Probability, NAPX-p168996v02
Question
A standard deck of 52 cards is made up of four suits - Hearts, Diamonds, Clubs and Spades.
Each suit contains 13 cards that include an Ace, King, Queen and Jack, together with numbered cards from 2 to 10.
Lara has a standard deck of cards and without looking, picks a number 7 and returns it to the deck.
She repeats this three times and draws a number 7 each time.
If she draws a 4th card without looking, which of the following is true?
Worked Solution
P(Heart) = 5213 = 41
P(Spade) = 5213 = 41
P(number 7) = 524 = 131
P(Queen) = 524 = 131
∴ {{{correctAnswer}}}
U2FsdGVkX18z3mxAoZxbvzy+3o5CzmUoTw8TAZTJMX0WbPRT2IZshIy8nZxdZPiiucXyuEEL4Pb7z23UuD8bZ5peOFGXc4tt13TduZ5em8mUtKHMAMf7rBRJbuP/tntUMgeGqRLDKDZQVTPHEwCbwuh8rfmLfKn9WjJWjAFPKczumA/Jayoy976V1WLH5fCLSY6Aw+3z/1gAaCDzrC8J0eXPunewzwmcu/uFZs0WRMEfkjukUt09R2mZ0NAlFrrGpE+xaK7Uv+qeJv8r/z8/5fqGe8jy6BIum3QIpIatdx1si82K/MDqMAC5qlzn26DTGxH8/n/6PAO8E9D0esfXLUkJV9pRH96WMtgyzOvDSnSOzOnFJJZkmwW8Xpl9nuzgfcIOfkHbyUvpfFsmbasZuhfxetR+bWVOgeg4BSYcaSvodCaJ3utSZNsEy8QRFbdMY9mrK//0lCdM0X0CPgjbfg1l1UVu7NTyEaGR16J0aO7t2k9HVZG/QOIPFgYbhJtAOM96Wa3qkjc9pifxRJdZzAKPA5PdCU1cSboclscgbLsH2s7w1Liv8RZT5XqcIcvlaWH1FNPb25R2gHW7fjNshCvs2DNxpgwUOtP4tXVSnDAHU3CA+g0liO3h+QkASo+7R0NMyUm0q1TEVXNiQdjVIGxbyW67ZhUTCr79LbbQiqxnXUmlzAeXIgWiCaJ70Ef321Zyjsjuy4SPb9bVSInfdQjqq382TXsz5dhOv3aLRa5qSAiY58TG40wpqdo9T5YB9NE69KhdDfk93RLd+vffoxCCqVhh80FRI6oA24QPBwOoBU8XSM2rxmWlPtH+jA4KyjSOhApzdh3ZLd7e3M0kHTEPKck+ucyiNcWsIXYpI1DRfs6VhITxLDL7LPURQujdxZEGgZo7EUk3m1VbdnaFazvg/zJGpjEmv8NopRw9nv9dTeNaBoc0JE4XSaqEh1qC4QNrE7XqHv99Cs9AxZsrt0ZamSQbKrNv4VtIHPnL1Z+obuGF60WV0plaXwoQ4UgOFmdMdybyz6SFi/c1RgrLTsf5pLDyznL8SG1yt7+4cKwQSniguVoO7McL8alXaJ0bsu6b5qLmE42dJPJvnuaBXlwDkpwYVc8GOSYi2Br8ZNPOSq4cNUAuMBj/GMPc1PV862u7lg2YLOXKKN0JR9F2PsNmHTSUsqgdUYmLol65ujlmqeXkl7pycJP5ldQyjgMQ9bJBWMdHs6jpTCqfK15s0r3csHg5LHkZ9btW24Mh+FIqzjbUy9z936czTeaayytQvzCAt23zAKzXzk14tF/l0rdfiy+mE2+3oQGYKTDxfjYXa+0ZFB/2NYV+0ZmeSyak5SC1rPGsJiC0mN9MRCY0S4wlWdJQjvhvsk1l29n7xq43Bs/Rg56mi2yMiNNvaB2TqGKpaWBLA6roa9kCbci4cS5FLchMXWXdCBfMDt8ZF4qotFS7ATnCdeRKIkG918wI6EqAQHaOYtTsYXmJjH3p97O93gaQQmEpHzFEvyPJJK5kIgkl9c1ES4eGoPtEWUEiFUAibArZoEsPxZvEZNuXB4JbT0Cq//smfA/vHV9wpl3Kyckz8mspn4c4gtF+1VcKLrozdGpdp+fGs1Fa3EiCq/QL/uJtN+YKA8IsCT8WadQWFrFIOTa+Jc8aEGWzbhrJd5Ai8oirtqhTSzxDlLcwRyJWwAPkTkljLsLsjmqlz5CE3v199dLnIP59GcYbHtfQ/gEsTo+8BJKcXfxdk4v9b5fTzoPkzupI7EkLBWYBjgn+5Egc+kNnjAyCeCck0YYRD8WuYQkV8gi2iyanh8eRIHGlRHCJuf0LKU7H/7J/kiSyLrQAOIkG2qbtcT2/FmT3KIGwCp3vYygmNrnmg2hfzp+Qyiuswf9GU5GXVd25zzo15Ada422CbeSQwG/U2CnBq2BXGUY16M4Fe/QYBKA9NxDs0FhIEluXpHlRi7M+wN9zniUAB5MEyYivvRPO0YjoIHKojE7v08KXC2y0UNfGQutNEFuybLmaWugPcGhb+FtrppNM2F9OFHHummf69BlyKgQv9xG7HYCf8r9bgSZirjl6yl4t7CMo3X5NkkeY5xCRaFLDca6GFsHbiuDUOr2DIA2EPB/UzGipp2cjulBoT/r66G5Mg7+9SCyqe8uzNOonsTg5eUUg9201nQefzNcFpKWR8r1CeaUJBdB85DJ2u2AjFTsGRvl3NU7i0Gk80slfb9dR0K55VEfppPD19145XA0AIzVI2QOI2YJWcogBFVn3+mSV2HH3wEONqThqIl9Q9KFuft9NDAptPNIxRTFHR8ov5wUpUtVcv8LPYbgB3e/qA8Trtt3CYD9M1bBS0rZ3hpLzI3Vn+qg7fDVlvnqStOo1KIfD7D7YwKLWD5+tg3VQX4mAMSTeQ2iXPCHSdwQBXBJr7JOrTs6rn5vfP46j+6+1Qkrg4e6mOCAql/QNBWiwjujLUH6RO8U4RN9oo23ViBnCW7gpdrVOVgk1sjOqCKauIhrDEFA2hR7k9H9CDTEyDJrgj5ztBvjpyredqQWSbId9WEOBKPXqojjvj3kj/6XMdRr2hAxaycdwnZ9fjRO0mJ0pCmtgaLe+6E8TEot93fLYIzp06N3o4/kjuxW4ewfCDD0of5aKYsWBqfzBVm87gH1bUAL9kIj7nbIopYL0ugpP0Nk2Y1yebtQUmPx8trh+8J85H5/BMLnvhQGg3vM7g4lV5eekwHxZzTqHLkd3EWRAxG364iM2hm48N5H68OyR55IdTPH5E97yFkOLIxjbi4c6pJKb4+tXsoQv+IrafWK+dMtqwkBZCyHOVIGO+VkrRStlXp6M2ZLWqKWmpaD/cgaYQOfGnbl4bmotNlW5ExjhBRAvqx5jVCisXAlQnt1gQ80LFzVVIB0JYikOkPxtu4kMtreLRsYEMtu1rSHUdySY6CWl/PUUJoDRAWF2LYfr+vT1UmgIxvI27xvH6N4casP0uuYVFmYZlFIEXd9jNwgbrLM7v7JPFNbjsNjgl7NMEbNydDUYPUFyu2Km/4zUVEnmhGiZJUIOdThhvy98jlljUS2Y6KY/WKsCN0n+FQ484VlH7KuJ/zWErmZm/s/ru2sqrWcbl51IdvUJPpwVkUD8ROiqV4Uh9qB8y6ad4CuN73Uyich+1VBGLxYKWj5Tq6ts119B/5Isso0hOY1ZipoGq+EROYokZTOtIc+LajCT4RG4uMRd9uX/zQ2/tjg5klg7pN31vHTKd8EA0pcV+cOeCoqBN4qEvp/XppbjI3g7Ws28IAmzuK1iP4GhaDGJZFp2PUTWXJVuPX2QJo3sAjLpYx50m4TCN4v9x0CqZr1xm5EIWDu+eRZgXaW8r+XOlq0BUabizqyxGjHU9MEEChhfIhBhBeP21jl4uiv6DH8xLwDspa9o8jYjXi0BJ6RhgUSNdFDITKl2O4d1sK6qG0CJfWhuCCgzuCfdSM0YLaACUYIQBt7wq3hWZj+hrb4TZTtsUiNuMADgEby0pbOmhuKW+GuPs09FUtUF3j6EAF4TsRh/K7ZjEdor2iS2/BDD84P5K+AzNC2B1YBbDvX6t8iRLhQfvb3/c8Lt79sH9B+2oCCM6iXd6XkB7K/VNbdMDKqjDJtoM0gi9vgVhBl8JdZnPQxzbamav9haZh+cM4ijRctuckaxst655ZtYL3FtJRSgbiC57+mJTDxRAvKCG14zlG/gI0NKqjj1XbwtjAgbIIE5lXeoinnPfXN1KZFtZMgKsZlwvRthjUrMhn7ekUYOYIpmLaLNCBuMvn3esszKW8+sdPxCMLCHRIrkrvL0tjmXQjZXktOfb21S+OzQRo2kaTmM0O/FdJZ1ewyGZlm3iPI+t6qY5cmwf+Cki5WoHZ4d7+t5ldUIfHDr7SlmiYOCzS6XO3yiAAPIx8jzPV/Xz4auo0/5UDjIcZwATaFldIwCpAzbpxuHa0se6t50SuNGQJ4lX/RwY8iJnioG6DImEnPZWMrKxFtsmGBEa3Ucl92HOyFjTqya8ye1uKUXKS94k9Hx+rlqmUZ4XdKfUJBeYZ2M+fvP7TcdOxtJK+/3JBxzqH6J+Aa8QAZIw6h/NTq+Y6j++uNEdftAvbiwoBYtYeMJvGeV/NSrqa2L1AWnDFgi1fG+nXO2ZtX/TM3LXndxiHC2RQxgef2lv3ys06iWIbcvL8aIVZU68ArpyC6xitUlb+EDV6MgB0J243sQELWBgAnMgSVDMhczRrv1SB3GmYpLWzI13oUG1/JrEpCKud7m47hkp3tXV2O7mCU/utd63hk16YqltPnHcnGlyPlmolSsvgQ7dDRdmP/dDMuzae9TM/EVFQencWbip9FuALlPI0AQUViN7YgTsphV2sze3GL9IkhslPh9MyMfoTqpEYOJWXHcvsnXT9DlhNtOhiJF4FkPMmoIaWeunsB1JzAm60QDSFEHa+xBeKXjBiB+PBzAG+RBTAAIz1NNYn787tICNDi9BtBkoCxdrVoZ2JheaVO3a1hMOoGQMdzzcLgrknA9McplZDfg3jJ+ckwNBWE3f/ejFuUJ3JwWeHb75Gf86C8A8YTRoQRbKTvQn/RJUHPN8OR1mdluDl4bi+v/W8YP+Zr+F25JFpyhdEoVminw0BsXnaOG+xGfqzv6dYAh6QUwp1gh/SWa3MPGV1hHmBldzh5Cnyi3XF/HYdGcfMp/5dfSWh7ke9SZUhJgQ+BIl65cWCvE74Wp1OSYNbYVytjIq6hUJgyyA7XNdWKlBfBsRvbRKqrQEwn9lFMVWpvOuGU3TWNNhFMzNQxaCFvCQl2CFf5LAuaZVmd/5E1GXadA2azMCIROeQx2VUZhVN8otzTKr1n9zWOipDDL6xSocvCYBkGQ7NobGe9Fbj6UiqCMPd3y93ziSAtpm4jCtaTzq8weP9g0gBr9RSqigT31FL7IEmiPKrNteA5rrvHycyWR8iYPcqfSFUebFkhwmf0fAVYgIpAYtiH32TbJUib66wpX3kVPvxO55iKvmPz71/wwP7LqiR11e3qPkEvG5b7gwYFxaducK+EBsA1LgTLCukgiUAaoxPp5ckhz4GPdJdWDVvVKk+P9xspo65m7nuBWttHmuP9QyFzMXD7/LDp2tnW1FsXXbOruAb+tb+f22yRvBTtExmurPlZcKhIri3HhM0yRacDR6MLwPcOCnJHhn9bJd37VFk8mXULOXjookqTuk1qOuqfddVlrCTskCvg1m89o3kSDmiJeFX9LPW4K3yAjNAkVu0pLDWzqhe90Rckjo5Vmv8sK87LIc5EAaWZRFw9zgjZVnwZBXZzeSChvmg55GKlXV+rppD1zSvrn0nurCGCdOpJUjIRz9dk/8EsQS5pjFXURwNjMsIQiBP60ZO44nttAoUb8lKILfLMsa27/prMNwVk680uetLWIRsliN4M21uWV46BB7abBJXM4HcXlyVlDHgw221tOK5FSpvuzLmc3B/jIAEDbP/kn+VylYe38jW2P8nE3bs4Z+881vlh3y+r5artpjj50sCznUO2PP6Pz3pGyn6RkXQcCF71UB3zMCeDXiHum167KXvAX8JBH4lX/f1z+f8qJQu6Qsx4xX0obsF+CIEPKjBQEwhcDxEZziUk6yXtgrHqgclsHDYvcaCVsZNCoPnMbgdD0qrmei+YxMeg9QvDRZdqGLxY8ppHeKREAnFYwKqPNPtOXF3T/rYqLn2VKBNIcedKZK5mqzgYPwmStHY57UxPJHLF86j3faBQL6jsdk6EYKCeRnmcq0yJajJOILSYChy1sTfTRfBTKnKIuwDtk5HtLBgv/yap0Pd4qfDjrPlqfzS5QAtoB9gpG4H+KMctXUUK/jzoZD7207KIiNBrKXTjSq+ck3laCQ1XOBz4rs158gGyyFVaCVt5qT7DbUnDHp3HhKUrLmTEwWG7NgS06v99i+YW1StRgHZr1vONSu4rBEXYKtX2DnWUIPx+11VWSi+drtHsxcB6RnNpQm176xjoTLujdKNFIBnXTwNS5uTwnK1OZtTixlM0K7LwdRTYhIwJMOAO8hPDMXI4AAHPct7o5SjumOyX7DxuAGcT6Df13PnEcYAU4ofygPU9p8X9FsNKJmXVNfgFfAO9t/FyUz70sxvJif3mLHdQiKskenzdQmo9BbtDCCOL4ZCsm9dYr0Wjpq7h6K/OyV2c7ILt+zo3u6HhHYxuw5UQmMCrvK/YEJLl9ogK29Z8fCAHhv2AdmPfQtsoOaHxS0NO5ZbcMIK9aQl3EElX8b/PCNFLkZ2f/sp1I6+E5t/uvtU9BKD6btoVHqnJuWF947br3dKIzu9rGt992xqKBMg4DgyFEk3IkSHrc8BTcZlnQ9TjCViPQA+SW/FMuQO5mbymrcwc27ftoZ+f8k0axvxegi2Zhl6QOue6p4iFcNmWh2sqr5haSHa2Ns1t/d3X+8atk56vhYnXEpOf6SxJ4jt8roWEmtvH4NbuzX3hwFmbTHHZvaZhztVIkfuGCuzhWBkRRBofATWXSZoulF8qYXfFk6aKWJWJVLFrwcQPfIAkQTij+Mg+iFeMyzJxk+hE7HVrTh3tJOP9xdH4XALM6U5Z1ZVDZZqoavrCvz3AFt7jnoTHUyP8FHI/lMHJc+rmrtiPBCcIXsoKbGgR5PJV/eBXCBWr55/dUw1YGadLJ47kZ1tCCdC/U0mKA6jzwln7exLmphZxyiEm55GoTFcWJWh9egKKq48mBJrqYIYJENPDvz1v+uyNlX9FhuBX2t6tHW11wM8YDsPeOjGaQ0ED7dzpbTDhtPqrUBrCDzT5DM9g1DPGAmxozXQr76q+vzCf67yo5EkVvjUqKbvm3htTLLBETp7FG2ELAqYWk9QLfvz+n48LgHoAsVYi/XdC2W6HJ+LX7cCnkfe0GI/ejuqVj1PYvev3lQKqWL3aRKMWFd28ui9UdnLDlIUvzF5KnT9dumWafEkhGtPTL6eHMRujjs1cc6KBrCMjL/So0cEkD9u+BZB/wtgj2iihLVOX1EPtEdbLF2djjRq/C6Viw1k3Ei4P/zB68vTNClfxPdhVoYi8qS2hlC6dTmM4ipSJKAHVXBO4vh5Z8R0H0MrGqhpGrCgSqKr2XbeoH3g0ixqfFX4FLmQGUxNyJXD1K4FSSPMxH7nygbi4RKJvusgp1WN0oXQTd8dumsuwrNZOFR0513DQzxQIlaeVYK9g/Nu+uI4T9JMfwvg0LPExOtvB+Q2nBDDVfMcVXEfIWODNrMXdW3ik0UNzagxEAxaXhKZoYI2/sm8ds/UuIK7xjILDi7FtW9+sfuHeqJ3cn53UfWOG2nOcyu1wfn8g+9H4IBgAakZRK+gOMF4LkEF16XRAOYoYrVzL4RBEAY/jYYT5AJfRN4jKdGVgLCONe0Gc+z/AGW/FmxajzSX+AOuNEbcX3m8CHD7xxzGOuatTm1ox0s40k/4OacZlbotxJGwe+7JDjrf5zMKFMj+9cZYvJCisGI7HZvBvNqoGU4B8YF/25U+GM6J31spwo2H2Z4UeWQqaZWXjhRut1VBtWOuAU4V9PbYC//i8DDf6KuqfVdcvosaSXDC7Ucw4gI9cU1RQfD6+f+gYiwequ0p3JLjVhTRmDqHiA4aOnkmV4MGMjSq4mJ1TG39EwMpqXgIxhH0K/0EOFpPwtgwrTM0RuZYJauoT6J1oYe9hZhm9gmDpBPlg9ADbrKMw4OF/QOuuNPZOmBBejImsNBtRJh5lefWpcFEzeSrhj4NekGD6QKnT5hkpW7AmAclbalUUdqVkzogBCrdtqPRc9IoTVHJwDekvv7ATfgJFVU9EpMQYtzVyzIpaQScJxthwIicUaTsyEkm4QK6dWqNtGbJEJSgvwxYsE75ift2DsOsLhGnLx00WNPzUtdUzZJea6avuxnlPtj1EYHrnuRjSGqKHR5HdefaWxVfesq+Lq90BtsLXQ4TxtMZBBH14X1ljSshYE4PpXBWlksOKHJQOguzv2oHrtpbZ5vfMeGkKEKOFsDb8uYre7WrTL+iF94f26DNtaiZqrl0pHL/PekmbkJQWb1aon+L4stb68Xo8bMj/tFJzevjxvitUGOmTvEH1eEBMeUt8N50I2ygSb+Et4k2FKVo9hJKluF9Y1GyPAXtPbg+JF+EmageksGVUMLIQCNpRMNi29mjYDklPDXlUZyAO3ypgvbDppGW3iO3zd00WY73tNxFPahnikQkC3IPkgHZv45nWpKDSVFONJY/f1aH/WVPHA73BIMYHsRPVPJ/UwEZSJxRlxeUVcC85OtJxtor5xI1AiazAVM4Gqzn3+Klvy7bsUgil7RI1R2/azuy6WRL1BfOoU+xr3KANjb6MUieOsKZCw2KhejXAfE8AMZ9lYbktNO+gKQ4FwJqMn0zaOqFjfBOuf5kaRiCGcdOSSmoIprTnSxn4zc4wZJnjWDBK+0vIGFrkoed4ZXjLRsU8CGB7LAWavUj66jwb8BD2HZLpMOqgM2grFxXnPQO2enAxjPY1vTsgyE4A+MAPjeTR4CmjIW9Yoq9mMbGk1xEF+StuCBFg347iv/zJCkWRBnTBEWidGYUdEu5oIE8MeklpxcBNCeR52ZyE4A4EQ+Ja6cNXoFGp33NG6+35hvjjHcZkL0uH7EPycyoLZ9XLFKzALGdvhKNR9HFzY9aCwXzD4HBPIu/9e+TKi1vBFQQ/qQslKS9+cYp8C3+EEIi2yhoiPJ406PIBYTTZRqAyXGvcmYP5awdZnNLdn6sVx2RZl4HAQcnJWBdaKw/Yt7hxpcvoctxSmTnA4s92BBKi6yoMf3zJkkpx2mWcfFjdW450+7P8t+jebDDX+VrXaz/oBn+WkcweEfoxdbEBpwdaiNP5IfRiyEjPfCn876nnU8yxM/5L2pCtvmNSVtQGKbgi9XEPweOP9YMBAT/5o/3zYFHza8pPJtpMLHZb5r/LZRhSi+tqjlvrWdAwHK+xzcntT5B+/trDBb1MdhRA/hKqgKBN14V7tJBw3IlSCqBhKr4GGZ2UuItLnr7EcRPy8BXIDm7zJgJPko47Nvo9W2ATo70vAMriN+IFU5S3B+SE2BapZ6kaUfOUxbLgwdTiSuOK90auzpStpLAeNxCGP/m8CFxBB8PLZ/Q2o0wSMoqHndvPX6IHE0YaXzHSXssc7GTA1rgHUO4bJFmsWTGtJ1yfuiOAa7+SO0MB2svHCGPWJ88Nq03CQJs0P8z5cpn1imU78Pj0+iaCek4/sbv6BksGx8iFRjhx69zXkapZQCe1/ZSt/WOEy7aCG7ECCSGbNkNdVe6xowtbPvaNBWsPp4IzPC/WTQrLbba+Thxk1BBRWZv23Y7Zgbk0EdRK77gfr96xJv2TahxicBwXPjNc2HmMvGXlnmwKirKbkh9ID6t8Kc7FLstEEB0o4eBrQo0n7Acj6TWG362iOYbjTCJNSlzaHRRTQjfCDn3XXaxmhTYjo97vz7Y0se7KGaC2wQRTSIZH3HPmd/l7o27EWxNFoHPsFQY8ucYTYno9gYlSCFaG7EkgEy60JD+JXTHIKx8WsX1SMI6aIB2DjFv4OYu8Ipra/ITXOh3FGe0J/MQVOhORrtADi0UTCJGHdD0IEttPvR19meOuO4eVjbC1P3jp2deQt/S1LZNC+K4bbyFx8SU8lq+YcMBENxFgWYK/tja1M2cdEwgRVv4HLWqNPL8A7xj5Du0Rz8MjYzeR8AUZJNzlMh9GJc5+ApwD9JVNJwIryMZ8GtqlaKN4X24ecF05jxVqyxYGrfSWsP1QlnmqnXQHLiZ27jwaXwFkU0ZIZ2WkE27zsymPB2Z9W8jn267Fq9OV4D1bZvjhm0diOfEsHLZzFFwFXsUiU8a+VGm/GwgOhSF90otAgaAv/Kjkmqouq1foJnetUHyfy77Cb8lfke0OAwkTo1Nx2Az+bh7GalDzmEdDjXNO+fm/9imXkDsotlVqK5zEkOUEnBrr83rdsiuXjv5BNBivK4M9HaVVo48PI1eh0qUyH9OZDPlgyN8/n/FzrxZDYbpFaqH1cCtsGR1ZilZmihdr74LTuCrQRB5T7Z8qCUNMYgOa7vGlc5xw7HnUPN3Ny3oU33PLC2kAizDMN0Ex/d4VxfdywivimmPhMz0oNfSx03Fr3ZtAMbpPkrI1JKAYkNi8ry8HtJrlzXCkK5NR3mip5xiH9Isr1hZuRgm1LvWwByObWPFVf3B3eqBXLmukaoJ0eUnoMnwa8iHuP0M3XFmnDtRpuBRPbaeJEk9aOCNLhHu7SXVmUrILUW7p2K+3yGuQca/jhHHhFfB/53ico2tZmislLtRtJbQSXpyDGdWFVJPKYT0rtUPUnnTVl2lDbI+CGRItAflHSMRsmwJQZsjtOqsMEkbbVl+dkMpxCWNZxKt+j+HV7yeh5MY27rYNqhMl2Aci1lKPS5FCNfa+mmjBJ6416qFP/vnqIt8JXUWiTGSxtGk9RqTqS8Lm0ErO6oD7dcC3UlQputh7NtzucFUrojqJlJG2ErFziVAm0BM8R+bOsHxdvilKBlYq6trbvsY97zzQeRyfvqb0ivuBbc/U9LYUbiTpAcPkyiadOOP/Kn/ef1g/tuYTYl97F7P5caf771L4j5/7rujoZfYyc/FvHvWHCYc64LFapci2oDp3q9+zH/DAaBByS/jRpZXCUQDKaVLIxM5dIDoT63Zr7e1X0ITYzDatLmzzvXjX9bp1Kh4p9CYS0r5FIl24WyjgtzMMmlSevb92xuzubLFCoTDiANtlHP+aQJt4w8hGetg3gCgI1t4bLBSGRVkvKUEomCRun5DdFWsV1xAEfCIUNVYI6l0FyajF/M0a2i6fEF1F9xM5dDw6YGipwSEC1DGGBsNvep+5CyzaXAnRa5V7HwWEkxavkZQjAGIfvscoD19klZPhf5Fklj+tjiN5E9J6oNpmD/ZpZ+8Oqw6Q0vetQUOL4s0hEd2wel2vrmTEmFzFZsMOS7X0uR33kG8W8bnZ3DtulJ6hwDphZ13AqdQ/THnbs8oaW2LUWUcOWC8spQfQU3ApiW99Lrn73PKyZIn31QKSLmf3u4t7MU2qYFLW57lqWYxbtud7sY0/tmoMv1N7c+g28QHhauKGGKB7a8VDpCuT5LN57Z4UBRfrel2SdiHvK5kluGvX4SDSXDydq5gXIfmPmt5J3BZmGS9zT/uox9eUB9Lm9MYR3bKbykoFlaMIHBwKEmpc7tkSVP1vD8AbEcETUbkGGMBG8Ab+H/G6kmWtH5LfANrmWPtz0CokmJzNmKkRpZjijnN2QFUZ59Y7BsepmNYe+sZHgaAQnqMxfRq6KSe7QlJrS82j2xmywHUWvg/M/LgvRLcINB1ZHkxVmB8v49Woz1AhjQgne2gdfCvJDYx6kjf3LsUIl7tPPH+vitKFJXUH6EplFh0Bqu3PCEhwiz55cE41VNVmSBro4b9m+8VtZLR+Ez9iexvSY6+cgDLqmQTF4q+YbafRR1xyqfbXKj2EkS9SEguFPJGPcXXV8orWJdHVfrwoUXNqpUB3ls9ocJ88zP0pcofzw1bmwKRPjwhlTdYZg2v8e+IiFHBVTQb5qniFbGwf8fzOVA/Ki/C6uukpe4twlqgdBZVFcnET0Gi35lOoV1X4XCLxZNfQpYhuYQ2rAeCOiOLAdTyj22CsKfMjVOfNdKCIODp3C3ubYZNRyQtsQ2n94n7Ebi1Ss7ZK4S42UKGumbNYKGhOjQY+R7Q6UoDvLK4s2IUOr8nFuXhq9GWksVP+JbfRsowYoLgx4wgaRDozqE11UAD03KFd1lpChremi+vuh9p8Z93vdXB/hsdEHzZLnbLUXsix3bdemkzeSg8KIjmSJ3FlADk0cMUPMHuQQ387sbvncEnZKHYj5Sa6gq8fyiEb/2aJzlQyvLJfjkzOjDSLlKz4cej0p+x6mHUFOziwvpRLzSR37Q1nsH/rfuDMQPGc/BM422nV/n5z0ooGnJLO0CFDauoAR4rG9T5nlC6H9HtKsjzdFKUkS/MOrtZT/T3ITDS7GPLwHqYK14GmobAREs7rZnN+2qNqehTAzc6TKqbDFwvdzVsKWE/+88KGWS2MPLh6kKrpvW9k6bVzvw9CFM5MWQ4Z0kX31gBO0E9t8C/q0NSlwiP8bxfxSHqrs31GPx5JpQFhsrIedey487WMnp9AxtUlvWHTSrtSoPsGn48jlORTgViM0gtfB1ei1aTYxeqbOMFrEXkVyZ4IgipsbydtjJ7RsTNmXqMPhCH6xFaG9/Hj1KMvUpz+UYadbExvdHGjTwsv2wNMhsqDmQoY5vy5Q3+fchKF9+ss62fcmu30fH/CO/9Dj5FQ3rf/m3Mhf2PXro3iYavgqO7MmQjb0Bm9siPeW4Din9XYBmSul20QQITj67shbd6K4VPkqzbdoEFHq7z/Aj5/x/LwhyVl0o6obKv7vMsc7bbWnprPwufqX6DiBn5b3ky7RQbWRUYesQLevpTsZeQm0oLILZB122N9kDdWINlnwufR7WQrOKx9oVDBMp077kM+GZgm9Zt5BxgN7uFcMehxVY/+WkNxyuyD3ZW9ohYXx4hK7eIQZ8D+4at7bSsuoRDag4rHP/696PBKjsM+ho9Lz2FK4kzwRo5qz+Ro/wjYYVJKcF5R2qIbW94rKxByNlMsN5ewa0FYRs/vW9gzvpKs80oE2aIxWCMFc98o2rSI08nVIJ2eQ0cQaK87ipSU3UOBOUGXECzNEpm8pKqKzD2/t1mbWnpsA5gxSThHkLSlkm+sseIinVZpCl15hgsiG0PaUUe7BoLjLwMU8JwgWw3HoaPRkutBusV0dDb8M2Abd8GhWfzBXmtLVE/tNlkKEe+aRPyEFF7CBYEaIIig8sePR1u11w6Txzh3oiATU9OC3ZaehQ5Z+1cH0NmJ0fsBczHthyqLsgaSNuHr1Iific1Yqw6V8jXwrZ/649TbklZDp5Wyi7e4AvptQfDRJiDvgzqTIXqwNHuZnd8usg708vLAJyhTng50W5+8AHwJ+zTUmJj68675O4RuvkcDxWuAaDMjt8DkKYCnlCAN5stQRM3px3Lg9gl2N03s3Qhy3B3hj07HvEq8DafATMXUmnk8g9o+wbxSDfagrkTpgwX2MFwQ5IA89HTGPBXVJR+EvpWBmUhnzFh/fJIwXtw0zQzJ+XkzAhLGBxij1joDPW2X9RlpiCxbCYhVkl8PvpNF1oPXdj8Liv9EyFKoOW1qJp8OBqdpNax9npUaGTPLcAEA4zmthwlC6jKYdkwr58vFcwg7c9cPsMEmjBignPDCX4Ii63AimAFNDU8oPtw6KmmqkNX1GFGsg1pgoKBOW68Hj5n+wwdm1S6j4cv2/dJLOoXGPOYFE4SR2xu3tlyYdN6SIAqDwK078ZRBjVHi52LDxAW7cx6cEsl4p+rtt+dWcRbH6pAF2X0DXh//RBI/DLbICz8CBZJT4UzmMummn0y6flvD6zfaP+k4tEQDBDI9u5yl3AprWV4tftL6TnksuZ8OaJ2jdJn6c7SPWDAHuxjnlEsFUlw2lhXPH1jygIUJsuu6dizlKfJ1rQtw8UQR0OU1A2+ANbOqNyL6Ko8Jb9Etke9EUGEhpICBnorHl9wIA30ZtcT4wzcGk8fD2CU/tkzRD+nKXBIL2DHgsk7DDeFuSEf6OD1Gmu7hUNvhjueygCSUK5CbOx5WK2mRI2U1BLJPYk6FC99ja3VQySoU0YsD3Ag2I1UP5/HXHtwXVJEFNgzT6KlmAE7p8kKX2P1tsG186pIMvWn75jlRAMmkBBv4FCzgQBMLamS8nZRsRttzcMEbf6DlxD1XD6SvWC/FrPkn1j5iZDTbyzH643AmiFFW65KyipfGIupBkWRQylR8MN8fbEYPrP1q3vXBPpph1Ij7mNQSSZKr2j7wmBomO9hkW+P77uqS8FtxalVi/zUxiC8Q/HysL9qOqi2OCiahFsCK5uq+9YJxObtHBrBtQFSzOkIfN04rBn6ZfwqZpKpeZnKMzDssODaQBH+8W5MC3kb1+Cr+JyuPiShBL9y5ZNbli4q0aqiom3HUzFNiorQbDZ09gcfp1cuA2B3fOvDFJRzig4UUWsGTMyeRjT2I1/VFjLQuJc5tTkYujFbosE4Q1JwVB6x/f5AAgMYsh+fbL9/hdwrAvHDRlhfGPcLFVADkT9CfMtjhFJrOVLKlo3z/0M/KEVVhqcmlWeefL65j/HVV6xfqph0lULNjjSZTHVSg65G1bI6CVYC+IjfJbZRPkKLd1AwLXukluP+5QAi+VV5YLQupqqqlleNYQLitsoKeMoBgF25k9svVOaNd7DwjWFghfizwEm12Io9aQu83YjzNcrkAOiF8tjSOaAzSRNXtm6nsz18b7LygGbb3QwVULKY2DtEYGRyFFLj9RlPwTfGfXAGqWpPf5bujFmh3oo9oqGKvUqv2ScPkZMrazz3HSxNKycdRhG63CMZ7T14MyzYV930kLzzTkvq3JvaYB4KPaHIA8IC1eZ/csJwNY8Myfh0SAQY76dtXy4Fih6ctMiNc5ivgeWUQLREr5FIn3+p+6LCakBFQRtmleVI4lZ4yJvM5mtyp00J0l7+av8RnwJ0KyyNPkKiQyRCktqxK706pKxynE8rFJdpfqFRUmH058RSmeAblong0W8c+F7ynt/jxQrHXPOD0Si4S8zPDPYW+zTJ6adPUiz6an1kl6KFkaFIiUlR9AyrBQumIhP6op+bjBEe0FgKQef0quRu6VfwjFjXO0HnfeMqCjDTH9oECebxMpBa6sT9ACl3raO9Qzvs6IYkiG/DE4t0zcRBr5cxJWw/m63TPqbPTlpqghxVdjhxZq3nL0zQJHn9UU+DWno2MCQrX2l2HXh6O+OOHPO020qDqOtspqUegQxaVWzonhkou9nmT7iFIbtbTVHDnzy66Qb8PkLmvfoxy5aT8B3yyo+3r16oPPlkdLeFpBjlEB1DW2BEokg8bLWU5ao8G0hX+UJl6OkTmCpk0KHmPBLXWoGICTKSIZZfDe8Cb+UCjIHG5eEnNcmfp3LlhoErtt+/LRNA6xYri1pRxDd1be5Vyx92AAxjq9yOIH8sYOdinNSttLJhsdkkvMlle0aYKrAUViGz/mEoRnvO5Qu5cZ04d24I2rhKFaYH+bnde8y/aelY1EB2ytw2rYfgHal1HcPn1xjTNhTdFXyJNNAZE24tUObLD0U/AQWLoDMyof1PS7an3Z54SryY9zYerWrzfqRuS58ljb9rMj/ZVrj6tfmZZp151FHdUVLB18DDV8KPupUARnz0oI4mHYcliz/wvcX0CwELqxmtosCfHnP2cGaIF7PhA78MvtrAyCkTj5KGy8OWfqkXjV0O0iOT65rOeec1B+7GimHCXya0D6Mf+0vDCCt8JBSS9Og2m1sNx3y2e2NZR8GmU01kSB3jQILk98YWVF5rwl/o1YxBzzx+r6+6rvAHN6HnSor3P4NTAuz1Z/AIA5kMcr+R57YSo7/TWi5bUzjEOl0VI6Sx+yY1b7VDimZWKSQzEmoccNM1IK+rkn2vaBrgW/MtR7r+BZJcNNeZ5tS15c224Rg1wj7hVAAZDxYelMoV3apvADVdrCcfD9wSV2Hm90NlrxRTwpD4ZMWHWyUfChEsyjoifpiT7RPLJBEC4X0y5KKAR2/5qXDOqbyeV4O/8wpY9Jd56bnspaf8beSK2f7QK0Am2qlTuxzLnDXvjFU6r0bvKJdvTY84v/c1BPa259i3CxEFOMT5smESXqD3Wzwx7tGjTyExFFPqMMcWkYYnDp3rJi6wZPv0jHxw3e2A1k2Iu6GZsCBko7aT+FBB29t0GGjpU2CEie7wiQO+nHRiPW5nS8nwe3a8vEKAYZmceZM7jzSKi4+xDS2GLvSZLvPElFCBJ0I3BlDFSWyKB4jZjjzko5+JSOjJZVS00pGcXDm72QjkDMpI0uRhYeyoLE9BuQl77jK7n0+K+daMF7kfU3ma5KfKG5tfAPkUm3nEiklvCCgBGtTm/V3ZFOPFdb3zyaewUu9WJIPgQNg4gNbblO+TeRteiec7vlQ6g4AINJSa5xpkH6IELjr/bTcA8yE/8FpilCJT1t9AJ25wlCeND8WU4jJ1G9B3jCY5Ybo8YIUms8J2p0aUOGSJ18WwBnXbDQcYXxgAT5KMmk7pgQ9UPkgGSx/0TZ7ynpmFLTtuCIFp+8QnfxONewlo9LVFBCeK06BB9LKObYp3xFrU0BOQ1nlXY99EEMNkmOOF2gipS4gMstp5GwQnOroH9OtNTv21Ox6OtnvgVlcYa1LKbtcoUB1TfYcLevNdV81YxXaI0Rnb3N3xO09ttAd1N16J9HFekawKed3oh4wLBar7j6z85Jt7qR4yzQ+XIOCOfPvPuo/gxyXddNUNrwLT/+3tRcZOMf56WUT+1E/hjYe2DnIb6jVXbkAPIVShplKJzNhS8fTOyv9qeNTOrAy40mnNpDMcUvCTNYfQvXnsJWUrLnoWVuEEeXJiV6XxrWenIko4kJW5FMCgu5srNDpa7n3yJpWGbrK64xNSPUO5br3YZ9OQyA1MkmaGqAQYsGsnk4I3JHyK56zLuVQyGETRHrHzKZlTH1ekRe6no2Q90UcHWhTSgFtchUPJMJou6CDbqk6zjF6NgFdrJkkuBAYT5Gs1/MGjTYOxFKY8z+e5JyIxGnYk/YW6vmgvYmVpKOH1jdg3VjIbsKg3Rd/Ksq4632SNUHlLRfQJZaB5I1XUl5haNihK8M+UXse2b0nFRULszADFXma9tpnbNae3z3pPXtFEJxEC+6wiKWZItXUx1J6LLKf45ocjMbwBnQ/lg8fpwh+SA8DQsg3HoERYAmc9eLgGEV83fPjVb1cQInZGLB17VTzQ/enYlL6Hwc7ghKX7jTHa1WqfTQT7ZEfGzSVgVhFQYoyayKXrUOMnz/LZLsKCdL6MXzA5NbzmdBRl4j+9cFxsg2SqLoaybW066y/hERt4kYke321HIz8hq2qxTRSm5zESc8Kyw0wiGKsVSTQ6Uhnln60f8HtaH+WZtmGS/TT849+gSC+ptithbpm2qC99SmzSGhYh23XoU327+Rl3eQjL4JmlN5HIJsXvZLld6iuM8VyDgMWQXEHpvk7mJt2t77IHA1TGuGV2gzAA1CmxJI1zpesSaNbGRpMvMeyZkvO+lNSIjOLCnRvlHp0lU4hKh3XiJU0V0KhJhm8EjqrrRcOJDpWS/6uB/ebopCjkgX/+aRIY1CmP0HcQbH1P9nz0/rG3n1suVWy+bSUtJlakFYV4+mlPEpIxFGGBHyVLpeMJvF4li+oI6joLWR7Oy+BVBMKrRUlXtwQ2oBPd7Nnn+nKg0kEyvfcJA9rdY1Lkw/XcQ3J6tqLibuDoG8BgI/5buxkzAEZeRzA8nUom3MY1I3VpNmbEk62cSt4CsQKKXmDJas7nqH86LrYdD9btcRmQzXCqshYuJxeSw14bhpOIn3IfQ8CMS1+Ax/W9qmBa8FZfdGpxUq50eQKZopKenKxJ9juwa2Fhhn9fy/tZazy/6wrNZxWhFV+u4zWOhucAe+MP68Esd5WNgTLst0JU21MrwE0Ayd9qINpAUMPs4DG8ORkHbH6pYGi30e/ot3U+Bacy5abMGQyT+vxFpbgAixoX+aCN+dvK2M0j3Ay9u9tnrTC06HExnlKHyWCw6Miu2K8r89a4PHJg7N7xzmULjIRlHbcc/zvnACeTyyHHBEQVUYY3tG3vqis0sCdC10M+SjMM+E7tDSsLcfTqFSaSfMva9OyhKupSL61+v1XIbgGqN0N++8W8Jp9ZkSQOsvQL9hxH0cnwouRfROL/AJiMuAjo11l0ScwXFuX6iTfdojF3h3Z2NXVCVeuYTkXKVsFa9m5L6eIleOdWvDv9kr6eyhRdS4K3iueWq56Zm4StG9C08mon3EYcEyPbnc6EeoQr3uoOL4GAUwVdA8BEgSOsGgpEnWEzZ9v/1ZzxaZIMIUCe5vwHUMo8P7/a6KkO5LEdBhKyd816OaYOQwwifsIT1RVwLwNmsx+xXtTLJ2HF2dwqQbOkoI4C2lpnc22W7ON9iZGmS4QpN/zscuPVxtWhxrUlU2+fKux1b4UrKToxjj5WyouLynI9dUe1I0J2WaOQHxE5bq794b/6ora8bzKZHfCDxMUz1ZYOeSfWi+bvH3AaE/hRWwe56k27ZFBBweaY6KrvMW57K+57B34tmJVODG5zP65t8opX8+4ECB6c4bhRI4u4sPpQQ557mbzT1I8CHQl6MvADwFn7/LbGiIjms66UESO2wrZSMTM5ImhTjTsD+4r/2mJ4b/KvijXMPP6o7Z3vxe0xcR9zrOYxGtU4oBrtzxyXSB/YoFT2w4lV5LAETRq0BmhZKkmTcDgiXInzUlbPCNgVEtIMrFLkSLvfuwrY9KM2cYuIGb/nG1P15FrKDSDgs0DiFHYj6ldy9zPRqZksGb/U4pmrDcCUIPSS0qppFmpv0FE7wnYFhK3H0PQk3Jy0YLgWnz6xXP1xaN2X5uSKeQpmAm+hKIqa2XDi2q08Hj43MYshxDUjl344NXm624/WL01CGmzhegQuDy93F792fOazCtRBDHqMS76Nkdc5FyieFyJn0WM0n+bqkWh/BRDzBTKLKM035gbzmgK/QqYbDgcy0pinqk097bEm5pDfcpKdPa2Vk6sfuADxEfsmDjj4VKvv59PYLscVmV0vSBjVVks7VjhyXNcOPckWAl1KmtzVE+g7gHpMNowusHCKL4t3UhueDk6KZiA4u9bZYKVBzT/76iziopUKxq4m48DRjRp915CKGWNOr7rhNYGCoNP+GzwR78tRe5qJtKZbbHiCa7T6srAm2EsXn35eyk79efjV/71S/oVDS8qNjT+imFyoC6F/rpekxvV88t1vaEPmhBhc7IbtkTd7tBveQcblHbChx+oEYrN0knh6eYHR7IZHx7Gla4WgzDJAaeS3llntYXmz/dIHsFXHcqUIP1fuBH2pt+VdiTT1QM4GwrJqMi/6SAkKlZZq+r5hEeMKrw25hkwYGHLnCqzDC4E3i2GaFJ6GKaxSB7bXmr6ZPxW+YNQLJYhvD0ECQZR4ObeJ3St0oQuOGl04vCgoX+pdUpmZAipGZHBMz+ULT+taurvl3kgxQbuj3YdV9GRyFBcax/N+Lqs3otWOC6+wWcvndddLAqI62ThbJXGsQEBHwbmheKkNYsh2bzqRVUh1i7VexuGmLTLCNVmD7TIPdnBESndlq8v5pgN1xjWKJYAV+AA5XnVSasVneeJErINeUGjfEA6VU+9LwQUoPJAS3ATfQWF3tvKNNe4mLq/TAGWjEo1HMHv61qDbTnVGCx3mnuwyu1kj8gI65zGJnqf68hkF10RNhI6SgzfJ55ZyVKhn5Ugzuv3HYFZT5yRAaNpedq373QzfGL1APE9m1YLbV8utcZ0yPOWgKrxuCEQSpcasCzK/vq1ImaBtZz3sg03qU8TvPLV8LMzt+IMP0zgcLII1kxbmKB8pKV2nc5lRNzizCYTKIncQ3TxN8zLp0T9723E7ksaMXiFTjFMBMpA6kKtTEDVv56juiL9GmJCD7LQayk3VAZXIiZ1gwF6mqFaLZBMh/DwDEIYk/14U5yjGQ0O67qt0dk2yYPJyyEP/ZWIEpIFM/yqGuCYEis/87YNGK1J8+5+vkleOClKaDrJ33nB5FozGlURjYVRzLAClIM7PkSLW9e04AN/ZYgaylKnVEaxUIwjZFFL+HdXCJH6XP6wKcnjbP4FNeabrDzwRN5Szkn5UbwbU9uwy/i1oVluBc0XWVLrBvXzbYyxwGeVOPk3CPdtaybRG/iqBQ8/zdNe8mQJp6agXppjAnmfyzK4YELnUUsjgffhjIBZPidUqLkbmzEaFP7mwMSon/iWaORdl5/4TUqYhdr4NtoTwZcewRIQ9db8kH0v8m6ZhmrqorMXulMp7mvN/1H1tim3qxvvD4keg5ArZZiAtnoKKN2Rs39ZIxocmGBQCAl3BT3icwzg8KpkKyEdPtBhUI7Af+hCMzinUq/vKN7vX4EzRgNYicNJ9T+98L5NKilbzAqhSi9KFn/iff4moRBncrL/z9EZc64fLK/n5eQz7DcotoXVeANoJe4kcqmPr6iAw+z0F2xB/97TD+KaivBmS7iJdL1rZofsOADvBe2FLpLoTf3M+Loszfcsb6J4ZqoCWf9wKvAMvztESkMzzv7wpLJmErA/I32Npvsx4o+TtYqZQWS2MuqWbYODDU6e2bYhiURXyAF33Q4sCnTT0Jxo21Hjujo/ZaJ0NjOrFQcLX3owPzFBHR8etAdZrv8DN5HUH+UHP47JYn6jsDbyUV7HqOCb6YmwYOeHAQgF5qGrIJ+Fg562hcto0m6epUmB5Gs7NS1t3NszNYBz6gwqQ==
Variant 0
DifficultyLevel
448
Question
A standard deck of 52 cards is made up of four suits - Hearts, Diamonds, Clubs and Spades.
Each suit contains 13 cards that include an Ace, King, Queen and Jack, together with numbered cards from 2 to 10.
Lara has a standard deck of cards and without looking, picks a number 7 and returns it to the deck.
She repeats this three times and draws a number 7 each time.
If she draws a 4th card without looking, which of the following is true?
Worked Solution
P(Heart) = 5213 = 41
P(Spade) = 5213 = 41
P(number 7) = 524 = 131
P(Queen) = 524 = 131
∴ She is more likely to draw a Heart than a number 7.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | She is more likely to draw a Heart than a number 7. |
Answers
Is Correct? | Answer |
x | She is certain to draw a number 7. |
x | She is more likely to draw a number 7 than a Spade. |
x | She is less likely to draw a number 7 than a Queen. |
✓ | She is more likely to draw a Heart than a number 7. |