXKqAhgitSjV2G1efh7g2SjSDOjbWj5HVxTqoLcRA0DbTqNfgGBU8/k+pYEZIyTYqT4KUnsob+f0ANrr7hZJejL0fjLUksbpyQyiEkQsh5IiP48nF9qggVO/My6in89wH4LnQ201ifNnQNQ/Q58hxxAzwwy7/2P0rCNlmzDrTWbYf01YgatTXKulPUvTG6AgidKrB7W7+rYvlPz9GdwGprwrl8756WmxQkvzlAWaPvfc39W8FrBO7Hpv5aNoHSc5k+EifE3dyhL4ASqiKv8NxfxY3nYUEuF3JPKsrtVOIgzZZlOIz3WxBIOHPK6Ie1pey1RvM4knlCHV9nKuHSC/0OFStjEfpPhshywe4XVxX0wiYVxiLGXovclY2eQU6yJCVdFtIMHT/lGgJFq5VjZ4WMhb1qkS7FzGHIDT5UUHGwJ6wLqJ7oPFLBo5VMa8U611bw75o76HqC1KqEUMnsfa4w9FacsThfC12FdUEKYStUow/Pf/LKTbneqmBxoO/D4qMdlEeYy1FS6IYZQPts4OKAgPaO0xDkwnIo4k/om4f5dcNm6T6s/iwgFwOOjB8rr22FabYnRzAIe5ba8hIXmXW8jy052TjnaTIqF8KA84y/dm1HLVvxaVQ1Wx7oJeGse925Es4N9bFfa6XGY1VBHDdJHM43yj/5ngExGyCcaBzelZNOH+TEODsFphrytgYOioyIh9LnsaCxGaxcfr0lolFH2hpS0GGMNFiy6ZQpAe3yXVGX1pCAAhH0vcZWFj4P6HI4BknDLh2GT7am92Zi5GlpDfcUSkZnZjoyGXG+wFs9f5xMFMJM5PmXRPn3JqoIHthfTH8Yd74S02PGq7Bc+EVYtzHvVnN6ElpU3p7Eum3+czwRYUdHAfoSVuuB7V/LzsA5zAagO6nmC+DrcJZ1k8BfgfFaI3q5BRf7oI1d/3w8NKtfkMf+FE/0Su2EdghBJ0HMTa55nNEtAwwETktnTaTCasbMl4+gWidYzN9gI++u/THtoBNqLvo3K6h+PumSHWOur2HckKCfKIaBbQrdSSpXnuqHPLdr40Zc4twYisJcqmwJ5hxIwAqGLQ0/goJ88yVCnY6QtoHEt0j558Hx/9hCCpcFwIioriVZYd3ccJZzRkZJDY0C2c50lYC7GCscy3G62SXOtPw9rwc2rayNzYNaFwJO2cknocPb7s8U+d0unmjQdVo7e9xJbM2MBuS3HdrTlQFoC/dUfOfzDOyGiNQIqF1MxwHnNXEb8dwbj5M5o4x76QENf9CXvyIOQSBVmely4rcT/76pcGSbbjhA3mfW5IRe+/OkPXfCTsVw9MkulrRi7VHuBd9Kvz6hz/91l3gKs1QWcuLkj6e9OAuHyc30ea8hCVOEzdRmGIgW/kQX+CRSRrs7gwKx17Asa+nV45bQ63Z6NJh+l4sPUdJJjtZRT7Ca2PpZ/VWXG29OghUlxWTbkW+dexRmxY1bWEkxetaXGZvdLfoYxVdUEt42oOwuWyGcJbp+0pkBuA1T2YcP5Y04eP78K5fyNZsymohdR107TumsdAB390KIwWwRK4+pbGGKxRZ633Y8o/ZZYUe/BYe9/cthUXjiL/LDKEX0YxwNprdMVQZ+KUCJ7hWjangrFWS3SHJ0n5VUCLvykA5TgkP1rL7uPBW5G9F4dDo0VK6P4JI3Wj3pK8zKl3y6RXhuuGxhG//6H/f+q5S49gJEX5N3fIJ+34VmMYQuxmRDlLJ51fTaEni1rYJeltLzrqRcOx5GuYDY3UUbqeqalcpgScms4uduW75zDSvAxbli5o0fd1/OcLNPCBHnhxJWdfjOJqF7VexlSe3/wHBrnc1/fQje7tM0zFRPt+0NQ5FZmti0P82sqdnrGkdBv9OWoBMMZBp7mQk3ita6TtP73AO9Xu190YLtTUyIqjpZWMwxmauWMfu1KNH1GjLvEfq8GivpDWPEkarRcIDbTKcDlE3wFNY5LPe6ddA/im+DdYqWAHPpHjXFLH0XCtK3FVUe20cFp85/JL1IKz5w4z7C2sCGRPn2wwgdl548e7zmLiI3n79JFP7J6SWp8ckD9k0Y0y8r/ypFZVdGYrkIG3bN1poKxAybNUFItEC+IUvfOU66Vl2rU+/Pk1wirZpDabkUtADOw4sUsHPPOFozus2PHeVgqMyf63sOwOMJOXJ96f8asT2GCfIwbFQzG/yvQFAR/EQmh0NYIyhsOCme9c5iEomxVhS0ZrLpRrgMJd+eUQ7XK7D9fWITVh5qYZq98WMpcpiy2kJJ9ZSIiHHO+GnCKH2cdSwAdtDi8swCXFEQDisawGK1I9CdY5Z7aWhA2+i/g7zoGaVSLrhvY+xUk0f8xOj3NMuRtKm1YSnZBXV9hp8k4H4S1PXgMrccEqTUhcO/1UeWbVSl9J+nATeJw5FpG3YmiV5EHaqBmLW79ORwMoik8lSzI33zafKQJI5dmwfJJSqTgS85L3IhBqvZbiZ2OK7hsWiwne3hOUf25569pNsVRfhRNnbJPEEZ/ei4bZ4xki4Jgg1SxwOTCxy0D6oburcidXfKopWQuM7BWqC8FCWW9+4dRdVV1jKSNUkBtyJeywK+YPFoVuXEYR1gLW0XAuWpoaKO1xSe0P8J1PhOqSzJfb/a6TToTGolliKBNxOqmKi6iXa3zwhRQqDPcpf15I7PLXlf6AaasHKaQJS4wwHOW4CsL8dx4r52hHc0JUNqeDhZfM1WJ1JaFl0LdCdYmFGQDkmB+8D1XndECcdAqk+QzSrMIM/F1P5kcA9Q5KbFb7JGkPtGyPbPMmPwcLzdVUVu4hjKQ2kIus0mWS96HmWCVM3ukx8eT6arSjpeIRSBVA/PTLIRJsUB/Ix2udu04NouCxnqhrsHSN6cB6MJFNPMjsqbe85QmHXag3hfPnFwytbIAH3ds6xiIRs21qU6YTn8JaN3Y9rsSJq4KAHjCvXxO/ylb2yehiUwS86HZS6UqVs9HWOLmNkRt4RNMkjleAYKdoQ0nrMbrXDinbcSQwS6DJdGD3W/+8gmEO01VJtR2uG8inQFAJdApG+G9zpc3b8zC5EBSTN5f1UlCtwA/aB7vbjMGGJj2GBmoA9qV+xlhlfmefH7PJnhUhgFmDClGK9SA2uOQM5Xol/C34R6e8ctYpa1RwhrSkJang1H3gkAR/Td4C8X/N3XyvTXobKAzFffJoIibjBpmIoKHMy86eLM/O1NDNKXGj9ajpxFm5gZ9cCWj7a1GDaiX9f/cl2vpazSm977iiejHmbLc6llZPmFpJ0eSzpvX8RWmONaBcrHwEKU1Ih7MK1eRgbCbd92sAbyRy0U1vvqIrGaMMqKignAnMTZdyDAzQsGidzSndeSdKJmIMW2O/QC8y/hQLk36RnUKYOfE0GcRvGYcSJR5ClgLlGlYhWqRe/pzTy2p3jgM+3k+4/Niu1fQDOPNAYMw3m/YnH9wyNbtIVWNneKq+HFv3lsRWru9D2NFyWIDEAkPt7xI+yfLWrStbFGA9EE195PmmQLws0ulDTa8mWk6HYxbExbj8mHwbKJAAlPh/ZE3UJw4NfT9wOS3tdemjJBwZzKaiDBLMGhYi4DH1mFmykloIGZQZ6IXS1Nmwl4RAzdLnSSYEyOzuOpqxl2QDmRWCi3f+kLlKGQtKHcQ7RpzAi/RtTInMvkRTisGXkImwNy3EbFQSD/RJBQozsYoGD9VWNEQISDOrKs4Rr1BHhNibprJKIVz0JHV+Rs8MUzKeRgodVUeqGR9R//JBCLSgzTLOLZ2hikYAyHxps86ARDRlzULGnQ5yN4AGhZdeObr+sYsurtjRP1C4a6PL7T1sE3khjtGnMAe4LWPm3z1jI0V4QhdLsu/sIz0PoZXZbCEw4yUwhn9OF1lABtTAoFMN67O4g9azxdq83BCQjnOGoZvwwdLOg7+XD7GlCG+eGe8vcIRB+uiFuIErFpgGw74/NYLptLBtWRfTE99JnwkpZRycrfKWREn5eTQEIxsiMb2ZgazfIvxj8nzFjePLuZXvKuxvqxRIxLIELcemIxeazSiJsd+1WsmYS8kb78qgPl+5EmWSCZjipmm9o6okilb1S9ZTLBHOlCNupoPeA9XgzEIKRa/HuJ0j6z0t8akMvPFBmx+pwEkQI9s4qaHh1NQXyD7+KBRTvdu7C0LRljzB9IK48omwV3I0x0te58+fIcWmCS2se12iGvotbf/4AZEjW6P7Pw9/QBid5jW20f1R97JHhFbCJEi0v+cfTYqtG/SOVmQ+d0xClntLqPzjFYRlakTBhFGf/XTtXTcJ8ACRgUHEHlFxCwywVdlVYEkr9OvXgnUj8KbFZ+8uDhdq/fPLSDLYZi2d4d81So/a9zP7Co0MKaOcFlLUePJmMHGRISBaMcibH2jAludv+M0SEPpHYrDv2Ba78wJk0Q2/3plDMPZXZO07fw/UgJaFnoz54FJF9EpGAQBIpaEpbeUQyO762uXJWbZUPWFO/h9aBCmb3aVUfq+JyhA+DiCCqPW96ADfX1owJ0wbFHu8Xx7fLkqRAkgjZLU4M/LMV5TJI4nI5Ce4BL+pP/se2sBKLRgC3CpRvSbUwU+mql9XZ2crViMRwXfeCAMBjYGil2ylGD868ZiKG36n7FHonb/E57VTyY36+0rWMK2JQ3OrXJF9bw7oGsi4O9e49w8eS2VT7Be/MEmwG83TfbSGF71nwLXkbr35hIAsXyRcHUeWrIYVEiEAJbpg+V+T2QNYlkxmog73GCskm93dCKs+LntACmQfQC/pTosqDtnaZYe4aPp3P2jhbGn6PSgaiqJS9QanrhgsjKJ/tphkfDxdlV4ucKuifzrVZcT14qVpGsKwIerxt/IacaHtw/UpTIeXQ4+EBMz/a/RtZ2MA8tA4BaGXQovK9zFwFP01+K5tPODlashxHmG82/Zazj2u0EVZOsMY/iC74teD96DKN8SA2mREQ/hbPQas3jNfGnneqOfuV8kZl53x2AXQvxgqRrCCPwjvflUqgeht3Hg5uDI+meYM+7SynTkvjuJXvUGkBkJYCFDsyg6oEpm6UVacfHvlHRUr7ar6iokd3zDtS7+8UJ8LAnZp6KO7YWmChir6K4joF33YCALm5fV3BHXqj0vsaQrs52Fj1Pb6Wbulzd3lNTnkh7Jwr62b5UPewUWTR1NE/LR8Ua/7DcEH8UohKJzewiczGm5fSu5bR0Iz903zTpGubCg2DbVKXsMhILZ8CsFZSC245LX0GYrzEEQv+Xpn0KNWLsEi/T6BUYyZOf4Jpn2rkN/zqJxorsPBrE6/5FteflYkUPMLDCnPW3GMIZov7aC7iE6Zv+whNMcOAStONuBwcoxs4TXDpzipS3u7Kdd5Iv95aCTtxupe2vzzViXTdjF3Icl9tJa1amVorcoYTNhMkugBy3OdNpAo1TpKsXvDAVAne07zbXK0F592mJ03qWRyaHS3HbFf+16nAENYwqyuk5OnKulfKSDixLTbczxv8FtOD5JBbtEee/6ziUNZxIzDjETUXde4QdhZ9Dp5kHWpGmVnHkdgnS1OmrttQv+KK3+98ZnGXCEF6iGW7Tnl5ThQPLKlOYyiQzoXhv1naCNL79lWRte/MEccHb57/7bKVQzBzohKHHIotpBB1Y5gcruXDTVFM4+cEOEz5yga3dAlQjMfcCG81az/Jjj+v83nIai65bnG8Bkf1Jcel4tkq2aYi4l5oF+m2/fF+u0Xm7VmU3F4zWP+fmK/4rWc71hYg6sBlvIscob53wHL0t1YMayQLQu0jP/M/RzZrFFBbqadc5DdzsEvzWSiRqFGhwmQDvZquV+8lIqd2DfxPVDRffPUkXOeKs0+fL/ytBR5yYO6ol5SvH6Y3Sa8ynrqRpfVFqCBnlH6dDOmEmi+RLKXZlBwWFI/KbDFexWFTd5sgKwS4XEfCE/xiRpLRMuRcnFAaBVyCYBVuadtG5y5HNncyzDe0XZRbpb9poAnbVsuUI8Tm4KfISKp6RhNWqt0OpsoDgiQIs5UsI9pAgXYPtVbUqpc3xoY++2slnVPTSDPVuvyjCmJXCOHqbwdt3kc+HrH3XoqM1QyB7MP3kg51RwCwvNVjEufqw7hWgUlZ9x2ZwG+f33+mdy5NjaAac+KJpAuknA+0INtSeJgDNLe3f8zoySi9rYHzO1HmNC3HtBXeDc1X6oUaaijluXb+yFKoH8tWxtDvZOSOBRU3G0cCKqjenpkvWp/6kjOCqSBTQOufk6hK+XJAXvHFsNNPQi1A/sg0AaME4DDq0cYua6K6urNw6trgITzeOvB/th04px7ZgCVgNc97e0OOVgkmb8rDSAju0fakpdLI+uWZSaN3wQLEXQMY+BwpHNu6vnfanCfbnqkjmhSpLMwbgf4xiyjw4Uoy8jtvSuDwt1bhg0SGKxxGV/+7SX/XZ1xPCKmPGv7iN2EgDSvpBR3ym2gLUFTjDssf8vkEUYSbcLV52vqgSDX/yVTyib9fivjSWFCm9xpicbNBTZcj726h3XWS5Gw4iEo46Klf+hexonzKj2bzp2V75B67kkcdGijvh1/9ORMQEXzgVI6H5iGwOz/HMCo7MU4wVoaLquTiBbFHCVGtM+DWOwBQa4MscV7fF9FgCJ1d805BpqcHNjMVQy7pkudRw6+16ic2ktVR1jOGY+N+S5dynoAuc7vUR3dYTN14mzhzwNgFRNVQa4r2X8pKBp8yITL9C2UNsoEyGJJ9GD739ZXFr0FuxkoP5OpsQNpEfepb3nychDirORnGDYp9pzQZq17XWCt56PEnxvnpRBtcLxe8ItjAJCF1GBe7Vx/r9V2PSu4tio5zYfl2aBQebNeoH82vECgIiQmsX7t7BsyTcaOW21CqA7SFn4aXZwfiSyv53AVMzy8IeKc7CU+tI6MHdvo8rbg41Ir47fpSsrEIaA+cYQIPKBvbCkGakokRT9fX6WoailIWuyQrt1GyK08FFCdl+QGSFsL/CSOTVZEYD5RbuP3eOZLTrNSjCEdj9dxRBFlBqaXOvTumF6/4ozG8aScbTxMygsHuO+SOJoKnMJ5oOtPXQ65knQKDA2xTVlpPeiYS39Kec2Y4aVxVRJoZKUtW6GbQ5jXtOfmp57PAnbLRxNJnEAY69DUV11vxXxdvKRC1j30KkjeBBnOEe2RxSrVJsNmgXF9La4M22E/dmxpc6kosVNMq3aY9JXNqlnKK7RCJiRgd/LQ4ZK5JVm+5y0zlsrG0+oK3sHmQc3+mh7j2o9bW1nVZ3cNkN2czcjbO0WRiSQGjOPd/zciq8gJ0JXMGehp64WREq7K8QjpG3j6ob+/eY2pHTQDFbB+EuDDqPsDMG4u6iW29XOWPfghavmH2fyY2l3CxxW3l7VdlKjKgv0aBfksimllMwii9xnKa54wlO33NDQAw9uhtxqy41gzXmxE73UzkAJJMLhFaq2wYmfw/mxIu25UZaITvC3fI0x57qUZi7njiwZmdQI+zXff42Co2oMlWTWnF5HBz+ttp5scuwqCQFKem87U0WNdk49HA7QqkKAd6NKMbSXo6BHQsG1Wk8hQuGVhpa1SX38Rq8N2zeqUrNeIf4/Patkt0xUfR8/1iUW2DYzTXf1bAcy/odhaYuHW6jAsO1rn/WUDFhyadprKf2sThzOsimXnr0NopjAcz0lTLvfn79WnvsAIU9ymYNdRulax1rHXjl6aYyOwIoMJxvRZms9MTMml8tcioHYnlNw2KEamE6OD0yTbnNV8CsW9aUl6oKudZRTXe899oYk9sccaTymh2ll/NAi7k0x252c2fFz09HvNWqrjX9GUoo3pEQmMETTVhB3LXOT/soFvUvvoSeZF2f6aNUE/E7yRnYn0MpmlC/dsb0zVkfoA9p6g6oUTzY8Wv2hN1Bup0lAtqZgcJFlPzYt2guVerJbGp+KzjklAMDSLroHssECH4+vqUtIIHnEt6MZLFv9fU+TaQhmZP7y8+6qqknyXlFmRYdzOjrNjlkYRwu7O+Ed+qm5TLpgBL3Y0pv7uE1hp0VOzsDBcQlE46UIiSX7oXXXE3tJBcm5AJW9NfJyVjCZEigpd0D8NOjA9/5cQzWUItWtuz69hSh30y1QPsELo5r86X3utIS58FEUMASaXnWlABW4gVKdhIVBtjCJW0Ho3UMvDOq8QjgeS3fIJXqI/Nu2e96pkAt9kvnUNQXJhw7I7Y2q5/Dudvf4wU5GwNJy1+aoeOtS/kowEHftspG0ctknIGKhDEai1WXkdGpAFRneG4fDE7rNduOlZXwZhTBC0vEiB9RSAScu4F3zs8LdwyEk2lbwjMjlcfuDUXGUTamcQSQp7VZpkcTeu1OkGnky2U8wURq3PRXYBKULT3vCuSybUMBrxiHH7padXueNXZgFEuUT4Ztq8g2k4R+NJ7muRnSTj7wrI+LNBesVi2FtRfeATCCZJ40BQm+2rwkTHFdaFJFK5mtRZgTlnC5dtcL3bOrBCVGo1jwxzgI8WOn1C1sNhlDwObCMuVvV57D90W4jm12e8+TkzsUYKgLHKr93LPhAW/AWNPFCaICsQlWWJSqQpzgyCXLcOLsSeIPvlCI4JtQZbEiPcsfxKV25LuDY3GZ9WrpwOLu3djE/xvd34JR1IRnrIUPQdcPnc4WBlati3m2PIc118eO3svKDyJohfOJOI0uL4CqkyVp79K8XmCyzdUCrJ1mOrGL6PQZbUDuFhcMkIPsa9JWd7U8PbpFuGPfDYfaml4k/ThRuT/NUTKgXql/zuUlXvQq8NTHMRvx5fbDiRwtM0UwAukt7l3dOAaYHM+LnZw0qS3bBkP+xTLq6gst8Kt/SaVisRO5BYT0+D+mnxe/oa+EA8fzo+wQIDIRxGInaXhjpMqwwJLuLMdTAJL0lK8DSAY0EMWUZolyjXUJMML8ugy7gOfD2J55VknsujjATdqdH4MdrGGxRxAH6BhnTbWkBInUxnKfiZGLVZyV+42ALG8TDElrok5ZvcJLm07e8v0gepTWCf+A6DlO7WHreWRx+h9fJLxdxhmbRL5XZnfnPJMuw8p4wOR1oWCx7YCPiPvQJs+oc5h4+/AnQF/cS7AsY2jpx9cUnqz4+7zo7kDQanNYz7cEJLJUKKl8KlmdCyFJrya7RF8V/cq8nfqpnIv/FeL6cLE6+bIBX4a9T+buwgNbZx5UzfL/nr8uN0Z61JX7h1pqIsXIzu+yH0/sa2lMx4TOF/Sw6Xx88q/z5Wrv769j2CXWP23B5/vO/tQ2zwZjAG15j6I/dG0fxwB3tGk2i6ERNCaeOy/hz4s6RjLbaLFnZkLN4py+04zXikNwgSrzASZ5kfnyZ88YtdT9WuGTC7WwifNRGyhZCm/EoVMcLxQtq+Kj4TLZhs2Tl43ljJ8wh8d7jebRGfwByW6yFXzj489pmDGCg8Q1+c5sI7dSeNPWhZv7s1F0CRcqOLe0wUkYVx+ybD2O4V7J1qwWlunmIaN3ayo0YeFjiPaHsoejhHvmLfhtxqQoxSJ+D0S3000ESuhCTT1Qg/uBYkifEBIwmHWiAMGln8/F/MqPUNOo5hLSGjd7Y2S0KjePQyvpB8oFnP9PnA58H/44GxXxDQnWzqmaJBHLPQfshmfIhXeU29ZU/eghrwXrtHoBDw9Y9cFHvXyQpEl8Le7MmF5Bv9OjTaf64Pndp1RzsCWyArx30vFM390iE2HELuxdrwqwNnZQWvDxXZZ6scE0Y5acExikNYIwl9YnqjYSexTp7fZQc/cvHgk3s4baPIQKUjsxhuixegSHkqOGzJKzbT1T9NIpn3gYEJ9RNPr/Q6Y2oFCNnZ2cWCLSfvT6ub4WiAYosmXLkzTgiXopppcQsRn4jSW0MoUoOVTTE6/Bxs9a8P2u+oYR9dIoNQo97Qxr0O8UC3oqrtlslybF0D0gHsYg+URoi3qpbn3NrjUbBrtz+O16uXKsCBzneoLwQ46do7lcKltF0dFfE0qPypzfUZU3nPgyZ6Xl2ij+9Gq+UQxZbuRWPcrcRlo9/XtAC9MffoNFcpofu1PYbuucPehEPipjiQoBC3JcexJpVoWyEkpahVwA81jXfkO303RLA9qKzCimqeb6mtC2GQ10zYpGFDdJ/PO0qLY0l41VkN6grogWelR9/HHHESZr/Qt0AU1U+oCTZb9NZb0WK9zh37yRKHsL0FKpPfsnrVzqepVirqzz1vcsOmw2ye+a241zxTrJNPVlgnkVC/dSy+mTivcH+arH2shsMc4yC4siL+RvC3FhKi4ka1gsUegU6Iu/XR9hcT6SuZN4FP6DqAlDCej7Evn/XIMQ/DcXlyN3kNoJjqiWnNTnCmGCIOLdpDtEXDQREehrI53tdzoEnFk4UprCHaRp2Vepa7t2LWg3Qw4HFmiCE7/zFJMJx+/8joQThbs74tNKRFEW1L7SqG2eCacYrwsNpF1jJJsnRsqN+6HGd89+B4LpiYjmTSfsIIjxfNhWqoh7BC/gwrbvYw+dU4fstrImoVhXwXKW+uTkiwSqlkdJ0gHc+wOzX+JyystBekVNHoW20FGBUH+ng657G9Jlbo7mSTIVF4GfLpNIB03gippA+ghWf1TE74nJYm+uI9kn/+nU78c92U7b3shZRfAVa202RD3dhv7gynUMYFSuiPer+g0H5nXvgx+UzvijZQSQUzC4xZrO4Ml2SX2rgEzSa8xFuKiNXYOPUCRO7cnYCwYbUxE+7yreZdErgvQpkc0L0vfL9Z/ECfxgcFYirHcX39VDW0aK3/nzixFBrWa0l6axm/3Ww+eYi56uuZlcdaaM/UXepVKhMa6ANBHgMmknYKcGJq1lzxcXSFSEoSHHqjD0Sjcqej+zyOZCkWCAmXT410gyNEvnJKHcCwlyJDz4xzcHRhVnwA1L1f/sPivJIgN0i14yYmyXqsJyt16lmDK7BYQIHbhv9bpWECy35aIDCBzE8lzNYGP/EOUwy2uMZfUfLuosf/GnkxwDouPzjp2SoETPOVamn1nHa89tIUMWkLMhJUsu6MVsQOmlV0wiQra33ORAhVHIUSnVccJl3qDWvy28Dzk/n56XwttpVni5Ya+Ogow0caCqnxNfRc+6xD9p+6OqXeezx8Dt8GkHZt04P9SXnXLEhjAxvc2X+XbpTgWn9VEzhHtwG6tfgUqlxru05Iv2IeVPvXXV5sgZFrPcLeCK3tj0oO44za4Wq7ekePQvNXNQO2zWoAZIjRJK1XA85a2HPk03PmE9LmZn/autbsTCg8IAxmKt0s/d4O2vR4UXCppB7pT7hGLWDmShHg/mhpZRowxJj0cjFTN4qqjghAJGw5jZz1wTcEGXRyTtFYECA98oPwQ1tHumSTH+1Cb9nHiL4W4JByYsnrQCTHirXt5dXTSTUjW5mVBxi6CNn3leg1XKdeB0tUHkHE6R2yr1qGgssqF0gMXorKaX7hxpTUPZFOxXaQowgE5k8iwmVYw6VM2Jorq2EXdY9npRc9qz5EBIx6Qwkquj/YE/UMYbZtuHjqQHeNfdRm4Bg7LNWSqYJ1hZBYLPOlkNNKipGY2DJRWMAcuzMjECPYVshFKnLh2TsIusoeMAmtIo6XYVZFxxWTMFZCNEZ6wctYC70w5jDPcjJxMfb4brAkPmQ/ogV+Sa8/5iAt0rCE4OMgNQ7W7jOD182ma+IYYQpa/btIN09iRnVZg/Hc4aE7swChjdN8Fnj78x6c6neHYQnnk+PVdjUJbk9NJskl+yFXEkCZgu3sHh3HTqdzA1OW4GtrcLGFI9RvdtSlFfENd0qwqpg4Zdtj/xqE93Y4+U9glhe1cldDTY2oeIFVgXjQqusY0Ms8mLxIVgZOJR6/8oIrR+GF6KtrRJV+CgYrKEsCpY29936cZwl7zQieAQ7Bix0kQ7pcqbiOd+Cxf+TZl1/oyK4G+b5Vsd8ZcDRRUzDlX5KS+I4sy4kQ3nDhQ1BrBobDYcPhsm8szvrgBU8/wB1Kwf1IzHJz65tTsXIMQ5Rm9bPKmM19LIqMCe3Ksj+dfvsUqjCkdeTw79eBo75ZGunKfjCX15T0MTw96dKvrcJkQoUNoaGU7l3jzFZJ1qfccDrHUPdPW71dbKE8U3oQkJW/y88W+K1qLbOwbZgMQ6w9wSjur1yG18DmV6iil+lgy7ExXWYiG0YeNdzWhi8vOU6a9Be12tOKBi8E7BwBXC3JtMzffLSDv7qjVON7DpEUEz4BFTuvgDqjvPERG/4iq8UVYW/ERRnBg97lzBNeBm7K6Zelpp/f3IY+2jw0oKRvK1k7NEkrm7spyut5Qx/VYQTZynLcYuRDobEyvERLPwyNHpIXpJEN12qzQ+cubsbh+KNYKMl/Nw3t1FAYF7tefb1XvBkMcn5PTpQKoJJucqBcXhFh2DYVif2+xv3Pi95BQm2nxRGZ9SAQ4WJIEgvKucq4Y/HgyVtOeRiz4O6DAqJ3A25tbJmG3idwyEY9LjfoMotVILOAU7CwGXbqoc901upm/QcnRsJE/IvR5SO6B0hw9gzFCrNjuobikpO1Vo2tsTW0i7Gu0MLre4VzpjN8WtpSfK8l9YYPwbzyuqhqAew7OE8mpiWnvjHD2XzAHfWs7O8Be1cBsKGMqVRJfNd0WdonsUIUq/gGfQVZEDcCGvjCSGQ7pFEKNnuKrahUhTng+9rkZIK3dGCkddrdcZ5EtiFjWWQqvivomFNAsSA8xalwt42LwWz5AiO5i+VTTSB8yTizTW6UKbFvnyewKDsl3BL5haUC2ahD8b1x3eNRlEiwh1jcX16OtogK669IrDZORSmx384DIDB3CCzWrIboEdjxvJBfzL83FR34fpy0QnY960CC7jUdfRN3yaaSuMKDmkOtLeDl6DLUYvCTweMCGVxdB4A+LO3wldx447UHIgwkLmrF2X6Sn9fQu7hqq7j3ngfo7JDKnogVkK31fZhl2esVsayf+1dx2TDzmkbmGpBEI4hDPM1sUFm92pLyd9P5VZy/Sq4CKMWSLJwtr6rQAhj5b1/KguLRfx0ef+e8/wzJM8t0EfSkVjFzhfDkW9BLmypNMAmICvOhdRrWxU7U1Upm1DV1EK3EwJH3kJN+GVXcFB/1W77BsdXOVXT+MA6T04Yt0E/85zrirTVS5qymLqXQtibA6oetjNuarzY5uEjFuWbY8GHwoDvJ8mp7eKqLgzY8VwN1FeZppLDtzM9gNHzRED5yoql4Zm0AO3h0+tliy0t6YN6PQsrNlRcGQJJhjmfqL2zsBjDsXEaJS7WtTbBY+mDMNfxkjcGhAXNZhHiRiMSohh0JIMX06MZ2RUd68zy3QrWtiPwJycce+RHiJO5lSlxHwQ1i6dFSa1LDpyQUnbgkNNhZaoGEKRc9pum29cyqHxPv8Fs1P930/QtVWJzPTmLrERa3OtGhyIH/OvvsY+HfdaTLgORxwmpBpNXz6QpAsoSocf/1Z+6teJlXuE+cTOK1spOaZQYR0i5vCoaf9BSoW2CPjpnimURJmzBvAS5B8O+7dANMipdQnUzMbHIfbyUisICs7HuNfBxsf+UTWwgnJdgs/LPKdB2aedd2HkcZVEMQVDa36jyNmIPHqSlgw7Ols69HaoaDZiInXsj6fUCdt6ZYnpnwk6ElZjgjaEVKDGHCltPkNBPC8qq1kS0HvnrT7wCPRUmAFSDmjhzJiJtoAK4wGS6PjN1hFI/22lQ3rxOD2VNL3DpXqO/WaE4UL5ui9HLipRu2OvhQSyJRNq5xH1OvpnBF/urUsbPy6IPxkG112gHxwftKPDcwety9aSCO/PxDEhz1gsF5L0qam8PEe/wfKAVc7MO5MiSnLSF+l3e5kyK6Dst3bnDNGNTwxhgeRSKhLQdDdjLH+Xvm49tWfZlewQ98bln0ULmbp6nKIhWQD53OWo0h9ObT+WANoGlaKDjvNEL6B/RUzpeXoLkT2LLhI3V68kMQAPI9WKu4BIyHctRBSuwNFNt2yWWTAFwICG1OGDXFJBd0hhmAnj4/GHS/ZLWkrKluuV2lWmsGQwOBBWC+siDO7B3+Wbd6go3Udndrs+MVP6+tzDuqRzSyz3QDX0iUPjUmxOF9G6o5jHLZLXZ5oTQ/8krk05jk0SxKqixzl55q7gM8pMlS+P+0KP+kdmJByFBjOK/dtc+eMm1BM+BLkBvjQFankKnHy4E6oL76kQWaDgr3NAGj9fgYBp16/9NovXcTHx+W+LUxVQZ5lW5Lj+noirKz4GcE5o2XYlBJsDPxJEdCf+nfEUAWVwdwJ58djT3xTre74rdHfAynDFyWH0cQM31vq+a19fYzSdkx/8nx6jKCcWvM1eIaRzl97kEfOP/Bm3YDNjCKYM0g0eXkdxroeAWjuF5d3X9Cg1TrPEx25tGhuXn/xf+kopieuZqZmhMjc8EUhCAYhYo1F5j0RUlPAqhvwp2c4CPzbtRYhyKddYiZfY4kyyGSk9dd4fA2IBMBa8PgaBckEJF+DKVwfnPWCgVQoip6FGsZsCtbCli4ggtuLhwK4H48xNNz510pts/J+3XyKYI3OtSNBpfZ4Uz3eWaBxyAVI/ZeTwA2K5fFkvUsMPrYCy9GZVdV4AB3boz04o0ldmexgX4uxGIC47tFqtEE69yQ+C8zHSrhPLLlcieDGFTrniBqagSC18Mq7ssK9oanC1j3GRKq9oMuCaa8IkPxyTUOzH/ppxA0GhCaufFuveAo/34ppcPZFiPRJOoLDd1SApkh7BF9OLDJGsskmrJt9lBMh4kkdR17mCVNA2MI9attVw1Us4KTxrJ4dIenXLm0XaQGpjNemQzXscGtyuAPCCQ5AQ3LgF0Li61q+hl5d0gCestGdOWTF6fnXFDSQeOFt6Ycar8+uy9RTdH09UqIFwRMQitwZfjgSBV1KbeWVf2kAyEryXro2bC2ZgCt1tB1BkLX8kYfbtLUtR5BYjgxfSlKFzWbVPnCeVecsYSDNwdDsBeqTQfa3iq1EL9fgjUbO4CenYxe9DTUAZ2XxvqtwSvaX+GUCAQPZOlgEeh2dWAU559jE7zs+Le32hVkjvDQ6RTN+9/txvIWNLcvQU7Ge4Hgv00f4Ws+f7G7kD5pPtKCv7hJnYjyE2uej5AVRtfRYCSJY3nnjUEBpqmoEtXBK2uy5zCjOi13SDBGyi9YRyG+9C5wpPhwcrpEg7Q4dXs3XWpZBdaEBT3bWLfNk+OoBvTj5j4maw4/K4P53hzneVXUtpE29XSLFHm/ITIg4xwkYKpLtXAxxKIPp5iv1XSQy8DVYfts6HzEw+YXQ4SIC92GKMdxeGodcAM2b854rwUfB97h/0+YXHiPxuZo0/IvgwqMHmVmSciKRtGUSZv+KwQdhaR+yrV7+Yt9NsSafZ0RNumSHQZLddgHSWNbUD7Q/0KYsAb3Yp+zvzQME23fWLxwNmdSSuPriXWbD1KiJX4FmOmLZZLkrp9X3VJ3mEluo+0DjTn+2aEkfuCImZKfIqjH6EmJTMEvvUfyHKnYbKISQdX+d5Ld+u01ZyYHSbsxyrnjRqd4vxqVpe1eKbKfYpOAhK195WTkdI5jVszlIab5WXu76N7wfVMJEvDt2M+YHjESPxR8IM6DMOxe1oTRkHOr1jKJyP8xsu2sX0uHUtowxQf4HQ5I69LyozBSe1eJ/y8u6v3G0ZJnUQYOW8+FfqmNDN9KPGPqnHvxCYTJm/YzedqDm9C/D+jm9CCwGX1wmBA57xUtDH77dSjGFrBj/XBfe9z1MfmG7labvmycJb+s+1N2q6L1YBCYgGjMW4+utT2dwjPT9c4KFSLH+NdOzz5bcwvjAcmRmMDYF4c54Ji2GndbbltpWjcnE8UWaRO8nhgnaFiQYwa5IGaIA1uXvFUxRAG2wqrV9tp4Sl1J1xNw5RRRCX1Pu4ELeDB7rvpBU78t87+tfq3hYQfmU5Xsv/0Ca9DwUZR8Y5ucj9DhgcGMBrNGVkMk7DxDN9gR+/Z1Qn7IC8UjAcYxz6M9wAcusYYKH0aEyRTEqpVGEUwylM+lLOwK2JQ+bYAAeLydqaUgD4FN9koF/vWO2kwuM52PT+gJcEuv4U4ifTkgK0g+8gX9URtniNCx+uCB6Ehz+ALi7uAQmBrPtC0Sv00PdB1NzEZHK1Xom2x70wsfXJ2N5VSn6RNu67fsQe6yFkv9GB9P+RxGUB0X/DSLADvhYPj9+tcMofO8b7Qtuk0WnUYk7Urj7GRrAnet8PS8HU+gy9t49WYiNc8M6BH7mFsvNFs+QxSQxCzu0p4mHF3EleDeDS9SPhhwQ0M7JFWMhs7023Coxg+yhVNSeXr5Jl7kOeujkmSAB4llGznmnHw0KGFKKmL5Vfzrl67mL3s2sLLBBFtHtQpZ1Gg6zKN0AnA8zkMAIOkqoV+K40J8we8fOaOl6E4u8X7tob1Qv0JZlNZlGPgtzTcaLx2aJEnBWYRrCXlaz2zPabmSiBIKrifCAFhMLA7y/U0eUIQFRSRKh9N5A5VhARuFsFGTSm6D6OG6v1QqReioaxrbUgavwQrkwG+R1Hh1Jx3b/NGZWkn9pFrc+gyaJz8NHh4qjz7DYrbdPLFeIwFJP8mQ6mGnFKmqjVME8AxhhB9u7vs7zXBIAi+utxFHo1ypEB6kbLGzlFV0RiikKUcIH75DVsolBQHdHJmwyrK3cqM29TfoCreXKc6Y7ogjm/UmXUqRXXmPWMocTL7QbY+GYEEiUmobbWA5nxsSAn0vpcrjJBkJMftXnZxQsHXegvWftP5a9MgMGuw7xJTQl5KwR64DKXS3FQ+/VadQemUEBOtcv+uR2VFJKo9OD5sAthO6jexUHt3DsYbHcFJttNmn1c/+HXIwkfvgHsjZGUvxfD3DFTLWfrw36cRMBNXcbVarSFTRYXLiw1WVP/6ZHMbRDimLLasVJXdKcHtXjQAjRNCVMaKMMG9ujGof5xziw8HpsgOzDREv4UJg2mxWMfLKI0peTAdLmEqe6AomUpSRhRtSBD1F7a5ovRSp67BheFtS40P+P/geyK65K925myUJX2JysReMxJxiME+veay6tdek63GYoAJS6f0G5SSaBDdVK3GsBwWI7cSDvREVzuakIU9E/WKyGjiFId6wK/7bnE7zs6CWlIAJ8gQzMl1JTsy/yKyLuSShpQG20ta7fgOQPYgToZjvAbCmOzPSoRDYcXtw1mtPCaMNiLrbBNNEQwO5bCoeVJl2ZVuyEVZ9bTD0/aTAkus5E/tC57JGCgF7JzY6sJfqIkoZ24/NhJYcY8ZX9p0ZP9hS22Dg8ey1u4B14Ck2JMiJPgdmhznecy6ZSDlOZn6Xx0j5khnyHREQ7SFRLucGcrXKzN4B513v+ydcKAMw3PyXp8/BJVjFEkPKcQuPtPFr+zqiZCTAvOVVh/VTKs/BVXYoqy9hrB9kmzYrt2jfnBEMevhwIhacZPWkieqmhm2G86/AT7ILuyEDcgMhPUO5N0E7PivgpefMlslABTEYb2Wma+FK+F8TSPirz9Dco6nVtd1P1vDdt3rnrhcvdD60j6CF2FoHb2BvK15mP3HI2UEm2UaLzjRq04SPFLNYmkbfpKWHIPFzxJN3KjCdxYJb/trPBCHKeyU+BRBtVa7rjI7Kc4hVWtv7qMTTY8g3akYi4HtctHynRyatDFD5as2F2m+tv8x8FwEhR8t6ysWe1gdJpd878cDWjeuCcZnfNGzsGsMU1HaQ3UsI/8QAgXmtHniSdxqDiTACIP4pCiY94ZbKxlK7A1atHivMkobxQs5FBC3x2mU5iBfTNiLkoqhVRyZhcKfKTINb2tS+Tahjbm3QrgiF/qaUuysf6Ra4ah6TeNi5iMCU3z3JObG3dz+CEuDmw6b+qr0GB46XKO4epwtxFTRHg3l6afG8yY/uvYtITkOLTLvGC4nf+Hwie5VfIbUXVxv0Knkxqijcym2yYGWRS8Q+i43t2lgzdN+y7UFlSpQWRLP/5zqEzgFQeSVreU7I6cJ02UihpIH4ZTMTzjyj5hjmO5iHEBGfYjC7DWL+3SP4F0RXK7rq7jiELHxrer47fUbvK3gHtHK0yts18dAYOZviZlNEanjtG2zh1s/x10WfpvVXVkz1VogbjUXW6vBH3ftzrlRYNaAYfZy9iAu/Ff6+hS3PLl0EgkmVUpuunraqxauTLWAtz5/kv9/D2Oy1pQ/6e7bs5Mt5d0q+5UlYqVsgC6Kq0xzn3po4Vw20MVQ6SfpR8DJexLwu4DI/DKFXt01t/e6NebWlTnuANgfVmy7imglTR3tkggLd96UlEn2l6ATaBvpXtYQwujlgKTnSit6B8/ME3C6VsO5+GiJycZygjzVqY4VmrvC3WZa0dFya77If6AYBijD9hFgKFGwFMjbRoeuPO/4NlL+UzAXUCC4yq0Kn/gmWCwFogSM5gzrsjCaGfjuSFto0FOF9XUG8FI9qoNsn43eVOW4Ecm4M9GkuXdhIpZHOfay3yY72axrXIS4Ey8939gdhklZjIZgIEHN8NI2wxfPUeDVBmhzl7vy5FO2BNeJM+XDofAr2KblLROkUwBymo/4x3L84tB8kEWzmqD7o1VBteA+cg8muOcz6R6pZOPU52mmniUBryAs7dNQjGf4irglrC7PdUfSqZou76Gy7B0PaxDKH1Y59absOynHLbVeM44HggyQw4F3BbkiPN6g20pupdoxRqYSOb8iHZwPGb5gwRZeSf/RRh5rvSIrr2QI5ICLzLGBeoS2gHJYMxUDxL//8tGrTBoGV7bDlMWwENaMkG/o/6aQHCYwxmEo6MT+TiHj0gcgyrV8W2mUOgFyzbWDqMaby6aH8rwNDaMBe2trZ8kE+dQWgFieCCLFJYBuhIf/sYxSLo4BuDeRnKK+6cQK+FaygHuD28IvvV3zMkdsaFPgtgyuf0u8GCs6jixL2QFOauextX+PlZHTW9ceL/Ren3aBkPpDp7k0AVh0iS1+eiRRZNZABRlfJDF45gjCmZvj7LoVm5oa50dzW1cHcgVeMDvhfuZYKatv8TqJA+cEnbMZYWBNUgmp03hz2lCnmp6LHRyQfI9wEWkDYc6u6JqZrBBtb1X3+s2PZ+H3gY5dkTfu9/Y2vnuwCb8OsTBUiXA+PpQ19SOMuutQaHR4cAqGwOMk5J2vH5laqLxvKb5+Y7VtY+a6rlc92tQqQCVZ0cz0xcg/0h0OS2O2xnijRxohGrolRK5yoYPa5UPa9olAoeNkPFiynmav8+gpw3ELOiKxPAXlXfQIrBdo5NcMPxX88xhzELHYVlDxOEKh+8GQ1ROCtlaai8YiGyEh1ozN/9BAXsf8L9yNl7UtLuGzvi+7ZdDF10f8F7r9Z2UnWZ3PsTQuhmhDSycbDhVMDpRJD1ZRrPdEFzGwwY7ttNQRzOyhcAdexlCYFioXdfamY8aT8NB7/D5GZrrvpN2ZZvIuOMbK63L4uzlTnOzcZOhxc76zKm4c7cxQuPUySu/h5ROrRgWI9EAZPLxLJ186O/X6UT/R4iHw8FF3yZNKPv0AL31kchNKn0MeSzKLkM5abBo5hFV7JYUqm9RmWConv92qPQLj0v2uRoO5v6v2BswNw72rA8bYbm0GwuOyxlPSscdpx3W35szEbAhbKa9mkpgWeKBU9HgbppJwOvjcT0qunC9HqEwI/MxJvaV7OUaRf9hS9IzKdYv4VhVZjMC7l//9vHd6vC2f6Qw0uopu8X01jv5jV1zYqRYBNrrIrnKmYx0yjcGandjisTZEV0sllEivA+100Sn0DYX7QatY/+gailEa40kfGIOhgOCO0dOoyvfneTDvmPnGiNLOSo0XOZV1U69UX+NMLbKtvBvjo06f7q0DkPbkGoP9Njpr2Ae9arKquwYaSqCZsWywfZvvK26fitO1DDkOTHM4MG1R3Vmuj5R1IcxrM1zV7pS7b4oeHhRUl4ELhmDP4N8jtwArV1Z5sjXduyBdBhwP9HgvAurDuy1yjsYHpUlJa1bueRV/9xKFKDDsNBi8Hl7XxSKNhg4g8buWoTMISeSWrALNOAqQ2FkHEmGih1Jli4WdljNziPrKHWeM2LkH2vo1UL/fFK79ySI+P2H5sluY2p/D/jjrXjksykd4mftqPJyK+0fMQCWBqkkvZUYA+fyPkvu2NW1vQq+rlK+nLm/uITkdgMJaDdOwqauU/Rc/vdtQ6iEGbGuK96J8TNwOyo1pLEePC4SNP54YD2at3Sep/Fy5M3nCAtNi3cTAGMtpAPTSZe6Bwmgd7RyZc0vd25SwqmwL9eikpXqipJQx11XEXcUw1dNJ9J/GIh/mC+qXwhyzv9vLsGCxyaqlVmiA0dKArbmE0XD8SZrmMqbSrSyYfK6Ge/JC6KrP7R4elB4yM4NOOcW7Vucmi5OKTwzvFh53nD5u4/OtjDX0tR9wN0P4cHv3D2lnP14QPrVBxauvpwp1TZr3YKdGVXJT2UmsW1E9M6RukTDncYO0DvY/SC3tnJG/XZr9HIPDb+UuA3tUJHwWYqJisXlXpDBMBXvqqDnZadnhbEYUoxdJP9Q7ErDXoe9lGMZeNmGEofVrbEXkikDZnnqBuD3k1dCjFtgOXS2ifhuc27025PH010XS7hBzRem6MCznOLjvIuLkL8QKwl1qA3JvUpcBRgDFuf2ZdEEeMKJws4guOH3yhQBGZSpvh4XMGP0igFRJ9wHj6fxU6vDXzokZjFcYF7cmce5gRnHZ3e17R0sZcaHjPAGdRHjWeiGhxfYL3cSRaQpc3PmlFcDYDFyjwddESIEupcGjyQRE8/n7o6c7E/sq4xsXCzLh7fJw5A+vlGqqn5VUT1JdgmNegrhInKwutQIVfuLrl0xDCspSXRAl1zdrC6FbBzNLw1I0aBexGqOCPiOujsa6/EfvZ9ojWMcn28c7eVm/6sE9HISJHR6UBLpP9ol6rDypY9KIdN149/e2dAc634AkT6xgkNLlheRfdIpran6m4O4/ED8aro1wZI/5UId9VZu3UuEZyV2JHgZl+8cGgMdOmCRhka8wVG/x/nXbcj69kHVgVhpIJhiLZB8Fk0ygihPQPzgpzKm6Uyg9OSJnLRnEaM02rG3n2mzEDqwyEvPjNo2v0iNOTarBzyC+I5UbbJMdqkc49x6IPttmwpNfhTl11mC8zGCAJ95RQHCSt0vZcbTRIOwY4V7rHAhdA/eksVt5y8HePCg1GXO/+y6iQMddw/MlPSE3LKZwmnOQ//T4nuPzRGAxihupjkuE2OzcpDkom17oDACuT38kXmHypPSlsnoLh2NfqO6I7aHn/GtusN2mQWARvAcRe3QLuF38Hphb0Sr4BSgkPasw4WTce68HfkpqUPQ2GbN+FQpqwjmXhQtXj6HPM/GYY0d1FH36sq/Pgj6BI2l6a52GGrue1NPyyIZd2I98IK0+fMqvav5p8J5iUILoSbCN+ZZ11W96CzQWNL3HF2uijVvL0s7vFTczCcNctxoI0sx7L34EwiuimehKIFQxoQ60K5FQyzIEq1cVzvvo9p/YzT/CYxSK6la2grAAdMkg2wuo5cYvZfNpdNpW2ale4YkeaulfmGwFbLvVjMK3vM67KfMbp7IXUOnz9nEwrMVQT0VgqTsVB9kzib7RuErvx9uOlB6CN2l8DKbM11tY+RQSJNdceoXw6PYluCu9Accruz0YWy6LTbmznhNm2b3Lmq4V64+USGmS+8RAWsfteWANXse6mNZrkV6AOWMXSIH1KT5pG6Oj0/aVwyp4Olod2SFiGwWhh2dVT5oDnkzdBIzt7KB12F5UO9RCFnwzTJcP0CmSotaZ+K9bfBeSEXR24QaYCEQBtWDAySufyGsabVWCebwTT6ipwpBQQ9LCI8stTqZLGOeffzheekVpxYld+n7f8EKVyDkpHyY8M+Zj3hg9rsnYqeIcVgOovQpkef5T25AhtjPybvlzXcZRnUpBrTLJtscnmWog+Rw9kIFP7KXTl3BuTQLThyUEYNNz23l1R3S4DpNGKQnrnkS7vhclAKEWJ5yC4flLlf13Ee+LHBn66YlIwaE+GtlOnpDoCOlb9tcI4uFGSYZ+rl7+cZwJIG3zTE/s1eTtkdxZkrWORPJgsNC4SPJyb+IsM4gt7+iNU0LQHsivl/8yy3XIJgmSgXJnn8COunSfaAdV01ma5dT9qUlFrhvtU9F+ZkckXT8bboYwQtNX/uaWtYKzgGqaGcgkb7SVr6TXhnFikKKnAJzvpZK07shVf0WuTEyedurOpQOEjAjcohy/REt7ox96yTU39mVxQ7XxCzTvOsKOiY9SuHIyC+5srjVvoFe1DnvtrNL9veFe2cby91cKjP3AfuONhB6ffrtyLwf3aq7RxLAhDUvd8nbEXGp6n8ZrfAGElJIb0gAUcrah9JMBIhcLCjZ2QyvdUukuoNjxqHxKkVgMSc5Bg+tWFD9wyih5x2iL0HNcX0P38uhGNsbaChx43Z3cjHKBc7kjJ4Rrgnkf7f3RbT2cJJqIYntwpch/Meq59eo0OgCdYULxKud3MQVzz2IEYadwp2g88jcmIABNhgGeMHWihx1Dl9d7sa+U+MSV6IppXSTxrfsM7SJCBwwdWS3qeOVN5tBzsQriaBXVhw4FY/tUpWvRCyqtCuxLeaE5HF1BqYQQLZTAS6Ki0Z+KVgfDYB57dWkzypmGBwOU/vw4JvM0efqU0+qiMN04a9r45KojPHwXPi4ZvOQeOfQVgCwSwA6iecIEeE5z6kkqc7BcHFA0nbngep7girA465QDaVlvfVt/rQ+niYEhJk78y9+6DM3S+Lp0j0efaQLMDyNbzgGZ4+RqhasEXvAO0mbXI2WkNaKSFQlK6RPZz6M/j6lL6GqfOfAMHIJ69z80qXNer3B6EqPyZCF+1+1SazGKWYhrtBmO7wqEDiqvFCV7nhBxo24sKlmr+UxcK4YwsqwLdAWxw7pd1TCpu9UfOZFCk2ErfZoyhF4NhJJ2eZz4VY8cBpIpz/9ykTtG9+xXTfUzZCPobn/cGG9/ELeVJBilpjz/v4swiPOiqnZ+Uy/DYds2cwtj0wisgMhWECugppwabaAB4SIARM0dnDJc4ulQPQoJ3uG46iyaCaxiqtHIyTmu5y488K7nGiLpE8xF5Qscy6QiAg8ZFLhi1eG/Ir37MMeItiCc2ZTKmQKVlbaORqo3VP3w1G7j/sBc4niUdTESuMtodCuR4dHMmSTwpMJtrziNydChEtFW5amtu/rxUXoDAsHovWAbV9/jWzSYJ2Sqvw2jNq6VbgON4UKXQHuYlfG/DYYJbtsY9y8Ci5u+FZSSou9MvNKUwc0ipwv8MyNq67LjaC9Zo/N4ZYIjJD4awNYfMGYfJBHIFSU7pvJSFmPs4qrs1ILRm7WM9U+t0NoJ98a2wC5oIm6bSZdbzBpih/scuqx2BsOiC7SoTfscS6PmHgtJXG6eFTYUfe/JCzmpVkENU8OlNRt/mdgwt+RTOqETnNUReN6tEWxfCAsLZf7rFVtNUeWzuEMhZs0Bf+6jrbREDMf9Z2JHKMZRcVQCx8gD+n8D4LF/6omuvL7nkNHpPSm8QIjLUTLm+IvgsNhVeQBjPySRHoROMQrnFW2f3eFL8QT13YABUAwu138Jeby2J+apTycThAmWZu+OSUYNHs2UquGE93UOkdfh1PQ30BF8c1tGvgvTU5Gri5dXMwzE4teF1SkxhSZJ+UOFZ0msz0M71YX31edJSTlfHbDRrINuFUaznhx7ReE+gU9bmwEvVrC05ksOfGeFrYjpHSj/KKEo35fReDzGNQUJPx9dsiT9tDSoXQbrOnC9yOjI7qHhOIWEDDWW0F/oo4g6Hu8fqvjDBMsonoMVNQC75AsnSPYPRyfDEBVMZuq9bQpImgBU/3eWOpQfC6WGAF2VF9K+TI//shms3fyOP1xyfMD08oM1SNW8hZvlDC9RRn5O3O0dSkohhR3DJmO2Vkn2uMB5rgOxy9SZVR3B3GQdNW4oMnhBUYCKok2g1d1kDd84TUBmEZWIHr+Hxg59OnpVJnJX0ziCcvMHmnhq08sJLcC8i18L2mNgr3aKr3BAxnd3oIx98zCqZtwQxxMZQ06hHSskKamiE7HOFluAjUdh0y+jhtKopW3NtXHCVH7RE2PuBFFfxDybbQCJaACfxjYj9dkfJikkGOOXpORmdAOBbsV4txH1IjGs1cCejPScWnOAhQDjht/vG7zAzDP4ZNITHz8WBN9Mk5UkPGrh01Vr4GZm6gn7ZlJwUHGbb8CPL9Niv8FHHBYXr6kYUGLDG9774cOx1lIMu7sJnzmYCMVMThuSXUPXCOcWATPzp8q32zXqIeVo/VH+nxriTbuyLDrvcvG0DHVpF6u3OpM++B3DKQZn0WAdXM5QtEzWG38XxqkD1QzZj/NQRcIUZ/EaHlbJrGhwdkmYI8lKdBbadW1uv6IhH07gvrmDivNdIWi9w7SbtYnTKnjGxhN/mnYEXpMu2Qrkan4Wi8FTwEBVE+WkgeOhk3/otgqhLCqNTLbGSG0RUD2VrQr9vHS/h2aI1JJxcwvVZGQJjyl9po2rM9LObKVzwFGnsZIbBzC8lkiqBVroX+Xj1rZ9BJc4oFcHrJRgau4eiGTCWTUY9RFLGAd/zAAECqBkPQsixmo/NuJkL8u9LjoxVEfyGjMC9ZRjGCXf1IyK01k34wAcfEuxTmSaOIvMoC2OLimGBKXW6BIWMXpMo4NFSfQJ5tPigaq+ENXR1wHggIvCcgRh0wTasAY7gGM3jMfYc33H7mRNfq5RYXouYFctC7qf0EB/wutWehpq3GY2iJfaLNaqftCE0un8b+E9o8h07YIoY18PMJwfHOQAq2njw7mZyDoLqW8qBS58PsFD9qO6cCRAPeMlmAm7/AwKdncxPjRu4dOwf+QHCgz+mTEmc77Dk1PEAz4BzcgymUkUG8suvxPczEQBbA7whCzJfRxp4QFyshZ0QCA6kwmxrsAAuw6XJqbaloATMFWG8D9UTIAgZ9fupF7nlERFW7VfJG/dQxHYG534Fp8Bnf4VL+Psbw+OHGD2P6G2NB0Cw3pDUh6PSHFGNBFutNus+jzXNnn0ea2BssfvW7kjfwvMZ1zEbNJ7f9tqTYiq4rE05a8Ezzb6Ug/GXEKkork24thoFH1+AU9LZrETanj0I0IjNZ1oDPildwZfsqFvDr4UIUCby6Db2gNiIIj/bynw7B9nFxbXUGh290d59RoaTVzXSeY4OcvXDe4URq130PHBXLfYA1r+buCz0G7IqTzm3FyDNoXY3CS/zQj8tUY2FGKtUt7DCS6EE5ZNM0PuYuRykwYbt+5z4HXhRh15fxAEkxgJyfKkj+l1lfR85Ln92Trje/5r6M42dKXehfxNXsNHTi1Ha3uiLJLX1sYIegIFWsPPUNKoJIrTTs0XC153+Hz5PZtMHNtt6v8gfSYKzy3z32P8310OvIh/wUQQLplVUza7vqSF5Xi0rnrbqRwNBwyfBN6KjJ4q1LjoEbC45xPSa8dM08ZF0yPRWxAIrpgovyoF8K2qkO9pcFCwk7km9KVusgvQQK4n+CP5iOE25G+ccNcAPhN+SSPssEeyzDW+CM/cgMzqXQooGFFny9xm8vnbklc31coB2gqElkA5T6mNbxwUCDe4QRtmYPS0/sXpM4p7/vfo9jTPJ/1WpWqq7VZGz/84gXrW27x4Myq2DlY1S9i8iTrB8SgVEoYJL5LTuCkA1aKaCgDu772hb3rIPB1i9DmHYiNRU+2HEt0ppqyhBQ0Ms9FFJ5eup1UU2O1jgQH+4nbTgXCY5KuJoTncJJV0WNsdDnm/6L+5o6cKJ5sv4B+i6M3eDpZB5urKdF+tNqjuc3hnlp2GgVKpiqcVw67XkQNrSxB8ZZqTQuicnLJ8oND/y5vNzJ3wt0Xztoornw2EXuh2l05NiJEO6VjsYUCOR4bvZoqHjV7Y7yv7eu5AmXnfaXb5RdC3BMKgQPiWqnTf56TU0mMmzT2j60wcuEI9f/yM9CahGgdwHhb1BTuC7ne9QNzJU6S3mFZWiyecx2ckXZTgVTU8Ad1yXKkXjd9ZsI9jB5rT4WaMtsE5wn2rQk4PpnrXnhQnXXzSV7+lR/v0QlbMksHK8E48TWaqlLoFITYBQauR/nqeITZMoHWAyVTNTvPjAYbsTBx3og9tKEKGpTVF7s86Gguo4Z6UHhXd0wBWLNMYFWcOS9CkpEkuasq6vALQCt6UHczXn40sgrsbhQCdDV0PaTD0kxzoDJzsQQYIRtyQp3d7KCISwhDc5OljXi2R0CAqEgUdfswUFWqMrJBq6Nry6u0+Sn9CSL7aOJeWKRA8PuwUyrSRSdTYBMpMwleguG8e4VeDQn3z5HULrQcqbIM3k1Gf3NMY6je3aViJ3M7Xn3f3QTssvmEFtU/M7CwW5YWCOQI0vLG4HND3EMQMqrzf+3LfZ83TmZA1eAgh3vsR2LJU9AGO1GMlhcjIyLshSrbDidQ9SS8biHgZ5ho/vFutjq4dOyQDPix4EgMJhL4B5PofYaujwfXYHdt8vIYDISkqFjmHi/0tX5UjFaXhMB4rKSP/hOpaqdsuBxDwRL4PjAR9ue1/OFfMavx4oNUM8+0NLIa0eGrb6lzJMeyPYaWALqPQF0wv/Z3pFYZFDsPmMlUcrRPZ3W8cY8PYNZQBirvcMyyuEsBNLOyyVTtIVQdYdNA+EbejtFvS3N1ntsHFIUUiOAr63xqhM9zuCz01JLaArmZCB5Z2PIXn00YX3+dkwBSPNYNYYxRHB9iSbiezwHaL2bJVQpQvBykJTsxGXEcO1EuSdspLxPrRkF3G4mH0SykFynDKXSmp13s6AThpIeLAu4ZREoeU9fp4NGDLDQ4S2cLNaQ7aEBhyXOFjsEFaKnKx9V8/7TYsvwOsEGYLWAAh5gzd9cj16DnVdYtCp/YbR1mXNorfBoy6EDMydx/+SnIC05A7j2xCO0aAcUvtjka8cQMpCLe5egzZ9/dO0grW03EfNHeAzpZkd4sApDoQiJyedos3amWdYjMb4Qfe5frhtoB+GVAtXlMVMmmsErSMb2nnMm4ctO7x4KuvXZmNYIptBJ52/RxznXtZTQL1gEZLCREuNMNoXt3A4ewdKBT8QHTHv0PWVpOvStmykF5XScArrfVYHWvmcbT//Ro16ZWF8NmwJXuneMsZFJSt1isEuUyU6iLCYpiZErXjtWvtUip6/8d5W2ZVbwv3XcfZDOups5kZ7AMSIUUD+4uOAp5oeratgo5BUwbA+KBG/6RjDPrxc5h/H2vu78m06i22WJj+0XhHzhkrreqnJOT/beYcQLyFPCVjQ1H6fgRwDz/1f5BloGJcSXaIVAQbJ/TVg84jkkaxNHReslVkAqk4+KJphb4l1BFBp5gWeee5eHXH7Ogd97CHeitk2aSU87hhCeCbJAJXWiHAPG60QWUNdLW0s7KMSN/LvFERcJo/2RmYMXshUXEBDldYBCBJ3fMgbVWMxloOCTNsrpis1RbZ7ybEE7QgKL4W2Wg6If8OD7dOWCxdfQX7Ts6431gdkpI0e4rqA1rlur2XlD/WYCqNM2fdbFs3ky10fbuetiNuL9GLUPIW15QYL44jh1L4VeSlzgSP2MhxZz2ZPlyXv6L6mNJdogtieEGZ9plJjGySQb9KIEvXF+xpzSAHOUC5XifdMBlQ9wqfOQZ2NH9XoyGN1WVVBIjZUdSZSLKNMb8yLZFbyWj7B2y96HTCXx0JmOJr3Ldcjz28xqKPg5xzePfpRt5A1t8VNvUoWN7Vgf/IcU2YcDuPl6TN8xEPTDnQoXWlFW3AXN2ih+pqy6035yeVPhFsglZz6KNV9pJL+Dy6aDLvazGL47Oqsn2QKhg+wOptCFNBeQEMaFUeZStxO76JCtPKQubFomhO5KLs6NgZfVAQt6U0rJBCbWTqkUyo+XGJEPLOrehq8TrU6L3U65FNVT/kvHX4YNCgNXz4ipPJ5E5YDYx4y/IJI8LHfBk8jQ2vgAAg8bffVcKkjLHBPHHlYcEx2AgWa+8i83n13s9oyCgEpEDS97rH/XnVXfqWvrO372Kds1cM6klvfL9PWsrtlwy149t1msTLaWqcJ3bO/czMUUzpT31uQDOdEPrypqd5jpi0vRZLQIZr2WFZ7vZueqvNe7AUmYeEHGeZzYrd1cUIXqir1DN/YOtyODeYmgBiX8hlGfYKOnWmJAQ8+88YlfE5VML7yz3JtlfQ9VxQmbkvo7DZYqBcphBb+Jk8sDP0zWmgVmwo8py6PDbukaIMdwaBziTVxCWiNpHbfxNGfEw88Qio5tETqwdebmvJim6oi3JsYEz5FyLdcYeYX0U5LQ99iJPXVop+yG43xpdTxL+ab16g+oW5C3O0+onz5o55lSt0Pf45jNM92NYaeGAoh/pjGfNnu2zf4oEqssBfjLKVuvluZ27wk0AXnr4wCkjm2QW47g4FeI5KUfU+IN8PSZcq+etcZ6zs79ZvmUg4YPWI7GEeKEfZWv6rhwLBF+otCjbKL9ZJT03m81OIIy/ZVgkf3aGXY++acTuZ/6ZvYGaxfWB6WD5DHE3ts59T7f9pIJ0ExQhokyGdu1Cj1jV+VGRbTUMip40YQVsMpAAr/RgRK6nQ/xyvDE5xef58SZzh1wbzpmw/W0vYcKv1DxgI23spk5iBQVqV7316Oi5jE4RraQfGAEkuqkeiU4Xgm52G4haqfd5LYUzSysPHKWy5QCf6Qm6r1ra4Udr30fvYOxQ2GDG/A1xPjZNXUAFuTF8+ONz3hqS7DXkU5K2sr1U8Xv4b8y59sGkiVzDMrRYTA8UF837eCqlARjBQHUm7x7HCyMZZwq1UQEXmP4wDQE2kYNQ9jUrrrfL0aZmaaEDaD/9iDv/Jgd3uGIJAtuadPaA3T3M+wdJohjR5lXEsPsa9DNWS8Ajf3rraOIwQ+MWFWcpYlgvaPCsFYJURLbKrhBrixnsiYLO2cw28YyA/jA6GI++GUCDgQPA+Tp1ug5MNB8/oasNDn2ykqhsVmm9g+9CWbGtOK+SPdb8v+0J8KLExgV3o5SSG+7h4/CahQtCFNooGj4rj/eUWne93lS5KoH8NrFVyvOyRkA6yRCB4xd1HP5p8tbfSK/y5rgfd9svEHFZaciQeBpi+k2N4kfGjMIsus5icOxJDodoheHILI7h2aSlAtIPFkQvfo9k8WcZQG0ls5r1sCuhyDjqhEm0wO9hNPVo2GUxk0rcT79FYWOBwFmCwsa+pCMC8pvz01zrGjmxEiMU80erUiBckl419VfY18JRsO0foi5lfrhtoSpgCgFI+9EIxmWzNQrPccooiVsnIXAWFJLSFnn1iP4b6jbmEUdP68bYTl9Y860Q2BO1rTA+UQKfnQNbkZkcIdDNkbjebj/XIdUHUG8hteno/SgImlHN45d0zj1RafpDU6XMow5KZFRMnR/86bYB3acXLcesVhiJv60MjrOos3A4UqdZ2QUuFQZSWvwFo/LQ2htc4zBSB9jChZTOeqtrgCoiK9ZpPiOwFB58QzCGaEhcQIn4po/KrID6CAoDH+kcWwGf50DEwgafLb3LOAE5aHTiRLfMSeDa4gDKKWE2bmrhEnnTjE7w0ji+EVKg7VhppAooF207jNDrOVnLFFDGLvVIdM5UFlwIFG0kUSSsKRyPiODakq03egzixiEKwh4ux7jMs6basItrqFW4G0Nw4Jr4G33BRIP890swcqcjmWedeP+r1WHRxP4ZAcZVlkkdKqCclLJEQF+wBGQZFB5uaRZ15lCDP+15kvFW8CJBc3/wfIe3tQ5EHT+wg99eHwLvK0zRbXm2LR8bl9x/fxupoIEf2pfByE5zkFlP5r1Vq9nWhzmFQGhMOLm2zH8N9XLJqX5pY7RuJYkgZxNx8s9NfmT5HuIatuIvF0Q2NHuvg/pZdgWiJvtXS5ZAE4OhxeMXkYCfUH9U1NGQoVrgnVakHGb7zSrtxZ7aTz8OynZ3mjW8jTyUsXlcZmgmgzmtdnBSfHQ1QbWvu2NE4x5AgA9gzH4fjEjnmR5Z2EwCFwOADk0cCvBQm/Lhz/wi3OPoO586E/ZNh+VyKuM5Ivbhm4v0kwsavns8IBMI6McndCnH/2+9ZAU1p4re1X3bH0OdXybo3VhTk/k9Mdvc/r1oxrVBmZ5lUawL6w2nuYve7aH7KBHdUG4Z0VijieJ2hAsWjh06Xd85YteOo+AOLdL+KNPe416FMCKB+V01fOM7PDvqH6PU305i17oEutHWcmkfdDinfTWbUDAQq0ogA5E7vWL6Tl5cinp4Dvx9weNKU/8CZN/ycZIYCEs3QVohV2Li1K8grFUfuGYc+VVZRQ2o5rElMkYbU10OVdVNRlzPbYwSH4DFjWtRVLTNJgtaCC/pqSIW3iSBcKr9NQ514o34ngbJAVa/IQaXdhJLHDuk9vB2UYye9lr2McrXBekKMytgn9+z1uKirkGa6GStzwwxYnb0ggFRALmVjTf22Sl8HclSrjrcFLJ6dLhaPRGjOoH9mQzfywCXSzW7dLH1Adw9OqEvHSWcy41asnLqKL4++vz/fydVbWLjN/WHNOCAsIgj1CEA/AFN2EP6ONSD70j6dwt/DNsxVAYqHCFLS2nknsMnZAppoGNZMz+ELodlQVGZrytpp1wRlsNJBh29N21Q4OuByooPdzVlYEdnUb+tk3N7hHyDlivilsO2Ky2n/ulx0QVNLIvm572k9s8Re8qiH9looqNvax9JIqTbtRp9pTb4h33t1CXbLwd9ROZjL5+Zn0Jvt1/hBQ2KKcQLNBFOKZPH1CnCaxYS8NJyJhaea2JSDwP7mWJb7jrtXaZX2W2/ApR+Baa+cZ2FrBJT1UNkUIxk1l7jVmwrYe5BBl7aQnaYVlxljOKamnUBMzQYSsqT3/mMNVFPGT9h45jhNMXcbLDb2a7n5BaJy9IdK5rkIi/CNQ8VK1tO0AG8JMzs/YRvfWa6mtshuyOsCcBG/J8tyL14FxAdKZjyUBPaxO1p9Ib8pieRQ2T8zHKcRYxg5+Z+Uhb5s66rjPRifzLRDwM3RLZ8bp22iquvGaqIu6+YmJZa4fy5M21GD6edNKZBNCrYACsLdfzLewEF2jcH6+Uiy9pZsb0z8f592yhtQY1De5qH2eWT2Gt34Fc7Q72R9x5xziEYfmii3jF3gEHy0IVPKSMMB3DLFxMf116d2UN0+cnl1VlawhMiaFgVQmIbbI8z7+ymkxJHo2SdFzoRlMfJFMvTvov/sIDdC9LO8yE/Z7QwTg5gEhrdchsBUvVaAjj3FsBmJaz7C1x7qFZQKNdAzY3jsl7rGWNo5cCTzvsXndCrlbFSBwuILSTYThF5cLVgaxmhm25FwMPHSlBLoxy3Nh7+MAqSJovcX35WGNW6ltLPa5tWcOHPMN8L2AZn89Cn7vsPHKCPQSFJxWk+O/wkFQ1Q++20RQs1RhDoM5/VFDbuKzBnu3jlaVmsNC4Ue54YuPGJEO3VcAsElX9zMoJq3LispUl+yjAFuUJUmShxUv3q17tMpBwnvTgitcF2xEUIJUCes8YTlnA8ZRKXBVfisQcV8cav4MVN5H7Qvzk2VbHCDVMkMm5r1NmtUG6M4i+Bn9iXEs11NEVav0tr92JXasIjgeuK4q8pPcoZiLi/kuNQcLF7IXwZ1zHM08gzbXnsmxgaiyUxCAKsVbqFc7+EprhIJIYfhZE4xW0mUrougGAMoZIXr+7bvqvcF8nBF6WwvYPBkmvK8KxugT2LGP5IyGDPN2fNdNGNzMzKzLcj1QLDEz7mig2Xx1OkhhSAfrVI2kgub3+F+xGXzlve7QHSJ1OCtGOxaM6qASYlL2k/Wr8FO9bG7SGLVMC5KRQhhtvJ18XXfgKLDMU8ZK7gMtf+qI7Ek0GjFO4Xr5RQEL8JEwBtodF0XeVkDNQ9+wISmdJSkjk5lJtEgrfS3R63uh2I8/C8bpssc4WDf0E4awYA1N86Hu+rBBVLEMTPAq+FLNfxF+bwxhgdf0P0zH3BPhGEy8wpz6QshlakpzkhkkK7m0plORoI1OyriBIZ6CEDyNkAo/q+WMiIkZtGY/oAslzsO1BMJJiuWuTlBSx7atTwynYP/SbwtpICJByXJQhTin9BVF+tOLWdJMYNhAC67dOOztxhZT79NB0LiAQaJWn7WstVv3LeKjkKu4SrPDUJYIyOO7cXCsA8b/v5YdO333tj/0leMc6CSWdUNahhNpSbansNKxNxtTVuEVAS2NgKOrGIWLsxLfUuaCbwtyEIxYAfUi8qITMWVwvPjn9hF5RTK1p37YZTMYf4sw6ngYMVxFuj7Zjf6pcf/ZqbOB4ER4626Cqisi1IYnbO/Ulx9JmpW9jOxldE27aeaxzXK9PcHL4p/fnrE2tpUIY7l6AOyecDjCQc7FPazwLm0N+nAJ8Uly9UDp2umFVlppqgFEA4Vye4wViFCT1efaN9kpNV37DZQbPfqJHb7+/P0nZSrQhCKQFo7meOf7aAhM894tuoV0SHbsuAKIBeMNPLVYawGacYha6t/6ArBaNVnYLusy57QauzshUcwadv8TDCat5tBBuXfuXk2PR4cuCvuWWasU1ZNWqRsAFXnqoal55v5D/vOa59fl/5RADAWmrBq31CJMEHtr1+s9Eel5lDkosvgjUnu3HGupSv6O4WlJunnAZXel3s0W9d5AMrLmjd7URu87mEkY92vVQM0ElNCA20ZS5m2q7kkHGHNBisrlzJ7PbAds0yw2eqE42u84wAAsaGyEgLI6teqdtt/gmcbb9m4RAwrl4D7WgLTTASGd+7oIF62A5JFze03RcbaIyY6rwpYLnFyipJa0F1880HzNjB82Mzo/650bjswg6mhrPgbCVuLEVPxTfXtO6KpS98asJuuaL2VXuUTJaGU+ISmarvAj0KeQo/t48vy+ijHahxvOQkEtz0ieoENj1aqUMnSgfvMIPEk8JYZyrw1GPtonU4n6iTKnkCiv/7oDGep9tgsVXSlB57ZhxSrJZHL/KA9Jjs/DHo8RxWzQf/hIcEDYFFbePs0z1+1kQuXN99xXS9SCGXWAezAdrMhR6+Kgpq5+d2tGIs+k3RNNBNrSx6gHykOYREqxv04ozAFUawVSp7C6LzbwVWGbv0PpUTwF6x9rDb+5f1L4LVLFNGUR8/SZh8l8DAbbLEgtHgfg2Dw7k6pTO+C9HqM12bUusNNviFQa3Tm/ZZUsXJPV4rlp0rqzUPvRKXWLSl6po+Qi7hdPyMmzhT1AiMRGWm7Eg72SHnU5wbnT68l7bNXOYt/9xHNwGhj0IJZCUxmWqg7/w/XfBTA+jkCqNp8B22BbzRkiToWBPNqkjvnFoWxhH98BmkyLolayN2qAsj/dEAERO5+xzAnz2zB9JcGj4yU04Ij9obhVIKCa80kZRgT3pFMJaluBTtNNxH4mz8dCU73C7ga0nAXb7pNhbuW2nXbA9RvHVOsbBIz/TCO38Ki8CftNbjmFU7uWb9f+JAeFGjS7b2SK4YQX9dH/LFB4AD9sMtl03hespp/zBYOPDdVF1f2krHS6k6iEyhHiMFJUpPHhSdITf4oKTrgOLDE0++D+sNnuSvAJhzvyoEakHznDlkmtoFqCQhssOgCyt52OdXZWbEdYyEQlb8+Av+vtendfbdlhlzsFHQfY7BmZ83vvvRdcn8He0Bfq7b1ZAWecaAOHY6ujcrRC95NimkUK/BBVQBGPasbFskEOwqE+88iluQnsF1CCeJXLD2rMjBoTU9JslBzr8VxjVaB2rsiZQVWs97YzCeN8HzU0eYjYLLNC/0GTBcOvJqkC2PT/K1LnkZFKsj5cMG3gMF22XtHx2VBhxFKJL9Zz9Zsf26Lwb75iuBGlwvmKLJKuKe1APcbUE/8+TfjwhJp605ykprfI8ZphWu87RD4QS/pmmWgZadHPEpq6rBJf8co/CR7o2FiC3+/wFg2G6f3Qy2FGDk9VP9wjpCOHgwAttAlcN514cBv9/SCj9aleOGRhMt7vbqk4+QFn2HcgIdAqQc/7YCFuKhOyLf4LAUyoUxvPzG86HEFwNGRm6I7apiZFU8UR2TqgYDt6/5EVHLPSmN7NiSwcdCZF3xkZ1jrhQXJPlm06hFJeKyuRh++Pys33VEh7omvlkRjZFmDzJ0obnU19yI7Ml5wPC6yo/YLer61B6jSHyUIhX8D7fnbNHbGSZ1us3tijxbI/ZQBePNbOpgXy99QEw/qoaD3e1mKww27KQIzSCqtFZcDtwe8vBi7lYwaR5k5MuADiP5zOCSemSwPJQmHw6jT2y85/DoYlDz/6Up3lNl3CCG29baHjh8GnokfF52Po3A0QMYSV5C8XoovAp09PWB6DgjTxmxUmlugCLdh1rl+oBqvgpN0cki5Nc09Lk9juNdLzQr6qKM2mZjdO/xUXHM4SwCOoobGgCA8T0ZAVgW4QQtoji6Wofy9skJB2FlmWWOXv3Dni1jtcuFKImotRFUYGTPq3/bFNn614QeYP5wV+1aYK2hZwTzToNonvBWbxAzVwaIow+fw9ygcuI5My6IKBS3xBs2kUrxPufNRLOeqtZgy1p8VPyFJkfJ1fNtq+zIM651HF5RLEG8PLyC3GeZMip98WpxZMWVd9QfJEV8PSOhquR+ydTjcd/XzV8Z677fmEDOHmLgxnmDTkfB1C4M245T07BlSdpV8cg1dNOgvoB2q5U1OIO2YTRDMK5JAK1EzRjtgOhmdiXmWG127LkGTnDuv6kOSAxToSczWhmYF0SY3GR7kUJyQY+z+UHoiq20CGkxDp/9V6EjBnj1NJROTWadQiAMwOPngAQ3pNbYvalzqIWrGaFTohUPbQtVBmfyxNy+1EOWCmV7ntsJbJr7IXMm3FuzNilBvJqb+ghtZv2joYBae3xH/mdDo0qkh5oWW9mx3kZIu9lRFfHokJe/4VeErjhz3/vxUCRPsGTEbHuOOmCosF9BjXmOdoZLgXbe29kmWhkihi3qtyk4vblvKYbiaw2gAz/ixxYnJPbpBznG3h2P168hrmdOLliGikd7JBIKBzwCCXEijOngWDtJ95BWO7giivv1m5DPJh/WN0jWrYsZti8zBKnTjglQE22QF+iJXh+9K5v4iKIPTHwBdYoQxbEug44IAERm6Oc9cQRdRd3hU0oSgOWdU9VrUbRC7ew8WurCk0eMNrC+XGwm+fAFyl/r5yvnbyV2yhjprnj90+PfkAcuPvDMtUFHXYf96Yd1oe31RiJTePeerU1i/S1jMYMD4Mp9yeYWsn9OYw0f8zJrxVJZ7rrtog9yx9PFjBMiVXLjy672HpuqJPc3hD0hL+2XYmEP2P/Pg9Rw0J04D67MMxVpLHeuzQpWai++OUz61d60OkIGXyS6tSgx5bwYGAr5ssqHyjII7UNnDhaUQoHHvcspMVplKfBHCrp4T7AJL5v6uDFrZ27/L/OX/CpbT2wef81WEx7fkxfuQPqVt6l/I3R/9LhfKaUKvo9EDlbGktSblYszQbfsDbw4eVLtj4czm0FV3n0LV0aokGTdr6Mmz8J2xIJJn3zXsipSkuz6tPeAvT41g6znMml+ZWLj+HU+msaWN95/a2kDEMbEU8SWEx7IKWIp3MNklgfpHPZjkARpWNB7Pws1gSUGYHCY74O8J4tLMvfe8oUjE1+QMUp6DY7AkJWsjtJt1JD2b12/Da4eOkhzd058NGBJlbfcuU3oZyeL7SjV0IaOynldYiYNBcqL/a5vISWkuOOO359Eg3vOBOF9c1HoRiCouT9kHnWmxfVZsLj0iRWbxEA9e97nxrOrBmOArSIRgxt0Tz/wEN4JOxK0UUtYQAXHcGmqV7eXfz5DOrZE3yaNO9pRWFDRG7g6GShZrmbv44MsvmiXkqNzAtY3L1hrRSXa0z2kuWIG3YfmE2j5sE8MOxtdS22KeGnkavZnvc8LEaxbsrX30X+8b+LC7FLARnZvKcz2iJtNa0kEflsw80qCxNzzUR9Us4SlBdvr4Jg4HpUspNfY4fuaFEnx46loXlTwPu71hFLUwXBLgYxFcFzTKZCn5NkI2L8mYnluKR+/vxkl7Zc77YWlr1lvDezJaM8b9xld0Vax+/FzhtoET+xOm6cjnTqwgK9CjmgKIaWSa4ZqPK0DAARysvvH2LXDX9MgixUgyeEGp/+QD/yzSf6aMa64vFo250CXL6eeisA+1JpAcMF9ONEY0Z64je/fLGy4Rk1XKXvhByE9ijIe1qtDHzz5YdVdm4kNjav7mDeerlHONfN2KsS1KVpitLqDcnE/XookKrIddjcvrcNMRQLvfvjUjl0YHwhCdScSia7C3I1Fj5YkfIFZt9AnMgJWXgVcjvfBjuP3NwYmGbvcrSR4hbwC4Tpfuai0sF46r24geWKIlIJYVHYvBgSbk15I7tt6qNlLtlGjPhbaVrTx0uUOWfm7g4yR2Ez1RXM9HdGZcOWuhYaAbAljuI1gl3nyLNbzNTlTu8PvaZjHEM3+cubb8aljchZgfR/StObXIPuMDwGOzQvkfWqpYa52lbYHVova85LD+/QOe58wn22X2vpejYEi+TEJvbkuYq+Jmc0I/2lklDN7RAy5cqul9xxz177CnsqwvqI0S5u6/8tdfqR/XDwsE2h6SyrPrlFKhwrMMXpDFy+v8nmMd7QKWgfVpMWAVNoAc/OkavZHaLjlBt/HAPfqatQq1Tmt4JwjCWSiKhnTjq+jbQZzmdTsrCWtDVKTwEF8Xd+FRuCk2xaMd6KrT/t/LAR2EE4kmQ44IKC17urykSLCFJKgFS5N4NVeNg/amzCmGjAKGNb8dDbwPqsifUCkVS/F6ivUpZQH3JszZoHHF7pZ5t9yrDNen05XlsLl6W7no2eFBP9YOMqyc5o6wVF3k45sX5nnUN2OsGw2FSDbKKvDa+u0lw9cyV4sbH/uz+XpL3YxAkci/RPDKj4jAhfSN08l/wgbu3O0fDmTvzFNQA5OYaRXvovY5ciCw2vwmZkQvAFgm/o8r6Gxub0DoOcus1c2edKOrEumnzjIMJ2e8wEfSuEdk1RYxPaouGGCFXmROx93mFLva7eg9UONIto8kqBms/SdFWIm3c6ldch9aX4w1mg/D7XjA+up72lOTri+k5YPNOYOskVVdZ85eyOwNafN1I1xhsM7W3qTPCSLC6cikq+05AA3xkKKPD7pEtQy54JuluQSIOaQdFTXITjcu1c6810jpn+mFV93LCG49699uPRM9saDSMP3jTmgGp5zpy+elt+Ag0Mn+lbLkv5kfJvDGUMhPc+bL+jqpIBrKuIYkqHJcHZ4WTK57Dcw+QJI8TkL8yKz/nl5nb4Q8lAPP6UzoLA0hMQ+JIJWy8gsF7wps9/Y67/3A3Vnjmlsi9kTfNAYlC0yz7cnPeBDsS8G8owkGJHFV9MtRA8O3SPgdLoY7I07ayWuUsAIIbhf9um7ppqeyuXRJDTKUMTzelOAx7M+6fSxMmJRVR+YQp/CdT4DCdubG/DCDVgyskEsGD971NYmXWqaXAys+u08suPJMpOj+OXM2RoX6KQu5OQb2GD47CBfsUR3nRPmrDiuYWiy8Y6n1m9aqjUsRXOXpRXN45Y42XjJyrmnI8jsURK8JyxyA4VvA/cwuvasXlEDlFNf0YzHGBN+JRRa9RoQQ+5t+gFMop+n4O1GGkSaYoKFBsTCJBX5T1hwWK5jADG5jrFS/gS6NZpVPu/qO2uLW6bVXX9DxCCHktCvOtQRSw2kCYwf7JRoRXpRKciZ7jTZrNHm1H0jOoPXaM5m/hb0CRxHEhRr0jJl1xYM+UEgqeBtvDqK7jCTRzuEOogdU053LL7xNHmQqqhknJS1neXeB/zDm17bWSRkn17knLFvbHcPXukUp88InVoCUMl8TgNX4aHqiX/jEXucSV9++JwSZnGTJe0y/wyQO4grxDeXUdOfFvByvKIt0K7YT7PdrAvZHl60r8Bgmxf0NjWuG7A7cgN+DLYxQtJceDGUKqOb/n1ImEcXQjGCUDhDFt3HMMO4lc5hfG2VL39XMI7KVnUuxT+27rqWR5vAriiESGzc0MPWyLIzZQvV5e/pgz1QQY/aKCSzN0+htVWozUbEo/Hc3ymd8rZrGpL
Variant 4
DifficultyLevel
571
Question
Here is a table of values for x and y.
