Number, NAPX9-TLF-CA38 SA v3
U2FsdGVkX1+iQ90WeGCDH2dypjopB1ajAcv+F+OH7KEFWUMVLjmMWymmcRtdd+3odcRduz7hUu0J/wH6HGnXWbLhTLHD+alR14tEsDLPfk3jhsZjIGXrgty9JiR8oJswg/OVytfPxPMexsAT3CaGk3Z6rIf5DVCM0EG3jAqqfvV4DjHimnQUdPM4XmPdIZ49DDHNofoI9ZgOy280n2EeKI5glF8NmLd0EgbrgcPm3UnDyFJv3MbbtOBUK309PDG6cjk4uYXLvx8Hn5DBWwJ8HCTiFRTf73Kwm+u7KK/3yAiTGdujnMyIuoneaYjW4o7wk3KQWmnWDlPREVHce/scwhehbVnZqyyX4Nj073q6PaVNOGj1oBF68UXKGEJESusDHLUQEwtwgWkIt1YLASLMxyyZelhaaqmDMVVNubCWubg4qrWrit2txF0XV6kFL+oA9vAZG+vkxDyllmHMl9zlh0pc7cGquGr928ZexU29SzplvLib3G2T1De4vXSapPGugXcdhFhJb3L9L+LocgJvXDV8geCfnDEUlf9PIQ+U3z64z5e2uhohh+iweSBJTuFZXKG08VUOM6418GnoxHceS3tWtFYO8SJxuFr0+YXwpUZA2g8SFfuIn/42jDHcS2Mpy8bUJ18hnGq8nyLuJvXVqES159MJ5UFZTcluAlJ9YDVlXxZ/AeuliQuEAA5hDdqDlzYj1kAsrh+1QDAlx9cZsSpVEu1/yYqahMtQSkHOQf1lQ4bqTUysWN9FxZtEI4HjVejZlL1/CILF7lssJQ05azQl/jVcuButA74QWdTFJHK+simfiUDwmARmbhUJAnD1OAILJZzMliC1yXhAJjvrehWKtq5X+jH5Gytcerz1xmZdeShXEPYqY0qWM6EWDcaUijnCS22t/J7x3wq9vEw51lYNJ0O5RhrMQH0+H0U8eslhOJmQI5brJmQQFpSMly0wHuv4y8aazXmj+UZSBsm7BWMcj9vAhivGfTPwR4oJYXedZOIVAioAlgukOlDg52v87XCmwHmDum2gA1D1fppK0Efta6Tvp/Ky2x9GYT1tJIcxMFV6jHrKpLu7ctFY3/2znJ5/P2MxX0kb5MMPx7phh/s3987JYSoW7LXMu98Ad8Gcy6iS2gja9P6E0+mOU4TaYHmHAz/oXA5rjsDoiEWax5mq+QKNVi1tdBEIxxYqxtr6BqOfWWqdmDihjvlEsx+EVpp4sxCkoyN2+bdk4P1riJUK+7ansbcmAyBS3gYlvycgCsV8XSCJ9CLiGAEeeB7ORBLipoyNqXXzHmFXZOD9uT042SS1StWOI7ghvj/ywduKdmPeAfMzrDZzebgNfs5hrlax+PZV/fujld89bDTa+kyE3eFT5TYtVG9MJ90drwpkchLOSuJea1npezqAFZKkS68KyprZG2Iy07UNhePI8Wteul8IoO/xuq1dNDC2ah0mtYm5qNTMQsZVcdpCPgUCJXb9udwh0QlVnUDvXmetvARg1OvNmOOHhVxFy83ZbHnZvgdv2f1jGM6So8f5G6vOvbQQCH2Gvk2SwsoOWIA3nEgmLUcG4HwzLFScbG2hwWRUlwr3FA2VUjIdAzUoqPfzI14sUjN2kI6k2LVIJqXxtVUjMmx3XJCtIMFBPVliQ7Y04Ge61T+LEXMvgH2bN55CTOAondmK3uOVPrfHyj7VivnT4yq6wBo0TL65d8TmNDw3pzp7RHedeUiityNiSTbsiWlIWXmdhHctBQ6CMlA6kUyPIRT1zCzQT/vxeTySy7nb91q1aEDqRj6elQhBz8o6ItYnm7gWevRAOQm+2ZXIdTWStkU9G5DSpSIv3UIy1K31TKkhVuhxqE3F56GksTJx64k/vamvrpnQQNGYRikrPKlfsg7O1kzpUU6QDJTGCggqaEoCPWp7aQu2w611DN2qAZIeDeLsv2PRctOmkFxsVLkwqNnRYfSLQkBYHTt2ucekxLJbwBI8xCAql45bceHCcWy6SeTENHWpJz8QJGcqbl8syp0uH2Acquj+bpDZxUz4H6vJ33z+3rbeR24+cnj56bjoet66taZzo6RwSNNod1VdII28HY38LzZfk75u0hXElhsHynP1qdJ+q7y/o5q/7aFFGXfn2R+3y1l0yqJY1rwLrSamqKejKEE9Zss/k4mvAXX/eFEyjbCDrXDhivRYdgGPmjCRc9u2hd7l9H/OzXZhHrv7MXOvV5Xr2Pm4VFutW9cghkkgujklaRSprSvsIvB8IsCuBRUEcMCj3fDWtUaQWXhTqEFqABC3RllNUOOkW2mlCBXwVkSmy6ZT9v2zH6ulrsgEE7BYniO+zPGm4WuYWBE5nwFEnOjgnhrYav+T/xryLCVgesfeGKCCJW0sG8EUkOIdK1gvPFolBCzO3Iw1QGEE3R6L15mqVlLuFIdy2/ciF68fJc6eMeOOFsdKzSFNGFFgEE1NkYIMDxx76M0xGuxxY4mUB6WKE6zWmCsOgh2pqQMKMnfvj1eEwUkZy9SEb42l2qt0+QtTKBAA4dh0GCMtkEFyAOe4dV2kPXTZmL5te4Gd/VIbT1BRi2xCyqwzcpKJSqkjzdKj69IRM9+SBrYJKoUCDsNCfsnWHNtBsWXGx3nBO+EP/ks1tSiOUj6508y8YFrAal8WiZNZAr7EzurvJRAmSS74tBaKiyEMyC9trB92fyzRdn5M42UEHpMxOAL9dpjlh8P+vhX8240IIszdM9s85qsuZVNOt2sOMqFzjyoyP+/Ox1hsQAgN45sGFh9p0s0ebQOTcLfk1M+m3OuZzDKZGZ04FhSZ4xoJtQbLWTr0a6iZ0JymzmeadBR4qXaLgwTKouTz7FeG9PqkNeRW9o/Qm2IFzi2SzkwSoY1I4xE9WFOYtc5iK54LiHtxjbmISdEr06056/4weW9VNloSBIlDDTwAwNDWZa9cWO2sCLbe5w53zhPHu9A8QRY7xwQU6zb1uOT3DB6qYP1vhSkj5I2RQHFGeidCXLMDa1Jf70GB9dUc0nKOCNqk+h/HxaKtrHqixfItJs3lWP0H5/29LlUbZXGR40U+uuJFKkltsxyrQX1X0ODqL51q/Ow2Ivh5v1lXvBGD7mCbTACNlg64/uTW4BqYSMqgWoNFIVKH22LSUlgPQPesFq7F6jZUEh/tH1ORxAkRRXSBUf95NAAbOl/6sT0c3xcrKlywQF1Xxbv/ADwwK1uNfMuRusKDslhxYeLGjHXJkiPCoPAbeBIt+JpLysZhl/H/3XfRrK/FNxhDVvmhcMenvUok9qCwV/wqbd+oU/W0iQ0NDTO6iNO2KZP9a7zoDZMXpI9gJx9+h2DX/Yy2Vj2Pj1fWWWHmtzAnYTf3RohvcjAqOb512bWTqxo77g43EpJhdD7Jt6fQgqcHtiSVHvZesmam+t41DGU7YEdxtG7awFyb6tKe0+ZiqKs3o1/X4+g4fGXgJ6R5iuUrSqhUZpa1Aey48teSg3uKHDHeWmLRlbI2soangcYu8OKT8vYvnwUEb8XIgt26jJ2JAA/rM/Pml22XGhqsj9bc4TvKoTUrxtKeNAZUTg+mXxRj7wNmKlXo0e4J5SxADcmb3exwXaBt5D3AsYr206rHAM6tzugFHRKnZGYJmepRJtjTG1eEZSbriOVj4C+J1ytWxUe1vbthIMZAys2MyZ5zfcIpmO2EYBXQK5280m+w1q/dG+4CrHgWLXAoDFWufz/YNdenregr22v1eZUNLnVpKQx9upXZ3YX8IpJTkfY1/uH00jOsMSPJRvNNd72TFTdlNCVewZIPDg5KMlTZEVWl9CwwOXnHj/DOqBod2Xn1MBM8NRDlPJt4z73TUdbG0VYc4wQQkvqZJ0p8zYSZvbh3N55pWrM8B1KFlrgaEt0f8l7pec4SeuCWPYZQpotdD182L0v9APE+rIKtdpsXEbesZUk2GI6U4oRSza0/y/xYhhybe3CCEt9O9JXshn5WYNr4Lu1bfxYh14VXu/P5iZ9XtyqFoU9Qtkd4eubH+NfXK6AgFYE+hXmhB7eI7aHtLVbnuODE1/cSb2r3K7L1yQpe2jb9fA24+JL/wAbWvpB5Nh+TV5FUvRakMu4c8W7Mg2Bawc8xqoWgSg55YJ5ErEhx6i2M5GoLkJ7q+knUMHaFwxcvLfBzIwNGZN1z6FI11DxyqwxBfZqrk0wiFihK2zh3ca63RfK5xpL5WRsnSJY9sSOOGBWqEYHFwZSl2CJYAcdjtMls0NLlne8llHctNvVYlkJ0NTlz65cK8m8hR20Y9okumPPnhaPjzvT4wX6Rf17eDX1DkQx/2wWZJ6NbNHER+R86K3R6zXI8OiUISMH3iQLTY+thuD6BczsXrmkvKjrR54NvjKFYhYUpJ10YWUCawrvbMR6X7MTC8eMczRDCBS9mjXx+WeUb/hswZ1b7tOxEmQNnK9qju+gTHdxauH0bCNeZ7197iK37PXGMoH5KT+LA5qhEecU6MyJxkUh2myDSlb9oMrmkw5pbn2DY2n1+yA2ahyO3RlPgf1HPWoJvLALMPwgO7amm/QlTllRpF+UbdDu2TNhhKV4GuLnIIqn2tlkTrPZII6pDciTXSnLL5TV6OcOgnFjDCxJIuZjwSxiYLcwMBYGsbcFzELfOcmEIMywuPekhXTx+ivTITmWtOWwjPGTnHVtnKxFDuJ9E1SS3A4KnquSfULJqlGnHWiymtkIvmzuyGJCyiirExFmBgReHCPTDvxbm6StuWbdQjxwuUiqjTO8WY+dkB7lieML9aG0oV25D8EYvXVWcc87ZOWzg+aQ4u7Df8OmW0gc/sjZ5Ev0fOviaKGJf94IQXctKAkGLI3NDXi+jymx1zqFep+NnZQ6ra0Dl6uKlDa+conG6bvQAYBtsgMlQNXyxv+L5ZgVtgFflE7SEtPDvwsCX3+F0+2KdsNMt+n6aMTuXEglUB2Pe47ZbM1y7BE8y4o5ldpomTSjVQCUE+Rs0vOUybpF9Pk2RrFHOJ0gmwFp8jJKW96A0HFwmti1khy1OP/y207tNSaCMZtYlvgV0ggdPz8ngK9jP0wuPe5yCbTGBgtXZQgA5rxiXr4YQYd94y5ffxXH/HuDNv5Rthjgd4PlWbtVtnYhiTESp6T9DLjJPSl0wPGCaiA4nWtz9KkaeKoWFxVHlZo4YNvrkb0tjMO6mQQcgKwGO1dXlFi7mXnXBu27eVbpgrNycwysEu+2NMN/t6jewExEXwZbktgGgOo11IhS8PNpBLZrlS2QU/6jnHHadHtGMl01fs9ce3gv0A7cPP8nEzQIwEEZz407QwxKmLqBCS+vmNrlAV2OGlaDKWLP9f/7e5P7eMYrsTLZMgc1ySRYkCLS4tyeN81/DIXW+ZIIpyvML7NOtgLmEiqTMZqeSS0MU4iUF4MX4FoLYuNtw0qQeoFwJyM7wFRzAXUBpRmuK2agNNFzEMGiCA/loUuLGRlFVj1mr5FNnMUGIxP9k/htYI9ko6YY4CGhy/C9hpj9Kr7UCso3TU2mHeJYtY3Txyioyn+28vpB/JV6nOuo1hUGgLJyCZ/XWvAlCAc3nkrNaHLhcLRhAeUQxroOyKBMsHXiPhLuNmSisbw1pctrFr73fhvsAPGyJ+a0dsNt6J0QqgOnJEIO8mntZ1JTYvSMpudmT6RilsCiKtq61dT94+Ux8VpJ6GpuM37C0EIl+N836bcn0TqD5g8mjJkeCsSmnTSbAESSJwq/3UFRPSuKKdInVftOTTbosfO38vWfSTsCtV/hDYTjBB2fV8BCm+Ii/BJY7uAiGpNA86DqdwdgUYZI3DbDvXENe1/mnfpCZtZrgfI9LhM4laSftIgNpI1dS0Hnzs3VyI0p6nCFjWBr3/5QuTU1gx1rXFzip+68ZElDo3Tav1nsmmwfKn7UkXB0/K8LksyLcMcB7aUHIoo9KuI+NwC7tIHCjIkjI8fLJ2LT/TGp3Fy7RvFvlk8kkGX6ykfqIvaxWMTcFWrO9RBdbC7Rf4jh/U7CRyLJ9v4aBGH8MEVNIldJ+G02Gz+t7vrFNNgM5A6uRP99rkrtjNXiG2fFkAeU8WkNE2oU2Qo73AbAmzMx9/HQ4g4RuH5Nr5UfExUjssngPb2gPhgSM5QPAp/6AlWP53I4gGCWvdGqVJiwflZwH/UuxQ0Zv7r+nioiuzkgHT4KuKrJYKZneoiCm5CZsxn9LuNuD5p7UEmqkbGiwIHjEgD447Dk/3QQAPZP6ngw6rC+iRRNSghklNpaoV87z0YeV8KX0RHnhBv1jI4B/gLgQGRp1iDMdFGgYEo1exlJ3H8IYB7tW5/MbF4ildtOgLLrdjgmhdhN5hRquL98bnPgua9FJ/L5U5+Be9P74JsvLakmB5rs+54WeHjOE/0kmHud7+iQz3DC47vkWFg7Qe2KwBBgxlObU5GTj9DWF+iUKgEoQvaCcGdXDr6p7wN38+wVZo2pVpPi4gVSmko+dA0Hl5EfSVkYxWCgTD9SVJdG63Iz1VFDS3vkKorMMoasFVJGqbqKZI+a8FxMf4d7N3aRzeXuo76SWSsczP/y3CWHKoE/9qeMY+ldnyOWdF2ONiuM/2RwODwbXuKGmg2+j5YujPhbJ1eJOlA/c94c/R+9nq7mIqGSL2ah/Cb5R60KUz1UhXT7YjJSu6Xkd05Y0K/ppHlnoc6r6Xh9pygQhWaGDyyfA5GDq4kLG9hUWD/d7HpZGxkUffNjgXSWyvnfpvL6Q2DauexNrrlfBEHRe0pIp3FeAsF7iaYCcm5pgu683LbjUzQrBODzACFMPHhFfZPQHGskkGtCShNJgfjJDyex/eiFSF7ThALvcC6IzH/zKW1ozH2DfpJHw3qDGSpKHIsJebyG7ksF9xRVmwQRoCPLp68ePRqQjIggw8041Hf/nICYQNHUwn0py61dpDHNcT1eERbRchZPcvRT/KRE3r/Uqr6orrFqF0cxROg7I0DHvIYifNcshn4A6cmFfVVRvqFPnxv7IqnAFFsaxqFAczrnfMzRKaYHbqUsjPq1rAoNRCwy6rMu75+d2XpUbtUegPmjrZrIkrQQdZ+0sHE9meTgwY5hsS0y+FGsszqi5B1M/C5Ebh+6JKmf4WvQL1ar+aMYGbQ6oBwhkyB+bb4OHZUPAlU4DFAIdzQd9ICAyePXaKa26aLWHEYhNcp1CAXnuKHqyjMjnFlyHiHFSXw6UEc2Y6urD3ER7iSwmCAQvq+lTsMDxSDstp2Pa6F+RmlD3O+cNHrczQbBk2eQ44XHIoR7/7X2aEXynvwn/FJ4Xlv5eM2++AbLbocxcUrPBGiBOWHyP4FeLAyUHSpzxXzaARKasZ0jnaWUSS48HqCayMIHASxI6XL6KXrqPkKMTGarWfSu44mg7KCBUqTHxCMq7oFXjtp+wljWE4mSy8vuH51uIb/j6nNx1t1F1+vY9SaIyOG2eA1eXhPY6WVtr0ZCEXWXudTD0UPHHBFIDgNBvlgESc9GcKHdY/8hXmq65c1hDM/5/aV8TdX8QK3OvMnrIVPdgnJAI3p52FIHmc6pooyqGkWVLAiPJW5omKITgpeS7AN5p0uM5wFuNGJlYF1gEODFVU1XVBGtOVRV4xepE2v9vhwKAUWU8nyxAllLlKSgBZs0REgfqrBHGXBe0nulLRGt2lPXnDQ1vPWjdIbcgWF3rw5Hymk3b3z/oEaGr9KJvxn3bOQGlyA+gLRJJWZ9xzNJNkYb7m+4liijF7ViSgT0Q0yvLPY9QCQwqizNOHUvrHwkyI07aF1plf3fVp9CjM6K8Oa14dG0SGFDyp3jzKwfH5uMY5E0AIK50+fWIvwADWAfhIxnq1F+iAaTDxvtZ+vOpSENFaEr6EUpe4MwF0crAGGG5x+SY7nH65thT6r7CAseUkIU+CYzFzBQblYm6ucfzEjN6TTorYeKL6u4ifTmR7puBuSfDJax5AMX7uarxEfwadtr3ZQ5RTJg8k7KFFRfpArUSc4IRCdaOoGTxnH2f1meJOHlRgBoHQam/pd/Qsao2WW2z6/VF8XnCiuG4oINRLl4gkvuxyjVWhmWKCurP3Kxdgj+3qBbUVHEOVEWQ5SQP7lJ1HCMCOf8m+nUMJ+hQCnim1SoNCx71iQXIpaiJsoxYpBa/WCLSLoC0HacQgVU2g8D75Tp8T4azT0YiCWAjd6w8jqo4DfFLZIvasvARFSITtIDwDUCFV2oo6az4k/NzCvVDw1ZXA+rC/THcCaay4qTI/4t6Nr/JNYLjvE4iEqFKfyxfZFSZYZlNwMvP1t63VxpoKBnkPFk0/XHcTZUroEJN1V1Lhrt8q+r5S+H1uZgqFyaphKSRctRGuWyDv8Y62SmHHRJPsn/eV7vAI5Rx3pPaEezZkwiC6JAaMIR/SbdXt1J/IGNNDJWbkmgRvfg9UAiWIARZoEO97u79Uw2KcvHS4oIAYCYvz0IXJhSwCIgHriTW9Agu4j/QppvfWv1MYvYyXBXv3Ka+RvVxFoDiVamA5RBbLyjqIk0Bd2uOFcXl7DDr+WP/8uuRucxTfGDnXbmghFRLpF3GhNU6x91ODsMHzywBKDs8vqGFt7y0TbcQExEXtGw6IZf/BVoltznlKtQvEI5gNVAeGBqc08yBGzcZ0eiF+IiCFq1Wv3ny25arWCDKQBkQ3MB/YZEZqdif352Zwd8Gg4vz/MX6g4AwovMit7JZx1mHcBvVu4gm8lNOsZel7TP6WGqpSnQMdv1mA4Lxe2VNPhneSdTDNk3Z3epSLEaD9QCPjI/3RI4o722ZT+zMozY6wWKZh3wtiCUQomsPuuicXTQ9OsNTx91EPlg6j0emSynfsdn1D4UJe46i/jtnMp3MPUMNItqCakiZZTI4CZDm/biGU1WXNTD3niQ/5GzaqsrfkYK2MlfTqI4SH8eYel8RiT9qPwwD7A2+ZZLgy5I9yzONt90Fe9q6j4WoKbzq/QU8UryEO0F6HK84TLieqPdC8WfSb493LQ2fkVINJ50//UowuVd2inZUX87PpxfpwXVtK5OBiCAcKQ6HbHlQpGi95aEw8R6V/OiH3OgsIOaFDjNimVKCAGkT6lKXYWPqym9CvsdR/Ug8IUPiLih3K4n0Lm4OlSaObQ1gDD9fvUIueKVT87r+mN9PyEBGaaW+5YcS6NYY2cJLYZBHS8Pvy3UlNUfInsV03hqszRLxtvSfIsw7DMUR3bzxiaiL1HqTI2Kbih62gVeQCnC00NiTzWSCQWvDAkLjQQbbWlYPeA5f3KNOr086/gJ5UWaAlg4hmTj8CQmjrqo46hvC4nDkR8sdzD0TXdj0dlGj4MVJH1WSSwYnT803BIOSpAMR687F0yySF348eOugcR3BzPC3ZLyUViuXGQwYy7WP0yGjSXYK8A6dzbYiseplH6rPlg2dtT/A6NQztUoLOEqmKkqGtS3v5OUdkolNRaZy7wtUwtWzwn4cFEznAfQGBuAriC6wGIEozR2tAmwdId6R9e7ai/pr+ECHegtI9BnmEPj2b1hHMDfvTPfKd657cExrjFFwYzx9RqxckdBA0CU9FwTuVs5BiaLv7jxrwu8gPgINfvxamc3icosJBqzUSpACuK0ZfCF6m30Qf6BF/Ifpy1AddzPdaOV4KciKSh7mqcRV2JkFALcXkCnPlpCJ7U6eNBRc6gACMUB2M9E+/t72Kd7sJMsqhwTwzlvO/HkHH/Y7fPTF4783HH700dzFqda6gQtnucfZQ8IKN5lSsQ71YtluYQHW7hchxj+qzUlQunpZapHGNrzpPROtdbah6HYVo27nE/8TvD+Y7Tuy/dZIuJ7IlSIrIY8OVG/KdRfBFpW9NsEJORlUch2yK0dqIcuewJWSQSL/kLdIQtY1TD9AwEZqNINrZKZauScyXoav8cpaLYOdeYZvOujCGF17+/t21yXIhqwkjdNFJoXwW4kbGK4RVGc7mFFNaAeaHoqNW0mpCbeTstM1Fvgngmyw0hOlMogtDxy/NXx58zCQUtt3RZRsSj0gI7RVrk3KjK6cx0fKXm6W5Vdtni4KBoVwO/AtXDmZrDIIi0lWCBylA80tQE1lYhF4lKt4mYpimhnaJuYyFLrTDFlFUmJVpy2u9Oe/xC3bGEoSuwNmxtutq0FnrSy3O+qkMUW7rzZ4KA5ALuuDJfIwgvMe6TPwonnQ4tbU/3D4YXdTGq6geeG9doGaD6jBMk3fwjsfxa1AuD2uiVi6we1xEGoEEHpgreSJyxCLG26X4uGuTRXFtFv9meqbGfPr0eCZppcX/GYilBfJLjF3nCZb84huJY2QDi1XFNL6ANZwvsuQZ1zvC6T7aW0R4S3nojOt4lDOfnsVjs03hkN3AydJkBwOQb9CYZ7Uns35fz35roP8TqyKBvy5EbN4/7Z9c7BjYbutm0jnzvz0zXqUCO4Yew9JXYPtwy1GRuFSREiGWlYowkvjGI23Zg+ex592LTAAf/LkRSNywvoP1BeRsGA7GhNisjlOimaA9wif2W89giGfPJT9U6ttAiZsqUqGawfhj7pi+imRNaWaCgvCm4iweayvA47GNJ9YXboG4cE6Oih2BIaMN6oKAXlHVgMo4Mr9wlTUOFufFD0KRuS4aJtAeRMQH107Qkm1CZJgDRCU/pHF0ggJEtr5LJ5jOx9wVwEZVInf5Ksoo2z8LfXFmtDzbm6pVHuMDWVB7fEWQt5tPeqRRsqoZMPvgOxsY40PBW7ajucevyu/+dmCyeVxEs2aE126AUdxOJlkcvHl5kd++3rpJOgsTfAhqcszudJa2xqvxAqdfE9fv1iMSBtk4KT+PucGIfou6xfnUsv72lY1qzIrrDZk5GLoH8Ok1d3YLzFH/dmnHh87YcdBt6D9PmH/eIQuqdnAtqSR4yAxCWb2cA1B1F4VqpBvYJ6RCTLksnP2AbxW54nBUYwOwyu3d9ADt7QOLeGSvnZsv9aU1QWysl8giJwO7XfCUFy4PTMRKYtx2PJZomqnzCWL5QKEgDWFkgh4LB/z2zXlYcyImqNbYXVQqVMB+VuwGxuNAwR8euR0HuNlfcCH4t4JrOjyPPkOLGOCU1g5liD+n0+Lhwg2Ftt7kBFUWffkKNdEkpEMqoUoHHPTz3tcSYYZXIHkdAiyWmgjQdZqW6cho4i/SXV8I3DbTcPma+m5HuveTPYPKN5a7wCDlNFEMtQ9Xa+ADzZc3lSS1pRlEsiJXHLddiAeJeeBV7+EGiD/gqP55rl8RnbVOGTZqq02iXI5zzo17zKLS3N7Q7PBrXAohylWTdezgEiOTzeb55Uj2W9FNZCyHNH9V2sJXqCppa7FPCpVaS4eB0I850cMeZ+Amh90ZclxDNYLOGVMD9t1XC8TSM9VLDzxhSUhQ4mbOr/3cxIKEX1VD8FeMgAmeHnU4NfBsR4qvEO1RGWZJdi6LTCZHOLJHIgQlTyGwphean2zArsNAUFXnlVaYRUMSkvv41o2JjWV31JPKg4jNlUdvhek9cC6Nf6iGQ1MoJgPg/2WC/fEw9c5fjx8LNVhhCcpCk/kHGKLVi1tZddVtwKibM+aZcrOHdETyHlynU416DN+giuNvfXRLvPiisqJobT/5dynxJ0cw/OEGYJOVwtmJeoI7Df6Lz3Bgvwww0mINWIUTAYlQc5mPYELJTKvOD2tIuBwyHMy1bDUgAvD6PjBmXOMZhlkqEUky52biLEza43sogD7S9kb/KWvnd0qnSFOC79uBt22nhVYT85sEQRAoAJ80nLLUHoh50imVsFN6TpJUUEwG2rMLTZ21XyjD2m39yVpByQQMY3DlHTrffNdoTHBAq6LXm3uIUAvapu/q95kJg67qkbR8vdnTRfiWsooOjn47eoku7sk0C/l2QX4awzHka0SnwxVk3X6+AxMg3iITnIuJ4BJQ2pW2iUfFzKSrKx8c3fwVH0UhAfQ2nx7P5Ajo0FNjJGiipceTSOZC6MIspLiqpewpiHPXZY64CPtBb6Dt20J/8SZxayRiUmmnrBKknn6ItTXSWlpsz32gfibfS98KtB0TnnZ1spuEKspMCSMNsSp00RJCaZz9FpYlmRZ2WoIFtoWm22ItPoe9kgGl3aqD0VCy0ykqV+tzUgtOowG2kem48HvLPSYcUzPyY/8iMMxL1h9EjEnGX60rjhDypffkUHjLpN/05+F+8EUK+d0GpTPioXX/WoGkrC1iZFOTW/tyebCXZioUaMoqW3Tdgf+djcIlkvO+2nEskKnCpoHL8UAUvPbyGnI8XstngOKeK0ZgzL+kRS8gosk7bGpRzsIHlyAE55LnoiI42tib6Dfh/TSbBen392S1YsQ5TpJFFmN6ozUm7c3LQkL0Hd6SiYKnyoMHfZSjTqt+Srk4IuhrBPNWGg2cClU7tltjZx4kYDrJMOkmhfbpcsI8fUW3HotzTi1c/6JmevAZtJ2bPxk1CSJchx4A5NTDYP77zcsKf/NK6ykOBD49jBYBrov7g5PeIrHVpKDVIn8ZAV8GA/1dy2hcxVH46+Lze4nQhHwQE+pEPsX+68IMeAw3dKSO2dpjknPw9DBhmuTABODPFrVMg1fdB/u8YSAo4FsK3g+Ubjgcj+zM0VUTJK9fZf66ukRKuM=
Variant 0
DifficultyLevel
701
Question
A dog breeder records the number of puppies born in litters to four of her dogs.
She also records the percentage of puppies in each litter that were sick.
Dogs |
Number of puppies |
Percentage sick |
1 |
12 |
25% |
2 |
4 |
50% |
3 |
5 |
20% |
4 |
4 |
50% |
What percentage of the total number of puppies were sick?
Worked Solution
|
= 12 × 0.25 + 4 × 0.5 + 5 × 0.2 + 4 × 0.5 |
= 3 + 2 + 1 + 2 |
= 8 |
∴ Percentage of sick puppies
|
= total puppiesnumber of sick puppies×100 |
|
= (12+4+5+4)8×100 |
|
= 258×100 |
= 32% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A dog breeder records the number of puppies born in litters to four of her dogs.
She also records the percentage of puppies in each litter that were sick.
>>| Dogs | Number of puppies | Percentage sick |
|:-:|:-:|:-:|
| 1 | 12| 25%|
| 2 | 4| 50%|
| 3 | 5| 20%|
| 4 | 4| 50%|
What percentage of the total number of puppies were sick?
|
workedSolution | sm_nogap Total sick puppies
>>||
|-|
|= 12 × 0.25 + 4 × 0.5 + 5 × 0.2 + 4 × 0.5|
|= 3 + 2 + 1 + 2|
|= 8|
sm_nogap $\therefore$ Percentage of sick puppies
>>||
|-|
|= $\dfrac{\text{number of sick puppies}}{\text{total puppies}} \times 100$|
|||
|= $\dfrac{8}{(12 + 4 + 5 + 4)} \times 100$|
|||
|= $\dfrac{8}{25} \times 100$|
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 32 | |
U2FsdGVkX1+m0zuE7ti9iNAUdAwk6Axcxh0murQNTWCneFNKQZmt1j4j7xbURPAdcCcC+1Zs4KnhLYMVOwcZcASefGqW72CkJ5yYMKrqbmpqbCjey6JeH7jJGXjUZpQx60jJ6kNDSiVlMBmcNUmuHHp9Z6UANecz3epktoxwQlMlyOuPhqtExx1xPATi8yljA3Tlvu+iG9vjGhjXR3vHxidsVoF8a0Mecl1wrRUS0zhaSRHGf3OAD42QZrQ3XnfPDla8HVFfilzHWPTtBeAQkfI1mEeIvxIRUR5zh3M8lPbeYJi9BtSlQ+ene7ladtsWv0g1KC0+kApIU5eCNbLz9iQYfmZXBBMaIjibV0MFzYqZRCakOs8Lk461eHfrISQEc2yOmYbiDtiut/jrmnyVjuk1PWAwhIXX0jU9GwIEE6Dqma2sght1hFAvciaIhacMTyYg9rZ/u4tvp3udXr8AW1+NG6SGBn/0Oj5Jyh0MhIdCdEgcCC0SokNzbDCXPcy0cZA2eCy7LqIyUvOX+MO2vGFUScsRTWmeJDrCrv/oCm4ErGneSuxSe5FQLey3UizXmvs/S5B1uuwChoa7r0V8L9lHJSH2CV/2Q39dxuNdokDH43ICd1dpoCKbwf7BVu7biyJfXmjDtaot6nOKehWyWHTszJTCrJZCLLuoF+tVTLPHI9pZ71RiHbsvxuHVYux6iYagkad9BVk+bjMh2uckczQmhbNgXCMNgaUyeZcfOPa+Q7Bb2VPz10gSnUTgUEb5lT+ltwcaDFVJ98CbaoIUDFV8yX10BBSuPc54goI9haw2fp+zHCwbOy2RmY1QJcruVkGRWzuEbqLOoTPct4Ey9XhXiMOTTKk+FgR15Qbcbj7RgpZvncuzirmmHAUii5Awdvfh4NFQ2QppCFbQEHg6L7Pf5K1Th4/WLBXghazkCkVE9bpWe4/FxzpuKJ+8W74HmrqPnSGYDk6GsZYrchBMTNjkFbzjLiCctJEmszU/M9TSj2gud+qRVOWhaoHUGpj3ARPLWd9U6KwO+m2MuRbcN0tB/BaflDli8t2xMY7dTHOVlnBHDHldiVG2y7sP1GpGivDiXrkx9SmGyvfezGbqqtBEEUu/TtJFsvPLcUaRL8hCuhEahnLBWTZtmRCY79IIVGoGxOynAodVmtBWqakQNgWufu+0aAETUPmTXuuHEhaO7YZCu+APrJ2wirXEqmXlML9SvD7eXGmkC/l8PLBPsajU0LztPH/SxVKagwE8cJFx9SH7mbbjMOWcQVj5Blct4690QUZ/tulSWPruGOliKVZiflcTCcbMhD3wjtpEY3rdgTfQMzNZcwsRiCWS9LfPxpuEbSkgJ8AMpGaeqX2BCLY7uwLGN71yoPSaeQpW3beJeJ/cOfg2hPkwdRBl5rv+nIIrgXwVPD3A6RbCJbKRuydCVaEk1A5ds3nxMlZQM4XEMkCIT2Gx4lvdl+OSSaRin8Jx1oO2zIF+jrcKkUZQy6/yjvrZt5v+RpNxcdKza/fqg+qssMwvjhMs1ynnboFBNdzchm/fV/rqevdQAd/v0i5EMOu9NaJo4IM0fYU26R1S7vuX0mRAm06RqlqsP12fgGTMen9mDTM2/4Z8Fv+T15Tb8G7ZP2wZxNXUhTGh1caf4j711oI+MJU2Hzg2zvZJmNqmThpalXDmioEzuLoDtTOuiHObmtUPB0lY/nxLeGa5ZQH8aXiOdUHxTDNdijLu2Kj/FKj1YR6XfgRSJ3PDUOkB8dpT7tBmW8Badxb/q59vNLwT54yYwTRvkR+ZrmGHwJAuB4b2jlzFIwrgxjgmMkd4/ObEBqqVwoSfJX1h8S0U5lzPwZWAVf8jxMe6gkM52VyWY435nJGHYAZFfFa7hHKYxvy8EqsOtS3mexew35eKnxm6V9OOZ5m3vjHAC4YLFBQpK6C6VndIdmqHXvqsO1iukJuzNgoqVDvo+/h7WRgVJ4gKqUEfDX1SoLxb4QL7NY3Aea0v7jR5+tZfGckqY9EWSOQ80oJBbRK5c3rU5aRpTglUFoAPQ6Fz8Vwh8w0jp+SnlRAJcCPFtdF65ipAd1u+UQLeU3i71py1juvcFB+Jg70SEqOwhjvmjivgDGYLyAMDf0aVG8fABXe4rk+OioTS5cFWzXTK5DxFZqp9WM+8R1pKrpQUuWN+ua2NkeQBGRaaF0pcP0Z1R7XcWlRh64Mo4RXH0NA8xLHolVDHz8IaO25hQe/XN1uvq6LxTNrr0pgl0GHSI6eYSHmTIqDsXdkr+bwX8ZALjPQ4JfUMGNgK7oUAh6kfaEc3ka1CMZ+x5XKxaYRJJ1jxFB+YVVESexdfl54f5OYphXmbNVJa+PVCn42r1DKrS9qoR7cQOEYb3BDM/0BFaXnr7pZTbqpabw4wEDzCHtv93GlmMStXRCIgslnaZ+WHlu+0XzUejxB1gKWVYzzlE7bhDHYHy70czvzrIR11LHM+wrNqe/fPgu1qIPqaGJ/VkabRqcavwE7boGJLObfqloxaQI7jeosp44jsGwl6+8f5iPB7tMB8yAfopFLXAJh+3TXJ1gdLf2mvkGqVgqtn98aLorUw460vU8W6hJQE6t3qbppUAHO0SAvc0TpXfWHa+jC2Cfk1JmlD17LWd5AusC82djfOyZ3Xq5wsn/ZfyudPqHDrF4gCC52AM0AJj/olGbMOczLySuVcHbkHZx4ub+RtquW92dp1ZUxdWED1C509djCBxuxP5DVAYZQc9t4hJNh4Q7pqsCn2NLSzvavas/Eokxtx2QbP0LTST6QXnZc902BnpxiOJggWC5jYv500rLku+598s4wzAqE19UirzKXPzqtvI84M9TdKh0cullFoydIYaAwc4N5UFKRVuCXTLMtCtzTR6DIAlAgLfo/51mkj00pDrujaMqhZY0yJZs62SPaGZNtdGDqUirWjomjcnEfbStkYUw/HE2Kntg9+OPHKqRbklWrDCVSHQ7aVbH9vrLVc0fRor59AFHQVEkg3CYDS6pQCK7waEpPv35MTp0WGNX7BAQ40KnOWyHfVDspFYljeWaOn1XzGqfOS2VRQfp+8PdZU0ITgYkel6mhsRZoOODOOL/eLoXnF44zg9V9x6Qj8/J8W/oWo2R0vkJJa4Sw23r3YmlVNyhkaBzr49kAyvL8GetZucO4igPR9VgjZvp1v2LTuGZIMmgoxk/e7BmMahkUwtGKK5g90P7oF4U9vBIh5th3C0kqm/nO3hMtFPzHpeuWxrHkioq8pqnCOg385WMtUNpQqInmak/tLzpCcGhf3X90Fau7PS79sx2PbEkymx0njdqcDNic8AqA2IfYW/KrFKyxIzcJ6FF27eg6cF21ZqE+P8RDwkixQrYmsX1Tg5DsUf5YE2wlOT5GGiQaXX7DYeQUVis9wmjLBe5X3eBSDbjh2YiHgmDK1lfs0D+ALNW/2SGhp0aL7969HJ1r39fwz61RXOlU/xIVUrGDkKeO3mmsoBx1gkKIeJvL7QzkkUD2amTgXET9SI6YOn284C/E/hVGe0KgkIqPiLdAcI2/E5Vez88k3vZrYGUwnGhlWVYFbZ6cvs+eXAH7tov7/OSKpKxUAzvGYSJxYcIzolMtdWUXWXTjsxYbi8UrVWfxFap8HRB8OxKtRdVe+FTyLMbKlRuTwfe8ET1l/Hd5H1GmxlKJpqubuxanzQuD7xmtkc6YnGEFDAv205WFzUSSGJtwiCnT3Jjf3b87SRATy/aAvHx7S+zJyFiM0gqWmMCovsvn27lvmT0HRQcq99BFypE2cD4i4pSNHbf1VI2c8gRaPtY2ISrfDRUfEx5/ZEvZLu3y/LKio/1h8LKJxuTwKnr4lRhBVIVkJNHcFrR8Ka3wkmqtQFN/daukfF4FjLY4UbWimhvywHhDRRafp9mw10eC3DeJbzowwDUhIQC4Bvb+fUU5qtGX63mMfwMCvdnvl2+5BdVVlrXneQTgZ6/E8bNKNaGcw1T3RbEqV99uT8EPoT/+iB5HrmOS+7jpoVd8LSIFm+bE+VtNx7xwMlbhM1HCz/JFLtSBoDrokjNsdGEqdLuNMCkLxpkEBk11yZsI/vDZs2aN+hzbex11tFYyroKKDSOL7P69Ju8T5IBolrhEgjw/vykJLinPUU0gmRKV4DGGw4xjDlsa9zxF5k8dS1gzxM6eC9z0OcPeXaXCbJLv6TZUOHY0s3nT1NamdaWVDdQbr/WmRZMX+ZFR8gRMQsJvahSVTno57gK/UtCOSOPOFBXczHebtpFUvOVfhlJEfPaQdGkHNUPyxXQ7zeygqYR70LNsqCPaoog2osf7yd5QRh0qDhsUSM/CjwPzs2HAIgLbZzehJutPGZ9zDHKjODJgQTyXRlB5QgX3jxkFaaBwwu1cITA42RBAzpwpuHlkhrJ60Amy8xj7cXn/LCPd4rpS/JxT8qCrJMYqI6/ZWEYA6r9jGP26krbmjJWD8PjI2UpK7SW9kbt0nzMtacSt7foeCi6M74ZXLkDuIUu5MQUekyUq+yllKpEixtoklm7BqywJY3k59vBQP1ORZgJxlxYblmxmK6jscvE9WZC/08JsKzPhmtJYOk7eGOSJJw8xPtZ5+cgRPZfz3RFqNLDYlrP76lmMGcDhkgCm526VKph+C64j8V2ZX3P/8UFpbZfp6v+JQxyRAOgNWg8PYAKIp9PI7WaXyCkc9k46zQYIMTkj16X30m66ToL383kLILS6tqSylszZVCsXd/sQC+l0lyZlvZGv1lO8xmD79ktEUyTXdunMao9RF4m0GQq0CE2jdbRQysgYP+wDLg2IfsVHytGkg1Ww8E1vKfEn7DzPyxW3BwpKUYhLyr9sBalo+qs+2YU2o9Sn45pNugW1BYJ6qS1v64Uv/c6g5lvJHHgc9tW8NkG3JcMUohJwL7jYvfxTDcdhL3BN2ZWh/dvzL321ZaV6iSbN64cK1AXsEm7mRuW9gYCwu718/3CkSg2VaICK+/Y0k1wuJfUlbk6dzU6m8/90rEIOaG7xVkyUWIwgDhywhPFhgYuutxMnVAcO9db1tWwp1wQyPZOWJweomm+GJ2FQkb/JnRWDSD9uwMSCEhwjGHx7tCe1L6gFn0s30gWql75sQCfmMlme7el7tt5KNMQ72EDNy+V/h1NHEtebY4HaJYU0pCsw/Izu23SG3Rc6cczNe6sPHyPzTSf6P9rHD6zXVG8I4K+K87wNgZyclrX1pabdtTIhsQgxe9YYHN1GyLpTQfS5kkAccHWRxQ+GXyTNp4QwxYO63ipldFQA4gXnrV+JJqtYN+PoB10EY7ko0vlLod99Pu1cyAN2lNHlphLJWPwReRCiAErGyV8XQ6yK4DamEwiturdP0MJxBHxyJlL50/1vCc4M3K5D3ZLx+H5g/XXxJW0SRxGKIdPOU8ylHg1hwSdrq+Rb6bfHtiQEhxbKg2jurxAa3S+TB7muV8mdSyP6eeR1eA/XUn6mrbrfRZAtzw2pTkHKve63a/l5kHxcopO4Cvh2MMXx+uCpbSQtgeXR8pDeuyY/0dgmavjnBGJg6tBH9D9rRNng+xFraUhigxq4DZgP5MApdTQxnIwmaXhXsx9vhi5wJZmIfq8gpXLtw91vSuFLNu/fB4C7Hx5FHdW7+SJlnTajL1uFaQiFoAWXDJvuzBi8wLO45YeLiWt1Qtcos+DQ+b8KtzF62lrvEAIwg2DUl4r4PyVAteadhfYoZl2RGhHMom0+aaed/m67WzBwT6FdOwpddGguGWv2PyI2HGsoyDD0+KlYoHSp6xCaCpPHO+cwpPyXqrPZoStn4p1M8VgNyllqURtvFWG/gmpA22F2FPREBmoBRGfHokgYr5Kju4nJcdCp10oUKv0ZxnKpsoIfxkIVaxKDn5ji27sf0wWuqPH7MSEc6X9NF/q/XSX7QsUf6bScPaDP7GtjnQbKwhAAQZ3rxCt0Mj9L2DUbQylE6ZFylDclx+mUc8miaz9zPqCQotJ8ikcPCkIzJIZKAUznhj3m0IrVC2dudH1JnIOMgnGKMMIls699LEOXGCVNv5x/I2nUbNojjrJHzev0qwDAjQAWhFIIdErl1DO2WBb7USrCqhGcqw0ei70wdT5U8N02eHuIlWON+LIcfXewTDgTV6LWqwIHzoE3TOm1CC7DLQ2ROcX/ShJd8RQsvbyD3Z5ajBCKGspqTg3dJbSAiJ2BFiVV/NuB2W+myRxZzo8ei+zHgxGKzf+DKpIFZfovAzDCo7YBQDHuSfQ40EX8wJmoBFnFhQzVPpPNh2cG4WadyFIGYDKv79OfjIShaymWtwEmbuxzNK5YNJpf0Z/+m8+xB4LLtHH4zE9e7DfqqG0Cq8N6fRrz+GNjhi1jUu4StHNcw3zh4KgasnZTzEivR79sWN6BmV92SXs2KoYZj7xrWKA5tPpZXpYaJ6k8nStuQeodTEUxN4wLEwQTqPL2aw7l/3zsKHAxtd6ekTDUgHc4qPIhGdbKkO+Ge0wA4cIzlDp26j1MzPYsDTw5Mwi/EVMGFQ8waMXsyKdPhri4CPb8oJJ5fV9/nQzUoQrN8rnpIWlHFyS0EvBHUMIO1WdT6PlkCRCySCEgiOsP+RTM2wGlQRfY9EIiDB0Tfh3SjhqZ9G0EnKKKepqhA6lo6WEeXIkDM5o//Zbix2CqhxNx3m5SRWVdKyzmCGpeHhlhTH6td5TwkSswC9UzV0oWfToBtI05l3kQiiU+7JxvVQLPoiAba0Qp4XBhnT+2a5HGIxBjVu7EuNdlxBKfkRXgKSCZL4hXlQ8ElfmHtSwiJ/j0UcvD+fVSs/AzmViHmSlDHMXoDJZ8JSzOhjjESzXvJBo38vlR1Js8lIsMuBelmuh+Pmysziye3OCb3zVbkBdJYh4O/msC+EQ5rrK1vn2d5Dfi40ne3xMCDST44Tbk9OnKux0MGsv+hcpOVbaAmOnUBtgivKgMXk52ZvdoK1J4li8zXzLenNkC4XM8kQYAPHkdApBAhKnXcBIREBpFa7NZpQVN3lZYbQJ7/MvEmnBybkUtYcMmNXoBLl7tnZhjNcKOOH481aiV4/INfYEUP/E0WVsdshDPbzNOcXoxEn5oBut0XbayXUCsisTuswapcacA6a7mgcTozf1GfBdb0MUqULVuoMz2h31myMKj3jFWYzZcl6AB4JxIEBlTFrbOcVfy+CoYFbBXH8ucTbttvcg+TOouYszNO6NAlUeOXaQVlkgonAJnHT/s7nm+MKgf3GVeQjye82SmsuFLUKbjWvE9s0dHAYKdZPechW8+g7qkZVsdpk+CsaZdz7dolyeczzGyvSWjPBPIRlRHB+NDloK7WFnWUNOoDDxGTTVl8RRveSeXs7UVCzhcrtsqq3+m6cObqoly1U0XWtMFBo1XJ8KtXInI7imK7cErdyIlYDgN2d9aEu9h9Om4tP7c+z9H0OoiD1eJeYotEyCE6OclpF9kO1FqlJegEjmeHnGeDMcb1NMe2MTG7L1+B86XpRg9V1byKEbvDVocfcpKmVz5qCO4GFdqmM97nXIalMnkJGH8oWWc8ygqsSQEbZnrRuwVznI4dntefziHLcrBVkaA2TayGJHG5jb0bJdwCMc9hGhq0ye1cERJ2dL97HEil/+FloUrwdf8r0KbkoTybu7UZNNsfeeaXpbv0e5qNpoZ14qpgJF2HgObgxE5NM8UC8R+zdbdm6/C8WxJ+IbkbSROcE7H49YDryFWbiHiEX0aAMurlq988hfqb/eN2UdyzKT0f1mg2+Rlls60OlQlcAgNC7z3U3sFbIJScDy17p3xSclTTS/94vjZ7aI+2XNH1594LX/lor1FktM6GB3U41rKRilS8zIc5CbIAJizwqNAFkfDOy3Kt97OCzPncaZF3ZrdMwjPhLnCGRycuYIgjvCxPsQUqFxos1o9XbEWUZ6EZJ9KijQpMkDXd06XQWMPoEddZEA5B4cgsvbWOPZOwSKrqqW0vD8PgaFtOTe3ArqF4ZNubT4U2ODE66HjAPkIJcIFgqd5M30GwBaMKQUcyrnCF77CNyiuvdAglqx4GZ6O1d0vFuYBBYKglYRJNp/aTJwzHy257StVD6n+cugS4LSHMC0GPQtl70SrDpVcd6h8xtEcyfJbhtf2HgSRm97B+K9GEN7HYGknPbhBo0vw2H49EIZPjghFJ45p7S0FpMzsQz0PMwCnA6HbLXP0+R9QEmq+xFBzUJ70iRQoBzhBU3rOwY9bbYWRKWFKDm3zwCCLPH+P6sppTE5Dpkquyi2NA2FXg3UInAv2j/jQGp7bR2UIj84I6/2nIEOuirmn90aZV7zyQyM65ZIql8sz7MFtD6w1s58oLi+yrpnfqvcXwiHSqBO7+pPnu7n2pzU2PscZ6eJFtmNCBOTg2XjK72teWD/TaX0+C4yclyNQRUUUMmKgHOdyyGF0zrSP9agpufYlSwltSgX97j9cGFTqBC4OGw4UhBKjfNbRUWfngpyQcUsvLoMDwdO1J0BLACR+fw6TGO1r4vvryTUvQlxoNxWvfhQMYvB1SlO/M5100RK0B3dmr0VuQfGBWmj5rEIRWBOBOwP22utZq32uOCjzrdle22168oOQ+S7LfHbRsj2RjIwEXcNxWsXQ5HFCP8U0WCtqscvG/2XVadJdW0cvISvmckO9lEVrvlKVL+TDFQyPVb9dcbgfStH5Db1g2V+GhKycp6pym6tWDL6Gi9Jb7oDGokvCB2NizqgY3T/aOb/dppYEpxDzT9sb92Gk+kDTN7QC23LciV6X6dfG2sJ/wj6lyoM49qu0dyznJbQKpThKO/xIyN33DBLB8tsBefD2o38xg9COYbtkzT3AgOsFr/fK+tuaUrJQi7YIXBEAIlzzbJvzWcvA3A0ygiOqa1pFPGVADvSbHjBSPcvLGa2F1anOq6c4D63CdNAJ/thKhGj+XRr8GiaEfkS2TWPrxb7My1SFH69QR53zidgQxeOWtycXSOGvjj+x95thXtvOMzWmabv069DjB5GsXK2U8bLyN7HBWoWJuV+LB+Sz4G8U2trm87ILfEsr1ieYhWmUBm1/EeVTFNN1AsuovXPIUMtvvHK8jcvkn1ii3/vQ7sQrkDCjj9jQZfpC2NazWrgvWlXdiH0N1ZaXonQSZqGJON1as4RlvuvOeKJUEYrKFdDmv/tVbD+Svqdak/Ypif79qV0ZcRAGO+R6MkmpI8KAt3jXpusf1SUULk3fedrF+Vv6flCGe4kkTgIDncaaMARpMKcqQv/t5i8oa0i3J9cVNf8X0wehcPEPQXpB8szqBtewQVnKn9Dzr7d9X1ZBd4+3yUw+Oyy6RIpQ0nUwxdqyG7XSmPKe382eZktpDKtlcCDfs8k9L6HW5bvHcdNRI3jNsd94pyq7PvFy4smUQTbaOWt5PZGHdLLTALhKMVi0xj8sRjiM584giNd6Ts0QAqabhep3vNvpeRK/NGFE5hN7KabVPua7S8tMI8o0+xS3eWRPXXbCNSvgMZ6qzoxtPoyAds0taCiZnNv1MQB4F1i4jx5AQwWwRNhCfs/xR1fklLeSJpE832T5cOu3J5qFqWyp0JTr/2cuw1ovabHdh6xtvffliFyASKWfDZ+Fl05pYOr2hlqJRVAN96m4/MsEfw394Aof5KlQ5axMWPSQV2IYG6UMwtykWidrsz1kBpA46+0ITMG0KBFRsMDtM+1F5OB56sVpQdpPH1iGNaZTwd3CDZ/OPo5HTHH1gQzvIV4G/G2jKdnIwRtmzvgELGFoxtFGC6BTl1UbGq5jPd08AAV9lvwITwWg1JcZ1BzWLOLr3+3O9qcH+maLOvq8N7LOw+1DP2/CdkMnxD9JPMUZHGWjkPGWnm2+liguxfCV/ujWKhQbrHYYX3HdfDGBlGo/SWpKnvQJKqUWxvIDSpK/0K6J3zbz8PQqch4fCnMVd6fcj7HzV4QKb9Xo9A00REoc3NJgwmb2Kt9rR+TVUU+vCeAVLiFBDfmRHeKtBAKP2bv84avKYBWZGV9+axJMnNI9AsKVVxKJ4ghwUf8kCRn/DdL6jOsbm8GfoN/Up4gskqsPodqLhuKYYXC68LfEsakSbWanofmxKA+yIL0u6tU9kC+v9SXoDe2YboV1GcKmnJom+RRulLY+CcNqGqNbA0DuL8Rdt6kCp4aQL/f6jsmWW+PRUqhRlsxyBnUMq+32LWSLaokakeBP9b2MA3g+E3Xuc6l4a60is+r/jVbZ1PK6DZpK31VOhHtlzNuhTF8U0Sn4kNkGm773KQX2vRwK2SuRqzM2cDSaRF/9h5Rh4oGletXB90i+PXWN+8vxDrxEk3g8tTYEZoK+Cfr8gsUxsnm7D0VC8iGLlIZIxjbNYlyiHKAweygvVXfW5xASkdG3YZQGvxodef3Y/s3/nzOX/6HpLk9uJ88kzN4RKt9YOd26X5tjbbF/F4p175OQltUTZmcjDLr86wexG3yb7O4oX5DrzlrlRrJo/t1Svlua5zTkdZsekmyeph5iPZPPb0G8CjgWjWMZgUhmWyd/aF4IkI9Gi2hB9aeaeau+S2kl9HAv5JXcq5EaTlU7jDpYUam9hdGCADfcXJ6yjCIRMVn0rbTCzKN5ispSSXIwqi/F0FHi9HoCV5CVuwKIfnVnWYiu8Z9wJ9m1hG+EfMTvyWvSZ94jwnM0+GLQoLUsIus/Ir7Rxfp54DmSP1aejzmWAcsY5u7t+lblJryo+b3TuiAS4Bzi2Udp/5mzQin1D9cYAqZ0aoTBKW1L3ycbqmpoeYDLHdWo33JNPZ2BboJ5/bcdHmnVcACqBSWGSfeJhKSd8vR21tNRccGe8h7ThtvisbFgaf+mj+VqnLMJffwUgMBbqr5tYAxAW93UZGVZoelG9/xoQRViDcI2DqzOb2ysPpLdHGtxtg6RRjL6B9YHvMl/c3mO2KkGDFdHSVKrggow+EBCvbyInXOGnNe8Q2ifjU/wpvo6jb0SEcvGBsp0RmHXxZ1ArpJ4TnoIwrSvaT7xZlrYGDZRVMo4KbWMz9jtDKGBEUq25p711Py8IsSeAZeWa6fe2SPoXvZsi1JTTDymy5t4dgHGvkmgz1CrR89cxCP7Y8V1yMphSd8l6sDU/hLDPiLhBaPEFyUEf70GeYQwn0tVKn74YOM8eQsQ5k9EumQ==
Variant 1
DifficultyLevel
705
Question
A dog breeder records the number of puppies born in litters to four of her dogs.
She also records the percentage of puppies in each litter that were sick.
Dogs |
Number of puppies |
Percentage sick |
1 |
12 |
25% |
2 |
4 |
50% |
3 |
5 |
20% |
4 |
4 |
50% |
What percentage of the total number of puppies were NOT sick?
Worked Solution
|
= 12 × 0.25 + 4 × 0.5 + 5 × 0.2 + 4 × 0.5 |
= 3 + 2 + 1 + 2 |
= 8 |
∴ Number of puppies NOT sick
∴ Percentage of puppies NOT sick
|
= total puppiesnumber of puppies NOT sick×100 |
|
= 2517×100 |
|
= 68% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A dog breeder records the number of puppies born in litters to four of her dogs.
She also records the percentage of puppies in each litter that were sick.
>>| Dogs | Number of puppies | Percentage sick |
|:-:|:-:|:-:|
| 1 | 12| 25%|
| 2 | 4| 50%|
| 3 | 5| 20%|
| 4 | 4| 50%|
What percentage of the total number of puppies were NOT sick?
|
workedSolution | sm_nogap Total puppies
>>||
|-|
|= 12 + 4 + 5 + 4|
|= 25|
sm_nogap Total sick puppies
>>||
|-|
|= 12 × 0.25 + 4 × 0.5 + 5 × 0.2 + 4 × 0.5|
|= 3 + 2 + 1 + 2|
|= 8|
sm_nogap $\therefore$ Number of puppies NOT sick
>>||
|-|
|= 25 $-$ 8|
|= 17|
sm_nogap $\therefore$ Percentage of puppies NOT sick
>>||
|-|
|= $\dfrac{\text{number of puppies NOT sick}}{\text{total puppies}} \times 100$|
|||
|= $\dfrac{17}{25} \times 100$|
|||
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 68 | |
U2FsdGVkX1/cxd1QjhDWJo8V6xVCFB6Z3CFI0PhLf/5BPb41WGwIxmQY4uVvykePUEEcuBCbPh0Cnn82gFpGzipae6QaJvOI3jYPONa1dWh64Y4rx844Kb+NWJf60jABoUXkpUWNm4T0axjRNPL2BwNS51IGl+G7FTD941Gog9n0IvIQZ4INzMVf2sAkMSkEprpQb9xRhpfsYRy6f71YgjNBjecRjLWMyW9WaYO2UA/20Y1HQm1se9IJJadHIteg/4UPzLV7oV5GhtHMcnMxUhGhDbqhjTuWXNfloTXHGPMgOrmiNEETEOjb7ro0zLHPVhgm33FqMHB3C8R10UxYm3JrtAArHMd/87A+3DPgQv505geK4JD9Hd5aRbumzLqsItn/dI35+gE8y7DwdovWNAKb+fSyTv/EI5ltl7rVycXfWVF+UQyYRRVKZQwOUfUdmHmL7TBeUKN/LmLCTysjTDxohJDo9ApWEMipzpq2JSBKTz5cjxWL55ZoJ0hnaUeBvKvZn4krwlzbwCnP1/ck7TulWlNgIrYXdrYC2+LwWTWPiavpDsSbSCo0CqjCkjx8p2q9hGlBPDjmDx+jxA0vgwn/jJAQov8kw6WHd/VUCf9RpPei98XzRpaBClLYhyC1lqyA3n0o09z0490NHrbUTfzPRdOXQsYs48QZ4N/UMFrHSRYpFGE4IgFnarCEP8YrFhGvstOhXakGMZFmSPWqqpzyQ+pZZBmk4HkNXmd71N/D/yhPGVt+/YhJ/n1w/05Nwxjkad/hyzWz6++2DvzrFH5EQoflMAMw5NEIMKRp3aHqlNqe3Lqkg3WIBawypM+G2d57iw1JlO0+xTLhvLzmmB2co/nqDm6Z2iwMhLE45DuOKt4SLE18vfLzpUg4FIO5feQNGR1oXsSdn528hm72Rcjf3XEh/CtoMWTsZe5IOrkM+2ba4UMQv1NGhpPw7dHCPf24LvOHadAhFtdwYki84z6dYTUNEZ+fRE9d2ol5awp7/jfWLXwWUJ6X/dGm0iSa+xSwJrPseR/ANI/UvyuYZfUs4ZwJWqYGhGo8dTTEUPbxWG6wdqyajMzPL9jnUHW0KMIerATfqRDMK1gRC28vKZ48o7/n49aIVA8vPVSsuuwX7KqKVdzVUqQWBlRTwvmVOaupAqb7I/rhKn14CuzlFGaadjUkFfzsMlYMu+7P8yKeKV4MfhZZmaWC5+a5/Dcwh/kPkeKW2Uxxuv3sZKPTL8JFt99mxB5/McjQqJFPzj8gvM+bdsC0Be8jDAfN5I8rdibkeqq4ELHl80lllL8rSVSNBNgGBx9wYUBZRYFm/wSe2BIkz4U9kJ7zhc12O5PTJXMW7FTRMEdbxG56DyPxFKqri7Ew6+LnpX6ymWHXDqoPc6+CFoCUvrkXx9YGvUa0JcAYOrGVGU0yK3PCTl/2ZzCgiYFwsLz2IdKnwl+NgOu4WgUuLI7nsj6bNwt5fx8RrRSLcamfwyu0I9YqiKN68L0upC2EgxYJ/in0cImjr4LqcrY6qXfio+PyjwSmG7d4qB7Xi+824dmKIL9NVZxPMsGYA0Emgm5SBkelV9BW1y0Cr7kErIgAUvRGldB9Bv9DjBd6ETpPM+gXPS2U8i8hBmuOm/A7g7lltIadWpq87v9AkWUE5OkI2KlmYq6gO5jMSg2ilpyR8VsSWDmW9GFBD4R9jlSYMFf+YOdClzSzPpCEBYmn3GSMw5BDcC6uBzMWq6spnKV7MjyKMEI8Fe+x9hPJhh9jXX5isw1UvcCNO7k+QfwmRCpd73cPTY1rgAQwEIi7m90EiLuVN/1523sX//Z1P6JDPWYLg68J5TLmpHJ24mRiDVkLkARZZOORUc88cDDNg3YjqeZE8jOrkllJ0fQAfrewQF3IKvqutpVlfZML4ETj7WZMfkzihnMN6sgfVQ8vP6kPxTxL6/4WCpM8mkVPIPG85qINljVwNAYIfIIZlkPQI0+q8xiREJZZ4ULuRjc1hdGav690yetx6sbptkTEjNYIGEVrosfCwv1j2cHG/zCeobt586pnYkLyAImTqkp58MxsvJd1DYQ2g5+M+TyQcl/aF1KjfDeUNbwR12yvf8LgLf2vgO9K6UZD86nHIWJiJXNlabpPXZgAH4VRvqT4fA/vCNXnK05Rzcpbu/A2BEugPL7EbqHcqE4H6DQVpYpSE6JIzABCqL8I75VwUeKa5GQ2z4PHJX/1pZ3sBd9CdR/tYnToFrVzHhG9jgkvUb091FuaK4ijplaYIkawvf5pwN/y9vX58Jy/JJfvXpa8TzpvjYzyfjm9uEmaU0NUjLkbfJNNYLrYMDmQr0sDxC0anZV20AjKjevNK4d7evAabuTKcrHBWVNHUFuTFoxrKU1lrnwt8hfVoJ7MZobd7aRWAx1Y0do6BMKwub7eMmJKIw9yBX/Xvl1k/3+sNjqFYMiX2rX0eVxXWj556EP9f8Y3gObBszTNwDhKa6vjv4SFbtOb2eXB3ZqwxsIRvTJaYPf4gKNixHOm3n23gyJf2OgaKuIgHNBkj1rCQpFDoNjqiYc5YkC/SEvct5+Zlph0C+LRbB+DgCHwjyImr4EUlsj75W6tlxkFaH7NQHIvi7lrvCgAMlHKDFlVBo1NXLTxyNskltrmRojoAn58WOYG1DKZLP+JSrZtBsP2itPNc2+iYs+JAyiuaRHxyLPlP2lmN6+mZ6rSKFz+MvaSA+SwwZP/LPiSvhSnigTg7dBSINmJJTYFpXtTX7Zh/MLydewBKvICopSmgS4uRu7YKFPxRYXun+MSDbKS+ZiPlMSUwLYHef8WmUqzCFP7dj6ne1X9AFJ3nAXtO4MRYtD/66x3bIZ8UCHtI2FtcprqDD8rWIEHeBo5tRhebYPG/WXynSxqE71XS1u/t0iPCjyA7UL9JzaWII5oqxZFK4JAlq1SjXLaSM5PJUraRIjc/k3Mjmb/+dhyvCAHe6kOi3Gq4GHoZd2t8HPxLMnCb3ikDYkGf7EjI4jCbjGKo2xIrkCVCkyseU8ZhCECx2dpevNrJGASH15z+2ImbzmpYl/AAhXiV9F+VphtZ9S7gfN6JrJwQkWg49JSZImwrleJ813cM3qUMCY3fHloAELeOpxwpT8/9nH69/SRF7+pRHe9owxerFeK9Qz01LSp0+WhQScVrvohXlRHklh/y+Orol3EGDKKsS8q9EzjtIhvqPulxq61i/txCWysiWcb401oqdOg0s2/MXNDZ/tb+izTfk58YrIt04d9vIfUY8io3HcewamF9uDB7YttOLIv1Tu5HoNNjG2L6o7Z3/Rr6rA9wNC/spEuBofsRt58jd4RGg8oBEMp1CERSkwVbjPLTa/vLUpBUWFyQgag0qZ3r1S3tGDLFW6+jvmeDOPLwxAsHmrdD2yDMRngSALErMb1Y7eVTOmk6EutkVN5bbQGWSuNvSoU2+FOwTRNkPvDWS+XGauM1HOZCzjnLguorbGibCPiVVvhPfQ307JX6zUMhtodDDCx3YGbjilN2liXgoJxGXMovVWKRkiYKDLzkG+9Nu6wsuJN9ApQOCZKMfPqONCS10fOF+iG+CJMDrqweWxFmAPU7UO7N4oApIv2Tu3mpFMALkkQ59QKnYXiBebYYN3QTDc9/jMjI0G0876EG4tzy4m6QIeCQBdtlSN1zyTT1hOoZhpwwroRdOc4SOqhn6VE4UVJwcKaZTRG/CNd5eJ2JYVEpSFQXE8HwtfsEqoXNDXb6JKStpsJrmNtUkGBtnUMXQCQ8XSmV6GqsfDYJYfu6YF2hSoNbaAU8dkj9LkYnvp5lVgoXMkuOsIvOPgaZbVJ1aRL3aubMS2X3bjMms8edkvBFmORrfz1uJaQvWPJqFukRmbIYaxI4QcRjCqVpvgjnlSi8+5XX8RtmlXI3+kQzzM+K0HxW9GHLv2VV6VJPXQiVeXmASh8KA+wCdqJKabMDxzmZbGKD0W9fxNp+BKG2hQvWjUDFJ/QktdJQdpPHfCflBwN/itUpwuXVFIiUEafo0kPj6G4mXiHky/j9v6V4E9LxsZNKg7JjOIpQ/JMGlvZ+rFFTdUVhzshE53ZaSxyyiGM6hTSCzXlOJEYl06qhwb3A4zdE0qzPvUrEMJpXn5z8g5eCBda9psAlUEhxhRUJBAa/g+SXpzsfjKgLA/+4A4kK/3ayEJ376svUwGFSw2Js5V/ijOnMF/NEOjm0gJkQCHaP+c0DF2+RJZJVLgy+IlLir2W/WkrlQ4FAtM8aSTfUHhHm4bhnRzD9r0aTJKcFq1VShfMuT0a8EAs/bRUpyc9o+S0IDoNe8GIg3NDtkTBbfAT6wLi06kYcnootG7LCdz7tWP09mviXzkKQ0ZQevzYk6Q5DwiGJKImLsQJyLBSQQxlRYHguodyK+mZlWeXkg31H3W0bwtjZNUlDwX0Hfx6FCjS3qRgV3TKIUpc+WpXTZio+z1+RylOJQv2PU/NICFlXTZHzYjDrZ1wHR0mauFk73ePi22WZXC71XemzdLJUkVqfQNGX4QbExV4NM68jrrb4XqGCH+3my81pQvicKYEZdz/W1/oRh5MA9RFIGAceax0ivto2SFxhaF1tbaRV7A/1dsLUsmBJnb6VXNThFMTEv9S7k5VFlSkG596J6HCUdpTdiggKBGrdDV+SqOvcQ5qq6Z7/7TktkODGAs1TVzT225XhLeiQcsLSsem2g+0B0gUYFMvMteWg+yaSthvtaQOqSV/ye8jLbPEi7AT/jGxDlOu9X/jvTT61xlvpqe/ZE1h8IpHIk8woijzsE7FKR4eH5483aGjddn2k9XqQaddRlTZRFH4zv74iB5J7DpwM4/szvElQi1prdwwGHR2HwLZFgahzx/qdZ9fJDoSjVfOq6+Y+Ubnv9HNP5jB9PfJQbK7gSi6p7aXt87YgTcUJ/IhaA6ZzFt+Bdrkw+oZUgVgsNb9Qt/WwwbP0qbI2Hbcr0H4e6wI3Z6p0fd/J8q2CHIwY/kSA8gbW8RX5xnZpVEpbw/gLkcoZSN44fDE1l3RVezMQUcxcPbPElFcOwKkJIw9aJMjf65Z4+8x1IM23bEal8AD1+qL1vque5fyvS+jM5WOnVpBvQM3sR1PpQkaJK3prgmyOBpnGBatgmtuNEKqdQIOJ3f8y3MSqFgl4OZPp62Cs3ft3y+nSRP5BMgAjzXJ58EjSQOeyFdUJud+os48kMl2DWdmP/lldoKPkwfAl0KwK+BjQq60PCWEMCxEdhOg4gqvnFDcB+NFTgMsVGBWANK+Xzrb2C3aBdyTdgH931SJX/+o4Joh6AbsGuViwWd64Z6e65ADpczs54D5xHNo7CTs9PDIvRoFaigG3MxZsN4WCNiPFik1sbg2ACIheBOmjOQK4NXg8eAd/JPMvXW6dHAafJIzibDoIw6TCz5aq43n31iSUHIRX0k38KO4PSdv4Ky4LI6WEoqDfwUtm19StjmF4syJvmTXjd+NzsxBky6oJ1CCRMhKoPO+LQzTbWIpyotiMXV2Dft5LUb2hsqh8M1iAhRsiv1Qu7Tn/20f0IgsVmNHMuW1uxf804dPml682Yru6hmQP1kGwihb2mlAXD84nXQbvVSy9RkETzhyB2hcLY21QyyV9JzAVgjktNetA+ec2dzVSs8wHpkGhYhvlY4bURkeirXPvrXWDQVI8pNKcICTnbBdmkjJQ+xDb3AOogUgp+X+HVZiiWnAN7+OeaHLcnwciqYygIvuAeHMW54W3PHlUCzjd8GUQVJ6dcEFF3HBG1iSLn696/3wOs61KbpUN/of8MqHM5DJ3Uf+SyG9EAk5URaGiErRygmnTLF8ddlicJy9udua7Nk/yrbzsb0gpbhk1i4WDrzomyql0dw0Xa4MV1/x4djByqcFk5d6NwuAmAAlYFSURJXxj+JtE3j2Sjlpc0x4rCw72UMl8shngoDdaCjyQehNQ4P5uLVWtQOvHEHJuLwHzBPAwuWyEOmLV9PgIUpnImaKOxW6/lE8AZzNzlex2GPm337mRJM6e8FoyteeMp4+mdCFTCkepHRoq6O+jewzoTGILBkLIIGpxb5jqw+379TLPYiiA2yUM0aMXmbkkRFCNAG6r4wsEpfKS7NpyiKFF4uGb+vVezfS2OQtWzjdFRG5Ab7gveeaqEBBwvBL8XbMENY+f8J6etE11tEPOLGT2inuECR2K604k0gpKzY0rRIQr5UiwhCen430dEzPDAhmxEqEgUpUm7EKKwFAt57kHzVG1wA9y3g98Xh15W6HYsP3B5df/ejrM0S3zEctnxQRnEwaugqREWTMwzwImjnqWCkdyFGWW3F2gV31wYvZGA7QNZFyxAqUXXX8uJhhSOPmEdVNqhZjJb1CSMvIpoahbytxR6ZgDIlFReaAR1tClm4niEnOySeO4QYsQg0jvYdyhR2kNfBYbXwSFfaRSdzJdeqKPow1YLW4CKseHkIU34Jea/rynnRFSfjjrujcuRKI9g1ayrUYIdIKtxbdFbFcbdsRKiYjfRV+wfGxQzCw3wXnEk18Nk99BOR4Sx4zWEZe4Xq+9IhSWuVPVVkrb7VUe1UEgoEgAwif15+AhwVIPlLu3XtA4wfMPh+DhAd03fdp1rgFn7uXVBFZxqxUfM9FDjxuCDZUghnPYrBdMGDOAZae7kzo+pe0esTkd3vQjJcgt0X1KKS7IlEBaR+OZcYXdVbWAUgZhB7gsdMQgsHmSmZOHY4sCmQ8g1g3FtHggiXrH/ltSjAEYAe7F2bmhZegCumPT4eX8jaM+iMmCn4Wp6w0SiKTmgM5MFNNmJ6wnQ4Bwk4EUDvDqK4Z5oE06N56nFNh663aB06HkUZ1oHoYwcdGz0Wo/2P9qqtdh3lyjEE75O/X6nN1SSKELiRqz5QSVX7MYuF2PUsSF+iGmBX483CmI/3eKWCOBWXwUYZt/W4CmGig1Rwl2vP0gbmE3IzAy+cmuKtqKIWcAlbx5WmNMwQYSHFmHp6lLG7I72B+i3bShGGZ/PPEr4ZUhMf76gyH7cFN0roQuwmjLXbP9K+1QOHKTps8ddkrS9p8vevSVI+dzf7ZVX2OqoXRQpGRUk/mtxLRYMorDRJxGdaNGWsbpN4CZ9TVkrfAKSecAhvwraepn9eC1RdMZOw384aoFMxtf/rKtMd6emBT67P7oJuMHpkQVUTsUP02pV6xcgQsHHkDW7MLl1WKSWDqhOjx217YYCALKOhdB7mI0HjvGS0Ksl62CAKxkDVErko2lD+fAXjfbAIlFkkIPnCX4Obc8FW62qxGueeqkqrxUqwRPTAmNFnaGPBJPkru9oH0UWUQrVQGQSBI9TcyguyM8p+1uqBhp8be401ZpkU7uiW7X5vr3CZcPYZA/8nURsDT1Eh1R5PcH7SX+Ki4BBvi5NVEUxsKHHPKSg+CPwi0dsRc2T84OJgPefGzoIqDDV+O0XbSlNSL3XlpVkYXt8Em4QKgOQ9ahb4SVqmFylfXxReNig65jFAHzKWVAqgrV+ZnipLQpqMugNbYOcuMOizTTKVdHhOJaLLMA9iQD7At3YbT3ft/XseBl9i1kk8Q4Ezu1CondWpXtj/EImKdIA/TzUJx82sLkI8ZV6wC+IdeCjfWpEAqnLwoKOw2bi0Bkn9tB9psR04dc4KS17/61UPYWOEc9619SOWH39J/Fo5/d6+dMLKjNh3+cCXAVtlJTFIMf6lLCGkYz8D+9K2KF4+qyyZHOoXXVgQyLAlTbznpof7QbzEswjCMYgR4uREdN9LMFCqViiUDoaXHYK3463wrfh5dc8/CbV1vdfb2pLBeTXlI9fT23fS2lR5AfdWZODi9LGOCNgEo3/z7XNd8poD7OEXRPomp9WDem/KBwmDkPIaFbyTZZhMf0vDwEkHaUY3uPoPga0BK4kQ+Qp9haAO8AKyYIhPY5O+QbvIyI37mFYpYKbsX2BMNRK6gtWORts4ubUAOddaYXjyUHmc24IFNHnYNdoONsHFLOcrCbmGZerQv2Y63dRThqSYDeC9mGABRIByIFqb7UeYy1FeKUNUJBO5mOtmg2aOA1KH72cSdoe7tQH4Csxtzwcf5jAJT39+F8e/Tz1kpPed6FmrH2h2/Ma8D13yReJP+oJnq14ljpr9uHtNshVpV4lrfim6++vOz6HKHBXPbzmz8ejab8x0lA5EUn5o82lo+tmGCMJtpPg0GTIngvWck96WscgCrHjWxAm9cn3rGZGbOEStCWkU3VbRKPopXjGhfu73sAJdxsAvWxZ8ZjPCPOFCnSiRV9lPpMh8BtETFqzCJfe7iiahTz+srlH822Qb9pU+CZem2oKJYIzaOUI75y44/mY3sYrES2nNZsf/7COyH25kF52mHhQxJOWeLvna1hKYKgsWDaLZOTMhXmPBElmDGxqFmd3lBXsbZ1gvyRbWwCwZ3JhEnEo8UbSCj+unSknb7YIk0qQi2J2keFNIx9Oavk2U/lLm6ptGtiA1kXQ+29x/gEG5wJBsOcu+52yMrw1eC4GzqPIUO1U2coi29o3iawfPPFvugsDaBW8UnkwD5tbhD2YcPT87IFvK1mY5++Egc1hDLtfGl0huHC5mHLjZ6kxGqIoxBp4xYiBOBBKk5d2aq73snVX2lnfibNi4rz29uyz63btpBhQciHTO/CRuqomhTwppJ/QwjQ5Ku2euWglWFUFhwXduNLSXG9NhxqfjR7Yhfa37WDMVOuxkRbnETtG9qiHi2pjOGquLdJvOot9yW5vvlU88mxpQrcQim2eAtrwEcr5X54DysBi8+548IydaUO2qcbT3PddxOQkMxG3zdPR2yuPdZivhYOepJHc6NAbBY45HJ5mPTsQ34meXlY4tDLsqgVK8kMoBe6iDRBFiejsBiR69MkF+nuIfbH26r0nnspDBc8LQIR0Mw8W883draRllKEEVydFj2c4dAssyKVBMZ3VgwFg1lXVsLZsoqdUQrdsygQewWxArV4oSkbWwNVPadyMeasObcI44KCjTmKKGHFI4Vk9BZugIp9VcRsZcUGKe+q5v1J36r3hZmZwvaMbX4Xe9EqnIlaf2lZJ7UhS+bH4Q7ov8iDHa61MG+vvvjzGQO/G+yQaxuYLIQI5OLzDpSHPdVcOJwtxyKj9vOwOHXP9wKQSAKLKzj9YaOx07H2R4+Fbzko3kn0y8e+MaQG8+SehVIXE3uuYBrtfqmp27rroLfABBnWaGZojNoGsfsvPYxkuTbUpmi/tgijXbr0D63aYngL2a6PAvN9aGl6vmlctFAQ0xgv+wCL1ygC3ET8cc8vbaxL9sNqMAggn2JFsZ7I2iBWDfQzd54v0LIqovG4xpA4iCVtz8hDoXCmRSTv/D7Vwwf6js+TmH5OKjTcYfqbXbfG1Yy/owXK7A37atpC3caBiHtJwpOjJc2yg/3jc6viw==
Variant 2
DifficultyLevel
697
Question
A farmer records the number of eggs laid by 4 chickens in his coup in a week.
He also records the percentage of eggs laid that were fertilised.
Chicken |
Eggs laid |
Percentage fertilised |
1 |
5 |
20% |
2 |
6 |
50% |
3 |
4 |
75% |
4 |
10 |
30% |
What percentage of the total number of eggs were fertilised?
Worked Solution
|
= 5 × 0.2 + 6 × 0.5 + 4 × 0.75 + 10 × 0.3 |
= 1 + 3 + 3 + 3 |
= 10 |
∴ Percentage of eggs fertilised
|
= total eggseggs fertilised×100 |
|
= 2510×100 |
|
= 40% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A farmer records the number of eggs laid by 4 chickens in his coup in a week.
He also records the percentage of eggs laid that were fertilised.
>>| Chicken | Eggs laid | Percentage fertilised |
|:-:|:-:|:-:|
| 1 | 5| 20%|
| 2 | 6| 50%|
| 3 | 4| 75%|
| 4 | 10| 30%|
What percentage of the total number of eggs were fertilised? |
workedSolution | sm_nogap Total eggs
>>||
|-|
|= 5 + 6 + 4 + 10|
|= 25|
sm_nogap Total eggs fertilised
>>||
|-|
|= 5 × 0.2 + 6 × 0.5 + 4 × 0.75 + 10 × 0.3|
|= 1 + 3 + 3 + 3|
|= 10|
sm_nogap $\therefore$ Percentage of eggs fertilised
>>||
|-|
|= $\dfrac{\text{eggs fertilised}}{\text{total eggs}} \times 100$|
|||
|= $\dfrac{10}{25} \times 100$|
|||
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX1+JJPB3kaG7GK/nCvifGXakqzEIttyxm0csNke+67fhhR4E9/Rj05t81C68fzjIz5wxopCBrF9eQzyIBTYR+Ak3+/JJ6T6KWFVWczEyhX7nIgV2Rm5MrJ+zvh1xYKvgvQncYatQgXFgKFP4FATSmlCV+TjOCvKLm0lC5PCoteRlUnB74Voev14f3BnYdWrgGDaTXLjU4e+WNxz2bAQxBpHzWtPjXXRHJkKZK2iYcsAnI1Rzcn5MsIgMsiJt5+opqDwlvOoP0yxjQtp9gPaGsetdi+3qW6NDVem9sVzo5suyJE4R38K/twEhnRgHOERNpOYjZCwwZ8e7PuIqGty/Zj5DuwsVM2KuY/OPUG6GWmrlUIVy26+W5ihWQHcvdLvF/RDf0IYqfsC5XdxilzfEid1kKCsE6/LLorM2Gf4RfNR0AMiIUmV3T/8QrWmPdu1D+VJxrGXwKP31zZZ56EwYYHBxiBNnU54wcH1T0F6yiFvnImLUk7vxgrdQ/jFWQPce/s5zr2r1dZwgb1tNtdgS2gnlU3FjE9QGNboMZYnXY0jrwOWxg//su0EBT1t8XuvIGj9rb51i82O+0Knvbh690KlGAO+lWd8DcGGAG5KmsuQDVuaUNxcEaQ2iR5IK1IY5djjkJij7zHpQ2QAZKcXfXizYb9DoztNZtBFIg9qOHRhoqW/8hcWKZrlsl5fIAClO5pBsWcpHBgzPPPkOuo8m5IGHQEyCs/Qt34gHSn+74uEbE15m5y9hzE/tq5fPUlncV6hnadxPJhk9zc6/wQwEx6vA+prJyGMv1eP7Bpep7I5lTsP8eI03BbSIiOu9jf9CM8zsPI79GETTvKJ/GqvCy1dFkNjL09L2G/kw6yoGuZNCfI7tM0bbp5f4Dho/RlVMFCK9xZuAj0KXApGW0KY8RG1P5m0L1gRFIHXV902LaZppmAUUgD7ZSQTGEHTR3KLoF+1rqiFiot/7E95aeveVXTUyylOlPGmqXI7SxHeXC8WF2EAV66cBw0WNMGnyGaoJbOjZ0eawbR9OX127O/hhjhHmlFPNfTbnu2w7FChekXxYDga0mNw8C8Jksy7SJ77lO/Z4iFZx1INOgHCzGDxwTc3DaRLTH4VXXJ9EGmQtwxTYzSeYfIBfwFYY6/5NK+GkXjMtnmZeMLuj4dif4WvW9ghlB5lkLJyYctp/kdTy2bankZLccVau7GXYWz9LOy2rjoxwuyDfTT/48sDqY7sqrig9viYCJ7ouqpynWtjr0LXv2/dXUFQCc5PXvoqCd11SySEhhNVeOUX4dWcSjRkgeFCw4EMKkw0Qn7fhpg4R5pFG+u9xHk0eStDsV0PU9nHcHEsB80CKfx2AtRAgbFGXGcSGdMQwoMnL743dRXjUA8UO3dZDOXzWwW9GBZ0nuPjWKL+AqayAxweFgwuH6aVwNPrYFOh4I2URI0aCwjTt+iagGTP+DYBsJazDt2o18X5lLgJdUtJLMGLizSiLZh04zytwwNlVh31DdAlTyilxpred8hZqI6/qTJ5dtci/rrwdVw+iPBGJuXW+7PI/qMxOvc8/7NzkHG9NuRcnkdOqqrJl5K8ySFwk41Vj1WiZF8ZJ/mF7kndYDbYqLvlj6CdZK3A4oaOhs1IazV7s3stj+t5PHYK7mEZPqv5FGuYZ9XzZIizY8u2yRF7A05fkTAud9IQZH16B8HtGVGQuQvp+5WoaN7b7J/5Te21kpidMmmvOm0Rojw92RDzuB18k4Kqg5qn8+S7aApIHzLIRFVlCOmVSLkXFkf3R4XvLaPyeIDYqXmjdKm7gw4YrAaDq67Ncs509/ueNysfFWa1FGpPyzSmhichFqGur6MTmrLu/1a+rrCEXDy2NhJYeNne8iUPtGw3bCtEGGQoIRx3oSdQrV9BblK8F0zToXBE84dd9Au43TfDO0jBzFtUfcS+zEXHfmSiyNsNyHC8lz8T/oqIKSeQN+79jtGQ/uOfh7zVh3p5oT55HReG7+M4SJSOlx8JD+2vSDd5aK6PsQ45/pZeFwxymgeGY2td4qZiguolk2TdMtvs0J7fyhsGLK9t8qMIHmtOtNe8rgBd5F9IguoUlXSY3DF0MQZ1jJ8VjNcni6XCIH9pvkSCADeykJlZ4skIK3HfsJEZsbZCMETVbAbE8579yx/vk5HE//7c63vEl/6Uvhvm9hCqVh2oVMfvFoFwH2F5cLp1qEYx4D5Y06l8HUGNo7QT4dJt4RvLL2uGf6c7oqx7LelLWTbkLY1gcnucYiIZ6y19gFZquhX7f+dxevrzgbijBvi81umw6bEd4AuBqPut7hu+MrL2QEzKKjdUIiLmmSyJ7fUY8IqsheC8OhMTmQpTE4Vcj4n17KWtUh96BLEaxMaE+8B+g4wvKkULtsJe7Kz+zSPLO7cRh0vjcAngcItBF7qbzZKz/etcJtga/rk/F2Qo8fKjiysHReSI5MQUFznHW9tTz/ZccEOv4n9k0OvwhXg6S/7Q+K5JyhKQmkQI3zjI5qj0YjVeIzkoeCZB9NYrk3bLOeoRnhbJCV1XtEU9xDLV90cP7XGYZCiNaSzHdMYvmanEASAhE2F2Um+bjYRf7Qm61xxW4wP8XbvDCTOLmmqud2bE07AH4WqfGO30K+CW7c5H/Aj/Ko+fG2VQqEIvIGERm+QnlJ44Bn00Vi+XQnA4MSPJ7a66gtYWDCv1WU8Zw1Wyf0FDFR0wR6+43N1z1YOM3s2yns9V/C/N7YyLxuLShttWjS14BQT3RKI5qaksjOWcJUkXfEJ0BNDXpDpagGAnNwdIUxSoZbs9o+dTaerwoPOYFrx7HiE4Lq0HWBAebN8/V2CmF4mwS8H6tWf0I9nkXKug4GwM9GwYy5cdbBEWZNfQjPd1B/ulVzQKg876GgHC6UblzRn9efJuRFTap1Nw8Z1h/ywDFXPt3hsKHjsfgda9mt55aseu2ioxBgce5IRpRuB9FWtIvvP5imUzb6vfMkiLQkqG0BCi2LdMEVex9WvHBimyrPg8Sbd9ybWw/e2q4w7d7Wsh2GGxY+N+UmjanZoYozvqNNSBlhTS2E630/TE2qFscXeMHvhzD2F1JrOd2KLGZA2zVR+0SYhZ2Oozr5HwdMDE3Qg3a2Ip8+K6/3LqnpNj9aM7OqvKDVLG3N+6p+Y8Q4U9s4tPcYiWOreDjdDK7BsE6KRkaYbhgm6aD02uaPlYDZc13I2J8y8Q72yXexRsgVtqIVnfT9iW0i6w2JV/VTSY90VibTr6judXT8dgT1I8Bzw2N5OuhFrJw0rRL0A19MZ4LHtZzyvObiBYK9XaakNHMXWyFw94+xGYslCs78Lj2G/aQyyIURu6IuFS0n4oM3Sj4pME6EJMzGJeD0DChL8F97NBqtlEg7xRLIVh32SSI/YnHfqjJxCbc/rjDyiJJeiCJ9/fbVAJ4oobMZESB9gf4v2NOYwNRXt/nGmXyJG/+m4BqmXjyIy3G9uxIOE39dbwUwCKvmDilSxJvGO4M/eqY6GNqkOGoBfkLbG2hnu1+sLRDX9iihxYvYqJy9SEvthpAkCHdDVBZgl6NqMBWQHJg/ExiA16wCgO5R/T2oofb0cIiJAT+36yjA09CjyID5OjSuQ8Sfvv4JnGPdSLjBVXvqAT2SKG0fVo0+7TGrJF8aR/8or9jwy2ZMk/yB1xS+PB+1EQoOz42KQuNUfj7x4iGHoZ0bs7nAGEi+BWA3fXf+fO+EqLNYanakZF8UNEYWgE8sMPhtw4tGUOw4qbVYQh+ICVJbpTY+/vXb7GtjWJwppf8Ijmz+9o8CLTJfoKP3aSK+fQ1H7fWqEaYnNX3WfjzfyvseJhkyjtD+d3bASdWN4dRwAq57hXFhnav+oa2rHS2+gbOuJ+5rXXsbYhIEUK8Bn0zgi3le556/mGiz8COfkkCGuAihpfnBXxAW7rrhAXuFFM9NK6iSTsN6C4svC9qKawipeLY1sr4SQweaKKobzXeVf4u9/qGN4oWYKNCqwuwVjgM8H4LZuY7UAMJLDebo6KAzacVZaDhgd402FEwgpeBo7hiaiq3eE5D3QPGD95osC8eM4NcLlIZa+RkOJYnyAxlUX0MMGgF40sRnNcPAcAGeF5VS3LMyNsspu5atq7YxqAhBKhL95RGPqtNDDjMqDulOFNnZKyDqNZp8MPyt3nk/2pHpd+LwpzE8AWMhpxgMuh7x/g/FztboZBxHYUFiNgb3AxsFrXUHwe9hHiSkpyOAWlQ4AYGGkJtnggBW3aVlc9HptWNimYw9dum8RW+/N/6T5zu45qpvxJbO11KgCtdtEzFNwKsnSQRlcDpy38lK3kZGQNngvlDKI1HhsvEEhRJ+jmv/3f8qjP+7rl9DGcef/OBKWDVm3N8COp1xYtOqaGWVIZYgMP90dASIThdLlOxAfD67ZilwKi7vH4EiiHLwjvLnJhxXg6A/itiEQBQUEorZhbcf4UkljREGgLHh6pNuedfHyZXeNk/7c3ZSkJNtv5tPOtKBspeTWPJ8dAnB3iYIQEBWPIsuepPwD95GVlktFGQ+sKGs5bJiDPiAyFXYFCgw8jL/0MCINtNk/3Jdf5JHhnbArUORMGr/G0Jt4H1GcA9rVVeuTOy8Pb7bUf2rKB6CdEJtKc0LZyxSGRuPqOInWmi3sDDc9zIodLQgeJKlymE14B27QDK/Rimkdrah+CFJqhQt16YQRcpa6jpzfV9CYLTp9AGQvbeQqtkjAwYWApsfMKh1nw9WH9s9NvLLzLiiFZbkALol1WR0JrhSAncUhGUxFZZVpgm59EXeAhfP0wp11I0q9TAv8mSbbpLA9ONHZz9C81Nz1BdwCVLEHOfxO4N4ucaa81XS7Q6GW0/sHo5uNv8cx9m+pHtZlVIYgM5+rT7q1GcZ1PYA6DyPQR2StM3gaBt2g+3nU9zxxtnfWQyQ17T4+Pqwg4N3oOQhY2uqoWlKLH3v+l7MBA9O4AjMfK93aPXKmhREJ/78qox7/JK/0+BVRoGGUUIRz7j/Yl+miaxxf7M6Wnnn9AlV91JXn3wX1FCh34e3b8RLIzUT5XoVW5bq/1dg0R7opR9qwshs46ypw0yV+JUfr7/p2iEB4lSn4MZDvFNQsTkRYvvQM+1Cc8cfPHvUAlRK4nB2CDdFkv9OIcLLzY2kumqj/1lFw4sqJLI/LJgwKVX2hNErWQURgNgVsTP+VcWRALyWaD2jAP9bDsh8gtL16uO02bbXPihyqA4MABBfpdsuj4B5mMRhil9eXcdfJsURWXTUlQltABIoo0pg966/wBlYbTtyDCK6IVef2+2qJfiRb/zbA0q8mQDe55plAn6xJW2o/YVXsYfgF1Xxt3iArlwazjsLrv+y2qb/E/C7RkitpYcXKEJYqFr+RE2i1L018AJgsTvRmbOlM/cUxcCiDrL2eNl/RUwoHWKQJ2xUJoyw2CEgWlv0L4XMkKB2KOFTJRq5HuOzYIK09FffVHzxRPkwFP4QdBkC8kyREWj8masrzbpQHf77rY12HEuwJJ1JhP6aH4qTH8KUbrJps1itO0q2jZtfMoT0Xa2TNqI9RDJ0lkN2Qd+YaoIbTbrFZi4o22Z8y/fMqoM4dEMjoWWoWPKmkgitExlkKdiNlzZiNX/hHDsHBwhqM4rB1jsqFnLPILlb9EWhrOyVzfnbOP0if0Fqk7DXkyDjUYyvOu3cHXJt4/qwK7xNDuGJ62qkxgkzyzwlASH4ARDnjbfR/ai14YrYncnkEtUt8AZk7+Nns9q00iIUNazBmZp94nyUjSblWf3AYP9hboh7rPvtyIG1ajflTu5iFhjBVQz2XNjvI+mOhUBiqvGeEo+gUbjtwMuFvvUjTd7hi88NJXzJXyj6cKQtKI4AIShGSE7IQdn3ND4cKrUndbYO57aQ1LA32i7O4pmJwjM+7SMphWJcarpAizc6e/Vaz1ttr9I/mv2PWTm7nTYGQHkAxe05V1XU/eKGoAHfJCaEjkWqRxQujuv+bonGQ+tnomhwgnndU/d/fNfedPeN0pB7K/5Pcq+ceDNpD85w1shCg8bWrb2Qyq/FTcgfDRVH+bUJo1RlhT0rB0y3QRUJdCEGD1mVQx+5H2yqH0VNDIkB+7Mxv8uFe1YsZtz7Y5pDMMnYMbIgDIwQIFdXKdHxDnsdgF5Xp49q0tmQ9FtP16zQxVsu9ygXnLzs6FtWlKKEe+vp/cGzJcnWBxZRy/SDalSJEOls8LkZjeTFuKZ7ZYRStMVrHHr2ROBHCH5da+fvG0hR9NgpWccnLxwF5PqjxXTqJ11XuKnFpFlHX+mNcFFZ+FujuO9UCYLtMfPN0yJoIhg7quuDJDaVjZul0VzIxVI8NittG2HQeVeQVOCMWGObJHEvf5gVAuhG8Xcx4zulttF8s1mrS111tGNvMEV51TqCYsjGYppH7xSmY1Z0E1SVIimM4m0FrPtmQcsbg6Qhz4aMgx8AVZzg3G1AvGJrB9dG4geRxkXdZarvs8JyMjfuO8wh8jpsJVv6/R1+lALaroL5otxA+STLWGi3RmAyZ2eJQWu0HD2iCfGFyZ6IlnyEbEGcRG2gDlt+2o/U/6p/LLXHbcg+zytCAEMW0n4vQ98cwmLh1o18S8ySWm4RN6ZZZU/mSl+MSv18qVEHYJmlTHGPiTCWlqFP80jqXg7Ffnlna+3NeYmKW5sbuOAb84dq5hEw5H1UoxCC4HUm2FE2f7EG00XPiAV9ytZsSyUTDDllf9MOFiu+EoAvDMPRjhdJFfaGQXHGoUsQCsp+OVyE5tIXB7M7UUBHR4Am4AZs6LArFKz1q5XU2tbKkEBCFifsggT2oOx5qoKb32O78kIfI89atIYIwWDJitLyK5GHNi91Fl6jRTulUIvyBCaTMXazcByU81xnfTEx/EQkNuw5Cog6MXCFrm6dEGriRnPJvCiYDL24Yr8XWRhDeM7F5G9MA636tmKMp1pEErqEGxfZ8vAGgcnynFeeH2FFNZ4gSPXWhZKsZH+jM8X6UpUR7PmxQzEt6FWGL8eTJZwMjynjiNBCU71pQigZKnEjZwmtgLfxZaOedKRUZ64Tte1g1sPTpUkzYmWwegZP7KT7Yt8jeQ77/CaiJtJTz6vlDMGWnIGImAynFXwqFn1PTgc35Jt+fZy6CIpdjGl51nUzZRDLL8OZEPg4p4in0ViN61P6fDfBNFMIxIkBEpEjlSQILmJStn7nzinVcpVtlagnZSP3GxfxnT1ZVja6poIb0M9ACh6dYhpHy0FZe4xxlCwmvOOCHhRN/EYgtXQdRXWFibxeW+qkJaS6u+6OGklo3Q1+NVILuNDzr9RivfPZ4Ds+GuKzg9gZ382E+5wf+3MUhwdoaDiTAY8FAPXp9xdT3xQ4WGwv5osJooLlWMmNH0iAisWu07BA6xVonXYIPTkzQen9uKiKhNsjCZBKjtgcRye1k6zSPwGIGPjCm419vrl0yctcgwhggkQ7DlOHilLMeCo69O9eFGm+z7ADe+LSxdl4mzue3ysZaJDG6Yu7GSpQnkrp2T7Hw1+q3wHjrpbihBAXZAnqb1Z6rnMdNJ2x7hj1nR1l2PKfWDopUMQjqjXlmZfUuQGmRtscFrfXI/lDiAdpB8fb/HTKHqITO1wqmhfR96uAmAPvLhsx9YWDMHI1+f13N3PG7o1eWNe+BBoA6dhrfyU8veQ/4Rx1KekE5yaqIfnPfXwn4WVK0ewKUX29IF0qicgcsJQlaXyd69Vbpq07am/hdIjQ9NAg/URuh5i87VhhIuQ+V3LozFxIbc2c78fPl0JqWlk2cWns+rtEwGkdP+xWObE4aULRgmulBoOTEW0qz98Mj52bICYkaNiS3678rl3jtHmpdAYGNXYFhRwL+L7hun/e+ExStWmdh+wty6jraO4LM7/J/jmzY7qhteDfDvSkC5VOPK8dSbUE1WsFktJklXSyk/wNChNpovhsA3ABk38vGE1DauY54EQbDTdSLY08fmwhxl7LLNaLNKvLKEYXgHu5Keas+fWFBwN7psMGcE5/bcQyHCISmW02fTPSRgPxrAAqqcqER61H5jN1kF1Oa1Ct/+zaF9UQdZ2cY258zWN8KuCzzvpTyPVX2HLhC4hTclV2eJcDWLwJK1Vf2klPcCNwV0opsQTdQ89F3OcZgILL+ovCvdbIMSxEk8iwwpjxTqhMTqtuEgFu47ikpr/5TPWCWkV/y8klzKPespOiVTPsVuHdH+7TIj5YGigFz23E3GDm6bO7OZWdLWBvo7mutjUqCFxJlv9/zVyracKa6m4BTrIhlQZPoBF8Y96wHzdRcNEO5MsB3n88oLjrPBncteU8gcpVHbIdHYbASCjq5tQ3lIKDPsXKmC+z9h9vzrAB77DIRXafeJKp8hCMmoPs+L8hJ112ujxPafHdN7KW18pHEUqIMEOcRGsy0GuD/aHHJ+2yIDZENJUioahItSRKJy9E/nVHgImw8OPTpK61ZvymLl63u8VSd74Z0fCD4QxEduk3j19HMdQKzuIsicWQzO7hsjpfPSD8iJ8qqAdLD0r8R1ZiUKOvR1yN8x3Y6jduEJ0RV5YGRjjrpi1gLP7zkqbfIhzCyQ6ZaPCCUXHL2+FbFBQx3rW8TiXdMz7a+g3T/q2Y9k6f74T2e4VipQu9YuQZ86wqFEPG7uD15k/oFG4mzQe61WbC34vGA8TMMquahnwOQsxid5GznxWWAY4fcSI1mKosn8DYkgq2zQwb5ushPjexIh4+EnHRaiIP8pE+JrqCSjL3MPQw3DsJDUiB97Idkhqbnm1r5194ZuGYLQZ2bCWPjSjtSPc6T5dDcHWsdl9LtuLR1JXvasJVWjUan0tBWZnBUchzErXM4Ze6bzGGynmnnNdIFxm6StIz0BYfwYCHqCAXE/ncwQZaDmppgYBTXYQiASWWL4sr2n/qDCU3iMEKQbdqzmt5U+FNnl8Fussotqg0UUqbFCOj3Et5xqG4JrJZMvanfHCquf8UFzjmf6ed84LDkIR2zbU0SlIakQOO5lFcNmlvL+0AA6pEu2zL2KDeC5I05ZQY/KTCH819XVaf3oWxvSNuABcYqnjUvUWtKavOeRaHaztDU0r0ipSseOpdT6qI+fQwB6Es5GiX8Ecsn9VfFvfNlDkH/0xoPzH47/nfFkpdZOqkQzkDYJzdu0lX9xFo6IQt06KsJ++rcgHUezKDtjAxLjiF468TQrJvkB/3nrDFFen8MkMeiL4Nd8hrYOnDo4xaiKGh8feER/w2SGCN6qtJTRaUTBqDdtjca5zeaIPHPBoy2HvjJmGdEu5U5U+pi1lTiBL7U8Nq/vb
Variant 3
DifficultyLevel
690
Question
Three Ridgeback dog breeders record the number of Ridgeback puppies they sell in a month.
The breeders also record the percentage of the puppies sold that are liver-nosed.
Breeder |
Ridgeback puppies sold |
Percentage liver-nosed |
1 |
8 |
75% |
2 |
2 |
50% |
3 |
15 |
60% |
What percentage of the total number of puppies sold were liver-nosed?
Worked Solution
Total liver-nosed puppies
|
= 8 × 0.75 + 2 × 0.5 + 15 × 0.6 |
= 6 + 1 + 9 |
= 16 |
∴ Percentage of liver-nosed
|
= total puppiestotal liver-nosed×100 |
|
= 2516×100 |
|
= 64% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Three Ridgeback dog breeders record the number of Ridgeback puppies they sell in a month.
The breeders also record the percentage of the puppies sold that are liver-nosed.
>>| Breeder | Ridgeback puppies sold | Percentage liver-nosed |
|:-:|:-:|:-:|
| 1 | 8| 75%|
| 2 | 2| 50%|
| 3 | 15| 60%|
What percentage of the total number of puppies sold were liver-nosed? |
workedSolution | sm_nogap Total Ridgeback puppies
>>||
|-|
|= 8 + 2 + 15|
|= 25|
sm_nogap Total liver-nosed puppies
>>||
|-|
|= 8 × 0.75 + 2 × 0.5 + 15 × 0.6|
|= 6 + 1 + 9|
|= 16|
sm_nogap $\therefore$ Percentage of liver-nosed
>>||
|-|
|= $\dfrac{\text{total liver-nosed}}{\text{total puppies}} \times 100$|
|||
|= $\dfrac{16}{25} \times 100$|
|||
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 64 | |
U2FsdGVkX1/UUfBsujRQVL7eS1KuTz3sHrZmWSDOLdJ9rZYn9Fmf6KoB2W6plS991te0MqI8dBuWkjW1B2qWswF6L2M/O11ooG+voIdjFjnvzUih6U/90JST856DJYdSbxcigdVVIt8acJUNnn07/ml2TCZAMsQsddjpQmpn+JEgoCMUUoML3fqxoksJvJ8t4dHwJvU0Dr45wMo9vFNNG3HOQm/MDJQiAVukcPcqRR7JKlAsRpveEP4E6QfzGfMDhY6h5WCoCToIKVZadhToAkBWEAANwpiDRPkw88aKzmxVh4D3o4rkzKKAAj0/Y/EJbEEDbUP5oOr91uiTPsSPCC4riSQk4ZmkD+2X/JpAnkZGeYX60BXsJEM+J/fW+4Fi1ZKcKFtfXQgjJGDikxjJtJ/YNArMLBlJ1VPbe7P9Y0nWFI8yrporL5u1nGLS52fXF8/VWEiDmqfVetn5lrOyhfqt69dn9sflMyfppcL93q2vlFSixEzzsk2HBOVKOKm9COLdITR/KegM4MZfT/CjWrOCgW5IWYrRbzIBxOZDE7Ba6xLjsZk5vp9pvWlc9tb2CNJZLCj5kPRj96fFvbk4D56vjLutgXYiXVGpiZ+Ky9yHOk2C733i5VsnN4FNsqBN0B7OBuXb3gnIPsKQPriPZTfupGJDrs5BnUrd63OEO2PAQmG0Q3r5o1dqN39mNVWeXkaNTGhpbJpEGVL7QZFu3CKAAOi8GoCrSj6cpXPzjjXRFsANLtySjmQ63C6sCXlOv8zGPkOxtbvQuHwHRS6EjWNdOW9+2KtgS02dW1W6mNqbYxsrrunzkEbQTLcOnMZNDvlKQH615ealkRxnAd3+YJKjN9awnuLR9hOqmoeIARwnGozFx4drGV3M34kYgxmBD/0ZY5lwTDaLRnw770uSu3zc8Ao01avKbYk1VQ9dz30ncEXnwml0etHOmOSKYXXrLJOUdqgFcVW/ytsChlLxlNA9YkCYwvC8Wsxqt0c6v0c1Yc39SHcaJbAHS2p3QTcexy2hxRXSHL0GbPfSQpAZPblYuEgnf1Dm0Z8poTXvhIdjqyP+WkVa8yEVjgNqoXxSRPPwHbRPzmuRzD48s0IAXRtJcoL/IOpDc5dfEbDdDwJQnUsIHv79ZSPh+gR710FxO7EPiGn+ggR9A89ehUSX/7OXiAHt9UAOjeWzIQOBDU5l5DRTfRbp8NJbb5BTHDAOhNsXfBlRM7S++iPO8dxmh0sTwTaXrSUkDpM+9V5FB7zIrM2Wlf1RB8H5QmhTuv6NfekbJVt+hVrhycIev8nBQZLfS0iS54HXeuiLKhBEB+7lj1mNPcUoly77oz+0p8hiY/HjRlvzJRPV/N5RhOYPCkCkZYaekb5++eAExYpdy13HxIuMyDHTSmgGtotL1kgHnX3MtWer8u3bpNku8rl4QGvO1kpAMjYkDwMfFfhMyuFtQQemNs87xOuYBJtHeVZtfWOtzzhKRkBPv9hLRl2AD7LK6DffClItzUMcEF2D4tQxSG1MlY9wXlTK9ZCaI8P09SPjkRU2uunzX/ZwWrkdl0gCedqmM0hkGbFqSBdQQsPeT4tU2k0aCCRskWqEK/OIXhQPPF82jz68a3tKqclKZ5DJfzvZnotzapEWN8ROj4tKqW/x3WU+CdxkbN3M3T454v56X8WI0tHszMI8WUKokd+hIVPfC00ExRtJVl0840Sv4PrGbXO8XoSLcNkFIJWbd3x5FH/81Gi6N3U1fQtkZcfBaL4nRKjhgvU3o5EOCIGOkrxSNWO4Ljjlid8sQ31kp0XfLj8kJvlvGzCWlaIZ/j97CHPvPH5/h//SlPE+OpbARgUP7UnkCW4YajnUr8uiZpF5FH7K8elHV1pLBZCqsE+xyzbiO1/zqCQAXcYb+Jd34d/ZBAtf2VEW33yPf1k6cnJ6MPdXDN/bm6hf8Z2jNEQoqZ8MDU5qhr0gyc/3m9F7qxK3uXovTRd6mYcyGt9/5ic3+L4jf3g84kIVqQr28Qs3KtChu3o8xx4/bW3JEE3pe/PkHKlwjzNB/PTuo0yNHf/dk3y5BPrsbaHeLRyuS34MEXnksdhlUiwwr53/mElvrgE3oYDQvNjVAtrvwBgvfhsjY/CdLXfwR64/tl4rDR/3E0DukgiOPGO+NX0++R/PFeZQ/1S4Kx0HL2tKEjflfFPOB6YRsqkBGPIJWBKA7h7tl5XBQyXaIQfw7MBqAfRJGH02jSN+YMtibbjEmEK5gsNlkN0bpZQwkZoFRuCuOez79ofnYH43jF70mttBvI/vZmxfrhjTQM+AQ66cW1OiblcxQh0UmQYjGTbdkPPhHIC1eW6SQA6lgUK3v0MIsMoU24XiJwz/k7f3vhhoSxgbphmd7ZnRGL3gEVSyzWsRbmX59Fm/ag17FPbKOOVpE6fqN/jq2o9VjR1Iw6d8m3N8GLp9LKdg9hbFLt3GKa3zFqF8g18TzBaiXYklh1rFw1WLE8021Mrt1/z3E3+N4Se2Um3gDin12X9YBnNrLZDOfp7Emivz05Rr5GZ5ZFUEOvIc2HZ7h5NvZ6/TEtpfeP+ByevLqC+4U3q80fSqemGKCRyaOGgrYOsRLaJs5fcacRpp9whgUpYkFKCrV86yViVY345Cm84eMTTTRf3r5XvbBwkBnU7gwrgl+/byMAK91Spd8cfFIc/wv4QHGS03cYb/By51ehBDoP2NIsBZTM2TBTnWXNODVSlMInJfFbavHrk5E8F1I80oMGl0GpqLd66h/Fud6sZi9N7Ec6Dnr2MrjXXjSqintt7iHb6WbaM4cIuaNhrRwe1BWG6hRsncs8ZFFYRBok5bJgYHcXgFsKs0puR8ij1/R7fGZlED1BBXO/8legjouOgYW4SSwYMWqcBg+3CHWclGO4enQZSsxguEsHTG2Fw/whay5WA/59vk4CUDuwNJbouPjtNjlCfmKQBucMrAFbUOt8rbKz2T6Fx9X8YxuUKrxtv/Zpw2n9q+OSOjOs/G/d1dHWgcwUXmQpJ2819h0kMU9eYeckKD+JFw5vX/7S37jUSJMDd6gGRgOvT+qSnNk3kJYK0QAT1LTouAcjfeyAU+r4bBjWU1tOJQzyg+p1lBhVepYXM9lqt/zUVPao5C+6Aa22Qi85I2Dfj7reLu1puYzmJ70KE4Xcz5whd67uozzXWw7JABEb3Ndhyxu1SiYAMrnTx49z6pYT4QR3XzaSoeNBbUu1OXR9n1JqRQzibk1tWmmKSXeJND3/py3kuSabAeaZzlS7HdTDdH5xcbi8t2ErlIlscVHNdz6BCF3AIq2eRhcYFXfBxc/abylKIwtD3OkQ8xmy3xV2iIaqHLFJe6Pf3vjyAhUM4th2kchhTAH7hJlTlB0n2hsf7nBdhWlDQLNhzrTf8ZpynRigWeu/mmZRrId39RM8aX09f9hOQCuiDFFrlSUDELaa8Y6AvM8okM2BItjaE9I7a7E816ZOKqR9OcTWvQcbii/U/u1RaP9ToqzYJO2BT1coStDZWxNzvMXD1z6EC0yLxb6HTKeVK0M/OA+KjD92OpT53f0gjh9Z1ak7ER3UxTffGO2cQydEbSxWlBhz2z75XxtWoCpGUktvGXqdou/+YlGlpYUY1Wah3I+dfezdpgqnWnUU3uHfaoQUTunmJu9zRkWq3p+EEBmk041s8f2rMQdsef+ioFlMZmEBHVdL+o00KLPZzY4Unt6C5JYnMmdx8hk81/+6dauT1aX21Khu1L/1T41swc+Yqrqk7yZ2MOcQkr7o5sAbUs1D7ueoDPhSdjufNYwLqx/m0vh4I3qV0O565bLMW5yPEYxkoW+xx0L9V44aLWQgZLcOcsVM/TFr/2tirtKxUM/rYLHobsr1z/xh3OXw10AxCCGVcG7TJzqWFgZzc02f8gHSodampo2LrxN0fllV1RTZbMmrCLWuYbmLLBAio4vyzYTmcIrqxCOf4lcgdWWphNu5GGwQNSu8YH87OYtD56YEswphAKATtJVaASplCZkVDl6THoNA5TRjTViF6eh2Lsb5OFbpQqpJRuWx2S5a83G/aGTtnnqnAPpHfzsfaiBnL7qSTj7VSQ602LJdjP+y+CWsOj6q8sNvd/x9h64qVKnAAMJiW5KmH96Fcv/vMb7rr63rdyykalV9FgIIzGlX22cjDp8xc1sxY4mVby39CuIUQhP0r5NXyd2c/87VKNP4irnlWW2MpY3Y9UNsoi2RMaReKPUhaK1IZRrrqema5kIrVP5tniDobDjkG4L/BtprrzyD/ZYR0hodYMdz3StjYiDV5wn0ZriKov9lTsuS1UUYbcprjBh85kMTdM/C1v+ticAC64CsJy8EyTz96TD3Ek1uYap+MRxt9I4v2UuLmbUYaB5qqReGlO36IydkMWG31y1TSnYHO6tlhGU4s0wHyl9iTDnH0s8yNYSzIDVMHsjiQm3J+9/LuW2Uzd3J+kZckHLCwkf+iV08+TmZSxAX6EVxzycuNNnsvjBU4QYsARcFHgB/3LDMcBkBhiTMITFEgJPlvNGV23M0ySq3hkACZ5PG3CGPFInJdefDWR6uzakviVIT6lxPrx60nq0IUbZF+4e6jNLoqIXlEf3rlYtPQNR2ztLgmJc151THfvsIvUmfZqXmTZBGJ+28sydY0HU1v2NjOKs5HsPKbz3SMSHDdDnKQ7reTuFcBZMuLVmzan5PbnG9Sr6ZhvzTDcGYMfnK13O6ZTMfEkH+AdVJCTsTdK5ehW5LXIulDHJOFEaMqxM0N3r515hE03k0LMjTJ9zJfANknd0hKMeTUt8Ov/KsfSAdhweVFWfrdopo/SJHU98l6R4twK9i4vzcabkWyYiNnPyQKMNGSefffA74jXhtyVaXyZg6euWHpd3mOlm65FLQOZ7xVcon1ztHJisrgsefAdNYQ0jPkydeWtjlSd0BO2OPsbz3FyYbIzJRtAKf5dVSXKuoDhKAc4Swq/pUogacWiPGyb4/owDLihGbacHgZYGe6tQ9tnvEBJQ47YHqQIAM+mB5eqNc0S0Pk3MMK/07qRscz5Genx3kBvs3b5OOS4wyZWhEZX+9pA+5T7KCaD/qZF5nvSbk2L68qW63uSqt3IU1dOGfBVEZwNBUuFi358C5E2/RDADnXG9i+TeNJQNU4DkBYyjXaxlanzik3FzlzAo4EvygIYHMR3hvcG+TRsfu5fscmJckbwb85qG8LLsRY1bIXFbmHj0tEhrD19BrJmiG/QtNHaPYjAJlkTwt5K4AA9d3najmWgq3/uSTO2n/KSUOLz4oh15ktfGiHO+iOenfO4CCxO/rMnD6S41VCHq0fZr81HOjy8tl8FAixFp6dBjk4GPHBjVCNBdKQRvBy7H7Ad9AOSxCqZglLCrYwWX/t4/dCxmi+rYoy9TQuMaK4hjEAa8WPFrkTmRqLVgN3wxkSguDHrXawe/sROKsyidhLDnspnmTuqTX0+fCxykGU0CR8BWj2S7UEuC0KlYXxtjcjE8g9Nwp1xvZLT9CBEj1iqppjQyFTcqedOZRo4xvinaIrlJnlr6IRUD1aoSx3sQ44vNJatey55nXW0Ri1fO5Cs7B6OHjVLHeycYqOX7QZH7JGHa6DHEIziCy83B8AjKpgQWNkpW0A/cf9i/Gz+plLTp9eFAb69UyQMQ2GCWh1zlrJF9EIfBsY2oj1hUsqtwWo4yysX+8SPZwhzSaMzdmL1nkDe0oFYAQFoaDWo58WSi5gLPvJDPnd5LB19ORbXpaCAuyO1XAko/EbOwOuynZy/fEAQq4w9zlF1VR6Djxkuwbzs84S2GW/qc+ZqpeFt8i0yDYcLf+QzPHzJOCnpATvwHg7FitLWgbFcKZeww9jVv7NfSl+Sq8U3EKiSbi9huP/shKUw8EaITkGIp4RclBKSsUTIkKr6uwf7ASvsYYHndoRFeUwXEdSKCVpiwRGt2pAENRSTjTDnqzaNRWoiS+KSOTYygC27y7uol3YHlXpo95lhQ+2ktKbvW0PLZ9/VddvUgi2juTot/StQ1ma6UiCaK7qqkKF1Iv5pFCxyTLPnwn6nl4oBAFnMeikrl67d3pcmsUyBKw5gLL69xTSR9w5lCf5esPpuw0c+h5o9XIhGgY/3Ujiw5gkV0TQ5Pq60PbbWT/c93OED54TlM5K9sXFMrm2Qw1yO7D+0B5KaO7JKEmHRaTRzDCwhMqqclTo/P2DJAWIeRIzuWrVU+re3crRDxl1xneiCFkPchGCt4LTE0QVNdLDKRL+hncQXwl76uaZ78ua6Bsj6qSfD8T4c7gF0L9o7oYWcWAGdXBo+ZHy+N9fUNAoooOk4ZlmNSKvFcbX6sS6hVbE77kMmX1C8l6lAPr/Wtz6s+ula9NFPrs5HNv5JyBuI48binBgZobythIW49548r4XX5rw4bKG2kKsZyyMMfyx+tCxI+gx8oJ4m8GePpY0E6zrM13wktHYx74fR+AuWwIwEnwvRAd5peBZTq5orypNbzQR65CU9+4UTT9L57M2zBSZoJYZOnR4gLmU9VNj6eLIiPkqwT+ANPP4xxrcUvZNhofTRKyW1Amcv2VIlUQvQJpvL+5ktyH7KRUNi0PWf3jLw/m6vRe9IEKnJ0PgV+IZJIXOS+O5OZ07hgy/j1alhVBh8702CJHOIFpJq4qHK5tvFvxFXEPZXuZj/u+8mgsKxchT8JNioN6Mmx9xMq4PkenTj4ivWTSfO4+fSUFvO+BwR7E4yn+0xE/2BOlstLabfao2EXHQjWj/Ch/+l/syHkfMPaMgodDi5xuEVQFpy9Q0Ix7yElNXV9i6U7grrLwXhkmELJVN5xEIss0h8y5JgsVpyg2AhnQHoz8U4K68WSmRCvM2UEPzKLM6hvNstO2w8r5bxz4gJTQA9+4WSjIMbCfRo+U2PtJzjeqzCMg3LFdnjuB6N8Ze9zCpwBIigNF6h0yV9o0DsHjq03Y1tnKGqJH59czdEr7lIpkgE5hbqVugP7YeRpDOXp0KJDJ/FnajKgoYGWxTVJl6TIFrP4c1d6AmE7dN6/mGVCTWLUJRhCqIVJbpSFK5Lzrhq5r63IOoHCLiNFXPQEJiTIHLUIBLFaFBF3uaqk4Ia+SPvg0fnpF0ZGc6PVNGbh91+r06KCiGrsVhMszyPLYtfsDawXJSEFdkr/4aeY7hcIKdx550hODBji32DTjcm4z9+rPSpjxwH4VIemzHhJ4HU1iOiq9iycfdrtFmkRiBDrgOG+PQEeb0HY/sNUM50g6tSTO3IBJSlb8gTrWfpon4nrc591byj8rzMmukY2JrmyLLjVBJQueoEKVBc61+umYftJTjPpekGZ/bOeJ29bk6JS8ShVg7Gf6I7eR8VYz26bGSkrJCc2XCJp72DoCWv21HraIzHlHpYClYMspi8E4g/mhbyJlqhVVDPhuuAMkfxDQ3SlEuG3jeIJKtzr4x2Dx8ki1HdL00Ks7vPyBuo5DRpGc5mSSpoy73tn9VN7rg5EG2e5hkfmJZMz4nsJ7cJFwFmCYg2iXpRiit4hc31DuLhkh8SD6C7VtsorWjM3gaO5xT+kE53KJ/WPDDRZEb5yffj4y9FTKMQ+MErgEUQGp+n1FGUMwIjhc+3XyB9aS/yMFsHcWCR31wbOmgFcFMmAZML4SFRKLDu9/ulFvGpvg9kUbyFrROaBkKWqXnuumlJTEbHNzWw7WLeyFoHHNguKHgUYp0+ji+OE0mF8bxyXdcrTgU165NI6mfT+4V/rrYqeJ4lcMk5HqDFusd6gij5MWGMKZ08GCN0DwjcpzodBrMyvPV5w0FbDyr6Df4iwrUXfoWZk2hynzDVZUwE1EJNSH+/Qyt1cc3qhYm6c4vgOD8dWY23lwlgQ2v3YMe4wYxCvhGtmqK6SQLz9OgJrI1QhrEAMR/4FlglgNGzQIOfTx+kEIpvM+visq+4G63IrnVmP9YDR9Nre/fAeNY79zkbtA2GRZfTPUBkTQTdiGnLcqpo0cZHtpcydiFOIIy9qdnwibmC7Azih8wRQcM8oZM8TDYPu37QFq/BQDCzm8LqGZbHbz54ov6iQChFV4V5Wqf3bDEtZ8Z/OAD3EU4HAaNHP1aTPOcX+2NqkAS4IKaKJYD23NfvSmDRuHbWddBxLPKVv1pwHTzIyzkebsmf7YjlcqqPUkSTQfSOCOc3lFIFUFykgmu13KzQON38A3Co5YIWgHZ13u6SHYu47deCZBi2Z+E9kSeOotxzCAF70TBnhp6AaYM7Qio3zsnfQzULSQWPzS9cqXjtYX6UapV0TWLIB/0WpkTAPd9mdk7Mgr+EE8uZcvszipbeeNAwgwzw8a+6glgWaywMqtAj1aFWgsc1RqNzW9pmUo9lanN5HVQfG1yvTlm4MUlK28pWPe6oq0fZxlDpgKK7QqU5nu0QGcdjNGI566c5H8hXgNMf1k+RK6aGX53bsfnAqnFZknlaWsasBkXxB/cY3F93jpcoQgsR/TYsReJaAV022RT99brmfvUypQyC/kHiMSbx7BAXNON2/YJ3wLaNCFJrCuYN3/sIfq6qPjU4xPSrPjuk+Rtt1wW4luG14hQvBEQa8B5XgIuR2rWuO3jk2UXM1IPOoHew4fBDqkRhse9Ute3ZMzK2G25imowLHZD8nMijmMlKFmGo9HBxzns+FnU+BO7kFExTb6CKObEdT324hojV7zZ5xcC8EoyRhbgRdm+6T5nNC/ClCQDHZXj6/sA+fkrK5S7+uKOloUJ7CxaIH13qMszSV13Lvw0rdWExBp1CB514WPthau6sxFmgJqCyp8fBoPeiFfUueWd5GDB499Tu28Ud2vnDSXOocNBQ/k2xPVpvB2ePsgsAw3uq5y567a17+DEjEbV0OhjhjQtA0+OGoroNmOvy8kZONLHKXBBThLZpou930oHrfVmian1MRqz8NaT32llbWHrZNoSw6t2xgNolsjs0T4keo4H+QB8EqvjcB+YthXRkba55UO1xyrU5uI8siGk18HYOu1pTIYeTvBFmf35DzojOpLqmRkvWlRi3X7ee00C1SbGPE/JV4eLQcZFhh3FmdtmZzQFDGRezkOJ6qZRrCKldM2qzlgTmKzdEvYA7l1FOpE62WSvwHHUfe9pkqBvx6oXGk+/xTQxO440qF3+PXqIjgbcJSw==
Variant 4
DifficultyLevel
692
Question
A researcher records the number of koalas she tags in three expeditions.
She also records the percentage of tagged koalas that were female.
Expedition |
Koalas tagged |
Percentage female |
1 |
8 |
25% |
2 |
2 |
50% |
3 |
10 |
40% |
What percentage of the total number of tagged koalas were female?
Worked Solution
|
= 8 × 0.25 + 2 × 0.5 + 10 × 0.4 |
= 2 + 1 + 4 |
= 7 |
∴ Percentage of females
|
= total koalastotal females×100 |
|
= 207×100 |
|
= 35% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A researcher records the number of koalas she tags in three expeditions.
She also records the percentage of tagged koalas that were female.
>>| Expedition | Koalas tagged | Percentage female |
|:-:|:-:|:-:|
| 1 | 8| 25%|
| 2 | 2| 50%|
| 3 | 10| 40%|
What percentage of the total number of tagged koalas were female? |
workedSolution | sm_nogap Total koalas
>>||
|-|
|= 8 + 2 + 10|
|= 20|
sm_nogap Total female koalas
>>||
|-|
|= 8 × 0.25 + 2 × 0.5 + 10 × 0.4|
|= 2 + 1 + 4|
|= 7|
sm_nogap $\therefore$ Percentage of females
>>||
|-|
|= $\dfrac{\text{total females}}{\text{total koalas}} \times 100$|
|||
|= $\dfrac{7}{20} \times 100$|
|||
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 35 | |
U2FsdGVkX1+Ebx6WO9tXpE0pnZER8o8//XQqHvWD/NljNRFfW/aOWtPz1hTVVvIvgR8QT85/mFyiFV+YyraIU5kvLx7zeSA9zxnMK6z4+sOUwAU/wrZ7Qqr9AtPRZVt9C+IHnVvxxz0FBTj1UyomyWYYdQPcng4WIxPZodjKl1hSLTWH1eN+42CZRu60I/G0j8o4gz4wKvr5ldHZWPv7AmpfUfnEgx+c14qpUIjW03x8PL97H6ncG4vnlK9LybhphkTAEmxyzqyp39gKiI3dzGmdmozfqeUDTK7yXqFn9gtHCjZWn6++UUpl1YOSIMdfMLFqpvTVFyh9VPaJEOb/i+sqgbxXZtCqhimROVslyaFFSL7sq3AJQ9voS1m5PByJyE1UjYqbfsqc4ypGH57OBzVer2JLffGeAcANSFB31QHUaAQBR6NonXas1i8Kn4YYRTLgNArEKEsdapmWeZoLcEKp4RgXFGr/hmn45pEU0re2nLwdA4vzvObmbB35PbWZJhBFKoBMSHHQdmygfX/m2LRDDTWRS1qE7l+WIkDMzwEYr2lwy3qV2NZVJnBnTtJQAzCGG2Ouun6ocUrFmBZ7BBjPa08aRnwai7R+sjfHNdFMXAEQ8QazpAmMlrhjIWsbknLns6/wLdlqEVuJKkmT5fQXlvsHdBAXhS7H001aOPrMZxF7qm3shw/yHFQMxmE7mQdGJMFLVJUoLgQM7/DwHLVBBC/Ayj6nNeYqMMu8BPtMWO495WO3SSvJeCa8lgtGL6IzgdvhxiYfWnHFu1aIBKxgyGWR17LFmDJsJGMafoM7HDNEXJf7nlcxX2suTPkpzwnT63n0ypWl2yR2PW7DNoVBxq73Od0ycBEiELZOiKU7n9A8QlT4HCXj6a29TcAHt9oqxQvswdzYIsfl8EMFCYE6ByJ5vWgHy4nFZGSdQZiiLYYexgPja+6Njqz4xkRb4LonGMiK4RGqpq5Ox5SMGCyXy25uj/cxtjvZxUQhIJX/1/o/bSE7RrX8nJolFY/Zwax1RFqSVz/1u/7oF+q3LSx3wrefPdayQw2uqQFd5yIxSrF6c/E6wnErhmwrsDxX4MY2b+MpxPfJhmD96srC/05fJTDtkcPE12mlN3BKlS9h6SCv0et/dWcCAk9kmsoy9wP7Je4bKSt3UUUHEZd8xJldIezvIcdAhqrd6LaA6jq4vciBBmCgVqtDmjrIOvZC2OPMY2YbIE6lTL+cgs40m089et9qWBlGnj9OXRn2zvJbNR+lUXgIgTJ8SxgJxzs4gkGtbT3HrdaSpWUsj/uLPG1PTqt6h8Wt+tLcyFpMBzOXtn7hvzQVCgCHLigJoO8cr9WmE0hemYiTx33x/ES9V6/XRUIETxNSmP6JozrHcxGO/7P49yx+Hyyrq6k3+zaG0bV9bsC+6siKRk3jCPy1epuuiKy4tYyGfnlEY/QVaRmjqRhjFlZnV9ON/JhtEhEkuVYU9ennV6sgFFa0rasIZSB3W0KDz5+1aePXY+I0os7nIsMLc4VfjiN9v6mnNCq+hkcQs9YVe1chOULwH4tOCyvmhm3XxwRL3bPEHOZLd65CYv0b7KHB4MG0libSPBlEc4k3p+cQqFCo+1yLPg97IMf+1hy05RsJefaSOOPOfKtaAHjL56zjg3LwBVxL+KITprhqTskejOwvVAbchL98Fhb2jq8VvxlbaH1aRx5OPvLLjNf8qFYxjNv0a7gS2B7/2BfRJ108xEvOPcbwuNBxkXZP2nI+4KX8dwZxH663jcymBYDrO5BlkYe02aRrMiHUB/bLFOBto9N5t3IUaTBotWf1tnlEXMBOUaFXQQa1NUzv9p/ND3vCtec1d69Nv21g+Rq7OPYDfGD5mIVgTXoUyJwEPYXVqqYIqvB846KC4S+Vfo81bDfV7j1YMTBLa2BCkTlNid4yq29/61jGZS9ax+9M4gcs5PvKGu4G1QsqD2HR+VizYyRZVFVpLdXwv699+VdEmMFPXPV54VqeFcgg/2yEhetEkgKdjazHEu0AHiZkJnpyt3LUyUIrc57P44TIuUNsTACMb3Qy/uZ48c8wwpSNKtRzI6+BNEaQ+Jsd8XdZJMoLY5Zy5FqwlZNxLeWB0CC1nnp/a/0HXY1wKGFl2Fz1Hl5pQ7bdyWXfJpFOXl7cpI8g0V+PvP6MMnRh1re9ntIOoIZ7QIuZ68gXuRSk3jCDf7dJiN0C4QXT6YzSzruh5nz+fAOJaSG0CDax8ZVMhWNyjhox9SZl59FcgEH4IEjvKG69WWE/oHE17/c0C6YxOjTt+tyjvzZLe/ZrsLfyhC8fCpOaEXg2SO9g0uaVrN+H7T7AkLZda4XAhVMK3MiUYl2hbpI7N40SSfMv5JEzSP7h2CaFICTHeh0v1Ibabhqi7MFxYtk+9gCwPcPMBUNqJnrIQRmdjsDnyh774HW1XaLCFd1dD/okffk6b81GZ/udsqs5xfu1w/yH4hFMK1mMPVhYxMo2dQktqijXLtBmtAkXUwCsOSRm1AhNyu+Fqkgy42xUkhprVt1uyT2alqZY11WeBVnijNcLhA9tbwAinbFFzVWes+mnbx76MKlnyJtOE0/lXCA9uGQsXov+j1Vf/XrZs7Mm647zbnpv70M6I1rpYUwYSSxm8e6KKYQWE24VaqNz/R2DDWRXojuyf5grQsYcRpiZAtuVNYH4R6avJe3yV8YD1s71Z4N4zpRfOG+1vu9nVosjqwXTegsQTz3sL0Lne9SOHkR3TN6GfD7DZaWifLvLfk34N8gKV3vSKHwLRzO2aIZ9p0OuAqlvVG8Kf70RMVqORdFoUdpBV581730dXl5ETmmkD6hcyB2R/SXG48fQC/oYF+EVbAU+n8Y0dogjedGnWsGTmDZtLIbePE2hqjbBcyFNQo79xakNwhUXt5zCq2haNlp7PUKcJIDyWahYpJif3YD/yjjBKo+1AZZkCV1ziYwT0EeoLZ5IuyvY/6ad9FqgCkxjJod5FobSELAbhGlA/VosbI0FyCmefoGG8BRW8nXD4m9ZbaYQk5I8ENJheJDicHYi45Fr5YjiiWQCYUaVmgxek+WBuTVO6VEsmK7vM+Ksfv/9IPYUO81Qh3mUQhz/1OVRUalUjO9tTquCQ8aSd+WR8jgaTWFulw7X0JIr2cxNXcYxFWFVEwZ5FalQ/pM6YHoXFhDM/eD3M6Jk39dY3TBVQVDn1GMJytVc8yhgTQAMDezn7MRswDQrBO9no4M6yzmh3RoIw6JMP09BoXRYKHtwl56gai2H0cdyLZmBa1PtNl0m/ZFxijMwazJgT/EOmBPU1AK93dMQJi15/dr2LtNLZF4odniNzCsLKEl53alB9t68lBcXjLfKuu48hBRiwEwtNdg60ISJt0uUVAzxA2pi+d2s2wEgJ4/NvzXbIxYfgDje2fpb8Sf92YUvQrA6AxaHYPxtnsGgxj6m8hxW8Qz9HXVxDERfmWaYmbuMcGWgnN+kwC01XdTniIC/QeDIrkhT/UmwQ+mqYlS0xIOZaGhKM09eDlJ82jyxmpkPfD5/ETD7CHp5E5SL2SS9T9sy+4fuR52O/JfbaRTA5aQFe8j89Gnl17tyCi+3Kugybd4sv0+HaFreB5xaJ+t7ugegqhVMuFvMFkESxSla6xdsc64rXDj2IvRrfh3cB4IQpw6g2htdG+PuFj+0p1M2XitwGgcQCgK48Ixl5/fTjge8pCKkgLZMMEP4OiK8fdtCK2GZJ/q1lAiXNmVDEKckQYE7rm27zmybwFT55OJyAhfDn0m1yfXdL6ZKsp1adqtHVkTPvH1MaYcTe3EdB9A37bCmf8Asm8E7c0sCQ0ClY9xmXx24y36238MBqEBin1fecwpjWck11L6TFPW2iXcSWAhRL1lbhn6+3LlBKjmqAc0Uy/QrkZCuH4cp6MU9v0XyFrCtyW3OawadJzfHSgusbK5JUUHTf+5umDF536Bmvjah+ykrhZAcK/vHzu6HtjfVHaFIHYdGE5X+b0NxrTDvp+SivImETsKi9mZQ+DyA06UoIYPaMMoBQsithyCIs5PZ5XZz8/T03LMNcy6jI4AE9cLhxaY2PgDcpTt6Cd3/vXpE37JNTqiilNeiMT5awCqg94cA5bgRZf9HLgG20e9nUlmGciYTYCZRskV6U9fbv2n7L6UT9zv1KA1F2ZNkx9kc//EIm7at3lFAvow3F8Y4uXb32N+CQKFzFIvZHHHETBvJ9krYiwiySC6SLiMVa7et1F0HasttTZkkRT9pGVuUgVcNiPxjnCNPWzjzLozs6ttErvu2unfpCywgIyLRVe2liVlWf6d3TtTHfXVfjKaWX09YWnnT3cpp72qyNqqgazMMwyvKRTzOjLPPfxq5iVEaspzpp9l498NROjLjDKBivU4WNapE+Bflu9tsuHbuEjao3oFZBZB9j21l3zFYbg/msdmO/VIIAZkybpt8E+fLrblxh+JuQ/zaySh/ml+KCB4dGLm0V0qkfMzxRZXWw6CVSdxiCeSxO1AQhi2aVMkmx39yO9ZyajgrZ1OMFIRS49ErJe9cOZ+wbJsZQh0CtlkrXuzFNO9oE6YOfROlovNaph8NMCkLvDFkc5TSDmqAj2Xwtm8+qZaGIdYOGYLu4mW5TgTk1Z8oIE9IxiZB5ArDmWpOYzdYgqmu774ghy8kN7AZWDl45ZCCVhnPPCj290Ew7AdHstwLA0JVJ3Fo9D/oUxVU/YrL+Tz0t05P5iOeIu0fKN6Zhr6RSCn/ByZbs5CrHXEelg3L3Jo3Dj2a5CeBEGPSfGxJ4fqhnvllZeiwW2Xdpbl1qEbxTSYA4WjY25GQ7Q4nJQVAz4SoTpj+0MTYc+Hn0KPyV0+gHSWdQ9e4OKwc35NWttmMcJP0KjAsbLVEAB29+/JrjMhs3InrHOlyDoBkvMCRRbiY5jT+8C+4NgrG/OQBaMfKMsKoNnb5j/cfwvpQt2hruMh/LYPJ2NgA5bKePivYcn0cKh7GnsCfz9mFnh1qnqxq7ZRFTNCMQ7RUIciusWyZ5CnRZCAbFxlUfTca26yss6w/j7xmfVmSFY2ExSkzDpxDZdf95RS3ULfCjgMCy2F+eNtGdy8Qwz2Z4LsBNIQxfHbGgzR777Nn12CLvhuj3Ei8rzM34i9iW6xPdwkLH76zqmpzpEzDAYAFIfT8+J96l4Uf833+lnHOMTJwKaj/+VCnyue+DKMa26rn4MPJR5VAJiFF2n1ruiH1Qsc3dSqWWQzA/MwJhXz+5vP2WJfbruv/ran3xlx8LTa773wOG2B/qTz2Qvrr2dkjCkaZh9RWH1nkqXzsEQ+I3ke2Pu1/p51N9zFPG6ncekHt/7u5l2GK9eueqU8LJ2Wv/H7MjvkCEEZFeYm4RsVAO+9k0bmzhx4Y6umAl/F47ADe9utW4bG+ji1Uht6FDf0b9YmIapPtBvLYb1R49znp2op/ojCZGiMfvE5RCI0WU14BACDVoTLPZjyl6IbtrNkVw0gYDrHs111KfnVBV2OvoOQySsOrKGMAhqUrpvpL7SpxDGzbd4ze4EHj0sTx1hwiaQlOyrQBFbaStzdfSnU0V/00rSgiNDV3iK1VVywe4pCZGcBzOxZ0IcMAGn8ZtLvjaZFpO4EOflJqILoFdQWDSPv4aF8UgmV6vp1BFNDBj8lFryC3COf1yEdCuo5+oHWnwnra7vB4dcU0tGddU9bPWqrEjDr2fjWCoLxTIfr8yG97SZ2aYlM1ugjoVzHJ5x2QOv8bvAkOGeDBXU/Rr2k+5/Cv1rXqyJsLMXieao2nE+eKi46sJ2E96du998JwAgaPWxd2tJjx2aDKpCA8UeLbY1aXG/yxb0ZRPUgYgADN0sFslHNdCeawg2Hy6hVILuoKEmHGPlSLWM9c7j/5RKgPcBccpy1D9vrn/Xrie2DBUt6BmRj4e09hVL5Fv5o84kNJ9SdIhMmGTuo9T5Zu6KuvkNw/R4fpFixScKgdMTKfcu93/mxkGNKD1SDPkagsnVptwi7ensNkSP2h1cPnwKE5ZSJujhYy9Z9t7S/qHkS8lNb3tuZDcFdMOiAI363QO7JM3DoVlUZqOwtgqrGfxKpYzZOpEeoKe1Opf/LN4zkC9D1qinW37hoH19RHPJ/j2zy+TmFMz2TUiukMHPoVx6G0Fms5qXWkDVpsSy1/iHJE9RLnem5QUi4+S2l2W8dW50POGNb87ayUjg2Kui7vs/oyXWclTKMgroAkOpKdNH4JXxtUZGS3sPEaH87sQb77u+zcIztlecD8yXK3ZtJfDXfMukn4IHgWvWlvE3eCSllXinJufC43B/CU36bJY37pa13HZrx/NvC382fZVftyvp5Wex61JLAmtIj17IPjDdB3+9Zw3sQVFMVPrSwAVeCXrz8/CL/WVoYoTlMZBVHBrQGoZLcfKnKCDCrIQW+LbUDNxsqeSFq3PywqvB6iB/GD3c9JzkeTQq3Pbd8odXimYHxDd6b8vtz7a9rnv0iZUzrBiToMwGPypsGd9WP6s56MjzA1YIfznxyn26jEhh2RdShxnrdRJXRGwo4gLUhlhpzoAwyCPwn0+cU7SsPSMSfnRQVE7ss/dYRZjFbAZxB8oJtjQvUlVd1Hl8bSdBPywmuJKQL84WnyXRs7veVcWZIvo2T5lyOG/groSUUl6cpBz/ebf5BREXzveymxahU/cFLp45n+9eIo228+q77OzrZEP285uxwmhUUUD6XQpcIoXa47lnPdoJwApSFzfTZw0KTQVAvHnDb0jfqeCLuhQdEuNK3b4/Ox5DsGfXuIEp3o7uz72hisNhljIaAqQGJCKi/65iqrO2DwBRCI0YgA15IVcj29kgo9wWeGqlC4TOo2lx/wjVPr9KamgdkV4i4bO6gUJ9ihpknPUTh45r2AmR51/TcQLuP78uI1RKk9HApnVOj3sGZKuoJ1fnV9bntytbrt6PooAaIaXcPNRCYKwBWJHYOMTuMOrsmf1bY1QX8JiQFMdqSQxrUQL30KKv55AmHrtuw+nsLAeWdIGUPm86tKWCZPv6PuUG/VUr4NT7Ven5kZjGrJ/FaVNmLkgNfemNr4Pe4t2gbWsE/fTMjrbXaqwVMB0Id/YKRyECnnvi3190ScB6pOZq84FkW7lxdqbVHCHUMetmu7hstcPlsB+ohGtcqnMr35aGr5u521hkF/UQRcH+jadjVa1+GmCPLDeak/u7Ib7Dv+v7trXaXh1Wj6Bn8q20VtBIXX2xhvHC9sN9tu1cFxMKkZdeAHHpaZ3aFtMelbsVHKE374RoBkzvbnfICaeSbfy64xkHwErIxEUxhm8o5aiOr02WNGWH6z4xF+CiNdXvSXGo6UeRYawYu6fE7kRqI204CH8Y3xrUSFJmOVt2jAnJ1re2AGZPRDO34b/ljr/Okrk9QRNccFlugXiYzvGxyEdd4h6caENWpXny9P63YKVTMaNp68NZGZlxh/E1w6yw+sBxfJf40aMBKiMSl4zcKWhjrPisCRC7rW1EERmuzinDgxZuIJj1+3d0cfw8D34BvVPfNw5u3Gftbc3YIIUPNANJaFYO3ceFNGW7T+gAW8EQ03DK5OUs5DXb5kXmwniealcv4oueQezH2hVssm4ML8DeqLwoAidVUau37jbHBushM1TDb6y/49b+U2g5Hrv0bnKSg75RKzwxo4gHZPWbu1KI8jd2b3walq0I84TyTuW5kqczNjYF9Ev597DP9c1U3EJoA0rd0caoKh1/tFhDA5LkmH8SIqHTjZGO2HhKsXnzH5PlmhvgRrKR/WETCvDupJbR8ihfG89gH5Xb/0Mm1UE+QWzaMDn1JTE7QYUxmLad28dPHAu1JDL6jmaamx8qwVGAU4dfBru2Brrlohb7AJuzaqyo1HynpPiM97/xvIcEFPMUzd5zbtAKtLaq8s51IJRIm/V4+EBbPqbSamKGzn4PmUNhpAXgpXPItgE2z6/nNczBXw0yU+C2eX4KCwoqpte1+w01boUAqL/GtIuf9ZNYM1NTd02CEI3n5D7ZvfAyvoFLn2kqpjm3BoHNXRphmnzl+PnRukIKxYUzaUvPZ20Qx20Llvi81XzxL92vaDI6f3qfn+7+ATq7x2x8FHTCWN5sli/sRNlgMgqa3L3mfpCyaP+R4UaLxnOqsSNiNw8lM/UTCcIobm11IYn6oWlieABg+BgiitlmqLAUntnyb7kTq+r1KraDlMWnunk6EnlehKuaeJ8hqyZbhdoMLksNhV3VxbUUD9Ozc0ORcqSQH35dO+Z2vIRF0HIw1Zb79Nvo6LLLY6uYe0FlrQg0BnXTYIe1QfwFQuggiu1+llsxxbaPyJx1Dn0GuqcJya4jdhXJLlkU2CllybMy4C4EBmZodeXcTv/28CzuJ53qRPA/qLUECJtT1DpZ0mwng5hbdR0phZ2WGzUEZ8OuPGYHedfuE1SbPQsFjBWFXw0QYRKGc9HB5NPrD7tR0BUJ8Znn5s5HCD7LHcykt5SJoD0o2pwfrtXuAlQOY2F8nHW02GeuZTy35/rtZBOWSVB+HA7ZXu9SzHpASDEFR7YxkSKubNxZndu5OUKZs+Bx9xbhdhmg3iH6E2sRQrvRxpgHYvhttrQYCgLKATD7ozQd0zqCDnzCtIcZxtQreFO6yy3DyXEmZe84l0EIk5eapbJLfhBTLuPkqpZ2rsdgrYLdUTsXoyGPtsWTO3UF/MxdEuMBTO2oJW8kr3R9TnON7FM36LhooffzxQRCPL8QIH178sQePyUv74RNLUURuq+ij1g4y1IgKDsI0g0UOwa42f2Ne3y49s+1c6xU9aXcyMxRTIqxQFcbZvfCAWyOsjX7F8LpEVAT5jys6NSo4J2CgK3Ge/ilg+BrZiwpEB7q5eEXWP6gXU5opAmBIk7yWj5VcW29YHvXa4gQ2YQm8BU94qgnZGks8u/hgrXazoPrNYsEUU9a0WOpyKApLKCZ/iMPUtYYzRPO2BpAYKx4NeUKHauSiFDaSwao1JO6PQPEu8Iwmwg2xDoR/g8S5H6YVzexcBwTkwTi8NaQ4mGbQFv8jSKPeF6AGWt7as1xr4IR2vq95/zS8R4a23SmK5vm3bSI3xHYC9w2TmiBUhUQhqPAT1OxYGsBYiI/3/YOFmoGoWVzq8VMyDnKoSMxZtqlB/9B6XkhzEkfNyOk36x6LR1D/YY/7qEnCbU3nMP4e1cqh6dEQ7uZ5uHYqbSvqtO0ZWbIgU9JFYLJbqMTqkhs8HDHpOCPkWaLssTR7NqhQuYRfr8tc2D1rUhkl99cV4F1N09hHj/DkyGmVuc4DT7ziULsk=
Variant 5
DifficultyLevel
694
Question
A researcher records the number of elephants in the largest 3 zoos in his country.
He also records the percentage of the elephants in each zoo that were African.
Zoo |
Number of elephants |
Percentage of African elephants |
1 |
12 |
25% |
2 |
4 |
75% |
3 |
4 |
50% |
What percentage of the total number of elephants are African?
Worked Solution
|
= 12 × 0.25 + 4 × 0.75 + 4 × 0.5 |
= 3 + 3 + 2 |
= 8 |
∴ Percentage of African elephants
|
= total elephantstotal African elphants×100 |
|
= 208×100 |
|
= 40% |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A researcher records the number of elephants in the largest 3 zoos in his country.
He also records the percentage of the elephants in each zoo that were African.
>>| Zoo | Number of elephants | Percentage of African elephants |
|:-:|:-:|:-:|
| 1 | 12| 25%|
| 2 | 4| 75%|
| 3 | 4| 50%|
What percentage of the total number of elephants are African? |
workedSolution | sm_nogap Total elephants
>>||
|-|
|= 12 + 4 + 4|
|= 20|
sm_nogap Total African elephants
>>||
|-|
|= 12 × 0.25 + 4 × 0.75 + 4 × 0.5|
|= 3 + 3 + 2|
|= 8|
sm_nogap $\therefore$ Percentage of African elephants
>>||
|-|
|= $\dfrac{\text{total African elphants}}{\text{total elephants}} \times 100$|
|||
|= $\dfrac{8}{20} \times 100$|
|||
|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |