20309
U2FsdGVkX1/smWZ3N0qOT+dqtXL1mm7GlLAx3ne0ltXjpskLkBOTy7JzZCP4iD/KGZqlWmXUn1L5b/S2yH/9EevuPH6pDYQpeIW/zMswWt+4J+SLq9nrAA6nrUDxiUeyWECtla5mtdkee1KM9aAB4kOoRCwGv+Z0LQiHDI/DInDG3MdYyouVXbYFXRCTt/1HuEDvgu0SQEQbhwolKwezg0TUBtvkUJ6Y737BmpkP/qd/DeiW+zNv5dunKmIXrxtsS4oHYdWi0nB78GMV3o/Wit1PTvR8BApIVgrN/pF1nBrIdiv5NqIaaMkJJ+2gUqbyKCs7QvepBH2eCn6N09Dwu1uUY5tXERoW12UErTIv9xk1DHAX8Dv7UN8HCItLBZmaucra2+vhO0VICpV/MlZ+JP4FNCIoY9gRPqpgaKs4FgT5rh4QdSlXUkkUGAtRwOJeI0L9861ev72rxeJ+5uR/K2juSHYmOiRPm5a2xwA2srtkwvKGoYYxPBvQ2bYeywODVqwVdtYxDFyFlEsr3OIqcRetrN4QCR+CfU91UUOvsM9LwObmKl5yhJ8q8UV3irw3tWitDEwjW7St4KVYOOUfbLze1DQJLyiQtpYsY0p9ay6GXy0AAQZKGfeCuNVWskq1WxFPhlLI7WOj93m0mFGmJDhCI4hZteNZ1b5pj4FxL0lOac+EkUj45gm/KSNBw8bT3cGZDrKR6U1whVN7wcXE+gL5iFAKg6GzQfsnnFbzk7mQ+pH1VOsCNAYCOI0vcLwKPrApac5ImTzX9aEXO1y+BrPJAPcfWU8gXKRZJ6ASs2rBmMSPWiQhT4OXmY4IKKzV821UU6/EKg6idY7lkmbPChfQTjRujijeVh5RRjgxklMb+rGO/trkVPJO6ocoAJ4ioPm++R0nKPYv/hIbXSNQozAQQilrAPd05pR1dTYrHDW7n8EHRBlqWHNC1ZviwhCtzkTdxz52hXQGY+lTwVZPpPjuYYGw3Meve4JfZQ/X8PTPUzHitUPA1nvcdx/xG3gMGkshICO6gBsltpR/CfZK+I7zbMJlnH7un2kFdOs/lm5ucVPW+h71n+sEwY3qimotdw82SkdHJM5Oj+KgWuYecmK0/VEJ4M+3YmXiDth+1MmqcY9mOkvmMijdCm5JZSKm4EkKysMJBtTbrvAnoY7+xqRqRbPP4SPgzEIJ00SvGI9yo+QYoSuDK7IbIGGGPzPWYZkX0V0XMlUckNqMQkruVnBK764R06526jQDJrRwMLcZ/8ypwRZf7brQ5BHc2BpdCBjoNkey07ek2YvS/fpjtBLUMrkByq1Thn70KR+0p9Oy/ofnWkBthydEb5bL/WX0yLx3Su/8YhvgF0Tu5HpFigAnuDyAgofkUi+YiDkeAh3ZbLq9QDaXHLbb90gORGAnAvmmO9DsZ81xtJwkN0w9na+eEj28K6O6fc3cx2HuV9FQluEuwbuqAT6CMbxfPubGnWDalFWAeOLriNEd5Ggty3vpPKN9ny01UV9q+o9uCBMr9OgoysZRbVw5pr0vr+aMZvcB0toWSevhLOvT0fRfsYL32ipuy3KiUfyzP9YZf8Aydl8wyC75vy2/mfyJ5Aq2pPGX1o/eXyR+p/eO22pf0Nd4igUBmvt4ARA+lnfb03rGD5r0Yf4RuLOWUNU3aQyRLcU1ARZesHIs/q2j5lfhbh0KzTkpVQNbJD3bYGxSqgxQY6/HEP3g7RJr4OShFE8tAuBhG1+s66Qr31M7aR+2fW1bDjlt3XuFE8ZJ7/tZ3thtPnd5aJybN0VH7c+uRUI2BK+BdtcT3dDAWJ5a4GezRbcsqArx/jfAv/nZPopsPgTYgDko4CNQlyYTHhiQga63N3wBZyF+0bONp3AzK8Mg3v9XbmkEbSIpC29YWMYZuVpdMvaXJjq8opAsvA5YhPE58S9KAQg3hatwnno0iZWMCyYNUOEKOfRUKmc4VGjmgDrL5AOvP3iYRz4TJRqoYZJ5xPed2mJ4O67xiXr0JLfrnIqMw7SbsxcowFIiepAg1p1SDK626hJHnYpv/6HH2vqEFFoY7IcfM0XF+WEXhPVUrLkib82quQOtxLOBM2YHrcJhHyVyg+GdtV6W9txw5DvHFgAHVISgH1EyeruYHYTaan8EnrEmgSscuElE/HwqwKdFkz5qV4qEsJXeJfhuScVCn9E0yotcE2cW/Dh7FhFK++PJ9FRTciih08bKcsH8SWeGg31nRbfPGG1Ca+hYEH6tKMgJf4wWRS+O/M+i7u0NF3FDkauY8K/8e+8Ftu3nECV5nDXio7VHPpLCSRbqj/ERq2R7sUn74ZD6eIyopDmWU5Wx9Zw2RRUNOSQGWAYGI+o4sLshiIEAcUdzJe9d/Vw/ZQB/Adn7xopRxfHhlyl1gB089g/sMKYg+6eXZwPDHdse2ay72Cn/ZE5dgqMY4b1IAzjZ3Qnbt6pYT0mrwxYbS7RkrrhUYScfOCGDg2sSPs3z2V1fvGsgWteeEO1qGHaEY9oHL/T1Ss5Dv5Dz9CM8wqTLrz4jvSaV93JlYxVVO+huHsYP17onfOfxihslL6k4PnVTpgCfghybQs+FdlxJqR1ueDcCBX6E/4YYfXQ3F1y6Tx8Nw37Iwq6KKNE/is52MEJJEzURTeOHwnepXldhe1WyJEi802gtdOUlr8oDO2tqqOFtufEQKFcXr07xyAA+zu5GfvfWBYafx6jvRmdNREb8FgF6k9vlHb60k8opEMQF+y9Rc9Irgmts8KCmV92nXlQahC5kTnqaZw2C9BSszd9kkngOAoWDKKgXCeQiii/zXK/T4xLkV0xJsWOCVVmj93IgAh40mQv/dJ/8DKVIL+yMv/+IJZvmNszqJ4MyTSk7dbPgTbr5ECzRUBaDR02UmAv9Nv2WpXLScKDLLNXMU0vB3rzUcTdXtgUT9YKWULG8Zjk4QBNVwnFZC2Y+8X5J6pXNP38NYIH9SJ8SOVC84uyS5iOJ/WPgakm4F9x3Q7O8ntet0hTOOIBCPsmIpF+u6eNnh+Uql4KxKr7XkQdTkPdwBVMkl+RfBC7K8UrQRifz/YK4dXRfRoHEKpwRvyjSXSur3A2MvLbr0B9mV72EcHydNcdIBDy5h5pTRB2ZaHoH+y8x7rW1zAmpEemWTCls8jYrWuzFBFHj3x/F8BOUjPNTm9+ZUHeT7oz4AofPJIzFFqEZUxh+D6zS2f+89UGiF7YIUQdjl66BNd9GT/d2pPL1UIvDQR9KSwFfE9RnzyoPsr2opJiDC818167GBLWb3Zct6jirqm/p4/2wlhfnMZwOnsGXtF2LPox+stJMpbs4+xcGgPFEYJJBsubDhn2hlz4HYvU5FJ+y2rNd6Vjw39BrIc2SC+QeZeOGyJ1u5P6meYh+rpqqe+F9YCJqdQ/0ImVTVMrxenBpdVVibKpuBkyJJgSwQ+rkghW9y8OEr20cL0HUVzaIGYs3p6e+2wFrr78A6dW8EMz3iTAF42X3v6qtEuXvpFRFv/DuZ/b4ao6IzS4vAyJen6YuMgTqbUUel+XjFJGKRNQYn+ysx42mg6IeLMy8Btc/cuXED8TAzw+NiSSIcGd1enC5a8tOpjOXDga7KSsuTiyP1IPcQn4Oq6DR8s0i0gVCLqiydeTJOcWNYVHeCAl2aAwtTngAUqiDQiC1aFAdn+OSjpLdZTXwdl3N96/BHCtrzVF7gDfoE/c/Vo9qgBy71FSbzYcAAiNlhHYd1+SDw4XfJtYuW/I/cEqQlLgW41Nif/YwHHudmFZD7o8EsoIasmZ/NgQFj2DhoWp5Pn3Seh5l1MqSth0bJBOJxEogFQ9jC8I2LxgE0FE2l82XFPG5cGKXzSPCxXJ70opnxGDquAxNnZ8R1E+h4qCR73Ye7OlSgxLo/JPCyuCc8nCp2N+4hUxaYZUp9H2GRB0bd2+smtUJx6WEc/tcFfLVIEPrlfgxYKMQKDVkbtU7OUkAY5LBqM1KZ7AUPmO7F0xyTnpuf8Hiu5gMDPkbQM+9PvXm39agr9JhlrA26ihLges7y6dpOFgBIyGpkTlaU2Tt6njORlRbfXeWlyvneaYEHJAsv1mdrQNm8mOfHepYhw6GejMZA3SttNVLsvbluRDYrOMiZWXxqOReTymc2oluibeJwO3WC/nDEZk4RusAw2uYHCxKOFKQgVWM8csG6yQA9MdfCJAC+99lcrU7A9l5KMVu9PTgMmCedtgzvQDjC8E4h+Alc64HS3ma0m2oxB2fab75goN5fsK7ig7alIS1sovNwRAfiVGKW3rhAv50Jlscig7SsEwGwYD50AXgObv/Q3mHpmkwERfeCjY13usSzW3F9/fitKBVQV523qV0rLybJr0bVaEmdvsH2h4lvvDUh2gpbU7NZlxbN+CW7k9fOr7a1QkzzMLHoWYRYIJppcTNX0fLh7+gqE7a0hgQ8qlLjPW/+KU3+P2XuArG5B0HIfWkugDyyyRAe8jHrD2qY7FgY7l1W76N5tZsSbabEW2oaP8cSsFbc3gGCZ8gu5Y41hOLX9AK1r6dyRLCR/SMtURIlGJ18IZgKQv5xQDLHy+JoHJOw/xy8Dkomu21ZeEtsFz4q6bYdoNZQFaIEuo0E6YS5CvROZ+/istBdIf9GXS23U7Mnfj5+068B+LhAp5zLc+1JD61d7tDsuxVE7tnDe8arcbgWFTUN6o7Y3/XfqYrBTm9/xfvCvO0WupIytk/kljfhTBx7HaoFgoRhh9oMDDLCxHQNKa46T+BxqbvRYy2Hyr2iYW6QHufmwEMuatGL9Hlh7K8D/POO1KKDSqELWHar2hW0lzmLjS1Y2am/zNvhAmlNUR0ylvcpW7wZWpO8Pqg6cUtsuq6cmtRb4cLDQDO0gda9LpxM1QpEBLHTqXjDnyqyE0b5QolOhL0rPpzh4pOjecwNihzDfblWrfxSovs7ES8LNaHbcWH0Prwek9/gDg77rYOuRZ7K6zMz/NVYQI3FptKtPdg0AeYYoPzwk3l88TsHzpUWMSIf4A6VwzDO6UhsiI7cQy2rUVatZ6aeT4lMYX9iPqT65bCqt69sX3Y9glvrOwqSP9oQPiaYALHLZhu2/+cPPPJMSKwygeepkuR48CByZ16F+uVqItVHF9+UGR9NpPI6ykQnWQVl4icT0+N+rJnhcvjhSE4Qhnit3ZnlriqCEj0JTGrua8td+bo1UTjAm1R53JyHf3QnfvxCbzVWWuW6rAL4/KQV/jGTzxRuUs24lD1inMblcJsk07SkgXP0zt+bTh3PyEZ4idAb313kB7wlBVXl1q6LB0uXVHpQg9RQ1JCPuqlcnUzkFVHW2lS/sNP2/Pdq4cs88REFflvHCNkvFZOLnPDhH+0LJ9Qez/lgSPrYHtlVKbwM5C9AmNeGc88fwbVrd/G1e1LJeU9bxEZGB1k7kfzpw3eBbrGyCSXm7I6H0S5+tQsjzff9wQgfUawJkX/Onli8aqfdlfZQADofwklbXVn7iNyQhwbbc9TD8YggX5Yc7q+EmHjLMivAbyIkNBrX63ib3FNSfn8gM1qczDICi3v+39drxOEHVVA2a2jutbe9F8EQWvGE9rclhUTt1AgU3UnbLORgqQq6MD5bk/CXPFKuQywyBBbRbNpS2Qo/gKzHHmsLJKYlvnx8lfpM3NgSio1Tyi5mEJQVLZceoRqhsjfqRK4zCs5s6ar34E84/rYGJ5e6K4Ul4By2LiYbFk/HXiue01knEVFq3l+U6jTXVa73BvCxfMXhqoCQnbhTtk0ajVfckvupRiP3BlABld608ZQrULII68BUkauK5MQgtuUEYvXmt/HECxuyjg29aKq8yyS/ZMwXJE6UuWjFOEIlNocxrv/HHWUqweNvsW536kgdu+DA9vCmLXzTrbINDhKr6g0+l6xiMhg0ooY5BEgd5Vj7VooVZxQTIIuNQkN73Ge4YR/X/VkklATmtjcsr4epMh1vV5QmlkJEmHQToKHUY8lwKHANBC0gkaQjBhsU6//ukqXzUd9Sv3fLnk0JVw6iD1Fy1cil74ZDZkZTc+4ErKvAEIzLCbdIeVVQ2ocxGzNAld2M5N+dVY6kodGp7JKlclQZGrGs9drVUviNXLTimCnpTUNgRIIagY1Kv5E7USaWZXAybNCQ7LRy60lZBpazFhUU/+4mI7x314Fz3UbAfzYQr5A6zzxK3qe/6OuqcxCwcYnuvTdLUu8qC3OFAZq48EiPhJSiNln1hOUcI0Rr7m5zZKQIcxnRq+z/34nnp7ljhUbLbzxKDs/h6Q9Ul58bcuNytTUuP+OrFTiljjevzp+zCoFV55AcSLBXTFp9pNUWNEOueILT2VogNJZgG42XbYVgDw6AMwK8+Wj5E00irsUjoiQAvbq7yHvpZxil3/6Wsd7IvlFJCuqclLDXIq7bfMaL4/9rLf1VF78v9/3MLCongUqfuZnMc7RQejH7U10URw73dK15MXGOhQqzmw5JJVFfCY0KaK4Jy/XFxAHECebIxopMnRWNiTjcPdZQCA08d1kulGOFvLWHYVVD8bPkk6V3yypyKBhYyWiuQCcyFigGCrJOPTrPVclG3ycYDtF3KVpcXQVipk6FW3GvoQcMYguGFYgT/TwHVa3m9W0RFUFOFf5MLhNrTEhq+iOZST4y22F1E1oDRT0z0B6YiLn+jYIYuaNjexEu4r0bETiiEenZepH8ybhMh/Xzsi0UMCM2FIRs3BR1DdTKVrkcmCFbsoMPQcQXeE/eRXluNpPUyq1TWBjjE4VzaHV+yNnDqm9/uNjQAu+HfQBt5PmrRgMf1BOjbl2GBap3BoZE9HD48VZi/I7dIVZ8Z2xXXsCYS6PyrPTA9YslkGp8JSDjykNiuRyfMUsTWgXhcOKjgrf9aGiM/4X57BZnbST1ur8rXCqQ68WGM7h9u1Z6GgSiWJv8NdsUOC/ddmqEGi/Ab5xxVXDGKGWLGtmanvQNGBdqa3jGKMSi++FxxdgK7rXKE5R6LoTPIfnLFdbRS4Z85C327sWunl3DdVmvfwmJKmmmqABvYhPJeUixJjE1mqpPAp9CbtRsoCtW5vZ3W5aiqtpZH5rWan9WdLmcQybBHEPyxopR4yuRPOv3fyV4FqWbD8wH7pN1im1RQ2iTuBXPbjWoavXE5CHmiDdLQl5GEQlzkr3QCzdL6B38oS9ChZf5SahX4ilX2IT+WPz6eLpuDneZwE/XlH83yAs9TeHK6gGbfKM58qMXxQQR81TTlGNgFZ6x7aJm/7PAvuRSFlYsR/Q1xq/tNI4/ycgRgNy/KaoYIkPi5OHYMcJir0uIie1pCy+fR3xKT27Iz4KbmQOhCzl9SDB5k9h9/cllM7wN2EetCv+wkef/6H01hYOjsWCmfBulRbqLtRJXDgNBY6p/9R3epZJbaQB0S+9acf2kP0t2QJiaxXNsEZBWZUMzImheXBXyhifyOeG4hjvqJgX5r9u6f0glaLfZrq9SJdAXqmDlr2ke+arUGvJZrowi1WrIKt5fOSQpnoYE9fcOQupDKRQWJ9kJjpMhBpl403IaEJEphqpZehSIepwtl1mvEfHhHCY0rUzOqy906/AELFOuo1+uuwYLy1VHEg+YacKcZ5rw0D/tVsc/zYx9ToDeQTVTDBQAyS7dQPV+HKjMfcIZZA4fbIoorrW+Ev2GzFLeFDjLJcpfNyjzm+wnlEKW5NsdN/GnZTjrrbxcV3VCbVfY/zvwUaU22lil6pN6t+vpT1rRNVnVYorgjsJxmhBO/TZAaINBSAe/vnRYsnxs7h3DqesO0L6TsGjvSMpQ9as3Gt5e3o6yzw6DEDqI23e7cEkAOyNs2kg0U/WoUPSNxSBANLgIBueysUND/wYIS6OHFbXn8x5PK19ijrQaPZm2VXdnkO5cWgW3xVkpkS70Wk375H6ihAt9p3Nmzd6qWO2La9XlNGjGcLMbD/5SWPAVBYa5BbbxsPC+queQqHwCOzo87hUOOWYDmnVLiqCxSVjChr2j9CVSjGDg2bH6qXKIJteliXi0xGy5KQExTJaVjX0EeFkM+PwcDE/3d+NB6jXSiwRK6FA7CX9vO84C2GaQrI7uoiHiGYR00fqT8eQ15qYQw/zPxOTO6XLeo5HcfM2FwamBTVljGEzwya6z2wCAQS2QQjY+lhMNXSVng/N90Mx2QLZiWThPRQfa5CR5OpRZ15J8RGF7IDyBWcysZWc3tom/0f5O1Dwir5faP/VmP73TiGroGs2ii5ya3wpC4nXUkW/vxsSmwGdc57kIAqfNaIEkMwDZ+SFjBMH49fh4vAvJmywrZl+Pi9rFzPYuzuwTHaCEfNJlYs3rNKRnnBhuDE1JcTeuRifBVCgPqgoqXTlHpTkVTevMGnmpeRetutgl1pIa+BZLLHkJ3v++c0rhfPVgeHEhWd1aFShnmuXX3tZlieX8q54dEW0NmlvkqOlx/v3q2S0vZVy8CHpVD+yhGh34RBDWPTiY8U450wciIaSLmWwOYtjvh+I6Cdj8TjQDe+76X340Zu7OakYwCe7Zx7CqQ+oPPjQM7CMRH1q4pmJ4nggasYkOMcQx+Z6aJZaWsUgnXitTsUCRikPAcQm3MMev77BQsinkzgAKifaeoXIAatpTEuXxiS0h6SvZ+PFs+P9kmKu3jGYTRyXhgiz0gWPRns9v8d7t8uV7fuUCtKNnqCgBcY95RU4pJGwvU2uGlj9OjW5XICzoewDYCs7vWE4hb1DetO+9bHvH9tPlkUZSBfeStqBaVjvtEFroKHXLxU3Af/LqWqWaR61fYVzZJ5KDsasHt7zUVoaooEeVnHHAAE5UVa4fvLZyBqWhz9vR/4c3/+s56KZIA4roqgj2XUU5wafdFiW/+qGSnxELoq4G0TgOMivzvwD1F3UTYGRYQP6MaZ+IKlVenr9S9TI4griJ49n0bFK8ZRZfHNiuHFwX03IrNKRAByVZXdC4mdW51cCx2sY/yv2lULUSUyyxxasBMloAsJs5DSn5PBGuIpKS/eo2/pRtj+ndxW34rk5UaQoK1TNaYcbo609EzDuUtuuzPtHy/7a3061uy+rYOmIx+vvFsxpAUCbk0BMSzjPOmcUWAS3z8dDvyfCNRxgXMwGAS4MUyIasPCHAumSbtqHnXiql3OlB+mtRfCFZCKusujIoCadS5DEpKYGJi61Pjw2MTbXMWbZXYGlyM4nBhWnUnDY2zsq4gz3hc6UVx3KIsVna373xcAVyrQodw3Dd722xx8m8NpbUsQbpRRo6ysx4TdmVbQ6FOkG/g5vt46fWdp6IuE5DKkr0ZefP4nx7kl1/iacEBOOqTCY9EnChFSClOut1oBCh7ZTs5fHrFkXp6ByHpWq55NIgSeUbNDj0FiUcn2aOPM=
Variant 0
DifficultyLevel
624
Question
Squares with sides 5 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (6 × 2) × 5 |
|
= 60 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 5 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-H3-CA30.svg 710 indent vpad
What is the volume of the box?
|
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (6 $\times$ 2) $\times$ 5 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19gbq2fxprlpCLcwMZaf2T27GBqxLxlWqA+392DZfnN3rwHCZ20vG0K1nHMVROJQiqc6li8ya4Z+Y1wz67uSWIWM9k21TgpxbFr7Y+/qGdwPRhvIW4Q42qAYZXhqezIenogW3BAiJAFe0+vxYPKg6rm/helk3vfRpFa3aYmD4iRkSKwXhX6U3N4Jv2T+CIQ3xzy+nVqjs3pmKPqwDox3auF1HYODl/IFxJaVHFGS6ZrEII5yYG90R05t4bHwZ+h+QC3bHNAIb8BTOC5sJom4CzEa57IESBmf3UwqGc9DO0hwI1FGUmh8u3iLKRkCpG8NOzVtCkv0DKqFvJU4GCQkCRY7T5mQXS8GRLlsIX/RiH15vl0ql6G3Km1G1y9gY/u7/hXmkd10H5adxxSzoNWXhT2cyfr8KmWzC30sUlATGCndotuMqhIBCKZhiij8EHPvpO84nrJaHBhboZ/z2quVu7ZO2egn3XvlaE4GhSowUa0mvOCoIIhyMdD4kTs3uLfs4rmZqmYM0jbPE01pg4S/05EB5ZgeAJKbvkV2Uv+o5MlZywPl1GyGnJrvoxZRCF8zSg0Jroe5GoIRxiYaWaaClUzewZfWThcGwGZLcElz7GxhIRaCNdMw8bUJSJujt4Pluq9tTUG2fOusdqU6LtGpmvsJnyuoxHNC3FAUQyGoEpz/zaSNS4K5nML0gibs5TYsUUpL47jzyJDyp9YZyNjfTpy4mXx9cCR90AJG63bt+PYHN5zBcRrGFtiWligHte2XZuoteudvBxcOJEBPM2q0074CfOHA3cLVQEFatpPY7iM+LlvqtySgR6WxbbJhV1lwmh7Gx1ZGZE4V2EgH+sdmA0Qxi2ZS3oF7NzNhMlMisButcHrYFkvH1YdvrF7sv9JvQgIsEuHtx3lMtKwvKQI04KYectYN0HWxTMFscVk4i78TDh2W5FfunZjE0WIWa8IM9lA5hVSirCKMW0UERrSTX8A901B372mXE5IpNOKSrnMNUEuo10GYpbG13d7TTVIHCsO8iI/p6yjVWCiIToNrZLTPed90VF4gEmw5mV2iAsz9Q/Pr+niIhBynC2VIc08rf07Tz9KdN4kXeaPSXoYX4F8CkHKkQJS23CLeyD5+4hYGTFR4MYKN3FXHWvm7YmWeWq082zNIGmz5LnmSuh1Tw/blaEdqPTAT3RVfN4Po7959x5Bnyp6O98YspCrxvUAsUq54aLjYrxn2fmxMOWw13rGfxxa+NydY6cucn84/3dTS1776oa9zft+XeaXVHJUg6OEJPJeG6Rc1tjPQsmSPCdRNomWR8sN83mJmRDt52IEAPH499WwjNAsQlTA7cXEUrJLMTLPRj1fkfmyY+HJk3gddrAYwRrCC83i/SmInaVm7o0XZ4pDg+YY5twiYlm3ywQuwdelAZ74PWP1GaURMpKMq1xfI8me7xXHzlwz6jWpPJ2NwlmMY+RkqQQzcjcMfYiQYAEEgy06AqPWnHIfUZZUK6CDhFuoYXMiApBaUWfqu64/qXB9LEbMA/jSs7f71CiN8W5hO4WHtllGCnNDImKObBKN2YRvyM8j0x46ZXStKO/DDomq8ajreDrSY5O72XHmK5yGNmOsOAPnoFVRRFRgCDg+71fU2VD02I+secCmuoGC6IasRdHRTKOiHZjk5YUk3YM0LwTCsIdrOJ2DisE1RFA8te77aYvN2mmwfA1Q4piZhMBtruawR67xKxk1dJAim/RFe2Oz1IzcHjtxTMfOcIAcTbG5NVV76/soH8/YgatPdY30aDal+O2ON6HKQ3tHUFAjfySM4KT8UrkCjBFtTzx0oTw9SGQEA1t9HC0oFAZN3lGV58aq5wzx90iAXBySXHCqxAGUkcEXd+FfNfP6vXPpvj6oN5E1w3R8ceYI/I4gSFT0/LJ9HRGS9Epb4BiEA0W0gTYixvmCbfcn+XBrcSXZ8DLX5yICE91vEJaWkwJwzKPvc2PuBWLxkae11wIn+fDmaiS/hZ+ecQktE6hQYPI3B5P9ciH3Gx7AfQ6jMaSUS7bNNWScUDdHBsIIrDqYWsfB+ims5g6Fqh0SSrK8PGo7D2UZU1F4fkeKvJGrc+S3S7hOpCmhtNtXMOMV82/pw87zeV/lSX6dzyu19ejrUzNgcP8+8Bpnib5VGpeGhOmX4Aj802vkpkiQPVLWvcHn5kDY5Ph4fuQWnP1rmLyzD8KA/DunWGqhYWhGuqS4OTNM7FEBbWgFoZqQXNTF8d5BsljIdXLSWG39Suivb2hfN8Arxi6Yg3ZGxTsjB4KJLA5hnNK75lgLTXFrJqyMOsfElDNFkKy6FfM7XJRZ192YpwdFsJRGukyyD0om7NfJplX9xHPLVo3A3x4Msgv9iTR+wqsCtV9EriVxLANTEN+EG/NMNcz8QgTQ2lpKiawQl9SF+uCVwX60qv+IGeUiP1/ZEpRRhWgGA043DWbAFOBNt6LfLL4+YpGyJyS41zLaK4PqUDENSOCCRlO2rzlEzyX/YIJVnv2rrLIX2+iiEHR346ZcA6qWKIGw9cCOLKIQUhvvSa1nVy/EGKqHP+npcHFqBZ6UWiIZASI+g0+J0a6ODT1s62k/u6uncLKKqGbixjle3pDbiHARqKgXObiOFC9k8YiAbPw5bfjS5xYhMyWPEs8oW1bZorQ8nugYHFbvj0VrIx8//3IG/4bbMQ5XbgLQwaRk6lA7TUMQxpxEn6hgx0vXniW8+tHeprZ6Nn3sWNMMrRwK+sxojGxLXTHfTtC+YeeIZB2AKrXfgNwhUPQvTmGcUjGKge6gs9JfOuB7VxBOkY2A0MoOxCAgSpT83KmCBBgho2l8f5PoVh59STg1+F+fhNs2VzEI6OLeY0kCIffY4YNQ/8/wEhrU3ymGbCEW7YzOKu3ICmUdED71d5LlhIvunuR2Edm5IZubUFZzwTUwoHPHdhU5wTz0oIID4RUnJXgT2Vqws3oH3KW8VmqDD31Ex6NAm8YiZpz/P1hKY8jik+4Y+mZyRhqJtxOCij66GsAe6a2qpXeF++z7vVGfKrfEol+NXbYnFbhfA8yY73K0kob5xXUUPSPvon7Cl9idRHYVCH/+EIxFXCUYo6WMlX+zAMySaeDn8ilxO47M8tmfQUxJd4UNdEP3XQ/BH0Wk8MRMwm8WZUGdlcXTvU4Dk0IPO6Erk1hfyA3KCkZHXNCPqFHT9d7RrCJqa433sCQxl7Mvqu+ZGI2A0/2dkiK8PN4N0MgoLlyusZOdnZqJU3uWCoQBl5t9Wut0c5IfRaO6x8X/iBwfwC3vzdLDfoAaZsiqG7VIgD1lsHBUqjcfU88OMiubIJ7uSVejC3AeUUOXBljXaHAvY9p3bNAAB8QD3RdWVUpjQXHdnH0AdllN4SBuIzi4eOz5N+Vd2IU8nueCXb6ZCWEm5yRAuhYxHD8UCyfERz/1iQ3fx5h8YkLGbry+PH7Hlcv4SWBHJXEiOTkQEAbi0gCK3w1LocuKz9WIRTxk31bfrYQOjbJq4IklEYqfVnrFZOfnM8foDTQn1GVzECsoS6KYcZRKXRiqsLMXp3h59gCCAWKhyIXz4CIIkRGs07eIIhOkvaQDIFURr1ub2EFktEsZF3FVNgJ3aDjLB1LuBFlZagZm9JaSi1vsQbn7XemnAMm+qp0VW2YrMGs0rsxHQjFMHGV8bmWp7yQoI+K/ECZdN4dIhI1eeuwfuWNJ3YdXAZgpH4xdO1P+DSeZeLy8y7BiwSAL3wznRezavXdCZUSFcpbbKmcWddx5UxLiKtpjXFWFuCKFz9Gf7Lpw8O0NCv1TbRWNAZu5Iptiq5tEfyauRBh98pVefErpf6+KMvz20z/iQ1K1DwjpwgGnyVkbbGAw6X+apNF9eYenmI28626U9AIo+XqGSLoKCVV+xj1TeCPonHOyQmdbFQ1i1bfHnp7RhvBiHsYvdT7NCb2MWirXUPO+YGWiL9HvZ2mp0JBx5AwzVRn+TkH8tCwlw+VKmMf3yhvNGsVs09Vzz8OfrQpaxO/SXdwfGUFJUtDtDqc+PqKFwhgkdD0gYdMJeAp/+PHcV2MYWafTs7R/Yi8Mmly2Ya0ZLx1D5f3UujUXQHT+ca1HZfjSn59cpxNa56a1RR7XTgIrQjP/TCPetj2cEK6ZRFBId9ndh/0PFgjz6j8RsLLqzuwDUM+38LuvpXe5nmiMcvoUp5aCLrEgBU+LLJAkQfaVY8QgXuHpe4BARinx31wBQnAsP2DL0K+6j6fLMNW/0WNJIuGhkfbZx76xlnaq/9qbKGB/caJvlhiMgCJrzBez9We9jp02FUoNo0AL6mK4/qmnU4xsFZzO6lpqNmDTGnDFjlESO2xO+ID00iFr5pxg9sjvV8vjbNy6Oc7llLXj8DIdZKdoRYN8y/PVzH9CeiU3Mm/+o6krlvcofm3L4VfVz0teEUM2zBHPP5f0tNEkr58THujumkP9P6R/tb5vFArEHl8nIMncKr0lTmGZ+tAJGrjRBxDXQG7aKPcva4Pr+tZ1VK61qrvjLSm6zgk++++/8KZDmpiUQjcHx2Norh0hqqnEPbGZs/RK2A0e7G79fdneaUvfqQqy2LdveUQABvkYmOvr5xVtaltoBt6umH917D5QjS/yJNIcjIMpJe7Fx8ZtV+FUgdZYzDksV+MdD/dUShIks4g0szfNBBpsS5O5Ci3GgXfrNUfR7NWhQTP1ug65/A93Xm3yoqJyUFL77VoeWA9XBNH93SdY+NtHqVenRHPRpMdF740fRY0nxYH9cgKTOLRN/2w64KeaskK1s7zPPq40PZEs9LfWOzPNOu8gu+tEdNgFXHlihDxW0iEdDyEcdLFgq4+sX/HWlUiaY3m8PQIof5B8MZGSqVSj/DiO4/xYxCV/tQOIWYHTu+OTADEX76kqm3KNf7FjcAnFp140qVA7wwOU1xmJ4XejculqQadF2h/AFPwLhPeIt+fdYRl8UNRMV8ZmUYKiJXgaqJfn2mPqxL5tek7iexQO2BJJzfrH7xJMdtTdTnSe9Q++VUtYv/onhORWaDzIzbaGgZIYRX7aEb0BjVZKTRSktkI6qGjPPaT6sX5QqJhiiMkXgIByRUWrUJUrfeR/LGo6YZtOsmRfrs5UuOLB+dt4+47R9cqDmLwehLEmebVci1b+wz7V6u/gZFefZ0y/ELb0r4X7bSucuu23IzIFW/gb8jA6zlWqijeUENmxZpx1ZM2nLLyl/9mv8YytgXCZT2P3b2i7ReWcnRcyQwg13EqGOcDM774RncAkoDah/kflh1l5RWoY1JzI+/UmGjlnNJKL0aFCAMpbi0IalblPOaLdeDWy0VxvmYRp5Kz+ln2VU6TkeMa+Ou0iXQNDcK41lRa3dj2mXwztCQ1dPJEbvKTg9J4vonv1Za3px13r16mHKfAe+UCiAEqAdUBVyaCWDHajtrzKk9bQFYCRcyHioxtYVM2XgoxdzNGdFrm0ZiYPw7wKBUmrK059awt0v87fAOjkSuew1mKfvmXcTH9j4CxUQyEJAewbK4ExWv2LLfMsPJflgPU0xB1s8GRiVSflEYm+35ThwaQk3IotCRnDUZGH4SOf2hBeOlCeaY7X+81pKAIvf5fc2eAagGLYSbr/DRtGilb/fRko/c2GO7L1AetsYDO0GklvP4WTbVimWL4+8I9BkLFPBYsy6PBWmHcF/VAAIc6JlZOpnMps+uc76ayxX0DGweVWyjEbf4P+elLUNYqN0cxIw5wDVNrRk9brV9qrbcMadL2M86QQy+PgWlxNop8hjtohyfiW7rosbSYNVUDzmKZiBBzFa6+8ARxBBdapJ5hOT3QS8eOAWdCJt+GpwRvm2o0fVERI41/U/1o18A2Nfg5+zq4bGfb0Ab2HHgE5NuRRQBjyGN4PR108n8C7ygTdZ1Pm9DoYGYTQFrFkvVPpygZ7ZbXKQYN+TPV3CpSZdG3RP3f88aP77uwyyxgLkak4LmbZxLJ7Fp9GztRAR1vLuRABf2j712vq8/N7Uvf1KC5ROeWEcmVnc5wA5lnIEEcZOkSs6BcS0z3ACgcb8/4Ml8aLB9oqS6c2HWoRUq/oIk56dk3Azut+3USd6V7xl6pEg629YoMCbSVFbtWk93Wi2tliQG+W8KxpjCNVWkYrLTgME/8vokU5sYDy+oWkna52Rwf5cntHCWPqxXjHMj6KAMbwJpNWc3XTjT6OUyCNUhRmBBK5lkahn7ZQ9jne1KCtrNr3wim559W/n1N16Xxrlp8X8WCsNggK1Byu+ofygDRzXf8Kudxy+G1bdIzP8Zh4FqKay+gWc2I2KgOfmWfgawyhOjeHAGDYOuJ/zc6MMtOTOmr8USAY1mnEfwfe+qW+oZLDL0yiWEz34CLgtCOam4WgmHuu2pQPo+yRIKpbK3Oqj1esPj3XZMiEOj9JQIESTBFl3kH4UPYgtne22Wxb0PPHc7Sng39/ZRxxWgh78Euj3gSjrkUJIS7PNG8FeV49NsCFqkJfSm6bxc8kRIuQsyWMAzFE2wR3Q+mRLy9ylWUx6zVD/of+x5qmjasAe+whSfwa53P6XWtWLrvzalkjJnV7/qJDrZXtCbkJRaMfysibq7ToV2Bzi9dc4lEQsTCfK4YDmpVN8BUQtL8nWw3xP+svbkD0HTX0VHCZft2s+bPq5Vj2esBDULYmkDRc8VyNpyG7NXAxiqL00dtsdI/U6sIP6O1NkiAQB+hUBZ4umdEqHM1WxDN8QFg8BATiRSahMC3qga+Ad6ICGXn8KdrJzHCRrY2tRu5Lq7xK30E/xfOxuVvVEmvQQeaaa7NX36Q8C3pcA9+qM2WrvR+TlJ7yy5f9YWUHz1xPrSXs1ZxZOATKTor7lcbzv1OO1iF1ZHPXrMZg7X0yA004lruxUQYjeQHgjN2bS4JTPYcRP/CyYYHSV5nE3jx4DXSrdy2YjCt7ddRtrSWWI2kzJCz2SOxhfNzSxDDu30UIjx7dFqYnI8dT+Zj3MpWsEryFCpya8qHOsQMLxqfuD44Rb4y8ax9pho6bmNcDUZWyowRJlMsxQghfvX4f3k9nDuVHtTAWOlslq46xo9XaE2rR1YuNncwILBJq97VoqD8vMdFK+zP6jFHxK4BldWG+O+2cTcDGOX18Fz2tItAcza/OC9hNldhlvGwHMGKI6qus/YEVbavXsV8MTKQH7nNXJOOHAEILvRnzytz+0tz7hEevS7l6aDKV5tq0K1uf34+W/Ah48h8H+hj8fLRqvS1mMgR595Dtp6Cc1KbmooYR9PfuRDr+5FDwkZEz8UboHj5No+cNW4gxP10CThDEzFPmXLpcaHga1zT+QXD6kyunQd2+tgm9fbtVQ0DQGg8POn0EaF+tbUFsA0pqy+fuhi6t09cwrN3GpKrnh2Hvm7jy70PsJD7DhzKO6EWR/rB/dZ0lDCzW3EgcpTs13QbBkFDHnaX7308//3fa5f2J8KJ11m4hoBGXXwTYvky2UU93Mr9TnUmKwk55rFFnRFbEN8teDebhE1SgWisEWG/5SUldSogG37jnd0woS78yZZIu1lYQIxCuMcaOrFfLfq0pybxApaapistmh1Do/n13MeYZPCAGB3KHCIba5bsWEgfhOyeWIXqawJW0Hrg2eL70e8ui0mq9H8GJZ8CAy4hVEvDFfwvsrWeHkysSkhDmbN7qaSfjKMjTUAkOvF2pc0K5Du4RxNNaNZTRG3a3bDgwDZbUjfikyDdI9uv4x5cdfTtZC69ZHBdTEAZoUhC7udpKrl5492WefdW57lM4vznMM6RLLQ0Dsb3If176/BxoIW2g0TaYI1Ctx3DmGfKi/n8eVybGePcHJsdjusBhvfNwazgHVXbbGu58DGhb6NRpem+mXOZmtQxWjaoJZ9IDVmca7AbTzukVswmDLNXaBV8KvA7WPOvhWxkyhLqlOIg5vIvAg04bHAqEpuvWcwXzLCtzUMDpRsvBS7u5oGyMzQKLI3ZV/e+6vQ6aJuQfoZ8yviu/9Tu36BGmaEAT4hppjWSSFkPP0OR2ubXzy5PL6Z+VI4IZOzHnGItEEtDVmT3l0P50g5mquCXRtTF0ZrjmHbqDerKz6IgIFRlBiui2EK2LFWSbhKY9Jeq2PqDMDZ4+DX7+20eI+FZhJ2dQzQUFTpoNPLMFT/BLOsqffz7zBrqThFW6aFi9iV+6lZSzDlRHQ0xLrSKLWCCC4OSjoMtceIMn3FhMJxtXKnWkTprL5mCTDlTQAAo4UDSp60lkzS5vg2T4XWBVotGIgSPtgi5SFke6sXKw4F1DjpOZlji3pjp8szlPJCp+c52Oz+y2nk0yGNvKh4ClaxB0r1RVKohjUIKLab1OWn+mNvom2J7WNk4fDOWbm4jxCUNa96ya3nQWjzLcoQlS8s+adGwRjUNeKKWotMbOku8IQL8ElgiEe+xcRrrntp/6Qh3smwv9sjTXdh0i2tNqIXaTptK+nH+fLtTm0feGNBonkAaeJPfLMPfxssdkbYrzHMro5iyq5lrLyKPmocgyXp+jIg7XXzSqJyFOJxnIFTk37AA1xAfI9i9YssNOLrvrl+NLC3VXbrsTxR0zhcS/vU+1btYOZWAVe6LtRf5iWkNRU7sbL0Ewe1h1cDEnW4PkMFaTX07lp/c+nbLPqXTZCc+tMf+6lB/L09OuqbpKObKrPwObjtMpj0pXB0Ct+3lMoE0De8AaaHfsbKCGzHgnDHVLW8eA6iiETLBW7c7qsxC0c9lxdgV9AQg29R9SfTt/sErlZUXcJX7vQjDP97wEyivfOnb0rpmDzV1hddpC+qY3X6Z4ou3O/1E+vOp70JN3GLRqbkf3T0iCFyqMC1vY24C0oVjGwdrhoncH+twWADvsBlsHR+K0incEqFAVfTr5gM4Fsp3sBih6tRLQ2OtTULHJnkFf45+BFDEccBZbYK++xaIktvUjnqa9s8SpdWWpZaCyd8MQwYgOsD+DYIYXj3VFSMQF6ZlBo+sTEUPqthh7fjw3gc7K63kUdDT2vnX25md1CtPw4gbTBjfgm9J87TLkcz4n22RrBlR5KKsn3f+RxvbKWVNq+B5TmAmusLMW4CTE3/B2ePqj70qlUGERz7HzxmtW/3Zdt/pcBoEH14+Lm4URx+vdGi6c6alqA5CVtAdIWKTr7qRYlLlIIiIdFXJiIDyB7tW6+50pn+ZEv/+I1aIVB/2H6GLNitEphPZ+G8vOKOPSoiJAcbsPaOZO/TLoa8+chcRSe/NnbK1bniH+ZaFPT913duenSXXGBZUkFtVvizMZivl0qZI8tJ+wu8nt8qCrz013zrU0q3tVRYuyToQRO8wQ3V4XgCRpndNDpoNlK1ENv9ZCqngJ1oIoHDSQoL3jBnhw1gx3fLJaI8a+GqE4VEwtzn4F15Qolg0oZXBPXTvQD7Io6L7QSovEKk2u8LMQCIQ=
Variant 1
DifficultyLevel
622
Question
Squares with sides 4 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (12 × 4) × 4 |
|
= 192 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 4 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20309_v1.svg 770 indent vpad
What is the volume of the box?
|
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (12 $\times$ 4) $\times$ 4 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18WyvnldD8+0Tx9SqOhxxzweMCaLGpim+qAMiHr/7ZneE/hAijbQOln9KDLtUgD5P5cyR4hTTyXhM0FoEU6h2EuhO6lVKdxWKVSaVOLmCNNqcXM5WaI/klPDZYxKrhD5Ju0plru313Kp8MqFR8L+vZ3JGQ+aM2n0nTLYs6nz2EpgpvfhZHrQiRfcrwh1zBn1ON8k5bnXQHhzJk7JQ3LPbqM0oBw1kStPF1IazlQ4w3HAcVuQ4C9FcwkTAK35GN0v+61Jpycy5ZZYLdBgW95koUX7bBgw7UbjY+pwL/w1aL1XOHPoQiQR6AVt1pUUvB82Cx8c9Dr6qYh8t8CHlo8FEAjXde28jIMf5P4zv4VuD6MyK8IMRKGQ0oObW7au6L/HpMOI3WMH5zcY6W8GBS476Iq81hLkmKIo3LZ8wcullgGTEdg1NQ5iPTsKwHeETpnVGTHPHqvWq7w5+I65UQ+onfkx7tAQzKT1HkNF1NfLIdW2md2MIO9uG9xD3Z1uCNwRTWQgkYM3j7QZhAusQDXlkeLoA3aFBNHe2s2J0A3RovRbAQvfwy8HTFpesNUgTPnohStheUqvVxwP9LfBs0ZmbIMR/YfHIVVLEzcsrUuSWj/vXh5+9sXKI1T1ocvidozzyQMY74QlSqGxbL8x8jMB5gYe+sMGqVaNnFPZUPLuTsP/yFEWw7Fdd1bP+kLjHGEQ9/AV84sTaluuSCH+xh8yEhn/tsJDq5gNBaQTtPOOKsVgieUJ9V6P+EYc7FPoeOzyRsQaP3dWPvPE91XD18B06d+xWd/6GEe7Kpu+ZE5OXGBwMrtSvB5pgBL24ilNSUHc0Im9R5cS8THwLSM2ZXhZ40klH7pmOMZLgGeA1ojYQeYhkeWNU+rTvBqy+E/MrbIUI1Oaa1nnJBzuDmcUaIT/UMX/TUlgFusa/45jzV4si9jApobbpiTeg6xbmLp3GizwohE3RNT3kd2e/2AoCSDiK2WLLIT9Kn24/I9REftkJSoNBfkE0ZhWJCr5IM+W37iprDzhF3MNKMrHKrIQBs7g/lVDFeMsrD3TYjmWlsYqXsPJkwxcPoK7ZWK21zuZoIhsOhS8znztxdavowGOt4WpUcvsJRRR/CmTi+zcOER0o3wJi1uNPfQwCaogB0XYkWzNNo7sZHnEuURwaQuLJQVYc/AHxTGE61EamQNuN8HI8XdC9RFqX0h3iDNDENkonBxycReQ1aAuUKsNUgoHYTJJzETOqgTaJNE4u05pV9/2h9h3xMNcSUf6VAjm9mcSBSpuijNoEv6MewvRYvGHMO8yk8nBslsYaQIBgE3fl6NmiUMDJSrWRCQKSgCWkkcADQKn2fnhIZuewM2Rmk7dpfdkaeYNTyIPz1UYd280BPJwkzQjqRjtBYKTmvAx/a0dpEhd7yqedntHpz2gsZXhcnCpDPrbe7I0dF95QnIigVXU1htzMft+cm7Jys98ov+mYFDsXqLmqL47T3txYtj28xHidlWW8fQire60NNJHL3xYslw3EkWTnDfesytd/5C4ZnAkJYWji4thcShUSfvjhcBjiYrjZanD9Q1h89mOc7qa7tPKgruoOq1GJ5DcjC1LzHjrGU0BgH7iMc+5eBqR545hJLMoKmHUrT+5c39QaMDF2CS1BQYJubQ6BlUDUH4hlVnR1mbHg5O3+psTJpaYHv//F4u1i4mxShlmVuq7vTXUa2bxn/jZv5weXnslbrVgoJaGsWqbH2oLD/VAi2gwVKbxxzvAFPvNkB9W8tOviKv2ClWq07peDr+rNz/s22yvlQ5xNZ7BH5st7d5iTnSf2f4zMlmEu0fyIARu8H3Tpwh/vNklZNgwy+4YYMY8bG96O3IE7Gk0kieEsiiKkQx907QBq3V39crTa9De0O1Ru8XgfR/XuZPA1ZtK5LCyyA++SjcF9VyempLd/jNkacqkCbUIYdkamjEBhfbZHLAkY53MnTUIMD+hdiNntpvxYYD1NPnSoiFk+/aiXlUCcjJJ4Ulhrzn2DX5Y9i4PZT+MxGkiusdsiI+EYUNEyrSBPknXgEk6XEySntcsCkmzd0sbDBubHmH1qt0DoO1zGjReixaIMaf+lGd3rbrQa8t0smwCSuSYAm2f+jENHkKCWx91E6stMnvtwvNc9I32h4KZ6asugiLLX3ER3ZhzckPpbi+HVkJJG0Mecd2gQEj2Ct2U4vB6FvSwE6oLPVXF6gsH7ROIwqIM2f+bypSnaz3fYBakwS1VHm8blC/rKp2womuZdqhp+yXV6xmefjnZ1ekpSmWIMT8K1kqyPSavCLr49UMdPr1j08OZ2alWIZ4rzi9CU9cQ0uCnViLaWW6bv4R4IeFkH+emeTThDQJ4wKcB8h0+y5YwBAMaorQBMxHze2y34xW6W9zqyw0HafU5JeVXNcx5KzZaYaMRI9P2gXo+YWdeYu3N3/DQIldu9g2cR1wG37jtidLF4YwVqqumDW52LyTqFgxEeEDCW0ZYVT7bmpmSKzIiLbeuILiDO4VQ3SkKrtNVZYExThMo5d4pjBk0ow2LLiUv0tSFemjCyM8qsUoWhVN6k8J3WZFeaN35NxDzZKLkgPCJt4m6LjkBj0smt6SGDBMfi6puH71u25BBf2m+KUiBz4Ya++JEQ4FD3v/AXYWoggPD6Cx9k0qRmj9YW/cur3xZ8PY3In3RdeOtWFpf0PZoIvZfdMI9+ERfzTkGm6bsKnjrMweaXXMPa1fdPAouDsfpU//aDnrj//BO6AJNl/sPvkjbrmAtDcHClDX3LqEL9YlxQi0prHL11gnTcEZK7LyInmS8rQraG/jsUgZ0CDhhlpIMiW8nzc43A/XZle5jhcRzfO3muZnc0vNS9WgZcTflx5BmwZ+Vh43mVa0dl0IL2l337h+6k3brerb8bW4Y9P+tMvv/B2eO+3WLkbLCG9q37nel3XMF1s8+QrwYxXR4iGQPvO+RRvw8xVLMBHFi8g0rTjP1wamKjASPZbZMwdc9/1PqUDulWxyRpPHkcJZekB+Wl1N0GzSyV2T4EZmi9rMj5a8Fy71YE1HXYkrc97cQGD7qqtc/comJLWZQK5q3w1hhDwVpZiPcdc6zILM99D5tPdNbQuGzuGUxY+iaf1c4sE1eDvVYpSk5ebiFBwGA8opeSXeAnKFRUBgEWaDoapHGY3CLLMulpP6bug9jOSi2bAyX7S387cfWrtZv8P43hGI9RZLrGA4CccmqWgLv3GAHrd/MbDVqSFIaJz4AD55KqIj7wJwuolyvGnOAt2ZG42suw7z3pC4caFIRpCWeCvUoDXwBRM96Shvwp//8PO5f6UKeFKnJkomJiUn91EiLcYWNoIjTHCH8shJL3agaFDxT69PDq8j0gMGYHahGUb1azZ/p8ciSYp3fvhSA9ZOPfm01JSIeDmuTnxGXvSuROprxT0nTfZNSIE5aNtriqe2qlPy5p6yn/toUxljFrcaQM337X2WaIewmxsS3N1A0Hc0T7Bs/fye3s54ZAm1R3K1Z+9Vy+W77E/UquOYC6Jo1R+yuVBMKfldFKtHVPdhdbnAcmCr7LkFlz/+udcNqKf/OmkZLdnWejyYSWhoHEQ4imoIKHFYofg+APTh4MBBTpB0mFHOrDx+i2ZEJMIutQ6prZ09RT2Fu3uyVIkaVVzoYnuVzybEmcwT/w3SfjYdgdFU+hYiwjtfFZ0D+/JghSMYAzrw+0h2UbSN5hJwBqrHzMcKZFayTWy5c6R/yfGHHprSCnz99WJSOfeuoyAw9nZu2AJpn8268qhd0sSatnjYSjV0+1KVSdN53uDxOX5BKlPCSLulp/a8FMYErOU5tAsFNUucEwES196N/IuZVeR1EbG2zTKJqOYPiSt6aRc/s4oy/V7m9abzRpYbINjBQbc0bZpMRUfyhpbMmKOUHxA9QrRGsbEvAuolap80kRK7zu5b5iTnyD3Th98eMfUHcqMEW2F2T4uXHkXX1bRG+4Y/bK8ieomk9/TnIpcpUCUbXNUktzlbIKpmXHnI1lwrQMAOhp49gJB1U7ZwUl5e45IytI1hVPMAFHRtx+Ujwz3zsr3SjgKfQs1whDbJPIUaVj6Sx/2qZGfDrkkyfqxtuSeHLBfRak5FfZFewKxRZ8a0PlCOtE/+vEjGkDPf667EmlEY/3CcuJ4yva3Zw3sozfHIPRBYPc3/VGZh/X7g206Cd0LwI8phWRLTQX3PxqjOwmur7E+5rI72pzqsTPUn0szZVY6HClcz7OVn6ePsR11MBuwpL5yrvWfwIby8luHBA/Q2Q313Rjq8yaUvKLcyZGrZuzhvbSMM7KQu21f4KQexP7sScUmZyKNxdINLE7/ye7MxTH69hwPkKD12HCZmQ95sTb5rCQgMoeOxSkIh5yCRoN1bcsChIibmd84JKTJOc5nrhz4/qtCY+s4hIVBAktFlFdV/fhFZoK8fINtDk5wDLZt7KeysSJMpV7XwAukZ2AMd8oVLsDHKmLqR6KML05VQBmRLYCfCZP8MYBeiPPIRIvnW0Pw5kLlVXOmuTRhW2bk8LgV72R6P6d8+OIcmPbyHdw8vojGCM7NfExPGz3O6eefFkdAjqC0hE5jEeGbDDTGE8i6z3x/rm2N5FIHlz7rNPx2YRX6APOTD5qvtrew3nuq1SDutz2eoSPkORoS4e2a0ner1xvvXEgozmCOekRLvRJpsXjyoR/g/DFUdhEt9rPnV3PMZh3cTGHyYCYXPY5vzT9ytJ9RF+KXLzxXvPVCYY9QhnRWutQawstXZKaPoTj6ih6L65GWqIRy25FC41TIs3+1MuegDER9PrOopAJhC+lHVMbNjxMvecuOZowFYu6UTP+AbwM9u6bLGhPwRYP7w7Em1Psm/97n7Ss9or7qKSixBR3hKBE0YsiZneHW+hyTId4ONCJHtIYcGmY5MO/5ySWwKg6MfD03sdtES63bXeqzx3nSdm7jOdMiRdgetNP/lIdwrUWkFkVrNMcMAHi2QIgQsiY/Uzk5kDcDlW0z++JhOmKuwfwe2BrMy6uhO2e84GTZxwqE5vkEpS0ClE+j1z5av7UKP2VhstksbNMP4sPRcaVzaN12O4h9XAFL0x9XIteQog7YEvGglKQjf4Zwd+w3KsczF6uHEkuJ7UH7r2/VyY9aeeUCQ7qvTXPjs9KudKmG27iL1SepJ72m9Jp/SSio0hUgKTXGLPMQ5+J3t9JcWNeE/9zrOTdvCpkuZHxn3Kia45CLrrZHzaIfe2P9j0zLxvBjQ5xoNO16jXKguRTsvamuvsSt/fTy693QybngUbm+PdC3RTEzIuAE0NYaPBmcETDDXXbUV747sLG04GqYXaYuGP64+keGfN+N5GGpHyDGKUbvYCUJrj8EyEmzhxZ0yQ8/obHEDlgjUSVT/XHsOEvIv+kq9Gp+XupscYGMmnoscVpfgR3tdIOGcP3h/y1ZWZnwG7tDCdOV4KOsMMkQVXlbT39V12fmJn3Jtunxvda8IE3C2vbh6wwEvDdpxbrWAbCS8/UIl27v+j2UoJse8QsD5DFjsNEaQsXwbDJTQC7CmUCv3/eagd++a+UbO5bS5TPlDXYEiJNYHAf5fBt581IEq8zXWyMUXuUIZw05fsSCcGJ4lrSWjtmQ2Ng6MfXaQ09iLwIvn+9JHvATDKW29JrepRHpFFSECoGL6SFbBDnrV6ySBUI/jFWGZQK3G3715TUc4rB9Bj9/jPH/o749luKkTJtavxomJrB2iQ0s3aGGIAOUWl68uvcA2jA4mzhycE/3JJMvGHgfLeE0Q2Z+ohgvtJxhHY5nJVDrWdsClXllND534vavl7sXzI0qTgqHR+bRPjSg1j0Yru594grsu3P8C+Ha+PPdHW5zXv/Oa2aTqxV+8UpHHGcir/pp098qQO6zegH1a1xTbaViQ3FF+750mBYUd7cpzm7MbSQhQdcfAhfIx39jdnlG6cfAFOeHWUtrRdMtImuK7CSD/E/KHVRcpXDQokS4Z26rhtOfjMi37ocHbFM/qzPagOaTAhboFXxTsI6qbxvqUivDXIr2AziAZY+PzGrl7BVUNX9EX6MpwTUuuCM+1k0La+Djl+WTSn3b6imTNIlnC3A9OFWwZcoThUFarM3D68DbtO4nJo3vK1IZ3FlJsCvUAIhv4Gl3jAmrOuOcd4hFrMePSpt7deO1+Q0VR/dY32ry/y1Sx115gpXhMqbVlsmLoiA8CC9Qq+rjB/Uo7/qDNqCqyRLteFYti0mTkHktN3/BZz43FG6jGdRsoJGnr5Ha8cwNS+krhDzPC6HxHl3wij72hoI9Qq3umYDwYI/sxXl2eKixbhArANIZU3RNFtikS4HUlhPk5tQcIvPIFUpaoDKQpkZ7BUmdrnAWahf2gOc5HWCvO4xAdU2fWJh2IY8xDkMVyl8HtcMBPc9XpKld+2ho7Eq1+oJesVkolrhXpYqFJzh33aZeBKHPS9qUXUaQrFj9DDkXXtTG932opcZVR//+FFdrh0q7cZLNnKiO3jcfg9vpaeVXOIWO2lpIo7gVA7LU0vWgkRikUZnfcL9REip+hu7diP6lM4RxpxebSfqma+4IXaxIJBNqU0+80FPxmphr3p7jz7DqJtUtOHDB5JLiKrRCh7qoz81ARdfcnhPS2yay5VheuHaVfuHc8q0fXi2ibPpr/9tFDbeTImdyeSjKkKQi1EsYkLHfF60xrhFWgziS1kNll6F64DDFxMM2xF5T86SeOytbxFN/7yOz9O/dfYCBLxAt5gCBW/QxZiK3U3vgmSlYKlY/WrGU/PcIFoHN9dMgFpeDKP+wX1PmFoTtF4Thbeayw3YX93FvvgjIA71EvK7CdvfYVa2THhhwk3ls+2wUNxjSd5TniapL3Dtfq3hAtezx+ydFRYWoWkvN48+RljZXQwYIeB8DrCzpFOSyVciJK8aZcdB8nr4msnquiwTQvbDDaq2RjWnyPcaAHatdqAY0xhbnibkkUq/FWaUIbJnsoGC4bp1428KS1ynpvNibFscH5+GuaTur0q7YizjYHZDTqjsCJ4li3MCKQWcxfHDNEQppEakDut4R44LVutUEueQ9en/pCVBfly7oK/8LXrwF8hfx++rIRci4rYsgYlaoJC3febnWaDXRYQtiKp2k1LvPQhO0m1IEeWjcyw25h8PTL70ogDfE6C2LENEh8aCFmRwj8leQnJsU/qfEZ0WPvn/HsPvuuYTjMxdHMbOejKCa7AmdFMirVnO6s5f044BSNIp9kTg+3Ts7uPQfJfUCA3QaXoWh3yPYfkbZ/Tc1EKdwn6s8Lf+V3zRt68KW42x41JJPE7h+0SfPYKx6laQ7G9Oa2DxLlvcN1fBGVC+QFFyYwthbGB7BeFVNgVoO3AyrsXGIbZR5SOGuS3DaXKZRQU55duzTE3owSbFJYiUxlzCSWXHx8j9WcUHTf+im5nK/gaE8sIUW7ig1L+1iXDfABrK+3vk+CmTeptB9/wLdmCrV+GnOVbckq2kzHFeYTpll8XIqhUaCP2FyBivWnL/MBUFHGEGTcBHRyVmn+3k3dgPAFqI8Bxnbb65U3LgRm/IL9PdJDuGR6LFGLMMx6dO6vWCDs0bDtXkrRAi6ymdJLr7mziU5SNmbV0t17wrNYddkM1JEQsUkINYEQgiKOAKkbNxseHXn7S+p4cyTZrSEQg16QRZzgB533F8yo5DSOXd73rPwczcbxLzPDsAlzBdcYIKr1el0sKJFpD5KHEifUOvvVTfYzsF3TksbdxAAqo22qZDWOLPbm0G6OdKCoZYyaE2tUdoXZ6diqgLbMEgSzT2Cpz3P/fOUKV6FsMjja5GuH3bdij1KKG5DkZApqm5cJwtPrpnqA52D9WiVHTuyUGwwIjgnmzl8GxpOI4o0jSROPf9UIw1oeRn+jlY1cD1G3nsbwTlDJap2xHR+1QpWCLl04FtPnDnGnNJg1eVa7M5DkVxowgoyrk5JuLp4OnurDJxY1LL3Zn+PbVe/66OZkYBxPScpalyg0psclWVYbMV7veTctN19ES47nW3sQejBht2B2P/BNtvRZK7w6PEM50i0xzlmf+PW5rjwPp2+i+tGAkdHEvLUpuXML5oHOBMta5+vBwYA6ugNHdHxoS+Wo3XbnhwpA0UP7CuASx2ljDooZcW/tIj9CvVzAyTiQ9gP90R+KPxRCJqXyXyKMr1NlVQOiQ03xWSsTvpqIhFDac0EClOT03A6wWLE9LAAZRE3JIT6GNxo856LY/4+IIj53t6AMSOU+NvI5JsJhom+nuM02ptzYeTq38O0t7m1sHQvBuZCyHpWQESMgRXjSQ9J3VaJfp3ifI5clF3INXqXCcZ/BYyjkKVR0H5lqXJwrIvXhjsuDm7PkuMdctITwUqzFQ4VVGRsNg2eJBOluHzAChJXfq9SaVI0Rlg5siZULOROGrRMGAH/7GGdvoMldxen4O+3TXAg4QQuijcLVlNxY+Rxn7IOoRJYzifLU2cvqT+bXeyPJJ5ThmWkg+O/VuDr1QcLuRYWdFMNlL731ZQjp+X4I56Djq/M2mFFQPSsdSnKf1iHLSdiBXnZHzWkAIHOfiQVJKnjGYt3Uzw5nQhOoutkz5TJbV+Wjl6wWUsmLj05okHAJGMj+EUBVptcHXmLMQmpEYuuCOsabdVdxVL4aFOT8y2m6QoQRwwcK7XPBeHckUpSvM1qlT+MBC27TmDHAER23Q7eEfll7NqYZeHRrhDZMp2fQC6dhSic5Amq4DClypq7GjPceMcR1l0ZuTAYBpPC5yNtB7KYvDzU0Fq3dKkfCBqCgFqGi30QW7dW/yBNt4jTcQNX4UusRe/oGDVcgtIxiK1JvP179fJ7m0+qAJdgFzD8jkKFcwlbevvY0+aT9goPQfnHKcDkSnLZsJlhtzSM4z3pcn5yeAUnSfFfSrTIyCsyvRFIHZZWJg64STnj5aZHo4ESBF9CwIIcrUlCWlMQwfwpmMSHntNKB8pXHK4Wjbzed0ZS6eTMqOgzLde70ZqRayNKXewJJrgg1/FtsXNYJxlCRHuSx4v34VJCY+P/C0F6CB5Al53+Mynf4j9YoWSqKmUPiqtyZ8E14+5y+hH5a//ahWpz5asIXgZZF/U4t5fgX2Tr83NbXJGlyU7LkQVXfeqtekfhxdzIJNdEtgCU+gsQIpXBRt1F0HhHmezH1H5CuPr+flUXR2+Y6BHACRPe1v6+uNhF/edXAZpJEDxcpD96yNvSO0r8YhYgEa0LaZQAEAIjaAGOir4tIytxxcUyhI5yL0wWV+7/tnR4ysU+PYYFyjw37v7Qa+lc8gGHIrQajm7APglwwsYl6fXAwyocxtHxxJt+EgMyumIa319MRXkxdyJN15qDhjF2a5RES6TybAxJA22mF6+YKcIu3lBWKxx4zBOwDzKhM4B041Xp3q7w4vXd3nOStfddCXvxT9CxV3aJr
Variant 2
DifficultyLevel
620
Question
Squares with sides 3 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (10 × 5) × 3 |
|
= 150 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 3 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20309_v2_d.svg 770 indent vpad
What is the volume of the box?
|
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (10 $\times$ 5) $\times$ 3 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18BebEhYY8hRINe38eslT7QQWycEqkBGmA+bM6hhHCDZcXxeO6JjuetWD1XUmWxYEej1s9cRG+/AJkLfegsCZELl+nDHW1YV8nweJYx96x4dCSu+cdNF+dKHzS6FBnviqDUXHYkhHcOsjAyqkqvQbo0L83dr5p4snvOEsVxvjFo9+Rws656WEWnk0OcPod1sT7Bg9HbfQSQPFVZUHMWsjn9VA5OWX5kMqXp0ljnUA3VXhKgB1X0oBMom2LYN5pPVM8sc2zfCFjFZbijgkXbK01GBu4lC/ypKcvnhpXjQgp/cA+U5XCJ7fqyp/idj9mlpFfL3ZC+lAMl2TF5EWFj/FMZjl/p6DRzMffGbi0KhfSaJiLdMiamDPgPoQijqmwM7oXWkzJ7rZoUrZJq+CDurqqWFwFZwoTHqPyhCrQABsg5ivlZTIDP6x0ZxUE+cQ/Cao74Mzg4hIAF193i6hAjBa7Bvdn8ojFOpm2wjizspt3I3vhvAlFum7Qxj/eutJ/vD05HL9Rvi0puPchIgWWPv+NdrG48Sw0OKfjSXKKCLgotegygwBDyuLt+Kt0T+DeBF8MWoIIF7OySiwna9AyyX0G8Af2RwXVjx1T5B1EDFSxc9KwtcH7FsuiNheGbN83dgT2xhcl/nXtxaQyjJXu4Kb4a5Zymr0q6ntm7EjZRHrmfRiignOLdubP3c5MGLgJrAggBo506aPkEcwXmnLHF+8UTD31NU8m8Uxzwc2kP6DLYsWe0Y0hYO4llaDp5tKc+k5YjFTRSEMxTIel3WZQ+U+j9VVJY6OoLK+/E1u7YpUemqO5PRQ5xTtEYbq+HbHC31BACeTa4+Kdpn+TXmGV6X0F4oAAg8iGhttMZ7g51Q8OvsAB+D+zrz1mv4m+elbh4Bvs3aXNWn8Jdw0YcPc107tz7mwxSaFS5iT9HhV8s7PHGgimpYVe4H53/NRdsvuuzkm7BCtuKo85RlQKCi6gD08qSN+xxv1H0RmdBp1dHi5LXXnAB4he1+DLRcnAr3ufeiWm9y2OyAVaeU6yPfyYKPGjjgsWNsqZyw0bKuKT8DOhh+sq/LNcQvljCAQn+K7DOO7mRPEOm1cyFNM2zk4SiNCgQof60nTkPxQrafdCAESOYNwCSFgDy809anWbQTPTGruvUW+ZAVTANOzQmcH4wVnDyZ3gzH+gOBFRygiPax+2ZQScXknyQTepfUD/5iqU/ZFE1YSmXopLOoG0eQ6UIAtEj2VhWVFjlLkrZqdaY4VxIaSqh0p1zKlJDFnQEuxc66RpwehqVmZvuR4Ougz/tK9zD1Lm8kxlIqq7NMqWTapgvFJ4hOhP6xgc9y5nLaiDlUF6xMSAT6tQfOXjcMlXbhHyM5eLm3bBb9dBcQtuZX3dAWNjacoRB51HE10bfSpMiHTBDGt0aK2dl9LDjn7iv7/8ac+XDhACn55Eo4/Oezo1a1KRaC63rbjdcW9H7ojsERcUgpvNSfTvcQrwkFKV7PDS+aBnGR7G0MatPxiAQi/pyTD9+vKz6NVPNGuiFImKVQCqfhI7xjtuR/KyDYKmpN5XzSSCCPLnYSc5zd1bE20NxZ5h71VrsLo8jX7r2/mOXjJvvZcus3VEx/x73OuNr1iDpwB+C27SlrGJqkRbqTmDnFrvi8XzW+A1pJLi435oM9VAhVSY/Ly/lhhFTPovuv6ZNAb0Aa61rXLsdjyD8cMfgXNRCSKGeXG+UJTPcs/T67mRhVIplcYHDnSpw/8fECHmxFEeln7Fa9J1oLb/P6EKH8gqdTkjjnAsBNnPq+DqqATCAkAeaQfuVlQ0Z8Zb1gatxEL+KL7wJ7zXFhV5PSO0NiTaVyQ3EljPhDBJRaoO4Q+MKlaWgdfBTkhAJhqhPef6Id572O0gzvBviQizGRkhMvAF3aBpAFlNkmpfIrgqt1pKNjHINfM5+J9m0kDlvnzdrBbkwD24++/2TnB1zL4CWX09nQ2qgOi16XttDY+xjqX4m7blGKKl8JQ3YzQw8XkUG8ULLEHi8ADMV+X/oY7ZZQjvufqY2G1eVvxlcC1Xc00OarjDdoIlvkjXkiu8cfhANVqXzssVaDcbMxM4z/7EvZiZQWow8GQHyecKvvZXshX4z+/q5T0xicrlRnRa1xFyrOp0Nvsw9v0v91u/kqbIuoSKWf+qsYlP3Bws+q7e4z2G/5qqipaHlbm8ADG0KjYZ1KCWIeLz3RS1XFjgMoqZwhmAxm1AAG4CWep1Y6aWdHXYGSzjH/B96LXpUJDtL29PQs3fY94NKmpONQzhElqXHczDeG/Qs+PNj1y2/+Q96+EOnxK+6Ds8Z0N20bN7ix6/5Lzg3OKKSjzjSM4UdVSgCvPalvOhZH9zlKKrigS6zeN3z3YhXH8tAmqFV7MLJnlzrmWNtugF6tOIWE4B9nJHThWNX6tGfc4sSv5OxfsTid5XxEc3YBfoKs8Ivo5HC8rqPIA6l4bEiuEM96hzuQK6pG8ZnfvwENZjBrKk/Q2MByJa5dwRimy0PPogyCoKBh4x/rwku9DzMZLU9bhO84mdJ+yrO6BKopEvnz7dpyDqpgjXd1qwioUX9oh3WV2