Number, NAPX-G4-NC19
U2FsdGVkX19lMT5VdlAvHnzXcjDljzGFC6xHWxZSnDp9d8oa9QzQQjY7+t0X1RXGLPxfpiLvdTm+vCwjd5cVrh9cmejJoBm9K5zwv0/zzK7jFeSvNX0ixVjeJxKlZcdK/Y+G5n4nI+2ZVZ/nGBNThQuUIWQZIlqwoVhMQJa8uODu+qB26Qflsbi9zMuTyXoAXm/YEsLvZacI04+Sy85VHxKRH34wVXYnGByyc6nAX56GfPhhJyuT86mP3C+k9m9Z2kYelgjOwqQD482Ey6+ASVE4sdnwxYWkcahIt3gkcO/+HZpqAhRzTgSgLJFKzDIGKVFz4GNPDAKHm9chFkfKh2w8eaIQ+R0aLn/Xb5D6Hp+1jImZXUFyX3/3+EmvCvzvNs8QQSyef4E1fwKFg6ZSEZ39MvNn1d7/MCfXN611v+NyHeaLeJifLuu7IFVkjMAfOcTbPkc6vVoGRZdyq4aBd5TKcb19TeYUL1IWBCgnE2Hz90Qx+Pj9Xg1uBOJPIiHJanbyYkZqAnDkZZ/xH0q7H1L2OVwlaJJQNbEBAizv5LUDyxb1WERsQNQfbDa5Sf0npnQY2qUv+zopnHSM38pK2K4I/W+6/eCvKf0Mjin43qrc2cJjR04P+FpMnWNPxRq8G0psB4ZLKjK+CWAhbU1V7RwcWnwhT3GZqvAobLwaSY+Am/8V+NO1GFY7orRy9Nny4HEWlch06BcxiqELHPO7j5Us5HhyZmEZ0JjxJOYzoy3s0cefhdb1+KPkxG3iN7arHB+KRbuwppQTn1uo0ptu56DCUAtzwgMNYaHCvwm8ynvfnhCmOhwo+IiAh631Nl45E3f6NKryKdv/ePTbHHwnUMOtNnAIcthYAP32y0jokEouwvrngSQLkYCfnsso7ZXnn7Tr8XCZwMMCqEgXYZvnPoNHXYh/7pHv9vsVG6gyMjVhc8B4NoaLnEHfPbp3zqZuYs90a5T/MUokpxmt4quAepRa/cEG2xbz/NZL+eyEW6DzjHlDLHu2jGPZ+El2BqclQgCY978WcYWC4KJXHyejGAQQAJhMqcXyBbSWB/mSKK7B90i3r5u7+wGqzF12fFnZbKf3JcDGTO5yQXjlzII4i0DUBxfrkudM5qck1TxXuiae5AXuq7hlUfa0l+iyW5D7Z+OMKEadfUP6T8jMfbFK19onZHX2gl3tDPf2/cKPBfWnJtDCe/HwQsP1xS4ezuXjytz+wMZW41izFrTqyHm1rnp2Weef5ypIlZXHyuAIYmOLrVHjDyWXhaKVtApxLaQpHJekzdoIIkcz7uYEI5X9mmtFAG0s390s9Pplqmow4FcRv/92fK9DGQq8jQEXD12oKv/7hrrO8uelQZLNcwp9FYVNDeHpA5WVX/n7iMSwuTBTdx1TNZyazApV54KsC6L+xndCMIhKvNd+yBaORqT/qhLq4dby5uYbgOEL+KY4Feni17BCj/OU2qfsSQjHkVgsG9IFqoLP4PThAbClF7Cw37CG5eV4eO78Ijee4tDUGJ5sOxIzxgTCYsPEaGxb1co/eapr2YCru2P3HT+ij+V7MX0qrM2IVFk7QDw4Od0FL83tYLv3XA9zsZ8W00vDIghVOmgz2pyg6WKfGr37OM3I3TS9D7DZrZFrWXaRKWXmWOqGPHCazwzdgWBKJSFPuuY+r0XQkZbnJKyTZtAa8LY3Brv6/2t5dQyrH+vJ1EtzSsaAmEQJQhr5AWuFNcYbQcteedytitUNF10IVVJKljyVUoM02PmQntvbQJFt9PQEgFGPY3ncarV3nVCy8qNtY5zqRuEv+xHwsOlSSngti6MK6qFuT8YqGDJCdpNyRSDTLq2X/rvxQC1wKO77Agi1pGnnil1y9w1ATaQCIGjPne4ktD3mXSDYg6NkHccmPpQvfiNKMVy3cDo+YZrj31sQu8Kja/JUzUECWcUbuG3jGkaqBEVgtsaDHWG0gGgeTAzmSR24kF6HRu+WXYCybL3A0qDI6o0LrvxK/tBobrLCtCXQY8z823QgUd3WaF5QD0Jubrkf82ekNmAkQ4hiITmp9Jtv8o9O5pIOEvin5R1rEj766Vec5nF7xTSNYCTDHLO4mPtZJMOWj+IuHMSP0sBLQCPsCSQCMWNwdJLb99AZz4KMmMYtL6h5ysWEgonRDAA+36wyvXEIZLaRDJjXpeOp1h6fMRY3vhG5ZXQNR2zGbA2k6ihoaH27w8ZQBlJ7h8RydHuyr1E1u+CzZOQWPQACm+0kZ1r4UmmnQdfHK6BHoyQ4YVGbCxGZ/5g2QTRA6QDX6ij43A56eRPJ1mS4mPlcSiGSK93/0QX3tZxLbUEdXCb0XitWG4lYTqNCfephjjM7KUUrBs06YzMHvlykbxt8ZMt2IfvQRRg6hUuMpMRb1K5MhkYMD8xXalrPgSfICrLHTQI+iETOafJ8yFq8pCryjwOZ+SIujd6ac8muA/r84pC7eLhMyIHpnPjgfFwI4J3Na583tbYu0h8iG2gds3MIfWOEwP16bEs2ERKkDrtLrDdt5OxlszqZwmnCR0efW6jQMJA1zmPaO+k5cXShYLrMEcduohJ3zk2Qys+EmJeA8viAez0Z2/nWbgomkb6Ay0wy5BXYDrKlVDmi+spd3kV95/i3PGmvwAm/q9YV8GqCgeUgggj2pu+S8McC9e3tvgZ6HUoa0eF3eAJ46so2zdjO6c4nuolQKU1uItyPjbAyiGMAKjrTB/c8UxaQlMkJ7JpgDRGGbMAX6rHqi5uu/FtZeHvOJHSEqYIa6Caw7/8PocfJt5k/1DUj9+8CzZf0jiOJ0x47NTweTGkcyd2pUEhWw44DhRr33mUSmv6xd343SDBeV8fkzP42XxyddDq4WMhlJWaLiS053SHH12F9cZ2D22e3EnPuf+EhNqCdGIvQlWlXgXo17gl9kn4Ag/GDS0uiqEA0Feo3s0578MUnDRU16Orj+HZyzHXzq/aUBkFCy/IwOQjXxKFr/oVgYaVPwZrB+Ce2PupXG5LyzvSJtTSKCdm0kva03emVfjYocTuP9If5ALS+/id65dv06DeBg8FEahgR8uBVLLBdiSJc4vOkWlGRvjumJgJBnXH6gUMELkfj6VJBYO7iJ1XkE5cN5crWxVkwVe8v1jPv3GBz1hr5DrW+XRECOIxRoh9EfYbvkSzw4iVlZKU8HdfbfDCLEVPXIaMUzaO6tD3OAJ4+m7PYlhJHe4dHxviwXPiiVK70zFmA/76ZPdsAPvjuEa3FHsOvpuALjt/QSQy1XYeF+bAVYZr0aq4HxurUEEYbUtxKm7f8a1pOFwjjaUOPFCtFOIRLpoKafehu/MBDMn/uZHGXMNKT0GBPAcr+xLQyII9bBWVtsw4VbiQz7TuTsNChE3Jwp0DfdwXzvlj/ruhdNA4kYYz9QsOm1V/cMXMtg7ul05iFKT1aqK0Qh4MSPXXkA9NP6LrvXVXh7B5isYUf8S4u4Ak5U65cY2TV0n1KVuflaW6x1AWKwbr1Xf0jg6h4mrhqb00sy1ASRmzfwY/vZ5C1dGaNDHJx7M/66cXXpcKUfLvwwYfUFBzWhwgm4fNjMiKD/EcJGmk7ONGE9f5x1QuUav80r7gxdrQ8rfNt2d9dp+ASJuuRqC4Z5WOtJyAnWLhdtVMiq85aytUZ2Hn1r9X7ETe5boY+GobSrHS4kDYZy0KUwZMJOw8EsZzg1pDLxqPeMP1tPAxKM7MW38bFcMNeKLUQh7M/0gWqlY3GfuY9OOZga+xT4idHYDWyDHNvNGJIdldEQQrv9ZKQ7lOL1hlxRItTXVaOQPj3VDpio9ZkNZIfMMEtcv8qWIuG2XInDIctScqL7I40vLPm+X7rV7Xl3/1YeqtdwCYQFvMmXVC7/DZRHknFZxnMLWJfM3OWFc1t6ORoTfZ49q02F9gspFbTzHlUDIox41c8abEHJvShZbzCN1UBMCdVkYCWoAXZP8btc5TiNN6Dqp56xzpjuBh9yBm6F+qLGuD1kKZwWuKdCqakG2R0lcJLg7hiO2mr+zOvUVolKBeFsXJTjB0v82BUqsiSDX2/oQwdCxRv6e+RAsQ96zIoWlDo5bd9GgSSu1AgXkRaa3LjS5avPNALYjjMkKoAHumfWB1D+maVeGXbhFjLIr6UEI/YG6jTL0bv9K6hTCN2Xx1YvmjEa9Za82v7YYrszj/vl1XSCvBuWL/PxTeOFAQ8ncIkWtvpkyzu22Jccd19Hq7aNPOzHu7Ux9tY47R1ZrBnLw3R/CFEv8i/9R0ORz8lk/TQLa1XQNdvyQaiDkK0gI6IM5Gh+C68wpa1jmKGTzSmwETk1+F6CGIHnM7gklpOzUKXYEf2QLm+TSM1ztW9xlt55TSO8v0E1vBd6/tsMPYixCHOcnQZlDrlNsYVX00lCZ7fbRrZv8OjgKO9lVSGVgxyJRLfHooqv0VaYBTpJhQF8s2V606y551qSeTVfXKL8KA4TeMpV1kRoTOUZn9lu7mQTqfGByudkYp6D8x8a3pSE486JEGQ+uFrdWuwLmyexPdKS0bAAiXGCnNblPaGxXa+BB3rol2o0hIISAPKgiRfilAOBu3UYG50z2bfiVmw0FptvryET7ful0pyF9K+YoBcTZUaT2SWBu1VU4DtJo4hiItCV46vdUyw/y3ddQeHEaZmrF/8phFA3b/WB4v9C4AkLoLdNDwFwtR/FyOu7GJzaRI05WgSkR215lzx7lRRv52ZuGqGM4xCmZpZpdoNS+MN3Dj2UpEUw1KyN27AZ8u2i9/XyvkuLaVeTo8B94LRFEJ4YVK5ieOX9H0OHKvVm1v7aEqOeWLedPxeYNVvvTlNJCvha3K8LoSNmwCb4jxgOvx7fvpX0T2XY9AFa97wczW3X+t7iFy7R6fZNsjrdO6I1fV7BpUBuHty/PLyFzLH7nxieqVoTXO724tJqLDSSqBEEKdJ4R2eYE1TkL/EHVgmXwcdfCLKYVvwmz87p+SXpnO2RhkcIfUUlo3MwfzGuXitsXC8lDl7tp7sSVYf/ja1jA43KmF529PTvSFM5hZZ/WUERClYFKJd6HPgQja+NsAHmEv8f6CcPBfIOwIHFLj3tbV+fx+K8NfacnYuEcn8FSnJlZzmmVu8mzEUMTuyLp0JJx1jcgmRzkxIRlbqAocj0ZZ3YOhFSHB4t5uL3IHXr+BFmA6RJ0iwMgBIz1nxIP9DNI1XSp4XAPxjQENWamIzQG8pQia4zlRVum0NI63AP+cRKZ59zuPANR4FGS7J6fSHbrgmbPnAWHWMEKX6ZZ9KvC+sAKvDbrDgYQGuyeIPfn0ky7IgwpEgx0Skt5EZ4udOdonNhlyZo+qV/6aEJxveA98iPsSM8jA0l0t8xRLAoWTUWxaWJriRFUP67SXe7nDAlHHbmMXU6Y1BA2ysK8870qbIdOO8Eg9d2S79sQfnW4uEiY/Dv3fUFIgv71ar/UhCIvAKO6OpB+kdYvFftWhgjHa1e9Dp32GtJA8Ne9j793V7dHC00MPqFW2nyzECspZUBnnEeT2SGsAzsmP5ppTaYKAS3YufDnRL6xY0xsjUhQiIC1mkYb/weCxnPIBItrkj47ugUcLIe7mf9y40IBuKf0wQBSByPZDHEoKcZ44CQ13/rNIh/q8WeX9Wpy4XWVZvfcVEt6Plibtk2K1gwKBxlxZc0DlzGuN9lHHpODYIgASQMxYfFdAV4rnAZUaUj1DCidi90X0OzHbZ0xSbRTz6aL1xEzVj7dXVX6bKIR86qMkkY22PMlz5JbRLZH3AbqFeA7sQ9YfMLaUBiocdEESaZS118y1ZqmfmTFbJgp6h1I2MdZ8qNsvObWT+d1O5FLsLCMqxfZWjn5/+ciQV244NTuDUkUy3l/E/20/5MGDCtGFrqUFv1Kely66Q2aGwS1JdhZn3Ohz3I0o1jOyqNQ/kB5oZHDv+Xvd1uEFzSTaGgUAsy5goYw7pGbHPJbiU0tFoAMSj+3YJM+1RhzqjHCRkxkoQCqrwDV0QWSLRsA38DerfY3iwJiGLt/h0+3g/yDT4HoLgo3LlfcgMekERVcDtLFafpO8+/gMYIZ7uecI6ltJSEPy9obPpkkDyoaOZIxJgh3/GJwhXeiI4rXviwVchdbK+6rM6qIx+8L/Vgs/nZR69nIxonK4NmFrY5iYuCuhsyGsCsN2F6WOg5QFIbHeFVtVLMfPTp6oQOZRsQvaOSSJCfFmD8dXL0hdjq7RIA2PvYxsW/0x5rcUOW9HQGR3eEl00TpB9m/+vNbILONvO9f9qc/AFWyzHDInGgB+JEQC/EHv8enwfAkikTRSYLFr7ym4MHjyylwL06u+QC/YpnwGGSAhkPxo/PLzggAT+jwiUmnu7iBbePt3JqwNbJkKddTZFOYTHTZiXYDQP47YQyWKBLy96xiWvAZl/IWG6P+YP0t7RvNN4CpmB2a5mbOXTSDs9vnZsUN/By1VX8gUHrMGcogTIJFkv1Khgx7D+zyjIt8IGeBF26WajH6ibvUCAx1Gj19DrjWSQrfpdyzUv1WnYyVJ6Vg9RzB22ZZeRDCnlA4d4/c0Q0yaqlfDiRAsluOSg2212jcuaHviblW2V2TL/VU355c3V5ZkvndMnMqtmSkYYN6pQerSxWun6xzIToqHrNYveEU0+dpjX+cXOPLcFNq762EIxhxaqrTfy4CjAepmYTyMj8+/TSOsyBHCnmutfTLaS8dGIWjm+e0M/O1F8cYEh5dErpKfDaflO3hEOkHhz38ECekDL2VhKK2/7EntdrcMEGr+IGQLxKlTRyN957hZTGX1hQ/xFTl3Tk9WhUgo5wxZKD6QNjQQzA8/u/ouXrhkkwS+835KHCPdzQz3uAJ4upTLMP93qIgkX45ia/e5bHqfdsYro7rEyhX8+JCzCN/4DV/kOQMEHTa1ojIbswgb0qla63a+Z0kH0MBlz8qNV8LCWIqbflqpNhomT8MA0IgR5Ed/1E73nau0Pm0CzZj/aZLVG7TVcjlI0Cca8fU55rAagaOi3Q149gbQGJwS3q4I/clzwVX303BHzjpgSSiN3lhlJhokUlw0pi5p76S85AKtDA5GQaB9cVZIdLusVOE3HcpydW3dCEdE5tjc/Z0caeOXfjK7uZL8lFhH8cVcdu/uQRThX3AZTthZvKpUBuvTJ6vWKZoEuEsVN0eVRv8pXH3u7deRzXXXbt3vA+a/OGUJqPs1vGB1jI3EPEvynMP75SG611ssCQvHjLHhmJkkFQajb7EbvIHCDz1qBLpCXFQyuHJ1SrKAqt56QMy3dyqxl0i+bSZyinGx2ZehFE0+9p3qqLdSyH+LeQdfkGcAWwrx+50R3drOM91Gpt7tPbNcEAXdCCON0TpCZ8MG/J1YU4LjeWMpEFlARTgi0yxgiO8L+xrPR4CL38CaPaQQbT+TAxOlclYdjcDBRj9u9cdybEUtYfRtEgJ3GpmEBoyzOa2QSfvJYCx2zXleD8hJQT1hE8+oQPbkzTBSF9MAqyesKZOQHdRfOmKwFccPP4nbf1QhynbsfGpMfbqDP+9JTvVzffb8+v/YKTbTawZb0fRqRt9oQjFwOoo0rEMxGyOONTPJ4coxRbLFCNjvnqwONRy7ECg7jzbRjtYuaEBFXpOjWIXSMvxPg1rxatg2q/59+BsJnz9l3q3fsXdW0V1wU5qWqNjX1F/BUMZMYrg84Ek7bPDFTeRwuMOfx/hkAGXynF7dmeRjvPC8TJ/SsJmxBDa9W/UMVQ0q6PDxMqd6F39nUnqdhLzThfkvNwwKVMZRrIuW+G6gGdvExjXHLkSb71xVNj5VdiU4/TjJWkJQxfmkgZ680vNcJQC3HHlHfbjHIVjCwqXmiRojBBU59KdY4ieo5F0S4fPcoyfdTSeyp+/jb4eVE3oqM4UhkbXjLBNSqfBWfDssr/XSXwnUEfg7Te+yzsIuxVC17rD2448Qi3s4t+0pWJiMxliWLIOXbHyR5mWWNr56K6MtzvHpKvJuhm85trv6BIvkC+W/Dl8vDWLGHYgiEX5hec4IjxQKZmi3YMtMT8ZXVw/3PFj6K00xD4nEzrwpEu9rmbDPKPMUe9T54V49Wml6HvNoHdMyMIdWv/u3AcT+dFWgEj7ytx+o61d0tvwcy9fCbBirHor4rdKdGAmp1sAMA1uhVMER2+6mBZehNOF8VDQ/TCjEcfF5X9DSD7KrXLnkoY+uHpVY4+N1tRmtMsHwBV0zbwSMJM0yOuHnDbZTK8HFL/NK9qRfFAXGnfd+JUiEojGELzy10We2BmLeNJ4C9qvKhFdPqhrCQ2H7QN4/iq12hK0EDwTUSHWeFMSbDfEEhxx1NmPW97+BxO6qRZ1BT8uw2e1KhRU2gY8MZhIiKbYGoFE34xteJQO6KQMTgZzv7/6OgW5JH8rzBngoePJCmX4fOqWXpNTRo4AfRyh4lkc0sE4TlJS9rZvtnwvl35/Le6edk3AxUyXdr4Q/FXGp3DB1LPAL0SM7fXJZJvJNCAOSIzVoa2g36FZFsCXreyfoNkxiexRF7swXtB9mJb+AwqZLjJryIg0PyZwL+TvqrMMY3GFnyBaeFJHHNLEnc8slMvmZJkA41DtkxS13jy86tjT6DYQD7w7SwqGnjzBKcIdtxlyeMlTJltfVLm81JNWkXwtD7aDZbXq93EsQqo00JNbayRYPAoF2xpV0+Imq0w6DiT9vl1eEaFRXiZZRacCkZwsZZvC/cv1Wt1CElFeJfHlZsiYsF06+GC4MEtNVqTvjOQypwMPa5O7FmWrIUeZxfZuOSPeNw9Kg9J0DfxB+nrvRdvGBjgUxppQN4lBqk5kAvb3uFNdVW/vjE/brKEhuyRvCaX5LhoQ6DLkOj2Az5GvljVXcIy/jVvvgbQotuiqht2yGIUaGfk9xAGiRTWjwRsRab1to7qIXdNi6JbFfZswe/H7uJGif4kkn3ZKcGh4b9a1Vs6iMvrOEGSuPamUcjUxnnZ+aEyH0izk+9lEUx3L4seTOvZqnJTV34EzOMhvi928RTXOzMgafq+Qr9DEGCUgA/vy27KhS8Eib0iYaoMPRQUdCO3DFrYlJanYzQvQ9lGP281Np7QGdBt0ybg4NY5wycfxb8I3NslMHu5WiCOe6IxigtNQcshHhhnO1V0fXUBIukHJHUPxgv9jN8Dxplkxo9N7yOzmNsGzgNVicyVkaz4wfRiFtTaTA3h/dHHXloaSpkRFMGlykLTo2mqD6mbB/undEanUbI2moROet1Qgp5sdE0MNETZAEu7/gyTvkShCxTf8G1Tyd2Wd4KFjcv0iZc7iU0XPXog/pF48hl3BqkcKijnLsxyZn+6Sanv+whW4+JpkqRRgX1VoGc4NGYi5d7Ar/fIU72e/TCNCyxvR0ecOrovSA9W1/2ZwEz7G+XHhifI0aqQuSSaIM8MsKB0rBqxkJE6BZG7OqU1c02guKyg2DGYJ24ZKZadzg5gUIpoldgCz1W4JFXtywKLG1KPk0WJNOumipJ4CGs32uAqWfS8lWcTm+yAZpf7KIsi1MXzi8TICnI1bGZUlnRHExRg6iYAxp57bjLq5EiGreESaptwP8nJk2+uKsAls4ctaQcOJnZlWG9hYzbHAtWO8kZMql3XxSEXoX/8u0vaIH5TKBWKQnL3028SUA3kL9ZcAcVedrCgf8+neaVE4wHMOyr5L4HNoHR7REOv0vZTTaUZEhw7rAZ1vKJOuY29XFPNCVndJ/rg8EZvBeQ8+Is8OoEK9Qifdd8EaLVvcKH1tfaDYOoBUu15IVBGc8xAjsmG7h4BLwjlxc6XK6la0wLg5QVOxB66tFtqnqX60VEb7ixtYL9U90olMrS+DrW9wfJF3xwRC5KJ1eV26PmMaVV80yY/I98ceA2UUbO5Zk96H/5kJJl3MKmX7bmCx1opXOdo1P8PBIsim7vTX02E3C/ukMd2faX0e08jZytmlVi4qEHqQEKySAgCqZQNV2qF+AgWuFNm2OnlJcmtxYLhlQ8yhB894AseKexyeOWVHpFkapI1QrtoIWiVQJIYcMoAqfUs7PDAG0SetvPb8mRxnJmLRd5hbcGS989l45R+dC6VuJi7T+KN8sV4ThqWmghQlFlQ5XQA5Bi6OXvPQHTtNyrJAzyXZd52BGaBei7tkPOro8OFTGNZiwv/onGCwJ/Eqj3QC1Y7tWtOX2X1j5H7LQRxHaVzDz7nOpzVFyB67ZF/FOZJC5JbYCHroxOwLG9vK6kki6y7CYvs1GHgM4LG1mJV+6dtrMZoKbDzRx8XB/q1IxcxrFdO9afDydYf1Pro7Dm669cDg+AHhx+197L4KNWdW+ngl7QbjIeK/+SHOfM0hyOLKtlmZ7GDbha/U8ltzknJyj7crGkTJk31MFFeD8TMyBaF6bcekeOqfUaT+Ag2RInIEvXHcnxzkJEMqc6iB++HcKloGXt5Mu5VftjxGl1LmAbTQAW6g4awAgOVknpqfajcp6QL1SbcIMrJCEkIQEEj4QO7ND7r128lMXSMy3LfOes1D4XNVVOsoenTnLNH7dULnlxY7pt+LmRXN5iNPHYRIIq8FuCcRl99VpAgwmykqNqKoYkKtywddj/kCGGjPcbMeeYv9ZmitVEsKvbxVX34dj8cwF3kwk7p38WCrOhhroyP+MlX3z0yE/USOpU92G5yDaZ8DSNwthQ8is7u6Y05NyAD5BDhsNF3SbhchKbq9kSlM1WuriZd9gPXdNVTxjmA28MxQepOZ/wfwaAT9unijvBXVGns02XO6/KKPsj36Zk1+hufghuS1tSyGQ3QxvREgLoQflNifahKtVugAOXKDCmdRbi13FQdXZq40REAft5WCSf0+LVYEeVclV+TfpjOX2q+pYGQ957tHkWF6Yo8WiZW9Y4iAPlr/mRlvLukwrWdy1WpVcUaGukUB0bgZnep/Pec+8Se4+wp10B9qLj//CXSQHACFxWZBh0Uy8lfrcdNRHhHTFtcqH5iGTolNIhR1a16MzGIrcI2h9ljcrkTW7uVhlpayZldj4z6iEvEaxAWG6GykP74dOKKgvnA5aehOulayLKtEiq9jZTcleWEKqwH6oVmmlxScN4NxPffeMOchEm5R+EaCPWEtaQah5wP/qmGH1AJ9so6i+xd5oM+TXmq0/rqekp0NV8RgmWR7iwewRd0fNzWjHaGh8KEQME0N27iXoizYMaFA8RE0G6UQaRSvo4M8F2zFX1yGnSzvQFD/GNdTRj7NEwp6JLcoxfXznqvhQ7tavg86k2PtY/yBSOwqozP3paev+mEyUOirJWa8gNzuf22XdTSmJB0AGTJDBF0GgrI8CiKK6u8u793YWIyj+W1rMkInu0/Xrg4ASh/30q0Ak982Ges/s6bvRQPRX+iE5gE87alM0r4IdS6KJupQyMC4eczteJJLB+gv5DI6dW5l4j5l5HiWLiP80an61AWVi/V4qSbUlqM4UGXF55AeYWQg9ciwN+Qf29dm3CFKRzCNtbBVsVDD/ZvxjwL9zvxhF5yICRYRdAZ7kHNEOYWNdfHTGK1HKHRPiWdeh6N9DBe9Wm/XGB0wItJy+S0qSI3DmnZWhuIKxLHo2G14Z3RfGrVjk3zL09B3UFvnFsnaPzPK3L+i+F5ClxM4yI14pRfa3T2ZLP+KImK7Au/xgY1S+8apz4HJcvDO3WdJA64xmfvtToobUOubPsqRV9whJjFPHu59lB0wnLEdRt7Y3rQpNt3uDwqh9ggiSsEqi5+IMmvm2cgEbh1qE9Ivbo9TNpsmKrUmWoamumNfS9Kb0iLRLRvFzuKfIigO+ZJRhnkz9e8RN34du/QjHPNQsffNvB11CX/wYwUa/MO+IBxaxCZSREAaTAsN35htkTsW/vQfWDnwQqZeQjDur1E+3U5+uXzEJJXRx0ZRo3b2STlRkDhDosQ0r681oMBypoQRVfHyKZtB3tGOv6Xr5DkBq+dOgvZCc6317NLdnGPB3iK6QbGwZRtbePO6iAeqUDAcWT/GGMhQOV7WuWEotj+wdCeUAwTlbmQ2Y6LP9paVhK7Vh8Px75+E3o+mEm7FYouHC3IlKvyimNuoFQVVAeZevdbEszmjqryDtIPtlNFuaOdKGGTEEu3PgQcrejWtMTmBHnx6ND2MBufI+y3JKrGldcFmVSFeYW/4LWthEP8+bPgcp9j9oV/WFrAKqj6bCsUVtDWH3ACuHZP8nKc5aLyytm86lyPyU2uvmWxN0NZlcbPQKOom32l4K9m/A/8XdxxQfLEyES2YhEr209OaN+GAgSuTaElwTWXYe6FAziziuKwpfY8sVXexp6bwBmtx6PSrAgoiRCo9Fr6C9qJ6McJyL6in26vPbZpz8j/Sw5t1EnfNC3qWMIcr9EZ+G7n2UBAfIP5iV4pikGWaP6Pbcv25NSIjXSbhqMKO1GzIMVySHRpIkq6AF0LoPaAAZFu2QVp6rnC35gm5OfVDyhYjdJYHcjoxoou65ll0wS15sdW1dfgTf62qCSI/CxziMQS3L8uCTyaOBXNvsRsvjxUOxG7enWgldg9gJ22BnokB53b7QL0jEK/DxbST7U+0vrFi+WPqz16i1uSbFfOuG6u+ns+vwy+E8HZ1yagEkuiZ+irHze39BWbjvpnw6L0oxH7K64+J6ptTgbp5hHcP+B/RkdfgQI1w/2d1kqUOvDa9OfJPBGp1GMRyRsaJd1iUkZPuKFZj/HTnlu5Gs7UJhjnomjQuOZ3tWc27QRHBH9TupkR4l8y7ws3vWhXMFJJIm6aZz7i9YNpW23YAmNYcG3Jkvo3znlr9NT+qLq2VFDuXr6fILnxDEk898oxJZJlvwFIFcOpv3hCnGcHWIsBArtO0s9JElA9FZMKanh6AuHETalsNn2iazvjYd7t31cHSUcEtI5D3TQNndS4PQr0h5MHpU4H0Bl03kJ8s/doYKYVXFnct2sCEjOAq75t3cnM5+/MhNnU5OJh30nhUjerlGLVSDYo6SghIzcfTU70mYm71yxJ9SSpFjUKYvjpM0vfb69dIUgoqVjj4JjB0MzyiecXD04TCBcP4/PVMTViNuAAM0rOXZlXwi31w+SBxUT/HnFrTP+LqhE0V+esnfxDNmfbsVCGGVyuPalWqh1A6Oh4tJMjIJxxWaBoBYrAUR/ZPNdtvSKr78JOYYijeN9+vxiCmDLUo1ZQf7wBorX8Adv2SnPy1GGP/E3Im4vxE1Dzy0YPFAgXDh+Suz4cTm42FrSkaG5oZfy555hqJRCmeEqDG9/UjlH2r1oczqkt66B/KxcbFuRlroIfhMAfeFKckRD5Xp8nlBUcdOsMxabTFdA52YsYY1r4tmUHiEPQZqaoDvIK+AuatpxvZZ9gMmsRvHpjREQwHcWwJrJ7nlikDANmPPm5fmoQQFqKRSvUFjm0IJmRP/X5kHtze33x9COG7xocqORVdogH9VUHHQCQxTSomxYZ/rrmSSKgcZMasrRSn3os4I+qtiZziBgjO/TNLRBOLcfUrdl6PZ0Oct/zFswKQ7LIe35IZCDggPXkspCE2VT8z8JuG/IGP3psLw3ncyLaCdYQU18FhXyNoURHn34BbnozzGM7fYzLA8zSofzexX3v3xMp0YrDTCbUB631UoJEZ1FSaXKDYZxSONe0nFmxWRM6Rj3AELElcvMn9WvzQQdifknq96XdzD07Va/tYVAR4O+BIL5yqcSWS03YUW5przE/HFT5KVYm/6XRpp5CVtP6dMxowArdpGcb8Tu9mdfmW5ZF7v2iI1kW6snaUT50ChBw2jqDcO3ZeKZTo2eebxasBvs5gUZiFdMdmh+EK0544IGhoOWkIGvAdw9BwmxRaREyRDgh3BWawzJfPIv9K/kNQ8yLMyex1fsqklBumH+Ud6ThFCdjB2FGEJPWMEJHtYRhEkdeqZpO7ge537VPo864z1uzuWMvxau3ypt3zsteOeJYcoivqzqVuFXFdWXekmIhrhZ839936HmDhTxKYtjDsYkAv+blJMlJv4Qi5kY5sco6KsTmWzxqESOCuZBLG4KGuGz39nVvq2qJ92aViHtygONKIUK1F5ynTzeLerdRnxGpDRq9h8TGqMnb8ujwMeyPInSheuWXUkBdAGPZbVQCbJcvXc/6FKK9VaLjx3K9K/t0r4XuCrk57GErfa5yf7nWSfZwo2EnXpEOb9f+sf18JdID8KZQAtVOlqyLtlN1hOxNs04UuH8nORtfBOZg7HP8V95RWl6rXYZhoRKlNgiDa6IkRtdLgBrQyeVm4/GylxYdMo2Yw89b2OOlv/x5z2yjJO6cKy65e3ict0gtcjWZ03uz4ymwOIgvRUTP0iY2wYRAwozvGO2BxQLkW9RaVGeiEpvPR2eTb6MzY1WZ7tXlXlOIn2AFuZQ6cDJ1zjIqgRiOdhJF+N2UegD6d8rusIzxhIMvTLM5Vk8Encp4iao5b2p5KEOpUGogCfS1J25hqf0g3p7TVm9LeP7JSBQdRCP7sGUpytsDsdnXKN73dFRsDcBv2NIG8HBJyOW1yz2wflkUbXEsMI9XZdmDfIdYUfvQqB+wX0piyG1VMZW30yvy85gZdQ1heIZAz17ZyqCocpQBjKt27HZRck9pIQwr4mViBtvqM2agteZWAXfDzp8pzyE1U54QYZHk80JPEP4ileKEvtXGYPilbKt8nxVWstTwFwVSbCNu195rX4IWzQY2RbFgqkhaHHE4GrSrtdL1vVqli91kWDMPRus1qrvD5bpFPPOu21Zs5NECBXH+Mf2PGDHZ1bIW2TWYmwxboPe7XFoFAQ9BrIdimyq/Vn4+XpGneqvwc3JkwUtROIeK1n4+Wp0qhOHj0dKDZTdMgygB7TepoK/Susa12GEyyucb2qm6hICFXMVq8Gm1fiDpdPVwdtKmrwmOkefi9KiXkiszmtxO+H/p0guuy7gdwy+EADIZGn1weLqCZ+EOE9r4lA56v969Z4Zt04aJyzeLbrvEsx10FeCpXlCAC4QHe+A/8UDc1mfazaEn6xm85b2bHGkDEUZjyOOwQYppY6XbZwT/n4Lw5wErxBaAR8TMIxwV98YMtPpcVo3ecesJZQz5B3GNofhwArjbbZm1POKIUkCBDXoGuVy4nTHxbL01OofspTQCTK5X7IqQvANMdrf0SS1ID3PNSE8OEzFnKRS4BcoWM6997u8V+m9qCiVGb3a/yAlNhKvWgn6PsZDHCPt58ADCflbwCccQd8nb8ovRAgqbWHKfDA8+AgIcIOgkVHeQ+Ur6DPKycvXgs/R1PWj1cCy0bAXbcvpeb5HZoNiN98UWqzdFOafyaj29A4Q4kg1/6c6n0uEUSKOQnlvFR2lO8AWaANoOt9wf31Ts0us05ueokG4qf/8QujTWFZhfQLmnEPZ7bu4C0+viruJSt7rXjuha24vaNQksKWIxRgqRhh6Yf3OPsYYt/Ive91FZIMl2Q25EdmJyLiER8+pfsnORvHs+8IZwUlK/KBQzxk1ScyEyyoCbviBfg2Zh8QKGc07Ejz3Yv/kAKhdFBt20iPvRg26S+Ug0FFh9VHg0kshjMaRO84HZeulkEqfhuJPREQ6cfR1vIlaLYHCP+sWs5dDgUGAfE+S/eoUQ8yLA+k2k4U5mqe6OkEmNKctPVzuTJ/IA2gw7os28qTmp0Bdcb1zAIW2+aEpcbhu9WWRgKvyfdXlCH9kaLhMjckzgNaN4YsJ64XTKWd9ThmlcP2Rxnwm1oNQu71kfhctj/rOF6X57E+l64WjKN18kSXJxDjEk4gzsbZvdp6KtekMKBezveFxKXbqBx/uHIbm6T8bOKm73Q+K3j1xDN2GgpylDawxZNPSB4rVjWNskGT03B7cwsFpDxbbTIJj3tBtK85ZAbny4FNEWrJSGQpW/Usx7qokVBg4Ngm2ZTXwHH+B27sRgf6VOUXQYuEiOt70JEnuDI1glbGO7/eJCWMASJfgUMmyIDzrU+UIcyxWGP7f7M4NXWdw5qMfc/GG6AHWC5O+JVG4DIoRJ5dbYJZjFPwDEfO9uIXtCwk+8KfU17CsPAEM2oDwh+wO3WczxcXHNOVY26TA2iYqtBn1LkESKOJFjUHoQwKTLG7zffvGhbDIkLB30s7bjpwVo1C//CXOnc8SYMlh69hY1SXgYpvqqA4x+P/586JhttceRSuNrRO7ZMTZjWdFeDzusr6zwJccZlR1hI4uY9CNvGow1M+80aRNw9IuQC0gB57PgfEUK+I+cBErz5pkJjgT+c1Ll7GFwM38lI46zpXVAhcozc5s0LXaF3LMEcPeyNOfi+Zvct9E
Variant 0
DifficultyLevel
645
Question
This shape is made up of 9 squares.
What fraction of the shape is unshaded?
Worked Solution
Dividing each square into 4 triangles:
Number of unshaded triangles = 10
|
|
∴ Fraction unshaded |
= 9×410 |
|
|
|
= 3610 |
|
|
|
= 185 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made up of 9 squares.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-G4-NC19.svg 220 indent3 vpad
What fraction of the shape is unshaded? |
workedSolution | Dividing each square into 4 triangles:
Number of unshaded triangles = 10
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction unshaded | \= $\dfrac{10}{9 \times 4}$ |
|||
| | \= $\dfrac{10}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/xJ2WYjrBitHSEeNIyY8eZIru2qFW+jMXAbEy7XlXd20iHAHIChNYaQj3L15ThkB16DBcRRX70SKiMamb2iMLBITiHwpezh87NJcMH5o6MWkUaOsn0iDmqIiMPwAves1oLDmz7rPSIpMx3URZpWkKy5PB2XhbH1uGUdY5u9cqI05fTQhe/JIU4oStU4ZXEmqMreeinUZ+B9Najp5K0xSsbJrmfcjItidliPBI/6Nqt9dnByLCAWaAfEXDnXNQff48O7huNwVv+4wJegkpgSlsNGC/vnTQ3771Y4BN1i2D8+DhOsksoRtf2f5tTBxZgqk2oaYQMVrgd8750JWUx18Jfa9GyWWbcFLZUL9LilvnRpw0n1tZLJm7PxBbJWSJI2ZT4IKDqsKykJ2J9AiGSNlHryGXfaNaKvUdFVgfwhH2+YMR52V4xk5GXU+7ySFTeRRS4OS+Lr/fBYPU9v5+wPA8NQXUOdNMPxc2cZq/iT2aL7lqx0GBcdIKk0zO4YLpS7eux7Nsu6+8L5CG9lNKHbZzfEP6+fXwY2RnJvLVAyVqqNILCnGcrlFUHW66zKEnOoKwJsnH/SY9++4Nhs0JoTjeGdT7jZQtkFE1CuH6358rrWBsQBdM/nUAMAJiQA8dnWXsWlrGIYsvwaKQ5CDo5x/pxEAdJzFpuG+2MK/Wt6+FeAXGC0yTR8iiZDUx6o0UtkF0UUr9+X5K86xH9Ujh/CVXr29y+QQTKg7MmO73zwBqG8ykLjvp8pZ2v4oy5D/L5AizA7MWmUDGKhHTq2s+Y8MJ6WsHCfcR/E6KgocSAQXXXIF5bHCVflQT8UDo2hQ2gJXraygE5xF5cNI21zyZVoYXA/JYz6YuLtjD482V5NE2tMWy5V4oDLMGfy3B5LHY9njCpIddX1dXuj5F9BjfC15GvOtAs2Dhj7kKS/JQS/W9dwiZBnFcnZRKlVWT4fq9Sa8/YkeEAt/X98pcsVzxB4knmfkKgoxfNV5ZWKgURRF9YS/2curP1C87f2lX14cpoxj5Vu8Is02SFcNdmnt6xLYpG9oaO48U3jj4l+ili8KeBzS04zQACg6QNAIYUwj32++7N4wrUGiPxYo3gIzjxLgYI+rcTYDbKzWH34mLwu1y5tOPYYADSnFskBUyGPGSHlxTHybNIileERC5PWugz9ObchNpCci452VG6DkVZPdR1YlaIVlxsU+UOnsZp8+qIizpL6kDsKHFuTbBaQ2lJKdu37Ps/3zXixBanMAj4k/8vpcKVCNPAJZOe9+6lqlM9sg6YYnD1QBXtMwlQuHALIzZnhVkYFCAJRJQ7pDEUij0t3GvZ2MEn/+DdauonVqVnpMZfsmerkvujjMzfrsB3/QLwUaANd0d+rA3EG1fMiIgtQQADURbnPtOtnXctIa6f1c7BxPopF1AZ/UC8IRa5/rVE30WYTa0y0CYYQQPXK5WFaD+nTd+m//E6GIhe3ttjqV3Zsi/VPIhZx/6nay4yCxvjt2ooKSEn1S9uaB7hx2EiOjAm5o5HotyApdGKY3to7vH4L6DWG/rhO7XFCft41o+XaKWQ3VILLIG2/gtVXRIWoDtyRYEYtkeQUmIapaPWHh2Dyksb5YBbMRQSRRid2PNFUzmerkBertePGzDx4MjEyJs+Z3KAETTP5s2YwQL5qJtRf1I4unwvth28xNDlHJKMsOVX8yRfiKHuX/50CvXP7/nEmIfPPcL/0Si88mCd1bnCj9Sz32NOFD2vPGCEp5LWiVLkBNlp4n+IeyCiIWm091xO4RUNiHYKlC+qtuyn7OJohCihD1bnRDPt9E2RmF4vXijKAgwWfXWBH6syIxSEtsKkA0aN+myLwXTHtRJv4lyIUxFhdjxVcaWxLCV4WqxHDe5XKWJiFcwz4VoSkmOP51iKiJpTh+MCkScyvJQ2Js9max5XNpP1vDpresIZJhdTNt1k+puNLBAG9LYhWv5nR+BWXyiidNNvGgV8C1e/z6Xh22i7c/N1Cs/w3VKzTi4QAG0AI/i8Zb4LJ8w7FBSacj9X0qdzMOdoEtzknCGihgGPmXyv4fC+brv7HeQRMwyuSyYbzbEGM76AdzWWG45bMnWqB4JwbNxnBbNfWejTDwuJHV0nnl13O4QovuHnFMG3ePBhJzYjKiCN5JjVwUbaqQ46Xo9G1PPS+A2nPR7PFl1G8Tn0XpnB3/zurqJVE94fOUQ6N1sHnd6zGY3lMrp8AqnNq13emHHNdyXpUdNRyz5bZI7Ge22RLLqINPQx4dCHCmZbONbXcnRdXG6GmZsomf/GWkhOGjv0XVoSDH28ZNG/Rhwzz+0uncjGOYy30MJbi/ym4bKszVXQgBI599y/0cLrdIeOxCTTaPV/ZPbKQqaoUIEauIBrjSN4r1HNXUQMP0GH4Wx1s8UC89cmpPVGuNscV7bBx1ETW7yxRG2ALfvs4uOgq+C23CInBSBhMd/PpbvzI2cZZTaOD3wl+HGjozJC2ic5mrjPVFO22Avoqeerr8MD0t3wPnT8IvII/HtBo0IgHnOc7m0/w/YMGotaZ4+1dWznuTn/OMiRaL4jwBpbj/E5TsR+AOv5Aa/D0035JdlEb+3xWeFsqDRlZTHeefp1DDyJWr5Scrqi954MWRvRIK1mzA9abPNqI5LK8iBLh7r7rlKcYlzszviNnlpCWgljrP9TtfEpqaBenQRPJeXE2pte+sgWlmFYZXwoDC8h+3p7nIdhfU6g4K63k/fRYgC6BlDM0eUu3RHCMLST52+SfFnwVz4ScaWl9+y8Uj2qjozkRxFY2mrsiHKNMUR3B7spJuJ2w22PkbjnAh/jJcdRS/gb29NOibsP6DU1gahWdDGmLxdyCMsoyJxt6v4KrUTp4MmZbCqcRa5t5ti7+2R1HPLWUWtrKFq+gFpCvIYi3KEOEAaAbBvikKSrfZ8S4mUj/K+7AtjWkPDZu56VeQezEkwy0yrc2yuh5a45p0E+exr8tGVrI+bPZ+cN7xvCUVIa4C1Klm5Cp4sgWOPobp/S2+1wHofmFn8CqSU2e7Nv8yrO+J7+oimRa4eeavr2IIf4/8AUAe2c0d5MhEhQp0UYqOuNRgDmyzfyGgIfNDP65lEdH4fDSn7XaQe+fTou9ZL7rST0LdjCOZDvMQnpU1Y49eXOYQPM9CfclaRGMYqZ0aejl9rwdmGaCxBvN9Z8FwcRjGbxfQHyJ8+uPqF/WfMY0j1litAfxmpjA/AYDVtmJ/lFGAzZ7KP55h2BRhLZch1/Mhtus2yJMfMuMujwK0KnjQRf695UfC3brKjMl+6rorG3YKPizXzCIaH1qOawFB2lDKx4EMwbnh0Qeg9JL9hGviCdz3ZBZyM2LREmE1VuogjVvjs8L4lRL/8PiqnvLTb2z1nFKu58o/MPF+/4mvRGdqjx6MxSwW9I+f6IrbcS+qI+qBBTha7kmkP8trHLOM4f3uEBCf55wulu0+6YKzRx9xf6vHLhGBDuv31uVFV11Dxa8B5jakMH+mVvF/0H5320Nnk6bTxyrJqNDgUYnJQXQmMTraBRfbVkUhmvjtyWqmtfqEj01Gi5zyriVgSqJJsmLHFgz87190lbDrAkc6ZKHPzYAi5Qj0KXyWsFx5UnavNAGhmot2vve69G7mrh3blSUvhbP38/3qxxlWHv2fHST+iZIX2yKl1NnnKWTyPTnkzG2+NSl/Y0+RfXQw1x0rJBR6SBueK3c+6isypml5+cUmTmVOeFqSAM5idSMDzjH+lVVo/yQxId2NnTbYjyJAFoPbBDsKEHjhTeR/r9GN73cm4DUziFE08OOspz+sSP1zNqLizEwsMF6KiJE+SXYwGZour3LTjRvhjz5pjp6Dyqg1sPoGdEvLtOd2LHR8v0EGZPaEkcnLprRtVfACsuAzlBvf6O9pGx4dNaauOsK/lYq0gRVXF5WuxCXojSUnhkFNCFS+MVS1Drv7TAzz0gX7Rwx1H04K+0C95yrI+9Q7iFbEslcvkRW57Ixl0yq/GD/qU/jDnCwywft/GzXUlVvzoY3s2HmryQUk23psbyoZJ/bsBzTTfjD4dS1ptsQHeEOC5F6mYH5PS7w/IhMo9vwOnvIQf/9DOnt2eM809bp821CnVoVZZ4/mnId8dLS1WdkEzJ54CpSb0EuZbM7TOY4z1+v12k7cBWcFzKroE3LnvQezyGOAvUB4TZDF3GF8WFKHApGoJOqKcRv6BNhYgc0sby8QBC2XsddUXkgzJIhPrtNWgpGK1tfEiOKEud2+HoXbWCaEXky95UkbXXKXZFFXPvEe1mJLD8pqVg3p3H9mSWHrEJA6Htc7lnKlWBkn10GvEQCUGe0dDteQo2qjCP2cOKYO+M3sVjsJJTUtuek/tSKhGohgUtjdwrAJir4wFvrdOHibrpYbHEK457WHzeIAutDsQuKsLUIhFqIVxd0rGvOqA1yY++oLUmAjAIPQjSrDzGdMnZ6D74RvaDLQhmVsg788RvN0+W1jWjnpO4Ejoxolp6Noh7xmg7eG1hWofVLS3XsTkOTLDYvlhP+Eb4GxgJwAEeq3RhWkBpjgaJrn1GmIpZhnMk3eUv3d2Y1TxtuBXR1zNnbA59GGbcGePf18fvtnh8/TkMt3K+qzoJysGE/NOKDw+ptf7NYLGLNLNfR/aFvRRyUZqmSKgOK5hdih1OOFv0RkIqrJt7JzLKGjk6nU8crR97OU3X9S7/S4hhE39eKvNDvZ3SWlmi4jPU5LBqaYoiWEl3aLladjw/50tzln+uPB6MPhZAK6q8UIu042tgV8oM01dwF3cGfUlJFPBUm8bwybDNAI0+y2mjJN7IAm8xBNeu5Zp0+RMHFljcGjVONX3cQlh2THkO58XqagYqeNjyNjKwHDxA4LtcTgf08j7vILXc1Soi2Ynv6q2gY6n68aeHrJGua52gsgB3avKKI/7Y+3/c7gjnbyqbH/gW9tNSbCtbaXEFMjHVOZyoab4907se13lrGSEcli/HMFxaK9AZQISq556osDPEnNWe5R2qsTsVT+P+bkJ1oC0p/zoo1K26YFF33fEYwUkvDW39nLSYCSqKkCL3CqDPsBykEE+Azk2Si7cptMHo2h6OuOwAPNyyOabY5EYVcffCT8+8UUIMyuvlqz2LRFiRfo/erohJV/uF8TC2BLrKi2YiQbQ7oUWQAxcmGYhsbBp3S/GvXxexJS2JusEdUPXWlXVqyP4ZWAbM00TxcWGalOlhda7ZT5DfRDg50/Lh+ZHcTAYmjVwnHwGWbUCYd52La6YY2G8wHJlJZM//BRaqVarIdpbfb0ElODWOpeBE1+0BfBgnKxjOZgrUHAihzi8kuayFfTa+FCXVBkwlLgGAfadtU6PLFx/sBlCJPB4d4TBmjS7Y6K5eJk9SScX9CvJnrT1IYhjkEa9n56zQdV8MZLW2HhY1ma5+NJGUlsxBgqnf7724FyUJiz82VP44RR104UPMhOJQzWxws9045ZytyRIqOG3JKFvXHlrd/SMxRpfDObZ0VM305fTWbYEexzqnHI2nEPwhzE6Dkm1Djb94amq8G1PxLmYZdDfDHHJ1V3RgoFubcI2o/X0ymm4ia/2+84avQgRjC0KWBQeq/i9knTdZfFiulkn4fFwBaKxXPpsCfZUMZtdGD5KotVISaWJF4jwERMVzQjCHR5RQ9asAQ+dtbXRQymcEspXhCoDeo97MN55v0sp11jisO3iVCoYgOvn9VJ0y5pI4oRnyBTjSsY7McaltSB3CKnwMucIR1IV8FzHerJlJinoZ0FqUMjBdaGfkPuNz7u1JDatbkOhkKcMbKtmeJTxVCQsde17LLze9vWCkpD1z8FSa2SQFoIuIXF41FCxfAHtEyej3ARJ9kz4aFZtWCqT8rn3GeNQW14ge5JvSq0npgsKVJYPTWg5n3dFgCAmlG3QOQpxlZPgNgOBkSGMKWYrrDiv/D4uEzpL/TBOy/y8NEysYPhJ9HpOEmu8fcGyrL/kKt6LgU4jsdABAVbzTs3bOQGo9EsZMJ7+3IafRrGqPfWnX0UAF2nBXFWXQRJCmwSpy+Tk3xZR2YmQWO8EqVGBOLIcOlVUrfoks7wn631F9qOPp5YAzXsEGgwc0Oc25tqncQXyUAk5h4rZCO246NDzCjNOOf/K3qFCbGE2rEXprOP0exIkDwJIGRyQz9hOBSO1A7MLB06G0k7CCb5sj5xSGQ1PlcI9Rpz4PnBOuKw/ZMRuFIZRUBnRBDh52rdBgffs7nuScYVHVgbM6bxg9iMatowNJcF8TzGwV8RWn7Qm/KabZfuYGHVip2GBsyWsC1V8slz0hWckP0H8RYfy8lDO/vusfyRDhcR1VZCp6ivEgUiEWxvHUbjTB4jKZ1ZR/JGxwCMFYu5W6dyxEYaQoUp8ODVYU0MeHAz84nzndpeeZhyB8nZLwX2pBNI71A4pfMtqVO9amAdypM/XAetU1R2VoaqyZkuDN/u4Xk5m6yUnK5XHvl7/9W8RD7NCOmRYbpro2C60tGpf51VSUCHtmPsk3VYu2NcJbrvcd4eXTA3YYgm8cOgPv8Hc8MnhIsAT80Efg8anIhhMcu2YI4TbdcDHnvJFLzbTWGnT94E1T16BcG7hYiZbsRfBBZa8JI6y5Uigfim3wK8gGGAWYZKKrdZMnwrPQJ80AT7++NF0M8DL86o8HZYdw7TksH1z0VmgwMP2QVnFeHoyYalDqivWEa/CXwkb0IFZji3CE/M07F0A34vAZfA0mSkjayv+0R5lHhCilEsIovGTPUfx78h8OnXivcos3CR9QR6o3+ux4rBl6ZbC9JYa1uCuy2sm+j2RSO9QUsjWB4bUEdL39RW3rybQCF1uPqZhCH5bOS64DhBL+aBjmtrhzLeHXP2EPa0vrn3dLnLtp49s9qVEUlERLwH6WwTo7ks6b5CUpTg762yoHrqPsBqKeCqY10MkglCzIwhuETl/c9dAK9eibovV0RU8Ka6/YdmSj4arSayJ2giEcy1JlL0yNpORTKijXoke3wWZc5OV6Q2tgOwiPg68t2KvgX16vOM2EusOWNpOubU0fj0fg7vpPCwnkHtnqAudcYIeMNh8bFh6UuuLOFQ4RsaY24MlC/wSwue8Y2l+NP9BaqIGr/ein+qSNYS9OnSDXosJlXZRvc57yUZZGmbDp8QSExerLxZBR9xzQ1JzaTj/74CQqo0kQq6bATyzOaP5SMOnUMRh4+k9LrnuQlPTGD+h654Yc6X/i4OL3hYA6C5sJOx9a5grKK7AJy/JdI4sstkeamXlSWIIw/EuLK5kkqBQ1B6Brx0ksQczuW2C4aN8Qr+mDc1Z0VavSNNGtygT9uK2RcTr/oAF7Uf1Hp3WMbPgLDpN1I0HHI2wygA5A6QTEWDwQR/By6gXZOxM5fUPxWSGkq07L2ZiuRb5YCbiLC1TDWtSlbTuPWz7erYy8679EfoevfiM9M4Dt5zRDlhjgDrOMEvJMxmI/4FUhdJ9Pe+B28+E3q30gTrlNZGfDuBjHalhGWwVjWJ2GdquKoAqerMFWFlE2VCLa8YbWaPzq+TAYUo9WBitQW0E+CvREmXeIttr2P4jrhjUuhxTn8LXDYsoaGz2X8vN0dGXSRXAn+OGqP5u/ZVzA7He8OhazZqgKJGcD9wzKJKeXHbsJnCDZcg92W/AEdFT0jR6S7m9uo9qR+bdpwUzLD4zLvgtMXBHth9SlhIb5fvplrXgPPFXtYPeXcX7txV+18vV7hF/Prs0YjseqxNw+dv+0YvEp73+31+kdp9alBdH0TtsEQUnXVQmZn02dn/s7S/xaOLm2U9qdGiMhTBG83G11Q2A3ONL8hqEL3rO4n4Bspyu9Crt2U8NQl7tW1B55D0RGMdKYBld2bOy4X0WPdnuJlSkWCq2RhcYA39/7AW/BtmeRezCelKhG2k5fFY6J8DoihVZbbIFw9nEePdiUPIVv8NKlTc5PzAiS1Gl4Kmis8c3dzjFKAqwT7ijI6GWj7rkqBCLPKSyeyIbstcQWMnIyijLb7PeFMwaxlKqDzGy1zH7KhgEEOjIVOnr8dTaptK461JQ+AOkpnAXYIxVz2FHcg7tufWWqCV5zjWhFmWS4WsDpwzP7w4afNRQhoGjXHjEw0wpG0zVWcX0vJYyLSth45Qfaa+pULgXKEsnW42KDZoyTE4GuzMNW3PVjIBAQCo6bGxpgFSwXe2t/7Q50XozTpT/FuGvAye2u3Ta+zX3Fsz6Ub+a1XTP1qgzXP9pvGOFjzqQ6mzbqVw0uvinyE1oVegWdh5MFPTPj8ba