x |
0 |
0.5 |
1 |
1.5 |
2 |
y |
0 |
− 0.5 |
− 2 |
− 4.5 |
− 8 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = − 2x2
|
0 = − 2×02 ✓ |
− 0.5 = − 2×0.52 ✓ |
− 2 = − 2×12 ✓ |
− 4.5 = − 2×1.52 ✓ |
− 8 = − 2×22 ✓ |
∴ y = − 2x2 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|0.5|1|1.5|2|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | 0|$-$ 0.5|$-$ 2|$-$ 4.5|$-$ 8|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = $-$ 2$\large x$$^2$
>>| |
| ----------------------- |
|0 = $-$ $2 × 0^2$ $\checkmark$|
|$-$ 0.5 = $-$ $2 × 0.5^2$ $\checkmark$|
|$-$ 2 = $-$ $2 × 1^2$ $\checkmark$|
|$-$ 4.5 = $-$ $2 × 1.5^2$ $\checkmark$|
|$-$ 8 = $-$ $2 × 2^2$ $\checkmark$|
$\therefore\ \large y$ = $-$ 2$\large x$$^2$ is the correct rule.
|
correctAnswer | $\large y$ = $-$ 2$\large x$$^2$ |
Answers
Is Correct? | Answer |
✓ | y = − 2x2 |
x | y = − 2x |
x | y = 2x2 |
x | y = 2x |
U2FsdGVkX19NRKxrld85AU5AMUE8vhJHYcg8yC6IL2f1Gbyehkmt6K7RSE2JhYkn0vbGaWiAB+sPKnJka+gQECxzoT1waLISntZ91z0n4otXuE7rAspIRsUWswiQo338C39xk/DWckprLZmJ4fEqCSKILqESeFN7MgnY1kZGXD0g2xF7TKuTKp1EoG0HudaUqvpRKRxDKCN75RDKNJ5x0HPRdyrGFDJM+g5xekSm24ukNdQwiWb83Gp9I5EnrUSErey5bigmk0GA6Nt/cmRug8jmcpRn2DP6xg9tLFDlj0AfZhyEuQ3nHXUKxAr9guvmA/kGn6/V5d0wrK2NGdEpWll6zsQICL6xJAk4I3SHIalyYY+GcnT0qQY41C653X9rKJYhSPLCivBkRM/PvxfLTE4kEiOBXiiGHoqbETVVjcaYVwwjG6FDnjHdVdZqhuqGGAfdTExv9cLVx/ae27GOeT/4NWH1+NcaDY3aUUxI22V2cxftwmvQRgW8/Gxi50zk8W7zHxe8Z32wVmMO9OxUBj/5AbbZKOLwiFoA4Vzvwh+fzc0cwlI9xMr1FnDJVmeIy7VyDy2NcjDMzWeoLNitQw9V26bctA+iRoRFgvrN0cTHUhQKYBmmG6BmpWk2KS3EjlWydslC77N3Sqs9B/sZvt5mNfzrQ5Z9v0Ku5Jdakvo414kZKgZFQ8rHvhBrT8DeeQsoYF/ZuWX0Kt5e91cSeXPNXNsXt7BNqScDeYFM35TaoeKr5qiIDHIBObaU4W5owCpyApYXOnRXxSODZOh9qvVcYO+5Y1EUuZu/2YtEddJ4EwcZU5sFa1HGvrNU/Yji9gYva0xKw8gi1ICLgrGdEtuOutYHeyp228z5/3pNzSG3tiIFncWeAi0ZTAvWf0iPV6UfRq1m65HIE/febRS2HYI9rmhyzsWmlbnG0pGvz/mSqnoE7YVT97WDq6GOJ9Bpnqv21+B7GrFzyLiHlOFp+wcgfVckAh0eM1OVMgeb6ZMZs+mFbLCtE3/n/Aza06EmuOTP97XlR3yf/n51MosIyX+Ez7iQ5nnrEGfQsOWLuEg3EASotQ9vXFtyt0ZwfhWIX6MBo6LPkvsYNISSPHTPWP4cyi6a9ltSDRHp2e0tFeFS6lwhY4A3Iuk7E5ENSRG8jYrPiy+ob05xTUfOYHzmLIdcZSeFObXsyyCLmMwWjcXhDRMgGgzeObdci4pt1Byw2D/rUXZbMCSGl2MhnheSzE54feTIEDOhQ3lUG4cGQuvopfslLttRGmlcEHJBfW92LpAA0YtHONtK1+loholqkKXnh/LVb5alGgWELuEH68govoQXuB6SojOf+TSv2aNfiGnErFa6Z/slVe50FdgUD3hJqX1CW3w0XisyA3rbMiRLsDr7k0ylatIFKMQk/3etWG1BmUEGetkCF7E+EZ+SyNZNLHoA8lTCZPFipF5kBaWq59SE/DWBFVuRMXJIafdx4vSqXP0bt8xISCmpA/jIrtdfKzOhwSejDrY4VEqoeOJB9J4+1BlE2VNXjeXeLolgoFsVozx3pDIPnD27RnHLCiFoSVjc+sLaYqian18sNDfT/YwDtJWvkVbqHHmf+lMYKkOK5bv+ZtmP4xy0/OfJUd/YO8+PiUlhFX0PVcmtO3aHgEO2lXivx3uPQFN9p+dHvpMnlJt97WKRobmYyUrMYaTtt3d1s5Lb5VgL0XEbf1RcdpjUqqyZH5xuuUrHms8sTGcTUTZQaA0gNTmcdWJ6ROWAR7jih0w8UbRgt3Lm42df8aBK1Rh/cRCE36tKSNYZTfygNPQiD39yXxOkqq0B0JnvfpDSSeDCDjgeyVcR68zPM+j9NcsvBgLRBRi2BcO8BNFIHx37SSaB9mXHBv+KJv14jW0uy7uY6cb93xxwOy1O8zez9GfFP4UX9dwiqenSVwDLKjQT7f3TbGno8qTj9YibaSV9lbyNOpacW/RAyi/Sk9PbYS1kI0PnJiB9Yozx/tyc81eyo0ZAwepm8eU9BF1f3k839PdKBEQobvoXAyJUJZni/b10GSglf629vaJgkqI6rFF2cjk2dGQ1vS15smnX+TWKgnzomVJzDTLKGZYU5bs2UCCD7siYX/Dmm8HmpTSU8jwDUkPbeoeb0wEfhnKzmGFQGOMSFzTc00pDuQLtSuylWAo0Kt1GlVcQBROzWNOJvV6ufKVpyM5bQHuKBBA7OaGobzbNBvQJcFTTMidk+WF0g28BazGN5pTrFGMeS2Nf89y18RKq/Ye1acXzzJBqIwXZlMtSwtUElC071Fhtg8dd6IfLB3nsy5nszhGG2Mqu5ZfvJj4GCjEhe6MldJ9q3s19/uQLUmOlZx+mLt1Fde2uj+ziMfn3jzqErnjXnLNrase+PoBKY0lfRiCFsYGDJ0KlOVHtL6OhifPP1p5cJAZ4Ek3dwfzojEOJnmGUobfFH8YyRVYGotFwuwSxazauuvKyf+mtq4YLVpL0I073rMWkbMsd6t4vf8bYPPIqiFiogTYiDM9ttb1UiGP8INwT09EY2GE17O6uU6IGCXeqN9THtYHoZttKv6v9OLl4BOZHSVBKHI+UA5Y9MvWmm2yjyu5c7o5ZAW7UELCblW3AVL0QEqR7DvVrXOaow72ToSKQ7vbdRZNAxDvQOawg63EKFzll7hAkZLhdFwFc5VO/STWVtamSB3dYYBGxfbdpA/OOwJctjG8BuyUba/RmSLKp1n2jAw2WriAIjWPSkhAz8SOs3CGw/4MfXvGgxDhsFwASqFe+xYYdLJbyJMANvhjVVRtiFF0Kn9S10k5Bxtwd6yD5hCZS2JIK5QHzeJUxcZVuxnVdmdkhgbRmhhTwFCXcJ4WErCKObxwJTGfA5YRM91npLfvEtKjPL/VYkM+64YFzNL0OYmChPYZP6f0nShuF7lNdlxXtQUJvIPtlpJwAmv/+n5c4gdiaQULubhc9PKFMYe6rWk1a6oMQYMquc6wRFxGD6Et6q9Fp3IWsp+V5qnzZdZfFv1kEQK0XJypEpwXQvEAJwBC1RwckE76gbBHMXz+FgWLpkwF1gTJ6lJ+x1Vhj0oMfLa53/kxdbtMrbBVBljibletpSntniRpypw1h+y0p/E+zjVAKAmQMs8maAJ9j06q0d6VrqRK/fQwHLQSr9/PKTPgqiX7gPYpuLdBAk2FgqQwS18BPDqmCRD295aEeI7a4MSkS31JsDh6soFVFl+losKorR1/Or8uGxV+GQcXtow+LGQTPsYbQPa7D2fu7KjVSk7cxemZycd+3eeQqrnbbYz+Bd1aoI3Tgejtmp7SxfOKK75laUL6lRZ1Q2XPcXoUhfhwKB9Yqse6PReb/LO9/LA2AWKM6Wvt8mCImSY7pGdzSgQSghBMYZsfzz6/7LX+s8f0PGeO/vNti9NP2ZCnr2+y11Js48t2/3XzNxhAEd1OZBjxYmOEJx2q8JouJS8Fy16O9mJImFNffIYz3eDXQY5Wfjv0z11KZZkBrOptYMlea/fXbvZ9y4gBOJppOSwHOfwjHZSQhhGl/jy7Y7yGbcsTR91ff+fL9GBoFj4NZV2fMUaKGH9LIVxOnLqp7NniG47IWHgEBDBqq212/JeoB3EQT8FtE/gd5xLO7xlhHJSt7fdFd7Duitcg06yPvz4NHM+bGcBQ86MP/DOQaMH2mwmJgOmRxPycK3Ao+mg7JjalpEQJvd0ZOxIfxV1w1l1SV0fI/7NOZe2m7Qyq8jzIaGwSWplu8YAuWB2AMR90LfIC9s5X2ZzJ/lHo2K+436rkn+8LlXs5bJvIDsfy2Asm6NESU8egbpV6qV0uLu3n+ghvKU3b7qCimhX5BjcKJRX8AcI3S9hP7ja/VZBR3Y46tm9Y0dqIPebCReJIx8P2cXlF1GVVfIHzd2VdjRgEjohji9Cdgv7yE5fcX5HYE49UlJsaNWdELXEGhQQp4vpoLCf1T06f6WhEq5XnmJAcpEaORpza//a/ZpkdZslTSgO9fI9wvxYUwA69Ebb7mt/cnh7kIlAneryXBagHWid5ewdbjKChlkE4F+hGnjttwgwZv4nt0JxIG+X34w5lbpD/Ll1WLVkPDo22/BpptMDxaYd4weiTbbVzUWlMZc1aQcQIVJbzLtlxZSI4Y6Q+3UTHoiowY7y5k13hZlTHIkRLaD/ao2X3TlSXNuf0pCm1UBlZowYdoDDblDof3TPQMp7LddzDjFkuQl07achNxijjRpvVs+NI3PeVaiFootG7t3q/Btx4YCzilrqPezE6WpunmXDqJ7bUmlC15EFhtW/lFyDQQseLHkg414hiFcLUce1MvONZcFYV/Iuqb6yeZam4sk0FwAAENbkXcZXLAy4HF3Vyi/QeWLhtdJJ/SM3qm9JhqrXYBnU0ImUyrh2FMmP4U3UzbHwzeyOl4WyZdo7eoqAhUSwKdbXw9BCynvODwe9JQFLIEMVdCHIyNP/1IuTytvzJTx4OFregPp7wqpUg8surkatJLjzjUY/7jRC8POd6gz0NWqUVP4D6l7OtSXSwF0Ayz1uuVH7s17Xv91Wcv0e2H6680xQGceoNY+joCl129H6KxcZvrnZfyAEe2XK1uI+mZ5opbmNmdTxAoGkZuSHCJ/8yeibJYDyezMYWC5wiF4UvBtdLWM0OEoEXEPP1JbMiAmAFe5ePNhTCdZknKQummVMqbNNnK7nFZlbBmSV4VNp+W4vwp+PF+H5+2Kr3esK5Hfohuwh07lWdHrANomKrbllB6IyFNthy63CmkgdoSc3T1SLGprC9/RgCK+7t7+onBuzlx2w/05Ji3CcaiVs5WoLlVvW5kobzad+KqGdA3XZH2tgdsDy+gVWWV1SFxmnCK1GrztU8OMDfFUJGypjAyfR38d5FDHJYmAbitFwSXBFo1peMkjwuLV2gCwLNNt/nSdIk1u/Yfw9MRxpIYcG55gj0D5q7C/ssBaxKPq+n64oox5a8XoLB2PwavjvBWpRi7o/jlFzGyyhjPGwnM0imI9Kuxiu1hj+cRLRt0xT5KWPEqZQrzl0ObKc+34mzE/A0FI4Z/SfghCM0jNYqlMaCAmJZfEGCMiLc6rCl13gOM0JH7TecWeoRjchAXKNpfylIXH47rZcw5Po0GV95BBU2irChZ00uA8x+qT9RYWzfFI//z5b7V7qaNiIgJrN4Z3u8mZ1r4l+xc630DGIphpz3h1eKAi6ygDcvXGSPGitoKbGGUa7veJoS58AYFPXFHAWTRHgBVz3uCUtF9KeLjfgkD9yWoUL3OsDY/ClkQaJVPs9z3D+Zmg6+rPQGPJEQ60JA3G3IEV8LO6Ps+HffqLzXD2IRdhyoDKNLZtWIyeVZ/okK+da2rsG8GxXojiypqhqUAkC94xWHQIgFQ/nA37btz8m2ZAhgViMQ4sQXqr9EM01vqmCQtu3cEa5+j/4EILqnt8bFbN++2hTMqW7ingNvLnwL+n70kXZTZPOwSMdakKJBKFdwdvzWcOUqwKmBo7VFFh5WLRkXhHUJU5d9nto3X8LmHQHKuNNE+8t8vhxKwteEm+jt4owPedSssxI+A9WasB9HfI9P6Ztww9d8Hrr9BmuLM6Xltf/JAMJb6+IzAGfHKtUngSivnaSTlnOdHpmIsF2Lii8FfEZDNNPu2Q3I9zNZoHeZRkD/v6ywLBHteTm2jgZ7CbO6GxAIdndBSuXE3uGkbiFDmvqZW2V1Ud1eb68Ph49uIGmUb8APeWgKBJb5Hvxs/BnC1zOucic4JegcsJjGnwIv0oUgiDYBNI4yC2mT25WIuDvbKlW24RabgfAhJzZlqI+Qb/thDo/pU3Wij5qTnyoXJ7sMy1FwnqMu4NQGJaTwHosQbFpEpBZ5K3/H7Wz9qBmMNxkb102ZRsQ9g54mlvscsL0kLqHW6iOUEVlzrxNwSuRRkIkjWcgXTjA1gW37JKQg1IuQuIES/NX78f8VvZOiNR9ocHwPGgJNjGMVGt7W7/mr9WRXHf+TFLJLd+npkSGtjORjtaAJj7WLbd6ThULfY9RIpq0VmDGUSIWaoY9H6CVe+/BhGPNf8T/RiIR8YGsWWtJ2UTJwEGuCPPH8NbtLp6xWnp05qspewU9QvaA1mQ42ivbQS12bH4QT6QdmbS6wxdX4QTHXu7ndlTFxZeC03JnL5aWDQdfw0bPp+jiQd/wS/8lmurRsTqdwFxX12K4wQcsR8Dp2X37xJqlK6IWpBHu1Ndx34DBujIGvtq4rOiMMAxOhCP58evymfydV0rHQh0xGhGq72ox8nfCDzrfHDLNFVx+eEW4KURH0tBxTY6K61gVd4WdtCTSVqC4K5A1r3JPNtJc1S54DBHFYYDkGWqkkJ/1Hz7XnV77xtCJLEGbVqmsdBOcIgoYnaNjLxz6O6IS+bk1nHhcRLA2NAZmbuOXZAnesyfo1GSOB6sDBSXIeYgoantPsbWGFLmI2u10vtCYTTv1Lnte0Eu58iMAXfKf7zNPIQeixx90jvfRowdXmc1QFWtSzu+uFRxh9vklTg9hzWo4c3Gyg5C/TsLyDwrON5X/qL4fJKl0VA6iAtD0zyAfJkLCcZIzqS3pmLELu1gbuJyL8k8/wZApEfu6RqhgIZfHIL6x+9p9/TpMEwgJC5CwkxMym3APeqavVP69jtCDky8OJaP7lgX6vksKsDdg2TasX1uMJJ7eo3VrOr0P2GC0knucgZinJTlcMFLz6cM6hgxfUHV+ncXbhNhhcVYn5cmCnBYt/pbdQaIQYFR+8zTw2KbTtD783GHJ7EAOaZTfprNlI3gX6Bs8gwPI6nyHxHM0wIHOA8TFWARrTaQ9pD+YImgBnquogIqdZCgt5r2kzBd4gqYonP4X6awoPQeVHogPuMvxeo4EF0u5BS3z49yy7miEqhWPhDLD2/qbQ92g7MDmkx43TbW7K4s0VoJyxfW7fAl90FkwMwAytdJkFa2rxUw7RzPwU4g80rhgGHGmjH3MUm1HSDSWBQNdokneC30YW3XrzqnK93nA875RB52wJtVudLRIEZbNQJXGv8u5ZHAaHgS3H/ZU6G4TUJ799101ezR0xvzDLxW+1uAlymFBalMDutSQxyuXVsCtib4D5zoI68M9WyVYVTrzy5XqiwnBJdZrHPTqd7jPQNqKF7STFIGNENfWGAFwHpUlMIxm3abHkKrQJQFIdJDSEkt5oWmw4ATvhCUXtktUxxcxRFqZQM88w+Iz61NZCZl8YAuRw/XfHKIe6Wio6TcmF5uO2m/qsBVGESMTvnY8tBk456S52waFzBOJ/NS9IG/hHCWc3ZufSt3HKGLlnZNq6CoFxN9en1Pe+7U4UQTvgPUW0nhsqJrsHFkrVsC8ZiEx6nVCyI9C+DT+I//wFoZdzMIiWzYtaoDqjaPWJ9lsNcIPhj9ZVq/r1b6SUZK/6h01X77I7uqLfHBDT6f62vAIQ1+aulSysaVzWATr4QCodqZ/H8D17RVH4Hyomk382QnIu0lYWjeoAwjh1XBr8AWO1JsxxHq2Xk63ZedF2WwDeHW7Gj6p+SZo61uC7ocYhV/pqXPNxK4hb9y/lNvWrCGRFsnlX6NA2rO9Rn8V8Fwh4in3cKTF83L+AwhKsFQx18UPwx5ZM8MYNkc8cWMDZeoy+dhv+aPCQBe0YLeuho2lPL57GFfXp5nKFo/TDazpU3BVbOvRjFY9hO1E5ezNLtWpINWYwnVdWWgv+SGDIwLhYigfNJ+B9djHQtE8GPfJcMwRb2G+o+KVxqQUxwVTpq51qMWvg1Fh6Bg/bjpxvt1Z8ogV6OQyii/PBLzo5ELcesi3m+u3p0T6w9Vqc9s1hHXvmlM1sZlzFMu9smyxcDnNojQOZKOjfwrVSot0u/NidFqY20lYLvSdNhrw6jbVaYekZM8GUY0Lw33ocwub5vpR90G9fKUiCL0y8iSA5YiTl2l9+i0q1GUl4GHT9JoRP8l5AxI/KzcuWYJxGHLhNcjvDRbPyNIaGjUSuukvM0K/kwG+ZXkPo0PZoK4JK7B0wpjnrZu7YD8//Ag+z/V0wvlKHX7nFjkGVbL3DSVQkdhs5x8Ky6KXKCTm26TTgH2tHAYjy8XI43vrDSaI2rlwwwKMXHQm8EMGh5vpYfLF7PkcN9oRaqhEELvA1pBIjWxf4cuT+ZKG7N3t314GXBeWuveQkO5LeQ11Y+2vQJjonKbl9qI5mdUKpnMXvr13Y0iQ049QM4mY6WgOezarICdlXoEiMXzmiX60hq55SOryHuTpMz0fNd/x3Shr5LJGTvsHGTG+4vuK2RF2awtGyk2MnsP6af4Ahqsn1A/b45QQaomtkzmHNbMecNGCcoeYHv+Hbmtjwk+8n/36tdQckuZQkwTzSjFwumraQENPd1dSA/zK9jNwPJBkga7gCHyR+qTpYzJxUl9ny4klapGqbeTTYRgjsFDuRV4hRAwlzMHh7Pp0QlqySrQ4zj1e9SOqpe/BnBRZhMi5OcFb/T13R+AqNIqvC3oqhTZOghnlUx8PTfjBVEby1Tu17G12SnObyQ8+B1pJ4/sQtagTiAL9a301LTNYlk5/MThqmytRNw2ZY5uBc5iHzddBfCuf6kFZQC1WQbSQAXgdbo8aMy6Er21fA2lPyYEfrhQlOa0xuWIImg/7SkpAMmXjexrqoB/93iS4Qjesn1CyfeDWYHfvvbhg2KRmVCJZjjfTaZXqYnq/TohVCwZdK5RI5yIpntt+cOM1VvZbHo6GZQZwABbu9hDSNPFgR1Y2nY+hhlF+x0XUEvhQP48FU5ABj7LEbHfPb3de7GxBI1ahFdkapSOcDCf6UhjWu7br8amR5fwMF3/Ayu/rgeI7krhKZeU+O7H4s9/usLhcA09kajowUQU6HK8Nmif9scrUi+2W3bNB9E1wrRMMfvVNwS0Nhz0ZOXCvWwzvY50s9B/A2j89orffXZGTMk3c+Q+Cucrwk0AlosxNShQy5nknKbwrv+ETCaZRx1FeFvY/zJgGGjJDPAd+nS+DdlPjo4WE4yWWsFvuYwSilr5gG3aHRQuxZxNrxiY8C6fvEKHKInWaj0htjUBuqhKtZnGBAN29REaCxRDxk2w3/5j5jGhpocJyLOFyZDiBH0hwxoEaL2TgFWLYf9HfQHA9fnYtOImnfG3dySLrR5tEyw/oz+NhS2A2TiW6Td7i9mgV/hkus7WP9xL4ml0EwcuKoVTSA+6leqaGrKGgY9d7AvaYqf2giQpIPaJJRIuiSsicVx+gCp2uGlwXFq4GdKFf9nNC5SUfUWeL2mJL34fG+4xXeD0EVjtsdpwHRtK5NhuCDdkGIplfu/aiCkJck32RDO8fMFhUuET8ZMmf1jPcqMmaNl4ZdkmZG+LRLva/SvtWQ7ooQEtpU7hW6Ug6ifIfsc6gdD+btx62nn5tEZT5kiv3Wjw9rjqANMNOXYT/SwTio/o/ieecmfF5HoTZRJQySssi/K5k1Mkexaka4Wi8jGqMTzKDc7rbEGT+Q8VsFMd47MVsvKB0Ye/osmUCH6DSz39oxjHef3Qk31insslyTVG9RWDCWCpDy7HSJkaCqpjXBMhqeUGpqJGUhNTLmA08GLHwxe1zW4wVaI0PuBYCmtbMCSmF3n+Ikh8/xkAeelYdwiilyJ7zZtoS2YXU5ZdAaS1S9Bzp7EFdW0GKiEZRJBN63qXhhU5kalHTm67DxMdGUfA8RacC7FAoeaV7JKM5/Te6Cv78LZCMmZeeA8Odw0YDqOWG1RD/cGuAz/5jjNpB6aWm1h7TOn0cAgQByxKzqqvjSPYTJlOSVY3N1dWaBPCPN921Tmovn5cnRSoJZm4AkqWya04yrk75MbJT8QYTbbYK/PpcH0Kw4edLbCeXGvKQuFMYm9tdaVS1Xs7P4YAFk8MCQJbJ44oekIlWauN9hWO0hTKGtZNFM39/IAWqKEqfVnX5irMDgMgfm9166j3u93qtV66pQag07izznkm5ZDjYrobSkp5VxC9b7zJ5Inc2WNMipdsFsbfVcop/B2we8rgMnm/fdpuFJkG0BYH+GjqFAINoE0LqjDYcgTa95Af4PcFB531H2nn2Vrv5SOAx6ahRWqa5++MbA/tZwcCB/9RcrdEmfTJur5IgfNrKnjyS34pf8j+Y5+jg7tIA+s8Ht9Sp58NJmg1O0ZUJSOVJ1f4/zsuPUK8gg6BqlQiqpeFVbq4JaQSRjMkU02QAGtwOFjqPMMO3w/vdl6MYoNTSJD+0DUHix84avwuGFxfqA0jFeeW7erVdq+gwXAjYaVwfryJm9mCAfVBhJ+S9c3ZEPD+SunRuaPDxbtTG9WtkFZRSqsPMDaRRS9h6DmyN8YuG8fY1xusGz9yT+HTrkfploMOvm1dfwaYw9oCpV4gmT2PdydU5L+bOnFRMTu+S781p3AlGjQdjcXE/LpJeey5XJLFxElTXBl2PpO0u/6YFbTymsm55PF1ANc5tn0Cm4y3wVO0Jj8wOwN5kCSZ0+MLJfQS5NfWE/kKb9wCRzN1ipCtN+m1nxvRDPfeuIO/5eNV3d5ZmLTIgLg27QIJFZpF63IoJPywjnP2twIC6IXU0Eiin64Wb0op+aJ3Hc+kfq9rV8xoMMBDY95gHQNbkv91/1KeTY0ajuajAP5XxcV4o9AfI2RLdqijVc152qTCcUGnXr11+rLenMREFo5i1xtdyWSaVmKDgbjajg5bj9bm+riVXV2AzU7TeC/1CmvfL+/4eSb/Qy7Iy6xCqcXBFCmPw9IdMuBggLq411ORu8m1vcabBV1X5vSmZRmlKENBkNTGf22p+/5Q7Bgu4S78pwldP/AThpGjHuhcyWImM0T7pqoUtbvGHxyEZzz7M/Ka+KzDSkq1ZXotzLQD1lh+++eDwz0S49LcQqLJyJMkYhgKntAHQ83lZXt3hxlbM4VW7F8Pz3/nPT/0Z4/K/pukVFRyRVWEQgGKbSA8OeRaIHm4BTsisZlNEpnwVf0gvw4mLOObhGQfPT0X/Ub8GCfBbSBh1kltbo1YJEkn3OL5P6JNviTE56L3QZN7hK0extUe8XvsKFrwQSAY8BjPAycu9CyNTq4ylEF11oHlbr+8IWSMnlON/JbKnTt0DS6Av7RIMFMIwoJYo5K4oMYTmnZEz8kMdWA2cdub4xgH36yy3HH5/Ao5KHaZybMZohK5k5fZMwKRnkEHL69dG9BRGUnlGGOLAoWu1C9Ws5LUyte0WHmmUd5DKlqJKkwcnlM61I8nronV51/xJ8iSKgg/hHc1VrX4wuL8tXrlD7s0tar9kXZkinkUWg/rJydWkOBcpQt1iI6B0Zi46E3Eb/TDprS64Zsk6nGyxcohFqr0lhZcu3j3Z8rAirf/TtvCiIkxiJGJqqXVDjYO+rtvoIE4uQ7kykmkCyhOthNj9oLyjJEZzhu7cqhtcpKD7pMNVKiI2JRgPCFPOcjrmr5B1yTkGUVSlv2cv+aMT4shCCZX5JmoGGAU+Q2+XMiHsAb+K/N09ZQCY+Ddhcw8+TQaHLaRbYGv/jh+oGOn9sX0ZJqgZJ+UjjuSqDm2IXYs7VkSpaGeHzXdPcmkXm9l+K2umOv8lUncpd9HhaU9OBad2+sqUE1nkH86rlmST7HOfEsfkDzShwyomoJCuKBNBxl3sZVUBZDqwke6oqlNZI1jG/On++WzStG6ILO3R92tYX5Zsts+lAFgum44NJgtEqAzOub16hkg2ef/9GSrXixD+GV7MzNs6zM7FtPxb9OZXSvE2ZhYzNNM9gma5MZ0+jvYgSB/vpsJ2I9wAIQiBKw5NcK9Jnj8gC4zdcyB2zOpINPrM4GMejPOfa9JZvwL2W7rQRiZm5FhQakQdr9BDQK1OKDIwI7NxH5eDJzVII9Ew+mtUF5whOwQOlsKn+PnSHkLoAHB1lV8UhvSXi21sruOU2coTLy/rwjXdIIZrtJTX7h/wh97PAWvXNezjVajJkgFsXv6kHx+bnR70xqrtw/dIWH/wQiMdZhQHKiNobYBx9iJU5HoAPWi6U9DOtKi5d15zpHN+p+NzrM3585Qgin7Nf2qxKDQStToGpLztJO7n6i2mzozFqBf7FXLFUUXFQmXoq8NnBCHKn7GqTNpe0a7rM/zVVXJJIuIMlltYLD1WIDzVBUjSTWuTj11oYHlBiu1ah/QBOJ5UHG5+/xDefixGdH+Y3Ril1fAbqIkYc72XlZu3uEStu/pZ7USu9neCowIqlUj8f3+Uthj++yVYyQeuqfktmDLSffnnInxplD7Jb4EIpKI6Qrpka9RODS8GwVnVI/SGagOC04kFMHlJmmRfwpwZ92oIql7zkklA4afCoALf1RkTCYOfRL+C3NK+/kmmre5ZCWUm990rS4cM/bf4IiQMh8WaXz23eU+SumIw4Q/6xrkvX08UVLGwz5FFBUxRaE3BL+VDX1wvZZrXLHeNQHFqE2Btma8Cud6V21LhJNuKyWHDUTG3VNxkjROWyMxGINuClI98K7k/NXV/TEog2BTgjNZoDh7f/QhV64q3dytwm2qOXvr01ZeWY1z+3bf+/y9XfE6C5dINP93kJBSK0y4H2wm9IUldZtcuL6BmcjYd1lQ2xNfYoux2WHoPAWJ3jQwXDFwzQHlm8+vzJKwWp5WitiJfIYDEkEEs0Yi6g3L1OGgPCzG2oqi9/bj6b+R5twV5773zxIfkISArr9SfSwVtVPCo/t0EgyB3s3He0KYBj69PYEflWeq7PDy10Eb/pNm5OteCtAh2TM7VLI6fadfTgGIF5Lr4CQaAJZB4P+Yk+N+kqA3cOOKsHPnAHiH33Vbh0UmDF31zAdQaZVzkQbGpZGDQ0UVbmcRECYtriOP1PwMd8h2aKb3PeiignCTws5J+3WBmkcJubI2rBMUb4o4KWGtYhcV+dH1r7CGJioyoASm9uL4dOG71CVAy9EwM94obu6s7NQ5kgGXaaYH+irFfTTP2dyAT9ddkZ7C/OnBLK3I9Dbmi6AA4GMaTjEFHsjBN25TpvluC0VIB7v0FSQEZsNLJRWteIhTc+wGLDDwUCq1HWqdez5Ho3gPQ8BRx51B7K9zmsv8FRNaPqvFXh8ViGZobeQovtshuXyOUDVVoKfYcW7Tf0uWp14Y6R4CeCGeRGUV2e5AHyP7j12vr7s0UJ95VAOXVg53U5JRqBUEaezPV1XeNpEhwICsZ9sEm6w+4XQI4s8mSwerud174VrHHD+x6t6XWfoDCD14Q0GbjSN5kZiyUTH/U+prd3PM2ETlpKfne+vRMn9+fEr+jUpi/QmNUhjEiZBLSkeQiz/BIsTta1inZ8SDb5OnAOI1oeH+VqaoRZF4kDuLgj44iDCR2UzrUbOHLTGhXnZ5DFUAa+aKHZVo1I+XxtJEDdQNve9c3UFBYw9ieD5d+peDe1MrYh1v9IdmuNAJwsSoKY7u4hkiFyLkNIbo6XgH4AO9JS09i1V5UxVStUEyGnOw4KjkkMiGySW7RYt4IoZ1Vhll4S7ldkz3qsYCkL4JAbMeyNXySgkk43MCgGwb7rx9ai4uwxmlg3G6pnKwq/1zaDekAb7oE1c4aEQZJdK7dW2vKcZMURmrBeHtcy/7osIlQFdoFZ5QQip/aAYjI2C4Kxi29ZdpICd8n5tguXAmDzxp+Lx47yTsJOyziJHscaHR2nPROwdBKm5sw+ZBfkuS3l8yfACqqXFeta4rgwKJnPsRM25jy0MjFERGxz1bdZtxX7eYFXsxzsOTx5Fdk1VW20EQ9ISx/M9Z+doqmy6P41OXBcyDrybK3zNLgKrpR5pvmcuXixJ+leY4L3SeHABkleXtL5/8Vqi2G/b6pwGkqekDG0EcuCAALsNd+9/LPLfTYI6qKp/AX+EXQr6It5ghZgMcga/g53af8tp5S/AjMfOj4R9ZN2pOL2wTQviiNq26ckhBGaI6mpIZ4Pr3AlT8NcXXP9/5BBglVdB9nCAimCmycCWaA5LS4rXZkfAGK68tQG+IDai+4p2FlAGaZx+ang9NCctD8wpIuoMuFgnEuWakqePMUWNutjDHsqTCA80r9DfWHiVymszcLBsS0eO4oV1qmN+CR5gL2uvPsOq/VdKcYUx572PrwIS79aTnuLT0Hcq9279yNO6plTZRDK1lgFK1cjUgS2gshHD9N26nqQpu75DOsgdNW5nCmw7NJ6hUJLqJEKUjKLEzLM2OTcW8J/hOovsxde1BRE1MZQ4nEnA2m1KjxjHcceAZL/y8LCoIRaOF0H0BnqBIk0rlFJShs+cq7M9zj+RFSo3VijovM5obxeDmn8RoV5WAjx7NdH4yi93eo8eLRQYRZ6XUt1ACKpKhIQ7bJvxpewM1YY9Yocw//o5NN1N644j+4zFafLSPx5clJQXaHvqfqIHh/UZ8uqfHRxG7mNqp4sPtwp2algxUSIgXqGkTU2ErQHe3KjQYX7v/Ti/GQcVEe3Wj8FIv+2XL15YIECON7/wU71lHBuFDhmVSgSQfPXyQBzfTG3UBQwVP9SCzyNOh3nCxz6wBOJQFJLtSq7KmzNJ7OukzSKzbqTqdYEUk+WgOMMsLKGTTn3lmwUKD5Pix0Q4Qn7VLFSkjdFhQFncaNuDoaHf7Tz/zZMmmTw2zDmbjlVNudJP77d/yKLP/oRVHRm3i7fR5IH1W3IT0w0qILvFMWMCYckqMi4m8ExrPJD/abB6or8ZSPCF32/Yy//isTUS183kjfQ6q05jl8YvzbAH9gvm+r/WHpMwavEpfVczdKEfKfRlGh0PB9qvgzw+4H26Ea2+sCYqgjN5Ka1yyaUs/EirhQuH9ptKgV9oe53fCu+tiQuFyfYUW0D2+W6DwZQ1cEVd/KT8vLiOUEYFKZKNkLQRXXlGhnqTSr7IN0aMeXgUchU/dhvYxA96WgQth1gNrbu/OSCAn5JNQMPWU4hv/qpH5MKHQwcUAhAcZshr1J8eACYpN25piTMXxzmbutIeO5acyULJ+VxtEDS/D2eH/eZIxkvDpY7VqYdA/0ntIkj8Ouk/sCi1dulSNZzgTkbjDZvP45c2wC4ldM/e7DuyBB7zibsOH9qR+EyvJCJiU4RcBn0drT654QEYF3SrIBaJWq2d7mZFeCzDf57JfEMGK4XI/qKi3165K+woLEm/BeITZAK6WatrMMOQFW/RvCh2OE+1ctvesGEHYVcfY0RAlHBERV1WZZ9TUiOrSI7pzjGvFp4MYlUYgjrE7yVdJqXvmFXZ8wPMkBfsLPG5AKyfJ+FGIpFIVdQLAare8GF2K0+pGEYYg3Hr/ijjKP/ZTb6+SBNw5PVJsZmXibzR7BPIWwHz5TOpxrRmTvrPf5D+C8TfJsecvG6iMLv6IlUDlG2RGPzIEJHnWTJxnd57n9mEapZvTmpPUAMwqvOfHXkTfbidQ/z3EUz21/B4zVaKq+EO/bZedl747+v76Rft8oSgo3Enmt4P1E+wrJWRF1dCt6ssSNKTuXnBS7Xtr+QAKbfN+aGfCZNdUKqh5gBZUQlJYcREP/NnC4DU+lGGMXnJuEhTE/LdQYaurJHrSGggBSxsqYfzp2Y8pj2V26LJC+EOckKBkHfo6f2kh/8wP7+6ZpJ3ZXT1Q8eycYjQkIcK99iBO4vLX0qBOEVFYg3g1Nhb8En5lpxnjBCLmY4r0b5LkzTzKhxxKpcAAeMOsT3vzZsvGm8o4geIeCBpjPxquflQZBJc/8O2mR52YEhoewYqkq/Pvz4qGCcknsq4ABBWPwnTjkmhwo+1O5MvZFt7fnMZExUb4O8DV6Rkq1LDcJp5R1zjFkyt9CE46pJtCFoe1gJFraHIVs7f1PKHHbSCCro6G6mX0HtJYKOk9bB7o7xXwHISztjkZLLk+NuoSHzyNDQpMZmVaa7gNGbi3/KyEv8092SjjT2jpbNzRi1IBKcIrL8bp+34MKz8VRtjblcRgx4gmsx+xpJ82c/kmsQ8CKinPUEn24wDiWiyq1Rtca4WackDKtsnIyIbiIwKP0FtYv1/8WkvlGMYLsRlPbRuyZmf2SCLsZTWIy9QQv/0vGjWHaaU7/revGXLnqt/rzjDBo1FJw9puMdqT43jYe4drktaD2gz1ZUVvmDCUcepfJDBece+fG36zRXlB9uOg4cZoVU8Hh608Fwe5u/SbTeToOHBuJx//tmX04mu/Wq0HGLy9xXSg0+f1T9jblJF9It0bazZvFW+8u501YJ81EL0K4poiHHR9qEoMBe+ntWRaqpuGJe9UUk3EicjzOPAsZ2Qjf7sw0aIddv4vTTA5tpnxqGkl/1wOV/aYF8Ojvdlu3XxWim30dMe4gbFp8Sn5/VJQx3vDMcCN39z9NdGhuBavsz8Kez4shz2r91jOOVM1DTfdAHlk8VgskD02kDlKwpyks8cdm/De/mfUp04PQggqFtEUKqznZ+M6s+ZI3TbwOjFS0biFofJrk3xWZekhBmveo68/OQuEpDVhUhqlTdAm2bW7cue1HklH6SR/c6m7LUsy8WDmZXhPu08/JxgtVwAaq/Vh6GKUDcKiQy2uIPbBNwbkGZvk57jxFb4FqNNRfErEpg+0N1m55W/zpQU5K7u5yNlxAs7pQgxksKx3RvjO8x5IImGzY+bOHGwYxMwFFRqgXbzXUi6epMTM+8lqVMwb6wLVQbz8T/a+JOEbGcpG3iuISDWEZMYBa/1s88KP0hTEmUNNkGXA9HR4jnuS7wqOvxL3qZi4Gj5QxjJ+WaZiq/y8nEQVHysCOIl0yMgQ+KD66OQbHbBht0XzafZZkDE3cp/OqnnylQjsGXAANym5YpZNCfUOcx1/K/9sBSP+fPXTH7Zz8q/mB6CWUZxqHMna8FUKMkV9ekP8MMqpl8dB/SMIJCx5EakWbb01CVGrY4WqsTbVmOQTflOqkviezfVxR9yJwhawCDrVLEN8zUcUW2CqLu+OYNhsiqWKryMPrXRevIMg1pGZQZ/OvQURnzVmRpwCqdTdZWcNzxTsxHwv5IKvBqp4uZzDrE0ahsS6aD0qmTY3bqbCneOl8XKK/dGq7fgQQu7D0B+bQigC/muBD95twsEh6NhPMx6vf731lp3vVvDjXo33R0qSYdFm7bWo1zypIQFLlSJ2TbQ2/RJIFIq4EKR7imnyXkIHhCaH/aCqCp7OG3gouxqGwu7KMQlBrhKa3Jb0knVnS713kQv6hiA45eJvoZBBwhT7+6aDj2djzsEmlF+cruF6B0W1yuXcZlNfEs28O/80kwpDi7n1Lfj/cGvw/Tf5het+ymKJD/ZYcXYLrKDVLAmcLur/y2xweDJPIek/oI1v40DkfsJlTgYaVMk0iHlgawMHugKx3iPmExUxZmKxZhbWFndEeO719WZEIaUpZiLE1dndZJDv3swUOVQ7CBNFIGRI76WG/+xc/MyCVYSNAOEpxJQRZtxvPuCjXLZEWR50wbmK5RuEiUEUZO1VzmVumqJAlG7vMEwM3bJYjW3x/hrkzSYHItL8p4aVq9KVGJfb+gKEGyKrJOjtbfzxhT1xpTzsQnpyBl7VhbOazOIFo0lIiIsjxNQjk0MJd9q5I67jJHfAX78wozPVUzwLdL44YU9uTeK4XSS5gKyTsoCoBLAD74+grM0FdMcx82BC1VJEe0c6mGN4z1dG4Gbi3/XOXxUvyIp1P3RdEEvn66/QyytTn40IzMa046tE7Yrt2YzIlaufoZ/XGmeSE21lSxXHLGsQBZ/LL6Fum/vtn1Av6wuxTJYFFRDbr/uKI7mll5jJbHQOhLvUrK7ZGLTdYtSwIJpvypdJJfFAKc1BJB1x+kPIS05fO8NO+iLvAyPv56lz5sCcrXDoibVf201xnyPjfQne7ISrmdLXihCxtHD2vc+JTcdLgLb//sYQLGwAjlDYPHhrHePHKUwJjcJOXfe5li43+TJNc5FF+bgoon/T/f0NJD9ybkNB+BJflPciXGqbgZRNlPl/N+O31XBhLnj+aP8i2RNLK/hLQI0T8TY44Svc8QJ4co9b/VDWkracvBM+T0elYjiZ7Xfxt0SOhtKHkwOw5tWdDJosPAAYHSmz82g092kUVT7oVwDipc9z6vjgA0P1+xXd4tWrvhw7oJBJRTzIORAo/GEGT17tZ+17J+BuAdYc/aEMFYRr3CPPWhipW6z9dnh8ll9V9DLh2cvSqatiSCdusCuA0yQPlbN3paJ2CWQpVGL1ZABKj2484Y4oIpmpffm5TU0ZuuC6+3sxW9IYiYtRIz3YRzOjWb6+NNb7/ZEqksgqVXL7hTgK8/8k4AXnYc/bc8/9lrnuQaIlU2UrJwlXIdFRz3FQULGAZLISfoANrxrpgRsQmCJ/ZoEwYve5xOMWM8pVGeaGeuHOU4EN1M5yc7a53cKUinZfwe26QZs6gauDpTOmUGU0lspPThwqltdV+DmVRAmHngj7wwPsGTXI38PnmmgdnuZWqDcz3tq1JP2mi5lbWn2HmYch9c5SeRwV3cRqrB+hUrXELFtIHnuKKsyv8p5A0KLzaI5yUhAA19Q2rV5HpRhRPNPRle6Z1rAj7wUDcbXcL5PP90hV807mtocWYzn1ozSF7q2WncRww60N9/9lIJcVhiGcIV4ggz/YL2bF0oB5UB5k+UySk4kmu8ZtS4uy4AOSWgOTE4ARcvAsclWh1kAjotNi2lwnysnIvkghyDzwCg4CTQSzNNU4XenjZYqWF8ZW2S6C1eiRituEZ+DdJxLJ4p10GK/C7j+gSrvYJybhSydnUATdhhOWzFn4IJvv6iRGmoLZsf/3bTPgSURrQ3lU6FShnBul0lXl0xWPO4e45W+c7lP3v+BdPbC538diR+gKNDRC9v2hZOn6FK28fz+EdwnyxwI8ty3Z+E7EdKDccA4QSPDdI/tlqxLe5wEzwgeQVy3bLr4kjZah5yT4qwIWJVTIdq6fcAUjVukGRWw/FmHzmGxDDtpuqJqmAlNc8XRwhApPFATA2idTqKYue60B35PnfXedCJNnIC4/wtvuGLsoXWYBNyBZnvBiw8IG1XnxWLfeNSeR04Y1cBvZnehiSuHDzwNqy5YT6x55J1i9Nzb2QIfBtQr0QODhRlpFGmg4reFagHxNUOX+zJFkmJhdiflyTkuqE0NNHuKeLf84Bz6PIEnRpj4YbD57MH7+xBq8kvdOvtowa313YegjNVzwcQK2bdj9sIM1P4HMI9xK5OLlxyauPiikk1EQSFms0YzcUWv5uWf7UoR/OPUZdOnmPErDtevIRK5jMYGoRE6MqQftgWONmwt2YYnnUfnNRr6+mq5KoBKNRUhi3SRWxSdGeP9aB+tR2wnlfNZJ7YiEMPfCYStOuFtphdCVfjT1+CtQTGwmXgUo0EveKewmie95g8kY+sUeJuFqa6I7yq2sj+lIMvQWReaTjvf6Hd3G87OMTGgUxRRF1VBy77GKME9GldhWL/jpZvs6QHLHjV2I74kvDJWHqDX6VKmfCVS/kUq9v97eA2UtPHQfn84XHNw2UA92M8WLOfEIlZDxAoqZvS2VVdOw/ATr+BnZZDpD6HpaW38t8qXI3/CyDT1lpim/vqckAMC/ad6ngerGO7qf8Zb1N/IvDBnoidNWEGq2gPexqXY5APfK/Y+vHTEN1ObTtQw++eZIk0DSenbQZdMJ8E7ijfsLBW7BhUP3z0DqeF5JB1bM/Htetizut38nLiw+HJpKFdweSR7XHBpBrh5Bjxe/qM/yf2ZdYIwGSrKvIdD5renOX807vf0MektisdkbAqNrSH6T07K40Em7V5j2I03mqadfvl7KWs0W1mzVtyx5l1Th+CoY0YK1bgA1G9oyw/wkykSf+U9/orLDvNmLquaOJIfkhkIi4ki5Zh3nuBK/Pt3qRYJ1PfIN6HnBYjBMzq+WTPr0aQpdhqqBmImlAnTuYmvKpGqtrQ6EXbwdS0BPYLtuxy4WN3Qbr6XegMpWeNcpdBq7I/o7MMxh40ZtRBOFGWq5r/eTrz9TKRMbLsBKNZ9Xy8vtYubxOUawuJ4C+Qt57aSJib5iLwdMspt4ER2mORjTRT+fXbVWWJHl5sZQiIJlXgO8tduOOuYNqHA9UeM/gRPuaXrpIrLIJ/Fegaf1U43YOxECZivKvxIqWvB60/Hn3NDqj/ZaaFsifF+FYb/NjKPikesvThwSU9jlu4AWYtWzjHK05fD5Pnhv+tBpKSWD6DApJMly57djmH8lHtunOVRQ4yrSY3gs/DY2qPRPFGAiOF2oASr3zPRS4jbhgOu/S22IGWfZjRgbGtqdILAzCJ+VKi+ORX+ZBw+Klo9/d6Kjp6NUCjedk2PXIKBZjWnYx8oXMMy58Fub7wJGwUVK33y8ks2tANdSbRXDCQMtcLL6jfQMDN3csyrxTVJWyA4cXRzIt71fOi+8EML4tb+GuEor8chVYRpRKRaVcSkxerUnMVuJaiOjfEf98RYe1+5m7LTI3654Cy5J8yreCaF3h2ZfDECHg9B1ZHFidxZRGEl3/yshWv6unb00KIndC9/Tz6YULADyNUpJCUQ3A3f0wiFRSLKMX+em/pIQsHQ0sI15EX9fB+pX+GXqJsWWEEENyODykHRVIGDVnqDXrVQjkRcsgcJrfWcGhJP75v+L7jt5zg78WOoJebZIROCVIfxDcA2x1Q4WOsUlEdY6KO7CFFKbFBGO8TZs0L5HZVBV2FrQhANsAhkad61uxgA90Y8FCVtBSwa4yTHzQGAvy05/aU65bWzHJsfUlncHydWgc+ndThfbHZLK4MDDIoXSjodAoBEkLO1QBoiycA8JJfdmHJfGBuxROSeaSA5+Fl5yhrbM1oNkV5Doik5CzirnJdfvDi90J9MVIZvsd63kIYm+jgj0n3s+idQFu5Dg1av5Gs5s+32dWiyYbvvKPOCnFLD23TER9Cwtq2q2mArYpmtHF+Pmk+9aSX+0wSLlAB2SH1e8cR0CQC0+/PZ3CmUZSO5HDzOXAOVDIs42ulooc0xlg5htZZsTVpIaRoLtSOoq8y2vqBlRZ9570d1G+dmGKp1daHDKK4w+zC45lQ59t8UWlF0Lu7tRZ6+kvHw0v3IBNeQC8f8v385OkE/3iTFwx0pHXOs+wZV0RzMZqUcBXYGlVryqDEfzpIeLRxQ+DqW6JDQGrFvDCrHoJr1ooJliXqe9TVpExYKtkI247hSZcTwJSc7fkeJDoMP0e5osxiJpKtJl/5LwJ8zEGwMxQT+nTRmwC8ClDDECpstqYcR3yVGX5DPNPfG3rFZtg04pg7+5RDSXYQQIvqd5bL9rLXI4utK5kJiN+YeV8Srsvska48uQhOi2obwaXEy35abwIXm6bf23KnYrrXgbSrGMN88eWrfCMadfkvDsf/zlM8X8iJqnJDJl7cBPnrlkzzuSUPVIXgvruXxgIvuzRSPPClKwZXQqMcD4YGRoYpefU5t5nsOPA/uKO5BMGaKxuBGEB0hw5TqMOJHGwOPqw6uPeDZLufykwLzjXFexyhOOPB655+DFLes7lVN9OgZzPpmXuGjlRJC8i03LtVUJQ3GfPnN4pKf7yuIE3jipFCNRT8agFWylKIKw0p0ZQddpSkJNkyJV1GGPKMJ9QTk6OruEuaZZVMBGa8ZYtcS21sVyytrP3OXKnLTsFt3UWcwEPHS94zeBE82yXe93ZfET7Ir7avqKt0IoFkrk8YwJkX5h4RfhHRl7RVTZCqKyb/EU7DvyNwqf6OjJofR9fIIc6yFiTsub7WrGD1WbLE9+QbJvKumsSeP7A8URJVNkkPlGG5EJzmwus9avo3iVatNe/4ndlG2TyHUcQ7bufLCb4bsR+s5zNhVtl4ZqisusDvgBVt0Fi1PUH1VpsjhjeVKPux+pCp7N4Za+bGtSVIIZ6BRhNLKMlQZq/ugMGjuv57gd1phrLtlVhxdmIVmFbEyxcHZWdqgtg/vYIQMcf8dB3gZm9xhfrlfsDMLrx26nSysPH2qr1VzeEr9X2bccIXDNWq7qk7NeNZQGr1V73j05INjn4t/YNynRxPjaYXtcjXMOav3Fuz2tOkIgAy/cY64chYIM8GHpRsZgMc2OqXodhF8zup877GZiDdmMbryh0sLHDeMwq9SQEaoH0AjbwCj8vPt8kfZwwp0kG0FIsnRwlkkTENjNRFrpMrRkDIQ4cGj3JwVY5nwP53KN7VdT5+sN7e98PJUgfThAmhn4gU6ql9FoMlF0xhfUPTC2G3kWnWg9vYBfn6ZVnGkJi24F1HcBaM/uadjJB97S0YIMqedZ2zW1MUJobWXJa9JwlLSUjqMFx/at62cXHAmgCQke0U9FskM3i5VhBBnc5Ox59aXx8GnEBU44XTnm7Q8tCOTlRU4h620q0f/zoLJv7lyq6SoBvI452HNLaT24AqqQtvmfv2YUoyIBvW4BN6djUJsRebCrkqKmklpcrLOMdB1BXwq6ykuSm2qj0aRAz4CdSVKd/ZsDH7kdLXu3Ef+1A0EGZkpPTIJHhP5nOkHRHOanIVy2cT3OnVsKiB/hUtN4WXgL162gszyWv0jCFJvWEF2fzgTyungJVO7wgSbwB53ycT0l4ySLFpy+yiNksWH0LMA3Kf7Y/SYAGFLLEib/hMqg1PUIAYc9tYMPV20p6ZTTCQTx87CdGGWFxlPRmlNKjzW2Zu3k1P0UFfhSOPl9p/qFZnonJiFVuAQXalFLJ2Qh2AB+Zn5QWzz2z02I6nUrtoUc60JHPSvM5Xn433WvWqU/noAOWugcef2WsGTnOgy4p3GGvrW6C4mdcteZaeypU+UDbLKfmmAC0lS0CYGbfkUERiKT+BNemj+1e6OI84tSGsKjXnFVHC5sSkZk+wYvcxOAP2Q7QwS/toQp92+wBhv8BHX1Ri8xtC4aoMFPq5L0JclqTKJpZx/ThdyQCyIsPk/W16Mu+/hFCi7hA/k6vXfwirN8KXHi/fyfzSgEmbJeAHSHDzsw05xpd5rb3MWJe8wchOs1OTDTTozRQ9i8YRWHOlfP6LUo4pL/8vypMhzb/AP+m9sqEAW4X0oZWH2tV7RyR4OBZxD2ni/QtBY1A/eKP+WVmhKkr6FBs2NttpWgJv2GeoXZWmdTLKtFDJ3P1lHgUg581RzbsSiZuhyTdy4Zbw6Z1PF6ZfLZb3vtoVPu5fX7DdWN14C32MWTyj7l72pLZN0oojrPlTxjGCPSlBaA9wZVkLJUvpekOQ5esRFCg6/XzW3/2J8qtTHNYg8FHUs4Iw4R5duI152FwxNZuEewebCshVjSkCz7rZ9C/CzbLuc4D/DfyEeqDonoFudbYM9pFhAjdeAnt8bLBtg+yJZfGV91LRHHg36wPQAR9GccVUmOGZ+o8NMHTTqHY+lg4lMRqg9Zv9WOZlu/bVwiuK4xdh9qYesxXhQV7BOll0P7UYLCraDeoxc4xq13i3qoMt6lVRQf9K+cbOO0GZIOU1GlmK2+AqJpMlrOutv+UtawL7gss/BH0c38tnnhmdJoKQ7/Lr+zTeyOd3WuBJvLgz2+kDYshS5FI+XbNLADE8O3ZHFglhZ7jrmKw2hdcOZ+GpbFZIzP4qHrLk7ZfoAqkS71+F7Lcqcnx9A+ECHqbZcWLiOTIZBFKRqs7Y+i43P9suFnzMKVEhVoyZqXzUuc1aNzjSFC41EXoxRH8PkfqXZBaf/v2kT5svunaRcONoVBBf4W1JeJJ8DZzqD/HoxxcUHizUFdInPcDHgFFIxkYILQDMT5wI8UPVJzXQsA1fWfpwW6AtxhPfAK1tSgPjUGOO7Chrhk2j3D0avBaQJHEv+M+N4np9LfGNcWqEpKjkUseyCB5bQQ7wLr2BWuIDU6zAIZrOlv/eTIxo9vMyP+go/Ys7SUrOuRWyV61ZNARvAXy0Ok9SbDJylbJ/lONUInOBw1wm+s3LThXa4YB23KziV14sKBEmyhnp8TjO71sI8Bp/AvoYn7NvZbIT/wrxWbWIXZakP5J93iWcCaIbwapWcOMT0U4zWEaEm0MmFcqhEzzbJIZMSliLmFVu7P1DWv5r12kA98zClFfh9MpmebDhmuoQY4VRpGsUa5hN7np3AmwcuXvzDY9Xj2kyF3IRWDImoYtyx9+xhz0rahWyTvaJBP6FBQfyTcr7q5MlVkYzaqUUpm/tTNadnJeceInttQ4O+YUWWkKaL6MxXb2lqc3exBBnnh5XTfJTFrk79VsBB5SLUxfuhfWEIdqHyKcNPCMJpvxDBMrgViAloKyMRJarRZlRixmW3++vKRpaVN/H/Qic+VqSVtQ+d4FY461OWX3Q43Un9bPNyS6cP/oK1HsrGkSca7mQQ0z41eyxS1mExEXa7LWYBHyf4Mp9cSttvnyNTtUJxAUyFtu7jIxOuTTUEVuZGNo6Rr4VZx6Zf1ZDB2M5El2nXY4T3wX1ywyaPg7IcBF1IcAC+H1/PcrNSrJV6g39PhExjiXiU2fBen8sXHG2OJA7mxFulx6VZPYT95H75rTb/Qxfj4YX96APG+21VaY/hwY5AX+qfFdM4+eUK5ciLaWoiGQWN7IkWJ5a0JF+qI2n32EN3u6xFQI5ys34XayK5UCUh5VxkE7D9yYEEDxJctmUg7Pm9V7jU2iPuYSYFTrY84xDFisXfPHhQ9uaaD+oagGhd+9QTS/kNx3L4AhcdHMRHSlrrmovfU/j03ljHPHJiYKKLwGXO9ftqO8e0xZahuPZs34Sy6ZY66BJsEa+z8TzyYRxm4W111qadcIQ+9alhttCzDX266Mmhpg3C35RjbUm/4OyoWfOI86xFoAxhjP046myn5L8l1xNdXUEBlYWX/lIapBTLaAbNYkDUbLDI5C9mqwiDINsLNYdQ9BpwcDJWfaGzWVGpdMabpxcXmRrMAyDzCNKExplczbwbe29MPte8Dgw387ZOhO4I+bYDmaY1yvDUpgpcJQdeGHxWwATNeFPKSF34Xhc0rOCcJb7jXgPefMf/+ksu6m5hn5I7yXZX6yu+R/cpkCrxJCtW5+Ckach16xVM5BbFdn0hoEu/1xZStNJdKQEsMfFDuQyYJtqaWm1Jf0L1BdNc37psxiCBV1Unw/tmGxTiGhwTiXt2UPE42CQz7AKApfNIY9edvnE/Jr6TAhhgPOSchnoOA9PVStJNcSxSI7DYdtOeX9d+0965c6vd8C+dh1CroGHisR2W9cnNf4woGK7yzbeMXCssHqfR1I4Mk7P57XSBxIIUBOm3ondQybhpAJe6yAzNnsLH+7UgJu8PUtq/Pkpie8PiiLQOU3BU//rJIwQ1eK5H7cJ3iG7JseGhwlpsYqhY6UQRuyAmaKL5/l1kznaZQenLPP5f7SPJXHCtdnaCoNHCEwupijSWoBFo0tFLky6VEpri8O7FHB3/+9NppcuWdIG2HRNeK5fyb+zN2jZcQr1RmoHtcgymeJQqBvUi3dYkTZ++gBzuIjn6r3KIH9Cs/ZQJewwk+uHhHqD5gZm0dWwJmhiMzSplHgTIubyH7UiJH393xDRec4nF6qF6cRR2HesSwFQtrDUjA88gwNPGVJZOMs19oSiRyKbUVmQh0ghywGmHh5ZaJ1b5EOMVRItH3VV6CbwrdKtnYpNAmrY9exjsQyDoM67Wjm/rut6UqAZs4Oc3XNtgaPPjeHs77yH6HFWPXU1KRUs7YWMRqFbcde6KAaT78gEUezo98B2iqWyJCDQS9yVyLxNGWiLNn8t/XC6EDVR574tpkolWbN9z1qXVyRbpEaqkAFBC7aqtkDBZOCBjc1PPvZGSq+UbRzUyL/fOH/Ggsx6L13m3OlFO1etcBe5QjnuQmIUKB5ZDWcL8leFnxK5U6dUvxeKrjEbM/FYEU4rffmnm8fpe0ys1jkPASU+md7cCMVowDPI/tdt9ICzV7tv2A7wirgh3Ecgd3o3sCYzJ5xTTyKYFh4+PRlzfSnMxiKQfs9lHjonDvR54VPvwQitxGEF5NiC70dXP8ztJdFfvwsbBze8u4y6hTdOC2Usb4U8aallwshH8SKnHVuWiGGDCybi8pXykM+5tDULhp0TwxN3CA+123MVttDRJSMAeq8lktFrGEwZu5LTX9QcqHO+GEby+hPDR8vP3FZMZnRqLIIuOGKaWXEmDkq7BXnd4apLjuOGS7NiAW2C4apeQJWATy1Qwjor3xZA7HnoH8MPFbBvsF19WYSD70+g7jMTq84ooM/NBpw2Yn6KT+60OukmjyjNyE38q4OmP7LMUZKTkg6kywBsrc6dtkDlpQTSKKqd2Yph9Cu+Wo5WL+5FI/M4reqVZHLxacX7S/6h2sig7B6RlriyymtaBrO1voWgh+15KUxRlsBKmWeBILb895aR0oaWgL/URNLMT5xITvNa6Nn6YLp06FsYLgDWeyTDg7rVkyWlspR7EYkQWgG/BQyU0J3X9iWq8lEUwKK+KnQySYdjldmdEiABOeCHrnvl73zMo/278AQLawKe2uVonz854hYDMVg73DxDz2D8W5NcDn6wMOMKafo0DSSe+x6sB3E5j9ef9+qBz3fcJpSrhZTic8Bq6N3TluxekJ8HNG3cZaq26CQGglXuANcCZNoVb0bpQLmt6SeP8/eExMtv39mAwacfsafYkHmLqh9kFeDXiKZ2UtcWTYPFUU8IN/hYC1FrsHVIYd8QkCXxS9kpqC/oP2VI5amfVvwAmz7yhVDTk2E3uvBKvMV0cF3euaIVzPOWxok9zCJ6w8iaCLeTKl7B9pjBijOiProkmGDofXV//mLggA3YtH1/X9vjAPFqaG+p5Q+B1g8Ljm40khHmG0XcGstar72sOhx62a/lqLzXUA2ouEhysbF9dDxyjXVAmhoE44yPutEjLaG1+3Gso0TAq/aWPcQr3N5mtSBd314JZf7Pkf0rG2Qq+CSFfTzILy6gFEk6QhKy4d7sTW9wyhpr/xe9sqCeLsBmwwOH2zJeBBVZAOh/lyiDXbHnXkOGZfzWpuUDm1H/XodaD2cY6G8lN3JAABW+gEALmjUtDQuAkK73UMren6eE8JWHnyPE7hj6L7p76vcREy5jfKzSQB7fduor64FGqcm6xEpmdDNZA1jiOGk8TNI/tKBjBdIE2forXrzuSQRFRpmBIRcutOewXe5y+y4YLlsUh8DCmU5iKZS6/Jkfv9yMn/F0aoRmMPQZrdMwm+YvR0kRw5p0KiBCF3tVtuXvmOUavBeaJJnh2eVGVFBfv9nLixx4mjjkyNxJuHI5HQyAsndZWwdgqEcnzEeitqkFfNm8JchtFhMG/JCWHa9Gte5T0WCPQWBOKNaGQKYPQp3G6KCRcitBmntc3TTp8ladLQr2UrloispZuccKuim6x0b2sZ6OtMr8CKaPfB3fqu5q4bJC5Vto4YWFvzk4UK3B2/Bk6iLZ5o6VEqS995dF/WfPSfcoX83QaXU7+uPEFlOimz1hoczqNQ/w8jOT417AOaAof7XsBGKlVekgKuRq12L5XsToNQsIF/uXHJQwW+zQ7ABYPCetbvT5weWcP8Uy0XYG/fCyig3R8z5ivzW0I0qVVJ2XHCe83bSKLF91Pwf2qeqR0aNO1peGWRXDKJCS95i28gt5YW2Z8I6VYiZL11J4z3yVsJ2Lbm++/V/fKMzS0HzaODeB7+rBzzReFzGI82RhkfIhDSDzYyFhlhn2baDAFA//jzBR9lMyzUlhn4S4GEk6KVe1d6flh8PN/gU16I3ruSW47KoQKZzIk09TFFbrEVgoxM/mJGAAX5cbyg7cdJ59v30VeJaZN2uhFaSK1Qccf83hAdp1EpX++xBTWrmaUtcDEyucDsVxq1Ojv0JS1EUGiCFZczBcFd3xrfzoEb0SYc5Jzellu+oShUd9VJ4zXSpbvxyBcvG8GY+mh3a4Aiy2znr7Tb7zqb7u5SI7/jqbWvZ8N6+X0Uivm2zC0Fr3OBksz2NrQOoULE6ELHCmD+hCeB3w46fRY6UZY0Ih/zLp/MVJH8p6WwvaM0fYAhAFYgICsychJrzJ66iw3gzyq38QZPfhkiDIPBB3ewpMbyYTjA7u8dXPZEUGibdWPx716+IYaHV2ZVmz7tjbOziXjFRP+jNo8WUF7s7hRZLHsF2F8oq8BwUUTphXccmC7GoPQoSeMJRuWjlAaO9Ci8hdwYpM3eFuJMIQ6BMJ/4jLcqLfrao85AYQg4e4tLjyYN5EGPUCipRtlaOH3GgEMQQgf/SdIpg8h7ZV17MxSXubRzr/+en12bV/blGZseuUoezipQu6e52C4W9zRk2Gr9vv4MyGn44etgrsQh/U3Uftv6FLxaFaffeea0+BRhRrbGyGUPavhis+fJVMlz5BA+cMr6hh1P8lMfQEnAvCYEk3qxxlsYyu1ymi+7HjQ7hUdU7szKm67k2iFCbjoNIHuTUTM0YnoTlqa62+ANgvsol0MlETDENp/ziEMgo2CpPi03Pl3ysMmpSQdDJEmXU2KfzoNqReSEKO+BIoJNHUiUPc1Bmip12j3LFILKLu0bmp+70/9x7VaVi32vE382TZM4fD/0GL5OpTpoowr9Pg50fiBLn43BZ/Twy+1lGdVePjr/8MK33P0FBCTqchzQJDT1ktEXzgJt6vFlP/65MYlAWDA38loARHflgj/x2w/8IUQmkRsFmcnzNUu9BSQbW5b55nlB1CuH+OGXtZanWtCaihrem/oOWPW6tqWoImNMFaJFGgRGPx5OhVJx7zhsETpv55KD5Cplj11Yp3quEqjxh/k1fj8/qJZCKr2QZOHxc6HsxhXlLCZqhUv2uGZ4fP5rxPBj4mBpVRtJOH1zT0NcGiQLlizsJhcozs/plmHUnSLwTLo6tB1+X0VC2s39ue4lXqbbRmZuJg4M5RhczVYw0LuTsmxKqPyDbc/ZEmn+XIz2BVt4PnLRevWHMrda+qpxJ/JtLpx0y8l6OOHiXdQDYylD8xhPmDZd9jV9Lr2z/tw21cMNbCgwPepS4M949jUgbXPjJ7hd5tViQCJXvSEExOUG4nFosPlpBCNe5cjimURtt0utWIsEBHnTWXbMC9AeJgvOQGJOFJxTQ4ek4pOIdBQbCxkOZSwtkJO5fBApnjazeCwhngjq8c494Ib6U8qj7t1UQXUkZg2aqeSvjQIyjadIJ+88DYTwxv6ZlioB8ICoZrMUWPLZnl0Boq4yLZDfh4fNhjlCOX1NWrP6Sc6ytn5JooVIMGXSOccyCFwok8EKSi0xiDVKNQXPqimIaBx0FKi7ZNDhDDGYKg4bogQ3n309Fs3S2pzmhfFOvZcER1/2MNQVaDJnPlXs9iRBul+CY6vh5Kfs3aEWyQvd940pJ0+YqUvB0DE9ePmPB3XwpWEOLTJdJNg8qBhhmr+2caj0nVrTEvVmT3TjK1P8hQHsTYGk3i1vZKYMdGjplUkMoGBCog0IO1oRzUm4brSXzRLyberVPI26ty7/8+hGus+WAtFe3jcxf+t9hSZsniyKfPKYhbmV09g95pYATrKtgvU4xTpJ/+efxNyXgCWUGwMO5L6xuTW6ylyJ8tEQ7p9dvNHUaMAZWk9IB6tCRM5+z1xoL9gPLuHgqBX8jLLYhFEXDSoLzfqYIRczKxshavTCeHDQJHgKujmQ8ZdNMlIAE04DWSCI+eQzGOYF9IL4tg33aG2/uHD0J8cWdsGQ8ejJMqoC9gZgk/Kj/NmRTNL4Qx20CbqzXgFkXwIcClFB+oHOwbcTU96hcPDXg+QYcUwzQa4LvyCDFe3xObMblbxeV8DPHdhwQaph+EQSlbJbrrURHZ+tzWlC1tucx0xtRZsDR6CQ1WAprcJDa5ARpoNgYUTc29p2h6Haq2+RtCqaF7b1JDCfRtdzm9bqhAtPA5QDGTrBFarGcUZSgNblvxBogDCBGgk0evbeab25xf+ZZFKk3YDunpbIgSyVltBh3qHHgQNgHiJHtORWdv8HZfHYoPJSAdq7e2l/pW+uA8FXN5DhCmYHlwEBVcxmg9h/mHHt+6F9AUJJiZMOIb+Aa0NQKgDCJTD19Kbc6Bu8148MCW0BKHHZv2I24yiXh3+6omb05YaZbYDgMCQdLmYPKvatCqxsYFxmA5A7adUicSdcmpWHJdeSTJq80NMSwoNfql3ZSOCH6y8Jitr4tYwPcxEajtHUEq+/5oUC7c6dF1IJXWfDC2krIezcN8lx6ePlcQshsZiWGrDpZsWy2NyPcGGR9pHPZt0MY33Mj6ugJpTjF4ZvlAC7ZoSdK0ILtZtrFWYs+QYWiY4IMdNvKWR7UwLfUMqkRcE49YZQCAIeLCIkMb5iV1BgQXZGKtmrrsT2euta1y/WwzYMXu8klBy/826CKcJOuKlMb3PDvLOeeCJdF7pT+Sjc/yLmaY29ScnoCHD7ZG5m/U7Kr5exw3Huhod9+4M4905CF+iFPpCQlaeooyF6zG56D2XuEGs5dImV7VRE8L27Nvp7u1fdzZo3SAyVhxCQwpxVLV0T0PfM9fbCW7CpLDy7KTtkTN8B78VdweqU/xak6ZRCT7ej1SXCAiThPYhqcz/CGj1yLU8++Fvyq5AdC0CXJxuNXrsSF1HH4WWEDwOhomVk2tDc4IFuq7fT3mlgQYYcCjHJZq8s1VFbDdaFQ4yXj/jziJFi2QOlT2uad9oe15KfH+SlQK72nT/TuVT4S6tghr9d+fPy5aEsXym+vu7CpCKYnkjqHzMG1GmMecZYL2n3f3zOQfGeh14QyyEk0Qvqw2KvEbMg56C88xjHFTnp/XjG8ZM4jIqVjdomoBl90ewRARqOgdn+XX07VfpgUjzrJWVHbN173MdawNuyEv9Riptztjb7Gi/zmFlUWZ3j/71U8QPmB9L1aUXvWsaaUVKukrfvHC5Ih/oytUHUqtMqxMyKSJ9G1FCcaoRbQedbnPMPAAHPWlL+d5SY3tAh0bbyxOFbOfNT7Zq4Pmo3RHWZ6EUSMshNv1MsnsAO+IQEr4AKjXUYYZk/6RAwo9GxRDKCVUNefO7a6Ag+0Cwwb4ovTeRGJ9z3BUGL6BVztWbvgqebmfmgOunlV2L+Au09do2Qw+DH4FqXkIP7sXY1/YjTFbBx/u6SWtEdTUUlT/Cp6OpPKQlLO7FnqMJWEA45BqwyZt43M33KSdZyJwv53V3/tIqW28tQEyGqTLP8COopp51DpAPx6pjdqaoydl5hyyP4aa2KcbernUslG93qlM9BzO3EF5LiJihXdiMIcRgWEg4xw8jTeesrBNBz1asm7nBWfbfcyyuUriKpuPNl8JI/bojP7Axq74SVm7NfdqRHzGc24yYxHTHjB8xcpSmeUBYUlG0z3PTTU4fMsKAVBSDlgaU6d+Z+54V926S/Zn3QiIVDjpjtnaAg1G0ZbAyUZ8cGv8uV8g5oB7hz8cToBxJyBdojRMInrjnoCTiOmg6oy3Ai6KodHFZlqb4dVPxh4k1eXA2A6A2S/0MlMvklVI/eMFctooBa4RVCL6sZI8h2+yD55/4PWsJw9mF9IjXBNzE24FnmNJ/3TAIG7qA4I1EKTdCv2h3zaSIkAJksVkc/vjP/MMu5QLQ0/Oyti4rN8RAxLnksClDlTVTEMSI1tbGxRV6NG7MnnH3AgKRE776iMr03YxF/J8hF+eZ5zgStd1cxdolRPS3nOF5r2uD2s234Yv92jzQ+BaKjmxGJ1MGLJ76Dk+VmaLMrxVecu10bk+WDeA9+3eafKI6lTQ9uuBYvCG6gR/XUD1lu0j7lnC4hsD8I0yegC3nObjCisgGulriNRnrHB5lI8CquoIVjaPn3fyAypfbqWqem5kPhQQ22sL3438vKkXWbzy277hZD4Oo8ApGcklAFxVGaQ2uGH0t4w20SG07nEUNF/Fs9WcGRRMebGVnro7kWsBpQYY6WpNzoOQ7aeDJ+e/0HMQoc1cs6Y0w/vfef8GXJEbTv1JcK1YskaJRSe6NOUJz2HMqInIhSC8N6ENYoKqgeTCLLJNWUTHVwgHMm9vvoeyrntF5CKYbb1lhlS0E69dGrxSCf0MJ/x2lWqRsjqNYC8KXSs8K80agaiZn9bG87un57NLSbXqhTlV9bK97iwBgVqmbLmB0HbL5eP/sVAwpnhBjaGZCcpgkdVPmQkZGgakH8YyvBTrc6X1Ed+Tlq2vKM0B2otmOCYa6C7yWFOpWntjsxvJXmBaF/nHPvQHYgPf3F904U0cER2Qu/Faec6GdY6pO7Aah6B+NmcxtaFWFal7pfrj6dJoLYELjqR7iwEO2YHsiu0ppjwK681PpzvR+YqGJmcI1OtLgQ0yGSg0IdgM+IBOZsAXqWcN901FG0nR4gY9ahcK4VlluLK7r8jdvNTsgEfs5RICF7zWikEux1vgjurXqdA0L1JrVWMHXuQVv1S+yiP3zNPhhQcZw2pgA0wDGb06Ps+hD5q5cpHTm5KG71YY9NJyykNzAnoPQJC0tmObkdKIrTQyG7P919EiO+OkvI3f8CRRR4WN26PYJyw3RsAeZgLu7IIDgauvmwRUvZh8jGxtwFbH9uWSfhZVJ6mSn+rc6qnMGWeF16WsInlZu8q/mHua4tZZ9BXu5iXsmDYU=
Variant 5
DifficultyLevel
558
Question
Here is a table of values for x and y.
x |
0 |
1 |
2 |
3 |
4 |
y |
0 |
1 |
4 |
9 |
16 |
Which of these is a correct rule for y in terms of x?
Worked Solution
By trial and error for each given equation:
Consider y = x2
|
0=02 ✓ |
1=12 ✓ |
4=22 ✓ |
9=32 ✓ |
16=42 ✓ |
∴ y = x2 is the correct rule.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a table of values for $\large x$ and $\large y$.
>>| $\large x$|0|1|2|3|4|
|:-:|:-:|:-:|:-:|:-:|:-:|
| $\large y$ | 0| 1|4|9|16|
Which of these is a correct rule for $\large y$ in terms of $\large x$? |
workedSolution | By trial and error for each given equation:
Consider $\large y$ = $\large x$$^2$
>>| |
| ----------------------- |
|$0 = 0^2$ $\checkmark$|
|$1 = 1^2$ $\checkmark$|
|$4 = 2^2$ $\checkmark$|
|$9 = 3^2$ $\checkmark$|
|$16 = 4^2$ $\checkmark$|
$\therefore\ \large y$ = $\large x$$^2$ is the correct rule.
|
correctAnswer | $\large y$ = $\large x$$^2$ |
Answers
Is Correct? | Answer |
x | |
✓ | y = x2 |
x | y = 2x |
x | y = 2x2 |