20304
Question
A child's bike tyre has a circumference of 90 cm.
Which of these is closest to the radius of the circle?
Worked Solution
|
|
C |
= 2πr |
90 |
= 2 × π ×r |
r |
= 2π90 |
|
≈2×3.1490 |
|
≈6.390 |
|
≈ {{{correctAnswer}}} (closest answer) |
U2FsdGVkX18zr2MqsOdTs12SMFhPvkiyu9cLa4iR2SX3J8g1KuRLgHqLKPgyZcxxJPpcBnvlt3Ri9LbzsYBNtMZMrhT3uOXun5fu+IYkv7mVdQlb9CWVcSQGt0i8R/DveWeRswafbQD6mYKuJfEDLo4pI+sBE3+4PSQDPckSlC5iSraMtBWmU6MOd0PNfL/IOmvm45rghUdkGnWiX+msdFi64OQF4MRaD+Qlx8EAIaw+62zLxwwUbTjrjfVcSYSybg77iYDqsvAdMYuN1E3p7NyPqrmGr78SamnzSooRY3FFvVEHnT5ylv41RTb3YfN2UwgAYxjelczFc3WjEJoK09xzwEOcC3faozRwd5IQ+H0gMlO+9IUssDXXaegL5Uk352kQP5vKo16lJy8yJ9Rm5ZMeqAtA26lfIGAgEuqRT2XpG5Gdpwd7c7eJxbSER3Io9VF2IPAwl9Vh43RifZ5FVe3p7ZtQYTq9WijQs8JXx1ySfAzPn9LcyIN4SPSRsIcADyLp6L/O3X1cHe5MuEcLymH9yWJsnldEJlUO3EteVn47zZRQ9hUjdexhwnTBzY3Ya6AXrIVoJy2iNAc9RduLJkDQWPjzbVYwxrgUc1q4CzJm3JeOBpAMra9WkLhG6pIT0PiGjg1CkD4KFmxEsTl33OiOjFOPAGc92bQbu0V92siLOUfL3BWVErD8jZnSEngrW0EtK//RW/xHX06jPLCPBQJP1ltNi3LBwSO1rWhJzpo9lC/hQu41nnsgIsmbquaRYEPWnll+Os+TUtKOqmlPJJI9EY8Bi0vFNuchKP/qZByC1LRo9SEmlRthPDVjydfsdjmA94VjXxCPpT8OlAx3c9NnqEeW09zsN3jNsoNbRqOoCN3v8v5T6abmeTek834Cqp6TPWEVwo/3dg3RQq8d6oBboCs5Ovptl7kNuiZzlgVjx+Ls2BL1Go+V2Zsf7da25AsOlYlHwpzt/LxU7gknAaQa5VByYzo41xpIVaBzOh+cIodCj1G3Od/3HdSScyjEdrihH4Tv1Dh9sXs/NvT1k5GPvBCh4cYs0wo39wDIkQ3IFtgthaguAf0MNpRQdigzPgOFbuXVXEI9ObUg7lbMyv8wdE5l4ub5Eghdp/ZsuZgWPcSS9SwmpCzg3txsT8rLQW/D8Rea9DOrQ+O4F/NNLEwJyQm01YZRyt40yfuGabJ46u2zg6sllBxNFkMAY8R5LnccMo7RLvFwW27CuRCWblA9f94c5RDCB2ChcruHVHfGfdAVzA02LXqEw6+DrOS5DhMLCgnDiW5dfu/95pn2QPJfg64fYME26LFo9Y2TJjMhVm3Asw4sTQZADRYmSfM+0vVg6fkh85fwR27xBL+EyEyTUSU8xrXfG0Ebau8T6WLUSmIMAvrxDQsHw750Kr0rBjCdQ0j7r7qM3nUpuO+BZ+f0GD1WRehGRh9TwUCKKGbmNy8X1RoI28r4Hd5zwCZFr4JmvKWziHQ2IuHLEVhB