3V3EQ50kQCo8a4q77qH6Rr9skEI+lwWQtccF4thJyLD7oypOZmLYIBG3go8qGlgnTAJVtx1VC+nN3mRSHqotMj+zPpRKehw3I5iD/Rhx6tjrxyawQVY+7gOAjSMZAf+FHHHbdgntuB/mPqB1taGjdwBtfIA21bv75sSB28X/OQyU3piaJrtn+UPSHsTUpW2K2MqAD7NMCjA96uCmGvytPfdCzOsExxVVBKFkiJqri7Uy2g6dL7jmjKMekIsfWqKrmxwSViC0vakPuJdxiGoFtgv55KcV5uH/Uz5nOttOpfIRzf7oAmwE7sVsmwQV+Knskd1MGlm108ZmmNZUqbt6tMBEACFIC3DbD3w8t9Xxewv66jPhU3s0vaFyi8LUDRgVqN8MKL6oISrVn+1dmc99EkwPtXsZ58+BsIc8Ws5EtR23hWRUHiJ0fJsv8o6wv6jjGFV+mwreFAeGUDgs7sTH+HF8L3xxR91jx+6fEH+MWhXlJ0rSdIjA6vCQvKnx5xGLpNDwlxzJ98oDdB9n352wddJ88iXqECw7i7ntzBltXcw/U7+JGJL5YV9YSnuiyeg53qGOC0HnYe15MCuhV3Cau6+Xio0Y4aAukIRhIiBwYe/NtpTO621MjqyfGmrqxye4e+fHtsGvOzaNYKbYETJNXYR3AA5aPeMuGpHbpBrR2DIOj+QKMJ5/hm49GxdWDfWNyI2DnAG3QSPl/c5QwMAFzxAqiEDqaodtIMNtSVl6yrswwmYjF9NocMB67KIOgqNo33p5Ih2mmdau7uCRbdHSICwlu73Fpy9sFFJDe/fk1V1aMoPSZn/A0oq5WR27CxPMRObXyH8O+8/o2aKa6nAldIvauYqrk40dYiTfCiLV8dUnaAwKb8ZsxqhrLdP7trXcvfrEDFN0mRYABXhChfol51svAdc4NL8EW5koKs8Mj3ai/LyRpk3H3OsVa/Po0Fn9VilCbwKZoaFBi3C+Ji+OSsWLDyz/kbRr1gshMYEBCH3wMVTnV0zESI3GNVPwXL0qziMPmSz48LIIAQA9lop8CSzuIn804ofmYM9RpEqsySA89O9/tkExXHlL2H/DF/7nhjXtYebnD8eZV6XdxLDuStVjQWyy7M+ZYtlxcrkkf3iQ0Qqwnmu9Q9aJjz2xQpxKlbwE+dSjQt7prOmlMhYZgQqRS3j2ZamZACVu7is216o1hcvsHO6FcpYVzFQYJQ6ZMFcxKo0Kq5Z3mwOwWYyJmoVxqg90iVRZtwX22bjBw+PNP5LmvZf50o8cKsP/R3hYn8FBouYzhjh3ncvwZBsY3gxj2vbi2/zeb7zJA8SkAWU2fLmhaVauV5Z7UqDw9OENRHbBhVIF7UfTdD2xpxpU1bkFU+tv03Hnj74BfP0CCG9RJYjmRnjUTv8rTNvH3FTQKFprJxXOCYBDSiL+gK9kNFxXepPhYWDZKZxd6Y2HJOLlrLOgBpZYnF9mdCgx9cYaZKK/7HT6enCIQPwFxLx0/36Li6NolCg9sMANB2ApcDsKttI0JDnbh2Kp+MQgPp2b9Uhwr0Ai5fRuVNqCRZxtSvtEBPe+/kq8tShawBLLhBWJH1ALIGb7qXWwXLrKhmvn6rzdAQnYPl3CdGf9o8uFxUFpBQSuzHwavOLdMjIc8q9E61jwloTIWrnKJ4/qJBRS4TMiJphP7JsgTHFF/oO+zQ9tkJcFC7Md1tvdd6L0x7cJ7dETanQNXCWseJa1bA/KRPBAzs3jdFN627Bn08JKWs+TA5qH0YzrvIrD31HGvCmYKMibxCxBDRnBsFpLNDHa/L5K5dsyn7tdZmHUIpOmMGuFehrscPLWzLOuxQlDNSiFQUGl5zMponhk5WpNuty0sJSekI7mw/o6q+p4G5uMdeQs+dGKEtura/1eUbEJuYvlT3iNSinpUo1LDxJtK8bCl8GKaxrEGiuaiOcVzJb00zDq1PbAyFL8lxpFw1H6i1Bms4CW5LOLBoqaKleY0pRC4pdL1DcpS6etQxH0oc0d06gQMuZkc57Ma8WT6wqlUijroCZ+7UAx03lzUH7w6OJq4N2Qpdvja2mv2bkj+ilskbrEP7i4a1fNvaC9Q2krsZJEOXWVUJ8A8d3K0k1ASqaetovo/bq8gyvWcA8Z6EtvCJolJGXKSJ7YFhc2dHUDFTRvDtpOe7rMCq+9Nwa+ACiTx3ItWV65XhUIBI7thCmwNJ5P12x7SwJ0Q3CBqs1av44o0DKFDHlmMNPBE7ruieqKjQfL8Q9BWWSnaKLeR+n/FOLltf9B+axcFemIh9KqCIk967G67B1WYW4EH1UxRJnU/tukBlSkW7n0r1FmvRa/A1mNYMb4Ak7KcS9ixtn4hVMzp4txr8AEXaX/FaBmjnTegezqZOzqn5J9hFMnFf1Hl/7WySUNZj8WbkFUw4NLjU7NCVKSkXxFFATE16llvXmpTwDO9obe4A7jt8kygzNaoQY5PDRZAH2Q+uOFw+fcYZezPz1RkaeyUUkkAljgFBwTNymjCAxATt5goF69Y0EG8+aELRJRZlqa02xWtbuNQgmwhR7mP35DJY+c7am06j9yWi1dwKlQKCdvAQLMydIt9Y/Zv6lkNzsMvVh3YxAUsa7gbHWacPyEiBp15DwXlBc9oNJMDie920uBREAlrBynjq7vY72X9e1yd8PCSxftNQ6y4OZrNdFPGgz12SiENXKLq3GUYYPxekb4TpLwMLAKqhRgfUq5AaFESK9SiAwWCvgczpFKpf46SfqC5XX6GNCrMqKzI/AdiaSC40SGneqmr26eNlQgiwKRu2LlXMr8laijdXA7SQmyhCKpS/VOvHpBmdm0LmYN57AqAKGDtjdG/iCXdHsOhrG6cc/i3hqRR35wsUE1nHQqav8fecemXdfTioyJ6V+17b5MPGQwDka7WPwjMqPVL7U148sCZgchooBA/XptLeA3iW4DPJbiLcpeQj0LwHc4NTb1u1GvxKlYtbsWJP3gIbS+J5OYfOULBCSoVVjPdwXikrcnEZvAOq0aZBVLhu/a1LCsBys4t2EqrCDToEfn7rQ9/XNndKvEGm4RO6aCrTuatQH64+/KyqtZkNNj9RF7mdKku+XI92pFc/eUngNVBKOig2kk635IS2n9N7EjONHYjNpqKaRwijdDMa8oSMZE2f82k6yy1easDil8QISfCZlEPIxRXsk6yvwG6rec9ZDm2sG8NVWtmq9jo+nRZ7TyVxqBMa2tu7olZGXarMOeqPa7RNZ+6C93EY0opbqGlASKkCws7jebcAFZ7AEBCEp9y5n1GxWKgHV/8YcL4eXs9DmWbKMGsDv/Ku4f1+N+TOLw0Lp+Ye7thbiykGCWTQ0S+LzAqgvZRqTkClAEwFrQ6j6v2jICxPNj2p1AgCNl3+VDoTEJgDY53xoQJuH7Ptx22lsnmdmA8De+AI1CLuahjuQt2ZDqgdzlKxMSbmyIh6BSJw3ExzhNJKdnP68ejYjDPbb3Ndaat6UughA7v3DXSWR6wSOvG4YYALJwxctSKn5G3ghs5y2SOywKmhwlc1c5W/NeEQUW4yHL0gm71bHFzGptzuxnrqkIjDq+n+0uP4892T4mcD75MSzwfBP4y7Z01TGk7ez8lkElpT0X1xDlRuVD00OAiAoPb9QIko57dSXEwiTAncQQVTom0dgUn+TvsJnZHPt3k6VAhRbmK+nng8P4D/THQBGgae07fxRuEGGFp8nybu72TxRcOtJZchyvF+0zxSlPamF8wyYS8cSVhGHLzMjKHSnHwjJYx3G9/qH0kcNabU0z2jrFXBjqeggLu6nuY0XH1r9/likv9WoMGecVQfQP8lpfr8ygiF3gM2IBX2DcqfsJ3Xeqfc9iyvOmb6ooHM19SZO7geR4yLyR9N8QAwJCsb7nhqeJq6diXK0cI81L5LzljMH3MtN5INHMiiPaImOEpvDnxkR5BxW+01KdqPwUZsdW/+GCEOWa/PSnJbH7VgQHEHvOM2Exi2xJpuz8MWMSJVQRIA0hzAxVNHLgYghAmTz00nWLLA47Htj2SD/sxXQc4d8kU8XyihQtmMK9UdIITf0PslhO3EbVx9ujXzoi97qKE4KWaB+wfJIWBX8i1V/CZZVghi4zAW8LiIGwS+Ssq5pK5nHob84JuKJM/mKo7vmJ4jLLCvOPxFhHfJbOBYkPHylyaEfPfMDQZkB2BkVjwRBKxrKyhs5Zhqiw0xAKIJDqAauQlOQlQFwnhijAJPtbpKYhaJPkO91tSa01XbbPjlGmZCJe0bmoQ6DRZW/EnfCmFk2b2uG6trvHMBYn9VbmFlkIatZfNEeSpZbpox1ROaX4LYoXjou/y2+UPlqvCf6P7ldw5bDmaFolnJ0QxTi+uyJ+hrEWaP8/yB+EFGDLmSyga2BH9CNJEK+pAgp0AiwZo8Tvk2GDSyTGZjyNaYCZpsaHs+U0psAxC3ph0aPWbOFY0yZk9zEtk9LYMyAHUVIuON3fLVRLt5vk8QkuxBjhiCTUm/cDR1NZW0IA8pWEo7ISecdTTjVezG77vZ2o8Y1vPnbC7LzBMhfU1vSXfEiMH9BBeu2YxRcbDbLIehsNJlzRDbbKJWB1ArpcPTswKT02JBx48/z9tk+Fz1fR2kYd2MXs8eoaqYyu9VXQImgqpET42Clm+yGBUnCeH7FsD8yS4Pig81GWV3cnbTluIduilElGouLWtnUGZAGD1nDxMIpM6m3PPqSZ9OGQZTzcPiYoSHt6rE5+N8jvTqofLOa0OKHNskDarRXLC+3WImX8e4oFdRILa/jHAwmm40aph9gVCBZdAyhoTOnAz9c1DWN3j3W9Ayp1TbiTvC9Md+Q2lRSAbWkiegn/qlS61p+OJl+kVhEpWAfin6CAgS9mvqu1IhF0RDCD7bSber5KNAeXuMDGoVMoY7x2GUA567Cqtbfzx4N5SCmido93TnM0PRL4PHBnUZJAxWiMxtEslHhQZl3ha4HMr/34nqlLw3S14JX3eai7IohnjeQFfkH6UTgRpReFywg5wZNRIwkoZS8JW5WHyxde00KdboMKPPA2mpv15QIvmitemqTvG2XMmrUybe0TiSiIxnWpySCC3BMWx+jP5AO4N8AbAGW833LAhgLsukRKDUochx30DZqjhUl+HFX03dYFmISah7WfSpW0mTOjB6V5YZ+ZcAiV6FRmHVKZYuYPG8OttFNYjLtDV/0F65q/zT+8mJJxiONaszakLg1Okngc72oe6G/HgjcrrSDtGFjAtIbLfsZv8N+bZ8eiu8Iti2T7BzPMh1B8ztRcT/ftG8GwIuFG8phL4OA3oyLJ+d3bEz5f0wFrHDYhCxWwFKkzcYRCAwc/XLJZ8cn4T3f9wgZEf+AhTsGj6NzU98ax0hI358DQNJnL8Wcr5UnlQgwJcZFPbNDgMItgoVX0cupKpWJjOzNEvE7ebqVLw94nXCljw7uFZG/UwRWkdAe2W5LSc56yBXcE37F7PGIcv7Cyc/FlRC10cMvjWTEg8JHLRmnzUkttu6JNmB5RKtz0pnZHXA6PHmgnNgHU56px689OWxyMf515JUMfY4yiapBSyurhOCAZ8N+wCkYpWFEhvWLqWNd0XanE3mXs43aUkTO4s6Fyb9MI3PykrJZJsV+W6rVNuyKM+MmJdNUMcLvz5cSa4lgcxoJxV2k7Dqvl49+r9vjSLwFbLIfIBGvLvcSuC4Yz4xrm6laCS7KXAgFb4wDWlGMJfwjU/+PVb2MgNyclA2/qNH1zXZj5cXw9eHZo7AByhsoT7uaV/cAwbD9lAfeGM/wEpql8QKPJaqvtvwnt66oyoVyqBnyjtsVBu65IQB+Xw25eokJvsK07a/YO9H+75yyQMGrI/Ubhght6EFo4/7Ii6RF+a0rFyRVjjNvTiUgbuNE7DGAlw2mbejFDyREVhP1IT3oh0gjpJvW2pdpgRxeMyfN+TdparGHbrmksq+IIZWi2QYVHITH0vGr7ZnTYPT3ykPpJpnE7yObKj8wS3lCb8ys6IzR8glc6gwabvjOmO1DpzuFNq/f00Y46JjURSpI7lcGg+5uCzqz08Q5M3YELRys2zayVOw7982D61DWbEiZWFDWCuD4Mt8ibLe3OBU2zIhSVu/3GpEzqqdMIhOc9hnKvYgNY3yVEV0PMAx86PMquehg64NGTE+Iep2zwLD5pCMInrYG5KGHMa8Lo7tcLevxRFdVkiL5IVQalxALFTFkJaSv9aJJtGXun/EK3HcUhUIJiokLwVZmdI8UX9lGuKW20H24otj5zEPhzFvGcIN/4h94v1d9WT4c4XSHKNNjyfopiFsNNCRC0Z6BVGI1cOxEC9xwUp2iB0E9IpQWF9JIrxhCvxT8dgiF9cDochZczbUmeYE2P90oCo4Onz5h7GdAMyNZXNu9N/WoxCFhfdfLg4RnbIe+4pQdOZEj0r+JL43kYXQ/pxnXM2Hq9DL9qan3kZj9DwCzrV0iZj83x9zwT6TLMe+/e7cxnssDjzoz+ok7X15fHcBq/2dh4RTWuupmB67t4/QNexL0G+eJIGBVA3TmBTnj8spsmwLmR+FfTyjMP4+qqGV3MOUGkLW7SHvavhgQvp2ow8I6ppLV+xWWER2emOhRWOVeVOIWVDS1FQlDzPrO9qHRW/a4YmTaczgHNs1Qem0IAsXv8GDvxSCIpoV7Ft54232cHkrFUI/0aHiA2/M8q0CS1sB7GuNd/Xpu21CXTcQEt1F/Lq2k18H76ppCHUi6duFRGg/pF79ZEzbHriO/wekiwmcGxqPMl873Qo1I5hqA3iVmeK/7QBRnPOU0cuXtorAsNOoeysrhYrXBrfmqeO8uxME/7rSPDPlHV05LeHi7vEXoI6KFqqHgaSO5h7Aj8MF3DGEQ5SF74+JZvx4HDnClsJB+rIiM9WJuZlqQNGtQwGrpYZmzIb5kXCzWmsmouy0NcGfWcyq2+NMuTIHElyUov8VI4HGwHv5e6en706yvhNOZSdqgoe51hP38Ms57OuLoAei9kdqajPXQguEvmmKWWDAgHmCRkJCyKQs+84p92sN6Qk022Gantui6p/GGcZDrFg5L/EwJm7+j92B8gXk3nI3s5k9OEwoLYg917O2dSTLJlL0T4qrTprt2+s7k7IOkaU6STKSRNumpxtueln4ED6acx/nussGCJyfa1p1/Bafo6rdaD24G9MOyc1EF25AQ0Uf+YCgnv2t8ws2Fz0WfKfhLMQEUfM9GtDlsPhGZpo+XSGR+ChJohWp85EHV6grbPzEugHF6jG1E37bw/klXb8IdTqYNIW0cNYeAuJR7pfUrGvyqKo8eF5Xq+YAxbbVjBSQoSKy8VRP0PcXcFDtJEwS3Mvkz7kWf4i1CemODtM130nhfj1bxq75veclYIsZEMrCQCtlq73CBAYOO5t3SupGaMqIxoiJR3ZkbvoiFnhziCmDvhypf0BVZgu7BF03OH2B/6FMQ26CZ6+b1cHxW8YiDYIUuw6aNmfxvkAw+/KAeJZG33QBqGl1CrKcWFhnDbuffmiiGexbVfcR5yHx2Mj1d1NRGDIrpmmhQSie//1s+oVx2O31Atubwx+F6WRVg39/UdIH53njY25kGljmpA/XTFJeZa5U8f2AAkQzFTZL9DVj/L3kVW9tWixHRwVZZxI2GQypel+qcuZAXrTUcz3TphI5Hw1s/QyKqNlSB0ifyeaPoPdjJ415uP2xC1k31vNnlyaKgp23EUW+tsZMW3cqEIx9RFW3QIxbyziogGXIhfKTMz19nIxPUzmzWHMP7RH3cw5wOI9Pa65HC/aUiUUDrq+oS8KK7VPn1lVE0368TGfvqyrxmumrBTUcqBSLrmCA1gHzCREAI3w7/S23AjgXMbO394jIiFaJuVECz/F/yP/4bGkGQRzkJcG9q+D2n4hJO0hYTe6roSIZdM+HhyPGcRZMEzZKqR427f+WCawjClThdUw6fMHAHXHK5ZHdD2qoug0aDhY9yp1nWhsqIUnggpi9VtZERFe1C0NPVi6NxhBBQ1j201CTx1+No71pgPTgFRiNzQg82wo00lVBN55zw==
Variant 1
DifficultyLevel
643
Question
This shape is made up of 9 squares.
What fraction of the shape is shaded?
Worked Solution
Dividing each square into 4 triangles:
Number of shaded triangles = 26
|
|
∴ Fraction shaded |
= 9×426 |
|
|
|
= 3626 |
|
|
|
= 1813 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This shape is made up of 9 squares.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-G4-NC19.svg 220 indent3 vpad
What fraction of the shape is shaded? |
workedSolution | Dividing each square into 4 triangles:
Number of shaded triangles = 26
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction shaded | \= $\dfrac{26}{9 \times 4}$ |
|||
| | \= $\dfrac{26}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/jdRh+0/Y4rQ+NofFG/kL3JDklC5gOKYVJfYaogbqoT76hU0jMyvM4cA/TP+u0D2Y+cOzMPNsLUGsoakY757ZAzVkeTBoIi4X/uZOzVD1agPX8EvWdzgpp8n3T9kyBcN0o1FMNtw7Y9uZ+Fwc/fwMpJ3xoiZChxoe+Yzihi6qajN0QAvuP4mkC2P9/mhLVXsg5iOXmmrA3o7mRhTepdtDA37CxKdXulIe8qVyKS4vKx4pLau+EiUTCEP+KbRBOrbBn9Ye/3u4EqhjE0dHamq0Ln/KMXSqXuuvPTpZyDvAuanVEMSQsgpyfYBCk/Ox2HajiHIJDPvP6RXpjfhG+xDQ6ZBlPYhF2sk563G+EN92zjlNwat2vduTqETbtGP7TR6nEupTf2mZ5N0C4oUO+dd2rWX2tXF/B/vGAt9rcRgVZnQ79uuzpRjir8cIyw4PJ/Tf9sjLcRUwIt7KnEZAk5JODQlI1cMJqXlWahoEGI5MdjBWMyFSUgWX32O1/jqkBSr04+jYZALok8Ab+KAmJqyXKcNRO9pO4bESrPJHVLZ+jxj1UBURZtyzoAJ1taDYkava9rKxM0tPsyWMVDPgOgaTw4b02vUjPOMV4hfQQBLlBnBPBOtW8fkikV/ulPucvFSu2Z/1AGLV/KY3p3hhlJcFhxqz7ng7pkQkJlFDeg5m6toLWKrLj02fGiIZHTizhGG0eLKCoq9D++BRpg1X1+B/MBmUh4ofCLXKjoRlYrYHuwMun3DEtR7/raUZIP1xsOj7gBVItEmWaM0UnlKPEFpblkyiS704IWrpyHsbTJliG2KNSCFhG/ZAZFHHVIeROwFH85oinkWP+4eu+PKRLukA3VfjBfNCqG9suk6Lsjwmk3ceaPB7y6A8Qz71MyqcZu8PHSu8LeQsuWio3VwSUpVzBt8v+5ISUsD9gQqU5H12wow9b5A0OHonVcAj3TOO9B1dgPzv5b/PHxYv+k+T6cU7nZmwJPBLAgHgp3huG6BTY0zEzLIuG5FAdXHlZpI4VqaXekgUNwN56ZvjefuEOB/PxIveuJdPuocHxhaUxaj0TBZVtaWMcKVeR1rhreCw+/YBo5mKU82WtUFDE1CMeEMNI3lJ0hYmGDKvcsdppJls6B32rTNdms5Bn0Tc3QaUe1X2odiSC53dv4CQXdc/ZXiOjAZ2UD+CKxVweXOBeIHChfCVt0SkLfJofOYd2cIUcmnXpr4uEDx/EUuedzmijTSSXM1T4hM1teQso1Sgqz1QfqUv9xpgofpJkojmtQKyYXKsiODzF59t09gsKr4q13BJD4VK4uwi3YZsPKP1xF6jHlJ/TXhrPY4KHORbQb3BFXilRLoQtBRMpCXRIQeJ9RyEmGmF51iTYUP4v+BSsmDUzbDjlmn6AXlqRB5L/Qvzi8apSY3df9Dk7JkPCkLtruSWMEhRxahcjcg3Gm/+sgxz9f4LVrxJ6OTNMmJJhV5fr4FJV3VIQcnoJgllzhQjHPyI7MPu2cI2tF11E026aW8IG+YPCsfpSuSVGWkK0t7lM7vFxaV6mcIfAiojTWJ8mhQkt1MhBWFgyVvl080mdR5L+VESZks2+M8M9lwJCtIYPi2lCDYH9Hdbf0QPu2Vto6z8Z6tVhbbERhrQ1MO9+baAEW7DtmOWM3Dtmok6d31IINXzkzWVA5GJotVzMMK5ssjjEid8SkqIQTxaQtVgI3VUUV6pLZX5AbEq8HNsDjcPVCgHFGX23hGycMahkQJtmXpikDsa/We646FDwMcj7aHDbfjvxwhPfuewTDlKdagB1j0W48g2ozcTe+RNqOV/g396GPPUTlIq0jvl0jBn8lK/93tnXsQu7rjLR1WAzqoMISNRIBXguzE8dkpFQ9uacf8rfmXGfCALE6h24gcsDg6RloCEM1Y14tpzJTavCJsvTD64UAYDPM7ZZzF75/akPE1OhivXFAkQPGCXhJcmv6mEzGbg46h8ermnh/IMD+b04ilevyVOP4uQQaU4qWV8HhEm6iB2+Gjz7AP4sQ8/dBW1x/x+UCVVun0eyGH/tFzBQb6Y2at9papgbSkB1ZAUWHkW7eBBqY0lifATrpcG1sWXjAUS7lmpakVbr6KJF8K5hFkAiNp7xtXBtBDmMHvKvLuoc+BtH3GFBjfTVgW2iiCsUa4VuhU3woTYpw+w8C3ItD8FSblWWJKrHZPQ25DntqKR/dMKqwrGw1hVE+ZBOwSiuiT5uuTMxpax6qgQjf7s6XUzRRxJr2SJSdtJlSWeDiLHXxGap4r6mirqq23u9u1Z/iZrPZtemLlEZybTQdW8LwBHdJW8h0DMX93jmGYiRH8iTw4U3Wow+XPZrvDEb/zcdtSfYj2CUEYXQPpvJqg6wcVH8LDDDO1QiBsKez/TWQI40gmYSvBFOzpy7FC/EarLaLgZwU0bQiLAxGCmwXm1rt/XFef9LkAhfuXHd60J6hk6PRTtbqdTNQuYXJ0s7127KENO101gzbqP5cFT6ZCGXnfijGuxa6kMBDebWmyHiZoyIJUgDZ7xy13NJ7mEStunE3/L0a3LHNd1qeMVrkY8H9FByR7fa5BKc/RBucBU0V+1rpr1cM6ohhQ3eRO5Px+r1x7PSGe0gI63ezAkhGjFyAE3RugGy0CLUwN82qIlSf7UTRuLOAVinyAHCLM/FrSI4Z2yS87XpFkGP8U7UUE/9ar7oPSrwpPgSoXJz8NvqTusmRLwwnzhh3JqhGRXqvIZNK4p2LWNGiNWYQGE9UC4YSf9eEU71Gi2kyrm3XtmQFWggyMj9kzcylgzSvoCQB7GuFQEN/2YYUkv3qMeeE7m6r9+jJHKvG3R2RMtGHg8Pd/A6lIFOTrzxVG59b9bsgMItZFEoJnHbQk89Trk9c3dWRJ91jAUCAGQb/Clq2rGAVT4SWmYWXrWAAOXxrAXBGeXz0uHfsS5rz2FRba4yq0rZalbgzfeHSTXIvPgaPbqXyTvr+Qs8Avfg3xAQvUevylZ7A2SdVilGxo3qzpoEVYWxX4g+045NUy2Es07KuQ1QUsAL+3lJPQyWBYyi/4h1c5soaD0OYrDNlc5smw4MqsTmZEeCGlTbJwEVmz8+43mnF6MgwRINEgTJXehENNUDP+S+8jvbiuEkS8E65TvcaUsbL9ipMlEoOKbF4GzpAk+LWK+JV9pQzD7sKUS5xmj1K6nFHceqjzBAp+qpBrFUwjwGQF+/J1jY4F2ZhyiHKzxhNU7QC1YrYNZ+DD/vJCNfjK3bE3Q+BMWpnT2fygwQSd86Xnmsu/KxRZM/s/RrAPfsPjVcwQ8+6jfwT+bQBl5O8Wwx0g0Ev9EoWAPVcZSD/ddInrFnRMZnhmmdRS4f3z5z6VMvQe71caOKnesX9Y7rh7psACh1rE97sWpCYzxZnasKh9v956bNWbG1KJguBfhmrlYLT+U1I6zPxmWhtQp6ifJ4qwyKAqAtr2+PZatMEZqt5Cv345k6NNUJzXxCwz9QpQ0EuWGvJHjpuuC3gJaRtR/ZuDIh6+mKYs/KDv/SWDWqf2NFNk3VgmDPIfMj8LjxpJh7MCPs9OJOx90XxszWK+Z+wzP7iWaqgcib2g95C5GjDu1U13pKsHJaWxzhzYXA6BCY8CEzovZLIWLXqOe/qbod+t5GZ9gR/8L+O0YNkvaPRs0KUdRpwm3YLNxKENDMhvbSEMi9X138Tdvcr3omawYwEEhNEG4SRcZFX/Qwh1lqgn4UOdIFIZPQUvopguK3y7d4PrvyTuDD2Rl4L6X+kphWMiW93YzyX50PuMpdNUiibiWbQzN4wRaD5kPsT/wmyusQgeh5jeLh48UvHb/cBZlfr68qxfCMbgjTvZd9M5t84RLIsslD275qADs7DWWtlB3vW+OLBXIdiBOVVDUMiWEqvg50azeubhaxmsyjsavUE7AJ33+teiaStqXl5xx1lkbFM5G6RgXzeioAkzYlaKSFemA02G+T9iZLwhRqWpWhUyVG9iQtY9EerJJl94grzlQdwHT/rkHjSOyFt8exlDFBGzXKIM6GSU4weAj7F1dggPyBGFMCxb9qCZlOUu/t4VxtIIUZwjnPlHENc5f7qTtrIUgQuMqgW5SpyLwfAoozcuT8YdJqwC9hHzdjeiGgg8H/HN4Xx4NFVqyo13zg2rR1PXLy3Wl2iQzN6cK9eFrBYbs/qcU567oHIHZRTD3QaDIr0zAM5vu4p7Ko5J9FlrAK1GSd4TDBLmcGVz5/kjFnzuHTDWoJSu18Yb+Q28L4FAf4sY6gd/2eiNZjEC7LfEPdHm39u9/5M51Dx1ij4KER+8xuEjsrzVuLXKJ5HAtOoCL2wa/7gQgfMN8qYveslH16pIR2jzTNtx7lUPJJjsqzWyKEmuDZrPC1nSDjgY+RA7IORDmwnPg+VhBvwLQcbzOJe0ICZmGXd4NNjvXVqnZUQilPeg2Ro3erLabrswkuwTbievMWgZ1G0XPqeo2776HSOCVceVCG6M+ebPiMK3kKkDn1KMX87WgIWDCE04tfpHpRyXVCj3E3pyFiWIn96nBrFkoaHQ3A3MBH1H8bg1MhPEoL7h2rrXKIzks6HxI8iDZNK8HIIxOG4InPx8oqfxxw+II5A8YZ6bZMUc35eY6w8cFDC5ZdT/Ei3YNq9JTHhHkNNhdlhmITrou+LQTGoULWXZWIf93AFMekk6r8TaOMj/vR/WSFDqAJKKPkWsnkI0RkK94/95LmxEyr95NyuulUaJGVrHUOu37KkmqZJr54EzpOPnAHWhPfDQhI4x+7b85OTY2Vlm3yU2zHX5UQPGk3DT0oT9nSRCcLqEoHetb0t6hYLIfipC8yd4E/uaF68Gdp5oE2ltCNlvwFaw8OkaHxNCdzJ9GxPmKVi5r1oVZC6CidG5DFjH92wAVe8x0BaPRU1P+JtL5CGgnCgqk+3llvmNYN5OSDyKwW5qdTjMwfTrTLW2PklkgD7ith5hFtRw5PRQ4P/xpIishaqw83TAne1otvSWo2DJDoKqY8zkhN/nw2TR06Z4goPIlUo74K8UTlkwvK/6S97ZsxxbucwbdaREtQUL86Q8cnA/Amo9gBbDXSz2eD1SOKkDLyVY2++nDTjb61KpkNCGRj8SSVVaeJAC5H+6wFhCsDan9+BAyt92j5Yil+uDTOX6XuwPdnxmqEZmYyAWZ9EJJFu11wZBeUdZJfxda/WARe+6XHYKvoUkmANtV4uFuG7abD22xXpeRHpKP0ieaIT1S5sqB+x00Bfu08EUSIgdui8r9FEEL/jByUVeawEbluIdIN9sK1hTuqbaUnb3AzpfTMW1ROmtqGPFCCUZdH58ukaeqROr6LW5i7r+jn+PVvEAH5nadj6Ho6xe94fNFFUwW9TgMd7hlEKrmzQivlGnwBGBeURRm4ByjQYYm9ovk3qKtmaXf8+Vc9w2+GyoFYYAFP+Y2JJRLagjBAYwAjq5jPI+v1Fpxx1EOP+P1wPnEvBAihBIEGbXLcq3BXFFjaPXpO3J5DIqPmutuB12BQJOmHki38cVbftWW6inJY1I5LY3rJz7WZLQhI+wuUDx88YxCjXQuqF/DbHOGGzro4Hb14bLEkAZr/waryl1QLg1Bh/L2ra56yoLVUebSLtmWGKSV8uiJ6vClBokylV7rN0LHMMq99k2sIppgVCtVxzViS6P1NSPSOJglkGX35XrQ0AP46r0x4I/itIsy6UR0w9LgQHCDaCa9bF69WjD6SJOlQXj9H9C6nEA4wSrjqmdl3kDtCuSe54Vm8EbXdRmwY3su6HjZwfRoxHpthdIDeEpbxrhI6dQSfqHele0clRIHPEHQobVm07QkhK/SLhjhxMP5KXj77QnA5kr0nxY9TBhqHpbCyDFWx6aPruSP6u8O1OWqXV01GgH2tZiCHWpWo1x0G6YD+9tYC44mJSOVObSkJjIVHHHK1Dq3NllRtYnX7ZZxMxSK8NSbp7m1GwOo4Mu/WfUd3cZsAmgwkgFEYgIQOotABcL8oULvEuxhKsVO4HlTPmSTkpgb/Dzzcw+KdsZ4AMBfnMUtgBnGC8UOdC8FjETWmNgsk/Q3/YvKIZ/lnIrOBrpo7P6Fov1bdUlhyl22W5QwJADYotVTXRUun+3/mHndNALERgARJQBA3XQeBNhOHPDx0+wSI9naUvF3Psw7ofmfJkNENbsomz3YJ2tlHTFW1Mc12NyW03p61c/E6DD+O/HCUgOhoRRqoEdOb6awx1I9rJwVU5bCc58h7HRFpqB32xz0cpwGPlTYh14Twe+e4VQDvzUcHB8tb7VNbHkCknoPmD5pFB20jlQV2rdBqIEVqIyljbP8QDzk+O1T3wNnCwna7tynd19exa/H1s5TTAP5qgQg6Lzz8RCTdmMTeKq+6f1m2ztWa3J56ztUdj1Qw+EAS9MLvmhGbGFSxz57YAajnz47DFCWvjosRb2/SCBG+rqhsUVgYhkNoLbV4v/FkvPG+fjnNXjzIvrbbvLvfMZ7oRe1joxG5QsY8MBlrjPC99/FQcGUJJEhCStEGQbfFHahiFEP/3eG+crjcaBqjt7Gl5hwqWFYDFvdyrxyBONxbzvXDoMQjv31P+/2El+jI3+6qxKCWgx9/N9X7nyqx+1uPbbZ9fUBsTNN95tDKhqza3d1opKXZxg63m+QFeY+rGGKyGRBQQG0EiWrexb1lCNadRfEEHfZGVxkiCFQwkHt/uHZ3Ej+pUYhdgxEiIuhaOBIq6+XM8b4+68n1ToASV9Um2X2dA7bJGqJMATHdBDG6/UTannni7PTDIMLv4IiDMTFLLEGOxvO6miXxjGE+UWUBETXjdH5U9P49S5vHeHh6QraxdILkruAbBK4dRQAQrErlfgCVKKrom7CLNuo76rjq1Qphm0gssInF8tGmSHLm7dcoe1KcxMPp61ySqmufx/4fL9AV1/ftN/xAJ0WxAB58ol6wCplvZSBzHt2CSdv8S4BRvokIsf6B04b0P6ogvc0FqBYnoyEd++5XbieH4onwvOuoQ9FQqA+WjZtMFmmc88e6L+GyPwAIx9J6IGs6LsTMbVUx8BPQSpxiLk6r16klL9Ib6vOt6x7t0EcOAK1v8COJ/pLyme3sW2azuqMtU9WQunddUxHxQzPSQ0Z4jV3A121D11EcM68f6SPbNAU396Wl6zWMqbFAu31y3qP1oBGNHP6q95EoNik6n4zgkBV2udrvX1dBSANZgUC6o2OmjcUxdHH833MCQbysjrjsHcwzVWoxQCb3zfmwQynTT7Tz2V3EXbb8kRVxuUfKQgRJcb5pSTJyiXTs7IzU4H7/BAfXXEJ43pGb0lxYgm/khQD2qzB/C+X1f/5Ho9BLfJTQf0wKgz6Kyle9ylH17t0ZrQYiYxxHFuWAE6FmNRHxlXoDcfF8HqVytEhzf51qULJY2r5YDmHIjPFd3KBXVd7qswIswdz169XaGMtbnKd2sgZOF3Tv22AQfwFSbhz1Oxm1tkBwfV8cb+M4E1qT0oiq+oQ2K38OGgKMfEHbONOAHNsAQ4cbp8yCScc90C5o17bKa2uyjPKBUCg6QOOkdtjJNKxpY8ycytbUBQA0q05WmhHH+2fBzhj9/xVXosR0IIQHbXjPfLf10YvX2Jg4oLfF+WIoBMV68pk5TXma+JsWwG8ctwNBXGSScbHr7Pe6wYlzThmMCdvFvbV6Z8blxf7VwUptwzBXGjHGTe88NFRYVxFTXR+00QR3R/u1NuR9mmx/tdabQQynXTiiZEcm1zvvnUUsgyxTpHDJG80CC2xPzB2lRyzJlvCMGoH1aHgk5cGHI1RDf7ObdhxiSKlYqB+o08sAutxWy1IQN/uQBI1bmgHTgP7/oTvzaP7fYxu/bVcsS/xGRb0t3aF3BGgwVgRdUZENv0kQwHPSkmKoVipyWJ9KmHIJK+fXjXFniQb8CMMUakWSd5iI1YRa7ocBc1uIC6TvWaA78g/ObBmFgvkV+CWhbu2RG1KOf3kZbSETsEmxUFwQplkO/XkzKqMzy8LMp4ihSXFuUBbbU1w1/Exk4C3gXVNPYNd94RvkcR71Gqf/vOzgNWZxLOcWH6Ial2nrNaYw+BW7ZjyPFFg51ZgifDvAWoLhlFOquVt00abGeuStiACtqVYTc2nEqGog0E6NNQTyMW7xW4hF2rj0LHoI55Cu9vNlkJnImkD75XkxcSt6a1bzU4wEHm5ZBgJIh+H7iVOYqBIaj8fJkV4HBu72MJDHCTSmX9u99UafWa4CpCsBUGRf08pDZuNRbjMA5iHwLxndz3iT/y43SvwO/b6zBYFtMGD7wpM3K0wHJw51ncl0sGGowOq6c1ZvVTKSs+PBz6r8+zY6vXotmBV2br8t6ptEIxzvHtvg/sxisQuqn3QZYJtz0qyZddqvP2ybb9gmwO4A+1ZyCM8cIJ/VXPI+IXMpoM+dfnZ2af9Bo1xZ1O2BTWp0SGMWrUCBfJKWH3+egfJ6oLRKwZbiLcpk0UYDvPKvcAv58Z2luQNh225c11CsL9hPaFNjSCEoqQoPNQpk7xrZ1rnxH43EZyxWU4M3DpRIvL8oTgc1cqiwqRHJnG7vqH7hVyVtYJHOOfmf60/Js8DOxj9ZtNFpiYBEsyH9dIuUNz1u7mF9+f5WyHg3XOAHJba6oWkWF76oySM60pOzyRnmpCRfmvjf0ugMa2OQz+qN6rGihLDhT/HOh0KTnvMsTD+TfR4Zaa4Mot4SnxHSApjvqQ/lwNVq+70Jwyd6AHJym5PA+oOe5kjSEqzf4Fyzwr+G7USY3S+pfrgqpqWVGmeRxmtv6+EZb8GlJ0fDpdiNx38rR1Pm3yniziHwWKsqPGI+MuNQbYyHaAILTa+Jqwmn23oUz7ejPZB4Qw2YG/kuUVfT5lKpp3EySChj13QLb5jJHSFxAmCyAX0Be7zLbhp6RFEG8yTygWht5yBFW5MjnKqZJXLUiX1eB3lmYICR63q3Ao6wU9MY8RN3wrzCVKNTte5sUL/40WJPgpWUaUDrehoDKWEJx7ppBBvXhvRJokWtgzkwpRWdfFwA8m9XEZ8zq6GmI0zmfF+WKHik0gtQcNBehhGQLX5579k6Fp3eXlyrOn14oexs6p4bKDu8nzRoVCu9GWqNHaPmMtMjK84WRRzK/RZOO7jfmdAi0UND/veg9Q9QgZY+q+PGchqrtCQcZ0NkwxeswjY+7BFY3rd1PV7qavZv34pBntypQr33sAS0tMhTwVpqO3UkBUVG2kbYq4KPdCE0nfv16vmMBoCDsQF8X7kDooLLEvgOkZx+hYrvjm+nhLD6EXKzwQQthhfRoIzhKYwcupf21REc7e6RXvuQkUf5lQ7WttJ5zzW0uIZDx49Fpa0CAe2FYDa4PkazN3vqhUB6H09XDTfc5agc+iwsLM7NlfpgZwSRmqZB6Srhrinm/HtezVfesRuo8NZm4e5ssBK9AN4oQQV1HWs2GRAhupin+1eNsgDQ4bZNy9nQaAi3aG01NrXtEoNLW1P6oSsf8ZHek5rB/1vx4YV4UR0WstYxCbdkvmZLbg5PuaXo9hm5F/c43Munbfh3I5ZysDFBhSspnE6MKPAXnFX5F5tR5dFiTI2/EBG+GNGQAoWJ+3A6m6CTR6gYYb888u3NuuOVCGfZ0d8k3ABuKciRtNCvvLwjXE2JCTknTnN+rbsgE85E9n9vtCc7zrmWDc9+2G5eOp44vudsuZxfMignmUpK74mPQNtd3yNJ3T2w8yRc/bZx+wH2KA6Enp54cp4acZMYDtQcP6z3wifdgX+sDClav15aZTrHfb/lsHdDP1oqEojVYJlrkDam1eH6FMxJsxRqL7515COKM3JJlHenZpl4sGTKmSwZU5RL8kqESbKG+wBNiFkjN8XD/XwmG6IVpOf+A4WkgPL3N59WkK+aPm2Tz3o9mffq2mhXHZmBe5Fzfgh/DjQls/ivYb2Wji0DvU+DR0a/Ky4ZL0bvS18nr7pPDs4xtnKvFbmI8eBUGgpqQs37F4J+siLJoAAukPizBnxNz9ICZTAQoF4yOcSiQ391hOgEH41ib/N6puLFUqgS1DHS263PKHgI8XVJ+bN95XvbYsSHg8wloToNVP68UQ9fOtaJpfa/XN4vvFdSKL7yYeU+Ur4yqs2XzG78hf/+ri15V9rJtbHOS1OVueoSY5oSpF/wl9rRg95SAjFHY94d3fufnvfctPjLZp6mZHU+4zN90iInfH28AMW6/CMBc+QPSUHmC4OIr+WFvUcQpbs4FEYkXETJBATpLmLK7vHtpn7YYIrumlSk9dao+jPUj+nx6QclDc/v1TbgMN7eNrq5WIUrIvV7HpdDEkEEDrha7zC1xZ2cOohKjFDdXbeVxKg8ylCN0lvN3ICMQ4vkXary7avObM3nL+LTqZeDFjDsCErsSuQyXSswjIhuWSIdKSxAa/nRCYN1WnUM/4BrueISROQZxHKHvT3SYJ9kZXTKi5ONYs8tlJIc73LIC68gfBjSwTdXEvJmqwfSHz4ckeC4HrH2LCB3x2c5F3ZjRVfZLO58FstJht7wI4AzvCuDF0QT1ByH03KLhhLWREcEakMICLQgvV15/oUb+zbQZpM1pFfqs8BNKEsU0osLTClv/ycH7difEBWrHYyNZ+i4lb713LC+Jzc1FAYzYYOeZLvz+JsjWbopIpCluU7irbQ67R1R3x9dxdib7pMIRELp7/scF2RGylVyHOaDjZPke+suC9YxpGxVhmfvwK/FmYm30lxm9O2DBBhm28qOk2GZ3sNeq4NoButNW3Z8j86RruhiJ/D5t5FyJ47EQ6svJTP7yAnz3xiPzGEuzuCxltsrtz2aI78tpndXgFRFcD9l2jLc2EsWr8Sq59Iipv1p7cwLFUykL4ATbuB9PQVbPIcyYsB1Z6GCrkAMhlUCwd0MrZVf9pEBhsj2pEr7H0a1HP4/aCEZWStIL+hoyYJMr3RIr36A42PS/AhVqVPIH/cwyOub36NsVmtSbsnrbFQYwgJFkUzFiBTVKMtQk8EQBstKuPztfl2kt5RfWpIc9P+D9viu8Wik3QjB4WPVXQQofrWDxlNtM061dGgE/dj3vLaNqr38cKu3CLCKxRIu8/B+4pmEtcgOfmyVSjmZ+SGQkykGyl4+yl4o5DsbL4NfoZbengUbzFwwjMysoDvMRzaPfYmgbPyKKOfzu2CaGXM/vRk4fb8T0AykmWKTQDs8d7bncYjOxqoDDvPqJggDGqjdmfm8pbdWd1OPMWU6oR3Pdm1vLajxtNCAvM/Zzmkwlb26VIa1RDwks+DOQqIk86RKYlXY/N8re9fzzRoYERD68Q4UZ+hig7Xt4/2qJr234qVLR3VidcMnlJWv6NDG3p+3/Zdke9fkihUwWWE2k+5jKHz3hGkQLd8DCMo24YWfPqPEK0U8aUVT+3+xMxVC0vPUD+s+X7PcQpDQFP1yYT/weZvji59WR0ayngKfEDG/Sklr9XddbKvqWLsummnTtQ1UkhPz+GXvZuX4l8m0S/+RqDqsoxKzirsgQXQjhK3UqbX6xG69HUY1JUDXFODcY9ne/ciGDhU8W4aNRXygsue97JmFJgMEugOQss6/SYmX8az9OCQ4hw89ISf/hUFyxEKrmRM0jOUZAS8JjAAyE+AF0JoEgrpmhw0YhrR1YmMZpucJvXkMhKRhvNjIwNmX4Y3nHZssYWWJgHBcOvoe8AunIv0K2GWKQ8XRHJaemLgC2087wH6EY8c2AEj/1+Ur80ovvn8UCmXiPM1AvmlHPK4hk1jug4vPiti8QvTqnelxeRGzWsOUHXMqCWPiVLAZZtBzPSpsneJDZLATan21O10MXS+MyS1SgzTAaQRtcT6SzmDPJshn0cClGL6LaPybV+jWt4DFzlVAuyKOQUgVNPqqaB6I378NJtN/4q7KuMqvJhAqxDfffhJW+frb3twWRvcvUS1Uu7Yf0vkE0sgdEDBO88/hhnSm5lR7KOFHzI7cqFzFz5H66qhOYZoCDakItT2Iij3PywrHwhK6oWe0t+wyd0gz5kggOGIJyKRhc6owlGMOYCPc2MSLkZLi/fEvhPKkaAjzUKBtnqftRl5oisOrjutO6LpMXI94JjtWkcHJxgig3ZZx0erBFOw6eg8ZhbLCcfNQ32Lg3JVjZR4Lpk4fqQeohF63KH+6l8J95P98nFeU4teDKWQQlunyZZnUv+h3u4PjqeDQaZyMXD+Vx5q+RBu63lPtnbvMqyTdnORHfDt1+foeen/9UHyY7256G8iP5fZHJCo8wknJO4AWb33wnfXXreDdfKozHO5WMBeQvK5tYaHSTcaF7gEmp39ZRkwnXZsOu0fC5phgercCtMklHHYpC5bpOcjc5Uafx044erVNAjMMtUNDeb883FuNlSI5QIARo1KF3/z1airEOcBTnfNebUIlalPfDoSL2qYpJsrYyZXASi0O1PvQGIV6BVPl2NeqJUYlFx2pHbC1lcm1Vdl2fn7dTck8TWGIIPfT6i1C8IUYiPQW6ISNyjRI+L7aNThjl4R7xWicnhg4azL5qnYo/jK0lUKMXdDNhUNxWw02jnRO+rvjVVRMeFm28oec6ao6h+TRx/mdY24znI+E764WFFYMKazR+ToeXy8zQGPv2wxeWgsDqHuhP8UlUzwRgowoxCwZYcyo2Sn6hNj9nZ+Tud/ZgMI/0BhSN4CxYXmZzgiJecpU3Oad7aS2cWWTLT299kIiMG6F3YOb/cqNum12m4MKmDhMH+DPI3x05G6r7Q4U8GWrYCdHVNSmFjSWS3TanyCEbOPB8NPNcG0eXebBwDWGAaWOUOL2Bl/Ovb2GxPvUPC5VDFZ4OS5s1upbkAA9yslszxX/ft4XRhM/O1IQdwW5ji6NBAANxMJ+sqIAAvtMvqcjBNvVFp7AeQWDLn77r4H7VZK4VPMSVYWeBQX5Qeo/IkXCh+NMk3dXUrXnmHm//nJZuRL/LwtHFGgvdDx+G6Rrl4cvCZ2Yr2jKRSvZ3syuzT5rFTbFUdbya0ukVnjK668xIChvx9nJtvImEpx4SN/GaePBnZqXXp1McZUtjTxbY/Wr0I79TWVWm6130UTOGs3IPEgnZQvi7gqnz60zuGAeCqHcVLkkAvDAGNEPBX+xm9rDNyeeWCY8W/FqKEvOSXc4qOknJJ6fwzek0IKCBdtd0HR+nb7xbSNTsOvULrYegidu3pChfIZTqxSzkJo15tH3hXl0+RttoLQokDwkqo/lCChNlHzx5ykH7N8FVlTAl29T4YRz7xYzeUip7ezeorgfa+CUXbmGAnAKDcxZvERlIZHR9lulf8tH4cVuG9cxT6TWKKbH0EHsrjT9r7IIp3DVpLs5FVfkWZR7NwCl6ym926EnnWLCOllzdV5/WpLXBXGUz+NZ+6g7LzUedD5tfdH17/7620OUm6AojUV6G9V09vyxx5d41Cj+2xU2VcGy07t0S2lxsacxcGYReEEoGTwDwcdyrnZAmeauk9Qgnw3eQRl0Q8oNpe6jF/nTg31sV95uaXIbaatc1FKzyHyju36tHv65coO3zKucfHGDH42ElfHbEFNkYszxB4zetgCKKkaOouzVd2r2KAs4qKALmRpwIIhGkQky6xCYSeeljL7JlytmGNdyJG1gCN1R0BYQf0dCWNM97dbzZcdTs2TrpFkUbfLnatei8afa7Xb+zj1PdIKZM/v4EZO/oTIXRsqGX2fFEHMcx4Do4Dl3VrDX5fcyT6ijxjjMao9mj8a42QksVSV1UaVaLvCtJCOr28/l/lMreVsIFjyT6s9Ac5RV5t4pwl2mcJMnhcyaxM81vLNqx5Tq7txci3qCYARZ+ClqHJHxiplsRIbaw+jB1Jf6Um1UAV45MbxNIm25RFcRgtw7UP7IFjNVCgmKDYl2WJEUA0nx6kWqWWR+82KFtBgVAgAwnjMcmOW8ypCt0xsVkityzT9srtm09ARDBXkLgLGauZRLi4q37nB5JuoLAL0aNVIsG5//ZeXa3KWUFfek+Bv8oIULf/43J+SIQWzKiS9+5BhYxWNRotY1wb8gzyw24R/qMKQly+N4nVM+Nhj+OIAwAWRXnWSkpzB2v9v3RrVYScmev7VzUjPIZMoyOSzDKKQ3ifgEAfq4ntjUEKexJF2reavP6U6Ss7fg45rA6vTx8TOu3LwL2vWhrTWT+mv9rcEWY6y+HceJhGD1QfFZ/LfAi3+7smmabdfOxVjZpYacyUo/UfhHLtOSr4TN6jKuG/fxUj1B3b1mL4f9itnnq6ouhjFrUq+90NCjp3gvkHbj2R4ggb8RYab5DbTdYpa+b6DY1aUa/qilQtgMaBfYqCps7Aulc7c+pk3djsK9ZzanhxNaSoGUx8Yo2vIz5IoYvdQHAS8jwgNNOsZU+h0IuJgROGSSgJWv5ih4ewujPS39mMOhvVSo8f4Sy8FZZnawxVAgZkUghBA6cyMNetK5yjoaR861HyJ2OPlTk9zvHx+ck9mcGzJdCHa/8RYvB0QJcvHdeJfy4q2KN2V/IPoydHJ4T3zveeCFg2H6W2eKUp4+SWFCLDEli4M4AaPID/Ib5anbeBZrPSGAEWbfsLfCiWsdt7saf4CqtOvCNMut9RQtYB31obUsu6U93NJ6FcKyitNr4v4EcMDjMlEAYt9ZeneEzj1uxqRVw1ScwwnVWYHXR2TkPztPSOXY5ftLRy8DH6o6MeUBGtEIFiM1Z1jYz4nnfZNMJ5WnHzN6XX7x8NSrXQAGIeff5xP47nMUA1j5+lsZK278Vkxx/dGo5qGSyCV5OtY8yo3tjd/HIDS5v2FS39n+PNiX8OwLqGsJXoW3LOR1BHyPzaD06mTYCqmuGvAyJeXyS0zOQ1S29UPLbzn8AEtXjb+IyXG7KDg7sQP7GgfiJadCbydV9WClfp/2zzN7oH8dIeoIha41NjQbxe3bGas2Zj8qAA0m3KimnWpoRgGEjfEnoUlI3tjdMMQXFRMYWLpaMmDbExfdc47cOHZrOS1IdnE8AEQ3//bYiCTo4tQ5gyrSI/5aQ3EeG1nLxef4E7y2hnVoAUy93UxJTEUZzFo0YnEgu8k34SJo/87W9BnXHedR1TpD1xMeKNbedHcfRk95VDQ8C2aWU3hswhfgAPguwspYGA0OzNS30enJmLmOpvoA7pQx8ipAzZqOGPWgpaDvgZ45y6Dh95COIKUenuFsDxwjfpwb7KxCDM5l445+Hfv9melL0Elylsw0RW28h7Usf85QpOfY4/uxaqB3sJD2rz/pfC0R3xdn3tpIq0eHLpx/S9svkt4EI8giz+VwSGxbW91CqW0DNUXAB7SZ+G6GMbxL0m+dq4NHe0wsH5aKha5uRvYu+74uc8q7DUHRxGbUkXl5ss+IR7dZNJV8DQDWK/ET8y4sTWtJvEF+n8jA65qOXpUOjf/dytaXRi7OIU7L3BtUE7OK71qCWPZndyAfCAkmiKFCdAOzvb8E98+1OUv2oHVNgXSe/4QiWALmpj/pNe+38KNThjGQFwQAyoe9MuchkFKADTWRbYPWXRkJcFW7fUJWnQ45lVf8hsi2B5j+o7ZnKZ59YdbSro7szJ/hfsQzr/RnRjiXPibwX4s2qw/lmX2hEJ370S0cxu5IY2vMcPeo55raDDzGv0Uj0ai9sZEesfsl8M/6mdhuRlm2BXmCTUYD9BiN4FHDN+Nwt0jhGFwLfYTUx95PO0VfpeKjkk1GnZvhF344hZ+rf+AH9FPzkGIO0CHZJ9bEiQXuAIWaiMfUne/A7kaPCsRvN4Cyc3rftQsvh0iZBKzPoNihCb7JRAPFejHpM9JbHj2yxwtuAKbU8w8mqrCPbbopMDZ/KZX6rpz23uzQz7tL/1ts/Ufj6041kntukSltWGAY3WRPpEX5CdJJUM/zS0sYqWULxPaxjp5huwwG5oI/Ni6whJimN23DkLEhSwMZhnavfiEZQU56b0e8V8OJmM5RFZOnh3m717AHgZCELVL3oXOY+K2+sWj9eitgQ5aHCMIKIcn+tkrMH9BzQgikvyV8O2AXMFm1mGt8ETpSYcK5nN8aBvSZohTsTyKfZTrNICradczK2T4RIwD/5ezczv0qRcOAAc0jXBWLkI94N8M9M6B/pMtdKGuDgDqRjwL5B1XsHBsrbZdmw+l/MOzHVBMjaVI4MG34NmeHHnvBksVEtWKplBdkdj/RnM6OdVqrY/Q0cPvksV69IBmQQKpx2xFlfAlKxnASJ9HVQMXFfKZjYEyYRVZXsGo7kfsMjYiYfSdXi7dvBd0G7yd56wq+QV3CtAogPv8SBXeHEBfAiThu7d6/EJ4eO6cSF5a29CbOSo+dDWgqwj4UoDJa
Variant 2
DifficultyLevel
642
Question
Mick has decided to tile his bathroom floor using shaded and unshaded tiles, as shown in the pattern below.
What fraction of the pattern is unshaded?
