Algebra, NAPX-K2-08 v1
U2FsdGVkX1/0VwHqPTM5eoE5GwqoKloZRKUnnyD8rkCAz+uvR6P7Ej95g3KaIDmKWXc+vLjnwE/RyG36giuCjBkXNq99crTSgTqncFfnP08XuxlRwjP9pWwSf5hl6lHQRtI1nly8fFoM+6OgiJSt6CiR8+39uK5E+B6q58wg8Y0TdS2ahB0dhcoC2xacdGQAZ/yLrcwcVyBKp2p/2rpDNiGUBwGyVLHITl7bcyRq3tfGW24+lzsBdItygi3TeESfh+2mRSF4pPlt6AHvdH1qRWQECT8jLuWDrVIJ/FkAtsBNtIEgwlSc0NUwjPkOnDXjBc98curQlqqltL11sv4N+EgkcLMk0oob/Mp+7MH9oKMAusM62rvM/zBKWDzIZKyxOqSzsSHNDH8Mgw65M36EuPGF3yqH55DE+59sbjwyJiSBR0uiX1eR6t0xCNxcmz2MWrszmaeSuupF9O65H7BPr2seYErT/PERgUJcxXXHlA/bBWqr9BDDPeDZiWzzDzwkEo0XUYLmV48hks1VV/YFKVO38NtY0xjQuaYmy6QemcknRiVzhqKExiCDSdsrVkrZ3D3WULvWOfPMzjUt1V7NEbfJGn/btV/XmMnbPZFiRB/og963BvzC8BgKe4DwEWAVrbyGpRHH3mXejOTe35wSKOJ436zYI2cd/xctGuLOf3OUNeMfet3ihmg4S64J+UYFQgHSKaZFVws7868PokJb2QkAgjwnLWbIHVouZs8mIaT8IXtMsw85b4b7cpz1F9Gro29VHHni2VW61/dZcojNqk3btXig45cEn45OoMZQx8em3pQbIB51g/q4OLq7P/sXJJZlFKRj45y8PbxnlgUnvfx+Nh4zBSYpM+k22uhP03GmZm2xzBmglQjIOl+Lb7dMRrRBY1s77SUrvn/yKeMM+FKz1f+cZvSKBdKGuLBT+NoRfxyoT6r/lG0HkQkcgIi73ewY9jrlANo8v7Yq3VeAdgxj1R8AoOtiGDe2x28Z2C4pZWB4fpN5iHbAoye90QB71WN//KeMWWwBzvdkxldOneSmGJ4KCyZQYgySJMKNqO9qgETBsewPv+ynIJtJnC2qWLPruFhX3QnULKmybADe+7pxKf9RkWeoZOKR1xD5maj2l0dHSzS7e/XPPChzGDNMJSnlbSM1/sPSK6sHP6SoLw1V+gSho67Ro9J/075VmfgDhgdAFEWUCkgxHqVxlpOgpAVdggtA/wlZnI8DzYUzn96pmVBZiPTbZgAora9D237UF76ThRwWBVg1adsSyr/md1ZILaaiUueZrGHc1wfyKlCCeYhNdXMuon/5TmulM9ZQVWNLdhHqCOr7h3UXD4Psse1IYzMCE+MArZOp+IRCO/UM7vOm9VgTw1m4wbvtiEqyucQ/KsNiJJnOTlFPWB1v/1CG6bL4yBWnaxjeqtf9yq0gMBKRzEtlrrgz7oijlQmCxTDoE7jQ8z7nfS4sEG7TJoHO4EsyCNbMjc2hAsVyb9AujXkVd9nYZiup+1nuE5LqmKarM6ZgHpVrIZmBWWHr+SZdawmFh7PNFvx/VBZi7FYnZJ33roiBJB1D+8OES43R/qlYaDi20T2Pl3lETs7ModTjxszZs3oY8aQ6+9siulK8Szctj0PAtRiy2Q6PXbwqOTvOHmCoo9ZzFx77KwF/A5QB3PcSQ7Wq5nu6LoGtffoOPg/0lFmGqzQzY+tSZjk6Nsa8ocEOow8CByNqa9T6VvvIb3Rj4Jo7IegPmFKBn3EPlm6upHZyRoe1/eyU1cUE9TbBTh5ncuNMmQdhHFZkwVfVL6HkPx6hOxkBpm59hOQMhu5+XEStCnVrgDsu1HeaFNjGQlQZJ4a05O/7Jd+I3r9USvZM3cG3dgEqRXFpRGA4FiqUwx90CXkledLB/tiu49dNsRIM/qYNzxU4xQIWkBtDD+CQeJpjZpYH1J1D70NAC7vGBftLwSQolM74cGE3W+uGaZkXMJBrgW4uslK39aKK/YO+4WAqgaUDjSHvkfNuoqoV8kFNH4MRfnpBDH54gzXBxAMjcWhyHcMBQAbNmTNCb6rBTESIfp6HsG7oAzAdqauwirrZwk3WDRkJEI11GE780OwMkNcU/E9FvV/arQsCBaq/O4CLktZA1VibgLkExiOI1CJG0Bj0JScjZG4txIz3PvsDpFdfgbi5PbFlteMo+tYUXHdWuTQsTfKtp4w+DE5r92pNO2Z7dgp32afoUmUfBeZvAUItI5da20/oR/WuRMyoSvnTxtGtG8I0HXn5n2bkzq80hTobjdMoAvePjzt/UXrIvsWThgKIkT+CpO9R2/oOkzShiGNowyTSzyIgOYkJWIy1HiRxt/5zbMGIEv7RMRnthRGhQhSdJ0qHRQH/2fvQBvMwPoD+kRnYHhiBMBWEA1xZI8FWYR+WuMwuQ2Yf5cUOrSUFjIJByGJr+S8ORx4ycqwFpPP5SMwf8OAltKwgX0f6EsUq+LET9oNYOj3A9rLOysvz+BSk19gVbO7DLLKyvRuffcIZsMeO/0YVqtx1I6kOSvhuYgzqOimMqHY1BdiLLUL2WEOQkzmqjC+gQP3mwqiTEfiIIIASNq0LFLrBhgrNdgLNO3zIifU5tBsp4Lb0/RH1ssMrml+YshL5TftZYCZMdMoW09Gdj+8oL1g+MLLty13K5ya7k/GsfbN3icbq5WTqdEthr/T+ijelQEbl/1C78QspATx1SUmjbte9sChyEX2dyWj/HgJBFswcIBnV9momuoIYZYBu5Y3Vyf8IXM4EEV5WMg5PbbENb2Qn22AZ+j0cWlikJ+V/fRhQc0yxUMuILJYfV2xrJbtxsQ9id+5Tgqg3U8Mh1CUrIHR0m1nTb4pe236Fr9PhfIQhlx2OTJS7FLkdMSf/LWUT1KiF//aqzYLM7UAXHQasRnf/xEpKS2XBVMot8pVk4Gv2kAGXqjPHgTwnmXCkfymFpquZ8BolLue+72RnNYBtdLYa1Sghq7yI8dVmTsBwoezd8Cw/3OB//Ue7YS7HYDLnWrrl2KpYM3988wdWbCZ9G8Z6i/xQzIW5YcCHFyRd/IkslJWjV2ZX5IQdINlS21Upp3TkSu/O5CBkWmWU2G1H780120XbouBdCxV2nw9phkXfSXOHBqu9dgx9o4hsFScyrsPoZKzaAfzB0jTLoJQ2qgrbiZ6HI3/voYzB8l5UTljgSkpcwPExJkLKHxpWH63DT0tgKT8oG2gvoxjL0xlW30X395xpx6cc+NE6jqrHq+E6sIw9j+aUj2RHmFPCFBpvDhRh5rBewSwn6i0wuLG2z0Nt2wYrRy2eHu9eBgdZFUK4F8bKsyYiHgVuH+BtncyMgau2zeM28+DYyxTdaepjZUJ26B/5YjBfQ0iZZzvpWUbQL9NOXNYpV27bjNHnvAIY9svjcQsgtUHucdMW9NeaezbdbFYSqjYkMe6vbDjL9p2xh8eoCLuMKCrs+7nc6Je5+SOXSP1qSdCStQKMVzoypzSWRk/HpEzeq5oTRxuNUrlIu21JVctnM0bCSgvxDF8hNYvWO4qUakxEWKlNy9p8AWTy1v8+XRbmWYrwbxYpkhfwQQM7QSqZWxPd9wlSAAxuU5lrrEAIPDTTC5qtMAFacJ03D2F4a1qGrswPrGki6xQpnkAgSON/aVSUMwdZaclhgwDdEEzVQUL3xuCRiUef/WdxcJxQAIqGqkZmB7gKGZLHPxH0xEPa/MVPUWQrccJphuhOGoKk8h3L2TK4NdAmFlOBlb7cyQ1ufh2VRnb5REL7dQe3ZRN0Wnk8CulrOUnk7iwSaCy5ceJafUuCHASsjTZjVeeoR8+JK5aytqirLm3BhEmukn5WypW4glL9jxnQnYSnNywx705o9tPMWFUEO/m/9UshyD6ZoyfH9JKCtniQuzBPxHsD5oUhpj0YgfxHbrZNdibOdpllBhdPex1DRFNhZygPWmnG6U0Ltt/Bu3g8vy+on+hficE158V9UuTXMJ1eRHUDCgVnWcBgYbPVaJjwaOdd/Oz2WtsC6zMcjQvCSdjsOwuSl42bkITImktVf4BPSRR6uyOwZDbhcvZQLl9G1vsDiKZjTB0kP7uPvygegiUL0sEWYUIEn63/kIZfqxTytoydx0ORuH8AeDd33hkpOrzFvIIFbKvFLoVDN5tuLGKZ1Ai18ZwlL0Qrab0UrEW/3dqYLqWhk+d+JyB76kS/uwFjE/WgjGWbW530SQmPnxPXseS99FN4ymOSSuh3MWa2qNLlFZHt6eyWd19blInptBCzdd8ofBjzOnuPJB6yxmbF4gnx1ON6X2i3FYm85QJlKJdsVLTO9tuGjFwrqlIjZ8kwsZrLdud1VTc9PQInnWBgRTeW+FHXx+tX51BBLmbFM7q5EOmOYKYr/7GwNjCVSUQvDI2/+jstAC5eOtBo1dRyBtxRIALDMR0MC/qDFp1HKAfN0NuAHPgLufYvZFlo1HkxX+XY3aCHmDnftcDpn/yVROnMPiRft4+tVMibk8+Q0NK9/9fcfk6X9gXA73A1hQMpb3qHPvlrHrgscg+pTB2Kn793gwdZfX5neGRjucIix3Vb9+lW8Q2O+dqeR0ie/v+eazgB8q7QXFChYe7YY1D7bKz3zxNiCT1CRqyIRDZwKq8da6Mr9FgzGftPKnN3g7sGGu9Apk0m3LGHdEpdibNIKiZkuoYT1wkOGkhg37zl9VGuLuW1La/0lxgWLV9Efpp9F55759rT1losqdwslitwvjnXKRqY2BSozH4pTybm3pjmZXLay8S8DWtzQj1soRlrQhR/XXFIv9z1TOhKX4lD9LT1+Sgfg8k9mXygC8ZR/ONaR7nqoAb2Kn5WgHQdDJqY2ypdOWeeEMeK+UbUMFwAoWJXNCvRShU1m6i4Ve6NFWnHFUwqjw8ATXr00aDx0uf7Yf1pkbBhjyjVOqDC4KfzSk6qB2YbHb6K+Kcseo/M15Lp8i1klMGQyZouYV6mXSoaqxTpCd9xqvqHySHzGeFoFF29AMNGT8+zQqVfTUxOBenIYXLB5/minNMzGPM1yKaWBgvz+zNg9mQy73lj317gHuovTh8RLUe+9L5Wcys2aKpGYfbhTjyZquBMMbBpBAvzqRI7wwbS+wK++FZlIIMtnKL6sY2PMnd2wtRI7NpQKFKv3RiVWZ1k66NAmKeq8mja5aP5pQRu4Ev309y/SQsTU6BFu3G2oBxZyYebw0XTFvjzXX4EOdiZMZax7StPJk1YbymxwaVasBY/VifX0MOH7gyH5dOoC3yy21Es4j8llihpjKEAMKhiPa5kZSo256tcIZDXUSfazTgIUDz84YRO0+1UbLsS5uJcuVfgHA6sq8PGjxgwVm89Pgn43B4Fk/1R+caFKslowJgip+7ufKwYc1taIzTOr7DMJSQnEpjItvrbD9cuwhDuji/kYSEwiua2yUiVl5WwPrtucbnUhTfP8pngkgdGeiJ8BsBr939w1BWMlmy0AIfuSu3YNWnaT76WJRBGiZ952EtXop64+xJS7XZXaunrfUpK36MFMUHzSB2QSXF+qhSZhCP32oYvK6KzXwJNwLVFoX1Tb/1IuP9IbxuTUNYeZ6/h8AfIIxKTpthKQr+6FizLHA==
Variant 0
DifficultyLevel
436
Question
Krusty is using matchsticks to make a pattern of rectangles.