2qlQObUIF3wK/zuLHuy5Dkd4qjREpLJ6zK1MlUeQwqbbXQewFk5I1Korey0gdujlzfmteYn1PvjB0d48q3a5HzXJb6WDILHSLszS+Q2jGb62nYye9KD5aX3zNzVeuJqvMxpxhNdxsLKcrpR84zxIwhCMScLjYJR0vgHcndyPeEJQdDdyt8P7KWbKNjP6LbY3f8UM2NmoJ//CjGEM+2tMhu9Elbxav57h/EnRE6HNwXcvPhcXv03pfqbZzvRneO5SY8DIdQbUnQn2UPb/tF4Ute8rtRl1HSp4Q96obrGfmXvIDc8EC+85Ohqpvv0oK/5o4PoXSRk4B3Z8txJCSOKRvLyGj754BCaoJqD1Lo3BcZDO8tGTBi/+I5gcRly4r5Z9fwCVGSIUOX1V+KfVGpl9W6J5lXCEeZfRNU5XR5cS8v4HHnJPLtY/5TwwqoQDm+8PbJQjFKlacNb1IVX5r0cf25pMWdqkVUZrfYl6fz8p+6E6/26FfenoksJhV3c29z77qn/yTAzsBODTDvIB6PUh/9WmQn+tVJN/GKX4/ASrxhjySnaoh+gziXkeHJZI7qr+4upE82wSgtH8/wy3yvD4OrVO3jGR6E98YpwTnUW5xutLf+UhC8EASfTCBPBt+nim6D2y7ccHZbCy03nOu5veOgUbeUg1vo1a8vJzGV70Ya2dwvag4R/Nb/l/iAUIIVR/aDVf41kdA2fdg2QAq9HBoDG6DBd7kumvlZ5IV2PX9l2s8gZ/PqHMbUf8Aj9rwZMjBmjBZGCF25aOT72mVHG2PNe1GmBaTcST2rLw2JwYuojimhzfGkt/7UN5o0IHkCJQ6FpifeRjuC7PtwYpAbVTvWSFpduAx+gUSj3H8BBFAho26XToeSEhN9btpA63UQvZvZ0T6J3lfrdKMniYSFAtuLQ7XmlOu6r/pMtWGIHxORg/z2vs+LwxtztR3MEdSik+P1not9pPg6LwOcCIFaqyZBWJWYvnXZ41U4oEDpdv1YN2oyIF6QMeHro254Y5FWl45/nuSLCLhPyRt6aDiBs7kJbLKhmsV02UsM7vsid3H2bCiJugR/eveIN/GKQ9loU5Z/A+AdIPVj/G+zMYykYNJ/a/qYr+IxYmbDmMylOQRSsMwl/QkLXQvHgbXkY+ptHPWqxWrR/uYbDngDpg0SFuwfUarX9ngjLb3qcD85rg4g9CD1Mdx1pkfs4ry0awU5nBVQ6rPhWTi8ysOUBg6c0MJg2Q9dDaY6idgHKTU6aRciwuStJPM9MU0Ea1lUKNjJv6TNg8Y26nQFF4Vvs2iPXsBeX5IOc1ap1/KcE/srmcl8JI1E1BmAB9YNFR4n6zZqz2VmtFbOR4ZnyoMVnsDxGnEuKPUcATDsqQXAYiIPtKitYyYqBJuJFaaQJoYJkUVenjB4UpxkCBeCuSTHscZknKaTsg/+VA5mJTyuXWDFMsFBiG9p+3VAdWXQLEEqf5t7BobFcZw1Si84hAiML7H60LUdUuDVWtVqpyXbwviFTX5Pj2tIWiqqGoKcXwLQmlU0nymK/fS8dKMCU6ghhDVR7ZQZnQmUCEmdv+9y3/C8BBkexhuvY0ECY3QZvBmaw/xb63RsXEm1QOISFhhiYKKtf0/HvzdPFaTXaliqmLzucAkXxa+kAlnjsVgBj7Y/VpG+vPrUoHIvBEBEotEbgo17Otiizm84x57JO18NjtcDmOUqPFgUIIXaSR5II7Oo7B1L6HqHcjZpqIhPA43YtRu6MHLeQ5RfaIys/fBq3M8WCQVFSJ3DjJ5SNM8sVgx9/JHpcoI8WIVzu9VtM+QSSTl9AO1dpsN/2iH0+P1P4Wj+Ra7ZT7IqPgMG0NLn/VN25i7ixPYoa3U04oqWzKz7qeS3eMtYBIxDJnN0KpCPF56ouAiIlVzt+qmQ/25h6w9+w8EDtSjbNZxl1SkLpX6iRqflwbvJPUuCUjxjVuxEggC3cNfAosb8et6Aniid/gJ3dXu6+pMHBG3c7O+FDaEPD0o8/PjuVwulpEHKI2rOTFKok2LYNIkLLoQznLaT86gxJW8TDtb5fB72vpXeZHEOBJRDjpTuRlOfmvtiVKMYjsUQ9KDHEYw3ngQFqc7YMrWrAI7ZnYQcXx0HZbgF21wne5wZqOm5K5DGFZFzaOiNAQxhlSdmSf+fyXv3plSq1hw+GB7pvCQVMZPLBx2mZFOT6ERVt46cHBNaRgd4VLhsVcji+e5xz93mqZc3DftM2a9eWfaUA//JgtPMHkZAV09RZa69eY/URuof+cje/6JT9barHuoPw/0hU5/LieRVxGqR4ZLOgq9tWEuJ908ZhZUpLaI1keiSZNIBPfKxPiV0gFaKHE7dioUsVWiZYtRFYFx7PQoTcv93+rAPkMmwTFvOw4lxBVyuMznT+h/RQa0uONKr0wQu/xvDmeOYgDiVyy7HywkC6uGk2w9nbYVv1NaDkkRSW4ebm86lZOQS+xLIkK/YcIWYVEsvLCd+9Jd/66KxnnhsFhb0eMe8UPbvFN1ntJ3F4VtVy6HYwfuCqwcujIZkUDySzhwVh8GvA9QjsE9OHGLH+gW6biK6iU03XZePRrK0JVBxgSnuKxBeZYXwIcVZRyUWrdvRZAmJxb+KBHFPe4awipkJeeiAalkq0r1mdYhZfEuPtc0TC/cjSya4ydf4Y7CaLgo88xemi4lABcVUzNkC72mikHLZ822dVUPpPZPPvfIXLEH7ukXvvEc3UTXZuF/vDKAQcbDiJRay9OqgO2mGzorRR4+rHK8EgdP0fUiGbs2UYQyJK9tiDX2MziXdBacJkm3z+xs8VzBEPUS+W0Xs1K15YwXYWa4pu5KbmU0jzDeqzd4k0BeWKmEUP0AQ0UaYQvHMWD1ZXO/ooHECpgCVCLb56vpi4qChoAbciHLxMALqpEgjwidP/jVIgNZKE0wZULvSKj4nhkJ4ASmdjTOt8Ih7zdlqbmCtvn94SSjbZaxhGoWfE1FLzvn/Xn012H+gk4Aleg6bat7RiJYixO6LnvHCXI7LBZAE4rr6B8z35xkKTrxoQCMbxzeevvyMF5w068eVmZ2vHPZ3xh/LmT14rhrkIkSW25IKvbA3aLnCI01GttVC5HVIlkCEspZA+xGjH/Cd1mlsaEJxgXZ/OIFq0ALP9JdhdIHd0+QsJH004QmFmJdVSnm1jKze98q7gzyEDdYY1TmGIG3DxCHHtQPa+PZaPzheA8O2Tk/Yi+NXA+blR1VxJ2OChReGBDr17ZwNBOG/fvUcZAcjVum6z9XzIHElZgbU/yTKx25voLbnxJ6qeHdhn+ao2+e0CChjFq5LeVZcWe8CNGUpZ618fStDUcFAyMx3DDeTyMKPNbV9620KZe3QhZ6IkPXNjj67RyuW7f+nQ0UPa5n9xL2hMSzTu7HgtKgzXtM4IIOZ1nHmEMp+LcxbwjbNgu2iUd8Ye+TRgk5Qe+6+uB0hBKPnci2c0Z7/SHjqvmy9q8zGjrMr9imCmCraNJF1