20098
Question
{{shop}} has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
{{item1}} |
${{reg1}} |
${{sale1}} |
{{item2}} |
${{reg2}} |
${{sale2}} |
{{item3}} |
${{reg3}} |
${{sale3}} |
{{item4}} |
${{reg4}} |
${{sale4}} |
Which item has been reduced by {{frac2}}?
Worked Solution
Consider the {{{correctAnswer}}}:
{{frac1}} × {{regular}} = ${{discount}}
|
|
Sale price |
= {{regular}} − {{discount}} |
|
= ${{price}} |
∴ {{{correctAnswer}}} has been reduced by {{frac1}}.
U2FsdGVkX1+xGEcchnPhp6ZsImO+a5GD7CvNBNiad4HV1kptF9nPbwDuMY7tjYuT8H79OFq+DSn0Hcdeb5fHqYiWDKhM7hWcBzloNIWFGaALl40YKdoKQT/6/AYsNQbwUQroi8a1Koz42Ql9Hpn8358dtZkm0XG9PjXryfKTf44lvNZK/XjK7cPVsgHeFZQYT6mm0w/3XiqK+eJU6LWBevZJMZUEm/5MKoJrxU79er70ndN7Bbu9qfxkIagiRJtGFmDuPicm3vPDd3M2XSHanTjnoC1RguqKbQgs8HeHxkGJFa98JNEmIrczw2k5/9u/1kEkAVF72Arus+5Y15M3NIX3+efjkSjsIBKgxhpwZ1nHhSmh0oT4VWfTHVTxZNoSf9pLCv9uwMNw8PgUc7hyM6vPBv794CQRB1QE/oRA4CZaeUfmoA5UERLiokcRD+QGzf0G0t4P7dw5P6Zp9i5b92u0q9nmSk8upWJ7joGO2wVf+GUDJRmNuFRyOLg8S+zKQjHBmXPxNP89rFFpYK7Tju0RD5cOdLIenU3wnbr2I+/DKD3YNoUCUgYbi01C80lB309PoZgq6sa1zFrfELkELY36uWudJBdL0ZeKjZ4+6SaTJXqSlzPR6gwJjVQw4eirRsIGZj8pBfpqDjLU4Kj6SeJD9uFJj/qc9l3UKEK+HGL6SWD4drjAerq9glZOeYeVurfapGTJYLVLARXLrnMCNXtrVAWJkt5fgPsOneMQETZ3JugccnLglXnSGVNn8Fa0ZQkXIByhSROyJ+gW2JteEAeK3aLN6nh3PJ6Ne2dYrShg4lRUb3xnwYypgtB0fTwX7Kl8Xz3POw4pj5zeIkMy3fKmtGDG4o/p5xmCjzh0uRfVKgs94TZH09QTj1PALEMyG4hRAED2pznZZ6G8tl4i7OxWCF4/Oe64EfhHcyAzmQ8rbiHnOlSzhEsgPDFnE8T/s3Q1E6POZeaZ8I2vhB3D2qJa7eXqpLBz+QDB0S84LB1t1SwTwAH8BCUuLw33icJRLKMHSxDkECc+R8gp4mHV/qJ6mHGK3tPrC0xuAcznYNuJjJoVGZkwANkBinsQV6Me+So2xjmplUXXdy1MsRhnzelYsnw3USuMwkDMtyIdi0FT9K4HgdC1W22a4Q34jdwvpu/1wf6J8gjkpE73EI+msDJthnMHSUu2J7Ypm5/EtB/6KDVhs2/T1dDd4AHEJaMKY1bt/FNRdsQYd9nR21/xPSSFupbpiD8eDpfi66fGWAS/qJFn8PBcEFNmtigMsoJS1ohXyOnqTd+Y/NYkKg9b5lSpLzzHj6oP+a/74lyrnNazY2xhfY5zcJZqfr21b2eDq964A4tn0D0ANH7azA2ZXWkAeDiUrXK5vwEERwYmB0nY7z+v+o4u+KHMyHEWkvfq1WVWg2wyFjvTkHR3XenCsrw/SflyNldwMNTxrzEoVIk6WwYeqBRjyC1ZzkxjccHu8jOyDEHrvUcYXbHK0UU0xjoeKpchMRYpSX0kKqujtViifgrrB2GR5L7DZg3HzLQqqID1rSvK3OLaklLtrRImgMTFsGmcVnPecX33WlIhRVJ60e2a120awcY0X9zE04dcwitjDc42eefpr6m7RPF67tT+VYM6DhWwWRRTNerhgp1EZfknYRELDfMuJMxfHaXKoaV2pw7wytBaVHpaGgjuRBeW4T9/B3/Ac+cJ1FaScqpLRtHP3rNbekgLt0jEkOkyRDtKqouwV2mrmsqTKZlJQ7o/Sj2GjrDlOobl+gw7IvWqyEkLivjWXoGcSXBMzV4R7EHf+9w9yo+wV3v2f2jlF2bWkNEOPSqpj/s3ThYeCmp+nxRfs+CT4jKRclt+dLQN6pEFKvbVefz2F6yaQ5QJ1Hioc/OQ+ISebaLiFT5DLe/s/ksOtVk02G75Gni+XB11F8VuUzwFMeBO0lC+ICCN9gDsDBRUpozgCylVd6CK418ER8Ag1ScS6rRNhr6Au0hvuWgrULaHr1OJZr8AobDrulhWEeH6RxHbxrk8ajVc/izJvZe9hPR+XVmt4nMPjiHdSOLRXcuHBnwNWTQoVA8xX+6oxZlhrvBCkNNjvUeTsFsqp/m3nyNhrn/ozL8VzIJxVmAuuBXvkos516lUf598JrHVOgxuc66iFtnnIStFLHjduMHyHX637jHADufjtSEd7VHzkXZL3U+heMfuTIWk9c8ftluZ4BVUQfQr1go596hFzYA6+YfPAWQuhhDkVbvhcrhYh+3Y8w/xXEhO9d+qISE5jszPt6A6oa0r29/pyN/krQW+2z/0pyHyeffNgfwN/IdWaLXFOi9ZqHr7XAezR+7ZkY6P0oehYTrY1jKNdd18tFUHQUIXKQv+i1U3OCHo0htk6PKwBSdKrnS3kRbO2SMr8agH9dXSmTBfsEvDjwFHi7HxhIQH6CySPx6K4xTehTPvAslSPY1emQBk5V4GDVITU8Vlb5QqpNLHg1o8kWLySQBfHp2TyNr5TFkQ09NPD9nef8hYsYzHO02oNqufpoB3yy4Ftjg7fQEhRs8i4/x99bnI2WS5hA3Aa6QUXcHQZxoGa7QswFSjvf2XJ3J+D5Ou+3NYfRL7e0K3T7l/WSceWKjvaFnRJyFyfqZB5EAoWZEaIV7zfA7kwBfVRoRCf0qVj0wao2EL76mUpz7IpR2S/m9A4O/nZrQt0AYzgj9KelbAATEgIIccpIMND/jinix97KGr3c2+WpaYOoYjzEsUWnSJjZmbmSGw58+sZsvKOhhjwt35Xgl/0tZmxOICGRgYiXNruMy2APJDuBOU2XcpIyrj1DyupARilBqQs9fot8LfQ1L1LltEMW+5iYVgnecmP+d9eG7OVaaNxyU5Lbjev8nM05neY/DmgE9Ma0MKyLPx71l18u3CeJrlHrAwyZnii1KMgTYo2YZa5ZhwZQ3ZtWgIOAAGOcWA7i3djqoxEReSLskruDnVRTZ8YB8UjFowV93XqS8pj2TpR1CPjNTOlLw+i48e1kaHtx8ns8VMIJhwArHsHdhNC2Mmy/shKyOkS0k9BOxax9jmz3XAb0DLTJfQ3ov/yK2zUvSvH7Jo87NRQ1iEoRg2A3S07U9F7NPTZI96yWxQAybuejQ36p75RBmhXpXps9wt3KKjN73x9GVc6Rk9i2xW2eFr7BifmxkPdTO2brfL6Xg4aO9YaEM65CruKwEV2UFxUZQv1JU9N4twSD+v+N/ziKrNy4xWaZ05x2xqPvOdS2EDnj4wGZGKV6GDEuukvc9FkLRJ2wWvEDepY5dQ6tlXC60Rl9JWGhZWoSCv03V7FgoTgh96H5osQX8++gO/8pWLFDXOmAeZ6uycOvcsZPaQZ/qbUcohJaIBVq3UTVrncu0r4FzwT6/D/0oYeTXR6VcAc6uiZ10iWf3fuBKJk79YXe8wumglaVZlyGzd/+8EpMnUJ1RyW4d02gHoTgg2+CZ2glGTp0oRVRwnlv+aG6P5dFAupKm7hlLF/BjkyF7iL2UsqlshrF0IDdZo79hoc6qAyhtb10tJ6La7WHq0iFHJQcqUnj7AhkJi69Leu5gVfKJwVh4Oryr8kd12nwcc/9GXi32sPwzsliUop/n+Q12dwquwXn8uytJUCZeWzyHNzeuPh/hAjWgN78RWlOeOdTiB74avVB6+BDkl+fRdUZyd1ehgiXubW/q1CRQJatAjrB/hl+8gNZaex8rhJ2c28+zwc2jTe8ZVysP7ankMaczRZirIQecm8mvKcmAvlXJnZ9/2YD5K67/94wagKuJNjJBMb5Yxiqa5PtUCmSISuxe7Waw1LKBEO0AMCBB/EX7pHgCptm5Y/D17DO+dFEbK7SkqTFp40q8NphepD5eHl95DS59zjcTr7Ze/Vk5ZFphaoP/4M8XLcwssqilw2XB4iOh9aFcSRqGZjU0rp/XiqRum6zibOhQWNfYgDOxEIYrEEu2A90vWdHybt4/KM41Q2m46Rj69pXELqc4/vlVBVzc/ssr+TtmnDbo7bP/smOfT9ZCBbrKDkH0Z9CEsWn8oVd31cfIYpGTvnapBoxTWTztn8EPZh71RyznqHIUWP8oSz38F9toJTf31aTFo9aNkMvZo5EEwY2awxyiX0hPfYgJVuj4kqLpT1HKyepczJE11JjnugIShaOjomggHt4ZTupdo1hj79vgBBMKaHsWy74YqRniBpt2Z3HyZUoBJnZNYGvzSfPx01QUKwtlSMDSY7ZoTI1JpcgFbye2LL0ZRoexeIravB+z0fPgc76YgnMkJhuQytENRpbBYBN3S8PxnZc+ZjagS83/IsJhL+mVei7QFkAtEZtGBM0MPGG3XKioauCSLrfaeuIDpjkcEUSsS6I3vgCEiXVMPEoKiylciqal/uxYSDVktFUhAeoYqdyx8q1bbtSRXvf1+Z5fbeB4xDJbeHUIifI5sx2TtON/uPJclQbvs72yfG/dTs3DcZbFTBMqBqCLMM/OA2N9Gplij0a4VlIjbXwWlZu+Uid+73gbJUciUjpDighnS8+K4ASbD/dn0rVAgGijh2MkgzeaTqMpAlUp/2sCklmCjoSWEh9yLpbbbwBUzCRvME+TgwX2wQFN9douiMcH9pvxec8MlYBINTG2qb63yRlo7UQ5gnpbHGXAbTfzu19WrvqaCFOuz+eAH+5F3w+nZkUqCwlNYCPIeKavaZuLdLvFly58SMGgZuY5KLLn1KS3XCs3kGNPvDHdaKJtvNta61WtXc/5WotTHYKolwO1D8tIsA7Z+PQgvdoJc9rDevITXOc0Cg0piNOo9k0o99rwetea0rCe+mDL+1fD2hEuEejpWvF3L1jqivJR+iRxqFVM32r6zrDGfCiENw2pmZL6T2Jy9i8mM5hUukFwHgJMsGUV0Jo5dagoVZsBlp0GBFrYK716ao2HOxDMTS8Vm9BjJot5527EJ/T9Oao/x7iBGmrDNJEbBNsD0iEhI54AFnpxbfP/KvDvcAf++MvKeZhbEWIchXAahA/vSAbw6QFTllkpt05d6CQmp4d3QiMr7H5L9bmAhxbS9mAeCWCead/7ZHcdY2blTvndIQssHhivD39oEmO8qSUwHM44LCf1CgKRoTjcJKAE2xWnguFVlPO7VuoZ9i1uX4w/iym8CUL3CnN/9jo3oSqRjrQGoBbjcnnUSbbk5Gu2e+5+FQrIm6CgHJ95obvJJvGNVHowMQqu2ctrSeZpvE57CSdgo7RG7d0uZUNI/AIMYfhhQbW3i0Wr9BTh8kYgOtm4lMGR5mpReMChryPi7rrq78GIxUvaW1r0U960zohyopuzTqxyRqGCh3Fet4ThzZSZFrjAsJ6SWWtcf18VaqMWSyvI1IkudFDJBfC3VkXCloL8TinMCjiAwVpkHULPRFMFMUkfrtkcZvV5P9OEUO6RxMnKWojWcQ/y4MvGSFUKs8MkHaF/oCKtxF9UKPs36rkxB+1n5tOXafhCGBx7Nyn2fJjJAX355++RW0blDk6GiAICUigFF3e5zwUm4SwbetOvdnadYOtxPWiQHZHiF/HSwqL8L4qzuc7yYYBK2VqlYf0JD4H+FBp2Ck0Ek4wVyvCEh0im4q+tpe1RtqxNl0BXCk5g8w1UML5VYp16Gg6I5N525dCBmjrkjANjIslkp642HdpjoIw6vEeK7o3+gu8+hCzPjVIRkIVZuPWPCXPCNFDmRS4iBMXe9lf9/WWHgqPLjv6+BkDIb6dvaOGXn0U7mvJ1WYHN5YET+0D6kE3Joty08Pp8JbKXQOBUGMz90he4z52yFA9lgW/FAXfsNzm78JnkoJYWpm80gw+Ok8Qn5Ypx814ZEPNcdGSXaBKSAGNRfxHHfDAX8NqNrc4LADOzBuQMmx1E6lXHEnePD/HsCo9gq9fu0WpOfUTXDPNgyGLsVel3T9MCvfv+YsufytRyOjEmB0yofwxG5eOKXFEGhIOK0folMTtgRfB3P+WbHzHNnUB0ZPVE7Rk1WfXCutS6x6PVwXDFeEaW4qreTglSXuLudCbC1NuZsy+2+eYb4klYmkOi5LMrPqxmBNhURNnfJH3zmbEbzhk3ueeWgtX3MaP3wRvlYMfURD3hcVTMlHTqBQaR5paiXx2veLlQbC5GoiSOf1WaQsI0KlVMeHHYRVuogpOk5G1aH4P4v7TDiFs17J1Vft6pRBlqlSwvUvmEoKJY+NGQ+f5P/su+o/b7lQiJUQMilG4TkCa/86+4NqKKbyd/Kfp7l8EWFul0RzxOtt6ylPQIBDf+KQQhC8xTVwwZ3e2crOQ34Pbw7ucjryr0X3e/tsd65zChvYpcmmVKAvyIyN9eEPN/tygeTFQhNAj8t2p2bTGtWUiEyUPcMCAZN6tH3oCkjGbJbSVSa3nivqzTQNGkoHcY/HboAYcMc0xznlhpLJ0OUt+qBdrPkQg82AhKKyBg3q6YWByLHDc3eoH9xYzsGQvr3j7VmQ2xVmvgrPXDwEdafz1+N3NzMbCryLw/aB7ITLpZT0Hmia4R2JUOEnk5MUyZiJcNESVfnqC2f2hWie2Iy0EXb2O7BdR0aVNRO0CLhSMLbmuosQBZ2EsQUV0YkklpbM3aXVGAlMGyKWw6QXn/qW5m2fLBYMvUJqFZM4xBOUsJqRwMh9WInGvqhuX5j7eSTKjCm7BmQKp0K67TZHCw501w4DoqFVe80Nc4pSRLPYBIm5iz6JWiDDyItrUVElgmUEeGJ+9nGgRLOwx5KEviDO3wpQyT+duaC3nGaMCW8g5svuHghls+zh/ygBoygqBn0/MrILUAKP38wfivJsBdRVIOafs+x5uhSa03ZPgQw8Qi6TbFb1rOjfEidEmG82L0mNlbACftuMt64+yKbXns6xFXkKyB4YAAfkX2X6pCcJEL43S7e/2ffIPdBQ7hgZKvjExt32YD21FzVQRUjhtXcQM2JW5QASTnz5gRHijgkva3hi0zFzF1yXqVm0/edZ70bkKF7i0Yuf7kweKiZpZCt23TLewLJvd7Vxef64RMNLqKmr5NsI0jwT0WVc3IgkOkXHtqueHfUvCY+/LKAk0rb34qESjCmca+oR0HcHzCCAq2ouv0tKqENKUDm7fOnwUaMX9PmcJkxnotFDuDTpd9fIezlMsyB/9dLq48pmTcHOjSNwGR+CAlWHWZyFCaM2kDaUMUtjtytD/wL36SouuACT0SnySl9k0bGz3Rh5GcseSINXr92XMxcxvBxg3WWW2zFrNAoKZYPSwwiSIZkf83zcAr6Fj66/Sd+2HH4l9gIz/1afJd2OxPruJPeb8PIgPJWXTkKezf0nLSL47ubvixMJjFv0JRI2JV4WIboLu2DJnx18Wlu5xuY+LmAJYYLt20yxzeBcjnG2raN0X5xtekukfhPBUbUmbooLpNJDKC5p0w8VD1/NOH9R93uLxJMgcLiHnuV9XXH60L0Xb1upRtloXVWtIoAF8DMqUduKf9Kl1VOQ+lVf8BMyqqwxKLHRNH0BfXOD4XqbpKFKBoMgUS00bOYvjK1/Nuo4Ec1N3l69i75mKXIAHEx1oOVaqKG8B0RC2hfnyvIeaSsMx0rfUUrcVZL1OhoIHqxqaJT1EU8hWl9YZ/j3E5EegUMjSJoyeiKeRY3mJr0FzLVWRRwwGXFROhZTR/bOPZwbXLKN1EqHKOlJTRK7bO2x3BCD1FKjJ+UtDWOHvfcF3s3Z6B+yG9wF1T9clxG4vj9e7GqD70MgcJu3EUoZvAS+6UXvICoRZ2ap4Oi4cjwLqJPA9yolANVDIJZBzYAD2j8cbHVC5UHoDDHm8AfdqVXIeMrvo9Esyzm4m+FUNWR4ZsXK0vjmrzhb7s2N27G5gJAt12+z2LdsyjflkTsndxKIe+j2EGtJgh/nEWBv5DVp78bVHxjl6HkvhnKWEjRiMBkpsUFuuNKclL1DLtGuJPG79ZA3tzbSD2H4ckk+HgtHtDekNekvsUOhJAXSzOmOECJoNyARzqk5yuSHNFi654Efs48N/pWuO5tDn3q9OIk872lhdP63n+65rv5ULyycvquFdV/hE3EGgWbL1uBGW6LOBY5Nvqp3Ao1JW0wgbPO4XiEUQSpSZ2vrG7WURmkJ/KakPsTmeb80rs1Kk8/wcVn71SLA4Dl6a/BkPGLYKHmrfXkRko5rIXvJxJRODqXz/OZASZQ30KuQ12d6ChQFqaYHLiwgbPaMlB/DKei2/VQeRqObnOd3UQaM1BdkmxpQXuvc4xKiBx4qz7tqWTOIyn5ZqQGlezuvwT0KGRCZeEIPRubGVeB9KM47nZBG0dZ0AyFCyzTtBH0
Variant 0
DifficultyLevel
559
Question
The School Store has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
Backpack |
$140 |
$105 |
Calculator |
$80 |
$60 |
Notebook |
$200 |
$150 |
Uniform |
$90 |
$60 |
Which item has been reduced by one-third?
Worked Solution
31 × 90 = $30
|
|
Sale price |
= 90 − 30 |
|
= $60 |
∴ Uniform has been reduced by 31.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shop | |
item1 | |
reg1 | |
sale1 | |
item2 | |
reg2 | |
sale2 | |
item3 | |
reg3 | |
sale3 | |
item4 | |
reg4 | |
sale4 | |
frac1 | |
regular | |
discount | |
price | |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX1/DXx8QY1OJoS9FuOKshegPAq6qsSB1K+aYWciNoAVvu6mvSPyo1sL+VuXWaZeGkgenje4JDjP4IdoxA8Lc8At+MTKIyPx06rr18qlSOCbV5XHjDhiIuezXJne5L+zK2jNMhREq5rsbGolRgMrQ8gckue+gxTwipFtJn8lZs8BixyOogdfGHTiaSDEnlc6ON8rKdxpRvVICGxH448aFPcWsya4bZ1eI5fBwQUAuo4Lj+MIJ7BBEjvW+6YH2SVEROdLhGJgGsFRU9wxAfXDA81LJmKPIZxFUqYxt8GHLr+AGk4M9LciY38EBX1xXHAO7ijKmp2Y7SU8wh6bwXI/AVBSv2EdrGCAbAp8/Y5ByRH2fgRN9J8DqKdUunrNL9KoVhLN+wPsBAqxj0gYESCzGXaml1IHdRFPcJIorsYN89UPfvUtQbed8/XuAPorCv2uM6MyKFGD1aSMN/7k+Scc2jPc+6yb/AscimVFSCgjHiTveNN/1P4lrBk8st3L13vJpRQXPHDib5kGMnI6vzHo9G/jZXh1Il/G8PJ0Pj4kwXCxyJZaw2TZjDA3+x7F9PPhadtnbo2Bjb9a2H+sCc8ze/z2e7BfE7bzCA1WoI6sCOU8WtXYluXrZI2VPt3uErYiVlEAXQFOHJW3/hwE0rVp+T85GKKYFiwtWSwCCMIXTrh2QrckJ7xDHsxluvagi0nE9etr8cj2vU+fQJE9hkM/bXLQubWrcFSoPnJVZeuIimNC6uJYW99XFFoB3W8V3ym4KpG2q/2jo22NQE2Ki4svgEwS4bGH+Nq22rj8OQ+DpcwGXgEjrE9wJjuy3S17QElXyuGfwdK6L8wco3AgR7vH7cvp8A0lXYQ3InWLIa88jY5v9bBNm349sn6CAA3HW+8Z/v+1emhkgZN2VnI8W7gRma9jNfbgNPCFV8JJ0MzNwhJC8IAY6de99LTS0lf/nHrU2axjVFabVMXo6GPOJAIit5PJcD1efjfGwlQ1ysjXKWGh5aVE8CUKTfHqEvqaitojcitC5sq9AXUnzBIvlqJY9gizEnkaRElzhjCEIJGVT8Bm/YVPSz9WnVoXS2qcB790EQwsmdcQ+eQmbMwdoch7MYEQoIx0xgbjYgkV0wMG4EG0B5oJV/IPY9n/OrdxUjNk56+nTRgAwYZKCLxaXZXoFFJIhEOABbPQ+5YalFTkEEZ6HOU0Oo5pmGaY7/QINthWzatTW0RuDzoJwzSVYgD4v5sjrmfGpm7XsazDVlCKCVxTtMJpxk5uSnSwwzINFFt9svrmW+omaBSz6uj4nilpaa2bItk7Yw9PVqPhAuKwZnh5lapa/z2gwM3tu7uDngOgWgvOkdtcA/EraobL5u8l8vChacQJB/jJvFQfZnIcns606oeW6nwzH/MYaWNlQqoVSm2ZQgutdVtD91rMl45B4r3+lFGHs4rtPWB/6Tvj905xND0CA9zj+L8K85ip8372euOnwd0JVsrT2BweUmDS2s/rV9his19ShqAYYx8tvi2BPC5o44dCBEtTqCTuoMijI1mZgJV55Mh48rx+rDY+Ou7fPQteJvDHIyvuwAQLaUqELiaWgnbo+kZxo30f1u5R0bMNSP/eVaMe4lzuUUjkaV2KDIiI+2tZuK1+fmoNTY+oLiQS1hhJTNWnCjzxSmLXPHTKaXpfUDBJN9eILowLGEYb9E/SVX+v3GQsrIHtcEF0k64ttsHQ1K4hYewShXQWnnNlB4QL3vEoGT2wWncmfpfucbho5x5pEJmuv+zinQseMhrEVsqDy5CcmpDE7RtjxhStdo54xCSZYDPkRJHjzPNUGJkEAGmkkUoN7JO3J332i7LfxpekKPFi0KH9VcddnDIDSnYveLjWlRImpPXydUMoo6VqprXDEStYR3l5siip+03Owk+55ZBZMkd9VFPxSUCcwMIfKtpNml3lqK2icaTJlvDrOOEMB0jNliag8GQ2rurkDVAh5vGhZbbiSeAuMeuf0Aao7wmQlIBD7TYEAGaLnap1EaTvKBzhgNEQvZrgStcSspZh+nkF3bBZCsyiwzbZCDeoKup29y1umKH/E7R34ZBoKCGVVtrfQoEjKFUzDxufuVw+1Qm3I2mTgJ/13VC0gXgyswWYupSLFvCAQ7IA4xNP2klhu/C0AogdrGHLV3moUij6oLSb6JtwxnftdO49+4pnDU9yxXEO0QeJL6D9rungjI8k6y9LOFJich+ikBnIia2pFOlLzckZteT37uqa4ssc/k7+slT2WKTVWENrLElG/PFEZrzogO5RsHJPxNBxIrjOYaZT88xSbbGuwI4pK4w9zn8cyzfSP7x/rHWQGJQ4VxyygxcUuJytrPdtA9QhWS3H38xj9w5z1DQuBpCOvA+hpN7FCLYGnICVqKItfdTy9sOr7icUaVt0jmfLvCaauxRBD2ghXcAptZaS08uHVktrkWd19j1z94ZH9+NnDU/nwBblS6g7Nxmdcx631bJ3v+xfEJ50H03FkNaZWUkV2rYkIid0VgibZW9cY4zhg7rqHCjYMlo7aO1ZIneN2pSJOJ18ry6e40f21dA8Jw+F9IusW2QBqT2KCpueyRgSYmSt2FRFpjBCh1rW5efzcpEb0eocivdngNeB4t4p9Zwoq0tPQ2/NAULSXpQAod+dhU9+PIPyQoyHkzu5Kcakk9yUYaZ/mN+zp0cpv3nnqjveC7dQWXBcz6v+xaP8ABLDGLxjIOj532dQEOGodbGNll31ZzCJWrDspEdvsAgikZ2DXNI9JRRU72uHo9m+Jkwe9ZpxY4Z9vAtgUMnVTPNse1X2EBlRvlY1DTJHe1cK6E7NJWsvP5BBJvnEF0FzO7V0f9oKToADzKNRnk5zxFyccnVwrttIdSw4K0pZfHjP76z6HszByv45GyG+hKVM3+QXkMDdIEWVl1hSAatby9dGEMGjXD2P3HKbhCZZNQr+AyCQ26Vi6EqLv+18agKHQ0YkCJViCqv8CO66QT+EPRw11LE3QRsThIVCqlvJmbDnULNOb0pF6Vpox9o03ksxQyRcDtb3LWgfvqIzXGatxvcb9L3urcSPXTzD7gVLf39OKtdbEhRtUUONNr7oXq6yAkWd0QnEBzr+iGOOwhw7sLtXIaI+ktRrkDmjRjmN4lmhG0+PlJc/vADnTmqrTCneRzJ73isg7dThU4D3x0Zk+hLRWYdV0+wuXFLR9KwXnzCBnHJ3HzwjV2oMbWdBcXJflnbMbOEg80MZJEe9/JVagy3JcT8ppfn7pItDHjOKQariZBB8btdH7WpCcK/RowDoVI69IFr2inc3epJGvzBGbcVPPAybIZqSkqxyVTNnkF/NGp5+Sb7zBHvnDn05t6ogfQL93iCzeogkjsaFfrT3GIV//qC4exew5bGVtjFM8pXLoACvGS/fPcjXQC0yhwR3UvBAWx4sax4pbtevRdESJA2dQRyAXfSTo3uQj5fOT1be91Xp6lMvoP9ucILcBou6nqmXB913MmDXkdjOmmwFvAIROzJ1NfSGSIQAQ9ETRzrRikfE4Y+JcPZKzAfDS065Zt20Ga1qxIcUidttTj4kmup9dCgvrEF78txZ4cl1zSwETyuA3raz3qUlTaoei3JszFx+zUEbF1c4htgZ8sxdy3pSGcmZW5SQjEfww6kzhI8W0gr8jBQeKYjnnpmYeVAsbghf7k5K9bJ+y6Sevntbcy65TKonsJXm1355u7li/Svgcaa4BtF4G/N1P38fbuz9ChpHP143kJSKuWhMkLnmmAFsvm2/3+/PPEdHjhQmdUleeBFLwfHq6l+g+iq66ZJYrxTo79b3Okce7BeRV3oPEdPCSQ1FI0xH21bisBsc7bsUNxgyd97skaGAp3UQLJXcqObewrOVfV2RupNP6EtQJ8OB1Oz9QQJWI3Jy6SNuUCWodXXpwoha61QZ+JvxYqr0f5GZ/rB3s4VG14Ri9A8u5764NaDltn6/m6K4PB4Gw8CYJLCdohcqYV50qAlhFb8JJcM3zFs7CFHXrAvcWizbJexrILMFC1yU10orHKuhty7DqIAPgf4Jx31LHx+4p7qMv++/Ptknb9rVbV3mQ6SqglFqzM+VP7vZToF8N+/X7Mn+xWlCIRxMVsUq7XCeKSp6zYX1LPhsaa3cZFD+oA6S/Cu0ZL8e0THudE6sVxU/op5yBIZvVO2iSvc5FSc//qkrAwbUQjELwkgBRKv+9BlOAgn9jW+YzkWFgORp1pW3dKibTOjw6g5CEj4VwWU37cEmd7z5L8S0+X1y1XXPQkDDn7VRASYx9JA8f4zCSXITpSo/I7ClGv+hzR//EsdpYx8UYhuiWj/tCPvb0e7PMfdteC/aWv/hgXRg5JGMWwjGUZcelnItN84ITlkGcv9e858mJMItb0DLhr5pQpCqN7zbyRXqx45+DsXe/KvijTh+txCvCNAJ6CtI9i0W5D3OzKHrQl9b6bGYt65b44vaOMSRir2AtWTTgxfJf+4qH0sY4Pe/ZetYNvBoZCffR7PDSXwOHOIyf+gSEhi8mG3CMhci4P8ekpaiPpqJMsI7QCxhh4BgLimMQqNuxz3QwZr0VgxWgwLinowmocLwYwzToqp4yloD6GKTQAJyy2tH77Qp8XAYZ6niN50Ylzp9kYSudtVsXBDARn0q4MSx/ATqE+UV3qkSvrwz4WxXqzFVJWF+aKkPU4dpuIHR07iJ/6PFLYsVxYoA3Np60K+6UzJZ8IRwjQFhKkxqIOvLOdcZjtE9JDZheg9aMqfoylFe4/+XAe8nILSNEO+FWS2/pmd4S3rWWnUhT9Ck5LW6EoYJiKkzxwnBJEIvFrjNx+M80pExcHUFMojo+wWa3q5/NxDhmRfaT5CdfDdQHL6zAEFWZwbgjQHcNYsaX2Pw8G5wSNI+ZpURxtr54MT0rDrGZTf8sQf4q09vRY4K/h6Gne5FTI80DJ18XYQ9aPO8eAU4sfbwl52CDsfP1GJ4Dj1F+5r0pugUgLTns8GKFrGKdNP3vdrgiwHwRV6aNtTZlC6F1PuFQXBwedeExIW0cXTXW/3g6By2rim153SdG0tLSohfmVxlC9M6KOVbCFMj/idLkfsSEOGXF1SBct/U7os9XsIByJ5pF/GRRpT6cdIwC104+ZdKExKQ3Z2Ck2cTerx3pqQoTdWDGZASaBRrZph+QV2e5qvBKtrJJs42LukvuFPvyUIGb5vmARrDtBZpP/H4tZkS7M+p3zbd0A1DjLWOh/DrsLGnbPxAjgCMsGNEQDrjECTYs5qhd8cSgwDuwRuVJ+GnTqvXWRS9n3k4mfvYPja6eMSeJuKrNLfwJ3MFPuXpTjzEWLsqBitSwTCgoxwsmX3kVrczoL0MQ1Ipuwk1aqZHRQ4tn1cxpeZlx+MfWucNehnEmCewCXcq8jPh8OCsPDgBxPUVcmAB5BaicnxYEaLJAa2yX7DMxpcXzydJpEjK4sDUhDTpy8RbsD5bTmio9FDuhK2MqdOTJy5TrEdUuhvSDlGoCv2vgjS7qzGWR0Kl6YLPZSUn8PYONaePy92L9c4bEryxBHix8Uxnwwl9ZoWv6ctAvRjTDrVozaMB4H/e86EgwOWJTlWlUvM1JI4ZUpTieTgAwWyx+xR1Nhpp5KaOnzrn15kuJudLtFAwxb9pJEBVazKcSP9QrVbwhANwa102AdmJWAroY9ae61Sq+up80Fe89P+lydl2UTuD6VD/mWS7RSUNQvaX+Tjce2eH982ldIK8U8FzgKttwuuEqMdr8/pg80XswloFEc53jxie/iG5hXjSPLgfDEoLVDcmB06kuqeE17LYjngD+ZxQOGIWBxgKmp40V5REKqSzBA46oLjnbkmq1runPZwTiEXhr5da9JG7VLjojNzfgrYRV8e2P9n2WEBmN4KnEY6TXXj6bK7bfjbEI1kC7fnaf7kXIJtNz5dsYgTRaDlmmDJ87pEseApwXMJG6wmIjwch/O3s1XT3HEepVfl2yLtjZ5HQYOBY+DudXrisBKeuN1zoaJy3S0lo5Z2NHtVhNOlTD/NxJn+Js4AeyCIQMoqUpGqJcOYUJULlkgSRZIBebfg2cIUrlUjcRskW1BiPWnsDcvduuIsanSWbR6eyRIHD9iFIFC3H/Dx6STeO/NfjIxJ8rUg9oHJtSoZ2pjLusmj+yT1PYAKrj2aKPv/MJGhcQf6y+G+6v2xYy5IKT05UsXx/eGSDdrS8NmjLz5zCvOUq2i2Plqt1pBt3QEfyUeq4KkFF8lKeQn0Urz7D8zfKgEmKZLS/s0iTRcFe8mtSqqcqH7TOyYpJj9ZOg/yGLAlV6rIeel1V919UtIrOHJCY51WPULNUMYSSkXkNtHtswrC9IcmQijctxO22AkZE2JmT5OASB2tvUCVSNYFiFKlyFqmAFwMp1zATjEInlGzKv9UReLPRt3a83SsE1GzpxDQgFbvrx12OCqaA9BQ2fn7wOgj2vai4MRc1PDUWvTBQojThxqXcAXMLn3X5VUEfFK+9Y955QqCajcbKKaOxMdTzNNRvsh2jnCrQXLbEay0eN9p45ah9yd86xzQR4NXrbWFxPWYp4MydShS0ux9HuBOrD160cNl0WTY9B5hffxbX2lSZMSv6FAjdaU9WvMrhgYhRCfYEn0KJHjLhPNUBU4PUXI27qr4h33VW/8t8rbRW0cbsIe91wpPPhLiw3sTX6u5DzkMC0HYfopZOSJDjGHVJ8v4y0IHS4A/jULcMGpTGCmK/X7YMwo3ydvjYax81NNwsz32XhyT7KbVynRvTPlHzcnUbusltm8kuVxTVhjRhqOA8GIjOXJ3MeEdGRvRt4MxHIh38fttOmhpcNHcdT0OaB3tPWPa9V1lyqul2sfL9Fn/eE+BTulX8xSvcbxfXzczrJl5AsBOSdiJkXAHoPqlNiwux9AlpnPUPWqJzhM7rjFEs7gCBpw5tUiOBjCOrO/2y2H+7Bb8RQtvf0Ms/zBhdcr7rUwlu1VoMP/wV39e1LGYynMIfYjgjVpnJMTolPh9Q/wjJHir6G9i5OiDQrkOA0XveavjZe6cBp70q5oxsxUFG4w2mfaisbDbVxZF73PUaPVllvjLwRj4NHycDAl+3rMQ2fJN0tsg+sMwvz2QKYiA8JVQxdhruGZR5/VftmtVRyev2KiShkwUbbfdkf0nGtmik+nUaEoUxABwYUZTHbXtyKkIZaYx+wGrQPa5RYWi6CbzN1Y8Qh9hRbfrcoIGHwoatTerWbEh46SCbJfdTu1LZn3LDNUYZ6rE1OftyEf06SlENRIhtMKpkIzaRsjT9Xsy99gImeB/K1myJLlRExS5kHI3UrB62DLJ60TeNRYU+VnBxYoMaG9zIy/rSoV4OSheCGTbQr3J7A/pn/tgvpmBL8TMsKKqX/rv1pzOMtellgFoneE6PqrsCUW8e0kHR43sXUWjF5a9CFDSyHYSf76EQkYtEhjm12FLGtMyMxrRaKE6rKdKtcjalLvzTgLdlmqWrfDwa38puvoYoCJvVVv/0VYXnx8359iQqJ/iUJQq0Hj0EbMkSCjUOeZJMp5QYIO3Zts29F+FNgne1b7kQ4j8gEXnQ9XWClOSM3R616ZeqT90d83gXcFrcFuyjcDpmC7mYxY6AU1IIKDdZ+FuCtBQZe9AZzrVDTucSRJcmXZ74OUo2UfpNchhpCslhnLWzVe3dX4CtSWfLQV1ACN9piS9vx3UuxeArGQq6SF83qSIWCiwQkcL3RwjIolRYaOimsTmfwtdzMUVtJoKRXYnNWdKXwZkCu0+Z2k2UxCiDZuqH8HnWGMpcP+/qqNKyCvUM9MIena1mDtTsMyhGib9kqwas5YjjNTNCuMmUnsgLybWjpNbQUBQygqQ/HaDXfTMG81DYCNj6+SzG5QCn18AGFBgBHNLhLHT1144tBq0UmC4lwrZA+JhiZeoxWsPKfDRogfu9jsmhg1U+KPy5pNUbgSNMA2yveHuViLmhUp/hetqQ4OlUOYYfsH49+5yYMXvPwIhcCzDERtHs22oBRh62iC+02H/yKXMiVRTRBj44hlBWHu9XNcTolx3mV/99s45YrcxvYvLw5E8uWyG/vines4Y3zCK5vaihw+xppHFMR5ptVxSPFvKMlm4TiXVwEjzY1q6YN9o0lB3WryFk9UULu25AmQZ0zQ4kDzlzFGxp/hR0EZdL6PIcd3GpAWMXxfScQJFmPqliFhvKINHknSRqL/MJOrufp6UX/6YK3X31Bqsm2DMArEw==
Variant 1
DifficultyLevel
559
Question
The Cricket Shed has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
Pads |
$80 |
$60 |
Helmet |
$180 |
$120 |
Bag |
$75 |
$55 |
Bat |
$200 |
$150 |
Which item has been reduced by one-third?
Worked Solution
31 × 180 = $60
|
|
Sale price |
= 180 − 60 |
|
= $120 |
∴ Helmet has been reduced by 31.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shop | |
item1 | |
reg1 | |
sale1 | |
item2 | |
reg2 | |
sale2 | |
item3 | |
reg3 | |
sale3 | |
item4 | |
reg4 | |
sale4 | |
frac1 | |
regular | |
discount | |
price | |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX18dwDudoqsAM0tnAR6hZpfIIjzo3UCy1MN6TODUL4SJTQD88eBgNRG6wkcIdGk3wqmpQq2BmgVZlePfoD44v50Is97DN6rAUSXtSu2XEY1CpREalEHinXSRrbt/HrxM/xHDyhW16dwV1rWq5UBrrc0TAaQo/6bhlStEwXxk4ffYR2Gg5slrYDAVjvtD+BzXeB+Vv/tINYo+HZ5v5WyR5UsTc4csNcUx+SIxyz8r02GomDEhscM66OsePthC30xj+/cstzhj+i2jfO1uh8qUlGG/PMAf8OcDgcoMmo49sF48/0Jy7bjdIO8XavpbfXZCP9VjWlkY6n71LA6HVx6hiR3YVfrfOqqP25ZbLVfyWMGDi1/pnfsz34xhK96REPqEzL+dxu/6dT48LhLK8BazenVNf/i0VE7taez/rpLH6DxQuHuU0urfqwVFeLFIxF7uLXzYZFy92rH4s+HoF7UcJrSdS7Vu3fAudQsG7lUPnqkTaI1DBcGYFMOcERXLW24hjKVBoU4Zr53+D6ACM0TKDg4UEWZL1412kfBTGXLvMZe0x/3SUCC7ZooDGyrtq2QzwpuTaCv2HLzv9GjQhW0lBf8aGpjEnEdaHOjPNGtfoCj5V7xJzcNm8pyX+c1faIeVT/8g1t1fD4PKqTjB3qgZ1r+M0lNeByzUwgzoeWa3Jq/LRis/fzx+tsftwzeIrUQ8sqquqhH0gbvDM0VhTIxGZOztS2TaVOnGAY/Kx6RI3Ph+6JrgQ7rgbZz/dkP9fx2oje15n3Q2oSuLtFMHq1xZZLLSANiwe8/nEtQKT2+NpSdadWLjJHIB6ppUJ1PaY/+SdZXc/p6Hudn01y3h4scpeILOV7dcMnf5htR13SOGQPtwri50Td/N1KrZ4JK1y3msING7K4XY4YwziQ++jjf33DXeJexQkuGCd2roVH/V0+ObCr0JTifo1dKXjyXs+vDxYXHj5QqG8sCo6H5JLtmA0gi0i9M2YSOBewBVzCL7430bGmPs6vEcEvOX9JONQsKefJqVn4pkn7bUKF3eC8nET12eclkKFBYNssOvicUEpdZanWvjXjNCye/yk7wdhO8Qk2z6k36XyaXc7xCrxhKWFZF7IjHCGPI4nIfDTB4F3tIpiSnNY05CxcTh8bRkBadl/N7HYyCplbRP8iR2eXqPeBee7kxF27MHEKgLvoZ8aVx0a6bq37FS5Gvp5qfQhFgm7xP9iVfcQk1B8HYimzRUzIT8KJAm8k4GJZr5yJIOy9PI9+a3NqP8COezRz0jxF2oW2ZacmPxv/hv6QxCViWTc8ZbPfSC1hHYWC6pgTlmeLQ9FAoeucsln3bclVRoibvjSspfeH9kF/hGAIt4i4+6GeJUQa97RkO/vZssebIzw6ryVn63owoxukHAeFOg6a2AS/gO/xmyEB6rEk/bKFE/EkzX1gbvTHm+aHgyY7QK2HQNRk0oml3YzrZQQCdy755CKRTwUoB1hEME0FpjEGFDu6pdgGxCh6y6v/G46ul+HajFlHsFCEmXdZ632vh6nVI49qxjuEBfckGNhwpWpnUoPl63EX0xgO/ah8p9xEfuL0exPeWwTp7MkpRAcygDTKbWthSryUDWfGtftZSTd48hm/ZpCcuV0VUgxJ2K6sd72vIhWvPi3IUvYLUgyBZBn28YfQQSU+2yZU26zL7YbaF5XZ45j9eUSc8FIX8sBJTyYSa17E8ez5aQFDsLzvqO3+/BErArNWbmCKZaFBdQ2p9QXWK0EiNiVEadNdTq2bkarYbXPSszXfCESmKT+TcGgudChrBdCOHyds6JAwtVkrUbdoBKiPq2uAfg70UOw3nmqgEcsMbPh/g31aoGJHNuPUajP3A2fAAVdQu7ttWPy4vT3eceKnXOV4TrEVQ35APZySGjDbt70k84aFlf/7kQMFIGh0LO08+KPMByvuSHFGq0k+pSK3fp4oVT3lxxRyXpsupDgjJ0iU8Ic0s4rYzlmkh2c9OqZaKOfE54biQQS9cJrCMre81yGT71DXzqWpWO2vjhlrR++0NUl2PibPGPD9MPCrYQCM2wGQsSF+YCiz84BkuWIxYGSJPhH+FOXjFwCJqmtW6rnqeV5og1D/HxsSRfl+Z8RCHKsAhP/VOUnxe328kp63ltJnMzm3Lqn5s8NTJsNk7yOgBMGx3kAlxRqrmw1CHm7en5LvDQElQPZIp81wi64onAWbN/H5elq/d9FmxUbvEC1xbi6j7Fm7ZsSx2g9wlGyp+oNwZO6LBUP6Zu68f9xDVwdQcaKIZGMWvFc07684mZDHOYRh1V8eRweFHVXVLw/HBlJxB5BV9snvO3MSBNf0hKLPjARQ4Qt/4FOP0HYC9f/3DBupxtF3UCO7A21b96sXjeJWFcs3BwEol3iM7ORiZIAwYYzT8FO3/Pm446BCtECxN9yuV9HEED+M/uxuSu7lqvoYiS80doRQwmd/Cvw7fHqLSB+QMUnThdPK31PCsNOfeP3QLcFR+e3UR7Cx844xMInCESChMOe49103E1wfwgcMEkkgHWRWQp/vJk1kV0iIynaFsSUn/lYUc1M5g39qyzToyVdD4BIhmYltADvaNoXP2D4xpbh8j60j6VK4tr5nJJx6uoi5orUrOl9dqmYYh48SPz73snsUXHWa43POixyxRNSZEPWYtFujM54ntttVeFgK0X/9Lxu9DbDUVS+eUwY3AAHxTm4/EiSOHYYCysFhpBDu4sGU6dKuXptvNYNdx1Nk0b/tfvD12hT6PmWvZ8Khk9fEMTmLwT8kvL4/Jkf4+u9NIXI/jaq2+zjRaJP2kvhnWPSCb/9oON5yX0RwELZgWjj4HwHE8jRCVc1wur273ITBVDO2se5i/Loe8U71TLjNE4sUutUXlMUkoHMma3ifL04iwW84n/h589EEWQvJe2JLDkPOcy9EiH07H0yyUUw3i8Yt6UZdaxJypUD+Yd7hQzK17kRgaJk0JrfMzQQEZ2206PKHS74vCmjN1Zp4CD9YKUyjEqdG0bTZmo562LckRQ7nOEnNXtA2xUOo7rpAf8HSV79RrqHlpUuoVnpiySi5VO2uPoe1Kw6hUe5Zpfnopo7KjTBGkqsjSdtExHE/omnWblf3nYNesuVm1xirDhFPVa6XoUEzOctktcwEA3XJjNaWrkku8tAnmwRdkyamsftyfcsgo7pzfM6lxM3Tl21Pjj0nsM9WVfklZqsqllaLGU8iAC2+8fAJ9IRiNxImM364glRIheUnapaLTTs+zN8WW+vq/pPWF5SUxONqFtsndth3/S6HXi9yWoiFr4ykq0H4yRLRCA8G7W8lF9E+s1NgD3QmfE0Xa8YK4uCgmO86r/i9zRX25dwtEKYmr1NH3filToK5EqXTc3p+yB/6OqGxozmPbvNK438Mn3gsl20p9Quo6R8BU6aJX34grcy5bO2AjsEKVIVhC5mMMUyxjYQwhihTSgP3xw4uNIs9EELqwYtgR1cxcPmhrYJaFJTGusmOH7XvN5djbWBzwySRZFB6c4IP5zyOIFTVHrmxaIFRx1jUw52N0Ivp7XobHvxt/3ZQBxVE9XoDwrE7wPlSOiPBAzfz8kHvtfsG3h0vvxfrfOFJjj8UjmH7Chsm7fOp/RBpur/5yDV3GrDNT3bSiK6AFO7mmTuLm4GnmDp/5qQJjuay+Ac2ONuFYja4fPIH8E7wTqFd72xSMS7AVYEsm1ZoJ8BV4IQvgpraCFx8M7k5LneeFqhIIfn1AZdpkv6qdYHPipurl7gv8ME4VbaDlQzWWWWPoqop5uKtYISGfhEPWiUf1IRpBsvcu0zcHvxyyOyPPLsHj81Qrryt1t2EiBcZS3X0Szsx8esy3E2HSs7LbotQ5uUMICaDzp7Jvu1KwstP1CmY8gQCIKuVJTIZfpGwUqZjSYB/HrLVRKJbg5ca10WqZtOY4Y0hmTt3GxZmNZ6bxwmwuArkniB3uAxcp1tMEjSbKynRdq4kqhlKWpVywjW+ZiClGMMcP6aosO57i7rIWbLNchhFPtQtCp/xJdiSgfEj3/jlJSDeCDt9IMbh2HOALL0imleXHL7sA7OgN80SQhTGfWtR/83X/bjFf+DHyuJMA6N9Q9IqzdDon6DvO1LCPj3LU3/QsV/UrOEJyItJaIuZNEj/WHdozctctNwV8tmQMolDjSZgv+XGEHI+glqwl9JqQjhatwV1yD4RH5MbFnlDCHKijmEngJk+fHq3igrcrFeCrdz8/ROOzMXqXyTNU0ltPCj6iXYx0uyzPJWya9D3G4rLR0imCR77IkYFRaJLXyq+P3rOvIxYENihKyOXqIkADiq5BzxHGQJCCtL3DMineaBmUlxxx8hqiuKW5kBdGqTsWak26Yq8x7GKfA+/tbVMD9HnOaMN1UO+8ViEhrsitcVsGnF01g5NT6TrgpPzCnSpeHuUKTdKqc+FIvlitIVTJaspty9QY32deFkj3e1Ax0ruEC19fSylH4d1zrGIPAjBr0FxUPtZeGjSdQMrgp1LU62nO1Odmifbf7Lg3e50JbjF8i4t2Pthm8737BRdQ8oou0wMgxuSDRJa9aIbjhlHmdE8WF8YOmyRs0izJ05XPlunMKnBWm4yzoTrBCfEgjWQh3sclJV4+wyRdl9kr+E61gKsI+4FvE4znZpDS5id8J74uEiiOOnHjThZk46pM9onUbdYalUUcB/Fu7Ac4vWURtgvNb9S4MsaUnPsc88BRYtDrRh2h3UF/UHEoBzjB/ZTplWAhXfuOzo/purqTtud+lDI/VJ16fkjFoHNNZMnb7VVXHVWdEzqPldad+RC5UTciq8UFYcFeJHuoLhqyKyPGfGGVayip5stQ96bjA9d1tAOoOJstmoqBToSYH6qDYjzKdtPqZDSQiZgwUoChdiILrNntcqaAAViNqRcFKvfj24Y9OuqhHW3/QYGK7Z0+7GxOjNzSqIZ3epBzbxw5N0LpwBSu7LAvOHGM0pz9xXToEg+bmCd3zNAwDPbkB/ILEh7GCUXXvKc9boKkJjx+sQuIG+KsVN3dgVbbdApdaJRWA6moU26xZ1UVZYN7woNC6dZPpf7a6Lpi2mA0iIQusWIa8nCAJAx4qvYlXhBmTXAfS+IN2Y+BU9FD/0W5pVZIWLzrf7x+9WwWifw8Disd+mLGHX6qdiVHPnjM6oLWGOIX16lFxOksoihIumDErTpOC29woWmTBTSN0Ibc3BHempNM00HPfpZTQGHeoy4xTZ2n/tdWyzWAArf4vDiJ0QkN4Lco4hG8SIuZD5cBjmWDsKyACN0Nfm8BMnjHmqyKk6c+s5kWDAlEB1JLfZCIqf1y9Tkpl/qngD43r5d0Ax6dRrFFsyOGNyKpyA9c8ohLH4q9uej6jWAHUwatmvhj9HRRlnp8lSpqYlE5lSsw/pvWf7zXyk/miEdLJ0vtVbjc++QgTG3EEl6txWK49NUcvbrvHqbMtoS2FQHapY4EdletiPvHHq69jofZhWDiN0VOcbThiOQ1Hot5q1/n2fjvEdCwqJbZ2Ynb5E+xFs2/DEfel7yVxdSjm+HwAMNyG92ucdLMyMjLLHNQuVrJqhZXK00jhw6+AL5fW7ItMod8TeXDKq9aQ0sHA/Z/eQeILW1OkkJQ7yshZeN2NDZB0gqIYXtKxLDAJ5sKvS/Bc/Xhr8pmsO7uvNYjINdMVkQYDqxTrTuQbrGBMIPFoGHPs8TQhjyXLx57dz+uQXomV2d4Lu60gIR32TLSjOQuPzLT3RzV4FSa4PrTOWC0Ebiv5WRs2btdi5k2fKym6RfEBiNT+1CO0o7MpYvXubz8T5ZtDLW58Y9QzFc70ysnGG79BSaI4E57gFzNNFLyf3mj1vdpndmZAFKiluR2PiBbwx7g4XxfQOXpZwP09PJ8ITw8OyrqhO1WGGRVioE12Ngfh30hZ6t7oIscvq/EPK5ufxETMhDDxaJLtYlD2/fxF+ddadCR+bw5b3dyHFv6vtQ44sjsWD4Fngv9MBKFvl2sPJuD2dP0JPfPVMv059oDl4IUjYQ90SzYJzcn4gUdk5gMnoWfYbeJQNgLJaB68p2ppCKSWLVwab5Tu5/fq8OwsgRUaO7BouP0c8z+rlGqai26oIuZrJNZt+34pl6PuJQkg0DwRJeyOH/7DFGaq4UqjqdeCOAb+LE37OwJVMMQqCxSA0XsR6ifY9dkWEQfj6NDqGjMA32FrHfIx5hFeMpdCl+ra/3rnUG9pibJsCmTHPapU/n6iU0TCocrZpBnIz2wC7d1zz0qcefAM0K+GGhCo93L0bWtX3y9/siS63myLo4F8Cz8p0QzeLTF4FB++Mtw8cpPvmLNFRZw3cTVU5tY4K3fPdUNYWknyWKc33u71yLQkXZ/Hh7kxmwFxwoaX45ySbdB6gXndgeI4LZfwM1kClv0xGuQlDWTiPeMAav0zrSlzlatEZmp/2U7YIN0pvNQcVP9Y2AdMF/CV8/XQphlMyUj5nKGZig84hJU564ghv/zsfa52GNn06dPBbONJBE7fT4NCiQobt3g6/gaFUWCus0x2JjMCn9Olzy59cDbKguzsSzib4nmODHOcM5ZQRz9yxctt4sTaMAMxa7GFEz/7p7Mg5HgmN/wD+M1kex5XewqthabtZ1mwE2xx8uJAfq5WGEtXH2Lkvp+94sxTVKSdwX1qztWmRHsRDKlSi6z5LNrWAkZV8mKi+zTu9lmmp2jJmEfdKFHker7sx5bbWcSZz6eDbSMx+EKJmxIpoXWLq3exXsiyNQujmZkIggSEB89Cm3zqqgI1oWm+ME6YG7l3d5WV0RNxFGLWpfAKXBaXbwIPeqC8Wxdp/lDvZiHWEU2kthSwva0uFqGPZUkykMkdi/ljWM2fQeKy4tunkkd7Ntd6nm9sIyOFP3gtznK6de8rORfOM7kOQr+m9PUwLoP/FnbvqUt3uYxNd4AqV/PXkXVJmukU0apZulgjDF89smStx5s7/1LP2v3FsBq9DFf4XOVjiAm2RRDPTwVOPMZwRylKij27QHKRD3LHuKd8jwm/1JUM2E4LH3UP28MmZ82NO1VO/7l10twCb1297iEnKpG+WNHf0iLXFUdZH9qwxOumrss94w44/0TfZ43xTV9ervz7cA0jQBtChjgIVmN93dOEZXvbZTxlzfjftcqJ5B9XmVYse7oRmnf0/a3wWWhDfq3YqsOOJ4fbjLDtkAzK7GVYpRscUV4a8IEl3aiHjK/AUYePVNSGfdFnb0OCiuepcfrlj8d5txhXbmr6VaBCsyiMFNGb1IsTwfIAFH2SqldqOPwYLaZxnRUWuBTuVogyUGT3T/iKssRsVW4K83x5sEDuiix6JPJdumteyCbNjYnjTmFIQXcYC29KRp2FUu03WEnkOu+OHNMoDcVXMyMOasmppNVHw+iht6m7Wd3pRc35bqBAnHkS3bS7uAuG9sJMRQfjeY6h7QDZ4lP5xGM0sVrwE8Plg/1StxLNBHz0ywryrgCQJnLyOH32STJtWnw5oM58o4XLDDSHzcuXzB9LmS6lvwuL0UcieTCDwfU+9Tuo0sNnM7BFg0yl1Vyj2h6+vMXWyNSkhv83fq5FuXoYHo2h3+be/X9KA9MbRPWqMAtB66NtAwLV6FChclh1yCizsYfEVSkZEbgIV2B2FCngX9etU9sgU276k6Kt0C6qaJEK216CDeiZmlvvOLK1F9Ucbqt0WdwPshluF32qL+EL2h8i1yeZMzbAlwKApqtBNmSZwzgpjB7U0OsVVeGWMZeFFPpcbenNGDf8cOULIQ7IecdF+kQepIOgjdL7vVdw90bzyrbuDzwS455ulIxt3wAU89S+4BmuO+/0NrPDAk/g2isnQYTTO6NgBfk6I5H+Qnon3ZB3MF32c6s6RgU8p+jBJlI+kRndqcVlGCACHfUaXp2oe82As8lneQs2rEMSmvgbpZsKH7Aye1qrwWgZfx1MTdhWdGhnnJ/IcOIFVDiiVYv6CVUA5ilwWmTVpObw/YjhfMTn6cKqtvwXa+BxA5E4i0PPb0WyUK0tPb6KHE1YitCoqB3NI6kE722/vQcOHQprknGIMTTHYHvfndkxkCbvWddMfEbXSN2cWCe/SpESjNsc+etImQfIlyFeG1waO75asKVnW+NZ1PXQU4V031IYhGf6Srs6jd8qBtSYelmPR/5MycNRJm61CcsqBfeXK/xUHQvD9APmQx15gSRctJlh/OTgBnNNsn8lrjktXPnjKsXxXKMhpWKGMzlfnoOvfToWrzNQTeOPtpI4fS6/Kj2j+WYopIHA
Variant 2
DifficultyLevel
559
Question
The School Store has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
Textbooks |
$150 |
$120 |
Computer |
$200 |
$150 |
Backpack |
$80 |
$55 |
Uniform |
$100 |
$80 |
Which item has been reduced by one-quarter?
Worked Solution
41 × 200 = $50
|
|
Sale price |
= 200 − 50 |
|
= $150 |
∴ Computer has been reduced by 41.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shop | |
item1 | |
reg1 | |
sale1 | |
item2 | |
reg2 | |
sale2 | |
item3 | |
reg3 | |
sale3 | |
item4 | |
reg4 | |
sale4 | |
frac1 | |
regular | |
discount | |
price | |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX1/jRlmsZTs2zWSDYmDu9yz05H1Oof6Y27TFdUUv3/cMp0a/DqqrQIQbcJFBIm9CVN90l+crzjuvRzk3aqM9ECFisfqmo/x30oHdrcVYxb+Kgsnz/FP8dndj/TgGeLRshvybEQ27aTua9SmKTEgRXtGrdSr5suFQkK5RoieRE12+KTWtbQCaSWcWL2RG+AZw31cce+zaKCgFlLXoauyXGQLWcwQSwtIzJcIl35xYHf9gG9Z39UxwbkVTSThdsDOujn1WDp0SFjrrGyUPIvlc68nR+QCIKS/NatfrFUMQgB2/1sjHIu31Xp8d60r8ml4qXHGmV2BVpJVKNrsIKAsJpHuwhsa+BLxXn6fmt1WeN+SyEJYt4T2YtW+g8ia81gZfCN+ptgmnyyljGzOhfhy3yBuZjppRu3LcB1qgoK6yw5x0QkhF7VLdrGzXczfcmftvAuliBVGWC8QspQZay6BrKP6pVblr2vS/sM0Vy1QesHc/gtgNlwwubwZcZ4BmVG1fzsHuSWvRMHfs1yw2sTapnDu7K97d4fm/WnzYuwIdsaotC0k7sLlUge8P/5DqPKx8Zn8TgLlv9Bvcjkkm/dvsQKx3feIMD3tIH7DwZdrety5JjqBODeMSUZbNKnJRTe+Zhc/tVtsAV/+1TXm5PaI+xfnKV+OSrxhwnU1K5JQA6tK5CRq1VtQAGgdvIKRWxYx8vlm721vFRyEqAVdlR0RGwxlJRbXQ3gFRE9z98ACIN+w0VK/xr9cmF0cHjcg0SIX0ZWapJCBkD00wlSdNlLjGRnYJAsXfH3NxJxEUVuIuGM7bc1fs1qBoPUGJ567Ixv8YIhrrR2oRADmjlAo86tpwP56KBkA06Ozb4wVJxKeY3OnA7gNEJQGi4wEOeT0USLVCdqA5jT/YZ5yE0j8qh/dFPcFGyFhr86OnR5NMywbzlZVJdYWy91OE+I0In5qtch7UuXCYwubbSi+DUT/SBWTV3fEa8OnYajHJpE03OEo63d9PcPqgQTwQmbSoYEzl5K9NoGm6kyy3VpDVM+xf92K9TYEKr7Umqn9AHbwVC9bwSzB2fQoG2OzVX3JGcb2E1OBOzrKe2RnM/S1odmZ7/iZv2PTocN7/zUoh/AvvG6T/1PO1QNr/DcmY+rK76gn0Txo69z03fCvpovRfbXLSYA98Q20/9wgfpCzloGqMbjriXMZl/+uPW7HrtlcxLV0e49Rw3YhlwLMpn6oLUTaH5wYCrb43OaA7MFSjCIxBhttHgNf1T4RNqHtcblcleiWpeqw69eHSZuuhM0B+KEgGtUNSToTzVqmp7Pg4gsUE+oT8zNr93Xn+BlbOpyWYLPZFZguGrbJzfnaWbvxXryQx6RfBZM6aMozIT6SDXa4b9VHvr4H+0zderWy1HB7Ui4ptznr/S8c/2AqE/3SsO1DknYebcUjKr7frWPlLZUb4KP+d7ecOiNiDkBOK0knjSc8giRqC02wV0oTnaoVcQweWpy/B3a/xhmwmwV/IpEacvFTmliwVpDKwwMIMmtHkv2+SW1IlWpVaWVuV0Dl36JSF56kVWJKTFQvlMT1iSZbe9co85M6dOeyDPJJpWBJUAQy8WElTW/1iwYK+TMKe6UKf/ykBBoPYteJ5Vs2D6bNaUb6Jg0x1XTsudl8us5Ui1z6Os4+SPLOLfc0xJyjv1iooIdVdfVAEuat6Db+vTKCkWv25jrl/EjqFflQIDsND0zOc5ugj01ERClfXIflbL+7+26QGOulYofce5NZDC8ReG1ppKo4gC+vjTdSHewlt2/4Y2Mfk+oeHFnl3IaTNqvA+X0gAiAcNOfp688QMFmdyCSEwRbUB3rhiNRPwbkwd6FmJaSKq7Y2bWuPE1rNOSgbndnSyV19Loh/MkbYn237MpSQ+bTgFYmZdN2QVuLnKyqZi8i4SWu4dsxpsLK4HdyLc0vI/llYLgsPZzJpoSrK3xrlzSgTShZ7EqCIGFl/FmuI/RPb3H4D2+phCw+i8Botq+vOwfIHnNsxt/wiOcRYxeSOp7slMj9sX7b6gbrjUFBZQN1KTrp3mb1hN9GTJOoNGlmQof9mRH05ceBcQBZ9Qu5hLbGc3TlyqtB7qGWSzAXbsRJcM6oIouSetOQD8AjZaYmBbUodlCOvfJGzj4FxSumzwaI2SbjkghHpAr+uYTSgbUgRujoNLfuYnldABXCoqvTI52LsezcLt7kVR7KYYiW3JzfXJy291Nqg4FEEvbvORjyPUJwGbLFDK6H901ZyzgiacOA2GoeKEInNKGxxw081ognMNbNYFmG/CZPB5fKhLU6eZNeZlrqA7OZUD6LwXhdcU6sn+coZBBjrMUBaPAkV2ajSMaSiNeEZdUmIWqq/ICwDEashpA1CJO6Y+CX4Mm2hGF+dPj/++25cROMPRcsAb9Ox60etKT1n2TONZ7STiVpDTTNr//LfyvDhBeYX9hcVtEe27vCMuLYVqqKOp/0a0hQTnEEmWXa5KcDxjtr7xXzEjcRZU+TN25bATPiDx7S9ZGyTo2Ydf42rHe0BJz/H57GOqADSTnyJ5QQGrlAHlfsQ45PjdARp9B2LXwxWI9oFU0NwREzpW8VZJgMb4lrdCmGxJESO6podNVHlrn6obTkA3MQRYslVnvY008S0JUGDG0S29iZG88VG25DPdYaKBt6TxmZH1EjRJaFJW1zwsUjflyFzXCBTrjvKRabDzYge0Doyz1Hly5eTcKhLJdDiXcalD25tQeutYQKCmBIxpjCjZw9UIsWcW1rUdb9cv2wjiiEhVRyEC1rC7g18pH/mXlzwvptZA24bxpwljPQk52zfZMfXLS1PYluyBFNepky5SVRlAisWUnneMBH4O0aHVs34+ycExohKKiEN6Cewb6fcyE8fKlZzyw8+9xvAP6FcI+bC995imDkUpR4ZFiaE1OTdsauG6K2eDuZDPlzsG4XOYJ00H7vvDf6waSFaHcNQ/vixicP0ge3rjdi7vwjYWcZIjpH9iu8omMgZf0JRLmj6u44AHbX+8Muwq9TApFxgAe0wQAzj2FHyVrWjfkx9KrPaK5TRdwNfVV1+PZJvVkyiGF03mYOOiB0FZ1TYNYJlJOqhTBEsQDKO6LeYk4krbOshcCKCz7wKzKihR1V/vuvUdAl/+0cIadtViyXA8FYUEgtdTfYfW+MBhgHj7z6rFtT2NJMqCDOOCvP2DfTVwgbOyny/ujuAzOlm/w1yoDSMwZQGvRYK3WzLc3CP6pFMxgf+v5yb0N7umLh29uE3/r5uVD/BEnS9nV9k/2252KxWnVmobMqOb14kLMMDttgXxbWa6yj6Ps++XJY3J055mH2TRtBorcsD1qMpPV60IqiYEopNenQZefqq8Tbe+cYP3FYJRXX8D/7JEcBQ5Meu0o98vbXUFvhxApUkjvaOmZegId24pib2J8nye033Az7SJFMEr5MOLYymSns9PpRyq2eT8pQW2T7uzVQrQlAaJVhratjWJUzarocRWivXOBhKeObp5NC2tCpuE47/5zdsi+3PcsWp67RhNomZKYzUyXrOPGJn0H0QpN5OYlQiz+bIqT2uDoUIKI/f2ZT8FfMqV+prSxnB6XM5DHAoxpqEbXUNS5Q/kNgzn+pGdXaJkEjEwK/1GK5eT4cb5NtrGw5UOq63/diBDJnXhTzFiXXUxAJlCge3SEpsseOzvIVpGBBT23E0eU1mO++8FO2M7UV1y57KIA69GaDTh7EYTNsLgfvU2Ck/wysMlvVVU3IZspaM+ll7Jjn2Qyqmjs48+YUx05ozo2t5qOCg1VcXlZGYqWVHo5Zm89ZgqrtJmTOE9IxESw2v/BCrcR8uSVm1Uw1e6acEJkjmkQAgrqyA8U84jJr3NZY+33877nr0Va275TTyQO7gNpnlbhDTH/hUTJ0EMpGytAU8cJLHsotb7sIUmXIMU3JgYa7hHQ7/oeLmYXcRO/XxYxYyW/Yepl2PtpDeHNG5JL6S+Pyhoplq3z8pnj89pD/dqtAIm9DLskG1wMjqjbMeN1+Ja8jW/dNOl2QjzGVnRHKj//DFD1AZ/LSQGKaKJ8hIi0iysnRaC2Y1DDClL2TkwVRXfb3LDyJAqavfi82WIrCgAQzt4cekm1k+nylUpMZwNrALeKz0zzmnU0X6ZqNUbcGzyZVCoVqeurDlx7qyQ6IDj5gTXaaywT4wWyFgcKSDRprbC+2qg6gCbfkTw8d1MYaA6M3Ka1fWk/ZqtGFpI6Tk1sba+/tKx1FvMPTN61PlfsOtinzAbhGEL/6eDqR9z4b5ZwECZ8mADESVCqZz5ZuyLe1GF0O8CRwk4prSdrAE4dbiwLeNFM8VKTE7D29YH7X3QqCsvbZPtvntzjdZrpbufFF8xQ1P3zJXe4T5dbm6+3yZN6imiAo7ErIKPnsOxxtrO9+njk127Z7jh6ebliXAPnWvpVCRGW9oFKve6e0xBzmOILck8TJbmIcHX8R6YKZ0virSDdnzzmm0nt1mo7qT4oLRZUxVamjbtvCWNlsOpnZmM/XxFRrEuSgxuv9HmN4EoglrB4s0Ybs+xyqs1cTS7PqJjOi0hwdG8Pxisr6qgYl5+JI2szKzVq4sAdlUQFDyAdkI1bkzWSA63HUv+giYMSygemd+zt16Zoaqy9x6dQmrem9DGnCQp8TBNQ4R0Kq2oVzufIFquCcTxUexNKlMeRv0jfuHPyzKA+ZOQPeHlESPVJ5gA6R2GUAnYrRtmqe7fIeRErtPHpq7FTU4YdEl2/oJUXlr6Frf09RuxSX9KKFOysalaj9aT+BjF0xNRzVkERDINIbUgGgE3OYJLpUwNYZrVfWCZzhrCftLyL1kXN63ub0yWObkl7JrWssffzCTYoIS7DE5lIRaop35KXWh+2u8j1xdaM4T/jrigx6TMTuvY8LsV6m9c6c9xSB6SNeBiwyFz7PcC5TtNV3puHyV2hnAAWecc8R2/wjdzhoz0qmRnItaK0XFY1ksZrNrYB75lhTbV+32CWrx4FDbAGHHO/nCYadP7/ZqrJvBgsqJIi+PoPFpQHQdatwVqrtjwFC97/7nDACeJII3HGJowygeYJLFOZtlYt8/VKnnHN30BT9if/Ik0CU4nxNSsiyqLCXJwa0BPMehuLHSYEKM9o8nv+gHxLmOyvghxX1PV3NmnWSMhtQdbenKAtevM4oTQqidtSvcHvbI4/nILR0afBlMr79plYcNOKK0LepFkCo8KTVPZYoHbmTNYvBoH9BqxW+vfsizrHTGVuZPvrOHmzIiKS6TUclcJpSVDmZv10GHfK5r6L7DQAxnBAkkqOOg8ZrgNyaiduhCR6DcQeleJ2N35SKJUHyL/zyagN5LC6tyP5OtdsHv9gTqmea4rTsZ9YTVdAn6I5129gwW/O0GNTa428KTWqYigjfhN46ZNB0XCLBCrKrPPwXGnQXPkVUfSrYfVweZOBBQjKQRPRuFQZtC2Pd1LeH4gTsSTSPzXBJgT75VKx3LfW2FrNAYJ9HMDx/HQsfXKG1pw1ADaiTR8mFCIRTOEOD869tYkkS2pHt4+1vU+xx/iGe7ABLai3vm5GFScXLx2ManUeR38dSJ04ipFkvN5VpPd3DKdxM8JQQOIiyPbxqBjHTEqvtC9DC7sQvfLV7VTAsFuD+26TfN54T+kP07/3yZiRpsqD7qF7aLZtVZgqiHhBLL9AopgZEULXURAbq9zgow14FizZrp+/T3sjfQ7XopajKMapQqffiaKotZ/KFkAYs6I6Ael1VePy/zDzsurl99jLz+btpS2hxLvkXrkeAUZtJlzdV7qVFJ8LXSevGDHJWngMyPY7aP1UfXwNTFuBIv4uCqpk5wZKpqANFrFZnl7dYCUooFTc6G2b4QxcXnO8Wte6YXSHNgB6SC9mMLedn1ANftYowNSgjih8ZS2k50eJV8MT4AJPLBMjzmgffnNcuDIY5DkNu6JYrSqZyZeeBGYlQl3skCGq9F3z4chjhJmd7At3ju9ovoL19gT77pGuZOz4T1s4MqoT/epRQpL8zHR3ztfgSeCKkr1bb9RFG9j5naz+9qmfZ42/kdI6AcEu3WtLwZ1g7SnJdDVShO+Htt5YXXdv3dGyeESTMKaNk+6rjgDxx2fLAELVaaGMuNmcE7OY1TPYHhU0L3pBBn3c1KvkUQAH3KSmBlo6pqidkU2BabpjKjbiSnvEX0nzA2rLgtLgAk20cRSYlgO50aPIUfkMFlwFJ/F3hlMF9Vsb91c1V9YdQmtjvB1pKyeiAYCPCoKmbf4nhO+NsCgFXhWD7Ah0AnVzuo2PY8syfxGbqyF6p/JNUnnjoqGuUwyJd4rV/TUrXvKvcR4VNI9KYJhHslA56cRPiGpbbhgToG8W3RATJEspmyzGXVw9KTJoRjdNN4fzgYGQgQN5MGGhJlVvrG9SCUcJOSf8ea2ZJ2eQ84b9fs+KQ+Jqal6FF+LrHAVVNSaer8tWfTc3gnB14LSDB3b7Y/8IZVnxv88jgnYcyeBUEJpdagQePOjo3wtK/KyAGHPDAirsuufX1Yhi+M1q1AERN0AiyjwJ+eaifSZQHKDArmDJMgBWFggUoJ1gTBQ00cY5ICBnRl5v4KAgN5KEaWjzqZU+07qe8KRzTD/ZtRXE9EeLoACNwyCrv2aB/BdD3Gi9WDrFUcyfO5APb+ZvD0hTYrwpVORLuhNRZqIbkPfIDR5cLwYCyxhinCrakB8B02z4G6MPWEVLsvCRTOKMCu8UJfqqlsAJwFndmD9AKkiiaqwzVVyqLZUPuXIyHDK5Mdz5jAUaio6X6DpJa+4gwbhG5nt8LI1gvbyL0A6XWWiyRfQGEHn9nn3HPz00FYBfrJ+Uo3rdhKJHTpAFOo9AKW9x/WvxIDGj36RnGxKb0oogfyNtX2ZpH2Y+FF1rxsQfiFxHX29+EzOqjovidlFc1/kefSJwLqSQkN2gRq+M2y+TNcXy+5GhIuAbVSSxKkjunr4W68OgahHwM+o/OGmJWPMv9S9R1Vtlraz5Lv2lkoo/PKnKnP0AdznNteofX93AaIs0YOfNcyDCE21HSQFiesMg+cU5ifJyioJDOmhOQYCMRCY1z8aU7AkcvUzXiTEQhOtFwTe54Z2IDUJink76lx2nX6kKBik5jktLE7blL1JG70AmW7o03DjojJrfRFlWmVEXpBGVbQtjy2yfe34w6AFlMr12MXNTRb38o8Gj1iZpi5klFfdI86N7R053uoRkJ9oOjambGAy9CVyGPCOv/Nj3RdVWoAeJFMuSb1T6n2W8uWeuEQGSjo0F0x1gKVHc8xjk3gzWInFW+/JK3i9FL5+67ovWjY9Vvo77Hpf01obforCVbTp49f4nNNS9RPl3KAyH7KO+DsadVQcgyfGI4wpox8wJD9v1JJaami0bHOihL/l9AMIw1KxKdQ3dNZS21AoSS6jpU9lzFDUw67l2bSnuPbqjrNY0d1I2xE/RiIeBS9hx5Vk17TLkEnzLQkXJd1v+fWZPFGJfAVsyvYe1LVXY/z2rS11oLWO4xBh1gPg+CwG8lxoDOTEg1JBNbuT0025bMwMRbIxXjGYXdSP340ikHm9FQ3uKrSjB55g2ae7ooHQb9RhdNIVQFwetZAiqaeev+g8nmS3RYo20YW7mFQt1cOQLWGlG/l4Kh61CYQAZon32xxhSZL9uVkQuYBiFqgMdmT3D71QdB09Qr3Xl9rKAB6N/bXO+mgIzHlE/aiO+G7a0Ktt/8ZY1tlfZqa3rYp98afEuotCEtKHXuMvDFYskRaysrz1t+FWKvnT18UBuFOv9b2eNDPsAVKyJfLdJqO01h8K+eLyzuXAo+h2dfIwYuZN5ZsaY4McoB3EZETPpRs+ZkU7AkJJBin1fLy/o9PbNTdmJ9c05XUq/RSjPTsl3IVOO45xDChedzd00jkBDjkAkbBwbbW0xPB0xJhQN7zzlRZuV52IDeUp6YL5gjYG3sLhNKT1i8dZbTy6Tgz2KadjhikZYM8ZTpd7CrecswD9AHo3XenBLq655TmMjOF6+WCvPZBFOqutCLLmpDaoyvjmnvrVwbWcgIMk+ig3h5reS+iYkLGeQHGoXRz4zWt1036oyx2T8D9jRlfQCY3ahIFVIZmGPggOpJOfYJpVv6B80CfTVcUAyA6EG2Tt3MpchKQTv3yC/U+eiGyti5mzMMAA5aK7GDcTn9/HNej9EGEs2kOBd7p9sEKT0V88W6Dt5AGXzVsrSSbiDbCRlvB4JJUUBVccm6bw4VIIoBWwKfAFISs4vWxXKeW8mHdDwlC0
Variant 3
DifficultyLevel
559
Question
The Appliances Shed has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
Microwave |
$100 |
$80 |
Blender |
$150 |
$120 |
Toaster |
$160 |
$110 |
Griller |
$120 |
$90 |
Which item has been reduced by one-quarter?
Worked Solution
41 × 120 = $30
|
|
Sale price |
= 120 − 30 |
|
= $90 |
∴ Griller has been reduced by 41.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shop | |
item1 | |
reg1 | |
sale1 | |
item2 | |
reg2 | |
sale2 | |
item3 | |
reg3 | |
sale3 | |
item4 | |
reg4 | |
sale4 | |
frac1 | |
regular | |
discount | |
price | |
frac2 | |
correctAnswer | |
Answers
U2FsdGVkX1/0OMK3NWJAAUI50ZQk7i/9pT+z3N8XIHbgUAXGmah+9rVIjJAYOnXZfWhGoQhnfiMUqeQnUaQgl1qwRANz5ZYCBQPMBlNsAv9CO4aqF4U5mknPMYQPrZs2ZXAMzoxeEJntfGIiLJay0UW6RejtGScUGElG2sD332vjGcCNNKtttrAc9eApCL84tqSSmnLilr4QK8UbAeHSKhaIcTnhH6oKhvvJ5wdToGOPl4S0T3/N7y0qXzZWLN/WS4dx7cgaKtVFBVY1dTNURfBVxJeqjaddrnmk7VbnJrDmVWZ9SxKqlM68Bcznfp8qwOsJ88W8z5oFtVGFujtl0yE6MrHFTuZiiBBd+yM0d0LX/VE7zM7BZgUnlK5UpIUS+/FNpskH/ZRiaDdNPf43Ahk3N3px4XlOfXkQvCrT8cgJMWfKtVhi9VdUneoeWDgoUTFrd3ErdYhmYWhwHVKHU7vqtV9z5anjZnDW8bcKF9t2HGf0fCLKO03hPnhELEFdztHdT0omiaecJ8On3evlwO5IvdamKMMrpEXCaI2lWk+a8dgWlj4BKqRODFC1Yu7wNg1p0E63m7LW3CQ6X0IZMG/mxk/q6rIotN0YfaLhWMeu4NJd2f+a+pzhYTmDM6rvomptiY061HNlwr1HahK2nqkdbq/JG4yHg9tqkGQsjmplD6LHL8Y+SPh1b69YEI/7ot2BPevhPCpkmde8cga02p83wOvjJAg6glSH/05oxHm6aJWODB1WUOlBbgGoTFf7+8+SNLphNGCJhAmnOpkY+MVemi9TkVx90xS67zUkm7plnmJdQFdtEQvLEbF2T8QBGmP8HM/Ayop+PZNZ2TqT+rPdJMQoySGiKLbS2DuSwwbQ77JtyA2/NVQiFswy2CYbk2NCr2NgRJPKNcaispGUnRPOd9ue6/VEX7zmkEmhZzgLZOmn8WsW0RM28gtDFHnHsKjiw2yMSaU5LJsm/buQJ1yyQhcrP1oC9Pi4/8WyDAKzp6Yer5QbzmDk55o5zxr0esrEYcAxOQNDGk5CIZ/RP2ZNlWZEqV/k2KkSdme/6dYZY2FLJLerkpBUK6+PVlOWnrE+ZjU1J65A8HIYoNpEIom+4SuQkEoVgdI3N2WbnChmixlDUgHCwxDKsu11KQVUApdouPudTb5V8vj1RKxAWNX1BfocxKWKF+XS6YC/CTxLwrulC2ZloCaFIAqDFoVVbv7u7iJ3bWgLcZN4msf5Py/I3229PFq695GHLf1R99zpSEpb1CkBHC1TJ+wS9ZCtjJdV/pTqfS8dBrF+DOseN+f/9gCppkc1wjg0ewGtC3rnDz4QHuj7MRHNLje2d3xPUQt39uROTzlTzBGGEkPjsNMAGjDY1pirPD1LAdtzeb1f1TJ/BOcZIuxhkevpsG5lPz1OtVNvb2pzXbxlWuqypcvhp8c9GcGMr9h+PWD4Yv+ii4ckszK6Irl3+mxh+EiP/qLN4PmD0O79ek9aVktoggmJQqr9igCPmunaUYwqjuZEz4CGl4lkEYfaPlqlBhKJByhe7IhyhrijDyM4r/UHINPPUqjMUDBY9P0QUiw/q2jM819Qg8gcH4DMqG5xciCSl5h50SIJqygDEvXGZBD1lDoH9JeDuvr4LyitcGlLtZR5l8zaNnYYJibS5j/0doScOpZSnM/S0a18hBxxYI9CYe/1B+U4Kg33hzxeCUsl53s9yUIYrIbGtu4b/UWFcPpCGpfWMs1epRCeyZAfyvRrb9ZT6XWq82neLtKx90mAMWqgrwQ6tU65+XuGZ/zY+t//EqKxFw8rW69aC9sx6fvriFK4d6jusHw+23ertmyj57opriMXAX7ifNH6zP5fDVWejZiqb+4qpZGGP2FzGGOuXt1BNGPz37Z5JPto82+UM27t8V4reMdc6b7dtVWKO1ZAQIDbjr1N7UTmwwrBALdFfD/L+Yt95x+6LHCQF6LwRjXz1dCpKRCuorI7CiDL2Gq2dbob6dOip/oetNjzdRWmhTJ/pD68l2AqDA/h794A3w6BiDofh8BIxtaOtAuu5zD6V0hG84v1ckG+mNXu6YseshRPL3/efxlIF+ZzlGXAy6N7ZyTMjzIdhTIlEk5KhzflI0Rk4IKeDk8wwALmKtK3XD6d0z8JACE6EKQJuGslg2+87No2gQ/OyzxX1uNYB8kqjtcyR/3Dbp+2A5JbEKk98hPmkul444WW+n4zeMD8+me5Mk5+ulZ0TSLsa/xFkIdPcc6rVQ6/soupCdA3XI3wTzQZY64Z+laohdgi/MWhypWAbhnK7Yz0B3HzBggCa6LNTOyob40CCSykuklER/t2EkQ6dxGfzNmNHWQLXoRlfxP8BBA4bXF56T7tLPhy6hoBt8gzc3Io8VOinQp317MD0Gf4pY/CIPcca12hfsYLFrNuLVCyt6N5zyCaRvM44hrGbopB0+NZnoDL/JFR0vM+7utWcRn0e7vNmio33lhWoFuaHFQHuH0yhsfjuLtCppnhyQQ32Xu5fyf3q5ZMviGWXXnKLJfCEs2wa54JZLCoLtsr4j6OcCwin3DfD2XRlxgBQ0Xzv6SJfxRN/SgVcgd27AR5pRaR/obTUBNUzUti6JqByAw4DiDrOpvZ6VSLqGk5C3ZhCy5K5BKP8IRALy/pbg+e0Y9fVA6iXR/E5UXYZ1cVcaYxWsqI8asU6iqgJMtx8in865DqujrIOJCJdSD9mMLKZa+0j26kqVpD33xa0ljaY2hg4EbAhsdTELQhVlCYnHUZdWjVEDbDF55qA9nTrCYtXozTDypeLBcEwI7YY7U+Dd475VPa/OXDdo6TcfqB1FcFzmqamvHwsE85u3CkVwwaLFVF4cI0n+LrjO65p615MLFXvHwIZxEl2oTOrEJq/oIWzeTFGJnsi42IUITN+JNQffqGrZ6nX4foX7Tl6HLBjppXkKU7CTcRjEk4EHQKifxNL0Y2i/T1cWHEqv6AXPZDpumaQFf/vs/yrMHBK+jTNsN8U0r4DUn5LsFmvhMcJHVw5bKLVACGTOoA13v6ZG7rjIBDnaQkZYesmDnF67CM+6Jr9+186iYPqqUpR/WocIjWB3B5RCjFeXyFhz6vRiRG+av3Tw3UPUIuuYvu73qsL8xGRdWcgUeV90Zkp7w+dCML9uboR5wlolfC3/f1xJ7H/s1wWZM8hZAetZ/i+QaRmTW19+r7JxM+DQ+ocP4jhZmKdMlpas58a1m8JoWsLI7qk1W3d+N2+BZM7pYkRBYVQUPLSY1gt/ElnrCgnnrefWQKhyrwcO0zmiAa81l01fAFDLppUsw5Y5K9y02VSoDjDyxjFsrO09FGOjJDqjyXAv7AQeKTd/zdxmWtRNqtFXx5kdJDYMT0enazNndXIZ0kWvc9BfKgnOZyT5+uUo3TjX49W0ZnAqmSBDG/lOPvJdzp3sLSc8I5rERu0kLQS9me3XR4LF8uOWHK3l/xNRmeSHoZlXnCXzhwRsEWm5USOYceHyR+BFp+b4Is7uJNUXGNnZdxGOjzBCL2aWghXgZorTqXIwpCGVWMgjfBmrplmoQ+U4/9F7dbqjJCHSYd+tGln5ugSPnW5KkndtBABxeBSGbmbQq2p5VHZT/V0XrRqPx5wZYnewbJ/MhDirLS9lRCFEAdMRdOk+8JdL9C2obi7Q3WmwaxuB2VMlbaJ0SiRgomQt7llSbfG8bGgtglLOnJr+50YjD5vurqbBsELpsexwOygW+z7c2pEdi6RC5Vn1l7544aftbUCELIJLOE9ZJ0Y1ltPssvpZpXHtUycmiRF4rvfdX1eovJIVUjGfYn7yMcaQ/6pATdTL/k/Rpag+SZ6H0gWmFWcWq9Rw/m6YibuvdbCCaVa22Z+WnxG8n+Vk8ZbI5M/u0Yos5g1r3ilrR3QZRAQ2x89RYX/+qrH/KWG7nvxZOO18lcwohLDFrzGa3YFss/JUlJhAt+joJb01a2fJkjEwaAMC7EPfMWkZZd95qi3zxSFoVbv45P0OtnPbYOO10A6E9hZHpMoJf4UrZ3MNHh1U7ug3N22KFUVE/1pW2pbmBV/jWrJ2klHY+VGPEsZDp/Z9aNjgATJSIkEeGcZfMa3mSnO4X220N5Zt1tlItMQkd7mNzS5jB8MXGwwoJEleVg/rdTqtuL1SfQP4NEnQDJlX4b2XZxSqlsD6nDv2oiFnNbrDntqeeLNJMGvghtYGLs0QARBi5tjrYjKre3b7SOYUm+Uv5+KcuAj7QjeWP8zRcLZgYAvYU2G3BmcE8EmJetCBCQo2SYZ/OlHiWi0mWsWlXs+QaWRLngoloheUeCwZRy1Uv/RoZVLmiuPhIQqH+R7zvB9aNa5DRvUIzOD0LbhLSLvIgY6rEkSB2cWScwPIDDfyAaB1b8ngqAmroODcOjz0Wc+4yvpqaXzzs+F47cjieWYFnMnBJUYH/CAiIsuehCcLwVsl2pol3dQ0e8U6pTxEEvo2fkuSwwgUTGMJ6rKRBTekLS7ANePS6qA0L1lioeU4EGJRV6mP5JGJkTmBWQ2JUqmrHmqagi5fAA9vNxgDEqoLtKyiNl93dNFXxeyxiC3MgsTGyaMiCAV+X4WVOnMxHemtRPl3x//w2vPLFaAykT0XtsE7TAli8zL1dB0wuvRj1llmH338dFzdiFtu94KSUS4Yy3HKh/wx11M9HNHdKTtJT/cuP6z8hl+zc11WhdBNQtyHukprESq+tLgT1l600R81gctFIS08iInWEFzf9WzZAmVgVcqjRABLBUtbxSBwJFVohiUNObmRQFaYI+5Sw0iv89iOPZUGgWZvapE7vJkVdr5MDEy40uDAmlj2P6egpiQURUv6kC21dYaqnEhkYoY+ArF/PD/vtykDXC4BmT+PmkXIfo+3FsD9GpEaiPkBMoMRFCLJoD2KIgL1nPgPxFNlcei9iOUFabryAHDlxwBRMt2LxRzKStBzx3P+pPnae/SEf/011w0rCzKjYx5wxSOFo6PJU503Rb4+FkaHzCURDgqU5aB1wOZX8PDZxFCAeO5QpZMQ/gzSyFazM5PgMuYCY5vNBqIgQddgphi6AaM9X4kPimE0xgzwaCvBeXnqjVTSMx9QHVYOCbXdO5BnXxuKyUOACI/CWSFBf+43X3pHjIuMAZvZ6PYUq7BUt6EoEnz3bfVDMu+e348LWmJwKUi/sRIa2YusOLYNuG7Z72xVnaH2WM1M6bzom+H+k/qBQoeVwhk+f+vZYzzthAPezM2fyqGullrWvSzCGT2eP7aDeKIRCfnQ3E7ufXzRKLA3B1XQGSBMSrZEOrGX87XTfpniB7pN2ySacvXB3XJI/vLKRU3XxGHmWXjgD/LMVjMx3w5edehw6+WzC/k7AujDf5j33GxvmdX1EmjSLPcySnaXGgTRKLVTIp7pX68L7uoQK9D/mkvvC64x7/zcLp7nrXwPscPwdd/PqWi7vxbQcCaNDGUwrJkWmzlki4hAATIaqTTm/PEXgayrmr/yxjSljhKPUTdtgm6tkYsbmGTfugbD8Qh6JLXbxns7iEENVL9jUHajxTrvRSONtjknrmgOS+swM6HCf8SjNvdNG1nNGBId8zjOdWm9AE0TU2a0r1pUjvVTi9jRbo6ZOOYyZ6yB7NL5dywhjxh9Kg7gf/HCQlqHLmwG5Nom+4PRH8ilj2pK72H96cGy90GI/qgrJ9hl6KEvKuMgnnLrb9QvXb1FvEaweRfisL42gQ7auQo740Ekzq9cYq1ASbRzc853Z3iFPXhMDsOERAzzDwKjlZwLuAAg7jD082QlYzNSKI7I+20eDqIS7pPuFvrvAIvDAHhq9AcKJ7Zx3iO9MsnrmTG4AeqtdiZoylUsHQKL3aoFSvsOppVe3pVRX3GR4pRNDms2Lrj22Mg7UibVjAAJfZl7EQr9Fiu1tyB6NzlXsgTaqsVlqN2rxKcM/CKaoGwSNQlqZzWQtJk4+WuZZLuX5P7tABp4UTCh1kzU3rZFG9DhzGO5+ADsnotIxQdyi5hDp7VXrrWeUCPe+JETnikklco3OxLajNSyU6qdPWLhUL42wde2eGOC9lVNkhF5xnL29Bv+uLTbOXDsbAqSlvSne7O0QINLvL3twz2vyGjJGu6VahBIC/7nWWxzkvyzWOG2VmbOsJjgLLg9sG0BwWVO9Ffw7xNGHbGFn0Dglgy+zAe1km+tvH5urtDqVOXQAvPUBG7VwrhLBTbIHGaHERH5Cxb9w9YSrGzQgIl8nOf6yBWKwWkaDHx/I8FfAjLAxhJmCTWwlRurtRnUWc7KueA6rFRXWySA8gzzA5NNzucvAyatFAH21a9n3xq1FBYuQ235pjpbkQGTiAK1Sx8YiK7c5LwMAkN44TpfPUgzgzx5DfUuWw7WWhaZIn+qt8N1GqS6HolfxXX+inMiRshBrQ+6Zd2G23AuoDQwvoZMtY1DDDMNANSeSAaSpnZz511RjMHrVGJjKu12cDwBJR7G7ee8iljwSZjRIhGRjOlVDxqwKgNKZ8j4ANewgMcQSvRSo7f+saYQ2mxxp2O208Y8eTUNp2nXO2aAEh9WS7VnWq3pxa+XzcgbcEhi532rssKPPKJM02tJlYxz2l6JTEP2VweyNXvKgPWX2nEWn/X7iqU7VZyu5wkk6GyDZqZMaSBbLVQ8daEkfU2I+zK0ugYpaY1bHYr+Y15NVzQTlUJHIl9K2tVkbpP/7ebjxmtCf+uuGnfHmnSeNoutz2XXzUB7F+pQB1//YIHio7jS28Nx8cLGzNarAOJ+JE161FVlJtFd+6gipgHKwkv2+PzQSbAHetbItqj9dPplJZwIrqJayQt9wdcS0bb70WsnjtWtA2GR5HY+HkWdTg0bTW2PQ8wXhsZ4+2YTh+2ilOJNxSTT6A9uTChDnJrJ1Mgu2nbVlwu8A6qyREDsHthTs6HVxpW3INForbk5jcJBp38QnGHfegjTTegyE3Qnz7tl5muJfFP4U3Rh0QFiq7QGohSQTv7SOHPq2cIf/nOUvDyQ/gB05MUD5CLI6iyUL9u/aizUMaYq6qD8k+Adnazll5qpu8lzLUXqW6bVnh3bv73MtfLrl3YxGUBZpkV0vpj2cLQp6ssVJniCK6wQYxm5xkTXjz/C0BPQB7q2Ed+nBDIlPwUfX5abUnX6SMzTUGOxV6CptH+wtYdzvGPYp3z4mMQfkiY+yIGH8mlTC9VE+bJifmVVxJ+IvNsSztERH2eTPiKwpaRVH5OgEvtj4o72EPs5TaXIkP4ljqBPF1bKzk0VqbUuWe3JI78LueGTeAV6DXzcARoHU1n3zRBR6YvwacfUsjuiyiT9pMsLvVq1Uef+l/e2E6VJ1t/w9BLGPvFyd4KcPAYxXi/uBf+/xKi+QtIVq9P3YBprvXKqVSOjPXd+OFnsfRexhRzd8oquAlZDCF8WSl8WX2PnLBux8V0w83c2NAo2zo0ASxfOBXCrAqAB7DgmZq2vcPBOedcxN7zyqtwi6PM6jFh5ZOuB0eNIb623S4veVOZlTEW8rinw0QPdNDbLe2R8YeeOtbTA38l0MfJMcLDPnLGJ+Vmlsxlpc8U5OVmOwXBRK46/oEYQ5D8Bpd3qUVNnKzhYSPGU4mT+MeNTpYW2tmlBhkrghM5ZdQFBkjM4HPMFhPNFLZ6exWsyUNQECHaXvMfqlOjclaq3ndWJBzHrQJ+b7xAx6jcT8Nra3DTHOylsgIDwAMnLqoyjowLXQfnKe7ZKQMkYXQrMZeuujaTbKbh/w5nMgvD1g9EqJ7P0Lq1R7wU/3kz0xGsrepyH/3fAWws3hpWPuEIj2uAdmZUYKkVuDMNL7X/DWMKcCU7WH20ZoHkcblqAgoyyqi9KmDK4Ei2K0YX4nEJkS3zyNhgVi/YWmcvKaWv38Kz89jwhGoL94WAZc99SJvn0doDwZhRV702sB/k1PmIXhBQq/wPuvJjWbYaXXcBb6nDWzQKUZN9DxVoIZvmQyxTRPA8aTQlzXHj83JbYZbO1MGh/KprFBmErwIomO8zbVvCt6sdPhs0k4A+uMEzvkMCEQkGUbjxWVd5nqijZ5ueSe+INcdAHwLhZqLPeio47tZp4WTc2ns83IAqhT8YRQT33m35lrlDu9nrJTIqcqIJxj7iyNSsjBxVTDv2jDSM0brarb+mMGh2I8/opE7uiJMT5RDc6/AN/XwV1etALEHhwv8vjLYN5Qs4QnKeq77SJbSb892nCwXsK5W39tZZBhvKMR25wMBBDbr+UMklYGiNy6J/h6WtPBLe/XmarzrT8Y3cl2pdlQ=
Variant 4
DifficultyLevel
559
Question
The Cricket Shed has reduced the price of four items that are listed in the table below.
Item |
Regular Price |
Sale Price |
Thigh Guard |
$80 |
$60 |
Helmet |
$120 |
$90 |
Shoes |
$130 |
$85 |
Pants |
$75 |
$50 |
Which item has been reduced by one-third?
Worked Solution
31 × 75 = $25
|
|
Sale price |
= 75 − 25 |
|
= $50 |
∴ Pants has been reduced by 31.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
shop | |
item1 | |
reg1 | |
sale1 | |
item2 | |
reg2 | |
sale2 | |
item3 | |
reg3 | |
sale3 | |
item4 | |
reg4 | |
sale4 | |
frac1 | |
regular | |
discount | |
price | |
frac2 | |
correctAnswer | |
Answers