How many matchsticks will Krusty need to make Rectangle 5?
Worked Solution
Each rectangle has 4 extra matchsticks.
Rectangle 4=14+4=18
Rectangle 5=18+4=22
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Krusty is using matchsticks to make a pattern of rectangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/03/ALGEBRANAPX-K2-08V1-AAa-1.svg 450 indent vpad
How many matchsticks will Krusty need to make Rectangle 5? |
workedSolution |
Each rectangle has 4 extra matchsticks.
Rectangle $4 = 14 + 4 = 18$
Rectangle $5 = 18 + 4 = 22$ |
correctAnswer | |
Answers
U2FsdGVkX18StSdEIKLfv3qpApAzvshLiiag0/g3BEvOr1ZdqLqfy1CpIS5PRmAV2N6tAZHxTIG3XFk5TL5jx/Z/U6K5b17by+zIkkjTWEhHiFshbj0AmIoIfinvb7Dyz0vbdVWyCiHW7sOiF+Z44utNkRduwnfZqrLvbqyUwgsVk4tG1zXWht0pVDiD1snpldgdqYdNkkinUiXP/5hUldwriXhE306KIsGJFUlKxDXD0wC6HNl42+YjGq/fhnheEcrND/Z/sv9WXlQLyuxSqekToqufx3VIwhLRu7o7qpXZ0OwixLrFIW54IgjM2jjiWMOkvG3fq5jvzRDPKFvDyJdojIFg18L5/JwDBpJgse4VnPUMhA/K17fNGvkJ/Vxqb3/Cv/UVzdxp8Tq+iUdsQ1Cwhf7h0EfPQWXI8vVDPuUO99GC68qpA1X3XuZqiO4kqtrGHuyvKRTEBNRftUl+OrSqb9eNXpmA4xgYGczXA2k/7uhktDRtzvq/qNhF+441Rs4Bkea8FRI+HyOMR6SH+qlqHLNbdEzJYopf82jhWjY8jWuxjb95vwE++ADWiRq8Qavlrjn8px3dlv0JG+sNLmNNyI85CIhR8Q9ACLZJBT0F7E8k51WbDC1yxaeb4N7N+xTT8E0qYSidyP5Pe+k6ePLwQsxSwvXq+eBhBIblO6xZuZI7NX3Ftrb93zMYAz3TDmPd57BtJmAvvpS9iB4CQz3MGn5MZpAX1I46RJGsSHScGDboFJ4vWvapVtZOOAHIatfAHZcJgoPahZpLAyPU2IAba2ZWSxLoduMNSegd6zfYGXKRVyrOt15j1CbS4aGb6XNWlLZDkb8k+q5T0O1EMQRbDyP4pazCoScNivkAOBSaNhSd7rPdW6/1vVFrxm1mD0WC1o1egnCsdMEcBgqJ/xYd3mvPif6zU6jYJ2AQl4cKVkc+A43Kk3OCvvC+fnncyLXBbtz2RC2atUeeY3X5MvAtiUuN2OxMMChvfFFeLZwrjFlAbC4Lb3D2LEr/s7Vjzz0bEPrTQlS0xVW4CELSTojHYPqnf7mk0ERD3d1eZqCNswlltrt8tiyoVYNR/K8tnQ4301J8bPsNPOu76nm3jDeUf3/4nqwUOlHm/icjWDAf859R8f0YCLkarJe/3mo/AqFyED9Qa5WkW90ZELZTGQxXVBCGOzeBYXhKsQV9vzEufunZt33rl83oO24+P2KIheuJBsQBw2AbmZF9CHkqMswTDUWtuD5jmzEd1VC8jW3GWv+6pmHQjYVqL/G/mqEZlXlHHf+NEXKnWkrs5sCFYGn4HYnj3wrRneTibTtzbjcVY9V9O6Vs2A6TrS0aG6kgEeD3504Ii2B6zP57Ox7ZtRrcvzIpq68DNuyFoXULU9vc53l+wF/RkkLgnlDmHv5kjoRydnEKY6wd4aGg+XMfRmwWpZnB7wm7JoOoRkHC34xv0cyPpoLUT98z4bL7gtbUWNuwdgpQNutEnKOTSwCauVx8QuN1cdwEbyPZdf40JMQBh/THqFCwIpOeryftNIKHHsIMDTC9H32XcawGwmqsf2JUL0ok5n+A1VprqNOCUL9ewV+JEfEGRENJplZYi36h0CMILzTxMOkFDa/WDgeXwp3aIR/PMmnBkwQSlGtWB+mRfcrZ7jPLLygRoGin7rSw0obzur6rSN7GDnp/fKNlfOedk6YVRug9GkcruBhrIlrasRt/AW7X1uIrCp0uDChC/kCJ0gjPprUcgWabooQCNi8+d7uyNh8Wd+sEebQpurPNLmG3t8nbSRsOXv56wFNMCTXD1zUHh0kFNF76CvxnMOnq4yH7S3PXTKM6pIjAu8cwId3Qi7OPbsaQEuFPKU5kWd9gYfnPlk246UOiuT0F8yPuWWvYLyvJTy4s+vl8bgLAyxdgbAXKupYJZNC2WSNgFLYQA9O/4gzI2gWsuFZ83Jmq/tELY5nIjm8IhCit7h4vDkfRl/gcb9+hSiKNMiFu7xMeWvt7HSe3hLuCjdn09OuCZLao/bKI7jQPI0zc5cW2v4Vao+iVS5SOe9lBUTNqcMKcb6A9isK1exh3Lw3SEs7Myx070eSuFso91ZDu8pi5/IlrmjprWkmPAVdjSRtolHvPcGNYOl9E5BSw2SnUjuP4bZjdq0qXmdqGLzuzNy0f8FYPZfzC4fJb4apsJx12+olQ9Mq8Qdpb3pxad1qQQe5LUbCB0CPJ8iiO8g4aquHzhN5Q0mWD1tqznq2Q6ostcREGiRaaSPNketLD08o1OWC5aGt7Lo1lOvQFfynEhuPJ4B5EeRp9RJ1gP9WlO4371EyQsUvV+EkmiZNBGq9zhBbO4tQEvevYKVHeI/X5tCmV8wZ5CuOcAugy/dEna2YMeUqqtUWICpyXpoRznxyoeazIV0JqHocB+0ULsPgQGP3Btwa2XMqIWMlrN4WZ2zYkIgLbRIK+IY08A5aSzDTdSDxtTt+3gJHg2ghSMNJfsblqsdKW6FQ/WvA2FlTc4ucasMJ8iTE/b7nWFLFbzUWEPuEDsqhBfsbncoD3JnC+X7Mw9NGocdzfkzFKIPOyuMVxQub6tu+SmAo54O2/OTIvA3elDipEg4kgHwIffkPBaoxDD+cbsbDvF8yrigdWSPrvYcoR594GIclX5YeVal29R7+y97U99bQMZfPQ802Mpc020/y73kP3rHeUDPIzcOWaevDQ3Ir45bKr8WGyoxtsSJ0qFIcAxRIjtlBqTE+T/Yuz0GbauAFX/5ba3FTyu5M5xPjrPgb6T9ZklUTeCu5NHUFGADSJT1sJlV7+v+UMDeNZN7wNspHrdY/EU22jrvgp22eDywBZKSvjUO8W00S9mGA0OWgu+8IgvSV7Ry77lvlHMlx4IjM1Du91/c1GhXTXALnbf/Yc0KuHeIPGhu/mUH/78zzMK0M7HNKrXUSIUOjmpOEuOCGPrtSn7nVqxOIxhJ7KjU/YBbNFuuiK9lSydPy7fP5PYCFB8bshhjRK5Q0zgkaChCBoDazduoAChaovCBNt2u80YkPiX0yX7XANJsPhC2cu9p69htmEK2Ldfe8SuOsnqcnPyNiRntnGX4e6itUkAtfspgUYOrOkfQl7wZ8lryTt+S/HeEuqboDqT0r04hgJaSDqzajaVz+a+9st7PyDm3VQuCpGSpNUE7U+a3SKCwmkrD1uWj6HsUq2ocF7NKdc2uglqbHx0LzqQW6YLzDcCuGXJtI+dgs0Sv+zbe8EmflMku/K3VO8PRZHCJCcn5C26qCcAiU6g1HEhtDigILXK4NYWMeShlmD2QxfckZ7xizlZ0Q4OriT4jMJu42okYVRCvW/5Q5i5rQRrGAKGx1+iXxgHJ/ZAhlnBoOnGI406EZvbwOHc/IqeOtvjJdv20mBizj8dXIbiDONhgPmBEllUK8e55ObHUIhJ6G5f9l5sTPBcVaujtfMXq8TWmCvndDHb7sXFq6KpC0y3H9m8vvAlkoq9c4QrcgkRP80F13kQn9+dE5/laYEVb1oaIxuY30HUGu5AQwWPmzMK8RCBnrNzDLiIkzW5x7wynO3SGx+z+HA4BjYx69x1BdaH3yV0yVxRyQkrhxhB859+rJU/8GoL6dQqHBc7zSQDpVl4iXCFS+rc+v/nM8yAldp6qO1+b6fYIIGrMabIG+vdWLSVWcX14e4uOCfemNImo7fnFTZQq2Bmfgwuq4XqfBhy5YV3xRxdc0L6HXxcbxoJxoyMUtetFH4PhjmZPu5TMbN3C+Oq9rEztrfXeJWYjnFb9f8JvNajlfBeg3xXoxX1LpiUGiHP2Be4KRKqwKnjumODA9NsI0C6J73CFZVcp2f4Dmsu0eiVUrbWdgW7jpya4A2gY/NKVqTdDImmTJoTFZxXQQsro3XDERXl1NkwtZ61e+vmHIOS9jbUEXz2aLpSh4lAdnvoeWqx1YCtYOqsUHlv6CvtOBinu18eOUjQBMw2R0CD3PtcynFaxmtr3rk/TVXvEaDld7rspDSsDBGwYoPVwkQ2tJiXPbjdTYG8uPtAwnjBVJp+s7WUrmFZzo/6rJt6J06wg0mLCOSydxTv3rBoC9nv7M+PVKS/tTRcRb7fNiAvCuP5+/JW2UmkKrE+utlT8kL3GNVXJnTzgKLrlahk3Nv0tIk5pMxGdKrkeICRE+a8CvzjFopNMzsnapepcvwE2G1/LDqbNSPCtei+lJkh+Sgip96N0fyLDp0iAI8ZbycTqmLWV8caDonXV/6kl8qzqyVW5OD5KoeSaghEb2g4DFnG1S1YVIlRs4rJ/r0NiiK5L8etlAhnpjnYetV+BphQqPRAL3y4r9p+BBo3utMYX9cDepdtOKiQxHHLV19d/4AN9jwkXz+VTBSxXfArr4B6N8d3QHjKJ+RRFnc6e2jnippe3V0XW65h7fVFylHRKFw7L9d4zuBKuDSwcXAFbRB58HznS7lDZ5eKORBzgeDE1kqninOlIM+x7WMzm49Nsr5jdEYiKsIs6/Urq99dLl8JI/Evk/8qCHbLRMRXKj6YGEjUU9/gFFlHkUd3gtyi0u2ULeBtpW7T4zYwCP4MlAnkPqwOb2MKcRqzEKTzyK5AmrjlUuUDxtKnJrPMveWNJXm2rWs60kCBGGSySEN66q2I6UuRvzEyMGDf4kIQqBc5g23rQMJfGxUjPi9N1dn/0ef/ha3hPmRFoFHeeVn7TifY6nMhbtWi4fWj16Ijcq/jldw2mwVaQiqtV51n2tQEOYSoSJEtSWa3WWH/UzGLzpacQq8xiFLi1Af9ouVyk9SX04tLy6ipuFaonWx2zO1Z45FNaI3IC8YeXaa1hqBOg2Yy/IlpATBx/d/ZLi9anm28UEXTlJ+tIKpFby+0XjR0vgwhpFmFgrnP2IEtAglRedsqBOAFbjZAOa1GHZfDRLjL8x0yfpMigp6k8COk1WkKYWr1YpfjI7cHBOYcIuCcls2UQdxTwjTzhoarLEXDe8ZjI79LumtrN3H+vZmChDcn3AEq26IrqhiJmmg6dgrZ/iJlXraqSSmv4cRKsTK6L1mf2Pwc6QmN8JtkcIL9INBu04sHFRikDio1h/sMY+IeqBXiRonrgZ/bfGTsnBVr+CNOu/YXvUAdx/p60pcKyxboJj8GJhvd9YslmBkQA6YbdstTOq3s1WmSEyU2w0b4br9vMaNlaAhAb/CfoplXvo2iLpno9Ab7V1/Kplp7TdC3sxjXtTQ4F38F3zAz4st4nGe8xBcJz48dxjFCbAqiQW2s2/4Mytig8h+bpPGJbCKPPwjzMZ81oiGtfc0N18gz0aOu9qxNBfyJOZNnWFa09iKGuElJnAN9i4wBXdqd6Us02kHJYo9nnc+5iWQS9yTOUQbXhgLETWmj0LGRQCJ36Xi+52cdj/9yoSNSG1TT5WwFt/qdLBG50EedsHVzM7LOC6EtWZihzCpnZLig2bdxvrRA8KqprGFDC3QntFUUa3znvk2+L8OK82dFNiUAwOQ+3G+9xMrDx/OZl8lPag56pX29V6PnN2BOrqZgkBSxx/G6hYpJ7FOC50HNp3F/+otPzYmUBRzjUiuJjpsjJIEgpYFuDzSfN2iAsqLdRNQJ1FoYM1zM9LMFHl5xKXgIYrodFMQC/TB1/jpTZCat8pOzAvERkkqafcYhiokOwfRi7jvO9FPC5Y21foWvMY2shvdQzi0cjEIwjwyVyBZiXEW6gs0esSVDkevmifMxMDWxVFNYw1iiA2zKR0nEdPq0lN91hiDmHuPBtZSvlLmBpq9WSuWMxzHVhKXeJ/bZlGOnP1sx1HSMZbPHRp7C0//Sb+oYPpK1N4C/Phie4j3OuLqWPJe9BWZtODgyT9uJivkLeJIPXwt4ScifOU8gy3+Oo0r158JsT1NW5Rc3AgP1Sm83d0EycsmmNI6cEOjbCTJdMrrjGll2Td6P9EK/iFfm3sYxTddtBLZppzjDLy7V1Bnc9PJ6JZafgFf9TP9zfdlBfXeYIJxkQ61YsPguWHJq9x23bQKlnfzhrtm7Rdyq4y+PPF/1mWJJL+AuO60A4l/d1PyqXZ2RjdM9zsCqyybkLzxobqkrmiTDOCi1gbnSQBkBPX4skxpn3qEQmJEn+YN3xfa0IJP08VQu/nj998InKqP1EUEleogn4m5SnbYlxriJWX0RYvYie8Nvv1UFuQDsCtwtoFMvkO4O9FsnZm86c8l2dRtZ93gGlEhpkr1ZT8S7AbbBDjCDghpNWtlKYPWB59o7JXL6LHA3JEy4nXs9kiX1PgkqAZBebTWqpcs3xl9DKckTFFoyiMQQzha93VLgUkR7lgvw+ukdFl+V1Yqq32i7aYWnRo1KD7QSm8HHVLdv7KdC9XfbHvbLUxtPrZj85pnv/XWHoMeZANej3iXrUdMu/gHdtYpsXf9j5VnWExu3Xo4MBif5k4pd4tRXdBrLrEgmNKXANnmHi3N7kZ12WQTUjXqHGsFItAE98y54Sx10uRevMe0hUAoIE/altiJoP1Itgp1bmDS4qqa71tQchbwUhdRetudpNBDvg3h/Zo49NQ9vwFuAuD4qz5WoFvCGyFu5vA5z/jNM+95v++l97Kel8kNU2+Hd/u/PBX4TMub8ZnRj4V9l457++NZ2MLt2AnquI9B9lvLI7+2HbaqFQ/IzujaqY48iDiELnnpLh66UuM6dXlrLrAw9/a/O4He5VyM2A8fbmd73WoDARYx7N8/Q/4faRYLwzyuLSDsaRrhDUqeXXW5iZpt6mCS8BL5oMgYhyH14qczeu9+EIGEk4rZCD8svOanfRF/2p7aPIbhjkrEH+e4CMdPzaU3b/Y+W13jSdwS99LmVjIOIaua1w9VeZozBjQHpRcy6IAaFMholhA5Ry7c0y6LhmMx3OWTCNcDOEO4Cr2nWEG3Rs+/IVNFSwsB8inDAbpMW9n0YVOGjVJht8cFicXTUYfHYpVmLxcjK7vqcgLSA3N4TYHCJEloiO8Zzf84+w/3Oscmm+MbvNsEfl7BVwm+yoJjfNfClV7Ibm1eBDw0wgiAnyoSXu08p3rlUXP/q6rjetvzj9gec/eKArGc7rw3TGehG0prmRGLDf6Y01AW1SXE4Rfeaa/7l1iudepCQNM3OisqH0uJVzN4osdjt/9jIKc944dvrM5nBw5v2u+qXElqTMbsr0wOXM6hT7gnj/MZrwDRmCz8wB3HUMNSszHjfvRuzHp/YBWf1nqrogUk+9lLkK2d/apxXJb8SVaVQbULfi9pVApxxn8t5TYOvyXXIvvdAXCaDnR159zOiwwTZ/IcpCCUvHCHksRJscbxsnkyCgTUrQiVVbkX5OWKB6Nr0E2X9/8L6XYHOsfmZEiw8+bdRyjbJ7nUMk/1sf5kEGkUnpQQohW21jtVjJv7dCYWyxMjomNrm+e9i8VeGDLfxXkrHRWlgkJjJA3Y3PMFQJ+7NdQlYHVfyemiwQA0y66Zj/6FsEIyKfBkw+dHcvBnms2ujILpFnv5+zDX+EaDs5hEkhODQF2aTdh7B5t1v+CZO8PWQxJ6uCUZojDHnIV4FbDXgdgKd6MJ9HlFJMWQ1UyDlE2eLjMNqntbAylJ/gDmAJnQj5DEG67CAGl4MuBsmNwg83mSzqZ/DyQMLGO8OZzanfDlYHUVHr2pOLk9a7l+rKOv1rDd3iVI3wztjvWeEtn8gt+ku/VZ6LwYCXNtS1fhDTeXAPPXEp9QB8j5VhHvWXVp+9IQCbDwzH0s8TBZw4K0Ba4CHRnzOGc/g2YA/VQqXTUTnUtmr0cb0H4X5zXt7GzqUMsl8WOA3si2C9EH9UTCk8qhrkI4wWwydDQiOuib8YIItij0rCHOsfdH3MGfv18WK9FQ2G0kYdy6w354cioAHXP3mY59JtD8/ZIZBkZHXgRxDVEyteqL98/LAVPu3YPXlbpe61jRXbzUz7f/9rLzL/jh39aGwxOxvdXhWXJC2WHId/ndls0ub3BGRc0xir1C8R0aiYIlPKMNQkLKXf5zR9zHq/w7MroTP5U1WV+9cbZHIHKs9nMWqxPH7nW7J4YRtNNeFMdP9GvFSAdPxKgF3QePdCJyp6WeM8xLA0XVunkct53XkqdYYHYB3LLDLLBacwA9QKga6PPd0tFzH8C6XQFYhX+ITZHXrZ8QrgHnY0cBU2ESgkWxtwrx6tjlNvRc0tkKYAAO/IyUSCFEBI3don4XuQHTa/AZUl287YBIFdKswL/CQ8yaEKarQ6mrd/OF3lcKr2qWrDs6fu2ZYX9qaTz8GIY9JS5IrEj6niu0t0c/ObzoI5HBWxdUtuMFcBFvLO6mUGN14pbfEb8g2DRl0LoBQvGkEEeLnw5ivJ/2KD+lPhLzSYrTwjcpwmDQThOgz9Guauazyb3atYWAQ7MdsueDNxyZQBMqjG0Bbs9ByxQa2CSUehJHfzgFuVZd+US6EVWqyoqRRnzbzkjJIsQ6y8swuPhxzwbmA6cLqOWTx38Xl8KeHdG2gla2TP8APORg7+kjbm/b5JlyCYj4xGVr+hQsLHTEnNmkEOTYTtIB+f/CJ6ejuC84/lsoCwftTZnSguFzNaGzYC42dOYUdYInCdUYSURBb2FYwXWp2bOQKZeXI8rIMmV+bZJYTAuQj3effbeBBy6y3GzWuhTFkW0198HD81ey605rVYyd6hW90j3sJJ8B/txvHzNcQk5rQYsMcS0fFYBz2LHIcY2MDT+1ryA5dOrCnOtxF53lRNGkndmWYdFa297Kksc78Cg9gepdqlsLMahWu3ELFFSIcNBiCCFq0YDdPRzJKxd6a5WLBNJqjBnr2+aSYZFPrMdGmMfIDPbyq09CuYkxMeGI2sRJg2mbAKgRXmIW+3exPVXbrTr9idbGC/iXfk+AHpbL7yirpvqUY9NDJ7y78CaPDbflqR5QxbC/n/RwG0NxPOnXnuHSknaYbX01aE3SSoxaSXYJQ2TSz3YjZPGzKTuMqgbAzzxUjcBJ8wdFZtXBIBf9OBkd73Oh2u3UWs0dWuIaVPSRK2XA8L/QVLhFQfLlpPXCr0HotjN+D0XPDXpuG7IzIWof20lG/Dbeh6iHswVD+B3lydi7CakZgOz5qWMF1dBtyd2Y+RBKXnHHsE6S/kaoWQQU2YuCIOZMpN4WaXjLF4e9+xSbucZG8QSMw2Em7jWDiu9Gx1/l6xMUNpxoLiWCVM/rsE9vf2a0M2k+d8gJQem/TX4DmyCCgoWLMXlqHHKllGUfel3F1QNgxqnFbopgOGXXgTvqaZ3omCSmX5JpmVmAGX3rdRcxGFLFS1aWtTM9jEBeKGSfK/99KLtT20SrowbwkNNnLUEmXLbk0W3Z1NcmGnRCwuCWahdNLEQAgmKpzU/yvmbPFG4fPZFz7MKolRP7qkk/agjgIrC7d/bocWK/zoikA2TnnOUBGY6M6tl9R2SEijnoF50sj/h1nJfP6zjc4HQS6JuCPwwLeDSYV1GklmEqdptW5wiLWQ/x0FazSNKeLo5IcSc4G680YYI6GUyrZbvKQJV+inlVs0kGSogJ8FKXiO0buyKQm/iCjNEYnhWVDksMTsi54+xiW9lvPMANR047+wg0s5+npfSG53EiTgGpT7UwOCSvyU79mK+aqh3C3dRiUPAGDE9FJ1e9bbrUO/f4i/DWkh3kG6302pNgTqPip5ZdL4Kxcjy6r1/TLQUnmhkHsfxb6WowbHNvrEQT9aHLA/lMjMdS8xtgkynXy/ZE5mlMvhpCiynGGK73U2RWCyfP5e8m25ut/IwqBkrT8vDLM4TlZeyz6NwMIcAYm4SqoEIvYqpOgHvMe3fel9mOwVwydpEA0h0uFoCYj+xe9xqTslPVS8SqLEG61VFBmJDVTJcIsVKBMmxi3qnR0f2JNEuZnUZCe0BTTBaSluVHNGl1uAt7v6uLiI5HohpWub5rahJrE9XpRVQ5JODMT/h7+IbXxb9gREyRg9df0X+enLcU2w+Fc2vDqO7ltM5KStiIkEg786zRxRHqyiaJ16D9elVBhFHpege+sytfmzeuwwZJynfPmq/cur16m+BQsBahY8ADxsskJu/vwWOobvt8fR+UJuByiiwG4HJyzEAJDrOYv9KjUZ9IGWJ5bQQijBM44rP0m69nav+7aF2+Y/Wati4L91F3sJzZpWzT6/2geVyWXyEguSSoZ8OtdBW1RU6ab3eAr1Sh+OfVg251Erw/4QaDNVhajPBUp3vYKeAXA7RD1Dk7vhHTQGYmoZXaeFGCTMdWbA3966kkUHDJGuWx+iJ32d1h0NGTxTvqzsYVda9WAynFootsQltnqIlU2XBJZCRSO7JKL8o53Q+nvoGnTARP4smQb91qH8LYtla32oKrTN8mD5uxsntkNj37oc593AJcKhd4yAw/NawAmdHsOkW7iQEN6NyGk7QZ5MSWk+1wGIQ+H8HcSLZ3X0HGMh8+29SlG/ZfZxs+GuEbnYxBTBlNN3qa1xxeWX/0XyDM8V2IpqGamrlxsPSAvnjNX905cnJIw3ShKmbtYr8/JHSXj2ZJDA/qcxFsbk/kRJZ2TdjyhgSyFRNE0+uNObWNaTrsSTiefZaeoNVDGqLJ0ZNJ6SzCUwTracMLKz84UEfwcxf8A1CVeXdMulwmJXaj3m3xCr7oR/RqHNgGLvhhHUSDAyEUOyo8hf+ZEV+lWqZjwXq01yyq4j7jukv5x4rRyYEOpV9WDNrMeG65QmJdO/bWq1QBA2gCnK5YnN8F8eEUHAb+AInsKw/BT08dxZV72FWaCmFcNlHAXxuUqvjehnoep2Wv0IVbzkJoRRMGWpFw4YTGZp+dBITYD2JIYmpwOnSrWtryvrRQoN2DOAVJEEu0YMZstSQ9jzoGL0Z3uHSM1A4rTo/oPt3rpKQKKCKPRzjcdB+XyAew+cbzaLyxXzukbuRFiVuH/C2eYOh7aSfqA4OEFLmwU3e/L4coIgFliOk/0sdVHZ6laH0TgZj/mm9JxFghaOsKthOrKe0ODZ5lL6KdM4BR5YooGM0FX7LlRLF4iTVx3plxv77j6yHcPohfJNFcMCnal0RzVImzHot/pvqJp6m4tSTuYmRI0N7i0MyeY0nGS3RzUJsb73Ohk5JMFwEG+ZLPKcxMIAs2xyiSpa6peTbjCKBByV5Tj/Lb4Mr3COAQOisWy6xTwVtddOr46DGreCrOgj9kzcLOUgveL62TkjWgriTOyjdJI0Lpluzh4EBTYRFj7HlleJe4aglWSiJGvoJ37DyS2agpmrhSlVcOzv6zso5GFLWWf31D5CyhT8d7ITjJ5utTLwXm5yJAvLS/IGL2d8iMAA9e45xzGmH7eSnvu5wZJc3Su+wXt2P9ln8mkLXaGr0/FIp/1vIG/GuTiGy+ngWq5qYamw+iksyVHbuJz977dbbLDnXnjB1x43TiufwQ2xqHIDIo7yV8Cpc1iSzGD3scMRPg2eNdCv0p4vPElYFrWpDYri6vdYFJAZjnGm/lSfVskYIahdswS2U1wDT9AYDbnQKvCYOKKyWaoW4fSZjWydj7WVc77YSVJUFhchOhDqC9w4tdCIZ/23vxjrUS78aGoDbxEk7tHe0ciC0CRnUC9ke+fbF6xjjAFplB4wb+Zu5ezuPpCOE0AcJWOkdwuaokcOWjT7LLzTf3SLbu3XW+iixHFLrVDm7UHHd8wayplVf71B/es2fKul11O2dfigJt/K0p2NyQ3zjsoS1qJ0PH5MDgOawEjgDOu14hQ+UJcmYwL6jqd9UL3RzUZv5LDJdaaR+esSP6sLREwKXJgyp1N/KBe4lhoorAWxGmgWgNZfx1jx4aQheCFH8Diq23k4XHzVu3f6lybX3JhsklwKramF0sEqxGef0oATHPLD0kgwbJgWmRVtiaOxAejrFAUrkhcLk1zEgP2DKGr03+qE+D4mlC6eMBYIXbPZbHCSpWuqQQVdE8tvE7Q6AO+UM006mVGxmadgoqULxhqIVggTpa3j6DZ/NqkYsCWf4j96CAm5JklHB51HefyKOLczSCaFaGNmvz1cX6dKmUu/hOkeRZ345DEGj8WtLcC5hj59gfP4vRyaT4CA0ksrbhEzgANjRiJEMa+uxnC1Ii1xy2VGpTpsvCushYnyyQDzNyO+0hvJHeWLLFJZPrZsB7hpdpox8z9+KNrabTBfFt+KwUFA8ag+r3J3gN83lT4BiqgfG7zmjL3FmfHsS6BcRpmmS8ijBjYU+T6wK/DNg/Rf6Q+RXT3ZpDcWiic4qqojq9CrCXjQlCfLGMO9Ovyu0r0uq/HhKz7PzhsKbyzC0mMzWG8n2q8allvfqn/jxQ3B8fNmuF6uCVQDaKwit/1I7Iqv2O9krr/9RA+V6lVmH2pu0Sq/hDcn8Wg+HS7ebTN8cEYMakeh7vR2xO34Cefm6Ftvfz8FOBtd+dGmz9wD36SiZULK0E3p3cZa3HtX8Zsm68iJYfoS3V3NUtqS9OZrFBStZSMIO6Mt2xLb7L3nar85gGac0VY4/7XA6L4H8+7hUc1zPGQ4wOUtQWc53XHi06FjQ+iefaNerVNCtLlqHtF34y3yqN8DfJ/uPUu6h9z9GftBEuNRonVR58yLExNDfxRrbBWKhhSwaPQji612aZqFZV1njMz9V48ioU3NiSdsiVPF2VM2D+x4yTZvBd3wWiayLPRIWot1o8SaCsrDF+dKN8G0lnDlR5ondkN9Gj7qbxWtKenOB8BOPzjtZd4oAb2uVMH5QHOnaTIsFTxeYnY78V/cmfzFF6iyoDkfjt1i5XZvdicX/YLZzn27Eg8waEsS50IEJHdV7vu/VUS6bb5fVMDqhOFbDQgY5ndzu8g78yiZPKe8QdevuoI/Pzgh/XJtku3JIu0sKjuoCqEwtaiK+TNJi0qwZv0rLjC8iG4NuLtevpnVcCVharOZ9hhs2RRC7h7bxCqZJBXsiR/htcv0NCfx1MaIi7749oCPFYU9ICsni+er6cdqlMWe/4OwlS2k5omkdilqZyJCQGTUjefeNbZxgncPMfAyffFun1E9Q808vUE/zwxG+OMo9y4b+i+5AvKBrzAZZ1eLitNt3CVH5PCULo/DWWj7Ogf2f6uDw+x2LJ0E3RpZHSJVIogf9OS/2uctIvgbyA3b4lclGKG9dFbTqpdRr9M9hEVlK1q2hnNDMd+sHvnqwl648h4MmPR1AkI5nyI7J69bkgSX66aLsbJ2vzZqJxK8cMusONZLFVd72ufSKhnk7gSoTlQ3OeO3+4dZMhIoY2SDKNhznVahiEpBrQP7yRfPlh1xUql3fGuiNLvp+I5rnXdqEp+8lUNefHkzMFiLRnjV+LIqrSChqI6oJJ4FYt1/SwnmsMeuErySJJ70V3ypFwFdLzVyJJW5YCTXkzuLFzh1NKZxJUmXRFkp7cZ4+dF4adyOkIzM2HGRJ0c1NmMekSjZmMzOFP56pTzqv2JadgV/xZOOz8qUTJ5yLp1j3pyZwD2BkKPGXZaaqBw9f5KjyDM2cE805J5T6x/1VH+BxRibvXibxmTBuYgB8K4SRmG3cy5r7ogWQ8jT/n0TGlXw/FM2I7pGTrLRWkqQ==
Variant 1
DifficultyLevel
409
Question
Lynx is using matchsticks to make a pattern of triangles.
How many matchsticks will Lynx need to make Pattern 6?
Worked Solution
Method 1:
Each pattern has 2 matchsticks added
Pattern 4 = 7 + 2 = 9
Pattern 5 = 9 + 2 = 11
Pattern 6 = 11 + 2 = 13 matchsticks
Method 2: (Advanced)
Pattern 1 = 3+2×0=3
Pattern 2 = 3+2×1=5
Pattern 3 = 3+2×2=7
Pattern 4 = 3+2×3=9
∴ following this pattern
Pattern 6=3+2×5=13 matchsticks
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lynx is using matchsticks to make a pattern of triangles.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/12/NAPX-K2-08.svg 600 indent vpad
How many matchsticks will Lynx need to make Pattern 6? |
workedSolution | Method 1:
Each pattern has 2 matchsticks added
>>Pattern 4 = 7 + 2 = 9
>>Pattern 5 = 9 + 2 = 11
>>Pattern 6 = 11 + 2 = {{{correctAnswer}}} matchsticks
Method 2: (Advanced)
>>Pattern 1 = $3
+2 \times 0 = 3$
>>Pattern 2 = $3 + 2 \times 1 = 5
$
>>Pattern 3 = $3 + 2 \times 2 = 7
$
>>Pattern 4 = $3 + 2 \times 3 = 9$
$\therefore$ following this pattern
>>Pattern $6 =3+2 \times 5={{{correctAnswer}}}$ matchsticks |
correctAnswer | |
Answers