20311
U2FsdGVkX19gVhojFy9MoqLzV0M4AGsq1vXMHsUjIySPXiEQl5iOon5PNeoxH8gjzhjaaXQTEJRR+cNz8Gn7vImWmA23iCkYYBP6BVALEI3nrV4QynQ5iDhtv5fEnzvNNNoiwr9uBKSbeNiac/l6cJiJink3Fe6TCPR2/oY41Fb7Of62bs7Z/+jXLmRA3iTnsn/+ATjMnOrCjzrvZFEXCYGP1OaWE7fD+CRDvPpZNZER8Tbz2pCPnE59KnFhmfJy+fE/oPQDfiWPlCz+cdRyIBuugm1XgPu2krIKECLyEEJxAU6VQOutGoIEZuw5YLt6bR6KgboEmrptBHHFoOpPZdd5c4hFbWvA8HoPrCHkfrW6FWgh6mrsVMuQB9m1hfNP8MEcfIv0Kq7vldBZ8T+1cdXtDyF0OBTyPPryyiuqYTy+JUXTFJ4UoZtDIXZKogAov0E2tjVHQA5xamgwvBjxb+jt+rxxCphiwU4FJ3w+5wWMEllOr8L42Ao3Su3Ex2QODsPFygyGpxkU5STCQh1c8kvdxi0wFjDsk78u49h8k7WjudK8WckV8cXapJJPVtfKHkWdmG4AnWUeXMr2CQdiWojtawtn7j2WhVWEzUXP9MPbbxOCzBWpF0qcezKzChhYISMi0g0bxw0Onu8UTgOvvqJK3G9sMG5CrQR4ji0r1gLFpS/NaFe6LSDGLiLa95X345tTDplGLvCeM+Bs5EofsrU+GVk2fOM9r6/UC79nw2mT8bHi3GKR5tquU+1oMcG39WZc7/BtzjUduNejRGnKktjUq4ZTuCuii8b7h6jaNu5wVF5Hukcq+4vJcDDkOMlWX6scT+hEsAU/wZCcYcd8zMe2wHrrntU9sOLBhtqLFTq/lGlDlDwgcO9eCPWiYos+NuXuFzAsaFKaYPZ+x8DBIJ24w8NQDwTP30abOsML+IpW0ADtVUfZ1uZfiKGUBZmq489ei+sxTvFCmrUR5CprQFqUxmFvjEWJ+fAlc+JidhQyOkSmdQ4hr5h4NMsI2iKRNrQsb1xhBcxulJptLVDJ99cnpmfQGD3dJ9mCi/R6QlIoqp3vmONr+P2CiOzsXzfxnPdo3/10soGqHqY22Bi9OKQwwOgxhbY+UZ5I3CWNa8pk/NMhaRTsnv43QlYD8qvqrq6/e4lxT4uPj+m3G52+pN0XrRN4J8Wpr6uO6I5c+b/iUgvs53jgCAWQswo6dH1FrjZo8yJ6QLz+XMUNtEcRU28k/I5VPl+F33Y3KJEsX2a24q1xri9OTJmuGotxOjw+7wNzyQtn8hgn9G/MhxYsJnEJ49jYbOewFTGT/3gBVZoGuC4OkpCK9ye3/uOWr8tc7Zlb/FbiqrTUw8MwSYpduGEosR0qS2ozvhh6xoZEdEqk2V2bnj9R4lme2x9dWT+zFHHTybadvCMe6fNNZqCASNaqbhbqkra9ApKzqNj9BJ/9C6pas7B6ug7avnWUB4VMHKkvnlr6iTm9Pbcx+pgXbqG9gEi2uhMXbrUjAIAPL8293BKrEmSermY/hC+HN8J6NnRV8BNrdoR7JsyCpQrncWHsRf3ic1S56x6VMDXMP/T3zeDU01xY2u4Mlej3uOGls3v2r3tuM2as5KGlb4M49ixDD6HI+o5bCg7r41ZGXSuv6md8pelaG7IO2jhycBqIwvl2abbxUvTowH2XX+QnMSIwfX7y3pOTfd/8EaI200r/ZodUqH9YFIVNpSHUM3uXIjtav1tEh3c9RhPnre0LA/lfbjBqWutHVkGXRdBMB6UHkUMcwnfpgXxtS3NOE9Vhkjx3RJwnpiDfG10CCpSkgnvVPKcoILqPdBkSlqQ3Ajm85OqvL4VBlBtU6qA/IrYuLS27MrTPP/SM1CwVYDoEONLQH/FExP/kbdN4P8mHfePpADdH1eA3svYgqVzNjzTSkNSY5A5K+yX/21X8JLEoJaG2fEAYWpzwM0B9vt2qiaYHFXko8R4nBzBWMjo7HKmcNKQpeS28jK2dd8QzGlKmmaej/2s9jYBkn4x9lfXDeiLwJiDr9iTKc1r8gZwGlRugvG7SbIs+vHlwb+xFuoKBVJ4EyMD22ErpUg2rXPvLkJLugFOiTRKeUrZFsdFV3aCoVv+ZV6b+0xx51BeAkrt2mqEM4SFkTE1m5W09WWLf7K8pF8JIOvUuI+aF8aKF0qgIRTmyxO5XitF3U8/pcYlyQIALu0AiXVY+u3/O03ru0FYbRdIb4mq5vwR3GcXgLNoAzNM37HDhgd3HFgzHUrOUTyJQEPuhTPmSUXZmSxt3D+heTm08f0a5VMVkmMMVDKIk6BV8eMBTKyeROk/b0Qh2YHCovKAX1NcNYA8jd3NJ7XMHuett767lZrpIGcKTT3jzY5GbVPz1bAxWufCqo/MCh1Xw2oMm9ZX+2DzAMCcafJZQluJ43l572K3WCpFQkAOZhSJXCXefngq5+AbJ6XHVvK84NXe/kStQHJlAYHhAWlut90VKdaK9SM1QrZMDREFzcriqswUVwYQVjrscWmGlkPS32ON0xJUVCJLuIVHf8D49QgsSfp5u5t9l6OL52+0FGPwx0nbJGv8SEK2+8iq7Fndbr8txtRMl4CpYOR0zgAWkL/qcYipGYSa3aV72ufAr+0KMOkWwqGrHliruUIXdEHTshUPfAnllDW1C3+TSFyh5lQEDYyalEQKdfcORrWSQ47MAargd1C9MhrqBa0YKUg3ttMOg4tRtBYj+cdW7JJYrbBexRajTHX/OwVx7YuN5+milPx1EQaCKFFOt0yoPUFk6Dvm24rko0DL1DgMczWOunDremBkNd7fTXBOOIm8RCpGNLbTrK6xmAIMcvPX7uHxQTPL16oxGkku5/XzkXXWp4L9MMnmFCoeBfHs141sXQDpAJAWySfguDZbgHDk6GvVCNbN7rzYk4fCYUZm32wcAdBl+eoTO4wcifbwYSjQau2epmheoKKgtC3CyQK9m+n7DRqi5NGVzOERtM1LwAxbIHZ/inoFMecdst1UplmQaXcBCQXza4iwjmQ76fudROPYTBZon96iB7nSZ/hApc3eCrtsGSHqwnwC9LGATvnez9anNoQ7oWjDN7zGhaeq7Zxo+oDNSpMqHzbiwzdvGBYFT0jy//UEbwmzx2sekYlULGICRfJQ5Hua2nDIEieOfOmvHXCMWvxRVL95AJWIh329Z75ZMSI7l7lm9K8/Tj/PiAWbnR61nDXI/U5szyxc3MqfNBFFQ7fyDg7ry4rKeIAl2MWAP/A7472uyjzrNy2lb9AKkGattzAsXMhZzSxp5jI+whehmoIhQYpR0/gHfT/pYwhZfCB98mdBOYlHTwcZE06O+8Jke2isdpaVUkpELBi9sh+EopZGe24cfwTXIy7y+9TLyr1eNkgzWJlMLd6lXuuCd+o5MzDEovcp7Kgj/v8brjM3plQDVEs0sQawmht7JDSPZjtQHnyGVz+Lrg4+IsiBTJas/5SGCnYv1ZfZ38YBz1tXz7VTWX9uXDjzzhnSvRbb+xpG1KStwKk/EobicrAzwdvWztHVXqZTlZBXiZ5aGVDA+pOLosdZp03ZZpwxFZ+oRQ9wPVSLpBr8P/28P2vL/0zzgVaRg6ImZVPt4NXx/3uUbYDl0B2raoQjMBqypTbGEIRLK9A/jN2wSnOI7fwqO4jTMRRmkl5dluYKfOlqZ8LfG73CbpJgqcP7Azea1DkBbXiXgvp1dUUb5X3xDE5/qN9+K+pBzWOxAOHdVmBgA7Jti/CQ6mbZyVdtXfozjpXSWNiA2z4/s6Ib+Btrdl5NGEFxwoA13UgOUJJvpju8eP9iLwV29b3sIhMsH+Zbyb0IouWEQ+ofKaPCrlI7IcPRx1r5ghds6zFJem9C52lUdw2Iy5fhjkzeuxULE7et+SXCj4ObA8OmtQh3i5TZsSFr+O8lY3/FFt5WPRAfrMAkdndbt54z+nNxEIpqJSfGhl9ebSIf5pBj3DZRUzMVCL5HG94KFvRUqp69gilB7jncpgcIJHEAo9M6jVS1MbsDDF9t9s5hU0CGBPTR50qhliHQhMZWeGKi6ax3j+tLuM1OMoZkSVRPrK5BASBjjMw+0xKTe0XRwwaoXNDLgwZbcK059Q1k85hYEBUX3OQfIA9juRMQfevh40KMC25rLEXmdfDADvnEqgch/DQy3cchjtrlWd7ITxPdaOKiL0oZ0Wbhulzsc0wcjb8oSvBkgy3fQDhZIa0xfDqQOHRFlWRMR6PiV0m9Z2VL/bekuu1yFOlID0yG2NsV7AnKKNr/1wspVwDXBb1RTGUuO4/VPSa9lz7FXI+ZdvX+UxfmFAdexeUk+2RDkVuBwSXITjmaDfDwoJKIJPhNGVIPZHw4y9Ss6jeHN05YuFsg+UV4deSfmZSLsPgRwd3eh7/1lqyvEdvCq4jrUnNUKqyAFqyEZnlEwWxsX7VKBMycQzrc9O26kG1dZuGBcLUFyc6Kx6zEv8VDBXv93UUK8r2E1USjU/0pgp8nLEmjubhcXsLjG5NsoDykoicqOifVfnFTSgEu8kseYfbdV019Yu89oatp5N0wu0OMWsCEFQJlQx4KHSrhcy+vZPClk4UZAwVcx1QHeW3veo2Wkw8PBCM1qU0qd07hnmjtStI4TpPMAUUju+78ExKxA0cEftPLe/7Pv1cCdrsF5sPN5zUIw1A2ITJu5SwSXi0wXjyN89W75iCuOM6b7fOvOUBPiz3ERYp+7nNSKsF+s605+kANNvyDvkVrMES9wDBG4A0V29JqfPjDEtqKV/PfINm4nRKz5grrgOqiFp8ygYihUokrQvWBtyr1lfUfjr7DQekvGlIOoDiX138Db/r837kQLuQP9owMBtlyVIILld+f1bwgCIVhbVkDNEiKZVma+FLy9JGMI7JxQE8Njou+qgz0xxN/GntdpGCD4PeI8n7pBITaIw6ZmIfed8HR7AzVbZ2vf3vEgzTvGLe4ZpJtaUziOf17rLT2+0ur9YOA9ZXwkEWXiZUr548ioHa/g4hlmtAIqDEIWypxKMMjfM8SpzHlOkVY+IWCzTRD/4lcCn8VubjIHOMXglcUDj8V6FrYFmfmeBTjNWLX3wwNvdatESiOcS+BlGPN+ZfrtnOqX6TGLoXQMRQCjJa6nkGgkvA6GXfxgJhvySjCtmagdOYSsHckzBnSBQ+EwbpwP5D+sXKdnEhU7QQqgbiWhhIS69+9Q1cN3T2qum7S499PTSlDSuA80hBQZ6LY5c7clMi/1ly/a7oJEUvu0LYGGxnPSLDipNEG0wHJrQNzSKK89sj7gncALgvtnPLf4agFLVim3Q8v8RsUFOa7lyVMl3tPEH1mL4SOvHLEc+tAE2wtAUIh3ptBVorGU4JY5IZWI58tW3nCdaXOVMBFiPSa5zWdOgC3WxpIbMMUDgJ1M0KFRfyL4IJS65e1JZ0m5GssXBgVBycUYh+vZN4+2iouCO09G8eMI12Z2Y/1VEmQnbGLKPOkdIGeEgnLRVTCt+TPZ4nZFtqzlhNoxeXPwO/lYsdpV2tUvHGWkUQQ2nsMUKlqmQdMYWGATNF1nj44ZNbO1SbroOHRHbh4yk0mhYReq7mZKo1mSev0oTzmYQO2Go6zoFjxFFA57BbPXqnIw4Rvm+G44XdASv5uW1qcuxXOI4t+nhyXgQdOdLuI3O+H+bQMQtPYenKs+FQsdzssufwhDtPPLYahrdNvaXGBH6ILyV2Q8rCEyhkhDt81DyPaFMnPOg4Jt+jBxJaqJBeIUV4TCy7W2R9qEcXJ3PtuO9Til0MgQ/TGbXZAgmj3ATuTLzB/EqaG6eGZdMXzGSFygEF9UrWL7VLoNanH6U4BlTvSUBmn/CPamyCFs0Id25HQ7XlWTe/iKrpGE5uvWUY96vjPjmG5DBxu9aststjdg50arigTYXCV+89Gft2sjMxnRZ4GJxS7I409UeoChK9cAxMmZ5AsmGfkEIuXRG9wgxuidnfsSJaT3FISGTufVMYGWM0joTvcilUAmeHTSNmrvlgx0a/620Vg7OgPylP+JqInrjp5wB3mMyEEtqzOqps706r98IH+U7KjTW1e9pETne+FLe3nekXZraYbGrrksQe0DaoNybU6xmue7sZhu4eovX5G1qD6j+WBtXeRY1NvG2U8xEL2hQIFBYG9MdXdvw1XKFMcaprG46Jqzt7UyXjM4GrLprrpnr7iBSRzeq4UQ7vGYdaRtw6yRkp1tLrVDdEj6rss7pULu+RxQNtMIA4/GiLzbZ9sF0C4VorgdEi/6XOJnxwInlRU/W+/WFXMcT5LrgnoXTPb/I0/uemc1YZEFRYukl783hOd22I6nwrzQaqIkmvJHiDH4xrw2QYX4IBBmTfRWtyG4Mp7TMxuUEko0flY8RtUTAlLmfvtAi63M8VNm/1qbxTWqf6AjofR6e20CzGwS3h7njW4IMhrYh33jb7/ZcrxTRntit3/3ge8xrudVnntTSw/EHZClRXNWd7xU7GpMn5MzL9gszt2Ah/TsXe+g2pT4bgfgI+B/wgxiQ8MGNdjOJhxt0EbR2jgc+8UveWWT0Y3x/2ThD8jCAQMrZVPhaUOQTWNMwqsNmqRQMmtxStkaRrxi2RF+19SX69sp92m2Mif1hb6szQTKdu3nZNC9MLBXYkPrPRWZRyhF+9nKol790Xp/Uzrh5sh68ql8AeOJiWbRJbGkN5o5nGGOtDkgkiucx2GdtTXfGyNGXxNT8akbUr83x6VJJKDVdAPl9uMFVssTv+xv809h7Ad4EtSrXN0wJeJHF3YYxrinoRc5XGFUjURupGLZKgsLfHHFM2gMr7FFkaUTh/8Q0lMpmgcruHd8RyzomOFUaeEcQxADLfRR/PFilsED7RFS1hvuVbc1U7YuiQdGe/EaWLwbmAtqzraTfhkbFZ35isGqj0NBB70xt/UQwgMteTzJbO1WTLBV1xgiElxPYjnBNE6tmEed2dpnUM2QUcDzAJRLXzqJlCJbYhUuU87RGEhXhVCutbLXy4F9DucV+xOEyxpM6DQFuTlFaGaAfC1byeReFJPSQqatMs4HLdIxYtBXcj+C8foBtnCKFxj9MoD01a9T7MG2PgR5AgpjvIYC21nQif22BBrZ1I6JjEnOwYOH+CNuJw0/NfmvUTMkHoQkCMsSzJst2oYPffhMMCwUJqYfKRlcBZX/sKJBHSmLmQbMZYUUNNIar1Lkp2B31CuQ0rQkZtkgzzM4PY1yjNZFINRfqy44EVJ3Z4KUjT+ftk/F8LSGG8H0KMk6O2maE1E9RghNt8+m4IS0r+dBdnnnfvIGR8wqe8/unkoImZrKYLwrm5yvEh20tbDe/fqPoKxZV7ROskPTqQxZKiHaJQToz3UUjJni+BlpRX3tFMvcb3kHYyCYTAUZn7t63o9TeGpzu7R1ETy8EEgJDMv7RXILOxUuai5jZ9CfJu6Uo6nmSNcGn9QrkGTQdzpXdS1HS2LODTDro/JWjhFLgiz8T5Unn5OiZUYtNrFuKA8BuXrYtCgLl5GD1lOCUNZYU0NdwvCJFAnM7Nd4Ap8hcAUvbunIC0+O/mHvYMmYfgM81b+1y/K/4qjQmbDcHUecluKBm/weI6gssQRpYTzAbuWXC4p+dL/M+GzwXjaZ0+KF7x+IwPg6BVJFsWoVeDkRoX1vyCm0HmYD8uLYfPWNoczfwyljS73TUbrHaTm7xQk9/5jY/RTg6LTYOhGrokcba/S5H+1WK3hbXjj3c3+lvJ92IUhUCQZ7lhO6Pp0/jgBqmLtxwlm/1js4j6T527EKXpzz4J80hRP9SwcFbhok2Sa0y5RUBGxcT92zcalROGTbniNFAw5k3eWsqfqAbMgkz5o3Wn5AE5A1UkIF96LeqqytIBKr6SNKtUPKQr5NvyywFaHaV7vbAHRXP6H5VcD8qthvbeSGvqF7ad9H77gGf7lzYZCc8NJIgj0b7bu7G8lhmGbVBPL9RXwju2FyaLXF9ErlajT9AWjjM5/eTQ==
Variant 0
DifficultyLevel
627
Question
A child's bike tyre has a circumference of 64 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
64 |
= 2πr |
∴ r |
= 2π64 |
|
≈ 10.2 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A child's bike tyre has a circumference of 64 cm.
Which of these is closest to the radius of the tyre?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 64 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{64}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX191boQ3cbxYrkMfx+qsI2mDS1T1C/6+ycnd7v+ST8aP5jMLgUKysC/VJJLq5I3gTOvHnT4PEY8QWzWWexUefGkWQnTv0UkKiTJFLbvyCwgbqisTrimehFT13UcZ1SlSSmLVUmkqSTo4z0qj/J1nxtgM2pWUODw8eCgLUr2rAT6pEHxD5TlCal7mEL+iCQFGdoPkGV9qjSFcyK+Jge+9v4KzLQ2h1qEbz9huGLJIHBYPFeC+Pg0dZB01l37aZvWv83zxKMKfPqnKKN2WCrBSpafWhWoRgcW5m8XOB2FwEalWMAoZyA6S6gZ36t0sRqDPLQpRxs70Zi4lc9EadKNJU3f2cayEBYjsfhaBABnGBMVUdeTljH4rOnpW8IEBB5GWmOHGoGKD5tGokAUpHnEbfr0RKfGlqeRBb/49D0188JYFQVuBQw+SES0HvJMQUd3ots9X0X0YLlgi4WQsunw1hH6SgrmaY3KmbGsRKanx6UmjuzcyLrSJuHvwn+XSegmwGjLJzDOJsb6Qrxi5xdYvpHDxc4aIoajARAa5PQgVQnyV+8OxrqcEi7cwTtk5dGMZA+oELhMp60QcWsk7lN2yzZh0jTPs2cxdjABj8DOqmGojfRdPyrfeLBlFURBPtJ/eu3ddeYADzSBFRuh3JV0TFMbHgjBMg9/A2spUdh9Lxq1wnpcVojuptsnNyb2PjLaFG/aVQVXO/IzUbXGnFIaoRUGzlC/dhsl8sRAZ5pSRcBBuEeEP+ycpRqM1h4JI4b/ZTRS78Tkrwlhz7UmLT3M4UzIcgWYCrkTaFLRv2hclKRnMdkvw0g++VJ94jl129ALZ+Od5hMZHntj9hMcQK4Gzufgsy4QLPRE44z8F0hmLoxS9u8hs+lli+zIqY5ckFvLx7cJ8TAFKZBJ1XrlgvKfkGGCuz9nJH6DNA049AqVkcA/WswE75snOoO0KS4VkUPunL3mTg4X9uKShjQeZ3khh+ZDvQ3jLIGLr+L1i41jIRip1ri7Xm8kyF1158fQ0TyzuTcJhI6UfgRMoYNbi+OFWrMmPCvCLnjkV5qa2cWiRpmtdhBtZeZu4/VnRAh9C81gIGJ79X394BlNDTiUdESy76Ae6cBVeDWuS0JwgPvBR3afv+a/UgEBwDpVotjbjNkr/Ze7JlF2S7JAOjXuPntvBz3o5vaut3hyp8AYzDJovFwZymlHWXh/6YFDCpK7k8VSvuVuUcNjHGG50+hiA/WgTyT9SgMUmPXoVAcQ8fyjKWjA/DKkpHu3nOpDK9kGQ24aQlfxIPHj85JVJbuuErSU5kTYgnCAqypR4OULWPipyuQlvF2SXxzx6Y7QPWrk8p+B92IKx3JG6GobzUG+X+sL3p9sx/IpTWKWSXe7kTAMWBHAA58NpV6ErAu9pNwx1LIGIcoNBX1+2y4NbuJsollzvvUS3S+p1qXY0h0obO2XVOB0GLPSfAjJa6E0K5dM95NEvtvOJxraIUHbY1FbwCZdNFcUVpPscBfvnmf51HnVrpZgMD/r8Cl/S8gLs6/OMSTYJy3g7UqfMEo9qofKR1ERyayrqcR1b/Q1D+JuoUR2fKl/PAw2oCKLqTiHTdI6gGSf8b1yNtU2gTPRogfT/g/ZyixPGS63oxJI9I9rwzVT1JED0XyB06SQA+8yEt/NLhQWXRByMcWrWOVhgAFZ50luOQY5I/yP+2YojbxSEbDibL9ZtedpIEjSPIBbGb6kbyHnHMzdctMACc7PH5CfBlpWETEn6DRRxz4H28kLYoixZa+rOMZxEyljEN5cnF3h4lCcoYwiYv7XliRSeu/0fdyKiSLF1XSHDFCozNpyzqj2sIFn3pML7fqrp2SVXhZLVMbkVeRJosNjIWzGcv7F47akM7AJWQdGF+EYtaOjZ43SScjsA7LZP5G9HTcJpbxw18MyfEaBEkqOApO7oSgzfset+L6uB7Z4anZhariNhSAjtLe4C7APaIqfbk0F54vcnclH7FLj5a5czPnczg1ogYX4E+8u/lGbcQRleBVr0wqJRDNGfDmymHBJVK4rIPsdAImv63VVKlu1DNOpDZvaFpUDUoiu2VuOglFkQXyC1diaCw6x+PS7fVFmkm/E/hPzmv0ToeY2JmvJHsJ1YXtr9H5KwLgQHxcQo1+kecmOCOAPsB9qrou6M6asytdrXsE/lf7p4ab1S76EHEStWmlgFQqdQocti2cbo2TTG4RVkqcx+A/eLaNmkwVIsrijVzm22L0cI+/uGrp5EWhFn6BBAgUHDYsLgFMBFfd9Zco7D/kl+BQ6b5cugKSHdtj1p/DzAgz3lcVAS+SMmXNX8+L9lCAvxv9EP3u5Y/eP/OKqKMmFHyv2VweS8iAYbF/9KHeGG52xOIcc35BfvliRB39wmNsN5C9XnIGO1mVSZzbBMeSIGD/WyRfMD4pEdH1d5OkvrcS4mOSskwTHkz6P345buWtsWpKTEpnWcpWEd+dnqwP1l5lsU8hUUPSQHVdmKLHQuGL88SQ03aiBxkX1zacJP06EyZFV7iSuHiYij417H5WRUt4ofmGWZQSXf2gRmnNdl6QwXWmM+IGm+WKEwPPxsEtve5f0Dx8PnCwRFST8DId+qi7dt5Z/jyRBFrbiWi+XS9YR7Hnh6Cp4Tx7l9XgUAUQH5fhhS6fc3Sl3pJhWlquVVsfRtxyOEaMTW4DTfxahlbEmcIUxprU82iYk2RaW9brfEl5AB86y9vDhYE5rloQsjyVKM6suXd4l+KTg9AYM7EPcoPfXYO5Lnu/s7FUepZNdlYBNGa2Apd8zDNHcT50ueieu2+9oKP42CSUtOXmwn9w+8YPz8CedQVADnJy6Aq8mH03ZwVuSHU31AKb8bbj1kxnD9VQ2reDNpo72t/+/gU3RpYfSUISx7S2Ew8iSRr6/Hp3Ujt12KOgeLrj7LpRs5n25OA5WeqmGH235CnYjJA8sINEYjcLFqcU2gKhiol/xhPJHeNXyf31+ep4IYt90jrE4Rceh3V8M9WyULUNGw21q9lne9LJcAV6bEvwFdssAk5tPWl/s+h0SMpMRcbzuiJvEeurR4Sge1tcG68hqM8UX54SbouPr+PNDDxQRcJmDr3NSXWwftJ+G0ZIpUqL96Viap4bFKDGFjbcCZzQ0uNcsTZ/tuxIv3F8EfazCeqSBrr6rRJygmCe4xeCPaN2hI4WMNQ97sG3KB+5GKRT7EEMEyCLZagA44CClKbJK0RyD2eVItlhG3KOMSlbngM7JTZKHBVyHFudzbx0e1w14DBbuUocS2koad9i4BuNMLNiIkR8JrgbcwElYeWKzQATavJ/9IEcKraZMT48D2tKoEce0lAfhUt2WBP0o0w+mTmTC1BlH1xG0asgADaEnavw+uOR/0FvjWsru9GZS3r+9dEaZMK9421xKOA1Hw8Y7rYf+fxEXd3+EbshzXjP7xB431qbAsIoS9tD3PQ1OHGNEyKtWWRS1okIHG6B1mOzTJxJKls0hzGxX2gCCanO+2v7a+S2GprvfAROTl2Fqi0QqvELIVcYAD4Ct/vaR725gnEZnOfwEH9QSDu8gYvqKjJ0eKdjBktCNfh+hHVl3C3WDnKpa+aWK4WBvYl2iQBHgEIoqmQD61aEsgzBhaaJS46OqUfP8y9ohT0zLMvvmuDJ022e+oYvUf9DWMDJ2pWVA5//7mAMJFlMpchYXXvzKYjuNzonyF2aljNINfAo6MnpBEHmVdouQl9n+o7o+VyZ/TJeqem7YEI8Y/qFxxy9Qa+yscysThQ5KpSYmfNJFmI/OMOI9gdjrgis3t3AcAEG4hg+Ltw71ZewTCn5BTV8schx2eaMBdLMCcJxAFXIaGGAF51ha/9fHqBfmrX4l4dkEhGlEW8uM+tj76jLZNYuanSPbM49+gqLrW9rL+NXkJZXqtAi7Kh4DIivND10URo7UKTLpftNGzjk+ADImZn7B2xtBg6y0aO32/1Qn8rKUaGeHmwQ8tw8pQL3G6r2a8LSmJMA97ePZJya/J0ip+IayfFk4N8dAsvrRf3nvMJboMcLEcZ3fumYhGC0/zp2ajjf2HCNc1DMVAfh1v5hYKsqiBoYWIcOAMntNWivtOnobrOl3gbKMMwGaOhu+lVsyWoBR3TjwC6cgLDQd64FNnAS5oR6AjRBcFh0jvvpP2eKxyoz8Jms0MYKmFARKtjJXcnTWbF8HN3KOC7NlKBgA+bmC7eblfSZTWzBxLbg8aqViK644VFQzOB8m89llBvaZXYq68LW680a9M0a9whxzr63aldEaXHLEjdw8MO51oj33z5QIglK967vytVVtvHz9GUmOpABrhYF7kwOPYmMSxnmwUd5KYaNrhFWIXzfyqdANrn8nRYHGQ658OJ2pFqB1gYpolgC9O9p0+mjCvG2J3FPbZsHoYJ7i+nZDQJjBf7Pir8daqlEHPHfNHb8vg8CLPhvH98076a1yWCnRNWPrFyK8cJIHILse4PKhU0VJJCPbQp8YW4BnU/YbHdtzGhM4saQLHf+54ICSdvxEgNkSjgGyyofChqBcN26Z5xfMk7bmDHMon3+X+THZXN3op4JMKnL6U+LdAtaEQ6cPpEK5RPWdHv6Vu8+rCXd/RMf63TLD9A0KIUODxdZvg91H046K+IhkbCax8/Lu2ca7VFlg5/tnj6pU2Dl+i4+fIECSBu2sM5fwN3jN2wb2kvnAwkWNZMR+uIhbm6XNHDWhpzDnc7zDcmCgI0ryWqdFhpoeszXUPq3MP3M/iDaF4ZmFIHMauU16PmoqLcEdOYWwXGxj3cwQMV1mchGuHNDOqkZg9eVvddSUYK7wd12lfGEdCcEWbaalhNSrqJOePyYqPVr2DyOEvIzWqSqYIzHGCLu7S9enS9Gb/qspjAVtKgEVD7p6norrGI4dvT5QYRXker2ijoNTh3e6+ZGSWyN6mp18BPOGLLDPBvD6B/x31BgvyeBdX8hMuY/SNeX6HgyKfSIvqwctiOkfzMyzJyBrvrU52qQ8M2CX+9YiqmZRKjWVHfkJZ0aj0CJuAaZKW2gAxo5dEmdB0xpEdcTpZDPRLk/D4B5bDjp5k/q4+fSxN34MoLqXLrpw4AlGMWRaXJdqmB94A18eCzMGEQdaYkL8p4v+85pl1X7Rd4k37ErKPIYlLb8ujc3jjodKyNILuA20qmM9JA+dCN2GrsALQWP5IMZY/2/+8XwJPJZDgVfN7BFOuNmSUtThLa5FbA4DsjqrUig8LXIaW9HToeSIjL4ikREQFMYwWzrUUarLNOEDdUxOJAjgOy/3PUCN2OnV80IW2HLqSTWpZ/LGuki2QgBlpcVjPRkyOkqfunt/DjWMM6Lqg7Z+wAkjdj6J9iGunHJ2Pby40Jl4COSjMjXg72U994KNiCciWQaKUr+Gvl5/Cs1KjaqVDwx7/lKcojxvwVzltYlmwbcNzqtIFJLYXMt1u0qP/noPise77ETtqhnR/xnyaTVFkJqdwTgHLxz9oORQ9CL1pkLOkpC+aXD45NwgpMFtDDJauv4ZOnhoumvWLiC0F8L0aETWsnZHHFHHTTZEEQxZxrkcvsRBtrS57vD6zDOH3/DlCmWphWqNc/wkwhgmqFTjQO9V2ZeDL3pt7drQUP4XOA1L1aHNgKqBSbr9Rht0XX5zMgQwXucAgCqr5x2E8E73y2eZyhlthhPYfH7qq4n2s2rD1RKtd8J/U92iTNKerbvtBRwJqLcmckJN/jeYVLnF4eiVThRUiGQWZOMlRV+lNMOhKcP3L9ulhobNJ5KqGzVA95VjyTRFNomNMekV6C92X7fZWjf/6DIOwl1hydFGESJt2wk9MJoN8hiFznbDaVXBxnZ5nFiepYxY3wA7xYSEt3Z5ixEPt8Y23FBuINE0+Qms6c0ucw1Wvv2aSD92dToMAB1QOFlPeMe9ovZVWapOis5RNWraKZ2UVsnRyD+HsZX8zCuYEbfRUjKWpGP8hiic0WAq4/k7htUyevZ9GOH6R/Tyleu4GZjXh0V/gHJ8FyK1RwvsWyWhxqy03oBlwegQ2P9SMQTjP/i98B752SEBSvIG31r9DDOXO3i12rC/NhKc2RxXyiY6rUbZWpFsncNvWs4trk8i5y5Csr9yTjHACtaeTEpcjTzC9OfW5MhM4Sde1cbe7BQqx13nclOFCmRi7HZ5/XyPbhlbCxqqKNFSzdbICNakeRAEiqE/xrrU0oY5MBEQOpJgsw4/U8yRnqya8TPt/ZUhba1lH0/X0L0QYL08surjfI/hXwTdmV0khN2s33S/gB7FxJNaW7JyluqHK8VKbPCuiY7664V+NL0VjTUNz0h5CDRHAbxlR8WcAeG2UA/5wt3QhIvzxQaIxI+B/qZTMRhA9wPcSuW0yEv3fqpPOi4U3QQ4YXYY8MltZduKIgPWOD6G485VkZE+grw1uj1t2I9/uHkB8tCITo6SqJcgeacwYQvQoVLKqyr70StCnJADQU3ePkb2vMpVpOL6u4kLzp8rByU1m9DpMLQfqGx7pXJ7w3VEcoowBG0RnqJqBIUPvTtmfEGTD6Lw5HeLVCCRDJ25odMcDvx/mvmKlI3w+faTpLtD3tqpEI+iWvoK23VQYk0NNSBwF16VIVra7S8eA+DT7iw/Ag4rR72zjYbVATthL2G+SdHcD9fuwj+0s0Dnk8BpmtJuqKxcDci9YcnMh6GDVThxnqz4SL74jvRDDcTUbedkb4d/zfJFwkn+ETkmi3BHRzeLAwzoZqdf6scnQEawHzrj/6reDQFFq0QSA0lFNA/NnudRaFQJreMl4+JnS/rPEIMJRwNNkKmZhUSYa34HiHhgVoyqaq/i9Got2DlgTdCyrxV+8N1YzgBXT01FZbJThNR/rgDcUDMRUo24Er3us+IqkZ9z1pKbJ7buQzPW0hVdPr3gf2vXz1v89dUX6PIaYg3a1AnEhkRniMOR0/GtFB24B//WUqFuLHEJuUmNrXfsmzUW3/CcgJjViHFAFRNpmLcbzbds9E1KUBZw8w+dSDjZS2Ql2efa0A5APfPsLtocqbopBb62MPc6ESRm6Wyg7HxeSzu/xe2JXbJu/tADB9jrW6k9toisl+O7/Esqi2ugnWleu+OOKc6m+xNWreyOeP3e042+Z7t33KWEHwiga9YBeULCMz6l4jG6+SPluLRS8L/641w/LYdN+qxa/lYnAmCClfEoG+cTQDSmhHQr3uHHsqtffVFAebdCosaAJ4YHzuDSGjVvXJ/BbR+zOLhsicKtL0P+p6NYSzK8pbVYL4U6qEPjBafBOWgbYnYYCfV1aptQG21uilvZLFNk/MS6Rf7cBxWd6vZv52e2vlxhZHeQ2AwMX6WwwS5eQp/3882uXG9Bow9mCUyUWTjMI/i+1d87C4IsCqg+YAU3xDDvDeKANG8ftUMeD7npUSd++AVh6r/uVj/uzjnsKwe5NM+An/X8e3qGbV0AWnFoq7xJNcQldn4Eungxj3MUZYDH5k/8+XpD7F0F4WnzB2NyfbE2yyZCSJihniqpnZPSmLZXhS8x2/+QD3wEpFvalxj8HcY3oNzp4gzRsE5v3heT3Pt83JinunKd/irXo5xgKaU5rV4jYVR3yoM2SoSYy3MPR+geCTrB334nnVwEu4rP6xv8tKW0o+kSJFKZeuvoAuHnZg+bv0dqz1ya8e9DF14NRDPbdWA351N/jBypbLiAPHd/VWvcYce/g7rxG01lDNwyyfxDJg/EAnBAdxIZHJZ30XiKbSi56EzSfQhutlgTEjpKu8+wKMVeV887W/y6E5+BJcxp4CGNHkN3vk2/OlUp3sfiLVOgR2lbCr42i4+L32tuiI2NO6q9dXFfEyoOjmXQcKIfDdeqd9PPdShFnLTizCXAwtx14VjZY5u3hTwVDtZFVyGi6+9rpxFv3HXpytSk24QXFlow21mV/c6LcjCKEfyxdEuZbKgJjTp23PWduErWbVGBcn1fszB4yyz50MzSy62zkdqLEcqxLwA==
Variant 1
DifficultyLevel
627
Question
A child's bike tyre has a circumference of 81 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
81 |
= 2πr |
∴ r |
= 2π81 |
|
≈ 12.9 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A child's bike tyre has a circumference of 81 cm.
Which of these is closest to the radius of the tyre?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 81 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{81}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/WDxGqHFRGH71PJgiwjVB8OcNEhlTNGKFM+G7vZmlAl/FbukRYM1Or0OW7AMUiXCfaku7iH1bIUAlvbUGe8y/gEe10Q0Il9h0+xrbiE9YZ/fewBowB686d9zl+oe2jBid+r+KFMTO96kk02/dKwk1xOTl/NrTF0JCSrM9tbKGow/M6Bwwnq36PCyeV9LJIS0azlXA670E4KHnac4rClyxjvvguohQDbQqMblx5exsXsfHN3iJCy5+4ymzFzrUsjqL3gM+6AjOR9iOASZ1JiklJzx0zgCTyf1zbqxoUgNsoGH3UUZnuRA15yuIt3OrqUA1kpz/YNGD+uz29v2J9d1wdZQPwPKFORNMv3Nr/rtjkqBR4KpO7mlSRtXdQ0epwd9bvO5VWmrwTteNq73DGj1McBPJlrnjOSMyZoDDh8Krv+U0Wu6980bLwohKr3ywbYutMjPwiJz9Tm5PQ0whuZ48Qku4P8IVDbLD/RPP2jxElmh91zwUT78X2Lb6UD7KSwoZuVJ65+DGj214TgKd0ebBMB2ZCcQb4JVks5ClWbA63UbRgzqCHq2TbOW8N2OWQcyam+Soj9T1Hc3zGrpsp/Pmh7V+RGHcpsdwPib3xjHG0T/P8hSZp+uaH6jCZK3y6JipNQwJEZZvAtPwm5+r7+wx6//qU+iFdaeXlCFVGy3NcNAVtWM5o8KKUNpOc6KXUl3OomWcAyBwKMk1je42nmVRfjRrNNGFNteXweiyNmy8k3y/VUr4v/fQFVNeNw4H7srjcHVCX+LPdl/DpE2RCheWSnG/8vgMKPUfP6qrc5d/53Wh9lqgRxsCPp+EVlP6gEGpY45jTxI5gSPYHanv97h1fspTNq6naNbzBOPnWRnP9i8f9hxn9VYGSiSLx8y02wY5ntIrY1WPUnzluM2nh5PjX+4LdpxbWfHTXml64C2hIx+Q0Jy6kj95SanULuNW6l1IkctF9TThUkzEn4eHYPGQJaMpSPoW5MPn7a6qNk9yDfVPew+XkkGQaoihQPI4n0EuA39j57k2GHP+EEfbdD0vmdkKkC5zDMywYksmiFmcv3r1ktZrM5MS5qri1U7R7TOdoy/BcgMQsNrzl9WGfafaWCWtz5tv9HdhQwqgdzCRepQC+BQsnsQqk4LqdGnKxsXCgWXg1IwzShv0N4xytZNkVeYarB6VnGo1xhM7/kCQaZwpAqFpGpRRof1AEztto3Ur6sykkxZWMVGXT66dCJjXCs/dU1TgKXJ2kaahyhWn2OfAe/qH7HPu3UFbSG6atgHqw4poG2sehM2dc6IV2FVEfmHz2DiigK3EQiBWlES6gcUmrN5jn/WGDPptqrIC5LnVQidV81wu9FdjU1cVoUS+fQ6328Zd/ANp3HRLzuqHAK4Vi7IS32tjFeFc7PlmrEWJ4T2qhWOPKYgQyN1AxPI59fbEM2cL6aHt2qcziRP4f1ZDQt3Gfvg+2eYkYNk2fZHvZ9v0VWU9YLS1JfHc3cZ8hcw6iThthf5SwYMb5mQcXGU6oe7GFPfrJShT3U9LVBp7FFtKV1tkLC+uFJDJpHmMo0ztEI3vtR6x4Q1FSAqlI45C7hew6r3aAjWzvZBdPVydqRO7/3iRQkLP3y9e/q+svzDhCvrJE0TR4sjXOWJ0rZdlG/j8st9BSpapxkmlcp2LYZRKMsI1rxgKWGV9cBSyldXrJTst052Roc4W426tdN/rKl6Kq1L60GE4RGy8/EgkXM+5KYp5Ga5gW2XsfB361zLNj7lYwxEBQd0wNSrIN+EoNsc9btQU/FYeXiNOkz2pkt72oumOdHFFh1dO5WxXsowGbTjOWhyVlSASJomtJfdfW4RptyUpCUniD8ehuKDDzOydOAAsOS3AxAsdTAzsRIccK92EtpEBav26ocKOSO2sEQg03xp9AosIqM+rz/iK5K9xYjtTxMcf3dmfM85wHfexxDanZxmPpHM1G9dVFwWTIvEJc2UyNHFUVAQI+z73XIQSjdS/evFy4qR9vyThm3gTphixeiDlql+3EYvjpmPsclBH2Hmezas+1FM8Fo5VZ7PHYJuZ2Y1kHIrWN/lgyeazfwTc+KXaWpKWpUI09QYe7flFxZq/Mz04k8Ht6N7K9LwHu4i3yPISqeqBuyVFm1EyB8zDs9auEoVk/fFCFz4ig947Kxgy/JYgiEKO0o3tqv4hbuk7DYW0fRSlv40DuRaKjVAvCnCh1fj8dkwNQbxk9CezjU2BNwbnmnHDZgroGrXCfpL4MtzyJx3tqLjn0OGZjWG4IgqCOtIc616oGsnJdXxZDSsImguve2jzoUf4nyb7jWpcunKv0i0YFVMHW05ghV9XKPWdV7ua0dESc6pFduposn6quGfU95H3xcE6AsF1YaYGe90TvFUfh8Cz1E0qC2un7jRM4cqGVQlk8opIsAxtU7bGNu03KcuhH+39rlpg6JA8X242jN+07eHZ6eUpzWcLwfIQtTeMr0tFskZ3L98q376bXt4WEOO0pXGh5RcmbBJJxGBtSryYMfcMGsYiUuBOWkm95tuLABR3BVqFLUAu8Vh0r5SLWYu3Lp/Yv1bnBc7N5RL27zVvE+l1jfOkvOebNHCc2oRN89LhWFKroiyegljOrXxIn3BnEjXW72uOVP/ayGfcX6w7t+qL85QaD46pMh+vQHc682+/sbGlyEn2SKLYCaJkh7KRzzTK/QzgMNWl/RHsnkexji4wMgdeokHfpuoztX6Cb7NuuhZit4Kspg1HUnxO7Ri+/91rrroa67mkp9YpwyKU8xs5sEWWsh5HFNZKhsrq3y5NgYDpiTaAgidjjZc27zvCsCmTe4afynxbpHvibC78eqsD/ULsbevipoEVLMXb2nl8w8+gw1fG/6yl+dsyE/aIEWFUEOIHh62i8n2+sOOmvFhi7mzy98YQ9Y4FieXb63KCyT5pbhnYhEgdcwMIM7LnHmY8ZteZmKdZfSYTXfk+2Sjmy+8Cww1W5We8FExJ+PfxpZrGe2U/ofgurMsLPAZmCbTYriY2lo+4oK5A3lY7M6FAxgkIAD96Ot0gSEviDzhnWnNz/2phiVfSjXjyUPmAnmOkX5u+zGbH9t6qjY/wEl1IEKc3KeTRbBtp5c/vab9Mmrk0q3ygU/qcJkOa0/Xy8M1mp28/FvTMcV/fEkctQbRduBlaGWKcJ9mlXy0LRF2mV/xKVOCbxSkBDeP10RWrNFN4fr7SKwvn7TgU+An7wCfj1plcqVrPT+1xlE1Wr8iCLhvcxF0B17eL29ojjP95v+9hWh89sVleQKHDsXtRTg4MGq6EHaTgVJMPIHQqss041f1nIATmoJtJ0CAkOw485w7X1MzOIUSzuciRuytkKarDdN9ZN927oJcHSrV36sGaEDW45lzF8evMO+gPrlpSXoTMFbmHpSUzbA69zIy0R9YDQp50+Hbalq1wR7lW13yaHwj5cUm3phH3dwg06QOB4zrOyhVz8SmOnKflf1z4VRQaStun31sfnzrGPtNo2dIh1qLKCnzMLlWXfP9n28fm2MMiNKar3cyX1Q8o+9uC0xIR6fNiRNeLBRkZb+H8U0IAn6s5IeuYaMg0VhuRtRvhcE76Z92IavGlpwdaLWO88s5LVmHLqfAmrxARsSAaU8LklT0SKhEi6NVp8EqJUmihtz/xr4xhfZ5trLgyhDnsHHcehN6LWJ/TLyHcmMmwljaRBWLLJ9s6aolcE4M0IAWcmEYz161/MNlJaPCihBnayYGt4pdUkv6P35bp2bBq1fiWP8tkroh44niIaq2ZW53aKF393D+Pnk3ZFsqClNnoQ12HabzzOt56N/Lba53lhZXiTaS4gS8A9LooVcUxH+POyCtmr5U9kz/D7JHvLzFTgz5NFG74sIezwodUFi9bnuHB4QA5BV4evScE/b3e9jFD4VjDjAhSDZO4pzQGw1LJSQgjnevEixF8aUE4m1+r80yAkAG1nma6BBlGbGGk0t2INO31im4RhOVlRecMLakRiCWxQoeYbLTc8uZdAR0onB7NBgWJqTQyzOPKhdKQO3DzcSapfN2h9ZTKkRxb2DGSO8nMdEd7BzIcxyrf6e0VbiE/3fcSeABht2YKgu2drPypHcHj67adv/LVXu15X1cWyspYS6605UPw+hSvLaLH2KndDDSdCBh3kCq96Jzmr6V8fzwWQPTEhl119Z4lpLuK6CuLSyLvNjxG6+4F2AQXY0Eo1vehNg3q73b9SVyfbtanX62nuEwj56GHfoL6HutgJmHm1JsGFaqejbiY7BqdA/vFXoZxM441NA/lcd96r1UHXPVQSjrw1qK+zGxEZPQ6scyRxsonD/bGnlj1ybnBiIlC3zu8E+5qTw/jOPDVCQLDBywppuR3xAp3tbGZR2i8rPZV7dHntP2MnowDtxqSECRRJZogBoAsfg2q3qnuIEqsdoUXMiLJM0FefirMTLU3TIuEVvRPGu/cO2pkUoRL5BjjQYJeQULAdGqp+OWUIjeOpCnUBjsKUW8QiIDlmlsVFGSKHZNcIodSodnOy7r47wol+ohbtdlWOftC50LTUFbt9AEY1I8BEEm1WwySDz+ccZa/bRyhvZTAdaHx/HhKgM8Qf//H4zzBe4lGwkOSPRiSj+txzF0Z09KFwA5wAdxdvJLOyHTQ9KoS5aWSNLtjwHyf269O5/4+MsfyjeOZ+TbdDBAe+8pKZbLlWcfe1la4ohyH5Aou4a6kiideD8vFHCkYLnqmlGZBnzdHhWKuaclnFzYq7vEB7wpKn0ddKRnHqfHecGWaaLu1FdpZC5zoIqbZUd7ak8FNimmyCU7sk9Bd0KpeND+QzgaY0mbLnhMOYtmFq/dH0MIpaD8yng4Q2TOUSij+KdzL9bCmH/f+5N1wqHlvu1SBHNfjF4KMma5NXJxoF2j8HOxDkcW3t7YtiJhNBwKkEjYTTpUqZ6iLykUxRmDOeFxBTQ/mlBjBK7fB75gGc9RlJQuAerU+mGcYbZwj5J4/GPly56GBffwFKfmeRebfENpzyt7A4oh4Nux3pGaobSkfWgPpjngid+DeGLGP1sfVgDBztBUPdlya0M5NJLbHpJgME2QGBxpS/yk7Wm7wKlAWdxU09KKgDLAiNiZHsNbSBfEBSY/fV3752tv/M8L3puUb1Jh0ZAGOhU95Qo02eB+njn+eggmH9umxNaSRDoQCKXHyYjUcXzZy34JR/qdCQbQjZRSkxeQnBD3WGV6HXW6x+PPVugDuMuHlutBMF925BfYxr1Xg/UIsYJqALUSCQS0WwfUWw/ciqehxSlXCgNWVKRo631ORfacGpjrUHHbG17jVgvjpV5FeoZYt/l6qg9KpyMPEqEcPVulFEThPr4UBh+HS55U1kHQc1WRvfuaqX5HcVkk03HKRBDF24mrZXfmPyMZDnGUhQ5ILcohIGWmGTrRKBRnA0XyXCbxbR+KwdRuOJpQ46tWQ2Gzium2bW3lVvKJGUKjVOKnhBdye1hsOFlw3XonTohp/U2mDxs6rluJxMySaKe5RZUWk/7g4XaUmfU/klYP2fvYU16+LyE6ElhN2Ee3vPW7NuSMSrlEuNBKGjzDZ0KsgDNrnggA6KeBP+nFd1l/xVPowh6ir6g468kxbLtwSeJ3gqUNsspsqB24cDoQcBt7nZWIqLLR+wrGxBwwsWuWfyfgyXThGim3hLRE4IXrNKzNJvOV1S17J9LA1nht3LAvKSbb4uFC7MbUs9qRZNcpPYixZ/n3a6n0ZQ3s5zjkINQcpCa+9utOYqYa/0HwarDZiv5OP32ROrhhsNLmu8KkgOFIU+IaK7O7DF38mtUeza2m8uiyizYZKjvPhoLMjbt4tUYAuNNcM+9Fa/nG0jRBBSCz9vlqC1eECSbUCxYFUwGSZhWrjnvpE2eJTT7pXH1NblO3cch3IzsNac2Z9ojK1Qh/uyTVmo0V4AoKBc3J5b0VVsuWLeWveGNqWSJeWaDKlNTuxIclXXkygNQt1zxV3IcbJzn6mLXANN8RRg9NyrPZpXTNHvqQhJnbiWrDFivQUE98AkJThoxyyrcpSnn4M0wkAUoVQKitx213T0aEMv6SSx/7W69rL4lrZlJu9MU6ltQarlJTednpoJBSqOB7Atk1btUQ1VDfUEo8Pd1QjjazPcAD4qPqgaAWv5T2ex7pLHIQre4oESyXtzEhGwpAT9hPLfnD++M/Jks6tCEx67TRk8+HLKII9fIXCdbGsGSBiehy5Nwz9MRs+cWDUhuNmw7oD5fTwbxTkeobnwEIPR8tfYLFoISQh5ABVNo1SfkTrGP4fIbzE26FuKF4XLL+JgGnfL29/gOKm88dzdIj7F8Vax+EUZTUgY/9NSISN4e7EpFjWuWEc9cxf+lDxy7VvGwRvGd06bP7GXYMESPQnTLYsfaENRVdMY+9VqH1CqF0g8nsqzs6v/PyV0afw/0uXcoimjmT1ePZPRs27e9eR9isNYAO34Z7YNJF8il93y1LZ9TFHXqQv2RwLJJ0ED+xCY1JbIOAZSCBLGlQAHcytbv8IUAvQgkKlz6P9vufTnfGIa3m86Qr+v5cfnkP10HA2D8qAcosUt/+XuAsOBw8V3uxkDc02El+638bxttI/98oQxjA6WcbfdpuajJP4iLFJoBJkxpEMUVheE6ij1GMPsrcDNv3h8uPOr+tI3TcxrgRT1uBTNxg1hDJG8C4i0kf4mpmHAJ9iYZwIFNx1RRBdKuyxmhyV5ikJ7qgilmxUi5PskpNqlYbP7gVe3PhEH8QMXbvmse01EgQ8I1GKZi517/QUAej/5UwNtry4Qu+qgZ+rffNBAWCeZND6XC2U9ideXpFTKaexzpW3Pwyp7Oxkjc2mWA/yl0ftrBYO0qoMub56q/mZkQkDhK8fsNuBgRfmDSOGaZhCyZnkrEwmn+QGCze4iNfMapX2ERRMevJpZNmi1kF3uuk+7WIfakdmqAZUlsdnizqzhnTLuBNZ7pqCuqeFPTECn9zyFwYAqBul52pYFj3FYMTHvs6kClkBH6Z5gL+umCQn+Rlm1hz4RQZnZy6cL2VSWXVnw97d+opKsA6v5bzG45PdkzFsCdd+lkoL07opzcXNknSkaD3oMKjSzZFpILuKCxA3gtmlPBRKkevYw/P35Nvgf0xmqky8xGMgkVyMIrlj1IkGmrMFYSDEihL8FKg/BRDMgrCsbWPSS7OWhrNDZUbZbfMQvkahEIAlJ0BHPJ+WxL0mSCrnvKOFlq9MVlunOklUXFVJsYELBlI5msZZ7ywnYY58TjnzezXQBPpdrFPP5d2GmmBtcUqHeLkP0qGWO7PJzV47B/Y8eml8CVycV8vyTDsZ3I4a8KrRILcBn7izVO9LoLHcn5Dbf8EWnji6Hl7r5mE19RSsb0C0dZsEjtGonxAosLiWwrLHB9IfBO8dKMJpiDe+SEwvCRb3BWv+G2Nsg1CL+AfNCJuXnBSl0gpLukhZhHFEyPA3a7XwqqSwY9pM8bhx+m4yAY+Yi02CcEWwQAj14/VUC+UF5Q9WjzZSi29I9C5vaLR2K2g1BHUp+gOVVVUmVoKlsiznbHnc3wGokm1hfwMyTUviaLlWLTNTv4qsnG9BRr/46FvJL6r0ewf7E1v9/skg/FfQxmf84YVDN7zaGFUlp8H0xOWJfvxmHs0G00zqiob49ELgNg97oA6mqE0KIfUWPNrTFQdjG6NDZ/7otNNEEjK+6xmkvePPeRV1BEgCaI6bOcraW9B9aY4UY0sb+ZRaEd/UWoRYJcQByjfFyXp7PQNBNorbGRlCCuM+BPh+jh0DZw+jTv+F2oRsAhEs89phiF3vhOPGRwngzxvZKjI5A8MNOuaXqYbk54Ec8JXIM/itW4J+VtI9+gEhS4Dgt6dcN0uyQyWXp/6WWFFDg6EhiG/VlQKGs/BA1e6PnTMtFtrVOgICvP2N9d2egVWCEyd6yiZ28b/hgY5p4S358Cbqq+gVdWR/0bEaXwCGACb3kOVlNlWzP8P3igA8/ZhHdrApgA/jXhMzQkQ+GNiXGPiCg
Variant 2
DifficultyLevel
626
Question
A mountain bike tyre has a circumference of 205 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
205 |
= 2πr |
∴ r |
= 2π205 |
|
≈ 32.6 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A mountain bike tyre has a circumference of 205 cm.
Which of these is closest to the radius of the tyre?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 205 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{205}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/M8NZ+ox0lktXbqWJB6ic6KlrLwK0WJQNeJE4YEfwhpobY3Ch/V9TtgCEidoXtqFFxuPjwTeUu+XjdHRoMtRPft77vxzxDXsmLdsxcFasRBgXvbgAohEOJnqIyw0bz9T7RS1/3uTJVN22V+8BupKcIzu3QT+eyw9GS3euGZijrlyg6iZpamqG/9P3S5N6Q/JRs5yIB7V7Vq8mOISJBPaOiBydK0MQ498vS6NgJhpC4NdYlIk/X84qZeXi0ymaDypeKtgGqAKbLvP9Ivs6fsOEnxgos3u6CChUhlIfIUiCFI7LKXecEqWJyK5y9/YIuE16KLOIie1viyiGJBxAWm9HioRwDdCSwWnxst92NMTKwipXroxyQhE1KA4+EYNoNixDwq25Rk9qOM6eX5R+jd0qt0MF2nA3mn7X2xLMRVUJ1GigugcYZTAdTrS6v3xxUt/SgRgR0Qqt7Z4kzQGyZo0tAjOK+DbhUO3gofz1+G4jwZCVNbI5S10UPZWR/psK1jHtkUm37NC1Kvep223m+XOXamvEeubQ76sRKBzIWqjRqIxQNkDWHSmZlihavnOOgWhStCPyJG1B71DEBqXWTutPW2/xyeFPH3Y14O2UBKlG7k1or7ipKTzI5VdxzrLrc60e53axJEVKGr4VtD5jCaSD0wCGWlhz0mLwpQXhD2IqwwoHJfGmk09yUCgRYrOP58DkwW8xubtB45q/ootmxEU8Nhkuq0qI9xwXa2nvDVc2DTHjDN5MgPJ7xonRkW88pglFCRgBBDlcM2Gzu7NRZNBMsuw/Qjyi5M3XAy4YpqoXdNerkFC+9BYaCzUZi5fsSag6DyPw8XerqC/q76GkMY1DKqlbaeYCJEwioTzJZfgljh/PxdJB8ddaXYLfi76at2I7EBOr+pMvQOrItF1OZjBAeb0/kOUDVLOF1mQ0FdNvVZul1TQTNFauUHRkgveTmYJlQAi0rtA3XWE+ttsiFMg6Hh+EzwbdR1U9ARroyYNqrxr1vrR2VDacvFsriZxhStbaAv6EbT0dDsvx/aLIt8/v9nZduWZeWiAT5Xc/jWN/U5aWnQM2kpbTc8AQ70RcjBLFBewOVRB0CA3jezj8fr8wJRmnSw1jJhXQyGxugfA6EaQbh/XJr23BvfYdFQp48jR9STbrec63BJhaggH0WwmCzidobSVQbHJmJ4rIdQqoYzBgLSlX0XIayRgF15P5LI2SPRRKrsWdxLaynnCQH0c13P1dFTBSq1e3+GbC7bfx3SD36iLqPdYu61HmvRatCPmCB8ubT8Agp08QhW0k2l10oDh0pVYSoR5ICT/Z11m8Ak5WyeCGhFJXOUOC680bYUm2HAZ6Gu3Czioo1KsZ5DU2O+cmW4T5wf5/Gjml1XVlx6dt/22zuIRM0b3RRJRaB5gaR8yf7ZPB3w5xN4rbuzqrldF/WXGrwQpbAoagd2GVTgDPWNArlj6FJmSHm1rBpZTzu2vEJH42p0xYGK8mCiMBwncfpcTddTRK0cUcgkR+bNli3OVUpkqy1E55XFK9fgDyAKsl9ZfquGX8ZtUZ0MnldoCQTTndmwVJlgZIvgY2QIY7O6Pb76NSnEK1QfUkCX9UchBUw853bvxUqUujhyA2sOGsd0H9jqowv2g6Kr2aGXZQWt3gh1IyQGf0w3oOkBPu+DM1s2PWaqpbkvBCRDAwomh+iIX9HFoomQhvOoNKOEUIk6oqr2jSxXPJ3e3ixMTZc6ExIbyBZGazEpnMIGtCF0CgeFL9xJqEr3GYvoqq6vEk3KGNL2xczRco61GIwzF9xFc0q4Exhpr6R11MN5VY99MrWNaY2zvzFCXLjWK4nIpG2OE08JBYMosDRftWxU7wGr6k36NC8QnDOAPQck0ZW76Yt5Lb34UGaixntueFBDQb6KJCy476YjfcfJKu1lMTL1CJumWkndtCgoP0MXzNy0vrzztwW5PcE2+2Wbz9XEUfJFqSI7wX4OIcUM5tWjmyKuXgtAlHS5oRJUsqZo7dur3DPErYNe2twoLfnZ6r1GDHfHmBgpam8MYq+FjDvIWuXlqZSfRhrqCfeEJogzkalm2gpDf0JDhtR2nVvW3AzElyUy2zcSstT8eFja75VOsNqEhawuRhNx27VqGCKoApgF7qbev25GsFiNN8amW3u6jr448ztEBUIyyZaKm6hZ3uQ52P1xtTfT3zWRi66JUgbnuzwtQdGKaqgwVtYR33teVAvm0uyTzoxmUWB5VG2vq8WHONgzO03j1pkLE/rW6BkVWvqp9YOhOYO+EwOmouEm9gyWQzEDbh7rfuxEV+8KaCV0/LXKMbdLB8HCbqxBXfj6J4PsOSBmtbycNtdO4fJ0hTMlLuFtTso87g8BrTNMqyuaB83iSFZo3zdwKfwRvgMTPSAIrPjo/y0xCxO2W6CidV96Hww8CtQ7Ke7tbY1MXn17RLSUErococsny3bBoZB1hIojoOeSKwZFhQnRjcYaCxHaONZnBGc5xZXIzw0txxwqqeWJZMaNVNIzUsZ2RHzu++5qrE4oKrGjoXqcCbnhWvSd32wDxYfUvATe1FBeP7BYjtsU2QlTWrH1Krp74/78qItLwLoeKGIZZS4ozd08+Ypj18FeYM071Dp+yNl2/6V5Ybwy3/Y6vvOBDLUlWeOPHFGN0LMf3qx/+JwdEA+d0qbsuSNoQJyq7qWiQtXzmAbV9WzmuBf55BwPRCnDhpfJZ6GOYkdfg10JaDzqUJR2/4dBjhjfpiwcJu7YZ6dcntth14EvWtqmp9UZBXPUYWBTzMWaJ73uqSD6Al1Zfv0Wa9hkemh6XyvsNOd27Yp8KlyKS22DHtC5oOr01UO7iJhFgBB0bj5mjvjuMayh0XT2v3t8p240VLuzWRwBFFEzbWwLGKiiMXMrImMjvXwSSzeCMEOPhjSvZZu540Zruz+ayVDIJ3mpPRaIMjsgqUNx1Gy30Wc07iY6GxGzC6qoITXQl4h/ck9QEl+5vOyWREWDDNmj6fN3aMFDfI6IKcRZerDLIBGMksm4eCVd05EodT3XHf1A8O7W5Uj45Uy0JN6GGEBqkrFZeAmh6CfRuBJYx93D7UYyf5ZvHCwVSqesp6uzy9P/H4eAjky/mdX4uARMqkz4EAIEEe8QNQFLDCiKBrTjO4RE3ZKyK/pZMW1rCFF3KrSQTJZ90gLd4F2Jrh88AaJTy9ruHP+bqSHXKlMZGNdHEu0xhzabaI34U27prz+pgt9AkZm3lqmZM3W7gnTiZhT2a9t/X+Ta65EV6UdEJOkq4m4T+3G/UGmJMUrK5jDB3MbmycFher6xxsOwJmuJC/ZTqIG87Ylf9F8mS8KAIGtRUuFhLtiIJvA6LxwkCGZvxl3rgkGo0oQFO134YgHPUYgY0rYB/mdfgvN7sVyr12Jf11IuYxxNArehHAtt3AQiaVMFiy6agPITf+VTVMPu21/takpAVb1NxO7t9IedfR9ZWI0P66XH41tZow2i5FJdDjbeP6DGsX4yDKgqQ+4i9KI6x6I59VLu3KUurK6DmbNNKI8IK+g46QE7vXvXNbfHnayODr5q3QCUHFiDTPmXqUS1kFM9jvIoAwy1mris2+p2KelDe21/RLDMpV9FmqvSM1Xy93M96CcDluXNWaIx25//S4oFJntHXpy7gp39cDtz37pott13arDlU8d1bIHxnLpQ6V6GkNi2TEBE3ZY9uBowiO3jR08swDzYf+KxbJYa4weeYYyCJZ26no4HDZu2FsqodzUPF6628KBtXzdT5+4WhITqBtHGeDJBYuPXdPeyhnnVI8jsTVFWvJKrdqzux34XPFe4RYDyww/AZoIboamUjlrqxA8arcH+IOIkuoBSLKblAWrT2zp5xKanxsWlsLXSFemovL1HSXKIQQAneYA60BFRmlhU/kbC56Wx52QcBlLxajF5fy4RBMo2xt/i043nl+i3CqeLbV6D9inmOGk+vlkjBJDfFx/kIacumn+FXtAiqvMmCFoeOSwfYDAwJ/fjl4RRP1ehx/iokjZSK1Ymtbv7huv2k7P5G27jady5g7uDWktGL/q6G+2q14ms9IDYpLSPXlEXfyR2jnEPOgg6stAgY2KYssDYkNw/PpBbP9Wgqg8jujGex8lqRsQUW9RV3cfNYtaTE82iarVhn72LPbqXLLpvXAEbijGMYPhBOD1c/vJ1v3nlXI0DPpVPpdm538Igsht9EIpWcXfc44/hyzxIf5ytwL7PYBx3PgIKy15XwHHRD6ka+jpIEoNPS9MZR1t/idNzD6I/SrbsyDRGJyD8i/nQo0fm1P4vKiwL1YHUgs/hqONT/KF4LRGxrBc5xIrUNOocke6n4UWeed8r0SiDc+xS9kiqFSbxoSYTs++/lrDqaDe1VJ2Ll4o/J7kEB9P7xlka2gmdTOWK8HXI11nRtVrmyJn0o+vuqp83jmS8mJfMhUHdTgHyng7FewIrGLsX8iTtsl6NBMyV3ca3+TFbkKINmD/++qB0zTL/wHCtrSvsKlGbHI/u6oMlklhFuWF8f6o+WvHBvDkB6896UBo4z/TGaGj3O+9sMgflD0iFGHTNRJvH+97FhTL/9otJ9xjK2JsLgk+sbEf/vZ3Yr7GEkuO0U6Mrfn4fKHj/CExdUdGFeVl51MUB4OShmNEYMG9InmLhJKNVeVLklqTlLEIDyvxjkpaXx3DE+9msuUjxDll8EcyBnAKN4bQE7fQdAu92T+YL1G8TdcTQ13tZQMPKkBzKCmuhliTM0RqO+50KVM3qb4sgCiRYmAcCl8GAtot+8b2M8w7rSfd4dPB6xnt94FPp6OcOY3mme1R6Ws3lYstiHq+nG8ZiIX9r/rzKMzeYKs1pQ8k+vYyHx4c8hFA+Bry7eb4sfPuf7/HgltsY17fVX63cqf7XFKstTWFDwv2Pw+Nyx7OpOjTvbYKj7iBEMPyG/Mec3MMp1mWFtyMknxEuzxQEfiwr/X7K4EiTfifMlgenZmZz8kSkrGeAtf5Hdap2vH/Jz3kkDyXqmBvaXiKhEKBowYfy/BsM+lnRULWgHHJbl9bh6sgMemU6orggUR6uOa80+5/HmxVJ7F2ClvIhfxq5EKY6wKhmQotbmhECUjVCtwYruKf9DD1tTA1xDSrAUrpu8CRYq4kiEqs8yOIQCejFosbozZRVA/tjtRjdCOYmkQcTIcHMlko1gr11grr8UynndNfjlDmk/zhFZVcnHffpZKnWZs78+RfihHWQC6HMZ7mv3zuVdjzZaedx5gWg6DfC4Se/5EpUBYW5oeq0SrBvSbNPCs3nTfKoZ+G8QckXH8712vwihEVUeXvRR0lT9B25Zms3q7Z+9OqAxjt+jHbzH4ARBswu0xdqDWqQHC4pCcePF6TNYKeKd860Sv7fYX7YDFnDbyFK1noZe0ZZUOBU+tIX/Ceii3r50PxBE5XBIi3YN2Wg8vFJ5SAcFV6x+5DM3F9XgyxVKBdSBm8gtcChwEgGHDC/e2gQ0+J8Y+8JEY0IrFbKbIHq0ZL6XZv+uH2S0k0qXGe+/aWrPXe6PjWMJ6FJTHLwpjNsuwILcDxBLD7jDIKKBUadtY5pe0hr/WSzqv5L51VeTmkZmFQDoxhBo5cvWhewUVI0M3oygXirxQHwY5CU4mZwW/eFjLxARkI2llBAyvFShnrVi3Q/nXdp4Ba3kb7XnLBa1FQY2wpBxfX5gXy98uKKXlFP1HzCs++jGEX3GS1/NpqkPqTf6TcjudxGdfzA5VShvJEOHPw+Mj4n/Zrq3LAbVZNZgAjsdZSfXXtSpxf3ZpTYS/xTSicGSCY4v1PP51Kq4kRnlkoZmGj4USv5RxN5LMuLT+ZY7/mlrxnxaPitmioOgbzDoliI8qbvachhJ1Iku7MuDMcpB68qVh+MnBNolLeQlDTrQoIRlNSlso7tnqvlD5RsM2XNTH5MYPkIhYpXlCvIFh6ugZSXPP6qBR9xVvmvdLU1YhTok5Nk+Z/15Gu08BH2p/CgiMvlHHx9rYCOLxFk6Yyq3WIw4BtlxXn18kI8PnS3f9esRoWwMV72Y/rqSTnRnYWC/boDWeLwRbpeiPtMyS/TRGb9ghY39g3eE+Mvg+ZYyFlAOC44notw279KVJHA9G6hcJkWztX9TRKahaoWckuY61QzSdASlhWEa7H2ljJbYWB/xNdKvPDOL6Q/da2NzpxNDZkshdnCkSF3UJR1awr1VePNWPh+ndUK1bv5U96TZZ4RwGfaQ0MpOps6zR5M98B2OBSA2nETKmo0jgH9U8jWa7m9/nx1Ofv7h5p+G+VpNKeeH1IKcgSqtS84V9wFvvPAKA+MVI19QMWPGABcnGFkTavztweeryRl4ggurDKVHKzpKaeEnGhS/pjOW8+E3/6R/4I3v2HngAvXo1cR3Dq7SsGXwg1Wcz1UBnUk6y0A+95gxEZV16Yfr0T1nXPR1BHSRMfa1PG8ZT0tNKY13J821B9TPZKOwfoM2FruJYgyF0Ov4z0TmrYwLXXz2FiSwFnOusOg+B2l4IIAMa19KhH0DsNRk5Vs1hbe1Sf+IQL1xEFCQ6EchdfVndV/igZspKtIIKyj6BMWGvlZtAVyV/mQ4cB6DTJ+KG7+rJ1iuTRhmyHOHKjXR8narJiCcouXs+No3artb+9eboKQfkjFF/m4UrsXIfbouhtDVFDCBvjt/MiyfCXamsPuF1ywuqU328mjkA/cS37cSI3l+tC+2qLCxMlM45uzShmys+W8bcgy2JtFF/YXfDz3qhDjbHmo+fhjoWnDjYcNTIfwQFH+RFmV7nlu1dCWt6lyRmi3E2YthE3grDN5dQuwxk2bCZa0VqY0Kb+2tbfGFTTFk+2tpIZ+zrJ2xNiAFdc7+u1LKkX0+KWVQMNQJT4fivbuRkje11iO+OYf2zqmNHSxBu7xrkXfYgFEl3jTYY3zPdhDAVH8fcUUOEQvbFppa6xpX5J43LgZqerlq97wAfIbUGhwOe38ZTBKQgkeMMujdmMq2qJUzV41TfuRGbcUgBSsK7TyPPMXLuKepPLGL8FNQyAWT689tXd85VpiuLMG9Ln31qgmZ9T4rMBhgZovov5sICDCt1PDWGzy3I8xZulEfixicZzE2ATLszq83oT4ABjC6zoqRFungnwnaxYc+Z0Fj413sj0t/N6AmuhGrjY95KHrAjt0PcOqZArLionSRmJ9F148P0zPV1mG8OQF6HBwerf3t71wFnpIaf6ulJhqwqk085wOmX51PY357mGiPymdZ7NcnyxRFUeY3qFISm2/qe6/EgkVg4m0UWGxx8RvBiLxoCwO/BG4iLV4S+d+IZXKz0UvFGp1wxgSKWUbZvgglu8x4LXu8b4L345URBmV6aLhLiTSCvqQ2lH2ssdbwJhr2m6J4vZtHH3USs8pZG9QOCiWqRKWKsDwhWwij11blLlMtohkLuEdRp79kJQ1B9ZhnJZ3Pztcovp7gJWW+eJof3BTWqw4LAIg4Hz8l6rhuYFL6wmb/j3FrC2z/p0MKWEPPAqnHtbvEuS7SiDuJS6vYgqufnVW1e18YxZ+Nv4XPINXxAOVULrlicrPF8BI/24+FAm6vZoeIM+N8cUKIe9SRUQWY3pq5E8ezS5TLd4AkI3NM8m9kNnGpPTkP1T/+Bu6BYDCZf+7k3KFoOBfa9fk2WSWI3bCpcKJ0S+FpjwtRwMOdgxLVl6QZPCAYk/mCyKuYoMr/C6Cjr9Nekktn9iFVN+k3Sxjhq7YS3unaTFuxaBhlVpPSeNI1ysaOAihu/91ZNdUSVA4zDJMzUw9SYcgvX869xsKy0xT0Bm8p384sMKADplW6RYBDYEIK0BYAUrcG2wAYRSlFiplUJ0p6HiRwJNO2MF2bxNoj745Ur2J5cAA5PEsSbourWHvF+dQYINXWoWHSHaKCpzg+MqwKB1biu+v3HU7/rpzb8H0DJPtd0xOV2HzVKhCAGdYXXAmRjdK/DyWzAhBJOuHBZK0h/vf7kjLQ==
Variant 3
DifficultyLevel
625
Question
An electric scooter tyre has a circumference of 35 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
35 |
= 2πr |
∴ r |
= 2π35 |
|
≈ 5.6 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An electric scooter tyre has a circumference of 35 cm.
Which of these is closest to the radius of the tyre?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 35 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{35}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/dRvra7nkFTGUI5WQN17Vfnm5DTTwC4DyFoNM+S2QimdFwONRy2/ok6w1Q5h6MvoCtZEldLH9Gwbow0UkG2vvrLpZQxKQ1rC8x17OON97dIBofMKKbPRx0RIqfWBgBYEFfAKjOW9Wia/Twpe4cUA8zGWgZMzjA2XOHIOczfZpuC5ky/UoJ+VjTNhZDvsdzdSjW0m+j1A5W00K0aWHkfFZoETLoByPpe64f7tJR3ig9Tj+iU9OAbszUv/Fbk9UceBAJOcev3XS0vB7PsSMyOSCsSXnEtcVkQive2hWyXJqEqn219T0YF3rY08qE3NvSpoQqipIq/NAhhSBU6AUN1xdK1jmlz6Z5gunuKuO/80xV78Sj9yHzCTVToJDAMDUvjyHQmbs41GDNakBM21rWWCcA+TzKcndd4IzwVrftcNE2s+gu6vmxdGt7eXFy4YRLMVnRNe0LGzDAOjD3pRTh7z1KmSc6j6MZJJ8dPY4E99tCnopNFlC6EtOTuwmGIE9bwkM3QtegZSE1quugM1a0zEe/7AkJNzFU8MkUtsJi1sW2sbIzX3v8aT+/D4iTBfvBvuUlPGvf39ygaSsyBGZfJgo84JnlF2H1s5EDqvCcbPloKZukViBnMtGMeC/UbjAsTI1iPQDyaYBYXrvdp/7qlaIYc6r3vn/fOyRsbgISgb7LnUO6FSoOrSIbNlJIrg2wb2l6FGYgP0xhLqjDGp/i9xstqItI8sawC3KxWYnNDu4Xvny9l+ko/X1R2+7OgITSMUQ4BOYbOoJ8Yncc2qsUkP9uy8SsGdop4dBE9H3XlVr8+fkEA7dtU95yIyN6f9nQNFdZNh55CYWhnw25JlUq4VgRuCjmH8/GiRTTBSUywuTjr+ZvSqCQ8iljNQ2kkpYxE+eu500xK73EwmHbIkPvhirTdYq97m68G7WExZRM+zYEvCYR1vg57fg6hNyGuAj1aO7hbGYSS0TQ0svLJilw3wniKm5ZYdrErw09k4Weoep7F+M/LyO8agjC85/7B4JYWxpG3Rp1ztigUK0Qq94vIuM23rMOQq6k3L9BH2rWVHd3jOTUw+GSnC9mtuDOUs6IknoRhF6JYolk2VJK8QoK03yCy0a3oOfiyAGyHF96LsRQ+mVblg9x/N203BDqgOceZf5d8INNr57XLEqio/dzNmX0pwFT9ognENe1lB6+y2hF20XRS2C8gpk5PY9ma40v81L/rWAsQc1ommjbFn8gkSoeyWzGSxBF1T+9fUEVrDQPIbkq5GAOKpWc2Z/jbjrTmpbtVsbbpKsHfelhBMvZNnqHrf/iOGzBGvCWvnEsrwqAKNfvRAUVKeInK6zzRhkw5zz+JcTnoxac9wwL69FxkFthXoGfOH+jYyosii2VINxPDN8ZMpH1ZzCagt1OPnaG41zxwSKkuiDzl8bnuV4a2c37oohsq6M1tQr+U5QIHZosgrYnG76aCo1iQhXldqcq7n8k7Q3gQHVbmBIIjSAhdj7gaapeCRoj/PH13iYMooomdHrJeMNYleD/OZ6nP8q1vUSqAStXBn1v6behoNBpX4kVWykNJYRwCTwdMqlLvERfTRopxviW+TSny4bhQs/zeCXYLshEpyIjM+V/bu70Dp0TZZXwZR0AMHu8sKYeD4lyJFusk/ucRxuuK0h+B1Phl9xWWUU9JsBCTVscxh4LNuSahvdGLRSssJCIaRIixE9dpm99zXj4AzgA57i09V9iqX3fWihtLNYiWx/VmJZvGNtWLco5eZ5wr4gSPulEyp8zyvf0vwDEA9QD6TnIrF7zysCa1EMiRnpM8YMU4l9TzRsZo9qmKXcCJicS5d7QQcZG6cM1Y+qxUV8sYfsyqfa+1eSwNKhn7Nf8WSXRNDr+iPmfQlO1frdUsV9qx2sWgsPBNV+Fx2QqghpN+6FBMeD1v+wH1kHAHFpQUwKrGEOjkYTwm0iA6U46mc5NTrIL4qSbCI4jxA7ZUmhhrjIJsxqpPPPc8TcNPVJzEywDZnwEUQtmEfXK2Ezvpc/UC5nB+EPbDvPsL20lAOBZ2zP2OYwtt+8G6pGtY8+LeTpvIIMngmoqNNvQhjWs0SFmmOHygyN1Ty9CVhDreHu3X7LbhYbj2cafP3VUVEEUGuSwf3gLhlSH1bmltMeKLxWNJe1hqEJ20DgA5dcdN3/z0Fy3+MmlaKX9c6+inmhwkEdnZM+08z5U2yIxq+svNGJNroBTuMUfi0A7mK1AL7HJPdG9puczmBueK1htkIWs2j6p16mZs8p+f0TZ6TcZyz8zNfNwSu85TjhXcYKvY0OXgwLQSCXWnR5bhTahT1OAvDx87CO6FkC8egAWZJEaLFQNR7yS+0jLKAP4t5tJ3oqUikZXj+g3Q1RLJbFZKs/EJ4H7WNIlMAlgObG5aKaF67nbxsObieLlOQV8zT84AAyLkNLz5vGoEv4XJ1TdBidn4NMykqMG2gCRjcm2QASNUltlLSB0jHp6iBKxCHDDwmH5VUZLQv9ZcoOzgLx3swefRl4G3v0lUjuPI+x5wxxDJoAjHmioVdoqayndh+tfdh/pLgCwBz/Igyk5bJun1w4E4uRXMLUl0y3tytT4e+KrTEqsmboNRPLe3TYtYaB/3oDdsybYn/EyhILsN9xKGTsx2XmacCR4+oy1wYiB2yR87/h/dutPXWombG+nIEnuKsRdN4FEXYBXirphcz8Rkt45/cPEvZ5RLedshnUjtl7psuouWa7edM+M4o9OAZ1aNDRC7gr+LC2j+v0Lm9WoKq20PAEcDaFKnZGebH4z8D4giF46DjangOmdJmI4o6nbJCIZhIXufORydjHM6fNwrTQnasgW/UtXHVtY45L5hX4ZiyoWzgbZbBfu7XvtFIN/kzSK8lAHJqmhZTswHiHtvQmHqS6ObeGXz1+RtElxfBRJPG0QrZW/2OI8Yw5pkTO0q3+kDlFZGszsdGPZK7PC6KGJ7SioRePdzI7QDr47jrQcen2EtFXTL/fXC+gzcoz/HSuascW9CFDp6zwrjom8GRrsHJ9YtWla3xAyWjwQoemBkut6uQrYaPzD34TMS5y8arw9TL1BN0RgR7esS7WKeLiEy/CX9SJ++qq8Rx7hZvp7xwkt1UBaDyeVIeDObttQ5sR/BMIcpOGERngTotEvRMbRpZYY8lugftO5jXvvEaAiCe1GR/yFiviq6jTjFBPC88pSAybZYoBRrEmyrUwKqTBgbDeA5N45Qf8WfvyjWimhw/f2ZYMqajvgOIuTdBMX+sq5RN8VJCt7Z/rKAUleRbhNpiifOKtND4FYi0DJR82YnljRcMof3SwpQFMVu39jWL3xaYYMoERXHhsQgHVwpac/hCH0AXpK0nR8fm8JCz+IR/45D4v1tbTRdNHhjEc8AT4mUGyznWdCXCq8cVd/WwfZEtn/XwnaduO75+ahbLWFTTOpJpkdNXEEzVq9liS0zT+IxDnjgaY3fcJdRmvUMbIE0zlN2RuQQcFp52mJsioyt0fFZt0ZlbFM6XB1qBAxyZb9SULCXKWp9Ah6ERvxFAqK16D1WfQeQwy+IZTlHTXdlh/UVLbjwDENyrjBmHmpAJXhcXJRX8z8LnfxR2YxooER8UaZq7nDTa7GMwO0dYO2I7x/tq+OpF8N0UW4XTNBQbUwgdPSHdVYdV00ShHMRNVxtCpR/zPbLl9+bzBQ44zeBT5yNuW5L2GRauztEBdt0erpnZdX/IU4NePMrsgLaIX6hLwpXtnTm5lgjKTuM8A/8tujyObK5yRnbNsyvgZJQQOsV0Ks1StUOR4ojuiiNN3yWIAzKOA6hpwu4qlxhiuptjk1KaVAA3a6C/FZw/ySykraWk9+AtyLocrWNEngWCH0xle3yTjC2G00oE332mEZZNqGljYr48/GaFGIpHFeP2rFraiZhN/qZnmmEDP/RjrV07Oelsy9nBcHkGjNVocIEpWdeqkyXHLOQB1x5qXLDh6IczLIZEJ0dXC3+AFtcPZHzFh9eFUU9rWjgZ8wLF3r9F0ykeZubKWOwM6j5At4cnlNJ9rK1BuJYdKysYLbXWW4r6k/KPuwro2N4QWXAt5XAGjIUHU5a+GP5mJV3Jf2Et/PHP1FQlXWyGNRRFGBBaP+QoThS+2rvmzw4SK5V4KwsH6bBmARwrGIHOyAouHQZsT7+D5xGNs6FWtT70vuIM3aFWvdar/8bzwpNe6mOt5Rc/RCOyh4IjUOB0mTZPPx7Go5zoNDWwBcsM0EoZ/P09yVrtUH/d7WSx6udh9s8LyeLPmF4aEpQn1VVlPnk/2Pmzp+fcUKzX4pPsvqnK2GD3a87iL58W/Vl+yIThwO40xSl9hZ7c0m2IQ6eTUTFsaCWKDFlOrqEiqOf9JsNZNUlHTy8vNi1r3OsJZfKPKWJryHTNrWiyiSIIiOyucenv5JKHGcDFjUj+4khFrDeldRulIOP9JOwb69GqC9GT9xofdX4CM2e6bi2cp9b+u5rra5/MK4xBemvswui6DjN22CaZbcJEz3XM6QoVwS2C7YKE2HYE2/OutYMAtwBOA4Jwuo+oKd+o9m3UNdhWKz5TzF+mTZJNZdYdcWDZ47aK2Wf6PWAQC8zXwYmTTAbDiv57X1LeJgE6mdUmTTuvabrEcoM3MeIz5RNpxLdi/xtKnq3pqKxN53UfFKhtqDZi7khB39f4XnZIdklZ2xT9MU8o1qHuNYBCjsryeQ5u4IOYMWksA/BHN5+MUNfj0xHawA1Vi5HfeRwDKyTy6xe0nnKMaX1cTx/n3zrQ1lnmbmGGvOFFxiUQX8tnCfKIhrIWecpgqCMR+P0l+ctnkYJHhZxD4ggla/DL24qV7rH9JULQVYt8pBgd3WwiJUagizAb931jrGULCJ5AQEIByXGATsyhrETTBde7caCsFSOfOVNe+Dx0v1lNJJlTEkOD3yapJcnfXWhTLitAxx9atpRRtgH6wUEQwg+hyh3H4PZADBDDIHfDLZYvUmApHg6klIAnmyN6UTxm1AXibSw2E5bLyeiFLkfs5WhTpYCiFAOdnLtu6Ov+RfE1kYkE82fFKtetYflXBjMEEuH6U5qqYG7FmqlArc85OYveSbxBPVDcPIf7dzW0f0nYj1KnFiXbU6G9YoV5YJhyoXkOtdRQCh1czWuOF1M/CbdbR9UIzb8Z4KXbNs14C2w7NOrejJ/kvjNgRzwncC1Z1uEkoUWDrnGzMqeGWVnOWT/zz8/5hjQi6s69xtPAublF9f5gMUSa34jH3iIen4UBFa9a+X7U+rMFtBSWC/tNAV4+T/1Jg4+Ow+ide2Fhj0KtnBFG3fcWtX3Dfv9RoYfs9cQwREN1ucryOB0peCeDJoMITqcfB1ceWTXHaJBMIW0hn3VYy2X15SqN6ZxfFqbvln711kw4V4AaRffMddxKYC15yzhv8q7aP5FP27pD/WX8gNpWlslmCpHjSm5dWgkiOpaB1oBvDt/pWst8EC605pZS2LOOO4ZNj36z/rM9j0AmvlPFniqaHUM3UukpHbFs8rCrDZ6X4S791MHVjI+bQzcbxCdyCq/bZr0A588GiNS8wWr2pP+s5rvvYTxKkSYY2Ncj2olCudeFDLS8tXti7pdOInrVxOKZA6+aR1bVIm7V60Atzh3AUk1FyiSKfG3QEwaevHJ6aL5JWAaxcCezo+VJr2jh9XVWO+MZYEf+usefB29HJ6ILdvz7toO2Tj+0UyYv41RIvkRDPXbQMDlaPMTpDtiqnxO1HP8ENJDuPAmc6+pip1p9HfNU/h3Y8nLhSU9moYjnEa8UHUMVp7/Y2lM/4Opap030UbL8NwzRQaxKmjjYSJ8HzyDmvKfitXrIBT+2MNPpI2D5odr3VcBpM7pp7Jp510UJJQzwDUYPuddZlNokzggtEXFgF7RqOacNyO6OsdOYzA3EfPC4Srn3cd0HwIY6L6xLbJZZGUCgbZS8DSFBynspcIWW7DHSpqhcqfLZtu4pSV/JxaImcUJUo9pQ2iWUyd8Dp3wG0YvSWkSAvK/zMbWDyYgxSxZIBTi2nbSm8IfVt8MAYk1n9KIwW5OLLZKkZjI7uuskGMtkx+iHrQn8OaEA20xx9qYjUkOevftF0Bgo7lGzqa3etuLR71KNldZIMprTCuoyJIhmNiyO61Z3xWL3PTFX3rHhtDklNgS7vCuFtf1DD3vAs/BfmQUFsPh1rlxetBy/Bj/gr5lOcoT66u8WUR7Wp+8RIm93HcDtnGlX695ZpkMR+EPFTa7KL4JmNjT2FOwMPGdCYyC3r89pm6jHgHjsvlXE1vhZUn3ySwSQpofwtPqLRggH1UKgjnDsJcdTW8JqW58TzB1pTYzSmSff2LFDXQRRY1YbEuNXtbLKpyamzYul6HWhTWfc2r5TIUhz/N0JJ1RU00kIeAhSU/s1Cau5B4tu77SOiPXeU/cVZSyQ/TRz1VvaqKJx+gORORMJymgvfxHmj/IjrPINvhJ47jKk8AOxjWzneafKEi2dhGM4ib1W19bU1MBINChgQV9k07ETpz4b3YtLQSZLnQ1Wz0+yGobt82a5zsUkIs9yAeq4gs5Pa6kzqjopGQ6L8EwUBuiKzG0SFDnIiK/8Dpsb52Sn/W6gey7PpHovMg2C7LzXimtmaAj+f26rFXab6qGWYLQNUfdVLUBsaBwDNRFlwu5QBK6S3PmRWZ9fFawBDOeinyTdAJz+cjY2SH83FNQ87UqP86IPlThGMQEMt7bfplMT6uSyT3SzzYBiHBe0ZTj/h20Qw2FTdZID8xBNazyr8SeMqDwKMc+LzwuC8lpvXHd9P9aIOdhK7wtIPoKRcaUoy/f16p1eWfwDFPgljYNBUPIUBWKHJZ9QJhoDvWGcW8pwHj26np7/Q5O+OGLxRIN6lCyXgLyhK3yli/jWFZVZchXGu0OxPfrk0vPSaebMsJoexJ/L5r0TclNDZZyqC/QwLZKuTiKLFaFuutr67LYJeSROWSsZRSwjcBgO7pG1ukADTotIdTGz5bUv4WJ1ECUKBERfqMs6W8nCNtRcuEmWX98SWnWulnd1kXORzNh6bk5lVOmCdAidZVVtNGVL3bnqovjV6CJlT+lOWJnkROQ/ZkN5HFkXbu3Ymx1+48AHvu96zbmkRe/RKMCQ6z+ER3R5kWj9oljx7hGR2We5rsl4BLyC4P0dh6029KoMk0g/xes/1fK2Heb3uTUASGzYI0FSYwYX9a+iRUNE5HuOImFcpZ9ugRVM4n72a2/CI3adG5JtWzQjTtozIf65Kr5GWMX69B8Vp3EKxFSch8+1gOmXb6IOTuD0exLyw4rlyczwFat7NqeZXrf7Np9MO5oEXjNoUpL93N5mz0yvPnKjOr6lESl6PZG1hclllnAyx9si1H67VZGEXJXLQdyJjiBInlT8re8tiake7OWC9KATjZbtOu30z/woQ4puHG5Wfddxb3w4jorPfkBoLRuGAzveu+Ma3nL42JCEV4dbaWzoxDUN/pKBBPfkhWdA2vqtOX42Oy/x0/rGiBiC+hn08AWS3eb3Yuu/lR2hO4gce2id7V4tpSpd5qVYm+1IgY/7RzlxdZgUAezThmXAzZvbwnjJ57EEjEgfPmYAjyfab9PQoQs8b5bvuTVpo2Ys6nUVfqnNBC5KcJXUOOJEG8a2leHby6lQJsEZr0jdvRlb3SMa+y/6s0ppqzfqkToG4g1jL+D1BoWjwZuwN9eZOIyJemLOeUtnAUvqsq0NFd/TXyviPHQopzdfkJ1cEgoAAmkH/CFks8uPBtDqG9DaZjLQPLrjpDMRj1F+1G51ZRVVFFhoJm+WobAkngmQCftW6Hv/in2t8VtdJ6/zYppf1LVlyy7MQ6xw/7VtZv5ZLONAtgObqzAx3dnKSwUnMnmptdA8k1LBkc1PNLyQ0xARya5HrwMcMnUXcTnl1NtzFEC7x0uH7OMmA7FRvE3TkGHn5KxtFhbw4rNqnk8amm3RGULPo+9EXTj6nRhAekLS4/WxoiyTWrlLmmQYV9s9lgbB3qPJMnoiBoDZWa2y4ilwI1
Variant 4
DifficultyLevel
624
Question
A car's tyre has a circumference of 223 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
223 |
= 2πr |
∴ r |
= 2π223 |
|
≈ 35.5 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A car's tyre has a circumference of 223 cm.
Which of these is closest to the radius of the tyre?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 223 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{223}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18fnRR1w07fVxFtuSQ0BygoXsEwtDJrfkeEyb1JrWZa0EovjBc64mwk7FWO+dAiacW8hh0X7P4/UiH/i3UsdVmFq48ec6iIJx6LXSxwmkM86aReEm+Ux4YwFSBAwfZhRHdjWGKQSU885VYxQbMYO8G7yVie4+AFfsTygJhLa1Bc1AZoHqyEWzr1DxyTb194LVSyy8cGUfSncAnhf0gi6bim+EnaQYt4ME1AUddr7OOaO99fmpNVEhnxWTgMwZdbBPqxDktStS/8y23vsnPWiGdK+O9MTBNGaUFsQ7Yw51q3T53FmHwQhLbEl44qR496Tkao4lH+ZItjbLdvI4Efb0CQwFfs3vO1CoC8GuWhLe7IX5QmzIwVh8sHzZT13EDnRvn2gfkJ0bH1h/NcZdI8CpN/7UTuIhDi4JtAW2C9msr55BGe3OBfx+aOhW5YOL53xQ06iuyvCB7bL4xkvQw9u86Y5L6DJT0uTGko1gkChjVzfAR9kpbNBmc1Nc8LFdxhtP/YE9zicfcPwFSxGa4NndJk7lFWR+1OgNGX/g8S4fKrUR6YRTJyj5HNMI4Jkbe+XBo6XHZPfSg4fWrhnvBy5Qze7oKto562HQ8zJibezeM9TSi08+QgOFAjG7N30vyfzchVG/JLfLb6zlw/M0krvO0XxfBCXgnHMb1JP6mGTcy5ZNYCbfU33qyYIqYtYPM1/l2QrZ5CxWKrmxHk+m0qtaa9sxyoDD3+BM3janGjLzylY1F7S0zDR7crQSV9qiJEXOTmsORi7jdY1276LrUvvTGGEJjryB9WoVwNs9p/PCqzX6CSfXdX5YwgHn0oddJz6Ku7ZNj19E4OIptY1VFfqDWp16Eob2rOxuYyx9qDjz7iIu9VotojcQZwC6OLwFpOPAMkoSncORKzpJ2EwWvqwLP9375tIRoLXoTxXjQP9KJxSIDm06MQM5Ge06NOIEeHtm8LF7p7O8R25zjXv5l4g648K+P5pZ+EZR0mKCuQIOkrjXUrQvy/rg9Xj9FjM5/kEafZ5sJVz5Dk+9URiMnT13mswcQvT+i5CBb+GVSeCAm+xZziLlYaXOUheil7OAqw8WwwC/34Le9DyNvSt8561nus0Vi+6FeshYAG68ypFJbHDe68kb1atPFQy0KGywXYn6FBsuS3gIpT9R6pqUUpsgS/eDFM59+R7ZpXSZId3qmrGsoXY9HOeu+25hUQXwbXjN4ljD8d+pS1L5sh/9HqGsGNA1IQ37YaCqXZ+PGKJ7aRARstwCzQMwh6pan+U3EBVJ7Zez9sTnufolzeBWiEN2devSzniJTim3HG+wD14y2qKwO5/1Olowggqcn6xWVZZRuwqHLeoE3Wdtc3QLiR2YzG32vq7lUmCRs2vdIjwVZUjlXi76CFgdlffqnV2ceYO0AiXs18wG7VY/MvK5A2pfKqeCGGAG45Ix6uCftfbcgrPLMt7zZRyzxWCAwUd49nuDUyIWeYlOvu8ZxN12uXW2j9DqsZUr8oyL/7VwfxXydLAlOe71DLTcK9xfqdorAokhJuIWJm+drZ3QD2hZbZbnMGTEKPnQcom2LeCA0yXQ+2rT9u2+f5VAlgXjbgc8dOo1iPVn5hJlGpMzGzkWUefCfDscFf+RMVNa/5m2TWXjMTTIHbcN8xYVAhhcmggnDNLnmpLFKwxy4D0He67IH7TBcd/VnM9Rg7OOUPFbtgrggg890yeo+G9HwCMiuexivZf7LN/nOANrXhPNwcx2tL3gwC4Ym/MWqpxHZ6J2v9c7nhc5Y+DdZiDoaGw/oJIupvPJ6rgHN81I/JKncJS5eSK2JddxidohQPPC4n8f5xjExSBR8sn6IUlk9FwBW2livOzPj55ZC99fB2fhoScKPAUKuUet2HvDm/yYqLQwAD2RWlyf0Ghb4xifAcxtelGc3zE/yr0a57zEpUGCL2W8Gau9olgkN+Bs0DpVFUrl0ZsmAQZZYehjUNvk6cegpMDCYJbGF7xoEos8ZIJ6sC7oPztTy466mGy0yP/3LTR2dlct5sNtdxmXqKQLta5y10QEBkl96XHRybuZJia+CdH6SiorWIbNUytDQ5PODALhBQa9hQIJPLJ+2dkmDByP8d8L3hRr4bokJvpowEywROiCIWYk0K9jphKonNz8SZ8MrSEVXJQfUh5CPiPGK6EycS55Vn565rt8Gdcfu2kSTLUi4rv6WTt2DROXPom3L6ng9aK6CKKueWxfSA9Iw7iSCPSogGMUnhxHZyO97TJZAbgniiEMCCF+wQ6pT3Kyu7DeO5nLYo+Qy+oy1EN2jb+fQoX0hQnUQ/M/sU9xr1L5PExH7SYmMOkNePYKcLM0IoMrvV2lxQYGZAT8xyHx0PcQQnBdQyP8NbsNI1ztKuHu7ie8rJjeqFnodorux2peQsYmYbinLoFTYrs5oeXXl60PObdVOkw1CgCrV3Jbpyx6f5DMx7iV+HKHnrdzN6AuApKdTh3kjmAyAhtfNGaA+EDhne3bUUsUHfsMt+N75J2OFDgYvtZABq+J+2OjzsSSyy+ImkRcatnOVDIgxkbNaZLJ/wBZlhgMpQay3ev8q8pDxA5zCKflDpf+yIcooOsl+hW+ohLux/bZrv5LmFuUQwwutLWiBaWPwUoCtTK9TfJsJYWljL6LG9iYSq7mmYMyP4/412Pcf6+d/kilGQ2ipCppsogSrhwDLNCi+dRjuXYKqGUOa9Vk+1iV56gBnz3SLYL4uq+v4hyChlhezZp9j+oGN2sOVbjHei6GS75JmELD2N6Kp0RST7c/CALSzW8fwD1pHLnaI1Ik/+8mlWp6V+Du7RT4hI2MfGSIqjEUZpWjjAWFJ0s0E3Fg0ZEIWfa7VmHEiZMf3z8vX0LxtHQvL2Hs+FTt//EvF80qSGlUM1Ph08jVaNO4txTSBvQKiXZ6Aa+SpBzuHZKwhZpzGiUJRvx/kXCbBGbOxQrVFbsryYGtv312ggby/UNdUFKfeBHQ0kV+CBdHGTse8/4DJQy95RA6q3dSflrB4jsqxb0GoSPcJFM2RbduCfh8fmtClOoGeSa4SB2JM9wNLSsknCsdb98MamUGrrk9pijJ0ZmdXpWf4IvBJatQ20QeMHQPFNlQJVOSujDpFcItUX4jkRdso3FmFiuhyBFvB/gd0GAqhRsOiCNfuyfIvkPHWMvKO3F0UwOSEXPElaoHG8QwpJtY/sCsPDK7PFOT/IpF3zEnitbeEe3jPIEnW/n7VDcNF06CB4Qvj9FCQDS6Vt3JgZgfflyZZGQMBHvjjrp89rjq9c8+MmB8q2cx90vPHK3sXXXgO/8aOGtutQldiQ2YLydM2gk14GYXMTOc0TT2uFFcLnj42ikMg8OQCDoqgYxYO3Jj/LkTO7CKVRCQHJZCX4ldbITgIg3nsEFuWMFSFPSyFrLI6juxbbeU0fNq1b8SSyvB1WMwBgx2V8E9VAueSXJRfrdn0em3xOb4yTamgEK9LdVpWxrUyNcoKpsSwce8mbznHlyto16WXqQxXSaCrglY7JRuQ7I9J4Ko3CXBZf8xvIXtZOVk/iMtPcecQkLPmjBed+gQgzNs3UxsK+XhNmdEQ5AXdBsaWQ5tKMOf9Yyd4wfOubNKN6oaBKkRfocQ6vLX8RIPPnQeDH/amnE4kb3u2oOZbF++7SuPth5Zjc1ZaepRmi3OzF4QDbHkJLrbkTNUdqvmjaPS6L6pEklkC0wAe4MflOhBTQuM5uvQ5yTSgZUyS9KwbeOhB9K8qSIfCT7mUm+bABqVzd09jTb7vzRKKtf8W/puH16WglC1Bg6QpIAj7cBVv16YwzuhhSyOxZT4Az8velcpeErEDmslFi0Qq0YEiuXSWWnoXH9TEPhzmgaqQ4eA5dYrl2Ez/yI1dZap1WmS4UYT9jlDaq4nMliyOb59CjSVUGIUQrqdikVfnZodVgc1EGELqXqDTV1CQRuO0ZcOVcXH9nuSYELuTB7y4BV1holbKzSk6W03UEh5Bbk9OFJ3QsftJGEihWafO5mZdPwsjrJQUwyvdP8KklCG1eEvPLXoc8DoGRaS3jNhAdYMYLklNzwh1orYkXXibYS/rGPpfqwBQdT3yXcbfB7uN1FgKhUGXGJ77GTzSXAy2sBoQYB3jFGtvlQ4Sk3yTCtYdD68H17aFLA40LwqcYjnsSuG+Yhw8Abu+G/RT+EGLcp/cpanggpVN7hQIkg4LJ6dSgiZt1V6p9Xq8kVTdEVWTfNshi05Y5eEyX2eteRZuYYzbfxHBcVrTichV26erSb+ZmaWaXknDE408T08CyJCRUE4Uh48lgSVVvDpPEVgp2AEeXAPuco4Hi5x69QRlNjVFhxlaAQP3EPvgerlw3ANBudXfGe1a+CQ+jdyIAdIyZzJ1YjQXjXlPqTOcn1rLSRAmvEROT84kHQQzbS9QNJmLLs5SETzubZqzazwxgEiu2OD5nGhvoLVWqfHWBXeGUuOM8LMaY6g4Dzl4aLtUcBq8KqPzf+YhJGOGguWoNcoGOxWr2ocge1K0qKisuQeYJzLsdV4UPQqlXiOc/vwmGatlG/QmRYQDEAhzy6oA7uS6IEJxa2Hhnmg6Aibi7CMdT3tQcZMhu0Jl4nCVBJhNHN+A4pfxyZ/wlFUH5DYVf6Eq7uQTMbrWjhTvTaaFyLBmwJOAVYIy7cP3aXgFQTf8TY9TsBhj+OXBEGLDT4dK0CpAsiSltVpfYSTdpFb6f/QiPsRcqXg/4gOTVrwCHmur2LRySuTuTQqaS1bvDjGTo7vuUxjRRt4WXOsJ9WZmT1OnZ6n6NqYEjkYCSueAKkQBDdpavGFJk4NqtTkg0lLcxIDSlBgMgNrm7BHkCUYLth/hFAwNgaNXzlQ3VXAfSo6z2rBxHRWlag+/TyjaVSe222R8yGT3ifDbO4krIzExyEC1EjJ2R65+SijlBqU/VhAn3ZlX4CQdd49b+KsgABMLaldSxSq/gxCROMH7LqqYuwz/lNqgoTRAXpd7Xkypt6JWCm9hSwpOJLA1Buu8983BIWOGOmmJEeaShWLRKbzD2gPM7lekphWIsBpJX9Om1sU4At81rZWn8LNoegG5qQIuFzuqjoGeMGWz8Wp63dGgT2KI3lLtN7tUqRkUGJlQGisOXrojYjHE02pzF6gmR8xpSXByIjQHQrEKapfKYlrY4l0FJGkuhPLlVFp+75xAdooKD6JqGWoj9QShV7kuaj695f2TJDlltvkyhJdeyhrxvPUt0NaZE5tNvxrXKOS3ETuopmzt29Um4ey8jo/Oh4xuxxIt9O9UyWbS3x2TXowr8hToKBsQ+0s1ZuK3AVjPA9n3RFYf3isRLL2vq13UrUnrlSY4YXubO6ie8S+7Qx9vjzLNS2bnWSw6M0SlZawhbhPMnpnKoOxo/eZF9Rx8F6M8OAWM4hYxnmVarXNjgJJAmPLilcNdW9IYmcTiRFV+LE4WKuoAKN+EmpKo82l0d8Csi1up2Dlp5Pjm0wpsJ0GOmMqX1TYwvTcE5XWTa+AU4zU8V3JxF0PxOkjiI2RN2BmDuUoz4ogljfRViYRXrlX0fAIIqLlsXovA4TO/+Kbum7QsRfaQaXeqHtqOxvJtgpRhpSxoOE71TuKlKvvA5rBeV//LocM2vuIBa0SEclD1WsVg0sFV5fB5VAo4oHiAix6sIqF4rQYIhKarkW9qUITGt/CxPbC4MQYi0Gv0lUTWl8bS+RJ8x9Ku78XCeU7U44rJ0F5PqkhHXtmXOJhtbNycGTqXHMdiVbTaj7xcb+v6Lp+Qv7F3zT5XdP7tf5u3R1O0GSc+xteD0P5J5MtzKJyK63BViHL7FeMR3LiSMkNWaCmqmmGY6ByZAse4X90ehgUfWlcXkaGCyV2bj3RpVbTmgGKTGmyymqphVU2uL1TysQdjRtS9YIHIWa6aG+gD/UbzY/Ngz2+w6lj1hpN7Rwl9fol4HJa+llIkyHyBvcwUQjYCDZxcU6wd9ULcH+qGwhauC3JlIdWi8wLU7Eu+6Q16O+xjdlU2Ss0PBxJCuVwCBNjwDQEfKLCQuZSjSDdMWo/4cnBMm9l55qwZuuXP/MGbpON9cJk7Cuw3j24Je82NE8MXNiGDE1Y2j9j9dZQk9nukVkemgeGePXAJ/KX8/kfsGUDDP6eFUaPRQADpWAkBe+b/GRBGMsKVHAqhHz40K46dIcK4tAfiT6BfObfvAOwROabtJ1//GlEGgUoZnlMnOoM+qiEILyGRgoPR7J+BFlm5nPGUKW/Gg0n6YCv7NQZGavy750v+AW5kh9drlQGSZFQViaozidHMV2pGz2z7i4s45sj2nUfVpuPdbm36RSrRLyuNvsyHrlfVPiaieBRep5bGf2jgpFjHBuSKW6BM+O5Mx+Ke5cvN1kiZgtDfLrZfTk6cxxfvl46WraQpzqISeNCbEipbYg0n/txOGWaX18VCYcjzDwVAqLhogZFLOvRs46CPH3h5bcmaLdK2p5YQFVT7XPUqyeamJ2Ai8HIT+APM67AOx7VjodhsCoaZfK84iAcBOThtESNpv4/0Jg3Ip1vOCYqdCU/iab7vqUwa9BbHCz3hmM08EyueZYZseaITeWb9ubAQ/XuVIVqYMtH/BVIuLKHwEpVwlAME/5NWH/697QhYGv/LqJ0Q+SA9YrSdFBQ6EpJ/dP5onkBxpKAG02rXNrNtOHma+zEXoocr+n+zkbS5AQysXVSZtuwNAkWgqG6vWLJfecKHowKwxzSn+bcj/KhipfnabMlabqRG2/41uCBLXdgkZMmsuUaGfqm+CBMyEmOD6CjjD4zrHA/XkDx+VHngTm/3iJC1FC0MBQqCFMoffrEA3BfcED9en1W4F3hMxCvMAX4PoganQAApB5FuzRckFhMXeDm/Lbxem940gXOFS6/EH8EzUr4fVNzXAUD90/b3432BFpYh+ZAoXPbyTdp+Pk4Zg7+dU/Xxn+pjp3KY/icruv4Rqa21lw6eixQjYb4F7amurm8uCVdoDiKWBZS6B6rRWFkETaz7LAaYz9/79+lRzz0Jr8Qz4/sJMNgVlEmMTOEEjA8OMRACNdeNuAn8/BOXRq4G/xEc2DLn663aVFmO3TO7XKN/BefJogEjVl/6dILjsyrCpJ8IsGTyr1XuuABrTlvobQi9bGwJz8VNmgxLZ13dSwMIWXkC47Jzk6wSHdja5OlkwW4qJmFB104Ht2a4p3wR/t+8isR3nrI82RFUYGS2Yw/eEq8BCp9hUl1V3fpeF2X2R4VbKXErEQwwFuwfRXtgyRxT6lu9eUNG91L7TjZfV0+7g3kLJ8sPT3NidsEN9YGMoNq1Vjht2ElCU0U5R4QA+RbTdMpcNn4+J0xqntg6djiE66WJgjZ4xX1DAn7g0GAJhHHx3yD+bPWXQJ9Y7/Ll+jtZxOCtvyXKzaGtIZAVmHvCOcaM+9V8oA1EASdOOiE1A6Llc8UUFUMheM8xJ2xwvB0oRJkGQ1AFZADHiy64p2ZN+MTyRb9ZGFdxK3inyQkF4QwP84tR+D+xVCkULQGkRQsWTL6fNNcnxtcC7BFaZVwieFO3rhITUuFZbDK1vMHzMrWdCkkMsEX+GsfEPe2yIdm9jKVk86VrlWgOTacH89KcEVEEe9ecABRXIWFs52ymQRHSShAAVGbhtH1oxFvSA3zscbfuNknbekdFDdN0V7sO68yT02fPKvpeZXitX9Afh04Lt0WDeROMyhmoIPBVgGm00Nl4JXwm4o9sZyDuaAmFnraQDrg7ck4ydIIT3HlTLs33+gRRU/3flekUTgG0sXUQC/zezQeUUlmwMnUf+4j3mopArmT2QiR7ixgk2ljJXmQKdXj73Z957FVUFfJmZGmqwydjp75lhiZmes17layBnoh1QpzPbxz6ZEnfBUFLAZ3HkId0xjE8sd+HSZ9WB8keT7kz6ASCuvD2KUotzQBPWAFLKxseftg4R9YeW4CoaRY5XUAv3hwOdBEsAUX3EmcFCDQD5cfMHUfvwE9yKVF52VOmrSSZ5JIosZ+z5fq8eR3JqDKNqlYgH
Variant 5
DifficultyLevel
622
Question
An old wagon wheel has a circumference of 600 cm.
Which of these is closest to the radius of the wheel?
Worked Solution
|
|
C |
= 2πr |
600 |
= 2πr |
∴ r |
= 2π600 |
|
≈ 95.5 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An old wagon wheel has a circumference of 600 cm.
Which of these is closest to the radius of the wheel?
|
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 600 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{600}{2\large \pi}$ |
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers