50156
Question
Aaron has $3 less than Brendon.
Using a for Aaron's money and b for Brendon's money, which equation correctly describes this fact?
Worked Solution
U2FsdGVkX19QmVrkp7KIAjx0FwESNfZOJNytiHu+oLbQhmvmrrx7p80ZDjUc0CfQ9hbDw1SGnZVQX6R46oli9o/LinlfKSsFTSuEaghkNnxCTBqyFhgaX7wg/MeiChj93sDM1dPDm5rEWbpYVOernvpQSHonejsq/VadIax9rEpbLBV49l3Ovb2ZF9t2PClpEXni0JacOWYaTRoLInDuTME+ZrpgFqxEwnPqXIgYLU+Wq+N3o5JuXvyqINIDtxTTNO/9gxI4IMsRHz7r3wvsd3JLjYnsGymuFB3xdvEQavWSL+WQbXU881DvvLLJSIEv8c1QADwxSUePorjs84eqwMywDyT5PmNFdOK0ANeouL2qWM6zClnQ747q+ouBdV9u4stXA1tIP+lZMY40ZxGtePDDzyDdixqZwOuvEa8QrXivrIm4fs6Z0tAiRcf+w6H0QdKuBSezC260INNUxBv6ckfcgiK19mLUYvX1HFak7RxEFQ9F3rjvm0obc1SeniCmMHm/B7Kxp2JB6dIEku88RSXE5/uVVI+hdoc4rY4oeLmkTaLgwK2qyBHNa3Hu3wINzQvbCbUSr+uT/n86J7ajLq+MlpYVyCay+jlLNJZ2fgNU0ep5MwqxC4uRd2X/ZTrNFLHDgQnXNpNzma8qbv7j6vhyNk0IrTkR4UhYY+fyp4knzYysOxDhGGzYehUKVrjqtlP4np0AXnn+CrvDKYckWDMA9772dbgHjzyVhwJ3rZVEAFi9xxCd7IpEGgIZ7/OOJXWB2coc2D2TzOmI08y+HVul49zwjkIp+XqBNcajR/lV59vfYicaNqVzi6wlerhxvg8T2zrPsqYyadGyrvWZsUnJsl+ztBeo4/nw5smwzzRlSx+7pEm7tOGXv8MwQDZGBoaCfoIGJweEPGssHpmAdGRmTA8fPwTto9r4G9hY5FC9L2yDDjOl+CSIlsADrMXo+QkHP8SktF7/lw9HVTULu6l3SHFLeFaN7LaDzC/vDaG5Li/T8+ACayz3WU6VBXKGxcieipV/C0UbQSBdNUF59nI2rgthAugCQEiKk8UIM3adXuWRCjt5fe/KaoeOHo9KKbSWQJDsIn/tccaEcTBWiesB9Pnu2A4eTxt7KXpf6yYAxIFpy7FIyahBhEK3q4hXXy74tWnLHynV8R4cYx5vQ7f4dP7kVkAYXPMasfKZBeidp33hDvE4BuITs13srY0vJaQyizZUptVPjfKUbdIG/R6L2B1twIfAimaFdxYFHJLzdTsNDehY4UJtDFhvk2RS/AcJxtlAokENyUWKunuFDyTr49PF7IMvlAojSP+CFa7kKhh8OlvoTLcznRzsO9lgHoknsVVicuWEif3t7A4D1KfBZuILZu3et1KF/q3f3gXIekAbpWun4CzPDh9EV7fz96AAI7zz3njDcGDj79ucqhu+AyOOL7XTizx3lEaDUMJRiz7PYvTjp2AlOXtW5R7ao9jlEt8k9rRiGqDLEIv45h1xlODoG4M2NHe7Lcozyu1DApEis6pV1ktG2Q+l8iiWdogFXvqmV93umczZg+BI8nmfQvMQsQ3ur/fVkTE13b4U6rmx1xlWgNDFljfKMCz7Hxakv9txFfXmA9ui+M4PwWXEbeHYGq+OnVDYI+oMgaWNPGomAWNpsqqL7aYihYanffyW2KpeSKca9IksnUJ8WitvGDpkCKhJ+8hjYBrIRDVVQCJIqJbFEnKNufGfu0qjGrGv0KGyr0GphPO080L63PGy7cCuVVxSzjzt9/FsJa4t1lxtGzJE6TolvNMaHTB/vcrre3kVTZLg34A+XlVMbwZaBI7WTRQF765dV4LrPqH798kf174vyWsG4m1cjVqsgFVolO0ccGQ79Z0CU7m/QgcNbsy5Q8CPSsKUk88qDhSnD3u+VpWifgN9a+vfd/dqe+EsxBK4y7DTLcZtS1CzK8ZNTKmlPAdDv4MQQAd7S0kg/E7eaWtj8mjdNvZO94QxAg0oSejxy3HXSVfp18HnlOVMPWAbw2Q042WRffOAtravGX9xHpWVyYuzLj7146Wq+SlvGEr25hp1Cbt/wXG9YWdSbN/kIYvrcoOo5oJLrexCnb/K1UgU4eFUTqp6EZOWInfxl8YNzZ8w99rTWJXqjHPz1OmJLBJmsJw3CTp4tUXO9n2avjKjLT0O3kragl8GufLLivRrKOLShUcYW3o0HNM6X25NM8glltPUVDI8U29D74q2aE+bg0qPpwvC+uOmrylz/G2/T8KIrWr1DU2k5MmVTBMV+nWUlqVs608SK9VGgqtDNs5XcM2Ui5N/C/yxQXnU7VwysK68Xy2BYtNeE652zh5A4Q9B5l0Foo+TyDyjL1Y4OicZvMtzf92dieHkl/yX27Tqac6Ozb9x0sHZTvaHimijGaB4E85vN+bXpCf2r6m9kQpadWzxsuvsd6v//4n6m9oad4S4uqbNu4fghJihqkguGgOsM/63kh0QXEQvpOE+zj9qa+ZfYonn5ZrB0/+SeOCFsO3/QNqpq+ObOGR3yfPuSK+rrQ9HGzhhIX+Fohqja59QnKAtH9mdVW6/IqLZuLG+S3wQyg8X3Xwo51h2Aof2xyvlR/SGSyf+828QciY6/0TqZ4HFWzvQFythxkOIZ7hihcYZoYoL+jNJG5qc8nXFHPWpSboQJNlfGDo0nGONHCEnRTCbpUyh5aPIDGQBoLlEv3YzO+kf7uOOdkF9w3yTj7Piib+oissOMDVkv4coub90sTVf4quK9GsMwVnEbjqsXrkY0O/LyjMoPhF6fEjeG7KzR1QX+xaOp3NYNqZgUnj9yChnjqxhtH1VL2LZghTF/TVGo4FAbBJ9LmeiZeIhzC441NzCI7WVJUBkXsqIrOi4XpJUXQdB6v0zmY3gspkS/A2B+Bz/WhI57VRsjYdDsBk9Czmrf/T8/gItOXgZGGCJHvuN0M3eAifySmWGSWemxKk+AILVvGwYashvhi5+EhfICRweLdVMjyJlekgje1j3/XLwfI26diJGE81/93vxi9bykpf37SSPDwv6icI8lNZIB4CU7kQqRuFWiT5NGWLbj6FsoYs+veNBeEDyQvZVx7YDb6pkucf9Evj4RpkNEDWX8QqWm8SEvf/2YyXZdl/GLEDei6I1u43twujrYMCjH0FiQi98uPUiF4d9Z/s5L3bgf1gzPeVjmkHq838uTpunJfb7w46sLlT8UnGwqBfKeJHRr9Mt2hBDkbcJBYkEP4EbcnvbXOJVdkislYt4yCT7Gp0fQU0044X3wGUh4EEShxHMc63WBkMR5bwi9yZKqj3mRymH4uMx7nwiZ4EL2FePUiqOoTqu6JVw7iqmdwQ2iA+BYuTb4w/GQsX4kWV8oefAfc1J9MJJPa/gJPZHsAbct/BSYPmOgRMmXRqncacmcJi+i3sSNVbQV435IwYizto3ZKsx7uHkkdOQ0oolXlhetYYIg44yl3p/vL5MLT4XACRxDkKT0vzAUrBGHbVDZHOtR0/tpqRvAlqjBiOhkqPHG2LalRRKPsfRyBf0Hsh2Wv7iq3M5sOglGEBiroazdMkzpM9zM/OEDB0DMXnwNFfWsaW4xAL7JIsOHb3JuYuOiH6+oTvuL0qHRkoqEcO57GZ6SfhGBAC6KBfePjRLCHTN3+ziR95mWV/Ht+gw2MicCkL9Aajh6SCxPIo3qZtaLQVu499VXlQXcXiOxaTnOAUSttse29tLw95zyUVmywytlFXRbmmk0mR2swHGhF6D9NPuaSY0wMwXeIvBXLUNOm0s1o+yzL+5/b2IkeM0LV3oHs8gD8vf9qJduFDLb5iCG2xRdWuv0VTZE696r4truEik30VbJ/n9+CYV6HjkyyDK2LSRCdW9fONu/Nkxszwydfdn/3uV2ukYx+TeyFnJvBk+sm11JuSkVZDYioXNV9bqOZmPF/CYUIMzaA5RMzHQgHKvWzIZF0o1wmdHSgr0HT0mNbQEMTfNWu/4bu//O5Ag/AI6Zmpe2vaagoW9fLgabO5J47GpJf4MYNVUMtB9NZpxf94/A6YSj3fnktcH4FLlgBMEQDCOcLGbY7/kkQamIbGOx0ZiDtxYTSkWFMUXPk1ESMEsrNjUqYugS25RhjEp3+VKk/1FmFV4Dcs2syocgFjNNAfiP8RmXQ6Uf8MQKksk1q4Y0riWFpfgEtdoCHS8YbNP3wmCqZpFwPga+5RT+OJ1kzTfjNwY2NpBoQSj1gU50hQzkcFyoIewprznqKxHlNRDc/nAVjUQNI9NG+p4xRD6f/vXPA3FfFvTTQ0y6kb4M2ZC7rzbZuYqIe7btqhP/ZuU3D/UAAx4+0vEa/cVwqIDOp9O5gnulzzVFe0m6n5vBdfkjjzgWp9GrlTAsTJ6rK1xs4blTKsTKw0XCezhRpcmNzVxzCwVlpSPAZ6MLONUqBLjrMRV9GG6u4TrtUzcEu6GVIlK4ZhekkEwI9JnMF87Q/o7853GTMPolc7VlhubkK9JpZJ0vjYmALwxONjtHaBwEXUB5vSu6CriJh6nCYldWUOaAPN/uFIYKgGTbHXGIT/ePOGCMO+ujzHAMXwxiZyT+spTWONHLrDxukDqi5cRIeoyzhxLRil0OqTUuHZJTMv1QvD5MnFJybOVGLVjEIv+2NXLD5Hxoj/RS6LzoyacyyzvzRYLIjxNGYClytCqkWTvE+pY1fBzvmcyG+Hw0Q+Omgs77dmod0IVhZ1jUhi72k2EkPfejCxsr/megVLEq4uTWVl9QCDZwsj0VEKTiaXudzsZ8Cl9D1QhPynHqiu72CV5tEBLRVHp0WuTT/sJ0GthoZ1MCmSnvf5wWKnf6ZTOE+WCaQSgh+i+tDx0EO4ikvzRaDFTwGoKQ9CpY7QwaupCxffr8BRj11A/VD0zM3kr6fxSOk84AQUP2wtocDTZVvSm2Flp5dFJfTbkK80miZvHopjnp6ETJw6Brblv3PwokmFXn84wqVIuj2K4lwnmgNi7stLM8nZfSaWgb9KvFGYH9y9K2xM5Ah+lzRQvz6uFNGGrlJWrf1/jUi4+QP3eeMyuO8eTftfP9Yu016GBLNTIrUlFWr0bGKKTWl4ppmSx2k/wcHBtJgxME4YJZGsLzLi5BD+8RXUnd6G0yk1uBYEFBjkF6bWuOOVaUVdwXpFG7nWU0hKEdGnoY9iQwcj/xq0oQYWEFFP+Ps+aDYET1C9dhec2aq7VLSvKTVa9sbfaW1+4Sdh6ijgTRN/wTVtVihmmtUFlDVSw9WumItQom/+c22FfEwZebE9Ssi6XDg5/ZIacZUCKhC0RDn0cQdR+PVdwT7dy6OxQqYbm7SlIF/aG0f7255LEQtSJWADMQSViED4h0RwGIsDkMgDlfkDC8Z0MjFHyOIBwme/regbDWigLpDF7nVnvzn3u2DjlldcCev1a+nsphKtuCisODBiSsIY8RCTDZANPVa7kULN09T9us7VBngPuO5ELT8K3UXOvCM6XHKA1mP9qHfl6DhyLfC3mDCGMsMXt6hZs/2XoogAq/2qm6jwgaiFDW4O1EA55tpJCDtRxFBxOw2jYoA22QgqZl5VONq4oJji0Q7iDTm/ETJBhEf3dRH3Y5ePFT1iNl/SbOVG4zqYgxbYlsJeefelabC3jCj9oa1UQT6tCewHcTUhXNEnyZsFmHzr+J+Lhqlx3jmIr4HAEyfOwIBUSUdATOU8tgQpmKGOEEwotGe65/jvIDkJuu501CgrOyzr+7xrnZkmGuALwq68gNvK0rGN0eIGoCPobnojLsnCqlVlJo4hMUY+3+xxUuzj7yu2xVn86He0eh/pyqPYZVZsggYqox7b9lVf7r3ttf7eyonumoM53CwHa+VfWjeMZrUwM3/KUKpjr8rSNFCiS1QDTMEbM0HRiZvBqeFsA3w/bJk3nljMu/7Aqxs8NNVeL1ycGBYPsUhhwFKs+PvXBAFRzrtJISRM3sC8M+lz2C/jg2Bbvek6c20dBA0CPdmT1z+eJdov+ZXGdd5ZuJr7MCK4OTCUevG28J2OcX2RykPBmfIQG//vTbXrtQO9qKLTSN+EWiJJX/Jnq9vHIdb+18vEZ78t7uRmXAy3o0Nwk/YCIfogTuXX0Hv9vomZzIKa24Pk4Z8JykZrdI9O2q0/lwXbg1STUid6/KVrzcpPInT4AR8m+qSBDK/XIlYx1HOJg2RoiF/Tif9aqGBJXVnPojtcrIbwMLJX65gh6/zIF7cycBgeMmInWQZObqNtVm+pIu21/jj9QS0Mgg1YUDGoawboS4a0KN32SLRMKqMhiFPYjE3k8oI2viTsY36yYLBOoKkm4BwGXFPnIGz6bAXm4Ot9r2WIY3PWq7yJteNaC59d8PZ/J5weZGRWOdJSFkjP3YPVpQNZwqF89rYiURUJTVD+2c8RdEnv4Lb5tfxWlw4Q2eQHvN5JZTNr/CWzWQqrfpeRYVsP+brtp4Weaw9K+e+XpSoaPLkV1VTahc7falBOqb72J69kysp8ZyFkC6Y1gwg2taQGS3DINbOj43KWoQ/4JMLDHtQptTto2oEm8JZxcp21HxgupoABwIUhhb+MnqWB1HQhLNhlhXANQYmY/XcqEStkBCiJxVyXzL+mSX/NmYBCJmG9EWOr6g5vwN7LkWnnr+m/3q+uaIlfroa6PvzdmoDHgA53uCvZB6T4P8UcgKvNjCmcrbFfHYbFZtR9v16bsZrIvV56AVOJ6VbofluhMvzlRQ0donLDcSyQk/ro+RozmZx+EuKZZq5U0wOrln8lvFKTWLGcNJYb7PBG6niKNnvQZx5xPOOIexp8/hBJ7L6QY3/3cAkWIMjf2i1fyfINliAOT1fNT/1RFfhWAK7Aht0xkQR8XwDb6vzPhC3sdReFuyyH205VVl9PfQuPlta2nNY8nP6uNLGpxwOEoFyslu1Px8tQBABt2iMiCvS9HWhnEIUFINPDfYOPr7Q/JrvrnoFapQrJXWohGqWgll+TEzZGyS8DPOfdU6Px8eO6X2E2OEEwHlZaFtPrLW5YykvCmRe1yKa6JEck/4tQt3x4p1+7gQFKMtyCCdt3pYH5fckb5u48GfYq/UWd4qPy9YkRSw2wTmIDv97XOxMTuqWwMehfV7ZJ+bsqtOTdMKknfdHH3mI172xcDrZHxbJKXrR4ADUIEMLsOGTQr2xEHOJPdNUoJyz61wEQok18xXgbsa1sh5UCeGmpK7kPZVZRZ3ar8kQbKMNSJNfPZwCNC+iWBhlJFgPNfu6ztRddeRlLeTcGxyc0iootjXPdz21OI1eeL6dYIBEQTMM1i+sxkzEssEjYRYQoAVGLqKPQEF6lDaaMYF6/YKDA5/9lJ/DZaZShKAyH1AfGV5arJk6vO+mLDYzNCeiK1Ri9l1tT4ALe7077rkpYCPDTnWn3eWSnnDGPYAdjoWjC9GKXnyM+u/OzLFqZ7npqec1Kbjh7rW9in2+9Sg3zJ8991AFdeG72kFI1S+4U6t1FUvZWGm0hVSr9d/tuFbVGdPVXf/efpUt/FFyTLx0SeGvJWLtEPnncXrJuD0xUNkuAS2C6jB0d0Nc/bAATFiCGoRaEhsC5Z+i0ymhnGMn5P2GtiOSAGhGYKrZc/PJPmqAr8RqXQzFErm7xdfW0nk/zMo27c6STJY3z5MfABT0JqTS6tGVRPUM7DFS9CoF2fqqZdRusJfueHXIrc5iFRVg+qHs2wWrKQy0RhpB8RHZUKbKwaFneoSEQH5ylgmFv66o8bpO8qmWDcyEHwHE05a5+1IrVCJ+7shwAgQv+CZ8yhYDekU+K1uf3ZUBtwcV2kGPuS+36zu76Hu2uxGPqdbqfDaeUt1uJW7Xy1yzQFcrpfisrcp63ZSLnzWxCoqhM32SbFMsHl2Wo+jU5kLccN8h15DrUl46Q3n2FvamlnxvOawsXZqUEJmAuo4OKbCPaujk9QqnVkXqK9LtgDhPM2MM4N/D4gfDdnIklL7hnijkhxvx3qbaB0dbkZx44/KHPgrkIYCq/EtdonGUckSWbv3ZucEMbPilD+llXcLEd4Irnx546SloFaRCmf9NRt/znfGgenwxl/qxgbaJeEL1PiBQWtPzZ8JS3uqRZK1rEELCPypRkTdI92z0Ux8UT7yUyvfbML5+LO2WSUCjhJuL15ZUgQr7L/jkJhpFz7SDa8wDKS/zmENn1mWvdtWC8xRAkorLn1j9jcUfOeFTlI0En21xj/eIBVxqBK1npyUmtINjY5HMITmnGVVcwEUTbi7Sb69Uif9SFTrY9SJDdidDDFINv/hW2gVM34Nwq6avr1ScjHp7vyuv5desJOk8z7hGBUGgmEEDrFEvweaVdguWBTUpSFuxRebtrmNvbYsGFwVpMcLgMBJa0JxcXkKhVt8EQpsMudKBSJ199BuSjE4r1JEqidFc0N4VCVzv+pI+PPwzEkwc534gcQU34zC0MQppLfPfAO+x4DdDJtCyhvByW/tZuZsDN1NkSsxGn4esiMTy3rbSNVnAmlkbwQbEeB7M1/qkqh92aOP0ko2GSeXrK/huwB4cBHw5lQBmD3n+82o0pM4RZugYrwHFTnmdoZ9jPPu5q32Eq5Xa5foxkgKd7JkLc/LItWjoIsplqiSZE4xqrPlOfPGfaba75p+v48kWroPJQHIZWigmKp+xnIs/5cP1P4eaZfD13xnTHyMmhXrp0QNhXMUXLedZeAP+2MsscqWDVkbVCchQMrseIP/anl6zpKM2bcC6aVJuFfl5ZGfJl3MlfbWzo9xeTRkw2iGe1TK+kMgZn65KrT9rZj0Y6wwkxIq2w=
Variant 0
DifficultyLevel
573
Question
Aaron has $3 less than Brendon.
Using a for Aaron's money and b for Brendon's money, which equation correctly describes this fact?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | a = 3 − b |
✓ | |
x | |