Worked Solution
Dividing each square into 4 triangles:
Number of unshaded triangles = 12
|
|
∴ Fraction white |
= 9×412 |
|
|
|
= 3612 |
|
|
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mick has decided to tile his bathroom floor using shaded and unshaded tiles, as shown in the pattern below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-G4-NC19-var2.svg 220 indent3 vpad
What fraction of the pattern is unshaded? |
workedSolution | Dividing each square into 4 triangles:
Number of unshaded triangles = 12
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction white | \= $\dfrac{12}{9 \times 4}$ |
|||
| | \= $\dfrac{12}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+Uh2ZJW3v1dXSqh0Ki2bUA7VR3UIYM0aWGqjZLrrSXMJMP8bZGzKTdlMZ/A22+wV5nyH1aPR01HJe94W5saaferw4I26E3j02N1JWihYGR1cOHk29cOKNMTYij0en8nCQX9RQ9GvY5oeeSa7zRnIkswuCV2bQiIGk1BWeZ31wzNPV/Uil3A1DwDlIOUnwF4Goh0Vl92E7SfDJyKSFJiSZv9ePrBCr7Kp0gaUcq7nM1d0suTM5SrJOA3agafsf1WMD4M4kRT8vIVOQOKN9SvSpLOfJlJP36UyEVAa8TRBN2FiJdNQABkUsLOc3NXGIaKsQWuR0BRm5IkP2aHE485/xlhpdCrph4r/NDA5s13n5ySKy/+y1IKNKhH+Ac+TMw0CM/rta8cK0yd2/8J/tYtDos9VYEsQME9nBOCeSSSzVnXS/t4F1/PJI9yBFdRc1jFOZuGZIoqJQ3ABbXOSR9azYmQEX59mZAYa7NduL5CVmVrZDD8r/qCYUse9cvny/OkfWLnolCGatnvSRYtA+Vd83P/brDj1Dfpr9K7zetVC+6QecYFeSa4qixcCWGiDloSC0gNEdRsFox+PVjwicKHtjXf4IZITKaWYO1sweB+JUxKZ1ulAppfTaZjMtfr4SL5gKZer956ETz5+TO6lHvUBsa4LAvET3wDUbD0eFWJG34yHKE1IplCc9mNIi/QguzAgjctu+KBXchWaWdlNs2U9An+W6ojrQGufgDtu3ydNmumdm6Myq7uR/IjrAW2zfMvXgp1KN9AJFMQSzcV9NXzy0zIr6eyI1TcUWYpjASa1v6cixBSMNgRdOqdmwmN0JfNoDoiAQV68VlyHvkaIk8Phjk39Gbjd2ahldusw35CMfPqSSV0V+koTeuSdYRs0D+62a/0VIj9AZAFUE/DVDQtLnTkjHvB1tVVNKY2HRQio/lbVbUDWgBpGYyGqRGFXMyeQuvptC08XNbx0feBcB8eVNKZ/xE7jmwnIT4Dd2NYWY4q6dIzc9+z3Ff/KHqH+GbI/Y+30leSaXx7rzPs0APcUIVR4GnBZ4hhcP6wCP3eSzCgu3RpYhohQJuqWPhyaZqNWm8+tgRINscZeE0H/lAm+i+pwHzLMjPoY/XfvwHtS+QTe44EwhE8Z7zWUmDPPXLELYxNY5laYwSHnt5iItE6bemPLjSVAQ2zEwmqU/BRIqUpNgHKfN1PWXLhVXUSH3B0DtmW1wXHpXdbwbodoB8NJZnH2cBTljwKeL/wfRKMUn30/l3Feb3v3HtbRHjEdCHAQZlGYsesWn58Bkh7Vy6ghsjT4ZDAN1mGHtbygy3UDZjvKYPE1kxLjN8stBR64y35ARrwTCcAJNfkjGEoWeNLnSMMV+VjMFaGlZxCbYp1qGV6tZ7kMOijgA4dZsh84nYKRlDGsIL+o1jHmIrKWWnx2jJ7jspzMXgPsVd+5wpOD6xRXpjFahrVQxO8o32d8jzVeZkgIwo/vyfmFr7iVtdmhKrXaI/yIy4ocDCzawGedF6Ds/UT5DOTxhrQds3gjcnN7BmJCxu8Cquvit+19dh0ktVDzSQKAkV6BEazcOS07pBKr1XAQLN0AdYzyAjYd+RqXt7QHAUzZsutvJhJSrH0KPYzk2BJcX4hSajv49PyyxhyJP/YrFvZ/NGNZRRjPGD/HEIZghMRUEyXAd5KoD0uH+z9EtFonsOoqBrNvgk5+C+mByfbdbh00WIhsyJmbGBBuXCHX22bLPcM1V2icYeVaFO6sXWxX9U7rYfT7iL7p5s1cjvbgAduJJc+iwJcaYja1hhX34REV9IUtO4C+k2YcxaumRxqpNstuOtMH2iAHOrfVgeE+KtIAFP7UDPtQ+ZYcrCfL/e6Yet0w4pybxox9Lt9oddBcWy+fH5jVBBk3M8dQE3B7FcqJbwDL2xKkW6tvG60+sdkFGmcRi+hmor6P2svzL8FE2HAlVpPzwA6Sk/hk9WuqgnfdlvK1ZnMrFUPpYDbAs6UEVBV1g6mvvyilh1GuwQeza8YY99A+DdOuYvxnQf6N5mhD4nYQ01JPMlkUcdX1lzIEQPFCxpuOhlVKbMHy55bqkJTDN+CBVll0LGQr6aFqR4nIKLtvi499KtUC9mwMclCDxecO+A9qFYoLH9xx0LLF0u/VH8sxW3SALrm1spsrUUYW6hjnbxmw6gT3oZ4Q23jpvbjwVs9VdSvm2AbcAWMfFeK8y4PtOOnQeJRbiopMLuwYayFnTVDYVI1C2J4z7oCNypGWbkV+0Xw/rDqlXBBbyFSeZuVUzONiJDSengmOPYR/M8CZFnqLDuuVUqa4H0g85/Es20b5nfvenLShOx6q4E/iNoksos1cR+cBxnjZxkzI3ojve8dLR0UV4bDnz94Rn+43wqNMbJFKGmysrR7j29r+5JSiVAnPE1p9mu9R9ev6oJzCmvHyR3ojdMWBsTSJdOne4mABB7e9iOYmR4uUz2QelGWd4oQZyTNDqZW1gGdpqda100/giEqXXKjF58v7Ns37uZ7U1ZVsDBJXT6H3g1FxINkAJ1ZxL64UzdE2aFP85MUY8cPChTAtDQ1Dv7GwynjTeGsY5abmBrd50ReVI+r92VxRPGxknbEX1HnvdMAkZyaIunN+O1Et3YXRT49a4RK76hE5apB0qzNkY6qwb7pxWIRKUmspOUyEKHWx18g4TFarJdtyfyLoxDyVB/WO1fMGWWCY+Q/EI0jVOvwZFoUvvhuBSRikVy2AL4VOY9UDBt6GJHGX6mtXrXxHJmTOx254Qz1PUs7elFWYlz8HWNl0uXquCJQAL/9HNSWggu77tAtynvkpx/pziBatxJy2UlLaAUu/dQggBa6c0BXmq8jahvdaSIhdhlAfku/m4KF0Qy4viwLzwHvx7iix/1ah8BXd+Ta0IrlcWop4WZKB4kg4ClJgo0ufL28szRiu/XBdd9iGyBsboj0nvSWpyz8Cs6ASTTK3ifSRDTbzGNN5v/7u4gpFemuklQo5MLQAEBB0nczJQFEBzOarNIrxrIyxW8fzemxRI339wDnQXAjMbf/FoaSqNEw+T7vjFNBuNqeBfiZG8QMQ+LZ1rViDZg2PT1qn3WtYaEfqO3IIWta+aDEA8yj4W966rzy/5AfEKET5zVpYqSSDh/Hb6oQU8o2DHXJng9EpQEv9e5IFBb715kA+xUr4K0ybKqLIx7M1zDNX6kzIaa8YKY4Q/p+w17922KyJShL5k/ABJdK2jAMcAk7mOHj74YWtW4DKN+tkFwX1UNBP6gKR/ei8QCOxOEFY9oTymnlEKdAypO4CozvI/BLLE/ev1nsMO9TzrbKMNXRVyCh636/vOl0jgjAhQWpxLd7Xra4eOzmrMgJe9xJ8ro43nUG1IqakBpdgg2TNGnQoyOW0Zgb9ZTloAACLtlgyyWnmgBPrAnDFQj38pRz1V/vXGmkUtCntNlbObErItV39GIFgnFE4jA7cXckIZ19dfsDJvL8dPGd68q5YpudiwYEM13Sg5lZDRnri1QY6YLQqORTO6fGusOPJHLe/uhmDXjvfdRW+dzN3FSjzw+qalP4Ulryd+EMSHhERWNP9x0pK3oi4UCEDzZm4poU8Ua4LPAb9nSSDfHabC9ubcfNoiUlNnJx0C6iEjLIES60c/wxUDmChn6EignqtYL/GAsOkh+0bd801Rjwe65NFHA7s0x+M7/Pyr+AAUR84iuNr1UFD1wjTgTNsbOVSwVAkM52x8NbAts5Zk3BImtQKhaZYuGQLpnPv/rjB5yr3XwXFn1+Mw9DQbhY3KEI2hU0CZKhdyG5W0CzxuElnITB3Z+SzG3hg5AAdq35b5cQwDPZNT0DpvkBZjFfz2K6ZXS87OFFEWcIFNSrcUQVCu+PJsOsoc8Krhftc796p5djTt2et8n4MlYGfg/+kkn+MWrs2gfv/lcfOFZjoG1qFmlu4LUMAd9dGZK+vsCTgDF587Yle0ef+o3tJNUeAx8lRRSZNdZ8IzosD4svGbTT3zyKXehSu83bNzKek/0w86wXSIHsE43YSB8aOf5/i72/9Ifu+Dg7omKPKjFXYfeLTh/Q4Kk4Vh/BIYHjHk9HKzeJh/mlBiuiU+RZG664/W+FvaaBMdqYyaYLDU05XkxGuyuUJ0zAwF0x90fzEGHDzwgM48lIIzriQsvWH9QNN7D0sW7W7ehd2L6TPyqW/WuzZZVpVUzLcynvElW6zuKYGxM9d/omLAlOWCGuEHHsrtERozxRhrvgFzCpHjIVLBkaNN/gOFZ5pHm4AAgkjZZpaKXjx2zdEWRlnraGIE+Oy6+LhEe6trjXNUE0LKG5qV0W0KB+Caa/Zi0WOCK3jHl7+TgvBhYe2mKKUx8SqK6tQZyQbBCtROGvF5ujHM++BsRx8TFrlP56UJa+s0vUMbugiM+A+WU1ZZGNmvGaUQm6Qk1kIffc56crfnTAGeJXEU6klqEe8Ify3pvpUx1eZBtonylM+bgXB89+NvajkT8xGJfxp8I42P9mdlSisbzy4dsjNhnI73hZcQiLd3NC90Ogxp4WNCXgzSABAuXNEgPwxxLgAsmmptwK3A+BJ4J6HEaVb26AkIdeYwZj7iuZWlbr3xPo+DZ5fpPAX4pc6GxZxbXgZ1t3agrxFlhEK441eQZ8r9kj3KvBLi5SWuN22tN7z8r8/8n+eU0u7ktr1uXKTYSDjkRjJ398Hm6PO9PEtGAH8c5OKuFOoUKlIA7jO1NfoHGdJCxrXfoUOmOP2+UC1ul+kKLj1m+Fu9wlcLZgxecgaoVJADJ9WBkvLkZ+yYPi0FS5fPrgKOyiiLVbTzOLhQak/3+5ri6K/V3e9NljxO0G5V3d8bfiVyfVctU9KYPDg5ztQzro0Oln9/+Yu+b6Hz+vA/aPKR1Ra8lFupCqV2x3Js/AF21+M+0v6wbsQdLVj7ZvVlE4cXkHzhkgq0/OTDUf/BTBpTqCX1Y/EoKzNmRit1fKKVSKRUPkN41I+fWBhIQZINsXdduEC3Ll6k8sEc88IgATfuLy3K12E4Hp1B0Wzut6P+2mBk7bQsRBexjkBhYsBBY2rKdrN7pDHvwiMm62LRwQ4TNPuKjwV1koK7TM89gXEzs76Le1MrwxTHve66HK9wS6HwTjxvj1+b7v8srVvscZDeK3P1/AQOppcQ+5E7YBmn4u1Qgb/ce354D/SOsnKcyEHzJ1vuadPXqAdH9TZdPU8ctjr50w6FsQy5MmdEbuk2gk9hFw0gHbMs4qeHJPwtPniiQqJ7YvBm0rVzParEEXdaHYz3dTJcUZWPtSdLW61qcwhDquLxTzG3NAVVBU6vT1+2BDVB3RXkerZJ9VgxJkyLzC2thp6ddxA/HEEw7PfjGnA44PNYdkyBmkNOX7uxkV1pNWQJKVoCvxhZ6bGij/76l4RMEmn2O5qmVdcklXhS7f8W2oIDRIfbsiXIPTrEs4OAMFDorM7gN8lzXVctUumnmkFG7xuuM0F47xntVu1PIuEB5JkCmnwdbmMOm6pAkRdGOb3qYRc0p0G/STsvOLhTrmd3nKXBkac2fHAqcXsZ3Hpgv6JS6ciOX6Y7QCMSMfK46f6uO5rfcPObVg2XzDkSJ8IjNZNTTSizbcS59iodH7JERvNbqpdiMplvBBT2e9HeZUgVKNmpdW+yd1xTav7F0NPZSp9pnyEdcSlAb1tfQHINTjpD4hmb8EwCbMYIAP910jA6EaicskcRX1mOx6jxe0ejEwbQ0QXxwvn8GDQxq+mTlItP9vJP1qFPEGTNG6n8MFnWfB6alwZn3hpHWPoJWsB5UbOMNPQee+wRoIsnHIooitgG8WAZOcLNWtiCgY3DGdFydn77YzsRfyz1Bu0fcSqYUYSGjF6HTIExjFHLj/aTTgHPyz7ImzZrdshss40bSqOB+hVE9v38fICAdTDIfdM4koMkevohJ3lPmihRyFD6tlKIO7EanKEEoJD8gXxL94+ErHNTPWh44/fhICsJYKxEN5HQlkGvzmt7pNbRnQLE9fSQWWbogL1bXhNa9KMgy8qb6NKB4cO8C9vNlQ9CzvHIkiid31vozXHr1u2krsjJUPRS0aqToe00gnUh4i/ZlBqrukwWXfxFJ0thZxFWEAOWARVQUGCKWtLTMRjeyVzxBxrdFlXwENhnPCtLokHrHMSgsvrkEJwXTwEiydSg4N9fATjVYwV+SiztbG+7B/QSXutRiJ2IROV0wVFJ33FRrbtkCL3lgPy9eS7PDZFktC5dHT6mfZEY3NUTw3n17GD5nHEkVhVYWxuOIDKXpd82732OmhuyjoQPiIeAVY+JjvARzEjsbKsdDuFwmp+HBbhYHsQtuB7cCTIlJd9I+MG8x6wbn26x0apkthDrRN/rG4xGzewSz1M9GW96BRiSoQYFvR9LigD7VFsQ2L72osIOFXgP5D7nil9ahZvsSzd8eduKNO0qqe1atvcnc+HyrTN/iSGcAnrkj7Agp5nXymjj4IeKDqhlhu+dKMwq54OCD67hx3IqNaikeq9gTxrR8M22c00bYswwg9/R5ah/KhPNuUgAaeWp3T7RooD3AXQ0oaL0XYEVcIzFmK15zkGC05ovknAhDLY1Ksw/JGILY6QO4zp6H7apEN0vJ3QdjqhtXvRHqc2Nv04ZxNfzNVJO+1DvUhtV5azgXKi/HYROGbzjxjdjmNNpTnpMQeup0BkE0AjvF7oIk9BUpHRMMYbiG1wn7xT2O6A/Agsml8mxWOLKxV/kI8bGB0Nc0Gh/VUHnyWG73slHLTaTtJDZX+h2sufA+SYEHmksFV0+y5MU3WEjw4gw+mpQCvo/s8XIVNiYLLZgV+Uu3gxy/JfWky39B56Th5/RPcYrfENQvP9ISUkmO2XXiWYX9A882ogCWuskKuGsa4hpn4m0FrhuL6QjTRH7kbMO2VC+ZoSpyu5HkEbNgvfobBhzd2tspkOtWmJqfUfkY7RTNoNrybrZlbM309aFZUi5PBp6zm4b03ZYK4Zdidg4MbrEnakRRTsYaeyZG10aXYPJxEY4F7WwAAiY7Ej1gzFbp5qnkC5+cHGMsLnZxwEX9yEd4LFck6EJIs2/py3kK7YC8MVR211Z8aNYU1BsOSgCDkvvWC54MOoq+YNW/VbDFbr57wu7XFXezDbNBUwyluIj+7n6+z0G5/DlwpeHVQ6c0293T68iXZ51tdl2fqTmPvLlmu+UDx7vdyYZeeE3vkIImicgWOqLa9tkVDjoPtZF3Ewbka0/JlF9S1cWNwRDsgtGyZhvIrXPctcOoUO7cJJAMJKyC4YRoIbf/umvr/RLtJAEu/DqSZt/8zsW+X5rqdIwuQxO6VhqFtUaNFUmucxeCYkQ4jd819pIj7ERtHCVp+DbWpJcjr2f2Hii0lZVkjtSOCsa40PMJiTRYUgSX6hnmY6wl/SjXiBTFcvTLR5T0tmKE0C+09PdnHeXKr2NrJlPbRYmCCZ+YZ3+qVQViFep99iRJ2S3yXHxiiFdNXFoi1X2ITq7W2UmVqJz+q+3GE4ygBuXHNHkzQv3SDh/29Vlr+W1HhN89iiGazwiFLBfXuPBGfRK6sH4R/orkHv7Lq/aoxq7GzF65jBeR2iEtL+6Wf8UW1d8/6YT4EAokQrUd5qclRhmFhWvqdceY/1v+9d8rdzAr4Xis4qhJMjvym8chhmk5XOJlBA/Cb7EoA9d+4ldEJOnlTLcLo+OfBr0iPeaDX4dxFqwAsTMsHF/otLlN4DLz7ucvVT9ci+AyB8ghyXkY12GCBohM7I8Ot1lBp76D+019lC+DcXQYFGaODcmr9kiokzvTdPYSB6epaqGjzEmU+/DHiXjnuOHudMpRAxp1K6JWBXM6+KeT1pbfDvPhLvCIh+c28DY63celbU0bVCboKRizQRKGANAEqPEOjieWIQiSrmM9pmyo3v6MQWTLeVYFwV1BiGZwzRAQxuIvN5mA/wEogcr3M0FVisvZbWTSL44L1M4rgYIXCI+dy//to1oM+lw8L2/UAsbNioTMQB4EiocSkZlpnsJoCteNGknKroSocJqALMlg6NfUIuXDC7vSKOotbVwWOiL0tZnDv+wCHnQOAaLXGYiQDw7XPlntw49lrT6YltzNH5tO6rISlQhcIrCIejvcga98diugAuEXvbiHhOx40b0pJirkOClI165yPWSk0ebR/PnuwNuMEv8NG7KgCf92bFNZ2whJMl8t4y3iIYEpGuT9armh1zN0oBCPuHAs/BQw778utL22LFeaG+em+wVqydZAd3HOQoZhzfvo06JZ6a84q2F9Dd1xqlOvDXjy5MszVFrpDTd9IedOSyvu3+qeCgy2ad86TzCaAex7ANNq01Obi67uUH07MV34fC2PsKFBai5JB+Xou5uXERUojbW0vNARBH6FmPhxyhiS98G5f/ZPKZNOyU1DIkTfNVbyMKdVSyhey1Or5q8J5+nVLBocEJ/NXkMG6VSQUjGdRzJ8OlG70ya/xjvxCNQ5L1xF2/aGiB94DrTnsulw1hWXdH3Bocu+nI8W5ydfVviSuJf+knwfKXoynSbmHM1WPvLsF+gE0/DJ3u7MCnOS5LEytCM8N50TksKnY6gqZgt2bj+EuqbZTrMZK1p118JpLk0+oRHyrwpaWloqyOAWg85w438WJpg6bThPQiv0FuoPRrF2Z8MF2bJrXxcB9yC8RsVSMVdlbqTYrg01c/YQvR4C4odTMz+BsH5fT8hDY9lKZB6jgxIpPh6wqAPIkyGUCV5nNM2xHFVfwl8TyeZR6GGnN8NyFTL8+5N2qWBFdy9PSG/6VxKQt57prpoWviN4mvcSLC4sbDt/Wm7QOAcww2sRRoYLItZMuqj0TZhEckSX3BEJ6J8GPhhMBaSpN/dtZpDflZsxsIXko7aKkhl5dIyaOsrWbO7ywCLmm2eMjqCcYNbThw7NhCBG2jbgPSt+d4E3ZvH4d3A7gEIrnmQpJip6S52K12GjPCexgMHKShn1ahZVL9Y9EqhhpK6ok+AxG0lZTNQ3qHzK81awysypWJV5/Qbq0LS/vYKkryzaK1ltY8AmYpiR0FwgQbhRPMIM/L2Tl+FUtXZ01V7vUpeFD/sHFfOl6V+JQNl1YiORTxVHXLjkZIA7QGAw8S9mobQmQHhpSDe6n5N/EyTKVDG8jjcT0zLCDKkZ+zTnM+7QEMR1I71FmysDY6pUOL9p5xwT6rV4UyyZTtstVz9kgf8FBL1fzllYRXU62uczOPlkXP6FI73jtUMKqdO8QOnC/H9moScekL6Th04wqEr0IuA4Tb5kXSKZSSPMKa7kavkIxMh6VNdzlo66IVo+hLarfVX+EBL7PrUhmP7+2vPji030gBVNviL5vEhOth7p428mYHBXXmbjnl4IHwWMazyZX1a6PALNqy/0p+bzCgXeMD3gvbNZoBxsrYjenjfrng1BShB4kZNHhRSFT7eXyEjT2fWIxqqunLn6PWj55hTGTM7LZn+Pa5ePveUDiVqHW3Q8N6k/CHCE9a0+FDMOyBECpANLJLSxlaxk4v2KlwLEucDcCkYA+KNi2YquYv9GrlRReUWkaDk49MLRQIxG1t2Mp0Scv5X/WDeE0WAW23XGnsRmPvCRnZFrvjjZYacLfhJb4nn/gbBQU5XeP1gYPO4k8953H23Socxq8NJZsJmmVLN/KFV9bKj78SkerWwgP8/u3RMzcyykyguoBXumZu3FKBpnxd/mV/ERlyhGqg/hDvsupnMWEt7yy53J1QbciClG5seUh9qpkfAzys3SOJGznQpGgZWjDI4PVOp+cqILjvsMaxUdiZty/sdvBD6AFmuFMCirrU0YD8lf8wDqsUgtCgKksXRfVXX83d52H5m1jR7R+JthRObEFk+D/wwpqiL0QXc77lVcOxVHr7PTc19PkNYB5l7Z+W1G5GgnGz3zNrghtwAx6/B/5KLoePdtORL6osHeHtzSVuBM+Em4pRpaAcWjbhCAC8kSpXH1GaqSFOWq/E+6o0/TJntTTADJDeWkWgJiW24CQg88xwJU3JTZDgeBh4OPYoUeT9J/k1tTClvSsx7sC4fjQr82UjaAdqpxUmw4o98PZU3Y3H9WHjxNkfF4tgUyWVhDolOI4ObiMj/pmrYlkALSUT+AgPSqhqJXDPRScjJs0vRLC4eBWo9XUe+cC2OPPAJnFJKl9z8YPl/zEs4wjR8AVg91Ng8sIdmkXPYe54KwSpeKm9S1Y3kE+gs4qrOkjHOunsbY+/IvPQblB8VNCGPMd/5ZJjoZva72DcQp38s5A6XAcot9BXGgbwZlcxMJVtImp1DvkmPlhfMwMfUeGXarBWiJ4QuELSeKCsDZNoBjZoKFiHelxxtl5v8ucC/Mfyj1G99WnHrSvPbF5g4nqQr3T75T8W+tPj5PcZ+Pwwdg2K9sDVQ8k8JPyjrg9PFb4yETebGLBWKZN6oWVzD5gKa47AgnqDyIw4jK4CCVxSoqvqne5eMw/6J63hwgKcHM/ePefT//lVLMbEOncbSnNBv5/n0v5KDyTCme2svUUatJUkIBadeu5YSYhc7J2YAU2Y0laqSgXhJLXT7FPW5+IMPuMhQ7GmfVn9IezCYA9cPoYB9mNwdaHaUBoE9aKesaUD/vA4K048p2//8p2JnrBej+5tJ0oIb817HQg/ipwc3ZBIQVNzHzVM6FEfZvcrNXj8UGZH/DaZbIi6yIeK8HxMeJ2iXvL/7hf42aiGxVUO5Xu6sy3Dx+MJ0GBlCQJEcqXzfXtuH6anK/2yZL05sbtsk6sLgJQEWY1tgCX+FfKiWZ6erCeE1ersmeVM19WhpcYfoNuxXFwCh8kZtDgQ7dhQEZoopelcJiMFKvu+d0IeO/UnMOju1hZg3DJHMjdvASCoPNvqpyHySaOV/lBskHjqJC7CmqqZf+GNolfTO141efpnk9AMItHQdHXXf1CVI2H1mDSJDU8H7sL172XBU1cloEwcbElV6kmI5N+PvSvw2fTx/0VDhmapub4OlvQmOYsCxjRcZOGuh+a5PDZ/dbmJ7LJjJp+9CTIrrebDr2I1PNbGG6uaDhtQaIVp4R5lFGAMK/aa8Cn6Leqyc14oFbiPLo3/NdOm9ra2J/fbNj3L3493QBNigLdCG2ZpoavAOUTxeBb/JPpVDreQ8IsT2/GdJB3fevxieVAfsJOFWX4TXN2+ePm4NzqYvNySlcSqpNJBizOwsOE+lItOy6Pa3XFLkB78ig/XEGk6aUYrS9zLjx4/z2nTI/7FrQls+KEh8uQe5xUa35FJVHjiydzB20450u7CnZ8FoNSaS90J5NGQqNuwI1RYCSaUemhOplP6RT8jYWZNJnetMsmWXlaQkojGFiLyFI/AkOAOd84NxirqJm5q5yYszbV1jjym7Y4QPgeFSL6A9EIAGh2YsZlMfxGZHwJGAHgJlyrwI8lh6Rhwl12maKJ0abOTI7EgfDcLiV7TNL3WdZmp0m7Jm2yWLLDC8/c0sfzbycAWtHaUOzIw3q6iETcFapWWZwVEKTIj9yEEe8RnmUZ15HNWd2KeNGcyQVGmYaBM75luQ4RXZsfZv9VruyYuAbr7VdZG04dipIHFSiUdocGfB9JJFxnQL5W+iqD3tdM3KgWZglFnjdj3sLWYCfU1EY3GnQQtv884hkM0psI6hBUVtg1MI9HORSID03gyN4grZ7ySYX4p91lPNvJpk0hQpkTOR15xolVKx3Z/RF1P5l9wFpMkdRGFaQ+9RZLN0n5LQ1AE57rP+RIjDcR7MqYv9zSMlkOJrqR1Ns4faXyy3mMymfHO8TFYGQGF9IRRclwXnPyhkFFxI5hXMn5rixfGN6OKUKj2sZGTOLDcpUr35s33O/6fmqx2tJ4IV5gBGyPRGWcEBNq+5UbtpsNPuGP+HucLE7EB2R3yfuYdl9B4NYzV9qrcqgcxFmOTX/f+z5MCOGbPk9JJDvm6b/83FLvhfEBtn3KRELnGIlSL3fSDO0YfiAhBeDXcSH9bRUyUZMztwZo19qkJDI/P0Or9QzwAy1mthntOZaeKa9N64b6Tg/hzycMTJgrHglF8oMbAVM1T1kXaSdoGJ7FqsIA5EWDK7pFOtXxQ/bEpI26q7AMqxnp1SYXmN2kZ+uQDBqtpkf7xVMhfx6zikk977rtdbZJTKEqgJXjlQ9jx1EVpDQ+aChlS0C1mrVjsxjvp/GPHTD5nmWDQPJLX39RoQSXgEARkWO4OiJrTcDmF1pCfq7NTvHrywIy0sknsQAjKDH1upavMSsEh/5Py/DSn/pyxAL76oF8zIvZmI7tXLwMN+1f+UuK7SZfC/xKjXazzLymigoq25lXMU+UYWVfIa0zdRxbpRunNXSqRosT8wMM6TnMH5n8eqSwJ3L19VwlJXdqH3EtwWfYfv2G2yD74pWkUwhWqp9kQuOfrc4c6TuKMWL8UMYI+dHQX+LP5VcCu+Lar6/Ex2Bet3ylTw/c4+lNwgB4yQWxeIUUqNc8trwnB+mbknGIiTVosHYFOr4OJ41zoEz2UnBiihbNNkq4fhJFWrmXpOOlSCqVVAn95i5POkYKUgZ/FSpO3XAQsKfuhcGhh9z0D1/mzuK9q4YlJpldKLkE3smmBO+xcu4o0NiPOvTMJuzxLT+Td7lWUNuajLK7X7yqhXUPQt3+qBuABRcQq7pHHLIBWi806Wmomcv7FBkMw2UGrKHOHd8qRFCtbNSQjLUb16VQlcVi4oLC4OVjp4rV6k6mmD2J6u54MMkeYw9xt/f4NIADH9d/zecnKKsP6AZspDGKhykREpd/y43+Z+1qKrHeb+HtqZh7skLVuhJKWwEekKO3HCFha2syn17PFo3eD93uQ9YkSlOuXBA1EVUNfW3Av0g9ZaiWkbKr1kQr/n03vpX0YzaSqZU0P7KEGUr+VlP/zWv2VBslmyV9gvHAruuOyDu0vbSNvL5S3YEN0VmXQ4koGw2wzTy0yeCYFKa7G7wa7LyDU7DqD8bI2sxCHq2Ns7YeZ6PNiJxbbey0Kg9sGRyRBNdQM9UY8urX+JXvAegqJ699yy7IgFiQILDpoeIEp5RJMD18U1Q5x1Za2KPeI3Wsg69qPq2UaLYsL2Ia2gog0s0gkYhS+avG7X+PaJe2oyqKx9Qu/LZoD7L7cI4bjOzOdftNk/i5otKE5ha4W/CVPXzZjNMNj1spO/3yx1Bfu3taJm9GfDltewwCkPaGi2s40f7HGGQxY+NZRJm5qgzjXYA2WN+D7aXZOMaISZaiYvGOi9xFxxHM2GThUR33JErIK+1+xNDWMU3aDozuZ9tkj/5/7XQjMEhNd+hGAqa0XTQZCMCaJDoDk9ru9YCrUsiX9TljqKXWk3R6pkVF4HBrTkou/h1+lSu5xfmzO8qtyS4O3pqiQ6O/pAvOPx5jMjI8C4k2gPgg/7mLtG6n74BTu4MKw28HNt4T0eketOgmoqka8ezoQiSjMFrugCxsScms4hHG09NdHQXztiXD6yI7iXfDm0Jd6axZl8hDmnA4wsaqA0avOID55YYwa83XfHFKVwovahP0UiEvJVqYLaE8uStNkPlfeYS9q5wMRWjGmtVvSp2hPO38xfg21vQh9ZPJgsw8hLPyjSGrE6KsUa2EeTaaocObkB+DZuQlfVCuc/NTvU+CoB7DIri5OIMmw9MWGaNUEe3gLZ2YBkJKfOTIYEh8G6njBgoUwmX+/FJ2BJa1Cl3frpZdiGe89HZbyGvCfKvvMh9ZHbEuShvyGEOjiAgrAw+OEY9DDOC6yd86wCbmzenTpxSlmRWvQNGdevffwWBZj+IthPMDf8OjY84ZOTbNFpLr32kfICrAyWSEJV7Ivou334YZv6ddi1iPS0wyoBDFwclOQIE4J/H6sYJXhAMldarPES+fu4PWbv2tmYqPUiWGJYzuUOjOL+JLX5BUcTSvHw5GocOMroY05CdOuD4OnSQtYb4Q8QpBr2U4nLrlUSyBGL6vFMs+zCSEUr2ojqeKgE8fcddVOSjpxOkQKfhMxJF/xC+XLggtKsl9SG2gk4ryAUL045OV9tVDjuIDblss/Niqwvx25ABWXnE2dxBc12viYq5DPel0CiZPF77VsNw6EXprlOUhKEqa0g8DpOU9IqZ+Hny+wiYJzoHtKcfJ04gv20GktCw9H12HnHtVI21i58H4Wjq9px9++aLGa6nu3ECnOyDl9n917Ef9FQO+JXwaeHPstCJxozS9hSdVlEOx2a7EQkE8E2FvEhxW5z6tEjnMaPaeUtDlMDAhBjc5fUiVMgf1s+TbCr+h0TNMwROCdJ9/OUMv3xlHwcqN5rTiCLzp5hge3/awPeglZEtvjmA2BGPfYPmeDlmWZeCblXtqYUQEwxqt5tDyXSXRbvPLfoRSEVFiy8TPDIeMrJOQj0gB8elSDIYBcAiugpBUfGhzJBSh6+wHmOgsTcx9TyTHfVtcPpDZbz7p8XM27e1fh6n5ViSuK9lQbR2GjOBLKoQnkRYYRo3lKYXeagvRFSgkkKeNVPa9lNQp8sDlwjVXNwx4syAD8YKaj7duhardJALOaZlbXy2t6KHMpEpCv5G90sCkF5hTewptfXG40dSIpblQkonIytcwtAFSaoJMhMyy640uN/6SYD6unoiHViGZaIz27e8pkG6pGN/TArGSm4DLpEG2tS81ybwVmN4Y7oT53+nhsE+/Z6FpFWicM77aqNIhQRCYsri/EmKglZGVGBGELBogppXIo49dt4GhW0yXzTIXOcUFC4UwCrjEtJwHw5JgnHthq4sWZJWxVTtXDZEYNhjNDpzDm9nJbXwYt8XHfzwTpkBknS+A91CbUzqLiUkOlL7zrWKiMJ0i1YHssjPI660Pe722zSlgU3tEEoWNy45no9FAcLFX5fH/8PdbiMwJzWIwEYrfUDC8xfymB5K+TwSktzoxlAbbfJco9kEobe1hUVJZMlXBCeIaZ/ZmkLZd/MK01X66x60fGxVobquCVh3yIdslKsnH3omoy8zwRtFgiSuIxkDjP1YlF+8M/Fh78fmIQu9qKrjR9LW28luJiJTib5bd/LXxabV0Qlib9BGoX+/IMwVyinbMOW/9NSo9ct6caneA3z6WBDHHcHvaPXFcFc/jg8pI/AZwXUrX3MRDI7iUzeoLiGmppgAKB0Fxmk53kVl61MpInkz2wg6TgRg+NYsJy9D/xPf6qlmyg2Fzzl+OtMyvdtx5njP2h+kScz/p77pRp8CjlyemWByIV4u32zXX080qG3F2KlNEw+GFrUYdpVd7H9kDi0JahMLGMGtl6k78jf5WgkUi1DpoAL40fje/AAkQ6qBKKw16ltQIwdKEDp+2kgOMUo4/KL07+eSEYU27S/i4FN2axmFKYPsQ3v4obghPxyQrqZ9CuufBvyDiN85CIhLEx/jRHunnGOffJmwxOfXtzMABCq3Yiwip9/MPHnAZ18PHslfQmCb2aO7jJQszysYkqZZQlGYGWLVed0RylmppflF3xqQdCwRNth3vfUKSHhXKujIrku0rLvMZ9nUeiXHdhSNqQxop6OZDq1Xg8e4RBpR5nX59altAKOLXBGMF8bIpmXDhqcs36tB5bWG67P//s3XdgYuZ9nHblZ0YylKHCWvUrypRQ+tDjq7KbJmt8sUNc/zcODP2FTLTHWzZPhIPlk1hEZRplSuY4xSLwr9xruAn3FkXsJ43eSUEZGCv0OkgcbvRIEJQH5wP86Z1ACzk2eJqID08UQobnV+6Oj90OdLWJ7hUmoacP9QCCpGxqXQmi+E69z2+WmR/VNsfypkLMGyA/Lqm+lCamWQFhTzdC9/9AxpCh2+3OdXhIJ8ftAtErHmVyjtpf+1WN1/UTm0ZeD8AjMV/Lwvd6iT2cb9iHGP67Ki9ytik1vCXvq/mb4beGt2KC1beuR33Y8fXJLVs5cHo721CPtvkAm/AKrZY9N/LBM9FisCA12CbcXdKLdu8ZtAAfm9/LuFYNZGw79ANv71xLamckYskiybw9xnyQa80SlHkZvZnP7w1JO7s46jodmLd9ANzNxo1PGbXxqk+LsZXhKViS6o0LNizSReMIy9rgyQr4tTPv14EaCuuP8CXybIzgpGBgOR/vtsG0vlEHAsSsWi/aHcQ0q4sGDTrVmZ3PaqmSqOct6X4Zui++CXDUnSsu/ZDgtfKzon35CFbZtqj+7K4xw5P/x80ZZvtN4ahmMn7OVpi/3954yozp6ZfmZ3TLcP3XLi5ThhDviNZQAyMb4d8aanYoX81JsvfXyrCslldqzq1JfK8+7YpP5inoUXaQA3VT+Zn+XOp+Y0s3f4Q/fIE4ZkxYi97Wn7pufoLeWKKbrNtmY7LNnP1wrjAp+8TJYglTlFx+6zgsvRC8xOg1BufI0+k+m3NAIIWvz0My/YuLvJF38bP8QNST7XsUD92RnzjavYAWyFJXdl2QVYzVXPE8+X3gv5msc=
Variant 3
DifficultyLevel
638
Question
Charlie has decided to tile his bathroom floor using shaded and unshaded tiles in the pattern below.
What fraction of the finished floor is shaded?
Worked Solution
Dividing each square into 4 triangles:
Number of unshaded triangles = 16
|
|
∴ Fraction unshaded |
= 9×418 |
|
|
|
= 3616 |
|
|
|
= 94 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Charlie has decided to tile his bathroom floor using shaded and unshaded tiles in the pattern below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-G4-NC19-var3.svg 220 indent3 vpad
What fraction of the finished floor is shaded? |
workedSolution | Dividing each square into 4 triangles:
Number of unshaded triangles = 16
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction unshaded | \= $\dfrac{18}{9 \times 4}$ |
|||
| | \= $\dfrac{16}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+yCqFb5GfpWpLthaePisG4amdSLBtUwqDEZ1/JmHQ1iSuUme1vAs+9EWsVL/Hr4YWDumhM2bsYxA2heU9O/OIE4fe0TyhDvVDl4UfMP5MpwJ5Ap7VHZfpPOIhOpwoAHMD56eVyB7yyiOtFrh8/k3MzXDFWSmlFol4DtLsbtBozQpzUx/WMUlUx3HXfpqlcExPZ3w9yAtohAKX4Ng/1HR+Pr64GROjjU1vGygzwbz8AdT1r9KxJie7X4LkAjaZeGvf1Z46Tl92EhqWK0p1JDY5Or87A7X6yTwSM+eave9mbpWGFKR8OGUCMnyqYxrEXJqli/0QnY3VFmh96tYeTSUxam5dm5yyWKWIJKLClNKu9CWaRT6IrpDuhioITM2q7mEn3Aa6NK57rMJqWQ1UdMK0jlACHQRijEYnmARTuVTNzJxxwQUq3gMsNilwVIvTT6pbu3tWzBn2+dJMTbe/4rJySaI2FXYFzZBBue0R8T+jNGLjAG3pXt73iVnmRDuJryL8VHZgpsLUb4vJW9f8gKstcnFvCx3RteX9l95HGRfMcGe1z3iC3K+qgR+DOJK3g4fqYPY9qhfQDhEAkGtCPqSzVHMTx1MbcI3Mot64+gJfHiIVP/AQWvydXxGpUrGPNsCHS8IaJEbjVO5WRCp0Zq2egxKV9XzhOqj0hI6khT7EAw2xJapMhZWNB5lKERvyNgY75ulEHE1Z5lZJfbhEsAga/yJDSeLqy8Q4n21G9IsCqQ9nWBD/kNZIDbai0JsORD+qdTIyZZhJNTuCbLJOygFPKdBUb4+aWfjd9EctpKzLcDXIPFEjy73s86MxdajaoS1bNOMlNRUcYgMReHTNA6kxpxTSPcWWbiYPPek1h5KH67AzPm88IiQl1aafdBg/3lr0FZazqtRLOcUQTDXAWgZOhIYFlPrT7DYT757Kd3CVytm6Oo7VZ/djc5kxIzQXq4i1FphPFT0cnGV1hORai4FjN4hvpkGE5PcnDOo4RleaC4S7m4wqtKz+xTGoD5Ae9LcN7KlsJ6qfFjFUJv1drN2onEUY0JmEKRrlf17+RXds3OhecfCFjbeLolsWdc6sm11dNxIB7G4LuheLeJFfUzlt2Sht65M6GietavlZYHNfuqzeG6T68KNzAm0ke1uJkzItipFLg03SjxR1nL3wdOOojmbSkRCAbdgIGylk8Rz69MlUkiqUPx2PjvwahdeLhSqGLh7qbh5VzhsJNjFhrUFBVvxNh5rbfn+jZoZTtFANQWkLCZNvwkwBiw3AQZb3IhtToc1PEL34ENxNPTuzrdbPYmJUpwImP4LYy/j3sz97+fQfIdfwlh2at+bbAwgCufwWzeOIzNDmla2E8V0JAjgS+zarHdq8UVSrMl5nmxYY8wCaT/yM6bplcG2O5o4XPo5W5C6kJcHIxE/8HKaC+jOBkfcBgTjl6lQ/EhAPsAQbgaECxTGPgnIvGibfHDwJU5OdcgSrjsRUI6EHct0iEJSP6bOnwzCKo4kyRhcF2KVvfoX2ylyJUBZf5ml5bVpU0zr7wBNu7W+jYrI/h+bKfWshmg4k10q+uMnzpttsRuYYg4Uw60941tZoCh6n5YjJb7N7WGy6h0ffuv0Pi/wmWlpwK4hn57CNFC2fB7HYVNd7KTSVmz+Rf+rVlxZfUKOxMpbupShkNVwx9q0lvRz/GTvtJp70zKE6EKWMjJBu+hutEciBROfMjkTnjXTnzwHi5QmpYiKn7dP7CN1IdE17W2ToWSEFSsLEiuxqrxj7IvLJD3exeei/hKuziKrt7b9rXqMjtAFvY/4wrQJE784DlfEexW3uIvRXzxUHG+2y5PiK1Hw3F/X8OCLwS5F61tsaukJDflexlDYTC/hkjh6DLczHdLdhh0TKLtcSx/jQOGQoWbZMl4WwlHh1CNl78pE7NcnU2ocmoSjg7ZrT43zUM/vau+l1gn5i1CXIATB3/7hmjWJVHka7doOXeqFeQsnk3V4P0pWBb3fBiku/y/qBxtmDvJGvtrk/ykVcIzk2PE0MTlaPOZerm5/S4mb6uEH1KkkKqEjxWqZhVFjPL7l3eLf4AS5Wk9O9i0UYLy5ymCrUoz13FdrFMEpdhHD1s+4bz1lBkUIz7aEHJz7M9iheyEv7GMl2FgPVhWvsJ2YuUFSgl0Ogoakdho1IbOKq/qI/RLMoB5Noi8i2xmB0q8ZJNdjhkogJAZlJa8Cxov1OctpVHYlkFaSEiHRZP3FmwYmxoJtjia+sVjCFHYXo7YbfiKkbVbPlDCFBbB5qf0PrzidAFIiPYa5ApIkIUoK3U0IGtH7cPQjSS8M4m7/9eaVm/agjSJ2l3GuM3MhjW4ZVdAy7fgdaHGDoq/NXq5jr2wUGGoLZcaMM9mRmQYpDxeRmn0wnOGIYWXRmA7ITMGzQv8VpUCysvDHVpryO1cLCxyzUJU1cIAMW/HvY+5LwaWTOzm1bgxGn9YnVGFhiMpz+zVeZ9HiDy39EB4jJTPORqU+CwAvliw9gN2m4SMBEFfb9QndvSoT5YZn4T1Eynzqkb+BHpe1dPChLn7Rl/srehfuZ3XsA2SnT99w1gZOAgKxghwFp9rGiaruw8iPkQaQxf9lsw9lJ0PTVwpiHU7mNy8Hz2eaOYD/j8AWf1U2YBizGXVOHIV5r63ODT4s6TlRMeySynYjlZS+Z/w1TAtuAzLo+rnX792Siu4uz3jO0YDNOc87pteOTT6Vt3TbfVP1gJv6/OlE6FdBVAMWglzTzw0ZNEaoELOZlbciqzeaO9nzoWvI7POv4hldA+/neBNvcCk2JsCx6uPu+jnUWwebb39VMX9HIJ3XIdqtEdCjqN5n3qHfW374OskBcksyc3rW3ZhOLjbDIplQwv9fXZOXxajNHT/iGQKHFTQB5T85C/xNe9Z/MyFkyUAlAIFbAbhYZN6GYBGV67RdrXfEyc0bgMiE3cIWp3O6a6mGYi7Td7oh1fOmiTj8DKxvpJQc7EOqNXFaYbF2TloNnYKxluOocBxj20sv/eDG9VnaILZ2BMnrKBtcEvJeIJOFlEESWLdcPjgLi34UE0mPSntJ/57Jx4cKkmawUtP2QS9KLeFJ+891vl3JGmVQgI7ziZCRc/CRIz0ZJjVSKpgN1hMkiMn7qJ109XoqE/e4tCXn4l1HDAl8x9u0TwsXMDUA+Al0QsEDodSE+XZH6m5w9ILicntzK0KIhBim8tjCZwEbrIB/4ixvWt8iJHKLKZ1V+Ax5G2OSzCmrsZVnfeay+UJzv3ECTRqimPqvOXQh8Pg8s8HatBr3bGoz6qv7A/S0oA7ROEI4GgTQrKjXB13CsAcEDSRG1VA6nOSDW3HVYmGcFc/H4jZMrF7b5t5fIV8wdex7C5T0eBRHeWaK/QPtpruULmO8+gLzq9q307a2SN7ABwRfymo8nwAQsx/gT+uRw9wyQkT7rKG4oOA5lm4s6Ja5QS35kEg5ZUlxpmQTsDywNJJV0V1n6CysbqmoidgBrkrPOsDyJpmNF+z1x0dfpp/l1f0NK/24DhdjLFwm0sxzyP9ckRNfmv7eLOKfjEM8cJ+0C9PX3SZMD3RBRkV0f8CoTAHUMG2e2mJVpn77c0KtfXjAvwFXCq073w6mI9h/ODruFvD94yRnJAIZJ6J2XuYuGqZA7gaHotgpsxXrLcGD+jm+gJnKbENTKlAzTPUjHVNBcwRycY0hTR34ExAjvQ08FFlS/mtwoevZvRguTugXWrZe+maz50u++Xrbtrfe9aXrUfPw01itdNOJaFngFbtuRhg6tqTp8VP+9qUrjb7ksB/oK/0pXcHuxuwN2GJZVXtWuyeUlj1TZGbc7L9shJ1MhDw06vKOGFvqUfMycRy77do+zmZIkkUGypU9XHM73NOj4gYpn0rVMGI6cXt4oVJDXEwdJkxs6L+jMybyAOs1PpISR+ZcGhlwydP3Qg0mWV6eP+dx/BKkVcXXJ2o8nTibSOPGk/sWkWxQaRNRVj/wf0wDRCte36gwH2C9ogvMZ4h5h7bh0aglPhwHrJkTUt1cbdyoLawCfXOFRIgVQKFbIMRZvpo/ZWF2iL29CFfn0xEFW0w9uJLXwYy+kWPBxZj9UCInmI1FadgKgPz53IwTTBp4PRevjH1DUQdgkY2rtbE3Kke64XnFWXP50yoiSMK6qgC5NHa9qKYtNw+fdpkKoHyK3ohhEQWt7jy0WfnloLUhZOroaACGW88Uf/glwUZ5WnLGGhRAcco6eXKRPgQi1d8//FJRoZDX4k6B+tAG4OUMGG0z6Bpe7+qAojtLwypoP5tIFOsY1O7oBokBHLLIWupijVRRDo8OXd5kBw1aS656zmt0J/zWLidoqBvthizCydaW18MRqnMtr8hLHaERphmzy2vdyCQb3482FmmGhcITjH4LgihDNz2RvNtpgRzEAFM+bOVJWEK7ftUopM8cwqVwAdOACLu4hV0/L3MmtD6gCnJUmQ28HotsoE0tao/fkXwi3/yyfk0EMUKqAanOSXWSvxukIlLR/DkACjF8eFoENp2UqyqvE9HDS01N2fqUITDhy5fTGrIB8RSVDcUYGNIyB49DSzbLLuLQSkF0wHtPLDa8I9/cyAVXtfo8WiY9Tl43PINtLi3TrkxK2fCa6HwCeWvoNbOfK5Jqx8ZGjcz+UNLy1l3R/glO6kbY2YLSwDMBk9QYTjTmeIMhfsLiyxf0/fL3+qBnv9kz7WBdsRzTrtf8w7JNq/jciw2mCHHnh8uIRGwLWE/6OcXvWlQ51vXIngh9Ru0cZ9MSzcctbqpWz7F3Q9POIt99MTNE+GPoI/0zrTuWQag7JQRDRUDitgwzshyfsCYBfqQMRTCwLWVNLX6zNU8wQ4vBeggNZYCywuyUmg0Cd26nA/3PWuG6uotbajI31F3JrsHnbor2Ed41i28KeVgZmjx7NmhA59YVDLhflFBJyBMvkZiQaRereuqz5kYUPl/Sa76xyJP5eig7+WDbFaM7NxRYr5/eVh9HKlQMJ5A4QFclUkE7vuH8IqRykiattFMcO1TAf5p1JUD0LpU8jIuxmw6jNRM2TBX1ZkYScIIE2Fu29+GkW8bLOiP5GFOoTyujQ97jDgsmLsDOpG9XVYkUZZ/zWw1fUWfyqT17514oE6t+xNzSqn+vWQNs05v5e7UsOJlycw03SSRJXBN82eerzCL/G/BxAL14ffAaIHC5htBTv14Xh0XG4TD9snH6O9g/G5bL3SOOZ25FMraM+taxeHJVx8Oqh4o3m8oVyB/a9Lp6oy8x/TRM/soq0nNpBXqelzMmJBBmG4HgURBIRwZYM+M8tJI+fpXl1KBg4Zv0tRDIa8Tc5YVYeddm7WIJNEd+/E5cXFuulkZwIs6oWoYkiBP7WTlf5robls2Ep9d41s+Komz+MlviueaHvfFUGQqeVWE2O9LLfobDvaQnePt0JB6U/X/vVamw1T03guI5gylY0lB6++qiYkkmq0G9dPz6ssg9nQqKCwoIbtjvtQFHYptpYNiWyu2dMgOuGoogIlL3b74EgM0PvVbaSNxowwc/XOpqTn90XAgs/G17UysNrEDxAHhU7dEIxJ8y9hLyni3lFqdOMsSLWwuY4UnH6QflqYedDb9083yc2FCKrRsu20K5TvcoWJQSaqF8+16IpswrYxG7Vcjv69FNQpyaq5Z582amC6FpDqGfojuHX+cdMSzFKSoW6r5wHPQwjGK2Bxe+u+mLgVlV3gWuJerCmlvWyYvgAQw4pkS1uRR1VrSHKltb+GIUe4ado/4hthmMxc0H4w8p2zuBClvsF6OHLkk9PwZq7tqr4grWvFcArLCbPwu8U5OUkbmPyCbDdx/4C6jR1GblbgtWqTQ3o/SL7ZVQt3JaTrIAIY5kgRO4xHhYUSj+puXPFfInvlhm6HqB1VQpmrV5r70RF/FHeYDn2mJ3g2PqDT/aLJeTgNdE2s/Aw/DPGcvfDh04wGdbatrLQ4NQkZh4Z7pXNubHpW1dYXXXuaw+vSMYw3DEXT9PlEASfHa10m0aT3f27gFYNE4BWXkIeqwyYka7vDlrTPPsvc3A4WHcXP1HojYeTGw+0u0UVsoBRg/lTzJCQRyNGE8wSAtNhGk54j3MXTwtIpU/kTZev8wc5C6T4T/NIJdJrk1h/yD7BcOrednW6kG0AJqILPQvukpvgZwqUNjgsbOmmKQBvkZBT8v4XyetwvjnVQyHlF+dR0+U2xkeQdR3vGGUXa27kJ1TfOP6JsZpXIezuFLMwp5zBKWHSxUcc7UWyb3x1VWbO/fbdw7sO2owTj3mFQNnxxSmX0LCGvPkNk7QiJyJQaCgYdes8okfZ039R8a3aLWXZuw0w00E+dK8uMkXmfNGEdQ3MHv2Vamc1uwFhM5VzQ8bY9ODRdiPSQm72zbMRhsrOPnT1Asa/qNAMuUMVVvRH4bA3DlYkydZKIaimRHGLjBh5iSgdTDbt2ttkwCF4SwV0pQr6iI6x9M1Rv57brocHNMJo03F3XqaT0s9VT2+9Y6JuaxSKr8pl8FhUwzHcTq83xeHIDRw/iTWeBORrYbzPeZ2ffogI5FWthzQ23TwKtR0bH+7s+B9ajzJ0ZgTLbE3XxrH8zSrZ6YHhgx+SnAdQBx8Px6cSmpKmuVLngBPgE0KZbimpvo2Fj7u2NaiEnKGYe2hCgQGQp8HSozfnOkLT/HbMVzVtbBHlsMjK8Ywh9CGEKn9Hn+gigAQkMDHYwL8Ve8FM++8vlSNmFdryLtUcoAM73ca4PCU7GPfc91bgnKcegewFZZ+suIjNjEPpBPLRtMprV9qmtq6NHS6WvZeWD/iyftByO8cZgiTQP5sEV4+HvaQK2VUfDpDDPwuGpMHNMs7KCOKyqy9xFwjthlWaNPOqV7WcgoOxdwWc+KrxVsK36D93R9+pu9lUI5R3b322frlRlKnkkF8bAzROA36CnuRLcxUUjIpATX4qf1xUx9CSKj/QTOHuoJ03LTtLDk7ZyTloKMfUIfPjoYlScDHia4h/gypLSIK2azTteNfkEqY2uGwbPTYZ5+6TI/tnvrsPNYYAK2YwawmiKFiqlWqmbH2PoqYf4jTmc6JpAqYrdN0l+vHQO03Gxt4I2VFZ42KKGSTDc68qVn/YMZeT3ZLHm5PFpWCbzxajwkckLUE/vuWZcNUxj/dMN8+dAX+yl7wF+r7khzwdg5aPNZw6gqsVmoL5feJ9sqGEHwEbGVKI3DZBquvgVJgITob1ykug9v+6YeFMZeeVQyeRWcUr2CN+3WtJk3hgtpJy6mTTjzb1oAZO71P81Qhrmvr545cZI2j30JZz+DS5BOyI13FkYMCZ74gRggvjZ+4Ibyb5n2ByCAvan18M+OyYVEipBxmc0eC2NI9d9L8rp1aw94CqEdfWIZ9I0R+DRQOanF9iW49mKGSvqnqaaiDruc9r6P2aFmYQXASw61mBzxP49u80j8BN5eFqYQeiRxvrkfoSTWM1oTC7XQMZHML6qfcQXC65QJDRseyCuRKHzxK4EFcYVxo+i+qZmGVf2v/kT3NYbX6pePGhYgR2PNcS9FW+6SrFapQ+TL+yKo+WSaUuQ5vIlnL0C6kBKVcYkaOONz4p7/ufNegPims7eXx9fWLftJLvqn3mqn5i47Jsm9ccKutoko98tHDtIeLxjgGG3t6V2t1p4vVR+VR4SfYO/ivdOJ2bWGiYnVazMs435RtiAnCmIwhGQ5Sk+h/GB+jdgFbPvgiEfX2L0gvXDBiS1AAxsBDZ/Q9W40rvTH2q6Ruj9Kcf9ylkebEHiZqZ9PmCHDkgwiNPHGLFEjjUdl2c+/6INcKnKyh460TE9IOiDeO44b7YfX81NfWj0iH79Y0whinzkzAZshPmR1R58A84tcwRJc4k7oOZYFsojHHq1yr/AfIFwup8cQsnxmwu8A3V7xIrG73/kGSd0qe56T6RzgxyqJ2GmkU5/ef+h4ek4funGrLqeEm1Poec37toFO4rPkOXh+os1qMIVKKMY4fH1HW1nGgAXid9VkLskE0kX90b9hm4C68kODe2jTmJ4sXp5PjxRYr/9tIBOVUDAIDIFn9q4YF1n9q0WQFeZp+WXssbP4ooicgJ0biTlrnFRF3tD/EeK0F7gLnR6/w72wmG/iYnMHULXajdJproOzsrcG4IRfFNlukxxVRu22KHW1c94Da+oqoEmfmr/h6EXsFzzOx6DAcju/iFCjuAeMoHlTu2O0WIgY0ehr5ILFPlDlLNoHxcjAfXehVLlWUC7HS8hUyIYK2alh9HCyLK4fT764ZildbN26jipZJuO6GBQUe0bHbbgf8fteo+uFEfWBqqARQrR9d7Iw3jQgiyMZpd9Jvm4vR+hy0nbXB1oxjeHX9AcBtDiuYdbFhFEfhj4hTWDb7DHxTa4t1AGUoRvzSeBtaWeCA4cup46HYMx7t9ToQD1P+V5QH65PO0HRa90Oa8ejRhFG0OInq0GPxcsX4Ks8+Xy3Kkn9xbuZI49CPHmY5f9F3VnF0syrp0tYCQtQcm3UH9aq29jV312TcOhaeX8JIahmt1BSdAwhU6+JNctDHK9vIDoCjz4rOtbhSSK+vlMGe7tbOOCsBAUgq22HEepVpvcBnfUqKPsdsu2Jk3WXRvcYao/6GA1AC4vQWqaMkFBl8g7dUNHhbJA7cvlmU16i9bQbRLQ4Uqt3AprNRutVMGazegsONOEO8shn9f69S9D51K0Ncw+qP6bAYFdNAktEmaUEYAr/hWK1mRRQbEp/vB03ix5vzr9aG3LmJQfWe7ij0chY6sedX3XC/le/mtPFaCojEsU2DyF/Aip4DOqEszYOEqm09T+91OX/2g+9EQv4JWVeKMBX7mf5GbDoh/r3p+s+BMg+L7eH29lfpgDjmIuHhUhn7rSJOHtCw+Vh0Ez03hqJaPPO/x1T0+VarizxaYGfsHNijONqRNUh1B6zX+Raxzr7BO3xTNxYfL1RQx6qFkIQJ6VBBLi0+oUFojwxsmHWbya+S59JEeUQJkHj7/Mc+AJsa1/1ud1pTsXNSr9wDiOY0twWPUf8HkA6HL4761UtINYdAhpMMu6f4Savr8wu4KQgS+lRQHNqBrjLO448mnh1wiehkK3CCJkiA3xG0uvmYxoFbjtouYdi3dUChky1vo1hVzUgUQ76wV9d65d0gJWCn48O+3e4f3tHWqp9OuDPqkPHSCKFxNzKt7UlzJ3FA2wwpdie19SGaYn9dSb2cUHB1twXThYG2HjWxxtCdok24CbtuIHrB8m0fscVgyN/ijO+BrDwAntWDO/CnGvY7i+kTBGTBfRlKeZ0h87YqnnU0zkCEbsxQr4xOJ7XFWBVTzNTvY90LvvOHWyhqEZqhl7Z/iyJCLXFE9QiXY3DsY3mIcP/LnDL11z3AuqXogpN5zDCFOeozvy31z5EK8RcwP+4dqnzztJLfn4ATpaHcSNn2NacjUO4K8JlenaudivWi4GSWUmVtc4ObEGAugTi6a4Od3JQMBit7jJevuH2P5/68YCRSptfaPYSFuZaYwm4YIQUNLF/6YImE4raas9CI8DzzLdYln9DabRxqNY0vucigmbA4NkfqFYB2OEgNpJClGSNNnfvzbgZP5aleJ0whXs20C3ICFErZnCCHySwlTNexV/9gHkIfMBMgQ21B+vTq71Ku8AQCXEYHZAxx+74NaLJHamzDfpqcFUzHGH47XXDcDyS1JD7qwgyf/lXzQkDCGR1MbhY9HrNFl/TsCxvlIIIi7M0+L6LqI3KdgH0kGazxpaqTLTi/xFdaVMw5XY2x3TdTM65bwfmv+b/LjFVXRHz4MgyTVJ8dnrWaouAzB5h//J/CHs7xzfjvoRobIJ9vDuFUhitHs8Eg+CZfBOZGRJbWS6fnzVS+BufYc8UqCZCOWdw/f2Gp80ojxPFksM9uUksIyjI6g+slOJ7v+naIp7KjOfxRMOnzBwk2N9yxwG4X4K4qGiPwJCg3DPPFERBdXnuNl8WViYVsuf2FF6smi5rKQ0SaM1vTBSbLt0SoW5giYZEQos3llPJ59/wCHGx+j9qZob96hv4y+RQ1FJh638l6P1MOANe6MENjFE1hqUQhNt8YI37eXzPsU3J9amByv7L2doddBjo85y1Xj0pLwmqcPYRUQNKW7msJ4dDLFTJFUYdiBNDOpN+M1ql3TUHfTi+B2b4KJB9bTpBy5j+EmmMgbZ9KzVNVsvSd7rfDGUR/VyHByRpQZr1EM4Msyrk/DWj383YS3bLp+webAiUlE/VxrRc6y6uTU7uqfdtf9MBUWhi9yZdlGtWELOQcK80HH4Nhb3UTCTjx8y+VCNh8zdBU5IhMXq62Iy6bZEAtYLkykhxTuBJFSW/haF2dw9od9KMvY0DoWOSlC8qQgd/6G5BC/51XXowVBDq1dl0WdWb8BxxrD/iM/g0l/54cfl5q9HKzAfQm2yoVLw5bScLxJKoaxWkRovf+jUyXtocp8VOAY/6naGbxB/AajK4Di6+fkInuPI1UD4lNvENHaaoYr5iEMnkwlGYNB29VnGBfsgZwVuaYcSVdzj4KbRdyIKfNh/fDMTgNdDLWgSc8pBgq/mcja56/H1UVlfe9kEDbZg3zybEKNAdgIG3TjDE00OHZx04Jiavza3iyHOCAROLV9QX63xWfaBApiGNzgbsz6e7lcqlL7Z9Q3KU/ZqQ7BpaRfOUlphe4oZXBpvGiz3eFDTTKF9KDGG0eXDdewS1b7M6RQnXy0X87hRcNluggvMFOlBkvUGZWZ3180Rie9TurCNZUCqcpmhwIu1miYCj5vbsk/VXmFSTZLTo2qLT66BaknhyFQmC1lWo0PPM/FL40vsHP23yZCwAA3JjKxc9tJw91E/NTsOGZtYrAcVGi3yXzBwVT6v3B+Q8sXo1wPciWsPfDmzQyp3rG2ouIdBX90v9rn0ipHg6ZcveXye4zaRpRlewrbcSbBSgIrNQFw/1hQ3RLO4JRx1cI3Dqm1Z0AwKur0OuBmW0fEKhWIBJrJw79T2N2VV/vGbzYEXNFgnjuKCkZgsB4aGrtNZRW4YAbGUWoHTbB2aAc+wQptM9gHVQDkyhiDm7OAIMTgT/JWgb3JmOaqtrMur0h5a94Vyxqvvk/iXe3G29b2daGaSd/bMs+o1XPDz8ldu0dLhYloSd14QgE/YOKCacj45K4EWHHbsSI/LcAylhB4k3EgDGg3WUhr8uzf3L2m3PJ57atDa+HJ9LLxY7Y2+V+tYBkF79ZwKftdiFh/WFkKek8dq7/aHusHID3IQ4TvoMw/lGUXD5m9kZGkUpjDzfD2G/Q4Ac4l+1bjYdGEoXNx+mfEfYCVk3qPXA+0wNvF7PZndydyK7z08Ta138+dMH13uP/UlAtEhzjdnhwOUT+YTtIDmCww8p/m0PZ/v7oVLGLe0xsq9+aSzCWnsdMuKMRtBf3qP4P/w1m/pAbnLGE8A/9hHtYFRyAS+hI/wRD0zIK393RnWDQrjjVP9JfqyYzkYzDAqxZVF6joqaf+Wn/llpM+tmMCsAhWBqClnerjqu+sGZLAtPMXqXYT1zblt3rPT8o4nr6ZWEA8F21T3tOfyJm8SFIR4J0Nna5pkSngOEgmwYdKtk0r3E2X2JlFcxepClMMndJVe9fam/yRmJXqHg2zs4GwjA6J3Q2Q6MqKeDScurATpQM3mdRX/nHqGic/jyvWtd+5vBiPBuXv0IgchdI97j56xRlfkxMoWTyQvxjBy2F2/Ck4zc2Zv/N4kdtDa4qYt4D62wZKt67g6O16Lw+cCBKcz/6JWf6TKzssPFV6IgmuOLsd9QI/rKx8A31bFkD5XI0GLozMc25F4onsZsqQNvdizLbe+fXnF8nuc98omop/nKH7gdy8iC9lgtEgkvJRYqetwPDnHrTCIwQRtgmRqlLXmNahqGKpz75QHj4+mtr73lXuXzCDsDziaNAEVndi/hnkhkug1VFLOhqZbSxaGHRJ8+ExiDgecwNf1AzDIUuPbp2d0vPjkQq78ASIeXXHLNLkDVESmOmMjvATlRv2yQApo65n133wo/71htW8X07u1aGtT+4+f0jsN4prZvBfeWA3uGMbgWfKioRQU34XJnkVzsqoOvFnNU52P2XdBWuykFUn+WJ0W1jWFn9NJUPqc7Q+1U14wDhQ72756CUWmG9GedcYDJOmLUEnG3NCv62ktbuZtJDX0escXvAG/j1yqI7R8aPDAOxwOlKpuAVfo7FJQee+dDUzDBD3PY1Grfm2U9TgxXkqIJrgBbQsdrwiSWCcV6IhjI2Xps40jKhLrGom+8n5k5Ims+EjTEHz9wm5VAtARdb5KY4rDmK743irBwvv799F8NMJ7hfbNqBE41YSAEEuX0FdtKhZa7uNxLSIN6gXPe/Hknv2pZuccUQIoPPThobyGBh6gR00rfd4ATrmHvX5cMOe96h6jllBXe6gDQhAhbMbnnk63l47w7fYpuC/UUc8VMaWO7SZJyl5bea0M5Ryo0S/b1LfUVqtRe7dTdneZ6MXr8V11Zkm0h1FoNnzT50ydaTuUJQEXIPGZEcMyXDCe//UgedJXavExxnxXeu8egSLIUBumKg2H5MCdeQ2kTa5lEbCbbfg95OAJH/ukYt+Bz69WwYDo/HXmyPWRZ4jcs/2+5ktlvIVznAlRFMXD97e4ufLIBldLH42B32ZABdHa0EC9ot6Ql7wKgO+aqclFjyHmIFYVB8IVz+hZ3Jdis5yODS1b3u2/a+sy8A/lYwyYdneyMIuVWRgzH2dgvUKw9UlNRlbZqVya2/EP2F35DDos93V+GCAROj27ukOCe+ZJ+8uBgj5uePYId1fFGnm/rhSU+u/F2xDokTvNIPGUBW0A2hz5KrLhtMJWsPqo0JBq8obWG1tkHlfS85gTtQAKgcVoYma68cO/hGYPWqARO2tprrgN4PHKm2LNNr3SPLAD0/6ZeGF2MmQ622HYqH7T5OX+mqFFu4A0OKGOfBVR3TR6GsiNx7yRV5oU2e5PXzsxh5lKQkGgng50xxTuziflV7rBP2q6rg7RV6OKv1H3Nyq2gwpOufhBb6/jdeOlgNAMlbcKHStLf8bgDbZw8HIALkQbNXVbgBfk988PQP88/3bNP4FHEYQfN4jS+VqT+/PlcUzGo/Jw4HiLfMa+UNLSMy8kauliaeG76M6j+/rx25uxlosAW000KtgME8+2Y+Tl18xa9dvM2UuacYrJM1HQ7VRSg5HkTArBYYdj86ACoByeeSw1dPFpR4Q2AejjNYCM6AsobYDiTRZx2s8Heff5wyS7+TBIKTc9FFK9/cWAZMec43jI5vld0/urBizvUuKwzVicSDsXfKpAehXkwAw8SXvINBltSy5H5pXtRBBanrZ6OSif31+E25E8vN/ISYCuQPYcfFqlRCncBmRgHUS0Tq+Zlll5bwgloCnYmlIcG6iGtKvDk0/zTvilpqlgmBXBcRTlrieK5ZeqbTjknxsfUuw0NIRfa5jFeFR2JZzjBv0WOuuWj18KPywAaVUoS5kZHD/V3ctSa1sTO4T7JaIgVtOykphCtQn4mEjh9dv6AmJ0mN41bigZVZySH4pb+tG3nqo6322dsim4gq/cHDTapa6RjuxwNwKmY4fuOASS3slbhWbI1eoOn6/2/qIy3F1N6LADNVLq0Kd8fSOsTFDrwm1/uTiH7YIysu2oo3ZaGQD6GkR40DW2QiydfE4STLly/QXULbR7dJf6Kzb3wT6A+YKxfRqE9f4wUYYPcgZr5vx9vaovBJnXB5dC4jsvTgSmhpfnMoRvLy1D8dLWTfVkH9Tru+ksM4YfafeH1fCDND+wHrA1y924HTE8eljTS1Q1pYIs8J/62pVS2W0hY0qBxh2QncoWh1Me/sYEwQsyarlc0kDZPkw4awQv65hM282KM0zVd+pzsOhKY/aP6IDChhsfDZPx8uTeXY+AzNK2LN+9WY+zQZUHJCo5uhoqxQM7zDuwwTEOwhpB5Nyj9hcu18mZhHgj/MIYzY2KFiPRGA3HTFZ0zSKk4WKroKVOcQqDcp0S2bsHDxAtOZGGw2uVi8sRjiBOGwhyqN5shyapm3rNzyPOwY+1WmH7Jo/85hJrYxDKmAD9O9rncRX2v8VOvv0T0Y2XRFsX8gDxmYtk4Zd9zm17gk/wI96Q4Wj3S1ZDZc+0WIaIRe2Zy1rH/BDSXAUDTp7t1tCQ2PtoBAhvCLF3CuOm2zXu3astgAigIbJBxM/i4vEED6Z+tA2nhAtqfrgy0CLLbRHuaRG3X80WuslOvd7sVC01Skz0zoCflWrtQGOTVrpYTvpOLjQpiQK2O/OPvcz/zp/Xta9ORExQ14R8XArey1OrYlOKlbL8+KLQNOxisth83kFTqQ0i7e9VgrfdAL568X/nFtFPf7f+vH1BHFBS+fpXxkXX4Rubd4J30oLS4Um8hJrEYkQ2y7e+fNdjI60+HMRAR+yIHw+Z27yNwT6tHHrRKgKaeIqedidYsFmHaYvLdgt0G8OGx4go+gSm4nOcB4KaPW9RkA/kS7vbFMwhccIaa/xKeyJyl9qUsFyQdrz9LFX5J0lH47etDs+EgMt4Yw8QhnnKoj90x/UI2GBWMQZRtF+inpgVp1MlT5r2I3fDckIIVmPh1XRxQY6eeYUVFFwyXUJw68TzW+2hJurGTlbM5s1VC7EfcNg6Sz4svj+pnA/2Qf3cc+37+vTjvK4YCb8PPoUsJktfURszik7GtAMJlLyuI2x9pcdgehVbZi+qyOUyAMiLOz3e/zPhhJNKtFSGBeRBsDbYDUbD8ozDs9Dcxa4bvjlNYZ/y6va7Mrl/FTT7ZgzZF8xkLY3EYUMLrwZpDcnxDPOJ7vDhVj6YN2k0SaOFlQbEiOBI+5RjNOy29voEX8TwIu4HtlpIbfp2oN8+EFvb3Z0lnlGHHZ75NvjmoV2LxhiLBANX7W8wLbXQA5ZINEmxYT8bsm54Mt/z+3Uo9w4UKH3raxrVhVrhi085dzx0Q4Rc6FUdXAui7s6ib1lpapftPdKGP1qMdwCun8hIsE2aavrRkz+5MfudpIit/Ia1d8pEzrlAJ4zK4NW9rAJb4ZF0QcQdoxewR+4AjDeWZLJX7u9jHY9Tw65dMh6HgtEsVQedHv1w/imHtlszYnb0TskpW54BewShK2GKzORvcWRWFZYXnNML9KloV+4vPKwFFAJ3mHXTpkfLMnyBLN8vy1l5hD+d2EaRx909OJWsNMayy6O51xCoZ0HffWAaTuu0scgnMCQoC3uvel/aLmBYFnTz5314CY1ScNgPJQfBfsVqvgt0qGL7dtrkBdKgs4mVtBgG2yCJLUeDyUtTihB3sxiYeXgJSew3W9jvxQj+ciseE9W2d3uC1Fma0/KCyUmj/xXilAIjj3ab4Rm28gg6+oGtJ8L/7yiwOkX9HgCfnIsFEXnMI7gbt2gO7ZEF92R6SMk3V+iq/IGmyTLEphAKSx67PNZwdrfPiEyygbGH2aaUjuLts2DngurED8P6iycFQe+vForfvvYI7YeKsY2a9zYDQmlMiBmamy9z6rvOIB89r4yjxuGdDkyl5hrK+5u8eRLxGRsj42e5dm078C/vnk/4nAY9qU5a/vmp00E1VK0L5nRAZrZZ2h34jTzht5fG0l7fRn/ugeF3Z2jSSzvK02aduLUX7PzfequCKRkqN2CYMk1m65TXPLopCzmaIHQW0p41VCb9phheccl3bZqi0JiF8aeGIKBSGlusXydsXzHzONshODBSt6il5Z6WXdLOf7z4uAuKkDTO8yQAbzy7dtdUPCFibJ8incdC3IK69eXgzB4hBKbJ9EankxHttL2jqs8lfrOLMe0mT8YK6Hj1lTNy6bZLMhh6MgSGRhrsTL+1DXrkpmelLgGMoRg12zhHPZnEo1LDiLus7PvmuqCiVDastSfXh8ti+tjsBQLz8UOyuL3O6CEQuURR2kzYLtiNjyeE3h3Krt2HfdjJw5TD4ayo2ILdb88/6UjlUJjq9zURAdz+c/KLdXeqVHZUbyMBtQPfXVtASStSBnfp5A+75HFOqxhMKdYDadrC7hm3MF3T5K7x+p8fO9Qh3Ray6h9sm9Kq2q/oTvkZBdUPHlJlq8G9io0T8rWSF+ymFcCB/PL1amvU86vND/Pf3YRzClN9h0feTKZ3Ib+IU7D2SELyGqYhcv9+8TfG72qh/RbzCRNo4+KZdHDVV2A/7aVNWNTJ52KEkEsbnV8bxBqQtybYquDQieSvtaI6R/Kl3A10R1UmHj0s4MUmqZCA3PRh4SElfnjo/kDz0wZyrOim2eATh11iMd7pxEeDSm263pqJwA3IcEStl1Nu0uzbrLNbAPODSw==
Variant 4
DifficultyLevel
637
Question
Juliet has decided to tile her balcony floor using shaded and unshaded tiles in the pattern below.
What fraction of the tiles will be unshaded?
Worked Solution
Dividing each square into 4 triangles:
Number of unshaded triangles = 20
|
|
∴ Fraction unshaded |
= 9×420 |
|
|
|
= 3620 |
|
|
|
= 95 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Juliet has decided to tile her balcony floor using shaded and unshaded tiles in the pattern below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-G4-NC19-var4.svg 220 indent3 vpad
What fraction of the tiles will be unshaded? |
workedSolution | Dividing each square into 4 triangles:
Number of unshaded triangles = 20
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction unshaded | \= $\dfrac{20}{9 \times 4}$ |
|||
| | \= $\dfrac{20}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18GBTjm1fprbf/9rEKqH5q9BXO2e2va/nTj+kmkJZKUjxNH/T/Ff6ED+rPbd+UVlT5B5JYx0kKDCfzQItO14UGuakN+mbky9qtUaKrBnZwSNDRGy+IFsJQrOELUq2DOT2IePQ5uRO1oOrEeBfLZRHfupcLpvFM3d/14HU/AE+ggPwRSL/KsSjCIVOkEEYA/5O7igMm6UrNwP2sfNLI4baG1JLJzDuCeyFH2DhBPz+fboi46kZPFwbMoEAbuIDYru81sIZr5EXGUXdwWAU0pc9Gn2VPV56OfZWW4jVfLpquPm10d/2QgU+rWmVub/bNXDMRhcqntpm0qSgnyhnR6BXEcbaM6gE75yhbaXE1+RUlCA31eb1iXEXX3JCfG1f8mK89eiCUpZ9C0Pvx7psaolvX0YhXz7XVna6a6Ncdf0l+KcxZOJEXXPNvqo2MKhYex8VXa6AtMKq1YrLl51jrZ5iVSyY4upiseGmBmuwu5BNoSqKlNIZBRtkW1M6VsxSnFIjlwEhVbkcavLn0JUwjIv11X5CFUFf5xFUh7GNLcSz3K6mhrJz/ysvp84uWaC+aDALHoh7zWoGuDnlK09/Zn42lt2yHLtpZOvBjxf5uNS6kAXbNMbth64DeSP/sxkINQxr9ywgw20sG4RUMFTsEYCJS9kFCd2up3FNOpM29GgNbHEmGKS0qMYgu1Dl5lIOYedhJhUPNhW99+GksphHy1mb7xuWfUmoQ/VjP8uEU2r0x43EILL+OL43nkCbRKe31SXThHxk1uO7Me+DuJpQg0B0cOZAFncN1ndEfuUTxWNR93Jfj2mtNyfJ4WAagsu6Ei0Ejga72IsaiT+SRteu/4nQsQ0HyKJ3qZFhSn3ZvVr/1duhypN0RMd0bpDfWbmvYFfP6yQHAvq4I0bG4oYHG23iBJBXxHAwQisa2j8RoqdEkEEoHEBCGYAto+tpiFWMSKKNW5o3+shmLQwvkm0ZO/QRm1nQDe4WQHhLeE5TxcvEgQ4Hp/aDjwJaQDfbrCvkF0Lr7Vsn8dJAmhWR0j7UHqwrB2IVig9zHzAHhuHQFrEiiroMRUiQvXC4SQMz1P4O88dOZ0uXtyvRBfUpWrYCtKV6gmQlHVDD6A4qxqOKq49TZIRoE5Z/L3fM+TedfrCfTPVm3KtE6jw+gTE1afWtSitcenTggj+i22TSBkK5/DaEwLHj3WIIybkfAUnQZ15hI7YTQiXovU7PCzVZPfQ7dUcbJBreSrJPon/3C6O6RjhTNNvVmfwigioMBO4Wn4zCAstWqRv5MtMysNBT4XAYENmvRPiWzlCWFKp3XNUHFhqt6SlmVbdZDOP/P7A0kqCh3dv/G7fJGh6dsnzag86tPv3FEmNXHbv5GUTSAFLdX6rxIPTkeCw9LXhbcKBuQDfcLPkIDES8rBbgtGpg3yPdxRst+dHg/ieg/wlATt9DqfgTEMUbsB89dD80+Wu4B9xBKfeTVyRrvaqZV2zK/UO8XA9WqmwhzZgV0uzNIMMuxRkSDdk6AcoAeJFr1uZfRtlbErotdFB92UyhHkTvgvyuQH+g222ic6ZJbZic1rTpLB8DaAR+SgTF5ydRQaRhs6L+TtEOYu/d0ncw1rRHVJ0izaUjU+2ywvqgXvE00mHZNX3dDROnzFC2OGcAWAxwVUXoTvZh2c9wpSXXgtX490RvQM3qdq8ifrgHdu8kcMUwQco+0/v0v2RIrh4Ejl5fZB20QMoXAQrxwrV00fBKe3JIqdFW3mqu+fL96pOjwThVoICBTYsgWWZCJtUDCKWQgKT7o1K77Ywa5gPmQ9lGkl/hLO0V8HqtUEQacISOJp84jZ4X0cqODhWEGA1bHqnMWory6kjRUG6NbV5SfHyMMhpDako6w6vtrY7vKOuGedU7qDzzilc9XeRvPsDFUAxPeAFGsT4hHgVuplyBtSbSzSGB2D19/1HP/cIwkkJFOEs3FDXgOSU5DnNOYBsdExtW/2Yx0YSMIaFDLvX8qHewc8tXzmbzyeA7g84jmJdhTNkOcYGMd4TJ4pOBHvmv45Kx+tOKc5OtKK2LNMhdjNoBa5d0tv89k6b6cm90TjDMuKjXk7A6Vxj6U43tqIwaOjJBbQYaPcsKJiePW+wi0dcEIMf7xrY9WyQWjEHsPoDlYavRZI5W+SOQ+OgCUqX0014r7m6OJEdrCaRUihWxiGi/lsO6Vucs6t5st0LmYxvd8N4C1sxck7VQclHLQTAMZ3qCf5L8+WQjQhj3HFixVrr5irvA47VmYhFofi/NwUKh2khrS0LHM5y7suu3Oyq0XL6a81q/cMq4/pjd3YUs7hwwzlpJr0TniiuQS2Vs4L9WHIzAUyULQvR6mDtdXX9mOsMxO+CVGxSx2LnZi8X2LtGV6zOngRhIYTLw0jR/hyleEtku9Id/ZcQ2fdf/+k3cB9tbzETOvx+fZjq7i2h77ANpAwXIY9ydDQU/mj/OaJB5QGQqU23zWLMLe/7frDpgGOHisvvqyySniMAMWOfT+/NJ3YMVM6AKhuuBy9lEs6UaFeAs5iAFXtyAUU+4GSehLg+9dile2yrID1GS3BTluDgIgdonpKe9XizZQtKiXtUUR1z2xkVEQEH4sFAvTmoLxshlC7DV3JG8J+P5f5LZVRuutahiJYfF1tZRP69hqqI6DNGAWVfUYFJLpyyDbjIlmHHQsi3tDaYmy0vS+LjOvfzaT0ylS/Ny71maF0polj3Ccv8WuOvXtw03TkTzIaA3pteMVLMsP7iZgDvQ65750nmXhJVH9AlUxXvN/mkLYG1ntioIm7yYXecOpvAkR9yaPgKato55086JLzyiwNixAWsezhoe5yGO+VMr3R3PAwgU+209/CRU492BYJRLQg0Y8/aMu3VXJfdgpBTOAmACk94E5+j3ROlKMrZ0PDe28feuMRETRCQQK7xCm8cPrZ2Ib0olqMYbkHJ87sC/tzBh2xAmaoQirrQ+JNjyayusbQgkJiAYRKpZ3G4bbwCymp7qEKCcc+OReNLJhGsAX+Z3JKmeZGge7LC3T5D6nRnjW6hwi0Z9MW/dc/7bOUyRc7WrifdZzoun273rHg7KHIgONFawJpGySOg98XwtTnNk4LBPIzGnRCmEFmViUGgvAC6rQJh1ExIGGSk8EKoIHN5klkVbLnv4LkWKOFJiWGTM0m2wSrYMLz++Wg4gJC7k4yWvCyPzyAx346h96zbxguDFuIEvFzoKG7bELweZY8WzmKcTQcfaxjXy8dZdvswWnXivadgwypkYa66l6tK5YGr75wLUIuvPgzyVXnGZRYYaA5FjczXPtk4f5gKPPhXZV64muFVEPJ7k1+gBR3tHGgs150LCytotJPbrBxHDvYYw/yYDLS9BAd26X7prRRRXl3M86piXkHoUBkXavUvn+Ps/zy4cMa8ShhLQrmleqiHLbMXNelEo9PRFHD+1CJ/M5it9mTTslSasxHolJ24pgFX4LjZ7vFOoZkbp70PLCXLjzCis67Lyz1HjLl3qjzip0WyS6KVPFMf/kgKuDEuq8IhG6N22PfrxNlHaNTFUbxPS1nvIUjQv+O8QkErHeOPf5JmEdYKgTIxFtCGMs6n6JSEElBT4W1GUvFwT59ogMz6iJMEMr9edi4cl7tZj1ju+94oXxSDcbnnUIuWunX9g7G+aJOMviUy82oXBmA6T3cSguFb2wKAEswowb903dJMlVnEAFHee5ZbbWcGeCYfbTZTObfv9fry2gI8JR9kjfD+yp+p6U0k4i1XzZJboAj7yXuVCREIJ67TwZ8L2ccJmGmptTxVn4gRP0wblAhTPUGeVET4P9XiP1S2h+ZWT6UjpVVZwWXWmBXoE84q0dx22uUP6gm0Y5X6/k38yb/ecl8i67G6kFqVUsCcNRGxOGmb+j+uRcitsX5nRS02LCi1gIwlXMH9BsKZaIPGOJsayWfL+H782U4ZIutjqhZJv+R5acnZB0si3+uTN7J6Ye410Py993TbXgXKo2U/SdX1ZUFGpEM6JHB5UXBAQB2+yE4jExWTWGuWEOPA4c4uH+wvmBb4LiA4paeyDmklqTOhsRRRNwmTnvDbIua/1GE1RImfppa8TGZ/XOq3av4KkWajdso3pKmCXzXRpqb/ls4aHKbEwZnwWi22efwCyF4H2jXCeGtVbIRdg6qFkf4aFNCVwp8c0HNMER901WzqKiookuba+aesJrN8Tf7puz7V0leQA6yOdLNBB0OPO20xI7qJh4NLE8CjJKCxypG1QvuJ1nHdu+UKlDN2QjWWhUq0EZy1pxwLtmtRoiHvYqB8xi4fPbeD5542Pw17DJdGU0hTiM9XMq8Kn+SkkFyXFbyCV57fmFH5/8QP3vMKNXYFp6CRVUqi25JSYG2W20f/dtgnHBDuAaesOmwfEtusCBqp9wgG8Dza+ImVqRLvBOErEr53GzZozuem+bKebiuWbGUQ0bYdzRE2lsAfr12bq7toNJtSjhTW6gY8HcCLdMdsPw8MvDJLLd2tZr5uHvaPS/auC39iIEFvJXPO3qMK3VSjrC2OFa6NKyF73qTY9c6USMYqQ3ugLrdZ/CaJVq2OJkTFe0aA4faOFAj/x2oi4qPwPKTTW9x5KRfau2EVwueGQU2E6OfO/JrPTm2QtoDOZ6SRECjZTwDpLEROUYdEeIn1OcvslrKHFPbGuDHtRh/53fiFBP2PW4IU+SFCTndYAK6QsgEJZTRfdESilA2Vyv1zf/8gb+9xFuE/KweC7jAidzDI4BgWy+yt7g2TvqvPXTMo0+CYbaF37MuzFw7mV74895S60SHsK/yRUbqyR3delXDhwWHP384W+XuX+QLAZahpZygGiXuzBiXqFYLKWEHscvSEuErf8zIgwjIhneB4CoG6oEvS8+8+bt9T+/VRN7PdEQFxW7UTM/RtKDgp6884/WfuiLjC33o6DQvqZ7doOh7HwjzZ0ptZPBtFUS97MIyd421pnYLerukLDyTGj79VYGyuSMzR8j/15a3iIWyDHOoFV3TAosWOWljaYgMcrI7/fbXcViAdcoOqxod1fLa+eGnn6kXp+2tu6aka1s1a6gu+Zf8mBSSBwDNpFHkrfOlAnCD22/Hl/CUXGQ0vJ4sMp113pOUepmo8VYguY/DDbvz8yuLkmxR1atgyf93HDLCqBK3fzeW4WFYLfVBjiELPCd2l5EeEvkvA7ML4JjPQkywzCzxHEc/QUtlAPJDWp075rkU8+W3HaBcyw+2ldbXt6VpgulNhFTK1NdxA12O7g+umfmh0xX5rCUQEOxhimLOBnofQjHrjvn7846WgyCazrYYIrLnYhvrlO1A4nROOjB+oTYdL8f4UjNMNVoTWfDvyuQtwPFQ/Vcc10gG3fBOeQ5jbrfz7mQx+NZsxytThwy75oWI3M2HBJ+d0AQi4xF8SrQaRWQXgVOBv8RiksStPPYQz8RBrz704k7K79TCvHEDQmNlo8Um8VicxJom4mvNJ4PLIPYNLTDPYZykpZ2QrQT8puqFDsUc5RCa7ylvxQHH/xnO6husBu1Xj/wzpozzLI+ehNS56LL8/itPwhctOiuC4z/RRLCIQNfZ76RmaZME654ioaaV8NgVAdk6G4CqiBwZeFNktO7ygWJcEUDuffjZVrNsU0y3dxVFUQkwO4LbJN2KNDdarnDkSUOMcSH++qJZNOI7SJ6Q8YZl3P4m6GkqG4Xs8AzhKgxi6YDo4uFACeLQKjTM5r74Nbo8PBUl9klBXox5jNQ7AdPc64A/t1gzJX/bLk1ZP3tyDkmUYauoD4l6eGdw0Tx/6LhE2D1vpr1BiV+913a6mREqwNT+/1TP27vdpHYCGBlN97zfctSNrLp9ioDlF4fybvKLdq9oZdwp/2jTzg6lsYcYY+ek7vBpxh7zX9FH33yLgUYBm0x9y5H0DsfZokH1Xr+zmhTe5UjruGheVr2N86lKAKFSeQ9S+9hHUgAbCP26CRZe6R9Y5R/U2BpkyQAN9Vjy5WHqG4uaPdrMmkR7LbnbCeUDgFjwEohZTS9Be3p2R2bWWxoqkbIv8Q/5zGWuHhHhAUJdJfoy17Na2Oacd2QSt9GmQW/5Z+vS05fsgdkeZVF+I3F0K6LU+eee78FAHVLaj4ExOaFpmFa6wFXkFKbo5lzYZqWS/nXCoB2/iJxJ1z6mAwUyj8eC7ogopDYN3s4mruA/vFlRxFlkCHV28KJ8+fC34vx5J6/LosYkH15F4xF+LCN1fUSaWblzKmMIQ6wOCmPdihQ2r3VeXmcRvYqlMGB4obNAmnJM3xhzTdVccFbbujyKB47IVzdDX2AZRUVNdHnYVAXoCapkS0sm8u4gxrYJHevatwHZyz/AevS1sACdVrBfFMyK1kaXhb2Muqcyo2Ly7fml6p/7cLO0Hd5x8VYY+VnKdglr1eO+gMYvPxbGjMNyXpTMkx+6vCv7xpdTU+nicoU8RekPXL588w+7RRBcKL2OXT8qM/0h7NamPQeGmtRT0xkEekEHSrRPr6wbKpwMiP676GRc29xDZbzwWKp8WwSWn8GJKXOpwKBup9UJVD/OEeoYnEaYD8Pic6YsIKeurUSAh3PnyYv0W0umx2dZF/5z+o3P1F9/m+q563ZIApMxNxxFXXZ0e48h1ZyBmlJtuCHm8uZLfHqijIyClr4imrhhiDxhryA8N1qnsR69cnf6K0OMELnGV2trAH0sf3lqjNgWBl3FtI6WXzTBaBRK8A/cZbPD+zuRD0XOMNaadRJ4yDliHsaxo+g+Mj9DLwYncTB6R+Z0CRjSAgFK/UR2arpTrTro5dDUjNP5mVsRbFDyZr9f7MQMu+W2hQtzaI2h/YD/h3G7JGZWeVaP+aXZ0ww+bnPdUy6gyEhBkotLCLs6F2fZ0unhfZG/YbEtXjMcfq8tmNna+eG3QeHJeDxPdeFUgUI6nd/raKCdBiaYL9m7VMqb01lv87G62o4LAZLNzJ3IEr3QndeR/GplcIQzKH4rBbNUyHeSGrTYHBZ4xfDmv3t9/fBoKujiqlN0VB0nZql7Dr05RtDYNeaA92M/PLabGm3O/dFyHinBRiCg0xVqdEhm1kyXqFwHTDxjZeCWSHNkCMH6mrAWwAhlmzdLEy2O71+esmW/pz3eYz2WODVmiSn0iVCD029VIjjeoHcWqtfdR3BpTFnabT4TPaU5axWgl0bDEIlCwbvIlHysl6QHQ3SEk31SSP5pV1qut/PgpvNpjMxWq8YduQvXkok59n7J/Tvn0Y+MgY8Qorz2bKz/8CUxvQEuUjai5IywgNvCfru6mcrwyAdQySP6M5SZNmEHueIPrAMj3BfN9cPWUoBmf6FKSK9ykS8ICIH+ZjcBev3NiVmYHNanWVzoOTBb8PP55bC5/XFTfxNhbQkqf9bgaTYC/C1UyFbfT6K5/06Lb8yRg8CISlthJ+rg2wLEVtHWLiFpEsn7p80nKB8zLLNrRj/ShbS/8NvL1Ann2B5qiA8WmShWimAuaMA10K/9kcGWub+Ny4qTmJEQ2bAJyUsEGapMUCV42akbcZs3A9bHOz8C6k1ZYFX3NMj2u1Ye65Bg4jY1B37PpOBSlNeUvfPW60RS1qeiLOiHC7GWcJTfImu4lE0T+oTJXECxfTmX+cM3eFvzcTVD51GTg1byOSbdvl3dUOSixbGrmPpradJ1VvE+OIcdPK5m5/Q3XqFfIwzuocgWcTqvJ0/0OnnkcHGHB6zdyQYIKG3cgJwWygubL2blwYWZvsHVRSs7gBgL7puswrhWwzxu/AUw0LNCcclkVkOar3upmPrmm6iaZYPpWRlGErTbEGcV0jzLTRahOPC/FmDVpV4QnBpJGRzEUWftX4rcq519T8iC7rVP1CfUes5mVZLZ2O7gG6xTq81RvJ+jL2Pjh/kzFJw67CKdTAgjBLqsN+g5mzLkzZZYdS3c3P0wduNc0klLosu7HbR+voRVShb0FeQhr9eiaXN/17sG96Vlr3FDdj3lrTefonsqMKV/zw6tyaUw8dli/PyTMc6rSn3wPmyXvbnl2z2coPNBgoOqewDmFjQXhiI9wO0L9SB2HtfFij5R9O7DAHJVcvoZIuO52YT0Ab2AOOVQKZ/8Ib9ArC49GHfXCCF4/qbJUIUwXm3YDvIRS4n67HZnKn4PVW8o98UphpYRbRAxbT/wOu9Y8ytsylcmfl59v/JARx13pcPFK6YO44LQhO095eNdDl1UICCbWF9jv5+MIyp+xvhPOsW6Vrajb1tM3HHCtbjvmYkHTzNOQ+/wKxdkdwrvYodLqp14lG01kSXEsLF3OomSK6JQrj4sSX1BXFeWGrOfgn1XKiwUWi7pBfumFB2DDL7nLbxTFcKXU6jZhxegYIZS4r18jKArBbfZy2FvNXhwBeqAnj6fcvFSy2QAsHVZunEzTb/yezPbM9r6J36AQd3RgFZPEXKQSf8d52PCkjKKuekO3tXMJHTvyKR6wZMTydcnBOkzJOOgLdm49S40wS0Z7t3F/jQf38Vf6vAoxKxO0lcpmx/LRKRb3gSKZ24RsQiD9sWJ7l8IVd4N//x78oF9SaJa/4C1Lh/oaSYxlQH8RyDqI2veKCEihUhXze89ScpZwvQuLxtKESw2sI6nW/CFEox1gqDv3E+EYa/nOr+Zdr9Q+hYlLQ22Pv299fe2rNDCl8eVlOp3Q4ybGNiD54Al567cqTqkCvSbSETkekZrKDsMlJjzach85q+1k8vn5afDq5Nx+tQ8YOHgUGkj+p7eIJOduAUIo0wJVO2Peqwa06Pjkg4LM+C12ITmmU3Ca1IKZYfPkIz4lfocSoycsnyaQuGBjKhQ0uqyfnKtjlX1S3wibqB/tpW/vNBK6GZg7lB0K6UwWBPRT0i8QMQWKbbQgZCV6ObP8o8GqXlVA4QY3ysEvY97OI57X9Zm55wI6BV3SB7mMugl0Hls7BQzAGzGO2eS7KNR2VrgX0Dpijp6+bU62eoi2NQ6obUQw9aHkDzv8cYpui1Yc1DlBFMnV1YOTsDRhl/nsVIGlNZuZUuGj8X9zhHQZVZ3cYBd6wTuewiWaEv3n1kWx/r1ueaAcfsl9/tFVLTEHm/541eyze7RNU0uRrNznNgzKxhbVQzcTbXqYIfoycFT+ZuBj9y9QgIAUFkR1Lo8rvPzgSYXO4VTLwfJbYHCFovBp1PD4J9zjD6V5kxkXMVRCyd15YwIlJuLQT+lh8AWyeh+FA02aXG7r7hgOLYr1Qnff/macVEfJVDXRlCGPZR/Js5Wahj3WJ9610ikHxtSgMM5TTxfeuRFHHjduWnCUJHma0hpgJBdcsv6Ti/rED/0CrLBvZMdgTx1cweRTBtHXPodPgYlMINXMTvNPPo0l5IvdtdmTBbRSNA5gSxY2mvqt4zxU+ThZjglY/IAXaFHGv1Bl55Fh5g913/SFUpjeb2Apv/kg5WfyTgeS4K16M5Qw7Z6Dy6lQQ0RgGNbz74dCTYhOgo1ijzTG27yBiHBdIzkd0Jt3OIv8MWrBJ2JHQM7xnjs4gdkYk1UkS0s396d3b+MNjJ35rHy7dxR0OUL1vh2OmhV5eOi9YUm6pzhG/neUbCTazvIyYaCbbctNuq6ZEr8Bt069SvAdyujnOpRhVweJQwyFg2yBuxHCwnkVs3GCemKuX8Btw0yNEDmGDGoLMOiIZVtLnfQPmUaZgxsyyDAZjZmJXHgc7/Xgt5SzPCcwWL9D5iT10oz1FMygUHhNIwQCBrGeSmifUe6GGftlAQZC675SDcgboPuAPHYVvIhS+8lGJXocl7W2PqwsiBCS8rQ1h6IlUnoAvJSpgEpIHvYX6qrnjsJmGKLwX2EYReMhMjc+eV/uxBSyLrBlZ1TBVmih7MgWXSj5P6DadSjSW2HcXCasPXKB+xCmIShb7IdIz2KW3FnhV/EoCBSzc3gs50R+TkFPtbU0FNQQBLiyI4aDpQvZ36TLKrfqmKO15vcWyHVzh26jawLBqxAwn+N1tCMzU4LkZ4LGxq85SOH0+IKEYS45ojbjCMS/2brrHzFX/1KVv1hZTU+UAjuTh987OTIzUv7ibJ8/1IuSaXwp6eFrnM9miE+qrNu0qszIKi7AfLXoDuBRcbRHZpOIxufqaObPXQMi5BlaJ45Nt2pZ8aFz5btYEaAM8pwhHKfSRdHV2tgEHe6dpyRd1vv8tQQMHVGKAR0qx5Niyoga+V2+1T5qC+9WVss+rzy8DVhgJ36fE2obZ9I0ngWv9lu5ZUbDZGbqJ3cXJ91M6InDH6oYqsGfODPVE5lhUcVm1zzRRXPegnDt0ua3Rr6DSrPNMnLhG7FtF8cpQACA/XHc85nDhmzF2Ze+BunARxxAzy+dbGGo8W/ihpGm41g/A2T/3hW9OgvrqnP65dhiKJPqTiLE/woX/HQiems+Zb8uRB62eCkwNKynKmJp/RXrgchXXmwZUPpJbVBVR16rsbe+UCxiDE2Le5nS/9g7GNZ+rvMLKKDrHG17DO8GsY3a9Cm0CEsn9lEQcmmHCpVV14y5BQfqfUcqm3EBGx12Iou9hS+to759SpKcFz5GtXJqdJ1cOPPNaHRRCFt1G9eFtGwfBPnlzsEqIqPtEakCgh1KPAIQhEERFUNEsVGCB0Cxy5QnkkwokXdpICnLh157EC8APtTFCx0TIHyIJ2P2vDmxeVypVHUkXtD7Wt7zAn9FTJACu/Fw9ktJ9+6dg7Jy7v1gYMzkLKPwzEBAr87RmmLMj9Gvrf36rKuPNj0bNTIGfKViijS3ES6Tlg3LlBip1e391YVHmW9n3Dqv4ur0GKVUnVxb5H8FFBKkwxAUkuCzP0qydMPZ2+9MoAyk+0hYJXvGsPwNa9mappqQ0qEeHVTXS+UAN0vRdxQ9Huj9oc+yGZDpPAzbLpX7BhGXwhmVqG6ufs91TGfFptptw58rHDWEDDUGpIRM6LE5GLYj3V2woBXN0Eumhmab2R0bODfSo9zMPJG8+v5Pw1dCg2y95OW+tVXsfBAXejNSgBjV6Gju4IjQgDRuziaz5GXEvFg+9cNH2d495F07Qwqd+sdgm6aOIeNbcQPlJ6HiWy66trgSYALlLQwxZjmfNMk9shtMtH0/2ovnDF7ORZesC50Gh/ptkwMDA9kgtejxYGkJ/PDxCa6W90tzgjLW0azS6WAjqKSfvLo6UfvxJV/xGZvtrdukH6GhPvZH8idLtVSOVw/PprUU1XJJ4rjY61SSj0ayZFTu1GjpybeiY76eYnMyt772jMs9Jq+cwhzWfLhYx8Q9lX6phg6tJwmI8K07qhDeQc0dWySqNjbxVg/X2TwyQWAF9y1PFZroodIEMIvMa6TGQ7Rh42Xl0y7fHcNPutKglFBVncUcQ+hqF0sVbxxv/uUVg4Zu6owgOiGwADJouax1DJA6mRef4+1M6zZBSQwEFZm0gfCa6UcI1uon29q2ko/PCwOvF83csMKzYlrCgsAq9KbDtm79z4VOgkMIwOE09VCti253CTbZzUZ5M5Ks419Xp1YfVpe4DbHPvzgPmY8Sz24cCH9wmJe1EL6QXbVjwbFlLCt3AMAfZyeO9rgLxrteSwegcyF04yVrzuWvEGYpNapV0/uT9DCARoOZ3WLcn4de8ywKLa91viaiNUqH79/jyJZH/5yZL1+WCI59lWQerr2J7ZnrBeFyEhGyhlMHWv1T39sGRQ3Zu/xwbzz3vHxiNSHavxBR53LeFd7nN26NjWx+EcvlBPUgBnuxkBm3+fPyI0NMQbTa/s5la8sb/oJemQbHJ3040hPCZqU+zR2KNQ4giBLu6bzdAw8xdGVCjAQO7JFcuvLnBEkahx7jJHkIfuLN24UNWYeHe7qEBtdM0LVGq8XzQGTuF0dNpNASVF0cq7B1vaC1A2+TQEFgiKvN6yuxKfW++GUCKyfab+wpZis64Oxzv26svIXk/kfU/asLspRIktO2A7Doef2L7FH8g/QvnufG9US+2VD9UjdJQWkxn8zPLrJQzVaiHnDIl+3R01IcHpekMFES8+J0yldMDjLKPBKXKJd6bPnA3uYWCCUeeYfCO/DeWkCxEcHYiBWDbmgm9Yialnvx7cK7qtIFc7xo5VmNQrQnFSo4t5Lf7neJq9w5rUwtoZAK/NgZeFg5Jrwr3FgXHu5AwDwzGJKxVr3WJuVAu89IGRfiE9wKfWxeU58pcdFk2dmXRhHv0NP7zh+tZStv89oWDq6y9hM2+XVmsqlEetwVN1f8yUPkvKwnOrrv0FjF81DCXayTfp40+eMGD+0uvyKGcZXTNb+/iL0Bg2JRl3ZnNKpaNoh49v4VCUqxf2g7recXIxQvr+aS/5+xsmqU0TnTtFQFYbONkdYTtEC8fhsOuVLOBLjXHiInWvbyadnc4PIjy9/MWpse4kyoW/3fUpkMpY2+Y9tJ+ziPdDeiZb9CAwQM+Geij0Ly50B5etpaXgP9iCmhj5rId8OwdAv5vzXACLidUGnAWYIBSYwY+QnsUl13OHaohhT+ir4stfW/JezwPbx2wFljWELdhgwWXivEORK7m0QAGirUBP8yglWwbLCXLMZcZw3pCjPVDZ+Fj/ka4RzclYs9eeHPSx84kSOUj5i/dM3siyC3ImLxI9M4NmTh/uvtB0hdCHQLnAfEVzpMSvQOmYZdMFd4taIucqmozgGTjPh9Dmm8dAdx8YBvGm2YzieaWxOvvmderqNfqxJBUb8GPgM75iN4jUAun8Or25hE5Kqoxvi1ERdnr3L+svinpfuWccrQvXXBpkioXjhcE/HXnLpr58Tw7uJ8wgu2MSy11b155F8s4RqUHyZ6C23n3/Lq6Gqgkcs9pLF93v9vSql51IhzlT+fw3002JYYn0+D0/AUX21HWZwSLXkshnu1TFEtlJCODkvmZxQYon40dx0wEORlQKddJhxGbTTvW8LJaLkhQA/+ddtzY1xnpJ+OxZiDyJKlYBI5rVC4Oeeg51SxILI9An1oumpl9jHQn6A2455s2ugSe1MMaBu7mBrhDnKVajJdR4KybAu4nH7N89nrWfZfTkYS6VJG6CKGSOUb6twL/5W8gK3p2wbGlJNhAeLtYNZ80rziXwq59S8nsIplCqZuY8+UpmyzxjPClrJ4Zp75klf07YsZ9H2XouKlMO5ySckKqpCZJETOZMzuhvdx4m3ZjP1poX7Nce1Uh6RiTTuhTFjWab6No0MAD6bJjZwA7DggkcdLaSHK9tzwwuJ0a0thjErRquafeEWAn9sLjIvYWvPO8oDH9EQrLzvxuClG41vG3YuvdMjMur1xqoATJ4ALzgB30KOyqF39t/O5q7eRCURS2ohbxC2YNGZbJ1g+Kft0gTexGNBYjs+Zni4H1NH4oeuGI26zjdTMVrLz15krpq64jVt5y3oTLbcL0sh6tdoJ0s7MtMVAuZ48UDqW0+Og8+sePC6u9AClT+n3p+OQ7yCMOWIxQ2PvykLVR8ohCLX8rSMaiRf27Vp3T+O2f0Xo4OWIE038fnnnGYT62pl21aHJ51h8vfs0l/bUIC3WiLbOwyx4ShXH0cwJY5QORMBMSBwDaCpGRBaD19L2Fozz1h7TJ44zUP3sfv/NCRqZlNxt/ckSSrP5aOcs54i2GQWVSoQBr23pFgBcoemrSFZap58y3M9abGgUTDrgJ8KC0PWy1Dm1h8MtZV8hnC7z2cFmqboMel6WREe1sHgqwknrU6d4XgG6mpvCp2EbfCXyIScgLfCJOTR3oKvRzlyNIXmg38BOHdFRgt1cRv25oJlUVhYyJA/uMfUrD9Jh6tZYZzwbFxEakYcp2bhlOLO81g7yo/mUicXUHie+6SLRLDZAkFw73Drb0kHezM/Vm/HwVB2fEMIowB9eK3w2qTYZsOQh9yc55UrJPyH3JR8f0D1UaEGcGdV+39tEzpPLAasCGnmjAZS8qaUAVyKhhrovefQK+iHEVxGuWFxDOttBVO1pTr7jGWRUFUVShT/op7BdnZqyJCKaS7c4Gr/Mf/LxM921w0unGEmyhmuOz16rWYOl4PGQp74cgyA4aP7+3Ayq+zLNMatm9+3wJhW6+FBTRCUhvixIv8FARTqEPr9ayT8nU+6z2iRf1OJOYhlCiZUYWiR4L252YBlvGSz4YTDN2GR6KsDOMZGzX5DcTeZvFc5OBG0n/7QipHKjKJeK4IG4zINVatZF2SAjA86NiCjCm4TOhmi4CnjYwmrv6i2pJPgrul6wj4h6QAxzQ3mdY2gZh8lGOJDMXbyrhmALhzkr7k+rzxLMPJUm/KLJZmw8vvwGpVHfRP1mn0A9Y1ozp0UUKL7/f730MC1utyEWSVogeRhSvaw+GX8Q5FhyfbqLmwhE3is+PWzWwYMuDvW/DncUszy2wli0LtSnojcfpgZjmJi133owSYHaKUHAi0OXAOZUSqHX1NTDvxQvziVyu/+L/uc/UDOHa+h27vaVJYaZBEldgkGQA1yBta2hbEa0Y0sMU2bf/9DneG+7OGglUC9+lZ018Wz2rqEC6TiS96abLOU959pQCD75LU4x4ka8mp5JL7ovJlcznjrQZiVe6hRqOJt3pQh8EFA5yGpJThB0z/Yv81lcXMsBb4QcX6khQk9RooXxz9/mySIUQm5Tr974AzwJEpti1RX8Kx2erM/CrDrmX/NvpuQdLnxFONeZcjkUvuiA/7CKPp0Q/UiEQjky0+4pi5eYxEgdTJzKqpnlbia9tPxWbSpYdPjNksGefG3qNdZoKqU6X7UkbltUfJ9ulq9768UFRWpYRk/Hr7YeBWco+RDKG/bdPUZGT2XnprvilqyFqNAyHlaJvpqKTxkBbGFb358l5418KZ23UjFJjeAtH0DAFC3nqRcyvROuP3CMG66cZYI6HiAue+3aN+HtF3tU8thJz97GdnNuWOyZA3OERupD5APON5mIj4gxktcCHzCKoineInPQXPooCqmw3Xm9RjLij0QZYIc0ztyLa5qpciw9ZmQZq24GKFcWJQRW+tjzsnEzn0Zy0nw3orlWEMKJV+FF+l61bPljef3qP/U5znPYPjEmHjiAPNYUk7hPM/CJ9KWK+13Y/42xKCgQ3KkhVzV69ogqlTOZQIogF7JXYTNmp6WgG4JvZtYwA/8m9O2/zwlt+vFb4hF3ErYXWz6qfPlbcvboN5DHMZsnzDk+GliuEXZhC2XbDvJTvAlALxLfp+975IBj0FmUsf9AKUhIQHk1w5SSYCge5jmAwEqGILdnaWna8wwvREYIQ/lbv54Y7fzr9MWpyWYEa76qfde/boojVHzSOa6gJNa63pDLiPCsCiYLXyDaOHut44dVsu1MaFPWBAYrgIETaFGjTdxmJ+NCQxBJLVcQfMthHTMdsuh+OUxGw449Q4RymXcZ6eA3ea289aEZuKnvzqBf/i1MHzg3Vk44xvLzNVwtx3dTz4Zi2G7A/QDKsm8QIhnhrmLCp6KT6+w1loG5hEwjgTCe8LpVqbfCzTZrJDWI3z29W8Kkb5nyetWcv7sQfFf3iveKVPmN8tmF1YtPPvvINe+sOriZn1LrnZGQhX51G2KnPgEsGpMx0er+ohzZ1eZF/3rs0sSQtWjIHS9qmLUD3s5t5q+lhGViA9yLvi8Xx6K9fSAlVW2dyrwlYOpu0Isra3Hy5eL8iPeulYAQf6BIgVofOzbgED/myjiu4ZYISDngw6cUgOrpMbTV/VQW3jxc++OmsPCSC0REdRrIxotnKoxxHqHXchEp96sSj8cvvI5Z27mJUrpJqXEgS9r2zaejiDL8pWU5gPxqPK7tLvrHGpLdoAei0Wzw1KIrYAhG039QBW3QUXvazjlWK2BkIBkJrGkGhHe2PwmDlBzhYoEirkE2B7x+I4qb8iYsvH14qC6UeuxD9lJMVf4HGWlr2IMKi4OkJW3aQww/6P5lALwUbeMA8fMOAPMHpYlNbjAR+UAO3wmvBXGR+Wj9qSSEZRit0SjHC2HyKIf1X1iooDXC2CacDwyxSSxAVkBHQStEGbE4DqhrxDp/2K16d5VhHXddD//A+mANnT9u+95oa2eRW5pZrsg4XdelLxRD95Q93sqKppg3BDmlt9899g+s1jhL1GBMaEKiQnAlPGY0ZoYAny53LBCwrSO+JyseCp9logdifeHAhnldMpJm0OiLVu3+2SI/FQk+FRkztwqXQJGi8TutE9yRZF0Y7cbbP4I1Ctuk40w/Ebfxubm5usH59RRU/flm1AzskCGgOuL3DPVGwkzKNaGp04Ri0b926NQbL/wKa6h4g1ELgNTS2c1HZFA/ukUUeaOIz5ezKn24DGCUi76ynJDMxIgRo7xnrseC6iQbSgFqjMLYQHGRZC9ehH77bl1Im7ueYIfuRLqnZZ3EDTMcQ==
Variant 5
DifficultyLevel
635
Question
Jamie has decided to tile his back deck using shaded and unshaded tiles in the pattern below.
What fraction of the tiles will be shaded?
Worked Solution
Dividing each square into 4 triangles:
Number of shaded triangles = 24
|
|
∴ Fraction shaded |
= 9×424 |
|
|
|
= 3624 |
|
|
|
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jamie has decided to tile his back deck using shaded and unshaded tiles in the pattern below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/07/NAPX-G4-NC19-var2.svg 220 indent3 vpad
What fraction of the tiles will be shaded? |
workedSolution | Dividing each square into 4 triangles:
Number of shaded triangles = 24
| | |
| --------------------- | -------------- |
| $\therefore$ Fraction shaded | \= $\dfrac{24}{9 \times 4}$ |
|||
| | \= $\dfrac{24}{36}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers