50175
U2FsdGVkX183TJGO1Y2A+es3fmEkizdlILgmuA2VYvkmNl8Xv1Yle2naKJ9lLvpr9Gexy8MXJauwMm0q2A7bFfk8CerRZzV0pT7BLuR+vH8pa9Ox5cs0vaqrxJjWlxAS27u9nJypC2Sj2AxAABtIOHTr39bccPYi9xt7kmEICrWKhiXtAijQ3yuglUq9xHdcajiboEeSwhul/toMZ/ldhRa+gur/zVu9dm/+RNjP/j+pQKbnV+M6lXol1COrIugRSJaO9r2REpyPuHNFGApEi3ylSJTzZRL6gajXi+79tbKLl+7OQYXmS5LNDTjWsEFms8AAJuCS7ReAJ+lPdPADL8078ce+Uncg78w9fpheZ3O9SDMKzEDDMg+hWP2ppOXlArCALUpLyNKaiQvQE89HUKoe6sfN3tbelPO6ev7y4ynJ8vv+Wn3jix0pyGw90SMlfbE2oOSdx4Ns9mA3rWPwR7APfZwKcEI4LLkVMRfZTsn9wiRPpobZBVxHWT7bYjc7q59QGSxvokZSA4idlKv/tqEg/9obCIdtWqf16q0YYjiK1WZkj9B5LR2MvoZbeoCZkjK1zi/3YT94Jbq4jZ6UqCGsenYsyCtAPveq2wVPv0EhrWXaa2Pyu5MktYJy06rK3e1Ta0sAnotfh2VQ+4TGo4sNnonN+mzZ9oYBogyC6+TkqpbfDkSN215s/abMQJOM++T6aWcL4pkknypxaGF5o/4QSX5mHIjCe8DE0rf6P+wxKfLaGkhjWY8kxXYDav/cQSdliXVazhf8vwyytIo7z4wHCulkfAX4KDBlqJASSYA9TcupRl9j5cxx8W/Zv0FFKUp+WeazHyZ5c7iVtEtNP43x92rxEpPY3m2cCkZ6rnVE333Vj3f5qQBjoKtpaeJ5UwthQBpUcuAHjlIoAaiWUQPXTd1JaLQu5kc8qRlLLaMuZ7Y36ciyUfOYWgfcMTfoTXl0+oWYfb7XXUZXSZa1MGzDXPG6kCk8Urom/EZ5OuvB5QfnimLzaUBza16QuFoU2b/eINOlFZ1zYyJmKpeO3+2Z7U5/L/V1PXTW3OnQcJKA+AYWpSQY1HM+nlq+RGNhjyO3WafaGVEWHElaYTX6f89lJ4udu8aiB1rjTx4RFk+y+7zXV6C7szINlPMovAcddsrD16q3mfGdzBAZwqInDSl0gO7tkGW/lyfd7gj4jPsaGt7dAdt7wAWt9F9rUznbrzxhB6DUXjNrrxcKhZccvm0JQORLdTl+eLTabH/XXjZ8sKPZ2hSRHd6bu6A9p0S65I3noPcE60gOIThEHOHMH+MhK+y5TVq0yC089oKWdNs3MizpPfBLHOKzVdilfqW4sMgLJYnmifbZIGpR2LxynsenMMHMoGo/5qTaXFC6yzCNaqw8nmYXIlr10zNiLxM0O+xYqk2L6shADv+ZCyLIn44f5QCcONHt+mgKobyuOf6nEVagBPJkvybreZqTUaCsHJp7N1JS5q4ZvS92raC3hwNNQU7Ohyi6J+dN08E7cDDZLk94MZ/ZIjts/S7SVK7K+VmCdn5KHYrcJlCBlAoXXU3vvps03QRPEvVvmkOvLLiCuUszqrmyy0HopF87WbTbGiFcXXY7tfC8+2k5TL73DNFEo0zTFV5qmsuaoLTNQbAMdijzhWFLPQC6ge3sw1vxA94gwBR69cmOdD7i9LAXZfloEhCFRG1YmBadTxL0AD+rt5mEXj868jiKm9sbCOw6eKESIL3fu7H6k42QVI/yDYOIZso+eHz7XkcWL4XjqgFopx+yIblAN/Ez66sDNItUKx9m+XC5wD/vYvsCAJ75KgHMIe+BwL8Ni0IFo7WTKXhoqT5lUwEXFrYPqFSeBLAS3pR/jADSNNaa3+M3F/2iEODTuX5GDMPUBic2kgTZ8uzjzCf4ZzpC9tplOuooWKiyHnj5QsQPCi+KTmIgTfxOP1FgeSYkrWWm2ioKF3PR6xx80JdAIUqEcmkTviLJ44bALb0V6kmCFItqgEUg0l8IBJfa3hUEPiahw/qlGRl9EOL4BUNqfLkPRPYTv/VGyw4vJOtqKJSo7twCqFS/AfNz1CTtCHx3MHcZrLEsHID1N0GTka+0gSN95oQGx++ock9pNGvzRQ9LfMPVZQfEOo0tBCmxorPY7Xh+wzwVBpxy8JZX2zNR4JywRHpbiI8NSGnS4fJMraJc0S0rjgufMh+QAmJgYb4dtxpgf/SAgDpqbpQckHIXFhweqGI+TcaqTOD3yb9aaxcOCZ9R16PW7vKd5WwegdHv8lq++aOyRuPkxi5H+Ex4NXbdq8bytCb7BBIs+2Z1Wg0t0ddQ2kx2hw3XFJNQgKGB6F9DCGKzuqyz7Zfd/Hg5cBHSJnIukCk0ka146lC96GFzc16PttZt8lWVlSq/jNaE097P7JHlvH1n/vCwFG8EZyQWKWnw6eOO3lxnDdasseOj/xtqAzUN/by0B39bt+wJxqY90p16OaSlWjRVj/JcYa9LRwZIwKEtWRS59GSl2AzLdb0YEGRTvmdgzY/PT9hbNw3WlXRx2ke5b92U0zd2wWpEXal4/AzBkgtvUqqihuqNNGIQ4UP0LhV6rlW4X42g3bDfySdT396uYBofopphbqg6J8dTK/AtmpZR8UZMn0li7dZY5jh6YPPgmNpl7RrINyeKoX3tnmO2NErH6ulZIgoV5HL6dJD5vAtB9FSTmMYU8gh3j5RHZHeUmNsxip77ubk0khzheh1C50HzQ+6TGp/HVEOKn4RUrMPyXNmuUH2iomlOmU5G6oxzs3MmsCr/zVmoHL0kGmA3k+xxNDgYnPP/6O8LEClr6/wm1vpVheqIMunoF+lOWWXNGkf8gKcAlgUKlORMaY8G2WUT5Ub5Cq9/xJCOQ9w6QhoNWkgr482sBKjYaaale2lorLMQxbswTflzoVMOW5k3CPHJCYZtA1UENQrWFU1YRzQ64tFaeJoy/NNB8IrZUv1auCZ++vwM8JxKCKxBKlNEgJ5kJjMlAJ4TFfMiCxTTxYgUqWKXrK7wzqfCYwygzpcgVVXInSWeGPNNXoXDlSUaLQM4BpUbwiGCwuwcSGjcWFcMaJwZkBO7y2VnIxMBTxWnEa6wvB4LS+HyAPRetHXPi5zxa/HqcTCyKgq3KsmnzGenlJNoCwg0ocrXb83TiUqE3swtAOUhBRry3DaMYgjIoEFZnLE8El04u/b/PdFeFecNHFs7s8x72RPsTT1THSkqIvsKAVfuseBbZm6W6AHy/st8V+TjikX9nIZ1/VwNvq6LMRcBUxAkVC2aAvQmaxMP00S89N48sK5e/wpv6BY287ghy7IGO7JzgLq0BqFKkbMsc8WXHmkMttd319MVrrq++HxUdI2E4Pp75IStNoWvgitLDCdeLcIdQXVr7aF9PcGH/A0eTGjATLGZ6iEdMnXCunq6H6qqPN5T8PjA6tdynSsyMOBksHLA9wclbZ2CwWbMunPQrhesy/GNMRm6oBClYxyxoNDayUIj2q8jpR7fiJJ0EWYLjed5zedyFJQ9ICOzYg4e2/AGkATsbWRZubIjG2EUYMOcnwTxq9PoJVLrk5EUJukE6vZa8dMumCYp/f9XTsSvgzH3KytDeLMN4w4aeup+jWmAVk6CXYpqGnNDM9YoMWqiWrgia+HDLGRydotgw1/6i0UHyDnCpHk3ErF00QdeowZ9JoGChOw7Go5k80RzcquB48olt7866JlX863pM6yV8h6SnSuTO5J4HtOX5qWT/UAMRCK+yezFHgvofmUgSPjGV7QtvitHNsaRb3WD+Do5+OquVbx+I83qah1DewEEhq+uYmQFU37F0OhABmSpoc/Z9kMCa0l+qLBVMD/f9tzYddAxefVch8kwUpx9WjjtViuu8Q3HZv6wm8YtvjX5HAYL55y8FqeNHAjLxLpGeGg5Xau6rU9R2eoZt9rRq+TnEYMhCGwpR0ngo6yRcWpUjEhJjlSPqSuMpArIhpfrDx9RvtakUr2ocZmA0B20v0EYGwXtoyU5hy7VxT0sEEbb7UO4bDWXaUHpineHdqSRhDIaAJj2SZAWc7c002xtdgW7X6mZdmw4CDQpk7XD6VpywAm7axabVgAz82LoqlOg/FxA/mN50hySeVaPfNSi4LU1gjox7R42iTsPvbQaESZOTyJXLM/l3rsh5c0bRQa+NpBh5DeDOh1dw66xvS9sUYRt/2bi0nGaJqTL3lFHBlVwgA/otemwwL15PaVPEd9BwfMb7U8vHcS2FD+oNWIFuTTD/vi7xYcxbQoUZJDAMqh3sNjcwksHhaenArTeCJRRsC9OkYlsg52uFkQVoWeVHzwzFOT9vp9fAeY7SFQCkz4SHHbGa4j7UjdcBgClU3K42jAdd8bIt0J1Ykr46/2sEW/dobNdUaTV6YDmxMCeJIvr4vKzqO4OlZVUIjEzM1q5ASjLrlhrcjLYHHxrCxr3GCy4TIc5bmTzwPvNq/asaxSNmnW0Ais0ljjqiFgTSs9iylrBf3Fz9pX4Gy3TL1Phx3D0ntjjhCZ/A1q0CdFcOuDxYhzaQBCWP/2mcG+1jPdEfNVDlbYo9I2HMidMTZax+eaiiXzNpn8LDmrid9vmt7iLVW3wfihJmWFCMGd7ilEaSBz/PFXYp28CowySOgWDBOSHeG0hDhFg0xzmZSWG7tov95NjCZFAXRDNTOUa8gfxDtHKGMwjV3chH4U9kukpLMTgLLMeEYD15tFBk9//nWx9J7IXlIlSuPkGVD4bNA4nSAsQpoSW4ZiFga/I+wITJzX3PSnra88dY1uYoO4qVX1ZeExbKU43qgSz6aduCwSKsfSrSW7gwNWXAdvUMK3Axwqlewt+qh9cs4UWlVxhiBJZqXKQw79p7YpxgGTqeu07f28Sk0dCKTB2rKysihDn6YQya4pQGNFZbwZWz77T4CeJnQwl/u1xm3dTNSrK4T8RoCGhKuvjnCU7P0esWR3lyZtCdNkWe/j7qtFkmEDK7N6pbxww2lOUXKH2H+P3v2fIKbhW/pua15xksD9S+/wNuUKs69Ho5YR+vk5gXCe0ay1+DLMbCfyjd+3w+oCFdwZ+cX20x2tD5pQ92mPXsVgWv2EJIUF2uEUsj236BGKbslN2VTsUF3kmhIMtskOjhuKaSd90VEfZgiBPFmcV57/KM6dmqej1cpyBo9x/9JDevNa0jwHqwy3RqOSZLtrjwxTreCLjBuAU7gGbWwgkrUvhcVcZ0vKLcsfAL/3IcK0gUHrffYOgc8E0K86T/2YSHg868Dlh3ayk+wOIbTkUxLsDwxxutyIVCiJV49opKO4jtHOr/C58hMiSamjAbhtHB3c9aRqP233zibltx7EE/fWk8q7cfh2aRbHPZxZ0raUAE5QlSTOD5zjMZ11DkPvjfP5qI8FnqmsSZe9Q9kjBS/ZTMUaAjPMFamfpIPTuIfFgE3B6vybN3TkOQuf4EB/nH3EO+SB5aMdua3aR8tiRexLp+8ET1a0ErDEKyXcACt9UofMtL2ehWaF37GwBX9d0Zm0fRVgnl/gUkQXkQB1f4MpLkcu2EXyrp0bOG3DrgP82tjp5Ws9TvEg3XzN0Eh20KIXWRziIpyJ5hIxSUBuMiOAGspC6bdTyy9B/jnWVOkXy9fbFv0pm8qEKTILEaYzLv9ETwpnSSvRLhjFKJZfbLXelaTfk6sq81jGJaI5ck9xuheH8wN4wIuuUooM2QNRDVbllCZMIY2DV3FanYD1tCaFLvs5FIq13TeSUf5ccxQg5YJGVaJhEQV3NoPE5lrnMNwkkLZty/7J8lwytLCrsVwq8adDnMuRobyrPo3xTkqSIIcQwcw23RXgFh+JjiTaa+qVTwz74oCFlgqchhkWECX5jfYQmh/wHnJXrg9L36ovDpdWGrrzqm+hezlWfC3ZbI4wRRRzlujao5elOktKBNDzgBKyg+vMePI3JOmcGIwQKbqHBIQ6S1T6Q/qgKv5GBRjdI1wnig3R9A6mW1whoFWa/yWv80zcG8HsQCDfIg072r6KrodM8dbFEsB/ZiuQsQroZMFB37o2zRVYfvGdfm89xzm3cRVNNwYrdTsjTf+afy2exy/VTuUiZjo2b0ru5+hvRbIAiKTTxjfa+U3P15wk8yDce5qtLYb9DR+jf8sr1DHeGxxwoPyqBSS+GDxKBNagM8RYzAw83YahWVp/qwyZqT1MTB+MxAwAjP9R/pKjK4oyolIVRKjOnly2KnzSB6PNiXErF7QBHy+snaeqBgpyZNJQBxkupqlywK8QFkQotJMJBGGj9y2smwktEkEVxaE5JKEdnZRYcy6rM7Wooif4YyDfPhZsuLILRRv95/klDPWXtX633uPihHkNjPsOLqYG8YKlL8rUk+yyXE/4g1/JWSKdUkZMPFrs54Su8EXF8PxnOlz4zKrE/7GkE16ZoDNYgbBVciDzWDXNrR7aDzviv+MNbu6frJmvtACfgIIlLlY5aMktS2WI97xk+32/eASkwn+3Zosfx96rQr5/6oepEB0b80y4sCRMCz6TpG63u4SYoRO6z47Edm5/ThFHUVzYhI9mxC2InGsBUkmWVNphEHxexUV5vMKD834fd0y3WMkwLzkDDRm1+Dp2q9lB4hORAeu/6WuMe/HRlPmrd1RDnUYvs0pSlim6eL5pFKs8PrYMkNISlUZ7AxYE0EgN3m8P6PpHCaZNsnI5tVGzp8FUhVaQCg3ALkb7CvdJ5E1iay/DjEDqqgD+pSNzAw9IzNqvHzP1bZY4O0dAPMSo6fwdS44Jbj230z45o/g+Ce8u5aAh6oWGMxZsoN6Wlh+Nr5IbMUCIHnhj160m9AN11IhkZZArnWYAigHPIfN3mJ7oqBe+oNtDaJ/yfEEI7e7WE/fZhMVtf0RlLxzWw8ofu2TiEjKufu8MyVjjqtD7EiybqWBiBjWPvrzK9jgACPhEU0Xh0JydGVHqKQn45QugpTiHSbQXpGzN/mEFA6CVy+wLgPgFdcrv/mzfSNHMqQLs6YV1wpcNF68YumabwF9kZcJxfAioUpww5fcnx8LSDz4bd3HWIOMUnjtA5KBhGILLGKzqHb8djXxWHcg1TiaZVN2HjwgyIxHAoDgCJspJaCvtOCF+bXszVF2nMpFTt3kyF+GqJuKf0GxutiAI7OX9X9pr6sqZ0ShCRwclnD8FLLg7SnUt/+n6y9vvufw1idZa86Pu5v5p0DhXjbxROGKer1hMchKXTsxjoriBEqegSALsF6Graic0sRsHZjEWxD9kakoBGHDmqdah+W9KnbHC7UzGZkIcCD/0ucaO/dbzSzIl9JuOpeFiqeT9g4g9vtyJ9gYeJOVAebEHHneel5q5q0guY+HtjYkQJoX2LMhCabVkc/mmMzPNj3Le3hzAwfgvDtK79XSmvBpPA9BEFfiLkinDtEPTC7eVAxaU6pQ+Mz1diopJG34psIRp8xEBkl5BjpkCOCP5P5mwMODgR5bn38+P4L3ICty6RViiOvVLxQMwLwVjIWF/sEUK9jFPNe/K5PPy8M6CrHJG2+SMz4IA2qgBk6dTyEQqsie6yWQXi0RWzR1hqtZN/nqECvanvnG8Y0jgQcKKkgbRMCUkKs6INhsvarXqUkwbpAO2rG9WREKSfiNh0V72RNf0WUw+eCMF352H6IQGk7qdwxfihcZcqWzz21wto8ZxILuONDpU4J9U3tB4hwInMVt7TAwByWwAxXuL3rTfnqOPohp2fB1yly63uDxQnzz4pPrmHRVshzLRkcyjk8UxKKxAVhXBErOuIJi5YHDQ/9lOAfLMwxYFPYsxim72PzBw58q+R88gHqkfqVV1RHpRD1CtmfcMZzcGgkHQfNS67qj0SSg2LCfJ73yF9Zdb/KvquS/VA4y9XF+YlLyKhRLM0c3ULJlNf2xvKfK2qwSNRpunq2lw42nJwcWKHxZjaMYRScb0B+Rwc8LruLSzqwV7/o8GYnspo3MJWARH9oTaEB9vm+IgEWYpFO5Dcd1xIFRGrMnD/MSpDntUWMBJLnf0zplfqGSTrrVycO0XpydwR2aZ5yoZzfmQC58USwkTNTQX4XIpK0a6F2oARkXk3YcQ+G3810NBaoZMn3y0n8onHYgxfzEM4l5TDRG83xydtTNoGRgvetGvgUZughkHgm/aDwXyk74VJ2nfVCB+O16rew/UDrSvM/x9gh0YXFmiFMeQqPOxJqkYxO043hAfSlm38dMu0QsYv3yZFFKup9y6AYBaJkYqMYj8mOdg069k0F5sjDIDj2FWyJz//RzdK4aK2NrvTrP6/QnAJJvEyIgj+pfpuLZ3FY1QjqQwoKvP1m4RYxaO93qmshLevhbDODbuiovf1Zcz6gxdl/Sw0t6H2zdtG/vYF1glixogvDkzpbezAop8PFj+QJLS4S1/XG9PH3/AzczsEC17IPwxLcO4n0cFrGPsOnSjMPpSwN3JzgIJFK8LXbzZh5QzfRduNr83vjdGBlORWGhKgHkVTUIG2pqiZDhRa0d2WjOZ9ABKoRC+MdtzM/3C+zRDn54XVy4v05IQ17vkaBh7cH3fR3I5Ygd4jNesKDOydXI1i9AOQ2nGk9h+1UmbQHeB22J0Q0195V0DeeqBqy8Abj/IFUZhvOZ170oVtrMhZcIsAeKuP+zIXSaOCjMT4ia4EReUIeVHOLEbN6aPZhlDWv0VWAWipzBpPbU8k0RS5H/1yB8J8HSTl2rEuqA46FGIe5e5l9ZSQkfSa6ykc+iB8DL1vly1uAAvV7D6hajexTzOsON1mjc0EemTqahzQujxuYyT5J3iNEvYT0TXxw9oETvk4c7p6v8HZZj8HaKLMKwB/AuMKknGuNk3Vecj8u/U1FjUx5Jwm+kcfjZY7S12Q92+HermTg366Jpdw/ofm3HoA26tLC3FH+r4PYjv5qVP0r1j1LfIZa3ijHXSryAX25Vd34H4FMLY4glSKd7iUFgHyu6tqQCPk1XC1osHSZM3BoNHetpgzm+RnNUSxPwEkccCuYTpNN0GRJBiofQDzZWNkgitM+sV9uoIe2w87odwAic6VrCkwF40UWekL7PhRBTiKOU1Lyee6W/6DxnIJrxr7nTlgUrpdfv09OmeGoxgiQK4U9H9jmYK/YAMA59boCWVYa0JsPU9/mZaqZMj9q2T+c6bWHRIadrkFgqCHjBo5eeE28kNTQJ2LhMPaGrZEFgHUI1AOSthl0rBvsA9sxu+H8rqRNKMIjD3IHtJ6SPkCjZHiXR7PZp4H0gLWLOLBbAiJ15uCRlO7ND6E7XGXxOwqW6eM0npPRg7XsM9ztYUTkNQSAGAsOSae0BbRvExu7niGA30rgSnXHVV1xrrQI9KkGzzzFHQpMmVGZBy7MSi19OM92qCKO0jXIXu7pgVLpmVXZ6mdibuSIRrCJwcZhuV4quN+5w98/KMDyR/KIy+OooGz0BFoejz54fE1Uu6KD3YSSFccfxEV5HVEmepoIa3v7508PkVqlf9m51ef3amJu45mHfPNv5x2UUA0Hd81pJtPPsy8LylNrKgZWpkI+QnM6BE+xvgcKZ0wmDNzvw0AcLDQTsK5Q6/ZA31PyirFZ1hwH+RHycl+PQoBUp3lUfvGOvX8EJ9CrxzG5JyBb8xLEX9EM47HXWDmHm1ipGgPo9VWZndd/L5J8YGnmcYPQX29t0JqmR8fHLjCrKYJhYAf2QL5tafFSSvFx5ho5IEsV9lOYHIySMUHepTNBaN1jflEhlJ6U8CFKF8vpagLKrjGPW9orfc6H2fUKWWqKnUN37MKr4oVvHQQsxcck5WZmSRmScE6r1IBDvHJBIUXgxoy+fxqAW1A+MlfD38vEd1lF1A7shIwS8oJ/KTGbncVTM+C1ZiKAnuFjCFPjfFeBogZenkZg9PqLon7GUnyd3EYJNEaj8Ac51QK0uNirnyGZvJ5XhgAWbQjqWJIGq99f0jRQxMBfqlf+LiyTu3Vh2kFoBC5mXFrzf2toD9sRQLZRiHmCgy6YL0njRJ/f6O6H9pJ3ue1ZW49VvD15w2Sml5583+xtDBI1rbPk2MsV8N7XclGdu3vemNrL9ZlYJMfnasYTXgIPWUnQPv/OY8iPuIGkvdU/KMTDkiuKt80VDLZ1jNVEeLijERy0ffM8bJtJMnBPfMoM3JGbC8h297Qqm1xxaSly1x/SFZULwWRsode4Fz6e+BJp3OtOq8dsF9k2aj6D3EdMPCV8JiL66hwmBH4yOt2Vl7g6g+ocMAcCZnK2olTST+Z1iJ/Qv8BT80vbTUyFX4F1OVOpyRW+gk+160JZumEgFYaxEq1dJp9MbBQPUvwVEB40qc5E40xvntNp5tioraX25znYZyE/gws//mWND19ujFLJ1knkL04vwVvFedakoIU+Nkaf1M2ZM9D6rMb5U2en0mL7u3aPFbYUKMLMrlqpuNJUeb4nvlkugWme+QDI2YvXKXa+4EAkkJGkl1dKh7+/HuH+34rH4eEnomeGHBRBfV7O4ToKxQEQyuDw6rMGT5+yfwORntgrgur2vxoieUtk0ZZHfYUqjE9jOlB2i4/3KvGhQWKIgAL+IlYlB1P9zsferpK6+o93TV4IEJbGY29QFsbA7uEWQCUvlZNfQCEBTlMfqWEgE4zhHmAgoPBbrD/ONbsendp5edxwGgB7eGOMDYDCSY6XtoZVRI1ZZQIF1ylQUCpEiFRcV9m3jI+gNKKZk+bd+wFKlye7pVyngM0sjeBtafJ0UpGMVF9mA8T6vVLxsRszMQEpTsAsYzJuJMDYtzSYJv+V2iW10vr+05V7cjuqkWH5v35/ffcuI2j0o/9/m++fBGRK+qV1Ctpc1ACVHxyOyVP1qD73ZDIwus=
Variant 0
DifficultyLevel
573
Question
Peter has 6 more golf balls than Roger.
Using p for the number of Peter's golf balls and r for Roger's golf balls, which equation correctly describes this fact?
Worked Solution
p = r + 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Peter has 6 more golf balls than Roger.
Using $\large p$ for the number of Peter's golf balls and $\large r$ for Roger's golf balls, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large p$ = $\large r$ + 6 |
Answers
Is Correct? | Answer |
x | r = p + 6 |
x | r = 6 − p |
x | p = 6 − r |
✓ | p = r + 6 |
U2FsdGVkX18ZIId9OomgW3Jhn6YtUMwboz/Tc7Bl978K+XX64ie+jU/AmejHL3UEbgpLnc9Zx+haobCLnjZMRRfL0SxIrPHIe5pIIa+BE0D0lsBZF1ysBnMXc484EpStadZXo6jP5YHQdC9dX096w/9LKp7d41LsZmg+Ms+xVSUelL0P5VsktJxIlUyYU6ZVk90Q5Y7JkHfPD9czYKkCxOOJCcfUy4Yn5zxuSwXNjB/v+Tanv6ZCDqPkAZYlprilbJixNg9JnoiuX1qg0LLnAhnNFLxJkrFYhwgkIA1td4xrWOz1y+f5veIXrHpq/hLqEQPCOJoVjLcAbuRvyUHFllAfXltaX/n9Gb9KeUJHEW0+nMqZmaRnsxJ4xa2urvugrfhzOrXx9qPfxUYcJXOOQROIVCqfnl31hweQdBpM8RxrqBlrb8ukLXL3y25FxNtn7TiGjzw+w4o1la2hIjCbNneFxE8F8rf6G2tbWkGWBsOXVsuI2eXe/1LLJwpxxXcOut844RKpDRKpGXLrg2tNSEZhAbvs5d0FDm1TmNqd9C8TNkPf1Se2FTLooDUXoa3IMQAvICTnOR6i6JGe4HOn/8tXC9bbrORecqHhdkudV2y1X1rU7lwxitm6tC4h9NVoMjqQ52uAO9c0/FQ1lKalYzkJTKfGeR+AmZtYkgQ/+v2/3Q24Cz3GOgeRbs0tRNSuWgknZyAEFaXDda+4E284m1WIoFDvGOaE+nKeuEl2wixwoy3eYgTLKPyHhV+XTVy02b7bcEF/hMOZVt+B6UhLhfblajAmS/TiPgbcXXb9mN65VM+/V3fQbCzcWdx8mntCxBxrqjSnMc2VZFEc7dQOtwPi1W32NrA6ZrJe6//RnDDO0VmI9FUakYRCW/ZAjFfWpifj95G+RElmJ+D3h4rQ3ZaODDFLloCYutXasumvJEo4lFi4mpgg626nRoJdxU01YJqmNxYK19XU8eSMGMjEdJbNjjPY0hvxqwj8DtCkQh8b0fyde5hUKMf9mixtvR/LOo2nJUwd44VpTx/oEnwBjAz8A9yJz6f2gYb/v41KpNWLU/ju/FGc219YKk3gyjoFywxdiA8VFvbs0ex32M7sPfrMOd8XAAXJdgI4LN26ltNf77pkC193G89jCUe4POfNlItGjIQ6SafK/LTXFb0tNm5xovnrflJT7AkyKzQhvNR/U+JFnfdKc/LvBylzjbX6VKfmg8IZCteqoLRleJgAbYQxjIl9iWdbdDDUQVyBql40baVmPyh2hYZPsa7bTgvGGPSHBoR4+1WExGGUI7sgFiOaK+jWfRBP1+ksjr+1NWzBoIbFWZzHyibt2yzlkJCfPaoAFWdy5NjFval6nEuxFxIwJtFjXuqy6EZSDFtZh/Q8A+eR7WwWFDtsQts6vtASI7sDoXlrNdc5UQnR/6qAZwUIB5vSJ4/rsN5grnD+jhC1iLWNJNQUOgJj4BBh+sZhP9u3QyNhgbjEO7yj8I+t2ON9qUdkROhMkZA/rTATQbwyJ94XCs58CmekrcFTE+rYKV6tJAa3J04gGX+fs24qrJ7AcN6C+6g0xIEoqvllJYAtKjSzoK0Dbj9oP3mRQOdYeA02DAUbvuh80PEeA3xGS6x1nmwyAb+yP6BBci13BZwfSOhCruAx8gw4P3/PPlxFnsxPzl6yfppylv+EipkzfZO0bfHeVVHA0nD1Nx6HLdBSGCkqK2K2sMMpWO5q8aFYljfO4BItr4pGwCjLdn1VSuJkgWL+j2hGXMhPSrXHZ4SsYHLWbfotYBalanyG4Ly5bjIcABReRLHIE0n3tvlI/JYcqJzABuLspE4JZDt/zD76mGcuGgyOp1orfTAAGS2Mb7p/6x5m9afOaIXZ65HFfDPm3euzjp1t/uvV7nC8o7+zVaOKZogi59EwcNU9DYT9FN5Kkk1pGTXuCIA4qQUt5K62zqoXGeID2H49aFQ5qPMppGYvaz8ApGW10myKEkPCh2S7s+KIbErKr7IyGmWTf77SokV4fpmbuioIoAPVDKiS3qZUb+MDw+pO14F7Ux57SBse7+V9F/GPYsRBbZDn05Q+ZEUqe+BxFH9ra6ZBFXXvLKXe0OVof2cbbk0fGF/h9qIyN2giAjoZL9MFBnc1i2Z4/0ZevMhuAsfU18WICVtesgMwRu/VbPx05tbpfD0G9CJt44TXC4lqdhn6/DIF6x7xh4tvjoYUCXnMR2eorDceT+wEeeUvwXw+4sepNx6Am5xWDuKBZy6t+9rKESESt2KJ10dd/1SjJmwXpI+CN6Xd/8acIMWH/wi2oz9+hrT7W/1JLDh8plikk48KPzSvnqRftjGZrYIm1GckV5/Uh5ulqBD7HLPmtc/79mNQw6FAWEuZMg6yRcKlsPr1AHJHeiET/VwdenBW6SPHE0o5pCS+9j/p0QyWPG/w6LMCKHG6xEHzw2QNFuZfq08qpVlN2pJbPIkqE2pjuNZwktblCafMszR6QI8wtHWMEC9ol9zDcSufOqPxjnDACRa/UCTWM7BTighfHfSCOb31tjtyICN/aVC3jNs6Tl3vG3KDhTyNz70lOOVj3t2vlRVWItam7XPlycLPF8rHNGlcVkVRz1T3yrmMJMehTcrwCDkV9Z/5gdWmPZ/UQCfALCAtr2xiUgsvbP9wYdwNg/628p0ZOVPcZe/mXvtH6D2HPjIp30D79vQgOdkhmqQ1vgizKQUgOWdtGXCOpe4diFQq0ELKebvTdgpVNDpXmEOeU+LC6aFHOmhWIMvpIYHy1C4XSFE2FX2ythPqOvPj9zwycKiRkaeHSTnisL8aVY6Ht44LPAoG0jvRMzMfUvVcMl4cd48KvoDYduilEhjn0JJeOAnM2GFb0fsXjXTIhr2tGpvdXT1KFeaaIYn/I9vPKsjD+feVxuCqPM3G6SKIsXSeqFXkI1gZ90d2KhKjQEugHUA8Q8lV60vsVQvMUcB1vwSiLhl+lkfEEdk4eZxWtb1ixiczmAwaNMUktz8K1rHn4eCc1nWyTTVWbPchrcjR5BrYFdURbOppWqLagxtm3MI6usJ3k5rFEewY2A2XjFhY2Cp+Ac0u54eTegs6OmlodR1MqFEM3UOqYvsgKub358cMSDF5F4rq/Y8FRRPUv+wGt59PmmxLwE9t3lgNQ4CqbFRGL5FpReNMgOZPf5IbEGTuA+pL27Pqa4MD+oO1+xHnpfvVFDIRDAHZNDOQUCpevWDpRyU2DjECoGMA3/rLp03z24FSmwaIPsbPA6faWqTAlle9nqBh9dwlYyAS5tiQd5DcoDZhDWge8kvpF1n1zcuazeXB2cFiAHrzKSPJjyOgTE9g42vWbrXTAnxUrFBhNZ1zle7Vmg+pnCj0BQ0ANbQ+oHZTMzv2CIND4a3+8dUrvdGdpkKGpPt766xrlxDZOP3xRS5is59RhTvib0DjXY7wFln6vs0OwyGV9PE5YgAfpTngR9gbI/EVx4zPjxZyva85GfaTwM3Hn9zjX6DVoEh0bCGwe44o58JOKAfyPmPfSUSIpedDj/+T/u0/Dh7OnKLr3j8CxF3mN52HJKsayNFdNBPrTkjgrseXtiaHvRo2eB6MXOumNjXVSuZPuKARVL5+Gs8M9Fi2BDqyMlB1s4UeriAoxTxHojzWZxqMTccqTZ+eCNxrPBuxS0SCpRvRkjRil6JJreh5uhEVcbvGqENIoOX9Q/U+eBMTki5bxaryt5kG/+iTBvm7ftuBaAlsNen6nM58c/uvI7KbIW8uqrKDkWhcAbXoTxH5dJ/Qx66EljhBOTaIMtxRqwJgyZPn3DK0Uov06ZZtYLfH9JRwhKzhrZLozLhIlse9RjKOacy3fttJDk6M3PRuRAyN5Im5a4QWlOsrTuhHCzVAIWe9mDyOx5P0nDCLDURRNJI2cEQVkYMdn6XBrtXoudBh4qRFsnJs7EJhHMf+V6+HN8+ZHCMxsHUNXABuAFIqclw6qDNfBKJUeRuNE0+p5RLiJIjBRJfqDNp5H3CF45Knp5mREfFtdCDr+rQjc70rHmesG0kw34nf33DZ+ps6ya/JpJMo+VwNJhcDVg+Q3azMmj9cJk0eHGzBDPfbtXE7vH1H+GChjCsK314I2Bv8r6tRa+kdlcpdQxy5jqJB5nzup+lvE1g6CX4zizQx/x9EEbRQb4HEx9iy113IPxnMaLy3cbz1FSRRwcv9BMEqbo/E1IPeA3mcDYaw8+SYTUr8yTOWqpyGwpxZ3yh5g6PPiwyw/Kprbq5X5vcq7Lyc2qxH0gY3/HnV4TDslCH9VpmivpkNFsQrLd4yDHtJN1H/tgPhl/HOsAmU560cVSNRKtxIkHXt5xTPQs+uB/9O12TKWaQDpy3rXhYvOawe/81g3rqk4kRdsxMj7qzQ423cB5EFR8oF8Hmx0JxCLmCC0gW+8boDvWa+cwTmKHKhSdW8uRK6UENtZrOnzC2NeDd7jHGKdPG/bBkGv3PtC8eBVwzO25dfDyQF0X136gBy3rp8hsCaXS+9l+A2HhMxBjWLWbXXib4YY4f5pM6fjOwhAYN5KSUiU+mp1u+YIXFwCXm7WmsV3TJjAA6xYEwKV0+94tF7iMkBGQhLkujYK8luAxj5tq5e60YmR7iAnahG/GVA4jgrPhJw1y+FA8dlLY+cwgUZ9PW56WduGsVqIfs2/DtplNiVSFC2NrW5Xtv4YZ0FQcVkMZiLClGfLmjoqRbfEJN4rxRab5hTKRJawO/w9py3lzfXpB4UMfpyxSNYKEZuYVQbUW+43lKkyrrgj/67yqnDGf68cD9axxwvIYp0TCsvZiBo1nKGTAo7DYVWk3sNWRpKJeOkQuVDp/ODMAT6gr9FaITGT8buZS309L+FjMnxECV1SVf+eHEp8R1pi9Do9ma69uJSJ25eUdua9CRs+UaDWXUUVzF8uzgOcxxGqyNCP8qZh+MlIAdeRBHqTGRIZQheQUdgDBD9JAVd8L3woqCjl7bDOdlk4i8LWty14VwsuXCs7UwSqbObzigescCes9HZoPEOF2JdokI2lrl/wC5QpiK+o1hU2h0ZhlTnSz/Hs8g4NMxP06cysfEx0qxO1QdXTqT9zfLAfiYUsEE6lI/gNjKLxAOHMqDGyKqBF4e5jIHx3qHYPXFm5YdrzaCc0v/5vZlC5Ksb6hXRXRfTA8na9xY4eRajMpypOjuaiZwsjDwbF21+SjOhvaQ19xrjPV+u4V49lnIAfaJ/aLg7VQKNRwK7a9uhsPIBZhz2vU70/fbS3qWX7YWeLTg79IDMVjTPF3BMcBFatDzLwC4SeXIGmHZBlkjJvlEY0sHWRBSeBifAf/54U0SdU/UJApjDHJBHG4oJaOJuyYsaDzav7vYoiE9yWIoPldbaZD4W2uMiIkoPXy13AUvJpyzSbeWsfGil1U2S9Qd94IyUeb1aXiAxv38LsGVaKGutbUh0KUMHqsJf5BIgzSFCtK0QBZAXUqgdPXx+rfg1tChi+l1TekBdctsDku2rXN9NjNhQ349cwvLBNQ8NrWGVk2+GlwtoLaczGKnyClUTRvlbn1930recgrhtYzlE4wFW6coq0bq3XIL99Nu9yFo0lli9zVE1NoK6MrB8QEw3MClvE5BBryquolWtyw18DdhjDFWtc1Qe7zEaqnIXjSVW9ibrztVhAbVIcw3W5RYL2yWiZFlRsfPm6hYAmy4rJ3E9w/IW85d1aidPekpoyN6SRsM2L8aYe9zHdpkzNrFn+nW1F+ZfX/bBBu6n9JKLyNe2fPzBX6JOrYCuIcovWlmEOOWy2RhhQPk0qL5n6N7CMJTT2/AmNJBda2ZgCTvpepLE433NWSPez4yfninkuHULAesdhLtKI6cShiOalOA3sEfOYXW8GIL0JLev/wSoilpXdfUs2961IgEtIsa76nDgLZNaSTlG7LTRebUlm+ow8L+wgHHIPPOtJ88O1MfzpmREXL5KxZd/UqhLIe6M11lvbCdrQFtbR5sqeU6qjRMspytslft14HOeHtiUDPbdYr6z3P8SLp2fsVsyR6GzPbqOqlhg1/dgn2lfvZbXd19UsRVzmtuOZBfrPXu4mDWvILi8/n1ZPu7DNDxgEF1eXvlkPn2RnvZCgZSv/B2vEwdV/LkSJipFKV3eb7M+c0ZasKD25nbCNRFCpfDVwE7F909GBS/CTzrYuaKfwP67kijadEDnowYlJxzdr9bsu6SyclTAFkhaKfouL0GXRaB78JUdjQyH9g5u26zItPhYr1cyrIYoYaUhPVeCIgc4axQbH6Rh4ohbZZa2YwtMoNpehftgoYWGUGOjNlQmZ6AVxWTQ5lqw7KBZBkbULPByf+joM1GujzNPLXaSuWNXOBY99wWQcLoQB8/GIhDMWrx3Zr/nH+bZLtfyleUSexsWbeVW1UuOaWUnZjMnBukss2lb/9Vd8HlmJw0Xd5wOLKt9S8T2nln/EHv8kLt6hVbe4GFrYsw6yrej7nq+9isgE8rjpHfZHuBQQSpnkHT+SLGjm7l1JVh55jcxZyJXfrnbAVZDH3B7hHaYzsnQ9HnfAAd8ssAt4IkV7e8Zgfp62zj8Prpvp0WGHyJJMxlL4FBUMB6XmBPihQ06GyvhLwgMmYlrAUB1itB2EzeqUxjD7rFZdRDZcLfjbzfkgEGY+h+MvLnQmQwdBu5aTIroQu+/ohPS9qxlDxcHAZiLECIRwL2tIwpYd0RDhMS8ZKuIcncP+uGicHQTmxJFqdcGR+CbnNuNXmLkqGVkNHb759vHudeOKMvdrqD8WpMdSnZZ8fpG1o/2UwoGlLIYqYTx0fCybWhYrnuSqQ7CuO2irP7K+t9+ls3tfdsrV8WcjnsNR9S8tpY9qwTcmoFREuWk5lrHqiYuPsFOCnVAWq5nmAwMED7IeNdHTqgGwcSi4Xf4YWSuCowu6XlfzKxfX9B1eO/hecIs9uA4SPRrgb/NL8WYmM3I2Yr3wcvHL8j6b30kh7S9HCvl5dHnSbPGkDfTpApuevbjrvhNk3rmgRDBLSp8EuoQmuNeZ3a99B3WydI2IIRYEdU0vW8MsTxYF41CYo4RiOOHeDVZzBBv2vcahu8Srh4NeCFzEWBDU2egMbqr5vjkFmi1gd93J5iYku2HR63QKV2oWY8WTSg8uN4ddkEMgrRmrwPkeBu5WQfE8FTnK+vtTuhssu/9cxUlnCLJlyfMhPDcULKT2KlxbPUkJD7N2mGTRNagOM99HW4lB959y6Y8ni2TLAzU/T+unHRwqN+VWG73+m7jt0fmpn/NmIlTAdyZCNAviho2jMFRKXDdryqxBIKVu/Gnp9JT4NrgQdbsvOZHqTkjhrRAtZIQiYbjkFdg19VMQDNxPbgXl0/Yke3wa/9oCPTLQYF1TFj33XvKANWDXJD5cmKTuOnPNAIal8Pd+j148g8nGGpbmrdu+axnG1HIPknrzu7dQdO71GUbP0wCu585gji7SUDWqYPluXrKZ/9VdVBfyJ4K49pQSJDET998wSoNT6o4spCodqSB7rANGnOo6QkSKVJkwP+6183LJeb6fIgfltfza7mYyvzogiVtREKdUiO8npxNsRMIGYz4XFfCyAQbKmMkNDPfqsRkSaaXE/NV3nnxfdfssJmNgORuDBkAmF5jjSs/ESzjmTI2jeMgNh8pbTEOo3MaIA1dUhTXO82JMJUZg/53+W2UhdOFqU58v7tqTxf8xEzGFBKSyhk7qdLkf1KuIv0gWsh1wpmYBNrUVxLSXaRY7PdN9imCS83KiLufp7uFZCeOifcAgdBG9kYk+GdRugYSai+vMvcAO067ILOhIlOCBU8G+U+Qso36K2ijjfmjOh7oXWCqzRhi/YGqzfRhomH43r0/nHiLUBtWXXF31h5YrelC6Vx0fBfq2rSWka7i3zIh3r+2Mi3QOTSBzXzQj+qcN5fPMDbGAHIFpoRFvtF2VU7i6NvEFsosHKHr4Z1FGNfPMvglF3FrIYP8tl0gdCC01/zv6gH/rq1pMlu5lb+ly7Aatij0/uJBpw1DluDhtMnaxpw7LwjJELzBUar5jC4orsi2XCFalv3qr2jpXSIgwKqyRuW325gQ/IwrwiOsqS7h/n0SbyRTDy/Z2oD4lrYJ+T+SjrVqrBFB/EfAKONYp0nan6zQvFGGM8Y02ViMztf8W1DX/kwSF+VlwtL5dHZOP7Z/eyQw2Lk6tQHJ13+cLxPeCYPFHl4NATrcJBzdTCBZ2GI95ZvAafqBg0UeZtW7HuR+7o0tcgqNkrLwxNURYJaHe0rpnMufRokTvApmZVLI5+ZV2uAYMpHWgkYy87q6obb2D6RVoq+nSn6Mix6KMyhkLwC7fM3Cjn23tCG1cLXEypi+6PFOj2I16WIUXETpTzISB+8pka2NZr6Yq/e43Rlv5gEy1VzH8V9hnjxBBzr4QdcR4xUHHHe0gz/2Auj+iq/QXKjyxf/okN6Mi3qj3G7ayX8b3fRzAEh8iKc/MhEDfRAoZTdC5S0IPMHoSl4tYQ3R3Tp9m+wfaKH0vDzCuIWp6i3OwOkHBSLs3bgzgXr0uZlSpjrSLrl4/I+A1v4dsm0LSvFgG+6zVYwbJVoSImg5YFz5Ekz5bzPLtHHPK328yAFWScu1KfMvwAJKHJxzyk/pgd0HLZy9M8TgMQwNQ1wtQgLU0hwmh8NH9I/UN9V9qN5/97R9dWSRQD3RJT1fkyFDGEKYLEO0ofq7gUAQciRdBlwTJPledC88VEKbIhqAIL6qI4DfpLRgzXhnl0LB6KGsEjCuOCNmN1fIgY9Zu8tScwgYGGdXgtldGFpEb6qM7aajb713cttRGwnHaTcqYgfhfperMzFE7/ufIdsNJG52t2nguzFS0AfKSSyvgOtMzBMzyMuvC7el8/0trx/19kfTHombaP04BlpBPrkn85wBiAXxQlFE9OqPuH9/dpzTIhK0t5Yzv/S02j2P+Q41IdzBmdNt4vDfLtaKf5L+4VAznE9epXXLQ+q8jaFU+vy2FdaSLkRwNrxkEeHFITWHbA2MBxpXrjHiIjEqUZ/GGZ7aUBFCL1XuzB6DzsymUfdK9JCEtomep/xMQ7E7yPER4hNSN9gLm2ak6JgnV/4Q1MBQTAG4grm2pFsWMRRfXXFigNHOdPyFRME1yBhG4V/P/UbXxYqEoxoywiAPrWeGvbpKSTKjZSoEqJtCnhwHoGby5h2jI54j0lg1+x8JexQKEcCYXJGkcChDCueN25VvLzoYIvBW5GlxZzoH+6GXOxEUkExhhDKsyoX5TTYojkdt4Z4cs9Swe0OXiMNMczsfQZ5lajE/hYzXVb0vpEJ3i0/nbPVjEYYREyQxx8RmdN8/RQBcs6rc0Kc947FXpSrfUKgd1R6iPPlqYQD5ONTAyHJz47KdYoY11V6lPw3ngw7SH03wIhqigM7EuMzgToHNXbyxbvq14+MHzeXryaxkI/waki1nvJXd+cjtKqd3ybMQY9Gb+M8z2VH2JUctCTXDr/GQZtRw3HBgtW+x887UFpbKtDqm/WuqQon4wOwtB2bObXR/sArngMyP6ex9dIayjMnVEnCFHdH+4Sw0lS1Zh8/QUKs51tvoOrgbHtgRnzsGoVtua0VZbm3W0yNr99SynZRlyqxFhqPpoSUQ89ux4sae3IMdgBKFkZK93Y/jRRv/z6SPtF/aztGV+iIOo/D/9cwpWS5TCDcQSQ1mmuC9ay8GAAVj+M04g4zbg5cWUdYEBJVBcDMpX5uHg8moiiJ/8nespSiZQ/LNcICzL/klU3ucRpY41l36HWO6TvFG/BJ3dCz7RCVVRltDJlJf2NsSFtljkFDFInM0IB44vcR6OTmzJcZHgAYnffNLY9BL38/40miOywUdFrjXnkAXVD3Pvu4sC1idqK/Sj7W+Eb20agg1hNmIURkpY2/W2sC1kBCknioyzzhTHLye3SfvawcjhgKIKPZ/qn43nB6pKVBBJbvsav0cUZUxaTIgb0YbsKvcMYOQqwoI8Kfux1aiZfI52R5/78+HRxLkw/t1KhtKbs2jI+NY/uTFfbONUNmna1iUEyNX873C6kCzX5GgcAp45dBgjRQCHboD7jOFouq/xwzGsT9QUdwN4L2N3JLuVUTiOVb5J2cIn9LMn7e4kGSkIB8OEjBlnlLcP4Mq1rgOn+u/BBFNqemLvqVLmFITILd0XvOh3KIVClaZc5POVhhY8MKJj9XnGzhwA2OIRhxpPGUMarD86Gw+JYUTIx4tv/YtwgidHlKYuZ+QiQXKAfN1Mhl2KLJ1R6Nq4Dhf9RLb39YeRJcxmAePDlPn3As4p2SX1TOD6zDHDJC23d1JZsFoDJ0PRRX4z6G1ZNnYfwUmwFC1GRjWC/ItuhDSHgWLN7LgbLR3BqyN3HFnj+AoYWzCLzDGK3V5+XfMeQ8NcyBm0GKmVJfP4BK6LWEMv+DD8I8seXm5Y0msGrXyBtnDW26vA1j88B7imOTarDEqhWTdTv4OeMUj+iOD62736KbuZcOTNJa+aVe6l49c8+wxx7RQYbCpGHBDo9jNUn3ErgmyZaewzqAwAIYFUOaiboyv3Ehy62lVOKn7V6P0PyBPmSxcHErWeyUMmiDIZ75Xoy/rVUhjdU3nRxnEc/UNOtahjPuf2/LeU4Qg4BIbNee+SL0H1xbBiM0UvSXqWUEpocRk2OIqNWRe6bWh654q9UDxHNkF8/uIp9QM71ju+4Agul/FuASAp537NQWU4aClNq6+rJ/CmOI/iKQqaIaTX2eRtW5JAWWKP62dHGD1VMAlst0EC67Lm3BPqSyH4fGJ4yRJRhUjm3l4hCriAqMvu9zs9Vxi3rA4W7ePs2LDsYraxz1i6GhRDEDEU0DOdBGwlpcqUqJAvOcp9avBSCub/d/X8eWVNKVuBvs2jvKZtuBo1mhAOrwGHaX66imUt4K8siozuiz1wEVldacIHxb9WtQiwMEi6NaHLT3oQWSJKXwUseGrtbNtCwgGyNP/64Cc2KjHGPXQtakIbcHm+8LXJ6ajYeXMDLjZKNkwArAZIjBmrXMgkDvmTztzHQXgo7ToYCSPdLo0bTCnBSz0GbFQ4nIA7wsfXj2ZXsEmaq/SHcmK8pot98wovCgxsgB+MrEPluW3Iir6+3MlGiYq3zWgFTrrf3A07I4hPI1t0+zvVZcVsRO4Nrg+QRAabYxc2+3CkGv4eH+m+EzoNoDgzJR7PsUjPOvdmUDgLx0nlKIkBQ==
Variant 1
DifficultyLevel
575
Question
Bart has 12 less chocolates than Lisa.
Using b for the number of Bart's chocolates and l for Lisa's chocolates, which equation correctly describes this fact?
Worked Solution
l = b + 12
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bart has 12 less chocolates than Lisa.
Using $\large b$ for the number of Bart's chocolates and $\large l$ for Lisa's chocolates, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large l$ = $\large b$ + 12 |
Answers
Is Correct? | Answer |
✓ | l = b + 12 |
x | b = l + 12 |
x | l = 12 − b |
x | b = 12 − l |
U2FsdGVkX19NRGL2R5bFNjf3TCvOUobybI5OrwZw/qXOKMBJc+kpzllKN4d4OAb4CyhSmgoX2NxfUtyC6+JvGgDyOsLofOoNYZpIGGaB5iGmfNxFyJcc63YK5yDIoiV85qxDn4lQuyGbMCxhSUZJYecmiFO3cgmAoXBt3JVIdrOaz1UFiLxI8LaDHoB4zdgOMZgn0aTYhZdLP5sqXF2yC8RU44/RxdlJdTY5hOiUAZUUUKjKjTY9p/pUu4jaxzzEy6xP5zIYGrN2UOTaANTBl0z8lTyp4MwTk4I4ND9RYRFb0TIWOZOPj+5xWM9ImmHfcRBDXojDIHNPHliVJQeozYg/4MoLXKG4Z2FRIzS1eurYw7oB5/UH8UNSrs/Y8NfDOLsJzLAzphwWMs6M35Kj+LDsBDYFqT9y3IvClUiXwgfOzWUMNlDVd9u7LBzjC2SPsE2LKkazKGtLN8TBj3gqn9C/INFN970pj/vo+mA3rfzCABPHjCIfp7jYzfarLfk0krLS2a2mGf9m+B2v/AqdOm3H2Fv9LGmU9C9ZqX3ZBOuWq8u35UMNuXfzUitPysqTtGeNSkrbTlr3gaptuTwhFqtXaKkna8UPEORDIVe5w5wZdr/CZpkmEzej7Kxc2aUH+eA8lDfNyxC5nrwajOPSc+8zAXHqAPccxdtgGH7cMc869PJO2VyjyJ4Wmz1toeIEm1gYrrCiOaYPUEIR2U6ACx2mPj7p5F3o8KQyiizJ1Q9bU4Ylt/JuEIpWiRwZetngWDp9Ua2kJQ1ieHSuLn+Mz6w658IG7fGxWVqS+dmXs4pbDs8vQ+igTnLCc0vEu0nPpfk8/q2RD2oMEL7g9Kcy541Zq7P1rvEi1g41KE8O4R3kAX5k7WWRspOfwIIE67JG6dUMtKIvpVIeNRVFeKkS84rVX2Wrgr6J8Ng7FKZtucOeSj7qQkSl9bF8BHxly/RMPpEusu4suuNswuXPLKIUR5lLG933BY93+zL93ZEBA+0Odr0Diw++waB+9fTGT8oosbBbzUu4/91x9WZWDAXpg51eL/Ntk/vgw0F4Zzo8aM9SSJgMx85V03w7gwIy4oXK6oD1TkJ0HUg1y6qVemRNC0Zl2sNs+95V/pdLG/rtAM+cOtRCXV0g0Vf8W7Djhl/lSNrZ/1D3s+ON7GmzwbGOiM34bkXk2rWlvS6WXeXMhurmoD3erU/9HVYaDmbL7FDpyClNuoGNdXg77x8wxPb+AL8qO2h2Qv2KDlWkM8O8jtrGMxaSWv5gy4GHjvqfNX9mse4WqYNGN8YEsR2FfgDYrw573/kdR4S/PpaXk0yBp9IYIn4xpM4AH3FBvlC+CwXbRck7/Bvk4phJ0iy8AoGC7fCLdZuY0X6FjjmxMAuDUQCtIb//zm2v4FKDFtr3VdFamRtt/Zb4eRz+6+1tperP3NnAz+Dfj0rAVobtlqX3Zrh2euLGdOlK5KWM5ng5MlN3br2kOBv9gmdSXhlQ0C2ExtRFI+igil6ryr+5mBw9yfAe/0AqgcWQLzhC9hmrsDU5qb9MIQqp7fmG8M/6Gmmdt9bvV3rHnCpvjJ0DE80SRz2l0KAatQp7a83N1GshMOmkELHPDNrsc7Yv5QGx5cU2Om5TWL8uVKyIA4pPvI4cWnw/hVV9XZiPyNCHYCx/2jOCTVTvveuDi4VlFFmXiiIzgdbc1GnKnjCfClLyXoMHM/fic0scWD1RLtrXetEcisMg7Wg0OBFwojlELZQGYUhaRUYec5MYO1AFP37akBZY9n18eBUj/rJPmHsZEgULrzyjhZCoDsCc4rEW7rj0Rm2Comvw/htlhw4Sx7S4+2L8KD9BoZ3agk5qLG1SXrL7Uihn9Rgw6zFZPOu8EF9Bs98ZHL3LtQDeaQ4WbHsGnYuMlCwO3CMar5KOfOeA344kLoK/ePoOCd6cpZq9flWV3LZGjQeWGxnqlwYPoitBfm7omkJfQuTw7i0ZMEPDUUk3sAXcypjiOMYO9d8QFpoz6xeb0u8OZ0SpiAHawnIaxAMs7G1FsqpfhBQy9WwHlMSMKYhoVODYIfiR/iFQ/t7L/+m8j/uHGGLaRuLmM+JK2pHpJYDF5me+Zic8FlU7vRze08ZwP/VtDHTFqB2WqE5qd53l2MoAo5yJjzDWufBaYztW+EfY8qQkrVntxeezGoPksFn576omtU2pC3NxxiaUWPcAb3KhTReFm8DptHxCVycz8EzGwUve9uAM67U63Yt5ksJTxC3hm37mD6qwE9TSEZNlM1V3FGjWOuAFalVSGi3rYUNDofwKrswvp25ywNEFogjRJAuXDqw5+gjzMlPgPeYYSwBUohSxGR6u0730y6iuRZ57oUeH9xZ0XmqMYucVpBN8zdslIGi83iPt8KKHxw9cO5kc0Rwbz47b8p5vejiYiCixHmSfyd1zWYL+YPtRKxlNNAeKoDWIbAKquPhGCoRZflKzqb1r74SKnDB+Dhj9WTB8+LkflutTUI6mqTibvECjohfh0FQHS5qb4DmMp3x2YyvENnlYl7umcFpZMfg0ibqFGxxkDkolVDBURj9cJDfSFJSRTVg6MCyuOJcL2wByZB3kKU/W6HGgXCv0MnvQgt36Vh6KaqR+v4GnHcBF+SHPUiqdi8c9lvcAhIlZ14m5cQi+qTROUipJLc+He+ZQq1kI1HLAx3Qql9nTubB1DPCOrT0qyutx+BbkAI3afr3lhXFbb/Q9sRgx9WvsTM2zugDgLjxoDkOyap8NcfKMp1WAnojSYD4BtQvl339dIfIKr3ZNHfN5gMYxpAJbnx5kP9uI0lFU+qBPpq3B69nBfpMGBTd9ZT/9ThYak3NNOY2a/ts4GE4jpC/9ZoithOrr5wK4MN6AYPHts7dbTDeWEMlbH2EGZ8vLvb95dJ3pFjnTGYAt9FJtwNcR4oTJ0ALAdQTrmNcgi0HAszlLaETUyGMdnzI7cxwNc2m4exln5z/Kttng+785kAiPgyYUZNP0WRQId4+yLmJFeC/A2DrSlOQGH7HB79EKDKvPLzC5lFgWsSGWSRoOmtql5KjT8SoR20t1AT2u/bFf7uCqLkOq2lnCE4w3yCmE1gVntzTB2DWLHyzFnJbgGjFtBeWOhDCZhR52qgldJ7Nhwgrk+CvVjAl63omOkAtMC1DpPbZnBZEIc7sODkfiTPAOUN4OKHDLL98DQKHPDKUk/dF2E7bKowz782fNbDo3I/npqVZMQh/dbLWXc3IMCfmbNPgoYYvS5NK7Rg+h68o0dKBou6+x2jmlIyaOewWvk1M7HHiPJ2AIn/7Psy7amdMeKuOEaKHlP0IfDepODuwsj3uu4EfjXCG3HsRKZwH/sOle0CZPNmHW+E/WH2LTx+7Pe3i4CD/S9x+4Fa7MitO4c2b8YOf7STR5owrPXafjDWEbL48iAX5Ds6MLPbotrCWxEBu2zkHXnpKzWmKG8m5OROOaEXcck4bhVkiQX4FMxLoC6uxNJzWkOMQyEE9KflOO/+2Vdo0mCqzqQpzE9EgaAldzCJb5cCG4Rt2wp61UgDzvSXrrYndSCf/ubpK8W6IZQfHPBqkicV7jtEL8L8C2tLyrLkyAVR3QGI9O11Qt4StlNG7IL1jiV1AwWn0o3L/2HwbOxvGDPuimRK/4wATnW5wGvSaq6jUG81pX+OCEv2FE5ts+QkzA12AVnkJOD92F/hSBlnovJdvubdSlsBZo0dPMkIMl937HV81JHBH1MJ+cxDpmMyVgUjCJmssZwva+6r9M8KOoDqHMbCOMPJMp3V+0HEYZgdrw+ZliWIj41Y2BWe8xp7RnLUwdl4XSvnR/W0T7WA5gkt6qhSbyp5RnBq6LkRYwYwCPfRbkwU5IYgfbCMrCIzefkmseMjGhLzMtxB3e53AbgCKi/9GBOHDsl5DlCklfa0mo7BynHvZbdipHM0HwDRaIiDcTILN2Ix+yMlMW58313td+fm431d1zrs4L6msTbHryysD2YFlKfmJxCO+i3nb6sIfKf7oiAxN0hWWsgRhYSuS6Lo/4Pu8PHPVdFtA0dFDWOJ6B8ewWjdKs8dNSk2uIWlNG+qxHEh3cgQvhcGia9IMnag4q8pX+PmCwLAx/0KXi4hcCCFJtNhXnKR2N5TEn7H04nSJwmYohCB2T+yN0QXJJCylgzEYC9htvic1lcQ1IbL5bHcZtXQtcymAbQUTKE17+XBRyzFRJtQ3B/Y1SugLjc3bxeQ8D+Vv8MRzNoIHBsVR+/IJFbmi383sRNy6SU09dPEVEHMuS6CxLK1rXQY+eUh3Di07bmpvITmK3v5N91rjxwym2gyBrxJUgtgsuEX2+d2yZxUXinp6jLgv4KtsBdb1B/bI8Q9ffPmDpaWmxxbNRKfOojc1EQlUd5TRD20LgW05LmsLTFfxlgH+JVFiCn+Fp7wBWEyq/OEOUEDXRRlH5Genv+c+ydJNhq8MRCTo961oTaxK+q3AX0WeqRN1SqNv+tjFDWyG2UEA0Rm717JywLCBLK6E41fP5Yzhk3F8JeJZmmDs+h5Lo6Ge8kp8jJGa6ECWSybFP7zW1yRH0AaDwY54aDjQBYk5Zk3fol9GOHHjTtkw3nT3Rq4BLKPSJojK+V1gsy4IxAVDKc+Kk7Z+amwFzmZNLteYRfNYBiixwebderUFAn1ITvVAU1UTiBIOu57JVMjhYCMZl1rF87KguJu7Elq3cU/8VTcF7ycje30N7ljnxFrrzPbr0cbYB5rKlzfxKMW+so4rVDcyqwjDQvDVi2hPM7eMAs2swh3cydK7ZgmUzZyZSbDEKGCURuFqgOVNgKPe2Cv+ijWyWUTkB7sRJMTSE3+mQLOA4xoDrdK8mrpJwzPMV/+LXKGcN7FiwxMve8A01udlTMA9wZ2awLKqcNNhUCkM/7QDtZxjaH4LOIJG6tzwf5yL1KwjtKuKTs7NB/J+AJyGEP/5CLRMoEkqYZ/GaVHvb16Omx/Tn7JZc/j8iS4W2WNzfy4L/J6mYJMU6wlA28dpfBpx1ObYR5vsW0fELGDjgDDVix3Kyw6uRHDmrBi4vXhYVx+KzOp1fVNttiF30CnWjlbTxAnN3WFrgiGsrE8H7BbQNYE8Uk22hrVV1d41T6CzfYAq7/lbcJsP5es6axL4U46D6hIyKViGZzHAiNBSsMkdPSMaLLyCHUgmwi9v85welv/uNOe8Z5xjm09uS/oMCXJ0y5tcxZ7cD62Vg2z6cfG4BG8lAkFozXv4WtJyVgfpKKNvod0h22rtgtwUaA379Lbgg2ipr7myGS6lmHv+CPd+LLWDoMHmxIvft6Ggv+3URTanDw9BIlYd3bK7ZTkq9Gy1O0O21cEXalO5bJKMIIANs3pWWiW7tqNjjz+y9gMf+c2VLGDkUUU6iDBeYG98yki+8g/nW+ZKtrBNlaDY3AvMl4C23sdgVkp/o2Rp1XzUBXLJt+d/t9KE7VKjlyumLRe60r0pjiYBdDq8YmCh7vn+VP3vy3ShP7jzqOPHO88BAk8iXe8IMiCap2CPNi2KcylN5DxxHKwhuLtsWBc4amc8Aw4+6+B7cWaiRClRRvxb6ASdnZX7MSm13pvfso+LiBtcc5DYfwntMaV4o5g8EL6MfCSoLPPis7aXRFeGzTSBdnwmfQV4j+cQ1W0+c7U2TOoFeS0JWkM8HuCHozL7U3JLCu29QoZVHmZ9EX7Of9tk2V0O1FNCRRXdQerMD6+uoZD/xURAx3v7QWwHJsDVuG39WKdZRCj2+PMSIbpyCpBDKsrLcamYAGN5GinA6YgBsyfj3v7v/QypGCZQ4k6xN4vTwtWU/yjq30n77/+fAYkHWJudrzyp4c2evleS8duxwFM9mdOFzmJPSndowFASSFjbgvkB8iJyrjgPvuGutrXAfCctjNsKDEtx0RQdFoWB3lCXmhEhID06chlB2NDquWL2a38jTOWi6C1BIYFj9FEPIaHncb0k2699lPwPiX5QVr/0+BJZoVC+in5/swr8NplnhBk39JTk6YzYsmf7QTjqSq5TsgrKE0ptkZMe42p/GS3l7q8jRXd3kMyHrTE7CLxsWUKf8ZcoIKXx9VAGVe7WohKxxCZgUsrL7eSjCyPixc/wQyD1haUunOF1VunYzAJETTxCOhhgkpe1itKkpsH0DJ6U449xBT9lhPjCCsfkyydwf2x9h4nl6IdCwFf2IaoGVl+HvKleAIvOYh8m+Us2kkfOR94EJwj2+lF7xNeMM+nMcZ6BB6n7g5s1/2K9YO2TT0QbpaLzcZAIdD5KlSUngASrayX5ucqVQO3C9opDMlsy0xZfi9idrDZZNxM10Be0dBVHXNg0+XjItsuwtyjNRXqIg3abyy8n78xFUE0ZqfBdxf9rXzN/z3zWp/4K5V3m2QanbLbXes/tntE4jtC2QMCbiXqaHTp4mUgaOygDbgsUdDZcF8KHVtAyet9wVveK1evdub+Ns3yb4JuS0QqXb+0DAPdLX96uD9QWzI67Vc7ZPWXQP14lIfnOPG/6lpV7tpkQcjGKxdvJaxnIEHdxk/2QNbFWnS69DKE2oP1maoqK/VMHOA9X5lok0nxCtczQHqgp0Mr1Auqpk23jGI2Vn8I8I9kjwUEgfz0+ADoCAC5W+Cd1Knjalfu006TpSxWNmAHHkQ6w+V+Ua4Uq5zpViVqt9FSI+GG/Qjc1FKfVHwBcw8dIMZYo6sqZyaJF9BiNYXCiAFbcgDUTXkPsj33hwxulb7vS7LzUQDCht0+DtCu89TD5xt88NmKZSPuhlutxsEoVs8U3z2jekMMtltETV9hPgG2P8LYjQcsaEe7FZA7smO4LdyH/o0D8B45CgvrA8RbFJq7sKACThUZeujjn7ZwHoowTFGnQ/NL79LuJJn1BXnHWKixnY5xe0fRh+RSQZf7bJx0nPLxQfdxgdG+hr2R7+fISO0aEjIi/DHc+v8GOv519CkTAH22CxitYB5/ZDNKsIE0hSTjbLVWaV178tWUvXt9Hs3VS/20BomwLFUOsjaTSYRpWJel/PdSeKvgoPEE9lie2bB3UFmfQVw+G9tBw7YKcoaqjHCT69yVfZQ7QAMezWkg8mkLVSxKX5D8McK9KnQg9OC/e/MuVbCCI431Z2Lt8BYXWZJZaNbaOyi6UwBbrNQlGpUEMwKM9xHpXRWRvMnxVZeLMNXYyb29ZbGrs6Xjv1/Gr4h0YMIH/11bqaBFzEwVvS+uXqm1/eOch8x74JiWXH/VeZET2pHHjoJ6a5qv+SPiRUvCmS2YKsxS2VQm3CYKfNdb0o9g3yyhr1PykdoGyL+WTFNRqGgMkn8Fj14NBb5V+lf3mQow/XeOC0exxK3yL6ewbWBF6UqrfbKzxeQ5K79j2S6nol1vEoL9nRr/1p8xQ2bmBC5oefjXB3F0ZkAl9Hpmt0VuGJWohdOqbUioD6IGxWJuMSdbA2fqzEzjgjZC/1lZ7CNOdDNZKfHAZTCmyKxh4hgPzm3FwrpfdOrfE4hPxnjP/q9qdvwkN5gpT2X1BtZjO6Wki032CU0hqUvLbYsZYJZpfwQmjkTHiS6FlOoiD+urnIRQtU/SGPZQ7V1ySCKElSYUQ/TWXuNmEELiOmkKhGfKRwtkLfc8JzBxNIEue1M7r6/zio4UbCHyOqN5CsQsFKFue2j/qDv1KRFpFDWKMdWe8xwiBwvNsnZoXlR+ZVv9FFw7/f2HKw5hpuwWVCjz/pDCOJ5Rvh9ysCuN16JPGdDIByHP9kiffHtRmHkfTmG9iyBrMVxjBYsAj3PzS71CRpRA8fuR31ABuerw98vt9AX9M6VCls6pADh2NGUoQgQ5J4GKCiACYDYjXu2sVIzaslvkjdfW6P61pGrWbWIdGauYDeFtbm0MjE/Vdu7IDB5PtNbUOXsYlL5b59tLfJwPu4liOu433ktD5vK4BUBZQyOyw83oZqiAu6//W3Tnz3H4bhe3YADYwxtUlqkgL520jo6fFDVdf0akvF4p8XwlDFtc7P5SMMD1+NohE9QTvxIzc8kKWu7DP/WlUOMsq9TsVzJbI1Q/5clRN9ZPc/Wbmu3YV5fONcbcRT8lMQlq1cEyS3lI2aCt4r+TM7XOrvYoFLhz9lx65OepNcYwU06eXEX7pVDScSnaeDkYUv0YRrXTb/S+vBd4lt/HhqPTqSIF2SiPUAokjJEeGkIR/qorfELsDUGR3u1/KvxPYd7guX9AYHM3IIaCse3YZnW+xuV1Myt/GYHXr2H1af4klTSQLLdXWMebGodTTd3XliXCsRxQdC860QosReBh3z6iF7dPMYh3VVO7zxKEMqRch33V6lJnSWIBYjWjs6uU1miAC5ni2pLXAoFQJYa0EEYHBhAGwM6fr4qdMopIshbepqfaWUmpX04NwFN46cfPClOK6Pm17qGBDCSTCICwYYR0xdZq3Y6WhFuAugUE5/dOrpVXgzjZ90yNlSoEsj2JLQ+k/g8U/Nn4uYFCXAFLRKqokNfOKqRITKnPdD+Z4xWsFHXvcBcgUXGLPm+6riHRvokSmFzW0nmTCq447MzXbDX29AaxyiPvTZZAcZNW5XjtdanRuGTuIGSoPvewRROaxziJT/nDcZtVyzOwSi5iij6NrNpBhuATWTTSZVjUQff9ew/JEKXIuSTfEPG4zDGc/AJt6e34x6msb2EGR/djE0bjjhAN1tGph5108ophzozJ24NV4m5SDRPCmVchfhNdYsuhgYjUDxgxrdKfmw8x5ndoWBBvqTHPyg4P+j4vKxaTXQA6EolPewgs4VxFhdrh2w+88+ZpQ0eRHL4g7hDuQdpOg/vHuIUHhTMituPssQq8geKYKupu77EML2uVcCsz983hOQ4naR7ITyF2uIo96j1p8hix5rWqRGLV8BRQ+6RKHXFVUY4LL4I/4DDdNXQOWRXS2ykCGrBn8nVOJruU3NW6wnsj5H2DQ/kiUViNGMqNyZ/cMCrJQGPvnWDtCY8eREm834JIHxqgZQk+TSwXtrHycFWdxiNOlqu5BLJKHFIMJ5EOqiqMOW/2ALjt2Y+Wy5+yv5M3M3ZrT4pnsbfw7tIctZPU7aOj8AhVf8eO8du/pWezxC3fV+yCvqNgHxPTbrShRkZoblR0hbcDWwhxMwSzJiQ218vg5/beahHywLdbdRi3ewjcHhcfTSwFxHFjTm/0j7xiRa/pPBLLRWIyaX0/DQrF2Tv8yh0OXQ5opyCEpPuRlLgcVV/9tpAhdVuIL0gnZVqNEgoL1BT9zcbaMToTq2JbkDweSjcx90gA1tK/t6EdV98qTJd0C3oE8XXfImdAHcAS/yUBX5koHUKZN7kD0VYHz9xMaSOCu3nBVAsbR6knkubWFfqQ3rYIvV7FbqKo/EizdcpwAWPrRAxxzJ0kew9a3rBut4d5AibobTMcYAwFRFEpeypkThSmr6cmc0tfzxI4Zo6coDRNYS8hiqqk3NyB8mLYda0U+nDr0fd4CBADLE8P05ovCme1kK6m5aBwYsvdBefSzxxukHWQG3vrkxx1ONd5XJAzPk7YBKiVkefOe2OY6ipiGGm83sPR7QVbJMotDCgAF26Q0nDIPFxTiWZVoj3m5LmZrMV6ErVd5kMH3r0F028EqM5uHIFSxcwwBo6n61Dvbrxf8GV1ahCtBrtRBiCcr+LBldxWdiQOYsdCyvgYGanekNsdRgDEwUH6R7GO4hkPXYldzhmdYr7pR/l9IP1lyoJNct4qZ6Vu/QxKQbUfGNPcGJSqPR+hPNyFCtbJopSUY+HIDmD+W4ulwtPetQMRLGYZ0qI/P6Uu3Hj6VvPiBFIPpZSq6vnNh44gTOH0Z1tOLWG+r5+WrxHaeIl4aHnvlQHwt6O+uD4ToYEqOYjgZs+juie+TpG0rBRBukmD21TXytzgfOTX7JehawqAQ/OUNx4hfPlt7v26UGBoTbs1TGDy1EkZPusX4IwRfhVUBZcEYzhlpsdOtQuBQw7ri/olOubnApZV9NiQ6VFSCQW4hREuZ5ZUrl+Rg1Iv317Ah46Gs6eB1wvaYTB6p4pY8+Pedwasz49C6F/9hENgd0m2innHmNl1NIMvz2KOwr8YdH8lYzIbpuksxwLSHfTBsR7AGsQ5XBwwawpBAhxK6R6JfSeWGSn4b6o0yrcIOpXdOsh67ALTq4FIi/KPIVViD+9IcdZA2rb+eLsWo78dKc6T2NlwdOJKD7JJhTDoTqyjkvGlVRbDGT7D6pO3clCT1wJXRHii6lzipX10c0gTdRwrFZ6kv+GmUAtt7k4CB+6FZybGnRhoT69EdTFeTDcvitd5ewDWQREJ0yrYpiHt/hpJnSmDpBFUDIrMa+BpRb6GFVmqr5qgFGqPJbcjDNDphoFCKJYN00sjyoSdGWyCugrp4+wSbYGocQdNfdcis71nzA0CtihtRnC6gGNhTxwirvXNFr/doJ21G/n2RQywye2iG40YPG8ut8Y9jhikFeI3caIqcHn05KRuMEvw1oq7Fl1KzRGfCh09tgPOd6eloaTj0vnLdybS0Xdt2P/unUi9SxOvZTPujkh0QoKUMdEfErSTI419GCRcCHnt7/PU20cPMr2i847hEAjn9yI3K69ArOeeSXXBtQNNAb9N9S0kLpUWm35uVViV7yu3uiQ1cKPHkqCEdLkQX4h7xibE4TK7BCuPIaR2wJKn+aO/vNZaOY3un1P+T8tbf3NBd0V5KILHM7P9OUMTlynK4PdyA00bH1WHFLPk306+IipTNex0VpNjNjkqQ/kWuKNnjYm7s1aSOetxn74tW/O0GalH4igwsLFhWpenXhJu5wVHMRIt/JBg25yy4bf1MjuToRobhvyUE+IMw1MmR0bZBggsdS/A5DqQy4PyZARCiPmgcyiQ31koUSHSkKxFQfjCG0SirrlZmdaJGH4TMQpGTHVYs4wCEE2iJhmfYqU/pj6SV7hBHNKGjregSCNfnM9Kuz4bl59EgFDu/qtJflkAJBbiVhjM0u0FjMwyH/HlFJVqZH0jMbq2qajprbatNaZW37CXYVe+PZtSCAEe5PEqY9/VHDv3wChvvA5uCRp/DSyuxRR9SxrOiged0Cs2s63EEGTA/UeYupJB6WW6jW58wS2Ce+pAhKQc79/Hy5ehOQlMBIZRvXa6wPWNscV/hiupwy8hB3LpHo4K+CxbCwBG/H3UdYxobJc3i4zfC28x0fVv41g8PrPMeNQt1sL3GEpFvWKo5BqdiNBvWz4CBARldDddceeNZ1ShX3sg8B1RToyJ4A4+TdYjrsvq6+H52P0/fyuY7IhVyW4DSOb2B2bsPZ+mDt7TZzl4uVylc6wfN3/nEb25pcpgFTHZtMbHJ96EuBXMKv+J/Q42BumjkzIrUxUqof1LRkY902aCn2E3rKBM0mgcHwgOvUABRgUNB4PyVwbDSW0SaI+5TueiDhLfK5AKwVKQ2OprgxZIcwFNZBKSRFfaZwCmxTdALiYa9RAH2vmZ3FRWpiWhUoeabF+Q03UfVXAnXH/4/A1zhVZxLmq2bJAwjv7iI5e4+xFwGXLh5niaQbx3jVvZ8NioQJ5b7rgLLdE6AAAwtjKbfDMK3g8lRjvjUSMvjlziQN8wrc4uR6tA8uG50RnzspqhyPngjRhgY31lIb/e+p4jdn5v7MFtdVFQsaazNNSBu+jOO+MBHPYaRAQbu4KoZQOyd4jsawbaxgVOa7Bf1G0d2ga5eXbWKV6AsgOOUv7IsSZuVUdi1emU8EM1VRBHLE9lgZZ9ouTZuKzJ3ncfw2sM7CZk+SPSHYM47C42UEa0MnR3hF9ITXCCRwVa5gRI+5Uu+5pdG4ua6l9Cguvbv17J7ZrGvB9fNhB2pb4Ieqi9riJyEwbmzSV11b866sRjzdTCz2OJjCBH1Bu35C7WwGwEVZV+075W45QB5KzEGHsBWHpYxIMccISu5i7lei7aDzCLRZigaqpge3vTu6kroabi1u55bnIr12b/Kltdg+dBkkWFxYFsghZnqBnE3cjNxwjHUz7FUsm0M9Upr2SCYJgrGPbVhR/FzOe7WlIpZHKefQPRuu8w2czdSJhpKDoztLd0M0ttLmqlj7NflrxLzVpZScpX1483Q2y0g3H6TbdXr7nlpTcBk4n+Xe8MnhFsOp7QgUO6nR2qWULzX7n28ndzuthxOWxbJFwHTPzA60s1oGmVFmikLEf+FRSL3vEZKmajrvYtcpr+qQuuQMVxsLO/U8KKCEh3Mk0Kn33gSgOHfmIveuWp2Ey1zu2u1XgCB5TN4N94DQHsrhs+OLY/tVqOfPTWWO4q6d44nYbHIYW5HtbFkKUpvtJf4eEwILRn4KkQsGtGSkZzyBT25UKKdClOBuSxQiVPB2Wld1Z1a55BbLI3KOto7hSfk2ZVaY4N4CfLpTEyr56/x4g0rE7XjrDllIVZxYJ/6D4Z13lxFlAIKliEZjO9ov+Ri3EXhOmrRZmj6s2N2+TmOkq3CjSXcklxx91D9tPWipQ+5nEb3HSD1dXR0WWqeKtLI9VhhFVCPal8VCfCEfNNfe4uYnHy9FyHIk02ExduRdGEZab6wKYWnVdKq/nGXubOjtxvLiFzptnwnDKeFRbU006K4JBsuikzzFYevYd1op/SFP2Bvyif0wps4Q89s9avzvW1/pP4/rq6sYt8pUXNJHrojK0UDO57Kz4qjDnuGgAcH6NOB2HqHsPO9VikSFelwV/jguzmOWrQ==
Variant 2
DifficultyLevel
577
Question
Ben has 8 more ice creams than Jerry.
Using b for the number of Ben's ice creams and j for Jerry's ice creams, which equation correctly describes this fact?
Worked Solution
j = b − 8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ben has 8 more ice creams than Jerry.
Using $\large b$ for the number of Ben's ice creams and $\large j$ for Jerry's ice creams, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large j$ = $\large b$ $-$ 8 |
Answers
Is Correct? | Answer |
x | b = j − 8 |
✓ | j = b − 8 |
x | j = b + 8 |
x | j = 8 − b |
U2FsdGVkX1+YziLM5WLHoFVMAxgkkXdkWIv97nPSw7ADWwjCXkCudmXKUgFEKsoEV66dhLJIbIMcqHCRzueUsndMPG8i4vskKMThdiZbWJ5Zp0SSoWEQL1CMLYwDykUjGuoZREQiFjp8HN3IJ7a/KeJMhpz+etSqATzVBwOKJaiHEVarcAbbHBan+g9Q6mmZOzDezAKLmWTWCUae1OEDl2SRBq0scrgpRS4UZspt32rS7dXAMN8dBppIjFphoU33PIfdZ9uI4wl4pTXvY67BmMwLHnmU0d9zsRK0DwPmsd0DjpKLrgcn2ykS7dfyDj3X/VPVsgpQ81IZ+sxi/eNndT/9FNW31SXCA6rF+YwLEIrGbnR0GJe7q1XKjLqPKOYzTM/sIc9iBQvhVUO1oog1JV3yz1pyP1SCWUJrtvZbjvmvmmGKbD3y7URx5kVbOcEZuCOOj/IknOsO2h2ht558jv2j6NXnn/L6E308OW4iKw1Jw/yMnxinqMmEZ5PiWjH5//q9gDGYC4EDIKeNq+znmGr1+Zid6gwlZtg5ita39hW8e0vICdxpK7RexqvctdDR2P9mycoOXbz5GFyNR84+rbsydtupLxXMr3W5y9d1C/Zvb3Wmcocr6/CjQbPU2+wuG+wFmGdTWWDCG/SOm3XykOpuqeNDUhe5vNyPHrhbxLmJ5T/JfgZn5l8/RuSZNb6Cusjio1L2joKy7qrbsf6NZNhQqzzAfQz6E2zI/IgTdrByKtWyVTNyNh+P8NhxCjzyLAol0kQ7p3DRBzcuXxA6AoGbmQ3SQ8oaGhiqlmEmyI7c8QszMtotgAZg2piPGR0/yO0uIkIH7N/wAwl1ynwZIH2wIvxWJ9xFIOIPcaX98Km7eEteQoG4mBT4qS6TSknjtJR+Tggj0fTUVvBpnWJiok6RmIMfCY23OOFc+s5ak3pEjG9gLxbCafQRsUCp6mJ935mvsgXIe4bPzBT6eD3S0U9GzJwDOYVPfTqgzksR4Ne8XnFw7eRuKIq2gk667thbK778SPkriPVvys2tHNdiluozlzb7L52gE03eA4Htb0ZjDDNIhWmqjVuFNTZtSDIZ3LPMi5ePruDJD9Ubz1jzPaIzyIKVlMz+c9qTLcm+d4wgbC/PkN8gCDT1c+R+o5JqFpImrhHRJ0ojjMtYfMhUMaLvHqfIJ6tJty6qUP5ljGpMQ+9pXvkJY/9C/KedgzXWU+PohKjTkAk/tnJwGcYn4Skx1yof9UZgWvZV2U7HLXebPUwAShr44ZRp43johhzS3TTRhbAWmm9FfvnZpa5Rn5kdJMgMiSS1N0wNt2/WUeWnwtiurOD2uIYqoUp0SxdyFYR1EzazBPZSxtZNRslVjWhVDhCpE9q8VUHhcPAuP6ROuHxv4rJCo3oEuFF45yEeO8TibvW89VhR5PVRTC//iO2gLD8ojPdA+jyxUsTt4vi9Sriu94nm8e0Yeuos2YoJYFBYP7KsAuKvAPaGhMLmtE1Lg+3thbgctiVpPAhiJYnooPWGLiom6hGke6wlQOOkm4a9hxt4Us/0EqWclJ802d9sp2HnsNZh20Tkyt513CN97+Mk9sP3IzBIuYvLTseeVr24bB07ktRBDtjC2IJX1sYs+ZkNsDn8hgXBB4pgSH4s+fQSa4GtfpK/sf1jnEuDdAy1Dpcb6LzTNOoIOU1MC7QZATjPbpMKao8eB38isclfUKTmTO6dpfGWe6SUAY7vBhbaGFOkC9WiqjZb49Ai4pLD2aFzytXP95PkaMDfSEtuwz9HMZl+wp6lPxv1Ihf83G6axMx1Pv9d7YDm7jCn3Fsy8tbfFC1IZsZjSmwxDP096LlEjMfbVC9x4uhzz9hOX+L0D75JSIkeCY9udCmfqxgAg7+9+AQvOJdlAZgQ7gc1bgh+nHcUMIZWD4oNPsbfPbWa7VjTIJ9fWytMk8QOkTKAPUV9Fe7RB5L9SOGaHA54kzN0Kn+RFVS+JU4dqijaWH4AmZmluMwhuDM9fbIrARgfow21Ijp53w3ooyriv5XLbJgWYgwdGVKrsCiOZlw+gwLvSh8/loYL7WIvY9xBl15ZxNvtLTq3QJJUiZ7qmxVj6pNuthyn6cCcoPuO7sNHac21tNBS9qe+xBRhxWw4+fuyWBe/vMPb70sLDxQ+r4cSEbNzV/B4854waUP/r/mTvjAfUnJUjhk4dG/7gR4fS2DDbV5sxgqCrwFEyS7oG7AqqE5wMheOZldbSsK98+vmOVB3A+bGulycrU+wD/pZXwgQlXbojOK7ZBR4Ko7n6HkfJH7OCZCEJxmYZtdbrAUBiKJwQGWpbjw/EOpTAZjXRrTLSdV2a0+UuIym0pkMkMNZN5q/AT/1fyxaQ4Ymq0FLGGqBLRs0NMJSy5dHWHJr2584pi2vf4zyHBJtU9eKVQxQYHoYbn7z1SsspqOa8NhkXnnCkWyA3LtfSAW7K7Z6wbgDs/A795z+0PGA9eyefJFOlGEQhvmD88GwyzrqyKZwsP/eoTY+q0o1pD269lrF9/wwJ5pORCAtF6Y+tjZh4gwjtWbX900g31FE+U6su9wOElNNUvKkjcoVGcDqpKZKQTQOlZFrP/mQx2V8nD7IgKiIQpGDw+m/Ema4g2BX04juaSjSrYSd0cASeWwt02RQuKDDT0AVKa8bea0xg9m6hkjOmEIfANKEq3c4YfIXyPq9Gu61geb2Cez6LUe+vNdzvfo4HV7QKsgxjqBYPXBFiwmmRjzKUIh0fbbH0xEvLZ9Fr5uyIyf6QXsPLTJFAWBRDxsXH8rBvsmCr3RHuUr3Pc9L/j9NtcKvaUACxVPgsKvk3e5ttYpYl/TSjJyvxvUyEM2mJGgtDMsVAirPgHa/lA3v+ihvRP36ZlCY4UnBvUXnAVmQ7/3uwJ4WWpCB29H8xtaWxYuz1yWTsx0KRNDupZFXgetz5Kc0jxAs8Y/V5B/gg/732cdaGYQYtSrbnDFefSpsCD8O6gOzmgYBXcPXo6dzNHuQEx9UXkdx/E1I492cq5DrSx5JG9QBX0LkOx20ukalKcLZGhgXr+EUcllY7BFbCS7dPCrB9UK8zN5MbPG/wZ7WLioSey8sayZt2Z6JAxnV8c19urDCcJcAVlcQlZsRdXnhv8TTYgp6Il/L4Bo8zwem3Oz27ZnEPF3shM3RPBysGPd/iCCRtun44P0L80SfLZ160F/kyPe0lLtBZDQbE1pAN1erTff3MGETm95IueF1j5zXdPRiYQSUa9qdXDlrSBIMbMCWMdknXMmAqOE/txqfZRbi2rPavWEUny9eoQHvoOsv/xFr4he8GjAv18JqQwSmCNosDyNElkabqSXQ8ERZ570gqRcmcoBm2tIpw5JragkmU52hh4nQ7F55goScAUjL8OkJQmBpcyp+bBeDGDin070lJivCA2U8pC+WXM/gXG+/mKxvVpo26KBtPs+NawjKpezN3MOExW6x8sNmwwF1g5y46KkFex8dScBAp5DgaOKs+ovuLTEp/EcWg4vGJmKme817/87FGugEOSubBpeQIuASzLLwuprJuJsm3mTB7bcSKRigq6+BLMZAe9qOiPUepBWaI/02wtP+hbeiJzKJoUHIKWlYZL3O5lobbrpo3FJxQ6tiXPxHamt9xO9Z8ZSJnOpk8k9C2bxFxZ33acU1f28scg1MtYPfI0jgufhx9J+hJcMi7aL+CwIbkcHF0MI5tfseIPH98Bn+sw2wBtx+CYsGVvxa2EKL+kxzdXhWRtgzuScgyNe+pawjfDfkpNKJKMHorU1hrt7dy+gTaXkKJDk1HwMpdzZK6ZTbLcHf6I6dxiW3nDs8dL/4QkS0aBOzu46sYGaOIDwv8dB2Rv7LC5MvpDmaxj7UnaxKPV1SET5T5Som10ZQBXYiIQeMpyiGyFeMVnsp5twEhdoztEZ4EV+NnPT+/MCTBbv0AxHqnsiI6uehxVKoYl9KMK7B35CO9pX33t+I7U7Ys1R8QK0rNrq+kluLpWgLu4S4eaLvTYBbRFSDZCwxmDaWRbMe/bCdYNIPPMf57CTjJZib+LdggQdqtNuLa5LmNxd2xVFZ+sSFWJu5FoApZHWxHJFx/VC0gBKr/M0XwI33Uv7WPnwMtXjQ0LFhV56ftBfurNOxwI31pdKyCH8HVM3LzkMOafzQTVXrtiNmGqqriDJjK+QdZLtcVB+mSpfeXfmZDhQQFFTKpR0TyLPZWHkJN9/4pK57JXa31CFpXG/tMwoHSRnLeNJv8CQ05ntZsvCJjgqO4NdF7iUkjbEFSxgcj9Hq0/OBFRQ1ummv4Aiy3Bawnqw6R5NfcBwykcqBPtYFMSzc3lwffJzWOfxqT7roY7cXf3QnKphSZBGCAI8SLu57TNNeHqul5Y66Wi9YKhPz8bnMCN3saTTytBgb8B/BkX2RoB+IJCDlAGVc0pHPnwqP7apb9xbfM9SQ7zYP+lR/kQnqEkLyx8FOxCe2ZPUUTlu2UMZOJX8wFAkb5mZTVVMLQEbfcveyutftMiyreL8CVHHUUbaBQ3QF44lmV8JGba/jPfL+IQOjH09zrf5mR3BhWNd0SBgxjZAZYvxHtPRafJicswBZDf8lWqJ8xbHrNWfnR3JAG3SkXLy+hJVHccTZRmxhBWKNBMdTb0cmEyrENYof65ZpFL7CGAUab/i/IpppAuqq4mZkLdLrbI0x1Wt/kiL2ZEYDVTVovUD1z9bPVGScjZp4niB8sTCkhjOp3vm5xGzyFB/lQ+lOEpTjnP/XX745m48Qgq58kSZX4cdNTx8hRoX0ilug3St5Wo5f37PkAOFWzCBnRkDMZqb4MUEZoKFBMWW2bdhzFZJG+ahXVyX993ghuJ4/G55e4kGik2QwZKiXjng+euDEmZ4cnHIyXHI4EJ+ml80FbhUTISNOURj5EdTMlXbrYKdux7XjlRsPAGlBXfwrCTFzdBuK0pWarnux6wTFK5RmXDV4CpRTJVjXBR9Loc+SQMjUGhAPHNVJKS8C1uXX+x0WszgaPRkv0Z8Kqc/YHTmIrfcN+s0dkFwGAn3f2NrolJ77Mdaihs+8iJi2Xpt3BFuWo3Cu4aLv2gR3CGfbz+HsexTky7tfUcaUc8rAER92BznCa4f9X+fNv3FQwuXqU7VAzrIS+fVExAejU9qszgJpbQDg99yny8hk3rtX9+bL3gA8NvA/Xtqh65AKV/n4XFI2s3orO4bGzAe5PZmqwPtSL+C30TqVOIY+EISlM3ktvxczFVUm5t8tqmwvpuYLZBb9kNoMwN+S1B4mdH9EvKTItam8LisO0QHeWZOHrXu1JeBfCHqYEgAkuh1UGrTGrO1UhVYl6d5IBOAUJp0DMux8jf+NrTMMNXKUAH6fcVVNjSZA/JMJSHQou7YVEnBBN9Ml5qOku6JDd/mh2LJZpOhbZMnrvUVBIUPfjNNxAVv2UFkYfdnZYq30XB+F67p/hxD8u+VvjcmnKeraqaN+jyUzKEwGP0E/0v6F+wrQc+VwCVpkIyfPHFYTINi1NRjQ+7fCjAk+3Rur3puVTnqpbVG8xKw9XB2BPZkiTK6WG3jVOoA9ZUMnmEoUwkgJ6BdYBVvXEgHx0sPKRRgoAaGXgUcL6ezQqf8kP/JE2Q/R2gqr2wa9pO/F4OmrA83JmF52e953pJL1tug8mahVXqErho1IcVCSGXdMkq9yyKoPuAplZvu9Jh5Rsi3FKT2Rz8h+eZ2qzgBPVJLL5h4hqSNB8oOOJ0r550uCddBqgwIJGNwQCayG8OQMN73E8chU7Q0Q0rFBmVHAu4xWfBB87blOa6S/1O0kfq8biG0aBwv7ijgroWa8lyFac9fNyvOIKL2GQixvLjN8A0X3HDJhfRjh7UrZ4gpu/Z0XD0E+m3e2u9aQzHL31+3KDzbeGgGWAFVQtom+/N6faxppxCFVe1/U7jG8mXrxzxvFR1eWUu5JqXhRwmHhx6M04mJTZlxYVJODH89h1CbhGuedqPzoV/VM4z0HMkDf0T2HK1mRsg74eSgj0XDwqHAUF7i0TLx2gOkbu5oN9IDwJxRCEM55ZJYRcB3kciMNa942k1akY8yDKFciotLwC//Xmcz0DSm9cqA9HSlILKZgJp+5/sQ1zVTpDGqtVax3XjCFs//B/sjNZjGi8vGhI913iJwygYVvh3+y1PNe6Dw4E7zOXnFJo9nKMUaU+s+cG8NgBwmqxZ8j2dn0SmJiRsUm2PTG+pAodKfFJTGDxkFBDxTSJemWRA46+9LRCwtYbnvwomAaxfsduo3ABtT3+Pkd66paEDqHqM0wwR/2j0aDFmsch6StbwnMGTsXg1HbL1f6SbACauAg9WQFBGTmEE1cosCJi9zZXjbWTravppzGbFpqwy0XDkKtV/sJ04lfxiZSiftDArd5YZjz1yRFDOR2mcCB7kNOBQu+nc+UKU7CMKXTSEhwufLbDHHMQLYxkS0dVda3zVZwNOKtaki3NGKKR22dQgaWe7hNwOwcRIDnfQeW33H6Q5EX3oOk6UbqfTNYN1kQN9kxfI5tCDRIZKE70+6P4RvIjCQ3fmyro1ubJQt4dg5BQ1SQ+PLKhfhh+Kk31iHfLGcDcq5eWImsuCdW4iyc9DZBZ8YTsIJraGhh0S42jm0TVLMRaUy95uCvp+RQlD994LRbaJ8CgHUkktRUB3NHjL5M6n8JNkBbHk6SXB3Gwf1f8wjEJ8ILmoV7UG2Xn78XC9AxzL3iUPZAw3JxkR6SbPyGykpCThxVUO8Ecu7ToN6EPK7ItjEoiNc5MnDmwdqqNFXaWqQuNunG/5QjPPsQnv1l7/nlX9pkbq1N/Xt4nUP4UUZIlYEUpvy7OXIMdTygBZLxmtMvSmfu0JiL87v8Jfiw8p7AWUl2pZgK8iiGDxt4v/8Vv0UPEbA1XgQMNJL2c5JDNSgVr33Vxe/tSgzCuyOZtLx1597GCWdB4tz6Lulz2CnScRM1Y4FBtb9cUnGwJlaPk7A4VRMWEwh6Izgn1+IUIZDIGJS3D17mvCrJJuUbjdbraTOfjeQtN2AlDo440HLmiHm/1wVKkceKICJO+iKFybmhgIL2liIrm81VYpg6c5VwDGuKigf9gDtSapxtyl00FEMEU018Zr3jDb3fUAoYw7v+OW2rsUoBI3RX6ka+z/23j3h072x7KG9GKukGvtFygRFsUDgk/92uSZSF3QmuuXxIeVYJ4Vxc6takKalK6bGcQVOW+FIqQftkpUSRDCzw6GKZLNybMztVcSCe4vCFZZ/MAQMnoJOmipd24YOOtRTN41gPplVCk8x/GSvj269ZH2Yrzmyi4L5siWjP3sadesm2h0HpRfTXMVj98QVMSB9FgOkQVBd2pUKH6nO6BtUSC3by6ZtxP9iEgS+o32alaraT6TjuTs/qUZkqbElYU7XUDI3dEumN6Y3ZCxhsR65CwbRF57/RhZV0NTUKuPyRTcQMOIr1JHWI6NyRgcxjyh/wQcVVf7qMwe4+Rl+iaXvuriAbibBoGS4EHDmrwl7Hp38pdN86BToR7nk4N4kBoD/N7FyelVRzcNJMfxgJ+Qrh+nYhMdtiXt8zIk07dYiyCOY8Z7Vrt593W/QqZRjjtEsKVc23yjXsPUcXTVX7zX/nbzcFNOHCZdlhz83ibQ1L4yzb6LHczxLhMdT1/5RSjtIs3mWUnWC9c1a8BZXC3Q3u2pBbjASpTTrZCB6zmPqwi2Wof63vQRJUf722QsS1Nsuoq1f5Y0/YidPTSXWujvsNVzeLbZAzdgcY7Es5CYZO6CGA5w2UwiP7h/cFVO6JVFhihpVu107tY6Lcjwb+ioM9eKASYMpcMUFaIQALWocbJuTloRAX2ApeiV3wnkUfF2RpsehCDR5yxLLaEJmPI2qwrrd6PoBly5d/sTq4RxTAd/DdYhBizUhlVfeVZlfp+/rs80lUCTFfIjnf5ysgOwttbSAzUHHfMltN7loTH2E/BHJS7pgj9Hk8zKkx88596LW0wQ5ebGeODpFnAqyEUGTGU2CnhCxXNlyDrIIdm+CQWrIxnaAVEfjsqU7YHaNfjDxOXPeSVK9cXADB3T5eN2NtCWj+kkmyxm1sUtQaUhZ7RLBq8d0erqGGtoYwKi/55MPTCCi/COOCEtqIRuc10IxbkX6N/h8c59G1E9dCqfoTQA5bidfOmBFRhFLPiv0jOD8KLuIyCvrPHuP/jGCgkTLbGoMYrF8j+CL4UWagNByf/P4T72MYlMZvFrVOZDN90FnwDbqQYGOGLwjJq/eGJTHnzlGYCOc8x/K5eaZXX6U2HqaGxc3lDyNcJisRnb5QviZrrBKXvZ1Snt2jx2WCr6eWh3NUryDsED221DZmFHgRtx3GysObatvrbTtqh7ahbEPvLlLFE37NdfXmRgPzavurfDfkBOYqejjlb3FZIzVZH9wNTPeaMVdDhVuRYVElicBDZaFPoW8cSTW9jvxDwWmAVGcB6F1hpH76F64cgXQe/vwA7kVF6FQHbrUYtZx5nsD4At+RVKCUuejZTEy76wco2F6hInTD0MQU6cOSbJJepxVQEWXBjFrV52dTg2sUK4du4+qEB7oYUrF6lWyoNJ/ZPlrEKD53SdGRfVhceJJpZ03DT9jxRF8K/slJQ39LX1SiC/4D8j70m3IfNAvagRMLbBRc0uGaQtWbc68rHpxR/W2wxdfBFkd8pw6nN3b6H4zWlluY5K4d8252mpYWMP/Cm8A32F4rThw5loD2fuNuKpVWjyxEk69WfNPznu+NO/hmvgdZ69yPEMPt72l7J9X4wHPhyiGF2VdyV8nAGRtcp0zP9NnQVjoLgiSL1uXSow5I/rcU0XP8l82/ur7WAXwtlRwKEEEGKH3S/NSsCtF4xDWl6hVH1MOUvjmsdBy5DuYUZO8DCmOilgjDEURbGgZhvud7P+iCEgxxLKzD+5BVpQyvyxnY+8LTg2Zvn+GdNkmJNacS72eInQiIr/fGlBU84Bye2blssYqfmRcAsrYw5unLbIL32vfUcFY2I6/Dwjh0W5rMjhX8m6uwgYprCS0X1Yct8K+W1lXcYQXBce7Q5QJxKTvSguRS/IB1zpPp9aRZeQQ8EswsYPr7++AmKmVHojKnTSHg8HZNUTkSqvhnlZ85RLyZBU9ktEd/d/tvcRr0lBrxNGLAnSMb0bVF65L/Y3sXVYrKkwnPfUTWfuhyd4T/ujzX4XgV49PAiniIUvf/yo/QtaOWzK9LykF1cHfHN63ZZ0Yora6Rea7fknCk6q9NXIRAQee5oRj0v+BlXeuKAb2sh4ZV3p1yf43nRk3KdckhY2MCFWaQQ+oNHuiTWRSKDAbr+2CbhrtazYXdvph5fFY3ETXxmqI2BQDppu2lAdXqN21ef4ZzST+hOFfNDq5DWZ44QaRJ6+AzNlJyDZOh5CtnGYKBV7GT6T2CLz/PvPwIUEEPp62XjLUaqcNv9bX50u6O7XAb3li4ZVT2ZlcVkqLGuEBTCPTQiVyFDiqH93/kdcx8Ruht8lr/LCLAKWyvSL75XRLybJ72YoOLwVZWUk9AnT5sgjZPo7v7+/Kj6GdqmT9EyzmHZaTkCQZV25jxgEHeHzz4HlwSDnZNJgc/hLlhL+CYtTD1IYjemuTkxXf2tNz0oVWP4zUW2q8cn9lBcpyp2886KDi6bvlGJZQj7fhpUH0DbpCQmomCBGXRB2FjpacoWjy3Pe7J81S/5BjSPa7UWe+/pT60d5yWdPJ0CEGJd3md9TniTGsu7vWq1C8MWhUj77PYEH0jG6jW/iCko+YC3nLSXAj1mrM6DvLPjKNT6aIJNimTzxYo1jWdmJYprEpNCgiD5A9+eNEg5Met9URhO9KedJGtKkfOV2aRlH1cQ/TAvsfNFjjV5Mcut61FCx3hEKr5ckIq1bTaJXJLYe8A2msh2VGJyuTUbE96VxbpnblreHmF28Q1lQg3f1Zn/7/YNBcjWjjSAfyhsKTr8ORLQ1xm4sU9nAj9zlpvv3zBGv01yKXVZkOR+QiUcOdXTBlG35nMGW7Q995fCnBGsyIoE+DFl1AgdTLgb5j7VGrn7bdGj69UmMMFhTpdRzTeKuNe5WEM4GQ8c/UYq5W/slwtdHUXGnyjtKaoMoSWyefrEe1RTuayWU5jThOKI75/GWbljGJg3TVTQCDu7DycVNcE2rHvfazL2ZGUU8P7KMsJCCuovImr+itKhrHGcbAcwLGuZgtJTUr4hz64VEyGMS0CnwTK9lUF0oJwu9S6oQ9T0OhSEx7WjW5+PiPsutAqkLJJeCuk9oZ/vQeEVLYFPPuXDMhmwymnUz9DPwpeqKRr9pPx0RcgyxH8/pf0ba7r86w0VZC8+1+/ggu6ycQOD4jFaz1N8I+bgopuLDowWyRWjeHVN2BKBOXe1s51wXA6lQdlOpIZcwQ+G5hgSXDgSlDPx/nyChyXd9CNqf9vFNZaI/AkCoS1PR2WRMcPZzXeFWox7nBivRu+jXmDHQcKk0a19Q4sUYGskf+xgf395RqTM3fqKC3o2QeENhGYFKXIvn7x1xSOIJrXcyDKyZaryol7p0ik/RuypgmUWRJLShm4/U+buSErbgqJSfXCFtimvVpMflftXMyylJ3Rd667URTkvys3h0fVQBXerfnht6lDbhMVAQwJce75nKrhS2OvbhgtvfdoztSZnKmSa0nyvlAMnBly7KG3aiGMjoPHiDX0hnnCSPjV94hc93nb/Uy14mdYqVaeQGxfkWiTwsjQI89vpjfeJgZUKPXCIFHUlZc6juAg1QQjIddh1qS+hmIkPCUhl/jUCki/EvKj7CesPKzz71ej/xP8JocJLYqJctFVMm2Lw3pVkFKc3VCup7kzytUvUShJHTckwvMsEGJ0Ia3jTVCdGsCClQkMSBWtrPs7ya8OpRKRx74c5+mgx/hY/r6EyZn87cuxclaMkzwZSpoyf6YLtB/9PJRmRGYQUdDT53cZJRwi2NvF9+8xYpW2UbBVy/uHL4vLJKaZD6j/UP9yd2nYDyIFlq37gGrDQi7b0mnBxCtZRQ==
Variant 3
DifficultyLevel
585
Question
Anthony made 6 more bowls of fruit salad than twice what Simon made.
Using a for the number of Anthony's bowls of fruit salad and s for Simon's bowls of fruit salad, which equation correctly describes this fact?
Worked Solution
a = 2s + 6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Anthony made 6 more bowls of fruit salad than twice what Simon made.
Using $\large a$ for the number of Anthony's bowls of fruit salad and $\large s$ for Simon's bowls of fruit salad, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large a$ = 2$\large s$ + 6 |
Answers
Is Correct? | Answer |
x | a = 2s − 6 |
x | s = 2a + 6 |
✓ | a = 2s + 6 |
x | s = a − 12 |
U2FsdGVkX18uahUNp8dJ/jVcvnO6VHrBzbkhOVOItR9Zx5Pm3Q/UDSJ36I96ZBaxlqebwCTPDn3NfMzCO+tWOjNTw9KNuWVov3T61Z8G9ItF8AsV2tyC2uxFpIK0R0Uziz/XynGZ3NoSk01w++91yWQKfyHiMLtaMveqx4BQAtkwLqGtdzNHJ+T4GKu8FBuH8emt8wPNb/SGvr+KhLKKKK3HRP+41mS/CMWmp7sZGEEM3Fu8UypIQDerAi1SmeNNNarxCfQmPYgHbEccxmKLZJeIYTQB+AIJHbxz3ldjragmABVFTJsy7oO80XKV84XkDfdOPKw861XAw/AQdNBDgmRAvKOSBQqXs9u+hbiO24kwvjCkYDSIKLx8LXIhiP84OFplrL/q+cIgaeBJ+gOXpl/anewFdZHJqkaXjsZ4tN3LSN2xdLlxcwF68xwhiC5NH3zFqvq2Xx1iJaEzP2Uw6qJ5x5umPdz6Cs/sWQ6NSC2hKOptE9XHxTEoTOZanrgGpCs6WNzYgb2y0041oRMkyFEGIRIbXjqe1CUsbOjaeF0/AK8JTfUqVOyUP+nBmMH4+B/CQXAax1jvc1tdbbm3o5tmmzuldBTqQRjL6eg1/iuCESjXNnYWKADJabBQVIRT8yIGGUnqWE8QTR2o2PzotFbCmaFgAwXkEhROzpabfkdv1zS0702Up2+Hq0VewdfzfTyryDReubO3AOHQWjtU4eU1TeY+v4ZxNpHVuIXI0+zrB904hj3u6WVOmKUT2ojGo2tsP+Nv+MBlycZz90+bz5GqhjSqbwt0f2aVSt1EyFV43L1A0/Pyy3E5JyqWic/jLxQxxsyTokqI+Ji/Os9d1f4UpaeTzi4Bj++LOsp9nSvKU7GIYTCNUHujkS/c0PremuBGTulnznyfmnXhGC8Ne1IyeAWE2ehzRLEPnQRqFxYJuP1W7iSIMD3BE94BJIt5hWF6LOu4/rssXK+fFM44j7DAHoQ/HD6NcyA7MK3yPtdyzIGfjlDHKRfqO6LKEiRmxEwYAKAZTGu6fCkxwnVfYh054zJb8mkttRGAA1fNVXUHiNs7WpBMV3xFJ7lSz09QeRLObQESN70iRZiaBD0+8bq116JJyjVXV//Gw5DQkDB5GTV6nJu8aeFzZg+hKoNQYNWNRjCRK1yJHXqO8a9XllzLeCM2qxuk8e7xPaKVvUOFvZam2o/LKONvlThI3YDjqL+KvWFUobkIPpGHxNgmYBy7LxSVOCnGbIzz8t0yC3SZJbbIhqHHgCW/lb1eRCZsSx85oueosbkAC23EFSefcxIohZ4CRBTHtFYNdF0wncC/OppSLUt4VHAQhwT3VSeBj/npqW09ssHfNeiBqIxNEALur7rZbk+6E/e3S7e2BzVYxgXgRp3y6VPqvKu+Nr/lsC1B6q7GvQGDJqo/5yHBVXwX4J+UoO/YXGBZf/Oo4j9lPZqvzve/vtxrn/Jrw+k9+oi/M6UgSQZa11otiYuGdVMUvvuigV2kP4ro89MH6q2F4IjbWxBgc43yaxCAI4xLK+GmTyKkfsuDGpW23ZBDM6SQEeTQCy2KmysQMLDpllPF5YLil24l6XtmuYUedUddO5NyFOHVSGCCeMWddltSYnnPCrfmzmdN6NBBMg+47qU+jrcM/eGLMyOacjto11TS1lWMLytkf/EqQU9CIxGVPL2cfcISw+HqTfmwcrtqXq8ib3aPg+3fYmqX8MNWpERWd48WUSrnDtOCtIx+1O8fSdJb6aicjXJa+xwsvTu8Crdv7fHC+sI1W1p26AoJdEhGXdVD0b4EU7TO6Cm2z6gr3fQAYTPfjWVhw9lwx7Vlvy0nHUaMPKTzyI4B3y9tepxX52gnt5FSE0M0/kApiQ3BUlv4uuJvkoBjNKeGlpGTOGJu04jKJVeCFdXfbLnZOreIN/zXyzvhG3IdmSM0uRHB4ecnPGw/lwxSJAwm8SR0IVI0mHQg6AATtACWSE5X9Gis8iDQPpinTTzrQWr5xcrBjShL8VQ3ZJkYzmH8bpIYl5c6zTM7cGzk8cJDf2bbrCNYqK+V0Mhpzsut/u0RyEW5kGfLmxOwpj0lE/hJa7/QI8wztHVW8rHZyGefotPSM+PcOKBzdSTk6UKdYfkVEtyBicwt9Fk8kPhv7k/jpGk4bCA0Rj6pTWCVj0X5Vs6d+M+VZUHCSTX1gWnReYJleQ0Jf3/sswetI+RZVI0kbVvHbeflO/9av/S40fmhmOh5OOse6wzHH5TF6/brIIHKF7qp2nm8L4H6+Ia6cuh6vdFfysFe+YG0kMUUkHqLsPJLNjLPCD6ysB7Dz6fz+1pqoh+fjWoJsfK8KAOPu3VN5uhceKmE6GN0sp/0Avxo+rCvnTDvrCncDLabGsubCDugiwcXIF2+QOP4TSRuNzrfB6x1Zpr/VfoJwKxAW3pQhMTpEKd56mGW/bNwZ54rkoXTbaph0lqg0SAX4siH/QNGxxx3nXiFWyMTVOkHsN4TV1oufMn6lFSiO9efE3ANsOX95JwGu2BwqIHZAdv3UgqqGYB8Uu1pr1S0efHOwq46yn/Wm13NXr1En2EaRrPRLvPSlIy01SkzVtVSyfadpUIUCNHfOj3RioVw5QP4+Xm+wF9zCszmlOnDbQGki7omObWtOaGjJQp6saQMjMivVL3PO8WGLo5zgs6zcnIPsOmCAyGACWlLVB61QXtABwaRVOAPPowoHbG7LKkjBg94/1CKCPbct3FT3z0hQs8KJhVMQZJje7W5kXhWZiefwrcrEZ9OhdKxWvpdjfO2cKh4vz2fOYjZbUpF3Cqi67tGTIVrEhj6oPLJ6I3EF0zn1oEA5FS06AirTaSn9M7obAALKtZ+b3kFg1PmlXxxaNmOgMek49D+NIZPOX/SznKkt/3zbVEjIrC9lH6eSui6w93Wf/ys5twAaURPWoQj9sgwAas+U30XaWkwcajq6fsk/tmiwu3ecDrs8hWx0Rve3t5Lmh9GydENgSe/h8F/Ui09KV5gqTWwyACB1X5Y2nRMWAvyU+hYC40t54aklYsGnbWl1/UwhnS4x7O7Th1uAteHDi86jcc5QXqVaraeoZQg33brxp58KeoyEx1mV0eM1KLepfNMCRkWvrsJyIb3rwdPHYkz6JY1+tz49VaaVpx6RwZMXZPCC10M1R9ySSgqMt6AxkIjJe7E2O4avAhanm56u3nRjfPAZLfVmERSAf6/FygKyc9wNL/MNSa3rdEaht5uBQ2k13mQ2RI5GgoDuyTYorGF2sUfR2UgnZxrnOB76YWJfM95nZ498aPXLAlSv+vLdsSSbDadqufY0AlmQibwl8MfHpBO1TehlMc27+nixiF4g/0xTFGJ+5jPMiNG1tGy2J5G8INL2OVoeEDmMBD2sswZ1xplpXByJ3yly8EbeTUVjQ5Zr3nkfWeN1d4JHlFee2vU6+8ZQNWkaHq7qJjeKzutKkTow8qDSMX5D8h/5wsk7BJuOwW9P1bc3DoGQG+r3eu874k/s+OOkLq/hDnrkMmcZ0K8QX0j/EOAANhR/kE1lstDm1XTafhkDs1DCOq1NXAu1CX2sjCjirYm8Yd6v3lhb28BidN7s9eJFCm0E8hUxsQAet7Su91tGCLCaMl3npMIsT/u/KwYekS2uFQRDEcj8ZeWeqnSn3cQIqxeOygeDJmjAFxGGuOfkKAxOHR0NAzsXcmr0qhNR8MP5QDMjteer4fmD1p37FtHK9CAvFtnjtw5FBjaGQmmR6wZ81LQCj3Syrb/v4owV4O892xJz3S2hQbmP4FlbL8ovBbSgGmXernq5iT54TVsSZEf8qOtQhk0x1lsDTMeDvSf2g+MgkRyKJbZ6jI7fNH2oEShblfjaqDH4ySZNs2pxyTBVJHIGzeylNzH0YH5fRiGFC0s+pU6w02r5ggtrETzC/7zxSojnSxLRA8HkmqzwhEs2saw7Xgzsb9yhjW3cG/cHJjkhDIJflCIGUAfXsCg13COcd3gQ6pY4msT9VMGPy85dLbTufKcrXFsY7xoMzCXryDBAnvElBiqtbW1ZCNeuewRgaaKVN0Y0Jgcs+7O1VATswLJFvHuY8Sgn5ZFXduUghNWi/5nX0Ei/Q1tvHSjt1CG0SvrVXl8yIajzhvL7Mw3tIpV+uMQGUjtLysMW5wEJKzcvpBbOPJc1ySG09zVf+VVAv4C30b3GYfZ1KHyKng7dYH8YnDBS2TR/OS460w+fPzHhkknuRLlJccmHy8vzkZqFf3Ivc4auMlS4JD/QH5auz8rCCx+cngs9HaB/Dq9H7PrbMv6eao761nLz4zqiEynCkorwK+OfZvbhj2BH+KpIyb60jzEPDxHGBfVgxnTtNhSLQweGLk82mIWwlUVtM1mfw1ukpVrVWSNiujWr+NtZ+ZTt7Tb/0Hyfr1+aJzaoFiDS1RFxIPZh5l6fwW97AKjTUnScKX/kLbN4yccG1p/3z/Z2/JMhfHWBt1sB6zuu2nuzgVrH4SwcfGQ0U1eY2OGrgkzn5hTe6rzMHuPwQlquVz47Lia8updEcU3J15QsfszkcyvrYSmPJ7JaJfvgNZfe+ez+g28hUcJ4+mRAv8cmvpYfUmNTibr6VYMJaYdvhBC2VXXsbIg4j/jrcB5NZma6XcBQInngllI8jFBt+xrk2lg59WZPJ7F8BY8WLcXiNR0o9b42Oq7zb26QLit2tE8PToAPbV9OgYIlaD+4fpHsjoQRFOETVLY+GsIKZEWlLukH7Gu/pvluhyNQscDTWEHmtvWx6EeRo0KYBqFnMlG8AKyui8DdV9pPmT2M3SGWkAh4EGsBlL2x9fB61PBeObwokPv0e90RPp8ZTOCxjyjKXnSSMoFzYgVKQ7z+aEbqsvbuuUiDjROUY7yAsqn60JKml9Cg6m0zScfiiKQVvyvLxSjDOLyr4UzrXh6WlGkwflsJyv1MA5yGl/PuxUk+xkzoSjspiBZwaKl9PR7/OH+HLXaczWvpuYgCBSG0Jiii9WTODqCfezdoYuZMxxYOlC5Qg50zxqhrk+EWhwfT9fdEuBBGqQ27k0nb83rZTxRJwr1FExTnGyafCp0vN7BGivd2b5Z4JLNWRg6V7vttXuJ58+VtGTyCFcFCzHXWJhAo+U0sZ+I6x+hkt47AeRT+NV7Rm2xGcEIQtbWCqvERH1lfRwQ5kKjipDJqnW7vLFkhUvQFLCZxaVrNCdpGqvCaB2WlCTh5GGX5bjzz8KE+zNF1UiuUE8DlseteJAyMuFi/4zevoW9m7Qb9mOMwL80jvH0Wbr8ssM3XY4l9QYE7uSZ7+c3IGtplJ1dxVvofQG85vBVUwBBLbhF/fFMlOu+Y4WZZMlZMYsOZAPCnkPpmqxjhkveSsXGcZzr6CVtc+asns4e0raaHYhPr/a+Cf62eEQO+gV5cJ1lcwlSEtkysImru4JuGVILhu6vCF8+msbu7x2vGRrmkpTCLOhbMtm99pUetsFhGbK2a3Hu8tUUANuvZuMAe92CQWtCUJR7/moWXBljLSur9WAxr2Z/OPVsJGKub54lkdMK/VOS5sJ/DmzAqgMZBV88vGa4yFLiZvdqekdkrey3S6OCkTsGsDd4uDHtDBhJj8FVcdHW+HpWWerBLad3+AXifJNmL83Wcrs9H0Gv64UxcVgWUe95doeVzVlazSs8WMDTy/JcJxmWcqIeAk6XZPwruAWQB6r38Xw9/omALeuoTMhU7pqJLFldlVn3eFetZVa1udndH5cQ+S0oTv4T9n0cKfKtFm5x+uuIJz2oN/WF/n4TekzqyyUcXqE9IbPHGTg0yP0KdDMqjLckcdkdiV4Mdf6YQ9WzLwXoFKDdJ4JaR+TL3hc2uLMrYNCvTrMjQ+X9YEShdydFRFswFk6ov79jnneYfMJt0/eS2w/g3xRco9JNMyxVpwFvPH5q+969g1AiHQwIjGilQyEDRKAiRWDrlJIYOTQzREVwnrYurKhV0n1OuXY4VJLCWV64eafmTva05bxusxUsmNgDGALLheFqeh8hO4/PQO7OEEf1j2uS2QnFPJdUoTR5a5y7urZlWuvlpc4Wg/JvBVUPzyiHXWVc53AMpm7cimuyM0AxSoJ54OkqWPbF+Md2nd7Xu+thJydzwdbZYIwosyKzF9aBe0eX35garyRpk5D4poboWiCAZYzxs203kjjedAkciaMktyCfwpgg9SVedR8loYxiyxARU+wFNwm1Oj9TgjCb3tQ+7+syPoIdB/lenHakOZCYFPC0ns4cTfyepvFecDO1muP4Fz1rcgnZJ+7wV6or7MGCRujXw3SCEl/fLR58lYQdcC0SdMIDb11lP1iYn09ofS/Ldw228sLPtSMhme0qugAqZkwrpnXWsqbQz2dGESY97YORFhGEvMQGYINg89yq4ZvZzHeEKwwYcgPAD7UEUaSWE2Cd5b/lxk37N2hkAR/fhvUDfNvK8C4YEGoqh5QAiCkpzX0j24c6chsr9o8B0mFaG3Pb4qDgL6eLkcymU9XvEZwiEVyi0w/wFqnBzuX1t75u0gEyV+1gj4MaM5LC6BG+x63sQVZ0geBNo4DwFTVRUk/h/GRRPwwdhyZwv479Gbf1KNmeo3/Q4RBEQbDdYzzK9Mj3rceuvbVcbpvf2dK4wGe+C2SZo+qawW3U+pN9TycYCKYz2/PxrJaclW1hvIykFzgmE9JZuf5G54tJjKDqXm5p+FTEcpzcomGAWD3j/m+kzWVNh/YdsJ9Gf4BHPK1eVsnaGrH9X+0fho9LT66s6jtDzoQg+R2PJ5xs57P7UV8cmZPxD63LfCIONa4rsA12JgJWgH30MSdgGy0m75+o9O8pis4MIr6v+C+n0Md1FJ8y7NHPeDWmkqUNvkuX9tHSN2l9EeFCEClOgiId81lbPR5r77DxWW5VnuPiQInUCqTC2oreIDQMrzImcCbDAPDClLxcdTa5CflFxQrHMa9lsPCs+iTVIcU72jM8if74nruRR8D0etkmSNE8h7f+4iNOQTR6yhz+kpM5K/ZNlpf6dfHvc16QrPS7s0cjEMKPeRshYk7P4FeGUFfz8KjeM2P00hYn/MrWrXJFHxX9cLkvRcAprlwdaM8HP6rC52OOGrQJX+I9PbRmjVzSAzw8ButCB91PDMgJWwZuxXcQ+3jtv+M/QwhYTI5ZJojnBwO5O0Wzm5NZbhpoTGr6CDFNAc3xIrpW+CO2Rfzq1xti1WpvoobSXCtvYAWBeAkFQ81gQ04CfJ5kcIZxtM8+s5FKNsNxk7LRKv8RKDjxDHqW2WDKdhhQVULuQJq6q1ZA8X0oSuWRNnj0sYzuBt8/+zQS7B2w+f9Pyf+9+4/RP2SmSp6d+W48vt0WeEFGGufA1BpJVLj0QP/BWfM2e5ESUVbJvSYZLrUMYQgQIubo0YykBJ9rbS4OGYXaTDVqM/V5kY+dNqJZAXM6fHOw0YNCGv70XmUe/Efs2B2/GoibLnF2EsA5GoDj0vkcvoZGQ94pcPg4+9FSdQYfkKuu5wrBmdVojEGTBV/3OTJQmc3SFdu3/6nAzcSqFozAU93MD6fk21iagHIANvyvhZdPae9r/0rz/IbdnfhdEkSjRtulGZNvBpP2+W8h3nmDWQ7mlRfGviTy3ADR7hUZcgktH680Q0HqHVUKzRrOzoC3mW+bMQCRgqKE5UwqPh8uIrTOtafagYLkclzqtH3edY/jmaCl8+1F+8rG7MQF8O0TDLJmWyUwVCfnKgkK8jdnUJ6wnIqWaQITS/lSN0qJTYQo81EgVvRI/3wICqFK53/H2m/xklR52JFgCnO/AjMzg86t5ne/s2pYAeX8M/7izizDVGkHCoOEynXTiPS1Fl1sX5PN5f2wTN26BIaFQDoJjE5j4cLhAiGla5Mt2DmIs1S9/5MdwpqgI0FK3Lr4U9jdvyBWxrj8sZuUJ5qQujVjrs3qKNfprgthDFJ3TfG/vdDopex0BVcjj68pWHh/AcRs7KUIOde8wWC75bUngILpgECsWnw6FzcjPEqPu4mwnEB+jxBo4AOJZwKkE38C1RQ/00do/88vRH+sPYuFBrkhBUzbhEhVHJ7qW9dfZSm5EvosE8aoBNuHSHhGGDUcHohkFEYo2Kt4Igs6ft6Z8/ztDGK8fa+/3idku8IvGHvY2iOXV5niQv7hf5DQ2a6K3qttX1tu7wDYlDaWd2hEURTBdvbk0ClnQj6E6jbncyDWH23sdtsQ6oKqaFvFCdU2By+ZNkr8TJvw0xczS8ckXNDnD1V+hu5j+s3cGyrVRWbcQf6ikrd4AxcjamjIiGLxM5cX0pQyn4Ihn3MQ+f2DdM49XpyL7YRfglRHVgW/nduzUyu4fYs+yptiWs7h2auxJpGNLt594wZOzVgJ5AbfUB1nXWhczqDBAFTovxw5ISojzc8peQ1MmLe+AVcedfN3Tb/r8MtX+5siuDz3G3N/dTRVkMgFeHj+SBlGM7V9IG0cz8P40gaVjWCEXzELPwogAESjp6I/fpeWmDo7M75GEttY4Xa1GpMaikwQnv0gt2hQiU8crVltEvkWd4GPPSt38//7J7Ol/twQwYudMtGRdlW8MxYY/s16TOUO/+7IIoZoq7a+VrHsRMF37sH+jyxfxQ1bkKaTYDIH9wOQ8s2yDSWGcLLmzOcWohVVc14ZK8oaLMQ+YYi439FpyME9iYIss50+3DV/+aErsqWX8h7fQtn2WoOwC9jdz/uG3RZXtnr/u34dvL0+w8QyrgnN7lD2Mehkejfjx0PLdvQmD2EIgTKPucbT2lPuMfYHTVmqxvHWpuzZP90Um+cClTJ53EfXkseLkcRaARxrE4WRl0R85u7eLU+UgTZuGffqPJwBG6y9RwCvjhk/0HqHls6ilLC4d7SHNZS9KHL4b+7G7PV9XCWAcnuigBCw9QCZYhH4UrywiIhP5jrFDe1t+dJ70A46KS+sqn8Zx6l+fZfcE/Q5LQjkU65jNfonVep/lkDS5SBdUTPOxL9DrL7BoyB60nSPju3nkixNe9r7oolULoRQA6VME2VSx/Yo6hFiMF+OlNvUSvBLhpWNPV+Xo+aTv0vA44N3KPwIckhR6wX0Hz/vwKJFgOMZms7rJkjOcEQ747cdZJoETMiMEuycxgjUiFsrJxTx55GD09I3vokbVuDe2GHUxYx15cKDh0t1fE5hAGye6ihseHl26Z1whWRvemdcZBd+2dfnP9b471x1Wevy0a6Df43Rso+NbwqKp8TvSeyDGhvw06pHHnPnyUFiXtJ83C0Ngzawzao8X3ip6Y0N/3edHLJMKyjZYn4CgJbV9OPNknbOWrj6En0rrd/njE8DvLb6OAFd6HtXOL+l+toct+hANsrubcFZ+iG+djLU1NMJGqeIEnUxB54aZP/9PAC9p9Ovrvq2yohNsBtwM40EEjRJnhPDpo2rgjbp/IEl1bLwbr1miYAVqZdxePaHcMmXYtuLSSFGW33N/+HrKMcmF9jYjMBgwc0YWmwy9cFqoIlFt/3bgKmmwcocY8mnLqyUMSzUhxAfDOLSO/XngUpBXb5EOLVbYYkYmDMmr3dfUhr1zbRvcf2umsyi0H/M6UdIsjsXc/2MiC0FdayOE2MNHcasbnvbtILsINw1OBGATMC35uMrNgWUCBFloO85n3UFw+ZmMi1f1t5a3tYM+SOY9HVLCImckbVuaSxAOqrnDP8vJi2DOC+va7dZnNuQooGi5K/a2Y/CQz2PRNcsZbySleIygNTRFuoFsAQKR/Ab+hSJl4tg6f3OsbahWS5sy9QDYOwwUNmWaSll5vp2voNoD7VakkHCYEqyIvEVMtPUNTyANemZZOfRZpMGPp7MFoafUlOEhXVnPJsvYaljFcipeYg1eFYgKcu2h3C5WBjZUrM6TaI8CNlgQaCc50zjAq0pjcSynSMvYE+3EY4urbXbUljYQMiel+b4hvIkZHSKHOOVlId+QJL6GD03COOkOy+1zfn7aHz+TSnow+cOuOZ7Z/x8XIgKNvAFeMuGE7TZvFaHuX2ypx6Ckl2oDnrQicE3cb/DTuXWw86lPhg11F5zHLv3Pj9gXXAxUku6NkD9YWvVZUgVXGNWS4d68XRWKiivQqyZF5ofhkyG2G/vqAe+1bNluUjQaLAme/Z1ZqmzRswZ939TulZiAK7gmHepjDUS9dA2800DeyLKkOEMOPvIvTtByfYQNf/dzVhNnmEmohjQqOQrkIK0efzuBnmQw2BzXxlHqLDPGEs0lHuEZ1sqOqj5FWqI9u2g46flcZIBKn7DOzK1unVDgAwFXBUoa7qxM5I87j6j452tOnrA5nNCM/NU9A5Kyh63zlKdEaleko9Vt5eDxlz4K7VOZKJfR27cxXe3dbmJf/4eUwKah65Tk3zQYs5GDrYctNK739oY8Wy830zMBVB59280f/rbhTtSC4VFGu5NTR6rXyGA/42RYHdDPzqaQVqYWLpTrZNw+rTcFdT/U5m7CcJVAgT2CLrPDXor4L84GPU4qbp6aUgTWaGsAfO4itASnZHVdnXkJogfz0NSbV5W7uKR6rHvx7xaJ6xYYXF9dQQEbMRXiY8zOJE6KWldMP4KpGakKo/H3nP2Ddbums6dF3x0pVLYW6eWVZnbAmZLAi7+eMdg1qmVjCmCicZH4PdLwPX40qvkiLxfTeoG9DdCArjIuisBaK4UFosj9VOx+DRdIAVMwLiGDNAwCIFu+NCTDT+oguK5e0SZpbLJD48QyRxCChL568pmuaGKhY0jLMm67buHtUBAqr4QYrek1CZFlACEbM+rE4pO/YpjcFWDijMR63q62XX65i8SUicaPz4WjQ+GhPTvyppBrtLwiSok2CZ25eG3IMgtMKKqm0v6WEUvF+/NjDSzGKy+bYJ6jgjwKpUCbeE4Xrwxrm8sz+OYTl1nS8CTE1gHAxhh09umJraH5HjJKc14Twjyxww17+bD0MH9jLrM/ChK2d66HTp7M+bDwsp90KMM+7ZW2NV/GhHcUX00IceAnS425MWbT4K3SxeeTqeKMTonAM23eMRqJYEpTtVgi6Yn6KOv4n3RIOZ/JcIAkt/kNTVA2dK/Tl6uyBAvfAfjONrDJMICiuMO5wCDJj8o7Eo/5eR3/FeqimArr07kS019yIDVbiyBNCLmDjUjKI7AxtmYNMyDAMoYI+0UR22LzdJ25kT8qcSQP+DNDukMNaa5eKKRJn4QDuWKBCpjDGx0dLNhWqw9A3iQ3fOJ9n0+1ijVkxDp75Eaxc2FM0PpMxZX1ntzHC3TAvMVhmsfPzyfDjgsqO7JEmK3qFGabOHiuApXre0T7bLesx/Ywgsm4bYedmiTFL8f3EzwHicsW8ucNA/YHoUWN5spoSmX4B8h7pY6acveF4jwOTr1WgqTbJ5FR6tohSwEoo2y7A8yr7mvoijzuSo5kgiBGWw2fTxNiZ5JAvmas0QYpUpzsggZkCfI6Hcm2vX93GxFX5jThLQRIdV/NgO95+L+/6iyaf5Tae5m4TyWfoxLWh4N7/tiwhr9eXEQOxU8bN3EMrmrM8c+2Lfui4jT9y6LghJwKmDSxc/lhxJg0qHoIb9c2+/fy6n2DtzZbo8PnIPkYI/YHUlpNC91rpA1Ti47Wc9LT4+gny6WLglS/q0/7iQ1rWNn2bstbyIVNVBlatsLH4gr6ZWqPJp/WuMzjha5r5rlnckH64+rapnU1vluR+vUENuLacB5Jz2nqYT6trFwBEJGLCom7wB/8Fq9MUL/FFhnwmNK7OxU4mZdqxPJsrDJaYV18MB1JurkXm89wGskzU3tfRZ0mKRQsw2F6/Uy+O7DaRs1RBNj7ERnR7NV6SfEyZ8+Eh1xQsrdI9cTVj4R+8SI31Y5/ttCUvlwNci67tqcHonseZUR175mdhfdiG++LRGOyVY2u1WJq5Ex2LkO7lu/JyLtAYQBL6O0Aj4PMfs8ACPk4ot3J5WCzy3JV+5OuIGj47Ow3KrMsIVK8aIFg8il3nCkvGsXdf03Bbk0GNBu4Rcnye51Kk+3p3Pp77ZTAVmSwFC6yQ9eNce8r+1B70aD6+VDXMMxGptV/iNnFAZMd3PokWJv90CLGqpWScyb/dIn0loxgB9Wzdt0ExiQGmInz3H5Gnqj4HTcflgb6j/DfyMTeglphDdfCx/Hpvpw4sWIQUHHvVAmVWefVrqGDwlQiSuSPhAp7Rgo0AyBlOfAztGTB8OlXn0ZiEeztVrkJQguqJFr+wz8+a2c6xv0VrLc+a6N6thmbg==
Variant 4
DifficultyLevel
587
Question
Eilidh read 2 less books than three times what Cormac read.
Using e for the number of books Eilidh has read and c for number of books Cormac has read, which equation correctly describes this fact?
Worked Solution
e = 3c − 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Eilidh read 2 less books than three times what Cormac read.
Using $\large e$ for the number of books Eilidh has read and $\large c$ for number of books Cormac has read, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large e$ = 3$\large c$ $-$ 2 |
Answers
Is Correct? | Answer |
x | e = c − 6 |
x | c = 3e + 2 |
x | c = 3e − 2 |
✓ | e = 3c − 2 |
U2FsdGVkX1+i7UqzG53h1eH2E3vPgzxN18/YJdqqJZSSnstAzwV6eQV2YP3/rWmI44IIq2M0gbSIiKK8+ZuC/FtXAXAkbF9ds8o1XSo8HqAL0eP+YdoGKC6960v/4/MRTJp2CFlQznJ7ugHVdugs0kMVjrWsaKD2oOlKqDnoDSglam8ueYLS63uyj2SRxmGeNV/KuHfoJhc1voEpcxJsmwCVUucBYoON28Abwtlq2N9SGiQ7r6qB2vFHtwa7KEW1mbdNryCOA6ZT0+OLypiOvg6oePSYa2oTsuK27kDBGp+Jghln+bf/f2iXxwuqLjbySWnIC1rAWUlGm1UFa2JIJvGI4CNIMoHgVCK1Xrke+J82s7qfthWJpBYK23gihbOq5vvMpSPfDQnYxsgQcHiQ1mXTm5t8Wypp37A5bgkAGo1ekZjfa3qLcKITXnJBzv5rMV2nNgbtGffAhK6ymf2FS1btuoQ2lAWUTJOH3znm7vKJaglkImkE6OrW88HFZoNfIl6BOgPuCc5F98VkNsSRlJBOYpOl+/+AXF01a8frEgtl1Fgyt4ZfQNa6cczFQQ53Nl4bDmSItNCX9+TbKCmPMMauurrN9Y3mvEdBiy2dxhs5CNM4UVWmabFbMNIsBbQfYuCb7rER/09ggzWd6SdB9XmYgBqpyYlsHt1anrFUCYrxMIAtJfkzZDS89XkPvL88Cy36wqESGYfw23fCYQJDyiRQymn2jkwScv0mFYq7KZZ7P6GLfh66r2kbmMSIQvKRjWTW7xdbw0z/URoi8LPPbKZdELnZCPTY1L07DJ2lS8EaXo8WHWSKIl3SmdiBXUXOLapjRUlUjJZ9/lI0vsI9eFCiXD42edrP4zAqeLVLV0kCl1eifhY3v13amzvmrd/Zw/sfczXHnrCDDRtFCQLkATKexcKpayFB7CWpo4cLQAuqC0S0Ccpd8iL5NqXKZKqYzLT1pKu5h5XYSQxfW7V1WWEuqYgm8K+s/ep1+nMRFXMCIvQPjVF5i+TXGjBkZ5gk88b4TxP0H2Pk9r7uEKTl0IcBd7ocdZHJcGUKYKl47Tff4d1qsJtI8qSGO04l2kS9fpf6c+TIXFYT2KAG29km8VfUH8FhGvaFD0W5V2hMiKLY86SOMs+h/0DkYUIvCgGEjXwJQ+1yIYOhnDGbj7q1wGg+5SXTV1gMIG/w5pEHSHou3uR2Tf5Abc2g06iin+lVrHdBcvIWPA/7w95k/tshhNKWqHKNbxsSdFzriO3e2uNAueDYXBK2DdLkMkp0Kk2v+Ya1XqIxxtKawdfiK6ihlsOMLTnOQLFQfLUEg/wi+tMX5jIbk7vMnZ2K3zznH8B3Dcsf5Mv/bOyHMXM/k7EjvuWJIuhNURvpT85TKEzl8CafbGxgvtZn5jKJyWwKlO6jezKwBDaT0U7eK94fU4+Z1Kqpueio09N1VmyvvgvCCKbswXCD6s5MVfUAZu4qUhMhzMtE1OMddRISLECvodVpe2MI1WT6RBrrWdNpk4T346UJld0naPF4f/oVo/gA4qdWS1M5mQtIofQZi4CrnmU+6l++Qx1LK/zAOGVtOVPvJmRAra9Z5Ogt7u3LSbFMbHhY7yPCM+ZAAifrZhJOshbCNd8zmlUujM3PkpJnAJd5V6wOQlK7JOoyCxPb9Zd5JewGMcA2mK8hizZ2uKjMQKM/OL+1hnvYWK68Q9a9064/di8Bqq25j5/05cJtWlGe8sGdiAwYHfQW1Zk7OyYDaE4/yUOCVhTmc1oT5FAE0yWEpjAv2CgVpVvjEB+fFL710yYc/HbnDyKSW4BYG10/Y56QPRXDJ6ULlH4E8SSsFdfoKtTc4WybhGsRvOdBaqEten7HOhINVSMbcic47j19qfuJc9OkiU6vFOjAe1WYJ/WdmvrtYHDJw0+2Yh30FcznaGaUFAHI2NhrIn2/VL01we7GEmHLnk/2kjjh9fPkWK2HcohgYi2SFOKbm/H8jNWakd3BfZwpV0GuZSsnGuPQXgY71jBNZahMV2cM3S3N9ZtOD0AP776wrXyLoMXKBcwStQ28z602aPqUD03pKskdjfu1qXUnx4sswBueA+/lTJTVdMik41nqlsiJ/xDNs2XPqloK+Q1BWvHI1Ti81pRymea4YNzbr4RGXg8r5vJOCqXSyEIHfd+l99RtF/G8GPaP2sRyJGSLUSeRU3cqQyMvjJFBnJXiRWrW8gxPZqSuhZoXHNnLWH5LCqEvqTCqjCbG5QElxBqTPxZV/GKIh8ekSVdDnCUJhCGpCujyKeIMeMYtwVuCK8xP3dIsFc/d2F2LjXJmsO7DldB/iXpZeE1rluOyeMANKKe+kVsI6RqHiYwqQfYG6/BaUanAgXomMeqeh6Zsj8l4rXkdGRbB/sbQdNNBEP7zdXMSispvt/VSaf+csDM7jT3EOtjOmeH98+E+GWTBHr6GgyKoB7oxp2mcoXZ986PEg9g8uI8FY+X1ohy4+EQx5d2kWSrms0HHTiEWaE8FXKrYbeVVjpDjnYqzk331vXifQAdyT32lo+ojahIEKnp1s/LwdIzH3BwnErmbqE18dCHqn7k24u+WmDxJVLdaWCp8NnD34UebIDNo8KC+wJQTA/lNgUUYoxuHU55uxxKaPQVnQecZvQM4yun1EbOTSSQVqKo8RLnNi/Rtp6CwGxLZMtfisP8WMZS0Q8eIOFKVwNGhzDK72d+5i9j6WVwpWi9GG6kOxmILdfMod4SxgopGwydP8xpMepLQVrbcxGosFCkrhRXUgLiJWoB5lYId6xuHYpDuBcaO7j5y2LBbcOEti5c1shTFcueLmxkitz69Zdl169MUjpBBxT8PMK0PYVmbureTuaavXaAnOTxbkcvBgNYBOUeraA7aOErY/U928e9/s1QJqcAR0iuuFD3Or14m+29Y8x6cduMb6P+P9CY68J5l1l/42hIswDW0X9V9PtVqa78G+q6Ig7fI7SLsQyMfgd7WYG73PUPutluS0EfMPO3cFb+axjWmxYJnr08BgMPjUTxyKXDX+NcVrOZnWqKGX+eegiQi21wLiYqa2hhreKJAvR0LnhN8ju14CXt+i6z9uWWo6DmB3zaCmwTxQSlGh9DS97tiM+WlXdpgbnnH+kuZwj753PVE0znQ9bRHnrGteDSNmr68L676M2W9Y+FeIeXJxgPG+uQ2D0UnfkdQTIjeStyhI27C6gtitGEvlTzqLjqdoF1vO9E1uZmUo5PukipbFW3c15BCGqPwwRNHC7Ga97cML4sjbv7HF3yuVBp5W2BPEyWPyWUwh0S0YZydAmUQtWziERV0VGNbkNVx+ZnmzZ27B3ylCEWqjSBfSlJ8LEvmxCCT/AyOU+/IvCvnr9yioKNhcJhtWZQCphaZrZmcs0A5PSJ2GsVKZvfNqQ7WcGiWYQdF9TZovj4gh+x+C1Q6k/9e3lZUMlXQ5U5ZYi/h9VSgnqb2Mj2KFMPGOUZYUKUFw8qU8o2EVvF6TAVD8QwzpK6c6qMaY3gDEZrPkxcEeFn4+I5oggz8WzeFj2jThECXDba8ch9PJwQzz0SyCa3EpC/6/3N8qNO6P3IGpa+UA04DSsOyX5ebm1Ff0HsWGXvDFuOdAGny2wNWzFpEq7v8aFGrjiGwRJMoxXL2ehfjvFsvXzcuFLG/s2XejEeWQ0Qr97xDVMLuud/5Rm4kTjyy/aOmIVDZZwUqxDIrI/G8m7b6ikzYvMCVhAxrf2dEM6QlW9xIx2/wyLqEV+S0yyWdqC6Zc/ywTwCsbVeHGMCuS+c2AO2phiEm9YierAyULByHHcGzJRTl8JRqTNZKGrENQky9P2o7QDNdeuGxWiLu+3tGLVoeWlbafBsBgaDIDpcwXejejV51hMNiw7SVcbFZjthOFdajpweNuRIAPV7byzANBvphXCDjLs5+BtIxtlfQ2f5QCfLy0zborhkZ7LvI3bD8qUbFMmh9eZUTbK31Vo+BH9sCH4kcLMRFsVQIZ/r+F1xuM267W/MExcoabdRzgRT2Jdw3sqeT/iFEyrM5DnI2SqC6XNM4MJYuHjGO219PEWuSsux4AlghW54O+dNccVV6MSrrUNmhsSvcHDBAJaZBVciN+/zzhpeTeSmPTI/hKooTHoobKy6okIdyRRv9wLzy1qToMN0M64bB4DiXY0mHeZ1zgKShn2dMuXBzXmxi9I/WDHLABnWgbN1DN0CqtennRj9+buVMwHGdZ7EQcZvHdYCkKoHCz+v+U5SrmonCxNxxHedYq6KX0kCbWpeogRQqeCh4GYgTmi6q7Tw3sgONsz4MTrJa/m6FzKrjacsMsdkGxugApDD3haeqASsSm9yBZjTfTRxf81P0GCzhINBbxfkwdSATfrgDs9xQFB67NACoHemrl2TxIphleoiBTSA4t6fSnlHftJPtGP7Mp2Ej1oyWFvAf4sXIN5eZK6aVsiIczlJQUVD9j5ErZsBTXtk/EkfGZGzypKUkGkRrGcTwXovbJaTKwPFKkv8VO/ELGGjYP+LHXLq6dAENlGNTCXIhLXj/sCqaHfk5LfeNRzlf3Q8/1PgSnff5LQhNWKmkFCrI2hNAlODS0NrZRc3h+Uns4Ft4Tou6b4LC1mhiAuXzoPtoe7usw22+Qc2OPkuxShVCdr1IHrQwaRT83HDGqECBxO2Mla8Yo0fUGqA6kLHekhw9xCgy78/HoBP4W6J8Jk6jU1S22tvAOErLVv6wuJxC7XYg8MCB//UYeqG09tyIeve018JQZjVoSzF/fER1mZhjDKOwwAVnEbwoGe5yRuBGC0jC31qTgiEOVtbl9+wIHtGv8Ra74coki1bne689Waj52uvS3WFz2lj/eYCGdFUnC1mXPTsyZkSYxs8y2QTAnV6YZwCFaiLKFgpjpZj2nMo0Z6pAlmdzNXo5SV6rh1DN2zORWJZglby43v6Od/SIaYRrRd8RXOm/ioIOFhMvEMy55cgjlvonCkSRLBM2OH3f/aaXC7x1w3U4a6xdbPjQDYaDowq8oGKblfUiQutsEmVbEgNd0q4WkDHfZhuhuMHDlq2oIfmRiGa7iuAHK3RVoTs67HaO7U/H02rVWfWrspdxt4lBr0/y62cY+OV+KheoxzYbiHTJiELKaGKDbhmAqdQHWjQeqG+mt6uPf+Yr8SEnfC5WJXDOgYG5LSUvz5a8/NpVQLv5q9ezZRozf4Mi4wiBWMpOxAR2ZylLvwiXw1FtZZYbERW1+NoUQv3vJeq2505O6hEyOzXleYCOlIELikgeQcgXixzF/YhABEmNrce98UAthtazB7ZD0QSpEr3yOCGrIeMg4LPmhsjjcV3lZ7erfnMjlApme4os6FKmchA6Z6AvM2VJ69rE3uk9HSG/TeFTMaerX4Z+sJbQXwYY8g65Ri6M67H/x2/2Gg3Eq+yNHl5MMV4D6foFOA5i83mhz3WtPmpWiVKhwNiPG2QG1sztcJfKzR8/+BaN0R8FYVCKq2KkTur9ChkUwRMxOpZMomV4W8VvOGQxCJGapFlg+0Ta3pK3hkrxQuqELclxLHEQx3Zis1DrsnbcCLJ9SLUmJQo9qAc00IqifxA/Vh0rq6McG6tIu292Xbuy34fryTsz0n/pTZvuHyRIoIp4MbeKTtH9+7ASOhnDRGgxrTnu+sP/kb3+okN5/yDkGfHeBURdQKzYlJgWcCh1Hro/OLRr56wSHu3tP0DR/quOL06ULf6L8xxQej23XVvueNROR+LhUo2j1JXGWfEzhYS3Hyb+vi5n2PmVovxmd+bWfHNkuepQCuXduP6NYeddsVUBaLYcqEjmXe9QHEtTX+BGdFCBQQXYpDHvMxSVWm6dIdEb30WBzOwCJxf5Scf13F2LAsyK60+/B9yWNzAPmwwrMtmHsyT0xpRy02wrrA5xGjxiH+I4ZVqAmEwGRKM/U37dSeCfmUpQsCX5KfbFKSvKnpYekSHip3mbwFo85unPO3j66haWZEJaMt3dIxNuDo2fMMO1CxEOSmfwkb1UAS1N0sePimYdsGI+AlEiHE5VHZI7Xsulr0Ul7KtgTYcykDSPgzz9Q98CPYjQFhmDvctRIb8w8hvLLfkiVQUklAcj2nw1A6LtT/WR9yoey2m6olCznb5KaMxpxG92fAcn2hQg+Sc1sySiQtSyoR53LEFDjPvxn+JD2aLLSbbv4mczxM+GPPCyXP2Fi3uHrxceYArDiWGqVM+jBBYcUDywn9fPfsurNsZuMuZGvxSwcBP5MeF9oa6virYDXC63HOin/6QJly435pUkn6mH3oJbEJZ8mQTwYg7UyXU12UgyiyUFZQM90STtYa+88kvIOHS9TKlovibSDH+WMNNcG+Nzc0vHz1dbx5AjK3ibp6A32B99eDFDqYNLHTa3/QM5bTVrpUKNegDtU5k/JjzXzm3xwgxy1170CtowZ2y8rmROPto/y7RNuJYUY+zWoqTgaj7mXLqbfrvHOGqfGmmGe8naJPbW6p6xkes4Qmsta8sMakIMf+LKap65sTfsUMBAL+IUEEz0kInkzVuuuOmDV98wCKgjU8OXebHKCL2TsQnS8EWZOV+J2XNPX+Gyfr062+47pd5BCLv1MZHV8JAjr7LTn5YGwdZND0SLnKmc8QVnhp7XCa+fMJGbnTDmyPE3ZmCfQ7fRRsMSwxMm7bXiUfzixtS88S/y+PGq6/acq+5zaYwXTQpM/Jxqh6yAahLSgcYPRD3MPTPKQLpQ1cH7iweD5g7DS6+YII0XLOVHOhx0twIqxGp3Tj0FNYWA+4MdK5RhyI9SjacDdqy0eVhjzrShcJGolaG/O7dtodm17j0/0qUYxkyP6kkq9qIsaAApK9ULVrI78l5GSFNQ/rYja0fGBG6HJGAK39OSCsA9fnvQNfOl0UOMrCKXxdL8UPL1JWFy0sJsLUYJpyZqpavseNYw7KBkKWlQgXQ+Lks9DssToHGgCn/YXtToNwO41oW8DyxDVVEr2fCsO/f3ey+zl9j5Z6KUFXbtrj75uSfORckbz/8HfMvn7ej9jXAs94kglAeL2LFM5WuHiAYgV2jOZ4Gsqw5tAI0gnTeU/u9srRJlL690Dp+5Tpt0LlJd58RyavnzT+QmXy3YaiFwy1Xfj/KG02vbOshkCmlDGn45jT6MeybUSRoJ/ZZOCoJUCVJlsdvz/rZP4zz06UFx+ryqJ0M6aT8oQ51v9qXGX42kwOnLmGiYUAVTf/j1VuMSh7YhCFfstEKsF49VEPyO3janwaiXrQ/IGBW7tZ3PMd1sIIo/74tUhlDzDBt/ODNyRzEVybAs2h6DTffBwz1+Cfggq6tclgsykH3gVyURKSnWWHcAodFFICS0QCHi3UyrBykTSWIY0ykIbJZpJYbkk6BHCEitB+6SEqAnD/IMpPiL3CYXWM1QIGrpqTAx3uz1e1dzWGc2Y0PFg4TsHfkktY1HH/a7y+pyklGpv8wSWVXRZOXcJg6uPSOcbKAJJAhCtyjVRWur6J7yYRVyJIiX93VPoY9/AcIyzEu9WpGOIKg6jaisgUF1pTKSI2TToMswCdCi7gm0aKR8LZPYBhzDEdxDDcJ+JTr6iqZRfguLssnOefRrPJJ7ssBGt9j/6ScuNc8NhmUl8neqk2Scy0ss+EkbBmtwoIR4w6ihuYVYfU/4ZoptNPC2vn/xfkfwsGjRip7zXoGLWL+RuDMP0guOIn3yhULUgSJgaoGvsg6EXGQxL+g9izBp0KapdZrdm6FT6/oAMAJOh1co+1UhZl9pMvHMki8rnjmjvWp03BZisRNlQ0OABXtUbmXmFLcEkOd+wkzwvzBCavjahKZH0sAkQSt3mr7E9S6XT7jYDwTudGEBZY04ST29SvyPo1P3oaqQGBQMYoA4Ti/7wAQUXTHOB9KsXgfCTL1LGBcga8b1ygfqZ/3zsz4uj6VLYIh3Tr9Bat1nj/SCnpDA+ucx6D/7X+pUtS4/6dsKhUfiCh2FW4Cao/X+y+f3cDsBqx4xmGiJ1mfc5xBFOXZ0F0JrfJtXTsb9zoImXAuZR0PxMTfYpTgg8Ap0OY/qBu0Rsp9JCNRpCo1edFXpR+MNRiFJVMillSRhppoIhc+UppPTa26E+/ZvkAf9TKYpjwSo3gDNK9GbbOhhGRp63ROSxeBhENVMR5DJeaohnAf1uH7rhZoPuY69A6x9JeaV1PR+xbw9qqybBYX1TgRo/f6GmvOrdNLP4gWPPvqt81U4gZOCUFdq2M+O/8NrAr3MuS+zji3ptmQCBFJzVwuPhnTji8uRz3CremQyqpY2p56bwgc0d8p4bViE0ic1wNr+AElTlZx4IYUTb76Lnh3Vf8gmMUf4gGT/NrWmvGplk+uDeIVMN2A9onDA+1CraW2Cjn2zRgiLQ4NiaRhg6BMed2SClRPRLTDIeFjmcobKUSoQFjASLpWnnlhDZA1Vgx8h3Ps9ULVIpDMAwvTAzSQYMOwcr453hqxZIzAlizDGZcVLDFeCZmAXdK7shAVH5oqU+jwDYFe3KabafpQLrkNbDmr8HnCjcep26DLI2oiq3q+wm1vlmY9uIyICfv4kqahjlR0B62+QMTTEbpO2SpCGFpjF0PfVqoSqX6R0ybZXEjQudTqX+PfCmNXCtJeKZQDiXrw6c+gCkJXsgaBcJT9MU5sM50rcsrKPiugcYXNshmTZjQU09rNMnpC9Fbzf/HwEmwtrkPRnbBnIJqDWmkeiw+xjIYMa/bKVVyCL6qh9wj6o27TJsSA5DOni4ufKvQH3wZ6gB8bSuBB23xl6FUJcwaczKCOMoyVwQezdX7SbOO6sxve+bM4l7nLh7xCs7ZeBBgHq0mKWCFv1ywpNkyqj3upjEqIwvNCgqd6y/EIANBfmQrY45zzWxNDOU9+Vvprwz+Z47TOLoMN/3mT06dBh5Lg53SbjjBXgOSiJ35+i/3NXg5nIh+8+19t1RCZyKMc8mMQACTm0YKqegBAzrBdRDkzb3C9tOSO/upPHCLwx5nr4kQlNr2rACwEGarNm/tAOg6NBny3+STdDVvad52C+PH7m4BLxoeFOKLuyhQqUOPoLHJmE6XtaQfs4hnZ6+InCkpZAy2/S94j96fw0IqHS8LszgPlO9cMAH5n7kt6drt85G97vgVNC4TLo8rJbQY0eC+XQXgauNK2T/8oZjmg4o45apvMGgOOSxHpxj8JC/gIoXqETrnBug/eQHt+NXJ1OLzUW76gpZBk3dyFoRveYvsHwEJDy4RnLc4I+qxP8uUgB0C7UL/mb9/EJz952MSwGVhHzrRYycaGWPgtywkrydAxJhdUO/Sf6dUX3U8TKbeFO+4ztVkwD+1Wv53g92j1uC+t7JcBEcIdusNhxIi+xuaopb96YvlAcFHghuLdXudWCJnp3rsgI/RYtROfD6I3lybPCwQE/fYqicKQGNY5spS6I2QetFZEOJ9THOJgxf2oFBEXM5CESpYIAV8UyRZfK4MRXKk0qavLhh+Z5Ch0YKK+oKJae3YUTlOS34r45fIBiohakPMh2sijnqV8Vpv+fKT+Afx8zzqtvg2R1oPYwW3K0G1YS2sWKndku3RkE8BrdUUoR42nxhTSnC55Fnz+8f+ECZe0SM39uGRoWZAPBhxM1obx+ky4tHLOafN0Du70Ae6BV/K4sN41GicLlUJ47bRGMKMZMlE8Wv2D3tyZPRNeXonGOrLM302bxGSp9wMmEi7h1djPyLVAINsMOWgx84S+hPMMxSayegKCN4OI01yI7XCZkf5bfUS1Qg9OnoiOBJ70IYXy12UjUJnDJw2qzt1+ET1YykGGz6OW+dlJAb+iL956WLx43ccNUu3LuyF2zoBkrp5Vqp9Ds4zLTlaWy8XaebBEAZIp4Rb6LbjublQXwtwjraWYwuahzrCQnG3XcD2PCEEeB/SIPapoToMpH6xxd3n3aodt0145qdYa/7qVwTHZpG+/XEHucHw9uEMipE0NpOaI8nSHgKsjU6M3oGyxSiFkqhKO8Gvw2h9hTVLzpzpGu24Ap7fLHkT7GKtJbf0DQMY3o6TnQISWoyBvqjjfwhWXUwC26Grxg6Vflghtf1hWLKcFfFmxymQNWMVuXNVIlDXz42qYYPkbDwDbrBzQ7lomV+OZMHxQjaa3mJ1ZlwVGbjC+Xd7Tl/xz+elJJWRBwd0F4WDrBaTpXxnwEUJNsglRDcd87ZnIc+Gv7akqHJYopQ4YzBPmdP3KyOOHJ9EM+ZGF2DvP0JicpT7/UyNnhD7HQmqB2BrI7FlEnvH3kgSJUekiR1Mjndh4uIGE0tCsKzkdlq2boT7KDp5XkmZ44XSXZd4rHH8aNYVJLCNCFQszNW4WOt4HIkxCxIZ7s7s5UfktSIBgiE1UmAKryshfFWv1mSbNkpynlHh+keTl7vpd1r/h30shklVC/kBjSq2oKlUUfnpU6Yj15zQU7zh3YdVzIVFbWgPw5rk07Pqqq7UYdREVAejCjTZ0z/o+HlqJsQn3WaKDyydfAU2L+X/g9xH5BSaE7u2dmKnlmf3RUSvTnuyV0/NMxPiFLcYdtPETiEWYSJ6UrjrPzRqQMm9ziWk7jBZp2iO3h19M9co5U6PXt4x4Ew6VYt1mcT4ydEcZJjCFPy4YM/r/juFgOQE+8eo19O3OegfnZYcQXotllaTTlHFolPOsh42uGxtJFN31sakqqdLK13HdSyqBKHREfF1SMw6yagxwfQ5/StN3eQJO46Df9+oJf5VTtt7d4bRFitZ+1kF+Nh30F222Bni4MqHUwlCa4OBGxpIzVdoh7ZlAxWbcPKkcDLik+q+iIxIfgGIMMCjZZMrV16pfi2Qd309qa9tW0nlRLfHohR4AFyn1HSRnGJJ0EZo0rsHXgvo428qdCiqeGZkMBFj7nbf1xITWKg0Ed2I20ORWQyAVsjnb/VHyyPz+CTwX2+3xuyIE5Fv8KMAGOMh+DHMjNyLKkpIHvJXyJQReXNElsBeHkJxszFYmWwEerhbDop6NHAJxBZumQxBJiiAawVkTpudrOnnhB+JS/+T0I+jcvngtr9kK/i5nFSRIaWu7uwT+KEflTG1gkgkMfGeLG3wmLCGxBEbb1DtSz5iRqmILssv0kmrWFAvjbRRDTv1KH7Go3pPmyCHq26sx9gf40Qqvcd8vSQFXU5SHHlcfitaPaKCpWgSWBXOG6jCujlL+OkKHCO96qJSpHmdF8mtPgXg4pgabEJQBDhZml1fA/E+WuvZ+Gbveru0qu0UHVF9qV7SE616WjLhEMMtDCfU2Ds4rddCPiP4kHOavJJUlekDrVNC9TKQkHrQsBRpp7rKyV+AuhY5YaZT4IEn01v8pmwNCLkQ/ulCP6ZUQLpT2olrs/GrnUjv3PLJiezKQb30ajr2MaANWJ+vS/JEEUEMI/2D2OUmFTV2dLV1t4rHUvmCXBRS/ggLUved3uDZUnQRj43EMeMZGRAWhAW1QqexOU6QJ0XrYCZUcdssUTGpCTWMRrpR7J95vKhXGTsqGpjZbHmvIQIQPlOzdWQrjm0ND/d5FCUXEbUexdEydrfy0E3UFR0MMMkISoD9IV1kHEtkaBALXzl2V+X0QDYipNpMVvqq0OFmH32IF8u7EqPwDw3/WHkdiJ2gSdERLzJ6Qsf+09FqPisv7zdmY1B0Qi6Mda
Variant 5
DifficultyLevel
589
Question
Stephen streamed 10 less movies than twice what Bill streamed last month.
Using s for the number of movies Stephen streamed and b for number of movies Bill streamed, which equation correctly describes this fact?
Worked Solution
s = 2b − 10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Stephen streamed 10 less movies than twice what Bill streamed last month.
Using $\large s$ for the number of movies Stephen streamed and $\large b$ for number of movies Bill streamed, which equation correctly describes this fact? |
workedSolution | |
correctAnswer | $\large s$ = 2$\large b$ $-$ 10 |
Answers
Is Correct? | Answer |
✓ | s = 2b − 10 |
x | b = 2s − 10 |
x | s = 2b + 10 |
x | b = 2s + 10 |