Am88Jw0bDiMCNPrX0bQ4k48gaJBVvs4lOxpRd1hnY+vIPf3zRapregV0Cn546JD6UQefxvMB7Q1nJz5si0mPEF5R9+NJllUFNbpJ0zppmOTO+uj+p3EeuTr70A1WVUduC3UvwwJlIt21oVuJSCwwZOFZKt9PUlNC0fX4EnLLosjHNYyLCSUKYSCoiWV3r0w9Ar2PH01O4NQE2Vl1Sg3VFbB7tX26MLLqtdwbTYvPgRdVFAa+eOI8pDcfxQeEZSJFiGeZgea/XHAhUjSjFldxCJ4eaI8W5meHX+7gQ2vF8bdAKiFA4f8/VHI3kyn5RAZ5RQSJUt26lGoDsGIaOKQkCNVnLCDRcYqssIHdKj9fLNeoEaKhsr7hfw+1/wQ6Er3YqjIcIkWvIBny5UYwrP40g44n3u2sopVdBd054NzkCnMKjKj7N/Nv7+AuX1eIVhC7gVmo2itz0eY7PY8dQxEC9Z3/4Ig8B8glMpoPj5uSeDmK+t1dQyuJwq0mMWSDtu4kBcH38yNeatRH26EvNiErylaF4FTkMEh4X2RS20OGpp9uIhT51tFfkkZvaCU6xMO2m0xe72aHZgrxcC/7p9EEyJMXH9qJCgNkEKaawgEbikoRj9SfXiQu5r3Ynz+DUyJWE9e2YJBIdX4xarm5JAjV8UKblH9EnMf0zOJ1XKBht3nxrKR76ItZpbK/jS6VEjNrP+Mpf15p0ul6QHyrXb/YqPe+NV4xVJZK7EuJq3Lw8Q/+65MNa0L7uvlOG1h72iv64lwLys/eXeQ8JV2HmnTX862pG4BSoL35uY/6SSXX08rTfopLB5CRC3G1or8ZooqulWj1SjtSDjdxvD57/1fLhPQPWMtujG0oRQ8XxrYBSlVnAFKxbZMTB3VqJFL4drbEONZqXEhVYFhcEiNKWgioXxQwC4m9lYoI1nsRP8u/LklO4OBhf9O3JqQ1Y3CwNnjMlVbVdPWLPCElSn976Eey9OIQCLNLyLm0IC/V0pkXj+rSgfFLnIRhba33xOSh5n2i9KcPnrTXGgZOAl4Iph30ycIwk88/2UfgXmTVtsmxwb9ojYyuuWmSjBdnvBzVYSPxz0j8P9MixJghbgPb3ecZG9qHhOwgvV1cFjPSyy5VKYLxlnDcdJFKHcB6U1r4rKsHFUopLjkjvwnWKHkYfq0LR68qGc8ayuwZNpG5/c6UVH6vjyIaUqMpPYpW3Tilg1f77bWToS0WTzPy8UhGx6Jyt/hZP3RUP+wNrZZ8r7C+lSlVdVXb55AwB9bwSDrgGq1+k804q6B4H6y6oi8pswOw4J7NWjLdeoc5rb5f4x58E8i1ON4f2MdkS3wdhyp/4KJyDaZuoWaTGOV7BcRW8ijLyht+TVacD8C9luRmHmXNZ2wCsTie2xrXHrS3whNYKsEeAhSRAzQtHU4silgG0EyzPGl8osdFzz+AcXGFtqVjRMj3pUvjlXjpGHYhPIZ3kkiXIEUz78vB6MVFtmm6XcyjlrC2h3dK6Qp5qS38WKmmztLXhmGMRsXryc0yKGpS1gTnfv48D8Ig8KBGvMiyqez23O2TT/rhURs39oUp+w2Ab1v2OGGNYNZ+4tTVo2lPBlr+ca94bJbg1v1Dm94L7xumhEJuqJIVPT9GimqBPEyVI8NWKRmTeTwSqyyiIrxB6NEMS3lZnxiXYBFzu2KiSdR6lh2voLdo8/tqVJaynyJZDNeBgP60x0m6BQ4dHFO2DvckEWhjUZLiD5m0O8cJsskMlzHYeQyxWQBVmuE+9F4k5pntIXFYIbTnhr9ih5ZWErX6RiwJ2NkUyi1lmCSSMAshvKSowwdcBJ03M6F9dtdM/ZiyHOJwjxjA5ynjT3Ij8e5beG5k4yw8PvIfAQbdyQnIagSRAiCVFcGiNG/tbPckvqveF5OuBQmhVdKInvHkFJgZHDr30Zt1qx9dJ4acpKR3JUD4L6J/RINH/LhRtfXVBllX5mj9RQtMq2Eg4M1bWNl2Mh2eRbtmW+WrHcF+P0eNTUcAR99NLTzDVZSiaPIk9swNKvfo2O7oO2OEJZFqp3X2nx142bRHoODzknBLe+q1QIK3r86E/2+fTHOK4sOqWJnWpuUsV/rX1VviIkAnGHYKEkcykuSOyWiu5yuUVVANTMgH3oz9sCUXEjWghCtb/C1mc2DYSxQDhQT3bd+cXgwDMSXKQgcs6mWHPUD59UFBO9s/nqj3frUMfsTKekrgmv2YFuh/NFoT1yJ3sSioPDWo5V1Q3Swl+BvrPyp5jIqEGm4NN/jpTv8iWigRRPFCjLhWTOiTElh2xzYI7IG7OztES/ZntuT1KRk5U65ffHfJL790ZFnjQtKk33n/4NV0aleFPXYqmzzJWmmv/wTsBgYZtnF0fUUIGzik3pQciuISCfwgv+h/AmMrG5+xJ/TAouGSYYabrGi/Q3KpoAlSol0MExMXlXp6FSYlThd8R4gpbAKVhDdr3O8BEwgfBrspi/unsU6Mve4tmc2Dg10N37ERYWhI6pq10lMzmshD5lyArVfrHN+SJsxWhu5vx/9nYFLVaE+DW+J2eftqSrwqWCfqS5bY6Lw92Pubrj8OUDs5BGEySvPcsAzefJhkJJhIejpu1/J08WshhDcdxADE97oo2p0OZ/b7NjH1rhuoJoA34M52KKIh8rmECt/wFKZYKZOU9jVUek8VfSh4nCDOYVyKpPZXE8Ezc0TkxLPt1MzOrN/WZLfN5qf26SehUXhpx9Wz6ueRM+BzdXVLQD/CGpDC2pamTeEn0jspK01yRIsTQ/lQvxiSr0182N9exVN+VNSbOvID4Nlu+yvKzPKI/4587Ysl4vPt0tQk+ay1vb6iyPZ59R30RiiZYAbI57D0LAPcb6DyGptRuH2ZlfO4v7HcQPGGAeJnLrEePl7zB1G1mu3NaGUGKRNXdqmYpP1rh/MGvARZoNMHM9i6gg47BGTNd2Ih5fRpLCxm4Q3pVq0kyXUzC9JqlyYB4bxAgsUeVcd+F/auPbGG4ZYMAJh0QcRzdTD8qxPhUTtOZhwu36iCr3rCKES8SANcQ1ya6aNNKL4IPKoN5L3EzJQFCNWvgbLgGOleuwyWJFTjC6dR4Gel3Lk84QLhoz5dG5hOK8qdB/nw2JxmeU3oudrqI9o9T9bKXYLL8oyxrqvr2aBuvyUVQ1CzVQpK7dUuFHSZ8bXrLIDME1HXc6ZgIDwjrCGXrQD/Jb/BLGpOOaVTqJ3jonyce1cNBrVzJkuET/n9kQP3WqhiJHzJ/4Lw8HWsfB2ZRi2Hd+gxkhXl93a6+gLkoRjk+M72jei9aDbA9jL7bQGAgGVITljds1jXrQVBgR6FS56D8O9p+ZBzYRaD9uD2+nUEe8VNQoG+4M/qbhZWcbUYlLWWUZoiP5jBt5lxGc322oXCqEnN8gKbFb5MM3msMiQaKCsfpJFu40YOoFtUi1rgLPMKHCI4eKIPVjm2pmTfrh1JIf2Z4grhto7/zjVMJy4YgxzUayp2lWpbe02ygJRk5t6Mh1DvrrwzB+S5js3DFk4RUwyd4IRaokzM2QpWm1PN/8nzLcobfyXb49BTjo9djnkMkqXPf+y9lr52J8VxaE3iksZ1/VWZCSGOc6KvUjP3e2/s0mrtDdjtLL+B/s8J+D/RT0U1QrV/PXeeDAYdMa1/3iShqjEKuTG2G/Qj/QQZ+ZNbPAhmdFdDn8ErM2eBeEtdyfW6ECNmS7nopW7V9vXwHdTTLpCgieUpY/hpyTomjk243MoS6GQ2Fxg13VBNYY8cXtEC27NEMRoUh4XzlYTNQH/ALlv7ScizBnokNc2ahzV6eZqCSiIH7rCkGGHQ5qkGB5EnFhvOkw/b3z+mghX/0CU8K9PcXgNheEDLYWGsFDWQbTul+TXd7aEHCtBKAgY3VoFv+0Hzjv0MhwJEqFI4eplszvTAryNwvy2Ik2pzf8NUz8sOE5UgASf8lkrmD45kHNJ9wlJCLSCVdMxonlx+x+JseqfMqpNk/6LBEd6MJtoEWFpwHte0kGqRWWThL4gETucGjGkCDOZ41WxA2QtyCjf4ciEFEL/CNl+MmakVLDIyKu/IPA/joqKPBBPrAac+MJj9ozg/+Q53KRfjvf1L3W8xEbzetPEjDft6qln/GPrWqzjLVqjGWq2ZCVO7H7iRsZO1rDEcpElzEWoz6j5s4tzCya++e/HwNFgw4xwiH6uYPaje2LNALte+4Qoe6Eqeo+wcTXNDCxq7LguAKLNH4ogzATrpERYkHh5LMTE5iIxPqbWgxB2JBG3OgmRebM7tdabbumbBicxh/S44LvfUtGb2aDT7pppOCKAk3rOKA4jJ4wtJMWqas8mHqBiupHxYsJE9lJehaQldkQ3TLGXzS1ezlSfS8EzQlVq1LO2T5LiKTtLDAo2KjHU4OJ6qPjvyY+tMW+uziPJQhwUTE1GER2IPJ7a+L5NwTgPEdZRRecOi0AlwmTp0DkCjqDivUUyiBApzPwxfvL0C+YlU1m/hAEml/od8nE7clxU6Kua5rvu5PJkbV0+lVTDoC1Dnqv4nhuSRKaGU9Y2cCiq3KMtIdULGCljOmAwU9JXNUP32mofPaGQS5BmI1ftQhb9bsRTAmoes0J9IgauzkYve249JjSt9Kj1/5HR2VfTgAFZiQtJ0xp3qupu+c5nqumxJ+YmWWrOB7F/GTT+IOt/bcZz+m0+tHKQuw1EM2/RhV0kxYn+OvBNsFgbVHeuxQCaqb1xSm5o8QIAukggB1UaDXgWSJ4Dpw17qpEPQcqxhuB739mEALjUGawitCmZyLaUzkDcJpXAQgBg43Cy0HWoklbItZVl9SpbCn+lsdpWYFShGGfvZcaVNqsPvlOCZ6UKWtgHpmhXjGuCSPOfjsuQk+xzEiurF0LIWOIsRH+cn0/zDE5h5HaqJkAxnSpkBcdHzIDYKWQhdGHBX6s5lc1rXMBQ16dL4ydzTKOi1xG+vly6zWtfMoY2N6prR+YwB8KmUdy80T/bPPAQVlnOWcTIsThGEoAx0qxFaO+UOmzSu9/AmBE7uqoFk7I/fX180ADmCgnLemSxjE5oshALq3fs4JfAMvgF2FvBcJcQmxJXjjjlKZ4FP691ECDCqsVv/a87tO5TuEG2AXniX2yLHNUrw2D6EK0Z3i/BhOfuLTLA3qHsiLyEXAagZPfh3dNhPLIv6WKWBGH/Izuf9y0c7e+oKJLnvQGm6rmbmEwoESC/qNssG4UiWPNbe3NBZyFNT1leoN0O4rMC8ZtHoY1MrE3se2ekygymY5rlm1TZ8eul2GVkRoWNDitvzf7LT/zn5KSv9YlB9yh1BMUZqapTZaq++SMALJuY2XCnxPl3TocEAavPEaDNQeirtetaO9mmqC/bShl2qCaIQhBXl1jq1hqXcZHsWdq2m8+EuGh1uJC05wsD8ht8jMP94d1b1T9rJL2px21/1RxC1S3NLws+bv0ieiWvYyZMXq2xHGmsvNOz9a5m4DIzdtyAK8ND708FO/qsPwk6638CpWGjD+JYgWPB1DKQ3DZcGraYBr/XgJ7iMOpk25aNP8oHpw9pX05FFj4sspH/qGvt+0Mufvm5k9X2zg2o9bhjrTpl+4Mmcgb0e4ZK844+E7KVRcVqQDOV1k0kYG0Z99A+is23p3nLgoDOlBptoEsovf2hixa7sbDm/nCkEqTmfnAJZ6zgrP9rGgdtIjWsDv9iJZ3ztM1K1RuPYigHSFtnBRs9EWeTxiI4UZ00KuhzgptGj1kNThhUqV2MI8Bk2eXcCCVMPbOUKwLQDFV1ntx6o8rqWCyHQROgBOvmV7JW8Evuq4rb9+ucBpRawUuqZ66429ENRalT3oKA6gwQpfjgGXu0Ri//yLLG/8MWcG5I3PnvhByT1g5S4cayLnIBNvCjOVv1tOl3fJotKN96nYwJ29Hr5eW2bJnhXs8G09tpa4gOLskwDxBmvbUDf5aLZCpacIHBZF4Q99cJgdYjUKe47wiZQiI4aysdEd8zWIFkiSbtV9pA8Z17x0gL6+gz7Jww2gInOdzdhDzGabikzcGnkwIXjhRq9d8YUvByVx0LXoXXPPjpzWmrQ+A91FKxLa5JF+NIY5e7oJgMyP8GDC7c4Yjf342/Q6GulpKZhFBzH71KVDQBc/G38sdFBoqew+aufCv2/MXMQfnlPMQWkMClDRypfvwAxhWrezkm6Fni68hVZjNCtL2G+zit3lZ95oCIhGfQOWGrDIL0cJGelGh7nowgcTKZbxZGVPRWGVRsZ9nkVjIjzZOBHYhgyDUQJDCtQyo87G2v8xvuHSbefo8gdUgP42GNrkWOaJ56R2wy50pI570t9utbp7eSBLKCzBYRc4R8rABNHuxj9xA7aGBiGJukeQJfy5vs5LEffiEsd63uis6kfAqym0VGjdBGjczvd134HqNaYu9UuIt7PRUBLos1h/MmbiOEUejOh/AD/aZmeWp3bierTsnOShrBc6VBS7+mu0Szp5ABuRLau1yb4aCXiyiaj3E00yhrpUd320DiomGmthh74MOloKCZuZHrathlVp6aXyNLae1N1o1niZzaXm3Tf1S91M5iZaAXXBjoG9jYwrqpcCcNp1jbiWYQlymLqGaOozqJ7TGEgZfiMvsrYqF64gXl8DSyHADP6EAz7KVKoaZs/Wb7KE8C4FFdA9RDGjae6bPU+1SWV+96YdJ0/wjbJ/MyzKYMf1fB3PmYlFD/I3WjnuFSiGif7019cWtIEoQYHNk5N7ribMPbQdt1uaFg/speN+p+ClhPbwhILbgPgIqoDK61+va3/cxCtgnjzS9OnIbxPj0MgznKlEXwOXt8HJnRWOLTyCPMs0UsFKKWaQ6+l1IFFno4tM6wU1brdqqA8p3gSjnhlqb5STXCgDpscBQUCbto30tky2rFbl2Sm14QRM0Wuo1TCBgS+yPdMmrL6RYyMvRIqJeiLoBKPmB3Srxyc/txd7OTbTly9+Ic8ZvOns0UGOsi5MTc2HXljFC7Gmic+zTCT3MRYuq8I3hhCOKDuuphIKOyQgz3D8IIRnOzlndGT/6G5Pbel7z/v9JETogwvzQeWW8+0JwVxlIY4+1QaTiVYV78BFYu6rcmr/mds5Rkx/X226MffuJk8hJSFiKHAJ/brYH0shz20sotlz9gl1D2XVy29u/0SpbkptEO5lajtEIX5Nsi27xQh+nERxjJNKk1RAVHVkl2t3nyWuNA+32xwbtbQawSFXAduRrUgjwGetlh9ewXnYrse3HfI+lpXsOEAdbICamP1IRQPIzEzwOBCCtvdK5CFzZpS1kzozHJDXsP/NDyG/vM+UbVBMumM5ikNgrAvx9xBk7Djdqv3pO++76wb6vRSk4OfI5SD+HfQQCazsis/aVfW6OSW9A0oBFpnrspa6zkwXAXu2U7lcwZ7pYpLaduIUPvUId89le5nmMmyo5+NT3TlpfD60OGpsTAHzAtmTsmkOiifX2SUnvAH2179g1lcny/mURrLd74csx8QgAA8ESquvke2cI14gKZgzRnDMlRGLq2B06skRZT6GmRCirKDIxKFF+6xHbhXWc6BBp6X9YXv+hBAuy2jzlDSXBMvX9b4p84f2f+2SoT76Skp5J6bvzVldEkCqn7TGh2jO9dpQLPASm4fgnedkW3da3riy2sDzK2Eu7410YSrtkxMxFCVfaOXJtxoTHmibSsOi346hC+dV6AtTCBbgMH5JWQOJMGLgmABGPk98feugDZdSNRBoVqZixM6JwqeGkgI1HXgbQMgleOuP+uLGZ7UCmv1/GD0AOb3fZtlnt4inszR/7i9xsqzkuYN3WdqWNx4AmF8POEwzGvyytUpy/tk700yegeQlwV4px+62xCjzBWqtyu4OicOG7NCGs5gbfA1uI91ZSCS2Y1BLAWb5chFfehr+/QZnMdsCywLR6qMLOT0ACI8tbCIIrH/vcVw1qnTkDJZkAzYedvB+48MC75GQsiPsBdwtPQJCbY/RQQ3uT2m6q4AvnQs1A/y17CTZt4rkrmBGtkuzY2NGKZY0PL8RNa+IZ9A5bp5X3dAV/DQDuPtJEAk1AtHaUKQvjw/U1YOe35XwaqhJ7e1NVrQ0XY/VRPVyOIyj9rru5pDIG2s5JVs52iF6gqghLA4giof13m7kqYZ8KT1JlTSkOPoyJos2YwEW1b9unS53xdOrIlPNhwSxGkjd+yffAD/VrdGesAuf19N1+jOGVjKFoJfL+ppG4duwJpcEBtrH/qHmhuFFs8GCP9dcf9K+4UHXru3ABM1Op5arbUiVMi7YnMApb9rLG8behyqjzpyXOYzimLlH8q8Rc9+PwjdON1izpeck4hZXtg2beA0DXwdA1rM8r3QugPV+tmjTJm27KHWfSeDWZ30gJHa/lfh/MvEph9mrHCp/FHBtz0rWmGuLjEsZyd58mxlXXBACk/JuB
Variant 0
DifficultyLevel
627
Question
A child's bike tyre has a circumference of 90 cm.
Which of these is closest to the radius of the circle?
Worked Solution
|
|
C |
= 2πr |
90 |
= 2 × π ×r |
r |
= 2π90 |
|
≈2×3.1490 |
|
≈6.390 |
|
≈ 14.3 cm (closest answer) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers