50071
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle PQR?
Worked Solution
Sum of internal angles of a Δ = 180°.
|
|
∠ PQR |
= 180 − (74 + 74) |
|
= {{{correctAnswer}}} |
U2FsdGVkX18wnguiSEhOLjOIQD1UmNy09QGrq2qR4sPwp1Mmk1BjvVuJ7EmKMR3jo7OrfHQJgtspJAFtPVPz5UHsrigDc53iFPPtVgfXj+22CQnpFGYUyKDu7P7da5NjhS4PKJ+DQtHmZAOSbXXAKZAuVCfqlqkSnqmN1zVWhPvBNbXEtPF05GAUv3RgOqveSDePjl60Ik+Y+ZuVA8fbBLlM1nelmeNYD5ewuquxlYLGWi06PGDnoJ5dyoe0RksOiikvATjXGnKTAt3sTiVIM8DIaFASaG/Y5HxQ8r/Ohhgd/D7m5VEfDcmN6w08prrSEqy8Uj8ros70j/nTFHYY1t6PcF3Ws0RL93fG//no6gXFyZBm85OKUmLoyCbeBnGGgTP3XzgjkKyyF+taMTu7cgRivR0LpTdKV9cwXv+3+hkdLIv6lzt+dKqvBFcMFyKDWcLklzGhSIs+N8jLh6lkXbb9ig42DHoLUtIXrsTSJD+/KOlFVhRs/GsW/6RvW+58MhYBqf6ixTa3QN9urV7CmfnNLF0+SBCQ0IRgjXMiErWItGRKkW5bm2BXFoHoLpWJd8B4YCs7VQLjgXSDW6i86S0j0Uv0/td3osuiUf5E5tjekGOa82mflwl5bxk6lGsCURTyi4/oQJHUBnAN45SL1D+XaozRSD8qVdp3SxHYQ5jBp8TuQVuIgbjVMFZyG6AI07I09nv7VFga9KUMay03yWU1lukYDiIU3SXXnt1vQwAOw3use+azigIBZyCi/2eEvzmqu3PbDpEZ/JhywQtxqfdny45ObY21nY/VibLniLKDvUeBH3fggr3ikgn3imKMCCAbgHOagv1uAwnQKZVUmlueQUoTO2Qj6SRbuEdMvpcrZBzFFdAhQOuykcpdBHO4G7JNlW14PY03y6VEcNuqLoba7OeFdKksJuEOGPDwbRWYHzV0y8YAwRXH9ojIEZlW6ndmgXS20G/qPRg40DumzWmp9po/WRx3SaSivzCPiTk8ZDhUCCEgcswmuwwBdV4R2ROOVlrmeSYiM4fjoUfOif5A3XHQcdXQTJtN/kjFhWMBXVhMHVyelyA8zCs+v3D8szlGMoMG9xIVO6+27AIcIkMOcOkJUt6vB+GNMkf9IgIVl1Zz9N0mu6B1tk/A3UqcUJqZCD6oXU/KsrkRg8CxyLQDcMQgrHAQltziKo/C75YkE2Yy+7KwH1bhk0N67/fR1FQk/7+s78rqTZUrrTv3301WjFQu0ylt+rErKWrPbTEtrLyUH8bFTAR1CgSEdnABFdfmU2wAAMPDNebHB4lznAnVoaEtKBufUzGt55Z+XxZN71pKOAeTS3KFRW22mje7hd3rZKWS4ywsE43dmxIpZdwtIHisRHB2AmsaEPQlbRSywscgHzAF/5hK03tPNgBX25Yao7I9EC1BMyHQgxbzaesEpwPn8URoZ6nsnqXAR7UKvuv1DyW9HdxWD2TyNaeyhUSRMHI3zsBm8hjqP7r7maOvajmRXMlypBARzD8OM52NpXuRvpYPIKPslK6Pb3KS6LrhndZz8JezpGoqc7xrzoPFQ4yy/7R5+Bds9ku+/ZyEOLPQaDdUNRQsoGvgYH62vxi9tFh9c+OF/L3shYyj+rXvonZ2eHdhzu9/gjG2xjaA9NGJwmDKwyugZ6xC5sWhynHGrEaWCBcV8L8PkBO30qMi3I9YNZ/6cAmCzqI/H5CDa0caf8PRe/+SQkD/v5QG+48inT9darUQznnAzHe4lqBDWEaLqQ1drk2401H8KTL0jwzXs9upvyFZiXGGcpZ8eI7Sa1p9kIBKZWFOPiliq+Cunu5MFgwEGrw3FQMx08TfaK17af0s7xFsbJ17UhKLA0Af4sKcThlu32x3jnQ43MxrKszqAa6u0QleD/f5u3Vrqctww+z4VAaqFU3GcQ/32ZPFXdEcKJ+Aq10xhZF0z5Q24g2Z75luabCjKkeANihOkNFpCJ2HVxDjP0eFRkghHYfdVTt6Mp5E+sFU1h3Q/b4GlyMmm/YF7aTPjg3P/B434znKh+y38E297cmdjyX0zcegOrO7X7Lz/3lwBCX9RkBWXncY0wNNjRJO+JultDqZXJSw7LERwlWctiCDOhsvO+ZISIjn0/q3ICd/I86z6dPZXuAKtPH5xK0PND7lKqaCjEayEom2ciZcyzyvisiJAIhAAgQauuEiNV7sseylgVKLohlO3jxHCDrhvxQ7teYXwUdEY5Sp1fKluS+iodK6VJLtM8g6fBooE3q4wxNBbps0pN21VVZHqx3msF9g6YGv8dZWxq12Gt8yW+8Y1gotHZ0k8maenv70McE54iCDNcEe8VEnVFLhK1EToM1my5zcRA8PRSoUS2TnUkG1ZY7R4eQojUzGFSl1WKL7GmHRZHrYuSaVNEMN7YzHJtzXGGTnJw/M+Amhfc3nfLNHqxZxWHVJu0HkMOg1feCo2Jo4o+Cwynnmo648ik+l2QPvKawUvJT31zfvjI165CicC7mI66i2KsBj9G9EJ4iOAkUVtHi5Rq8+vmVdkJxbe0u4xGEK73vhhBHrUBCB3tf3icf7889TtTjRFd7CoH3F4keT9xXNrX9x3PkrXR8iztir/fm4yYVSyYaCB5cUtuTnmirKAvQgI8bQMVj4SlvNsnKng5Z/NfoOsF5SZFBYCzmH/E3MXltnQt6itabO/sEg53gHcStgVfU78VTUxEnvh31zIheEmjkuBb61fZM1LNci94pyOL7km/AWkd8MuGFta9CoP72m0AaNPO3nHwXRj6yNJBVJbpdYdw2JSc0u7L33zwhvDhVMXBzdaFRqSPr8gUlqRBoQntICJOwcEuRjtRApQK1TcBJjKgQOdnKKxM8TAMcFh5CSKLAfINrtYTh0Vv4i+ESEzKs1J2L6fPNu2SBL3lvY0NIBIQSBAvvqz3HME9KAXWK08WkZLUlGj3yRtdbHBKHs0er9Abp0fVrIPmxn5q7GbJOMpiawV5Qcw/AgSNTgk8cJgtNEt1h3F23eOJdNBHFjGnI7S6JacZ8quzwYrp4CtWG32lnq8C0GYzxMJPwD1SdWnLHlRKBA+i5xxFKGIbFmIYJx2rkQ0b69+RT5eTmqmUaYHaVwywtSztC2QSb7/j1CoSb11+EmxxlsI/Fx2BLH1+W9sNsdHF3qjBxRjE82fxAxIGV32kSjpu0psNMUK8x5J9kuBSVA/ljwrx7g2l9qOsgjYrgIni2Me03geeT9m6agp1CTYgtSxJqh/Vr3PivR96jM7g3POpEU2rADDObUjnNjHnhU5NvXy48gCVbZNyLga52VLJUvgY9OOx0liBeQRTA0QyfcG1IuKfzYWKyymJnnRDcENkpbeMnMG+RSlQQ80ndqUHwfqaXqO8f5QDXfVnl8lxPz/lUHLSTKz2lBZbVzfWiXvU87QNoMrY9fzfAncbMQ5D/HgYLMsA64Q5g3G8rdbQ71r955WEppN2lFdtVmQzfFKEpfteGBlfoEU6vWnmbcXlEr0uB8bZ/1AkebbBllDALLfX3MFEyDgoDXlmzyS4LumC1phytzVyn4z6kw/eq6IJWYcj2CghlSCZJUv3lBPW136mzIibKHRjRyaIduKkDaXBXMwk2gIvw42mtcQL2F0UyIw6bjr/c2zDa5w6uWU8aWmueTeeIrNqX+IS0dXmbjYTCqe7tMfedfElp9+6SZWmvynnWWcoRSTwId16ubiUMhYh0T0B0PTPy8ERvUHFzns25m7C3iD9KAXz37jYuQ/wkxCU1sMRpvL9GjRxRJjo7Iqo3oiz8uhAOml+sI3KoksUjN1Me9usP0z2NbEFrHs03wmilsH0Ka/9KTXtZugFL2iLYAUOXjPCV7XxK5G8eucRD6/M1aCyKGs9zb2Jc6WIlfKZRKfBxQYtMvUy3JaMs/IY0LFGfJ0Q5z7JLd4iF5X4pdzWVDFQanQEO+S7SIF5yiynKDcNLdNbn3M1vKQqkKWcBH/sMvUVGeQt1bkNQzSnMBrQK4urc7oteo23KmaQtu8C9eoW5JEyGiftFGw5mTjS/V2a7SZi9a8YM4J8OEF0NG2Wv7lmXe9k86KaXlBUNn+dRsYbKZXa8kzImr+sm9eOwyq8Ubp+tSQ0VO3ErSfO2ra/6LZhP9z7BK9Ge9vvj8yCLb+xtjOEq851vAIReeY6p6c+YQvcZ+lR98JY/whd3Litq+lVFf75VaLO97sObB2VaWfz0gi3bimWn6m3NJQNOm36lX+3tq8Cg7E33pNFLojsha/J9gDXUnzWSHPvk570dbW7eVtcPyLczMooF0xYfspm5py8enSnMrr1I49fkyal+lOCKlCEZFY8gxsZjVjYh5ybcWR33c1RQvcqmJuYHIcZoRRZisd66kHGHM3hURFTi7gEtGmJi78ir6eXUg0jd8Rb/fw/YdWUmELcURSpBEQcmog1u11Gq594GsT1DtPj8wxukI6DciTacVheEjbHdEDcBzVOnga4iy590s98xMePNr/Q+PE8PaiRZTsIklo/6Y9lOJiaXWBZJvWsXHPw0qKNNBY0omFNkcxFLO3hEWEeHslhkUnPon7xk4wnMGhT7mylB/W4RQuqEndveByqPYfpIayFz+Dj5sxRtMtdvc8enzpYzrHgBbL/wK3obFPC+YLEtqFk8ErYNgbBaWSGrMF2j/XviCL+9HjpOXEo6T684qV1CTea2WK9F4mLaymSF4fqJrWsIM4spQ17O/jDi8AZQoSsTV+48luAq7C6Fp+bIsN7jZgBvWLyijioRnHXwfjRjbw3EvghWNJlUjqddrWpX2zJ5xGRNES4Y8YxFeocP5pZ/x27iFRN/WzfIr+jspNVl1xrORDLH3IzXTDHgjRZHm1ZnyTxSsv+tpDcnoozKGuVw++DbAB+UYTZuL/KyIFEofFXVgvvXL+sVWHKDs6yfV83z30EvhDmSAlO88mUdP2zDK0+KGhlsJENam6i26ezMZwmqhAVOiQqEX2WjoAZ7pUNX+rhpMqRKH9Xqhh+Azvni+aYr0HbLqYaUEHet70fQ8Lf8VMNPeP9Ol+ECuL65vTsO0QPogxHhrXkPL5u0vkDpzipffOiiDNRDIwif6Iug4FtjDRtShczE+v5HUju4sOl+oJ4dG7tddyDYloXqr41GeW/MYarUK7cVjovKesNEeHnYBxca9hcnftVwG1XIQtX4DpByPEc/+AeFhGWEDyfiKhflHEzpny/0ANxY484v3AyOJOq7uHF/29vZ81YkFrVViz+oP+gmrA2cLlt3I2lcVztn0gKAdudamxYKin7UzhVawZUhndRuL5/4l1DBnhW1+qv7ZwQ26CQIz7Ug8jNKDSNcFzpwP4PpAtPXY0T6CtPgXklcCAdL63zTxJY7bcWm7r/Ve1MATmBb0yoNracxc8YJRIE32ZZbNweOKCuK08E1qEy+Dma/AyUOzPyDHeYj0z7vAirvCUe8BLiVWMW2cnj6S5H+YslnEr3Nwjk145Twc0AKMazKGln+UwOuLxU3XTeIz3ZqGDgmxle5538HNBcvEKXw/CshZ6qbhRnZeU3CUTMohIAn8nHZjacHVzz2EJvv66RBhtW60GU6TogW/wz2ROsgTIuG8op2C875DltRtHJXUoa4MgsYfz26JkCShCNx/B51ejRug/C3cJ4A19M7Zi6zX2rdfMDGm2iQ3jufY/DrJsQINf9QXTej8AJ3qKZARy0fMhU5rr4ymaCyzdHCqYjOzeJh1oAsidxJMQMAP5dCfywD1PuPcKUFbB70gwcrOuOxHMRjfvTJuPwASVKdB15dFe/D97qbfeqZSYATrSVBvwZGfCqNpFDqIqhj3vFZt2cAZkeTp4eMC6kg5c6Ea88yGXpScif0S4s5zvZOI4Z117NkeXZllaYPLX3r+GmnQLYOcH8p9j7JNQhuOG0x5mIuiGXqdHZ0bK+Wi0/bZlCw6S7+Y629m0Txgxgu/3CF6Myr2FRATikMH+sXN+Hcr3K97SooenP9PW2vVokVAcqjCyv8MyrSuQVXGnittdYnJHQuVq7nfsW/QfzTAnwIGKMMkjiFZ4bV2T1bhVBx+bag93NiwLw/q+wM=
Variant 0
DifficultyLevel
585
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle PQR?
Worked Solution
Sum of internal angles of a Δ = 180°.
|
|
∠ PQR |
= 180 − (74 + 74) |
|
= 32° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers