Question
Lance is competing in a cycling event.
On Stage 1, he had to cycle 90 kilometres.
On Stage 2, he had to cycle three times as far as Stage 1.
On Stage 3, he had to cycle one quarter as far as Stage 2.
Which expression could Lance use to work out the number of kilometres he needed to cycle for Stage 3.
Worked Solution
U2FsdGVkX18sPx9PybyVDLOda+dcvRDfHz6sFGRP+3QSAQSYdFKqq2LFZJnhXXQA68CRHC6ENkrvD3bQp1TLHqwdoJ23YcEDbGos+r6ZTSSLSGlh/Z/KDg+gt+d5IZ7WjGyyygs3K6ZazbyfZhkaws/IUf81zlQf209zF1TBBOl7BEUjrWUMI5mw+aLgQUrs08KBHnjWC8AljJxGHZMzfF41a5+ckbPzQUeHSQi7cT6Hoq7KsSMQH94LHSPq4njHS3fjvmttvEBz9r5QO+gdvuPOzxHoPoyzlZ7ZfpYzXEezn0erGgqTyRUtwO71PfEPsccqryuxcKWkKGWKEwHSHS0bR1mAaGu6+7BUVLpgmeSzmkquRQ5amzy1YEFQ/08FCTK5ORF11Bqf3q4hLasdRVxvoCMaAHCmoLdUn8qkEkRw4DQhO5dhQlBMunHFMX6slAfrVukp+xsFj0VWCKSodd3uFx/tuXkGH6fsXcW1dd3PyDwyifh2nxSNwQe8I/WU386yTK3redVEAHTExq1jq5gecl4XWXek9ytkGvrUJccIJ5N+W7yvb2lhm53fsg7TO6F3Q6g3cWC55WN1B/k9MTV7AeSzq+flpQPy7Va4kZmlV30bES/HHcxDC1fbBOgv3TXfZpB1HBwareFLSKY5UcsA0E3cw58wJi84x/CZnZv962wNcwsLOeXICZyrkYyCCIB6SHkjAcRHDBGhS6njkKDyfepOdC+47KOXbGpXb4m/BMIVbnWGvaStKRRHf0xEcSu5IzCawVoh5io7xC/qlS4C/ayOXY/tEsaasSZpH3Kt1CDyhh+cTHysSYdsFk2VOcXmk8V870BSoMTrvyB1pn19Q2Q3NU8ZWZOBGeIB35vCTEl9tQg5U3UzYRvPknSL/mKSO6Vm2do9yq+3XibZKqTij3GAf2WW1eY1jcHPVWG2+cJ3Vf/tD7rYfqY5t3bX9+D3j9cNoY65SSjH+O8f/WUkopMvGrOTMd2OlaMcrjbNXw5p5LBzQzJ/dZvv4DvsM5WmgPM4YdiuwSyHg7DXsCJ+4+TrQ//5hB/yWmrRptEjc55moC0OBMun+fII6LMoeW5gWsCqkU0wTY3TPW+injKPcDresxZlvD6eLz1utzXVY0JdpIibEQRHnP+e5GBrNb7PEMqjtIw+RlyiuCpK7Q5w6k8DkBfUBhmg455bOC3vRrZndBZE7IS/A8xwcm2jz1CASkuRGkRD+QKTy2iiYwdg90wR9CCeZ0IG2nh0VGXAqft3p8XNOHIy9zsBJofFokdWc4OfZi0XhffRuoJnJ3IKXqswHrJwuE/p/wrmYXinR5cVjZTDGw8/j1vEqRr2G1Uu5qk+Dpnk5fFgM/JZ3Fzq3j4amx3R9G3Igv/1AQiQQxbsSQOzUOZBt4frTzFNkFPADjjFWiTQ+qO15liwiG47jeDvm0R3j0yQ3W5BGhdkjzpRqm0NFyGq/3YVGW+lrh1+aDrvH9f7yeuOLf7gS90B9Q/e80yXQOAw7tkm5WnTsEFJXqxbm8e8b5z8uhDfZSiapy/4kFGR0PrCQf+zvsltI+uBYAbuoWAiX0SwS2x73Y1sg+dcfkwBa7QK+EfQuqiHAkK+UKz4s8lcV5+hAFtD7slrpKdogTREXxAePgIASPLBIp7ze6yy9iUta968AuWSUBHtRaxIAO3lJ7CfQTLMvUe58F3563zA9rt3Ce8tIsazmS4qmVCN6blDFk01gz531giZrZFKHQ/FvXEpcbYKK4tzx3LZG89MncUw82IQAE4Dbg7ElPKNbf+rAcfgQ+B/MRJi+HvjQKlNx+QkzUEy5GHFc5V3h7BU35OcHmNDp46Ck9vWThuZ1vPi7gzwdCSEZcSouRCuxKxdSNWyHOXSe5WhkzpCsncxcg4ufVVtXrZfxxA5e8DWYNJD/qVAKbgw8dlqyWit+8Dpb+IuCER3njoOnxuVHwAdWah/gOLsCmNg22Q2bVA68ZPnu/s5ARabg58R9gIGS3gPy/9yyXi9Ppx6W/nNU3YdLKQYDJPdkNJiZcLWA37UTW6TL7YEMPeX7kfWbvjstAuYnhzwZgdNPAV0BQEsWj7R5GKO/RTxRmLOOdt0157LB6oosK1d56uPYnj1Ar+19JBV92L7qrzM4NUJdAj9bptfl1V0xqTXFCo3mumkWqdiLrJ6EtnQOVPXtN1LPmgXBim71DcsXed8DNvWER2SYe3HRYxvJdJ4BVIBe2d2fkv+qgA9UJ3hl21+Vfip+enqI3eos0eehEFl4iDAoz/BI0/R5fN5nSqGltU6vfemk3B7VebcCv8erw5oSfuePrdXfiPNZiEg4doJONIZnOrWkfLNPMtYbcwy07cyxhTq+6Rf4PJLWxU/sD05Y4HY5y/9xmcheucVaRPW7pMDxbyr/r6Xf2Lu6wofUcVoBStpjfHNy3ybyY18NCETWig4Uy12WHutqAoL72kBOkvVxTC0C2lAn9edVKucGth4HU6mR6tPYg+Yz1IYaaQqrn5oG5fVanKPPNaCsmQJawIwteQYoHl4BuUhQFP+R7SZLcuzUWJvmRQfBWGVFMG9OwRv7lXjd63WoVZE6ikGGU5kz24Fx2DlOiRW1nGirJLk7kRTIYbF38NmYS9OeDpkH26ULiARckDuXv7b2jbWTJGclOQ+EhbsABIARKSzqzbrFYSUWssKCTVJauIrdbPtZs4d2L8VzlMsSK/qN72yFyXb3Q23trmAJkTLCfN8lnrSMwkm2W/R+7/oWqzSc4zegl6AGRTK4/+pL2yzHzU6bXhJgZIezQzsyvZZeWMwCS1FZ5+Xml571PQdmKyJVPcgQiT+LY/QpGQMhzHcEKSalla/ToHeY+OhKX0/EW05T8faBdjOs3sky3W/3+D3Z3dWTY7JK9StVClh/eFTqA604erIJy1CzEOGcrfdqlQiYyUjH3V0hSHRq8m1PDb0PfW7vRCX7QoAdrg2cwgbw7+/4pGLH8Z3vsLpsDw7L/kl6WYwXQGQIX4ZuA/LfnAbsoldPR+pWgEvi7tf3PuiGK5GS78MTBwtbbb0MHqTj4eiWvUpOrEn1D0fGoIrcod7X3N4lPHZnz6Dr/QwGChfn1o683vC2WUs43lMSbxjXQMM8rLStaLsEJMQXOX5AZUrVknXokbzcDaJd6Nj4xNa2zCj7Bm7EnrjqSm1RPYyaSrMiXqpiOMEibjXbLVffQDupItOdHfO6HOEAGBoPCIp1+SNHZJPqCO2AI7WsDMUiqNpmb1/wzMXZBUOPSMzqQ18snzstEBaJLxRoxk7GGdQgyqWS/pczWhS1RvRJxMMg0002pJecExRqx1KmS9LAGb6YCHZBk+e6cUGIHIAajkMhgKVvPCauH+YB6pt0yVNusT7Rm6f1FlzqWRjn3xLQ2rKdNVcbD9mitDUqVOqaJ5yz0nuxA931sKxQbHWtT+0PZ0/xrKLLiMhewFKGh+ylwmPa37RiiItOEpIftuAa4dqiAiUSR1zuKfUIuW3b7ii1Eoe2U2EMGUUh7vWnjAgTAa7I7p7uMvpVoHVdGc20ZKBxX92QwJRL3U0CFlDGS8Pkhr6/F5QFNBAICQ8VAZae9oacUfNzh2N3Gt5logPRjaNpy3Us9ESoiTDEyTWuqSyKdS9aEsXsxPtj5ICxCkDczAKMzPrk1QaaSc0hpBYUBLxOlkC94nVYkMPTl0VcBacOV+XgWFYT1isD/pCBI8dMfsWF0gAmtfeolYZu+purWHFSU4QF2eLaRFLcdo2KsA8Muq5VEctY/jMoDoMs1FuSi3Yp6bruYh7+2ftKkkVpQUsqjaryVZTfLnzCATcKBoZ+FdfmXrgyr8zewRFfXn7goEWTGkfeedNfea85OyvEh9066d5eUaYh05fVJxKSVRtvYea/nuXYc8SAJdp/yqbx3lV7y3j+VnZCdy8asw1It2hFnqm6vfCbdQWI9wPEAUt0MbS46SZH8eXzK4MRBsWYxzz+xwITfPINWArrJka564MSqD2Hzch363Df2owj9+f6ApwmYp00FknAZ6d/ioeJart9s4ZHN4PSnwuAI5RCh9GbwOg92j2OqXb3lOVPr2MUAsqufTYsKDnbIRuvupIxgwPlJ2TAtE1LhZ8EiBcXV9mNevIyamm5ySFlPbWoYv7u/vEiRYPZZFVv4WE/mN/qiQf3CqJf5RXIsRMONhUkIzUT48sf3dTTe32Or47Dq3y4v9GrBFHO0km5eojvMMlE9a85NPGoMePrimSQ6e97pGNO/vFhRpYyY0L/wXC+RYfw8XaHChKtM1iwKDxv2zRAr2TOXsEuN14qPrKXERqLjISZsrOBOxPEE4CpQR8aRZwjsBg3ukKvBQOHJZ5Zoih/bxcnbNdG5GnpPlY8aJjT36S8piU+dj1N3iYHll1r2JazU0X1lWaBzAO8uNPXzzRnG/BgAXrXyjcTSyUTC8MITTCzlq/1CG8USe2iOQ8j1weBAqkYHTQgk4t85Ft3wJPHe42GFU9hfV3ZO+6hZoK6fxoJOqXKMqtq5I3zKXHc49873wgdPlmO5UL7Ww8WiWcoAVnZo/OTEqurhDQ6YS0IMTak/mmoiklDierLLZDk7q0OVMTvA+FgVnZTyh0+SSo/rgDstp33v5yzJCf3VkO+WyQYER0mYzEFR30H98qQaz1c1i0SsEFJjxgq4TAOzpYruVl3/rYncUWLwRRIRAgn3M6aGof9yE8LTYgyC2WNIUgQdPlVQ6Jc5Y8NCPb7jEoyNHgaqxUlt0Lf6VPdjuXOkHZyLhnsJq6CB15TbWC22T3AafiTsZusTo7nbqC7qGWJm07p4b0FZjbYnJMgnDKm4u4w3QfY6jRAlDnHumPoc7UtNdX+CHWSO3tsg5GEnLeySKtA1R0K9raMIQ/NdM711aU49TDRMqj3Zjwa+ri5AXifyvxMR5K5V7Vq5Yy5SUIE6LJuzdm1GhG3nYpALV51odcKhanhUv6NqVINKSTmOeKSXftYU5R1m1C7PsK6Qn83+GWbObWFLheMx9kypf72CGarVaU2ElUsYac7U+3SjJzWxNBcix8Jrey7T8meGvCpOzjbdzPKU7CAk/a0V95cvAiLcwHCK2FV54xrFuYfWHNSIcnChTyJnNb+k80m2Aqvy0nVe79GLXeL5nouhzyyEMZzyIt+m+v2e1CWPdIVNg7aZQNCdpKjteJDMX2QV96eA9TWya4Ww9ozS9/iaM2elsot+A63JZjECV959uU3oIAyQNzFhmyfTDl8wKCDgLR+xeEI+dEm9AOPYmdIKK+6epmKykrA4by1zmIKelnRxET89jnqdILUN+OlftcGUKnrtNv1Zs7Rt9V8h2VlRkr7efKNQTHwjul7qTczL6upqVGW3u3olXFzPqxd5pSGuu3/WUHpqA32k9mFkq2s6KZkQcjIuJCONC8+Ot7xrDnUbWYT/Y7+bhJ6Zh6JHM3X2lFJlWljRYzhpbcm5jT+d9z3WZ+IuU3F0ooLgVj9ifsLChbIFETNAJqc0ZrDrDVsFRY/+WhCmYfUACip5yiArPMz4BaF9HxM193GbKPwNdRHcweVLT4YJb74p0gf2M+WhuIOZjWGupyxKHC0D2zAUYPYoNo1gymqs5Px0l5b/y8EN3MItTtPkgL9VeEXxo1lXxQHx2hblBseu5uNoEVRQ02MdWz0y82mtVLHI7AoX1+2YMRAKVwClgDNrgw1/j0KYvy3e3hUaLh6cqzS0KZgvCtJLhT+G1Uq6iwB+BHMAVKYZegzAUW3D4Pzi3O5KDfw+V4ZLPHDbmLrkFb6m8YLWev7ilj0ptZR740qAw3qnty3/Tr6ZH6dFui3NjCZ9VQQwIZCdBbRERflj9CG2Jarigv7KYRHyI9wkYFjLtWm/esOhalqvae0VjPbXr/lomkuM0Z5NggjmCXVGTZ2qSFfTGUasm8/51NikQUNpM3kHIof/ApnKhT8Ww+H7uQB+g8rhyX/eMED+JAM9E0rPZyLog4dIvCB0TEtovcTOa6je78XqK+KjwYAm4d+yIDHrVppilawYsEcfC2BpK9aqwUcZQxZ84uALmpXNvqO5DZA7GauxW4YJly/sREJWTKlvfplTJ02hPfe9BR0IjoO7N66p2U3DgGSlhwKxByIXD8Dzl3HLuvtwoPgH/zwwzbsqGEAK26iLmNyG3ieTCWoslK8hrrH0brSlew1iHrw+li8FVZrCwQrN+X1lZbdN6XxpnVGA8EoRL/61UKYdvq1SgDoKK72afyKjngduZOVE5IWJv5tfn94uIYkdZIG/iGGDYJvCJRfKp6CeruOMOEFc4A9X7z8JvpApzPjbxeOJjO0T+rZ8vz1ZS5XrvvjCW18ToIITtmyhLDXgCgyUzRiBBCOLVwI/KSpqTmxPQ3UgD3nNheQT4WvNxQF6GhTmQYg57aMJGfBTzhpQjbwjACNTxOcv7ZgVW58ZZlKrsefeuci0kWqpQT2lR/PQDKNzVvhMJxVkG+YZx6CaTafeNGPKtOcdbL+5axqZqCUZs6ZB427w5V2MaxIFt1pVjFystBrIADikXR3lrxUMIEO6QSo/UcSZhEdmeYemfs3zDKROzClKmvvY9lfUMjKwgsAMS+W+v0GcXaed2QRrs43U4XoR1nwffv+nVim6dfPtTP14KVBX6e4m1aIdYfE26eYPfjwLwiva4pv7/Sn5/RrlVNCQ6lRmoQ1QgMGjEQ84e1P4uGSXcOcD3/xSwmdGPawVBaELrKPQYF8NhW9HqDEqfiPxLlr45nNv/49EvzKd1TssD7LRBG3iJ7d4J9C/yBTmTN87chcJHyX6bBkIrvsAJ1Jlw3DmTaypJGUZ6bKx9sEwyFEqryrQmgvLp3lrUuy97USyXf7HS0jf3hwUSy+xpAm+l4f4d3jVKOV/idXsbXSQ0rzsXs/LVNqZdMtKnWeLyV2cxfRmBX691mjbPtTF1fx5PENLPoMgJpHvfB7IGoSPBAEVFLQYi6q0qHgzkVXwBOr+dq+3rsJMxW2w5xL2TPfBFDVGAOgDq1K2iz/EYELrMj/3B5hhz+sXG7hz6J87X1TZb16CemEJ97NqvWU8TGTL1MqLJEByyFODJolmYq8k4nncSyfb/AdXUDYu2Z/N45GDHDgB5Xb7vioyQ5wlpssF/r9fJmZjh6GQaH8NSyjzJDkAlS4j6ujpTXnGDaDMCuPZudZkA4He5puhXifBdHEinGl0Ft6WlYI7h3yxTv9Lm4M04ed9xK5FZLTXQDVs8dRyFlhBpk9R67D/zdI/TI/6tw0LLy5C9CISV8BCsFX+nknuKviU4balBjEwUnesSEc+t/aKecj2C+/rDSzjMOLL2H+5Yf9ieyI2aJf85L3Oz0v7iMXlu+pvI454vhPL6ce1XzhbXc5X78nQVvFsaVpmIFO3sHczQuIJfaOKqts3wYHuTCw/nZqMMasRz4+w1S/yKAIj30W4Fl2f/hg29tJ9quFhfd7Pqd7D6sef2lPAQjjUmbH+fSyphTz+6sADj7Ljqr0V+qF3YL4DueD3XxTNCKmAzvUXpayTSrfcpG+KXD2mk+BKncwOM8LzkW/i0CvQti5D/uu+9zOgAPsmdoZfmsMI1P4e2nBt9a0qnlwskbDDeooOStScDyg56naMTIsIfbMch2EzZuP4VYYDdK0qadGpcjQQ0dErBMJstBfa9TqOXMfWdXlvkLPuTPxh2pM15czemtnPLHTOOs3h6EsBa9ETcOfl5FcqgKIQ//azI2VO3FkRAIk8gniWhROqvZhQK4Lfz8vT7qDWjM3fQ/STx2FkeYiZCBOh6Dm48oicVOjUYRQ7vwicc8mLGbUPoGEmJBOy2+YNcWqMBEc/8wD22N+F2OS3QYOi7NtgwD+nysnray1NVCPjn+0dHxcAAvRfoJBUPnfNGE5jkEZRM/zFBaZEDQa2qBDBi3Td3gnSqwRyNbktN3hMcQjrE1oqe50ChOfzkQUcC1hVV0i8T/3oa5OBqS8mS195mU9GIbFg0P99GZQKmHYE2/RdhDI+izB1R/WUCS1iGg+fg7dP8K/4CQZNHRuQ8L7Xterh14/ilzDSP/pL4ipwUj51ijvk84+0HeS6V6A4Py8jYcmdy/lANEIqJefT+WK3etZE3GkY3C+cvv3kjO0xfFNKRLkJgjb1tskPaKS2vQKBEKFzoHzj7jEsLUJiRZXTQODyEsRFzmr3Rkfd/fZrP4ehxX5WM5/u/xlrSLHkV/+WO3Q7czFReS4Y6huOeblSVFj9rM3YZ3OQUakl2BXWaQMBjsGpT3GR9caS+cxUCSnbPS0EN2luclA2S/12QDJx765mkS0uLteUnA0ar/DpLNt12s4t/2YjiDZZBbn1ekapA3QdEH5WTzCDTd6wfheMC7Ir2hgXdwGGz3QsxLAUC1hIfpL7Jpgz3/UkBX49QAZlmUoiBXI0cU+V88lZpC5dCO3QFdd2vtGiICK1+sG15lu9jwBWdaPZ+e+NkP0ZRbtfnZevgDFfN+LTroMcHwRa65m/0fAX5Zjd1Btw01Qgthe4///gzQOp3RmiGF5EBOIqGkTfUZ0n3WHb3wDs8H839ot0gDOYMwU2+EeZMynRdL7iJ2CE74HbhyyVV4LqwJ4b0WJPlPFsBLIth6tmpqfUn3/7oV9BCIoj+8NNaspzj8YYp/f1WMjBJYCsFebn+inwnHZwS2N/GLroQzGMLIBqEnwicp4WRiD4rvMn83nTl6yDxH2dFXkXMyUI6pya+JRv6oHXYz0uq+yftbbIpKJyeufeju28i7RtGDF7AaWYfT7raH+w1/YUYF8Sks8pRNcio5Llh8P7z4/Gzz8vilnAettMgLculIBasrHJRMoqQDTzJA74Lh8opv4hcAdezfM16BN09PHkS1QnC4EwkAQlK/UZ6RY4R+6R/Cc+rz6Wk5Mdho2ScwAe7Za1dJApXttYXKtYjKQAbKbxrMFpBj0LOczoPaMpgE9gTmfrRSvliMfdw6Ky0btvQUlMDzJTdku3zpP4VBA//1S/kXlU9SlWvrCyngAkTRCjwrnGBeeEKz0y5GrdbjHQHQzxsMjZgYTOCu1IXYG6cNFEf/ing287CoJwP/u5Zv+VbabBs38jI7+07biuqna+nuD0Y18u1WnoZPb7i5Qy45Q87B6bIcxmhqLWBlyxZomSbpNl7jtLvyav3xulr/Q2euoP5u5BG2D3H9TsXaE3G87oHd5YJubOd/mP5Ayzzau0iy9HRTudCsJzySidsJ3SHETvi4fk9YmF5QIrlBr+TuXm1vmY74dxy4GPUHB3tvbDf+aaH9p4wL7v185U6cxs94STRQvK3F0J5NRfpHziElAkau/xFj0PxPfg2xVqu8OlE7W1tUcCTypqykvV3VjsqEWIelbeKIuTUIfy396Jk9r0ji/EZzh+lkPcxL2cIeOanV12c4n/O/AWLvzw+6iStpeEP4EbSbPjz6cIKdJ4+CZ3Fc6o7ZJ1l4z67+Y/UxTbrHy6e4pZenpZ58LCxQtAGiceJM302YLWhYY4cPHfPGfA9dvZe1B2TMB2gZVYhBHFB0SiylrQRZcYDEtKxsdzE7OeuK0GyaqEu1BHYCXwYWtDHmbc/uTpVDyLVYmeaKeUMvhyaavaUYJKLSLxQ76mIkBQvFucgPA7BbUmplFAfmHgBR/BXl43pHXLYxHaA/BMNcODeiCYQUmzIdXZ/EwGgLyB+cTKw03oWeEDgeI9MyKWTITCnmWdWN+m3hrxSRZ1Y/3uFGftzhA0iTJFJaPlDS9K1P5hBEsU38prYf9fXvlxuwZ/MFORoB/VqMorK3IYw9ULkD1a7r5KXxlCuie3DKKVrOoB12/YiidMyW4LHBVJRgxHmmWz5mFBvEAHG327+I3Bts5V5+/kURfFMEQ2sid78pwGVvvLOiBHg3QhsvtdESn75IQ6bYuNvP92q9Z9284PfnQxosri7XfD63JhB2si5nGwP/Ign6Spe2VOTXki3YjSV99B/MrzLt4GJaYB+S10TDFjoEdyrtsfGvGA9WlJ9OWJNQT4Pkr2jg5MB/w8K5C36ZSbx22kHZf3xPRrdXjO23NZJL4FAGA9AsdU0sR+kGfuiZo5aYVd2+67/qbBNE/Yu6amSg8gXpwWR4H1RpjHBiYhsQf3QYDF3ayT2t7gy9TkdzEH786LMU8CtdaKYpSbzIGsQc4eyf2yM7euUD6Cftm5XXtCtbSQFtSEk7TIn4YhoMoyu+d3iOP/ZthE/nkg6hkNatxvl7cUBIJOGv4VsgWGopNBqCjlBj6EycSIKHl7Lb7kAI0K1prHER6oWaHH5K8CDlFQ82Cv30eXudoBJin3o3UZvmH/1d6/FYjYZrvax/XKGznAxFzrABxx0+1bn8MPBKytwayHpT27k6Jl9BPwxVOc19Z2LonQSMEM6WfaJVvvCHA8TZ2OWxD8A8CAPuIforY2buBMVV7eI4xPEsJcXn8WE9ugMn2OA9bd75mffNOpu4Ws8G+kZ+eOXI9VeVzwaylh1gpVEJCSoCzKY3hJbdMrBheJtiCIfkfjgqXVjJhtz4GhsJiVqWs7uTORi1tkYHl6MsJ9tYqpv+Lg3JDltFmwXgwkbPqFUqUAlAEMAQlPy0uY/BRiOaMduI6cQ3cLBMnr06HOqEvqUPKtOP9O0QAHql1FHDiLHHwbF0E7obz5+M6ieOLC6bUFvUPWul3zzlilKs/R/XWHVKTzp0Bx6X0eK1mlWHMAv6Q0bKG33+HD6b1hs4eF95+1xl6OB1AqyG5PJD5WbcKA3fXmtrgzOs8sVRXH2L6fDW94jeD31WWDESckg9XtxMtjxwGlp6ymAomytgbpXbSKDGJgbbyHfq7qgQi4CxW66wRY6qzC88GEdoUEg7V7dmWojWlik0Nr5iiJra/e12rKfGkdEmMc7PTug3AKIrAjc+LbABSCisI5ZXPl3BFoqRpzSQF+IB+UAQNZNVAOV/jMrTu1WVBY1TeU441hCh68v20KSGGCuzAXjewdLx3AyB9X/cibojCH4YUtM62c8UC2snze5i2gObHhL3n4oU10gLFsd5ZaEgoBCneQc0KR+f8nfgq5Fx4nrHZyBrQO3SuT5+vn9O+shYl70pC+Kw2v1w5OFvc1IHpqEQBCpJCdAA+4qj78TtItsCGhBnpkZUQABfQIndGfDOI+Bcp5F5ekhO+jfd1V6wgQcLdDtkBIFQJK53xSRZgj1Ke1lYG51hEeNVk0+Zgbg7I5psViW+59zH+aftSWMyWzC+LEQP5DwDfE1zw7Vjp5m0DsKxdTwmxCYj7Z3QlwgQc2maHlIZdtvl80W9zpRmQV1s2KztgKFS2BVfhF7umujOaca/1qXvlLeKL0IZ3lh45vuRRxUqosWGnHA+4y3HXbz3n9YiSYn3u3A8uO3TMrB1OVoDs7MYHKmDqfjnwasT5+QnAC1v4UF7MMqn6MdNT3fW6y3E0vJo0npRzidJ3eLgopi1NaclVXcFjJZiHjGMuKHW630glgw5bkts8H77UEan+DwScQs5RhE67mZf3ej81UXXQsxKboNXt3ZvAYtobLB5IVCMoPCcpZkUqFJYtg4ub8iemmPRKeNCw3/DKPogmqcRznaPHeR1WoNEqy8QHXdEb9BY9Z9/lM7YSAqxVgJGUoqMrbdGQ8lgrO9735i4hDpYtaWF8X/f2MHxfIHoyYoQgFQMHuu9SKUkhxV23eMLT3huykr0XZVkVzWPzyjh/Td6v2SqhvWA3C0QWuh03OLmo+4TPyiqJHKGOV+oHOUqFZiUngpcrCCE6bSXbVGeThjvTvhtWXqzO0QxTagbObV2NJ44PT7hfJ/Ec1U9MXQMxSdV2pksFjYw5pIervdvHMAtlG6Y0FPQwB0ZofypccvPYCXfRoLVSt1sSSu/F8yBZIlCP4GV+YESeYEvBLNEjJb+XU3GIpGSGdu93BkJc+y3mfzoXxe55Rt5mDdn17WHgCjFhb3AemTgRfDdd77laFRCtYwwjVHaR39bvBo5YdZ1JPn3twJlSF4eBaTnQNxaN3eCNeSMXHK/9EKUHPTxjWR9JI8PuWKSFo0Z5jTdnsmLVT5bk9evYC57SQen0A5J65RX+HBYrgGrUjNv0bPK2aZBZEtZcMBozwacJJpnJJ4Pi7oG7thj1/BUvGrACU6kfbVr2sx14HcZg44lhkErG77RAye8YOLrKH8tlJgozyuf6crQHflWSRE4vRrkkm6z6XclAjaf2HGKNi2Wcoym20hIYlzMBck2K4HWQK4lzCsOtxZ5+VpH3MuMOP5UtSm6uxGR6L3K9tcwSCtFfHNIw8qWbBJhJtPI2WyTrsNmJbayJimccUetaUtsxgcA8k6yg3FPNjHfEssNYj3Yo2Tvb1g33o1SWZz5bIOkUmQSKX216u7+5Uw3taOIiK6HapX0s2lkIiU80rdcvhtJ/mdJw/AwCMpOeUzV4xFkBKSbwYtdW5KmRdW3+funFmIOM8y8skiaxJ36xwooity96gvkxRX9Thc3YTonP7DPrjLMh0YXRh2ITP+I9X57O3YILZGJmpG+uLPVnjpRs8jAqMnk4EkJndkx217f6AprqFHZhYFKd+gr4lEzIskxGYHX4EjCSPbi79dBUCxSVvLalUgriRQ5HuqPpzHXtyQHnz+Wn7qwyZ+WVAtWQZyJpXUajk/CIBaWCCoTTA5PlPFv3YdwfORdmq2fvE7wzOps4Cw1eeTXzLbTLRzyjjsxYaikirOEVZ2yC/DwVIATFVUaemtnGMWDWcCxPDHHWoluNTnIUrD3KIAtbciXWYdgAcgRwN+i5qzrg20qJGw72nr6+0QC5tuj0O1hFA1QEGulA+YiwbOJmXJonML7WFqxgfBH/Md+HBglMrQRPpon5G+qoGRQi57WMEWwQuiAVUmP1N58IdvjI63HRyVBB23JHmTMWaxoMxZGOoV/H9Jn9knjps6WuAzwgnJ5/6Bw0IQbae5P0MfqTkdZbHqHDfsQkorS4Y4NcTop3Jaqg4kjCLQ+UaPVXNEcKUneIoCwE4qSEVWNTgE4jTSVRuo6ro6CPbWE6gzmmcyAkyvA12wRNjPbmgE1Rf8kovXk/UbEMdvVDshQlJ6iVRO+9V4Mvzf+6prOwgMohSsUXN+oyoiO9y+f84OVKTADWV6l04w+a8d0uaHsEiAJ4sq96ZLKoyz581kiux4oV/WNSJn8qxFys1NofJJb+JOyzcu00lnqeCjBfuMz1C50D+CuLG+is9a81OBeRpfBXKd8HJE0bY/JAE1beZ8NHpZgf43zW6IGb1QF7Q8C/cX8vYgNG7psVwO9Ph0dAMVXULTD3/GW5GPn6gp+kpQ4QOJ51CVP8j8rCs97bAtvysgpU9p39zK7zs65GEdpjLgQPmGbf7UAFIcJl/1p0olFobj2b8mHOPQSBN+gCORgNLk4uwE1ODPFAgivi87b6bL9VUA9bvWNF1FDNLiCgA==
Variant 0
DifficultyLevel
562
Question
Lance is competing in a cycling event.
On Stage 1, he had to cycle 90 kilometres.
On Stage 2, he had to cycle three times as far as Stage 1.
On Stage 3, he had to cycle one quarter as far as Stage 2.
Which expression could Lance use to work out the number of kilometres he needed to cycle for Stage 3.
Worked Solution
90 × 3×41
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | 90 $\times\ 3 \times \dfrac{1}{4}$ |
Answers
Is Correct? | Answer |
x | 90 ÷ 3×41 |
✓ | 90 × 3×41 |
x | 90 ÷ 3÷41 |
x | 90 × 3÷41 |