CdEo2URgJB8+cxMTDC+ctbsRTObFeJeKAuH8dU3xG1g4RFPt6q+d5man2fURSqWP7f5Lkl7NLPij39GvhugCT7b+EiGOhqvzyEuI9gb2obM73MhDateLLq0uVjK8MehW4TDgk8at+Lx9ZmEFqxVUa6Oudjg2D5k9bEp0p+sfT4bh9NdsASjGcYvy11dD2S6CwUEJcF4RmuB01iepZ43OCobEb63jgQG6w3I4lZHDM/xkcReYiuoB4UeO+F1dczO1IxqA5nSDvWZgwuVBLWVsl4KYa6P3Z/eKsRYZOvPWQchPhZqfKh0oH00wytgwyw+J0nDUI+mxI/FF4Yyo6zmLYSxaI3Yl97AbEswaztu5esDvkPLx2J5JYduTvwTiHAg4pgNEliYyENK92LjLb2fn03H7V0dafV7DttQv7lSl8eWe/9SFixKgAllwcq2BFOHkW/V4KC0/2iZTQx7HnbVzC8S4QJYMQuhsCVz0yIim+P7koQ+Ywab3ESeAw1Kl+IhfqBxtMDnoViAcbuxs/89Q4yGrRrUPDShfWRPlOnGItzM7b7CgMvCnFX1hm4N54XgKE7AmkVF6a4jBc7+DYLZpMVHJw+gFx1ukN7IjKLDqa3mvPeINIiCRV40FfR5vEXyFc6VQ4c0d2NhJaV4TFOVs5B8rUTC/JNj36zwdlaTRN7UiwFnpzmF3I1PGY8x9ZRucQ8hBPrmL0nic6SacSshC484U8h7iqGQWewDLiVmZK+qbLb7WJcNU3eqSPhBnWqTQkT4K0TLdGXUJsmuEnYaUhaDbV+VM/m49tW7FhXovtjfzjhcm75M93qp2vH7M44Sr5zbOhjBAFKnb5U3ceZmlYB1EDtQn3qtnGWRVYQj55repCOWlutClmDHh/UEa5+oZVWkg9hrF7aDNnvk55s3UAoSPiEJ8usyHFRCLIWDSAUY4mRuhe7tbstyHVtyff4o2t6/jg9kQKA9kh7s2oacPOW/fzFQhtjjeWEyK8u6FurWjsQePLHEyfBMAFSwy0PCVt49+rKkjO8a7HD9IpR4DJbxD/HmG3QGWVp1KPUis07Jo1A/PLMPta3wJK3SHJoZZVZbv4JQXeHmyAqu4PEvdoyFtI1uHkpg1efA8S1kSCq9yvHcAooBlm/BQiYuqKFp1hB5Lga4PhKymsw0/bxHmT9FuTdQvmQrt8iijI9TeCOYEFt+nv08Fdu1u5fx/B6/wObSMeQmlN6dURsYCsJ16nxk/uaGRa/Q9su6PmkXGhb/msWnxBh1Izu7mRtNdeDm9B44zvts2aUUblS2xL7cyoYrJDrrpDfprnmBGbfVw5N61yG/NjHtejwU/oc9IzRvXregVXpQ34HAh66GTTCo8JfCO1XNMqQnal2KzlJrjwuACE/bfLYXUd+eao0hbVQ84LPTtm3eyoyTkKJCc21oE0GiA14YZlTa+UWbXxOvZII9wgWMvKkkLHOd+GMNdVs0D+grNPnkxwIDp3LKNraLbWFpYUzmeq9yVIyBe+gLz/4jeU5SI4/Bw1g2AZnOx124xBVIB/CTTaMFgUXPnGFNM1dFukEpHZwIZPW4etREIfqOzFkF7uWm6NWWzse2OsKDdvoxDiEh1bKTs1cu3Ba3XOzqreV0kih745939/goVuqe8T4Bq56GWzM0iBz03yURbV506WkGrS0TcLuK1oCbiqmWlYqcvuFVnjfBPvwGG77Y9euitgIdZkFeMQRkF20L2+woRFhNJ2aSaEmS6bj7+9AwqpPVpt33FlRO/58dL0/Svdw7/uzjLXkhMdqnAfUL9BgGrbOSWpw2Hkktk0vo+sUe9+3z/72NBv4tMYD2YXjEw2tFPCHrBysarh0IEmizoaJZDOEwhDYCiKEroCBbuPnNucR4HthIqw3VTyYJLTRoUGuO2GHi1nFGlpgPqUYyvYn33tiKtTQVBf5odHKjWBeR2SJw/Yu1ofChDKgClKUb1jKXgfk1wL4eeY3sv40fgfDf7Wb37ylvF166T/Ddh6EeWfOJML+69ykgbja5ZbB2c8OYdgswke8GcZ/K+O1AJ+cwdqpgn3kW/sM8o4eGfbgEXEkz58ybYdoN829ARebQRbAkfTJ5SGtBepIL4aC3esoO1TwgGfoPowRU8XZKNXOrYm4sGTrW6aLMIlDa5c/xgRxJxiw3UaRLHpwjq5Hkx05Rtp6wmzzKXUUfmoWQV6lRuPJTR/Vy7X8aLrPxVIynQYvtZ+MrDijJwj35v5h5Nl3YZnkXaxxlnuETYG+mNJTx2K9PPRZ6UrHluqBszwiagvSRz/N3iQVI0NqfGC8yjjuuRMjA6cKiHhyh24yWX3ZMURoAkTlVkzs6B/YFqgunGyn9SWJju9bXxAc1tqem5aXqko3A6f1ZV37PqrQee9yK/cyeypAgBh0vRb0DWWUSlpGd6wHOQ5G4LT2hc8Nt0hDo2dygeH18EPMELcw1KUZqJQXGQTtxav+H6JwZXZYmQMmmHAaGsCCp8DzYULSI7OfGCM6BzPALo2aGMsHECO/Zf3UhEzpYPki1Yo5nlCBZFbYnb2AQhQjdg0ROG85ulSITE5wPsbnUlOnqtZerj/6MhkZqF69CeBMzIF0RM5TEdArlC811nyR17+c9CqeRouQWhfXs0y1NRQQRIalNSxygABIFq3cblaClgof15KSH/FkaKBCieraHKhv0b7UOZdKgKiagv1tTsqQYClB9I8MokHSYOuKgN6f5neErFvgYhROBjgM3c9KSc7Xsq5tUnfORue6gtdna0rSkO65QcaoHK+NrszsNcz7hjwBFxv74FiBvCMZkRmRAjPZKcrpE7dcyHi8BkVnZMxklSzSasDMsQsIArXzZ+EHkfuVwzlBq0Cq10+ftgS9/cEiSupPw6c9EUOx1tP+ZjtzdgN2Aravcoq3cktkP3ZeN9+MCgv+Jufv0nVSwcvJSZDxXGfZRDX+8XoelY9slaWA8GJQmPaxf9fGv/n2G4YzFN24IcMqKkTH/Ck+7sFc4XfiH9wswBdvdid1G6cY+QeAxXEC07duP0uy1J1mXAhTbE4s+O/PDpDhTLFYP3S4UkWtnl/WK6k3/uqlMjy+7i5d/X1BtdXi04QrwBMERDyGSRDZPz1+SGp5PFk3uylvoEgcQnHBTq1W0i0UszOAMZL57sgNn2dMa9SKYoSjVNTdU/ioNY1TfSk4yxz/8hcNpyHwePqlymyhEXsdn5alxPBzFjRjtjfGUZb6ioWo6PgRGa7BB0JNX881puUu6bUmw6iC1fF3AsDc1npoJOqogGKvGU00C4ivuhObOm+CsxG9huf6RpqmhWlbAElMweVikenFOv1GsSFCThkZU4a0jADvDeG3EX8shWaztJN7y5IoHgr9V71LGc7HX2zFYJZF7Dy2jm07Z2jYNYW2TN11gp70Q8BpCA+/wORLxlpjQs5TafDZ3rrGiqMxchnc+uZIEImT0cTwWmFdfGloKkkRqBLC5RTK+9vrh9aR02Uyxu2Q7IvjMmWzF1hD9/DOyyN1MTDxvbMFsV4dU1DV2vZP3RjoNCNwG/MfXEpQRZRmrwVf7qb+Y81FVjNLrxqd6DL3uz7E0PCEK9qjOrN5HkVSXpo+9GS0j6E/z05+oyGMOXT045elm3wgbfsEyu1zEQ+H8Do9cF1Vg5DGvNoQvY8BrGvXzSUS4O3EWArqhU1aJ6KHPmZBImoxMIgvM7aASoqhOIikJO6PdltOYO2dSpf0kb8nyHQ8HAjGH1D4L1JOgp9TVbtiwS0OK9ih9RayiZmi56fviTWTKePRbkMzosfztsjuc3aSotzGsQbiclDHcy6rLryxsV7SYKjcJFe8gm5tp9EVolv/muXz1NG1T2tOcTQiJAN78f4vbfQWVOiXMh9mzHN2S7OiETMZp7l6Q8LfdNxcHn4rbp/L1TiDc0CID/7S0XNS2bil6VSHUU4Uo+Z5WtA7LYi9ljZCcG16Dr5b1nAEv0KkPs/wn3EJJz3fEIfpC+yAz397+tyzC8HRiJ57eBZNX7zJnIZRF48tyg3/c1sj+xEYRTLiRPITxF+sA6yZ64FSKJjH6JqmpZvnyx332UVz8glXFNl0GwWhVY7JyXLbAEaf01rt3ntFIbQVw9p6qk727MPBOfC63kMjXAnKKfpRFxfwh5kZRWWWJeRs/YieRpvSjm2BjSmJfYO8VVIIBe2vJANwx1GARKbN6DcDcZd8ffUEjoSK7+8xo863AFxVZUw5L5ioEShtKPfbBYmEcLG/8gxLhYDoFKoXJ3ep+DZZazi80djvJSJN/5XNW/5emHcHJ0Jn0azhFzH/+wCnLsFrMiLe493xz0EA/j0FwmFTr15f0ixmyCMiigSspERFz+NKIFcZbuY74ENb4sagsaeWVnBNsu/w18IGC2vpmPRr3WT+CtAV2VYmZnCWjxjm3WKI3Xr/bnv74eH5QtQdEbpMLf38Eyfseqgd+k7FKk+KbEDOs454LAac50oDXKje4yA5hlPZ6XEDrKIc4NiVtSF9Yyv/NH7tpXXFf1Itw2dWCIAYO8SmR6yD40IqLvjH2mmxDkxsyTYoemC3BkYVsleF45SadXUCLmdK5vdJi9HYTK5nE6q63uXIdfBto+KOc1lC+07fPtsdnddw1cjWIqHfSJAclLqywl8u2uwjssAPqiubQzxKmwiPgJSUJyabd4xLWSjSJoZWuSm498Z8u5AbJlrcM1tvUWRiHfs9IXJsnkGX6RWnmT7jmRL9s0RDTZs46yZEg2M7TW5N405eX7k3tYCHaieBKFNtZrQeGzyKYnDFHDYdxlWnknVmtRXx9Z5u0g5Im4qPBh7kgNjCEmdO24lXC3J/IfBFSj8k3lQXVZXyXe5HBjgqwsJnPiyjGIEufmSWnyvvmq2j8nVlm4ni0ex9xltIZyYjuleriGDeSmjK1IarfrTIWQzg7uWik6mzvG65v35ZB94/hJiVrXor+yDFgoBh4ZXwnRLECu5zSXDT8b/PjCDFnp2s2/VpkETk+RrWUUc4sNx72P6QUK59mymvggDUQHLVDeZXZsX3U/JaIBgKwRhziT4sTVD9oI7O6/MFchaVuq/W9Z8tzVWc6hUkARKlaTM7RZHfWNbBeOzVYkoONwE3JgSKFxKN4o2JQBdZytdPzjzwF6AdlOsFYxFr6oet2Ql5yH7CUUHuJEfKY84T229i+4VOgjIdsYMeElseZoOs9q3S5waWwSa7Cgnjl0cjCavH7ZVz9PXlnI9d6xr2qZF0KcyXPFdh3vFjiYxtoXb6jNUVC3xd84/ukWSZ8uDHU23R54sOpY5k94SMO/C9YW3HyRi9ZXh+9T3HZBfEd/YAjUsxwYYBfYTiwSaVaWxBIgx6d3ty9CuA0ABMbpugG/nPILcaLxe2+5+SnP65NULOap4pmr4a/j1BhXatTTKkMeLfHo9uloKxB5r3v9gqN1Nr7oMgwiM5lwnrpsdvFmRuRNXXOfRItdFsckCu6B6n/U7TZh8YtmCSo3UoiMy5JJJzb9gQI5JkR24WN/Fkww15ekA/khXtb924nKipHKT5GAfkbgJyEvHZoVBVwdWFui9uXHiHzdXODYC9TK5bm9qGEr3DCnTsBiVM1qeCNojLfOjQmudAtfMEU/OM7kkr/TPDfS6pbq12gilBA1KgRV12P0fBM0lFK2F4SBVDnizgREHdEN5jSEC6WvCxuUisp3uLkVLGX811vy98ZmvhNLzIDwl8p7R5GIpl5SUnXNp/pThZd0w9jlSQsmIZOQdPZf7YuvHmDVgvoVeUVRsSs4uOuCSxVqtAstFKIy6hAPQ5vJ9O5kswEeedmJ0R+US6HYmqgj7cZjgQ7H1fxZSXrgTCRCjEXa0TN4spT+eqQtpfIRSaZ37OJXz2Xa0xfT9OsMhLwmOD9/6mC3TXk35B/JHem4QvY7if7sMVpVh2agqZPhnY+atNQYRzI/rcEEB1nvHTOd/mubpVRKQJ6I+radwpHWkPmFG5AmJ0LltduHNuZ/AI29Ud0I6BrJvpcgZbaggCkbh3bZkrGHYLMD8FqHYz4L6X9j8Vqxm4s70JgLTjp7VVh9DBk1PMJKpFF32A0MNhX4quUtlAG6l783PMDqYZ5RdZg0iivPzEjBdVod6TwSlkBReW6Zy0FS1UFgTXVI9XGkKQExm1zjr9LGJ5Y0huLEVV/zUckJ050l68FzRxBKPHiSCRZQ8o5QBzAKDFSd2Ia46Gsemb7r4wusoVHM3rldSrTTnLfG7Nghl5RugPY0KFWhLR4JQG34NA9G0uP/Yoyd5DNUmCzCDfnlCztCH7jH1d8N5jNycg7hbSWqEUZm1roqw94sKAhxR39Hs7w2Xw7XWgQgd8VuyT5Q0yUE3b4a2+TndHuuLyBNekzqP+fWONF28Yk09fWiipxfTZqMuh/2cv7YGK0u2soBxKVc0S4250i5hMKyNfLzU8TZokSdZEzMDEoeW4p4LU/L0jBKyNYob+8GyGq4Mp3e3gfzS/h989ANtAGk7vCGgrTQmg7RBoWb/hZvnJT5nWNgkicbU/tZAyHIIvX+NqqavI0+MPOFeGsIpPGzTj77eXXMGvp8ViaCHaI18eq9rafcmJ0sSyzxrXHNjHT6/21+AfoNgVkaLAJoAOCaJei/3ZfmYP7FGBopDOX+DbGce4A/kf5lWLBYX9zoF+tjvfp+ovPtN0wrfb9Gny8RH739MXmS2NOi2wr7xUBtonkp/wGOXWSjKEPz/yGr8Pu97SJF+20uNyQd2pbnF+dRnvLEnj9LGXUUI7FLguxRdk6UYESXVk43oPR+JTD8fAZt9Q2QSHClxO5NqE34GiEysXR/umO4xRLY1P1AqJ3Th3
Variant 3
DifficultyLevel
618
Question
Squares with sides 6 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (9 × 21) × 6 |
|
= 1134 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 6 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20309_v3.svg 600 indent vpad
What is the volume of the box? |
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (9 $\times$ 21) $\times$ 6 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18ZIogLCcVoYvePFNjTQsyNkQ+Ry7egBFHc7wDPm5ys6e+ctmcxOM8/6cSgO/P18p4XqdYxzkxZs1ty8E1jyKtQjvQl8D5+hwz8Uze3E1lleGM4+kCe0JkriPxKWRJQYNHDdVhU/rSOnZQ/aqNnf2hHMP0vTisoAaKIX7fixYdWHkKQ51xmB4/YQBXyCqy4sjmvrRxyaWUuNRtfQkcSo3bhn+MrHvrIQfGXgJpzGUZrV1zRBA7mbtGdj3X7Umml5uQVCGZiQxLqOpszS+MidXadwEboV6UlrP6ga27FfNduchMynmCh9Ioj8/h8TAOSwYGwwDsJRrxhL58JlwwNyXZpQiceCzezT+LI4wnLJdUJFnTYshNKu7vdPOSfJvDDi2e2ZFbItAE1CHjG60qE55NTASTjf6J9StOet8SjATLQoPRbA2CKs4Znb7FSI7r61cTjMA5wKIi0cFxc3XuHbCtnm+ZW0IGDDsynGyNWvAT1UwlFaBZwGRtNJwei/0m+NULnHLZULUQuUqEyGzxEL2Qi/OXx//8oHfprA4QTnioOxrhmFA43CoQJsb+t15JCkuGdRacMmtU9AisZKjNOwSFApkShEtnHtpH476QhFz3Pm0ew78sHd9RLqfhRiHR4nQQwRtYxHt4b2OommMQKf4fzRlQXuAS25ESxm8/JWMj9O7hC5Wx5ME7VD27sEYYMYf//Zd//1Uv6v4x/zW1s8eYzVrRSctySg1Ksd+2Qr00AKPT7LjuJCvx4leXrwpWoWAKvT2Jb47n/3pRulBagGl87uicMCkGqIxFiJZp1LzS6dvG8PpDq/D45r0jwMamSxjJXxquy+UCgYPxe6lVCSXNQO/vpFBsQY9tUzoiQZOoD+zo0Yx79rnTDVY1DKexnHtHzhlottNQZFV06kMvfp/FgvjIfS/kik9AFe8rle3YwvqK98KXBHCxAkQFz42ejodc6ojluxoE7B3eGft14Ck5OgHsn+8dtaj/Zl2nic8+zL1eawswd7upHBHvBHjY13i8WqPK/LIdyzoybQKZd07xfHKec2n4906Ugvegw3fmvTqJUjjJKyogTmHU+RipsNOm9z+onrKVsO5yU5kaheG/lA1o6GyAkxnNrXcUcuRr8RC8B0/BM2/gGYZROwA27bMDmJSAa0kSNysBc3q5WuFBNxFwDtYhX9M2pAIPi48QVHqFOzrw1PXVqg2nHbmbPR3oAqr0PydgqjEYhlmqpyJfnWRqX0d2cowiFoktH/AFSVDdXlGs8Paq4EJjQgiDp6uekwnbZ/TrVX+v6hnF3CxWtF9boQr3yNS7vND8Um/Cd5WwbP6KTwrhDbwMBYomLPz5c2jFTEtkKfPcS9YG98IZb7QGBZdbEQb5w9Lto1iyMNYHmdx2P31bLqyvVO/DxHqd2Dg6hHKkzDlu73ZqQ6mymEzTtsAkSXi9IHsXG2AfHjPhmABhwkHfnSztd1OlhVcvOuFTfvYySojmGbS0lw1bkz2lbP+xJKi9rw6jDnAOUsfuiL0Fn1+iCAn5xudV0YjQO4Gt3UqVRmeJ3YdrAh67HKUprheNCsA+TuQeeB0/tjW6iE/dh4qp5qR8jlgFJxbpID9/n6KyefvTCd3z71kh+ccJCAKiJqGm8i+OcetZQRKYMsJgJm2Xpby77OjoEz1gUPi9X0vWHl2peK8UfIx2L0PzC160JTifUYVc+eTGu1UGnVm18xikxHVYalZB/ApIwxVxLB6z9gIOjqHO8eKk7mwmkmoRLyrAoCXAgxOpeEMgxTMEeBoom7DZHHaDtj0TZJ3BCBqINeb7bJGxuePe9hDt/kCwRtgnutFNj5E52HV0cGJwhjOGa10XbZsGntQM7R1vP7bXsVygyWUCsFoFaoZR5KZ0AZzBTZMNpTDjeMJsPP/WMwJvGbE0DXSw4b15eT8leDsfmseVd/FkWYjMU1+/XfDYWEHXiAJf6PYS8omT85bL6bGuQ7HZYMna9a7Qwd5yqXplVDKbC2TK9UtICDAD3xH9Djxy647r+SlDa39dnGp2uu3wLrkF+y6oUKyoKck+qvH+XUqXRxb+6rmqJwAAI2H3NEyWDqRFQghmUJRh0w7nrmHthhcNIfQehSCnNY7b/ekvzAAC7cdmzYIc/opwr0+Nknl64mpKSTD1K4A/X2DurzRW6bSP5I5mNFXtpF0jmk9LSvIjUJ9+pYrEQUt4VRywEgReCkB6kIhigfFeye+I1+Mz8PXLIsC1ciEAOupJARNMBxPa2oMrHvIeF0UXOEp8ulQWs0PCzx0vZ++fYczIN3HviEIatxWl94NlzraaFc+G2ZBDIxR8D5wRE+EUU8Q1YF97ATUe+dw4JmqcNsSHhvdkV6V9GTDjQGjJHAAUXRF2MNgsWMH71VWOLWOK8az6OCvgvE+bmBDp/RFsUlJVbji3nmEDaBM0Rknl6Mzuw/Owl5UVblA99goo4JwvfiZU6sftaDKgVEoRZw2mHe4havQDhKVLer69CnYZJLcWqJJ5Y8TtKpYQqiqFy/C1FDzQ5hi7f037p3zqLXzsU1O/F3teqpBk1alix1zzwf3e8afnaJ8htyyfVWSHQtSjPTkX3P/5OjjlG2PfnMtyqj1ZnX/pn8zBAAL+2p3sZp9Uf1MBuSd/S3F2Ic4s6cTBsIr2dq3oVERgc4f7bipRkNFgRRmJP8YrHLSDQOz9z0fc3Xfi/xnJ9Z/9Xl2yp7P9NwqBYnm9k5fusxJ2OGvUw8JR7f1pU1C0g2hH5XLsj/bH/9meoYFNGN48hYP13kgU83ZcMphyTLaAyxRDa7NsTcB1+OphDkNdLI221UiYD63lDIY9iyl2wiXSN5UGc+KX5e7M8vivLbzVtSydPMe3cwIZ3s50VxQ4NgCMRAmHQbdeLUH9h7lXu421VSxGM3PUFHXkiW9hOhZa6RuXcjjTIRp7x8AaULa+fbah7VQYSvlTZK9OIeMgj8D6b0o9xBsVB/aCOW9vOMrKIztC1uB+av7F5YZQcRIl+KODlbT+RbLkJra88w36f7wYSXpkaUSJdz2LFmQvLS2iQZDaZkFgIBGNkuhszYq/7ezSAtiJ5D6GA+nSYcY1rVHFm+by0OCitaNgRXG3xxn10gQ2v5HFxs7Evu03+mSPa2XdiTczI9WLQkri5DYkCsEB/XnyJtKVM3Y9PH0QxltiZTztL0bGCf1IacZPuTBKd0j/O+r9xNiLHI3vrkTPQLnrmgv+64MzGrCTA+gULsfsc5YjnMlGs5EoQusCy30fnozquAM2qOFTSWLRDWBXe9qbaeddDtSbQgPEoVzrV5pkV1v6Kp0mYhG0SucaHRjLgD6OY654JlD5kyHDcXiA65QYVPg8vgwXqcbAoT3ZY6XX/PRxOL6YpFHSBJP+htg1MYyI93cIroobZYbnDMHMUxzILK6bQlCKIqhHhFLFRpSnUQPA7d9mo8tEpJcUsaTEiP7nDRxXlfGFqNHAq5nImUnTI5D5PPzMjDpU9QcNFT5zZGPcmERrWnAow0dBEDmmKjqVWYo/duVZtBu/UwNYFRCcd9KSXsKYK0CJ9d6xFlz5hM01G7vkNiRw7g9UxC9l0mivW3CNh9R1ZHF7qUHP7VRhqmRGhffVEuwc0RzhOxB34rgJcE27Uz9DEWV8dX9qgXu/mvhE5yKM3XzQSN+o4MdxhYAx0P94waRiwucu1M03a8aBtP/RjoHJsW661cu5//2Mka+E0jhm8pIkOCEyRujmIiRcxflCcqrEwYvdPpGnUiRqRYILjz9zzwM98G9CV/+WpwoY7RQMdpJGByPp0rLOOf4v0awbrxeIu2nXDZnQzw5N+fOUhbOraMdXRgMXJHnVupUlXmoj6E61Uqf8z7gA6OQb0xeUSBxfU+UYtYYph4ACt/80uj2zQXliSdnwd3j8nrxnL28h+J4dU+N3x+CMw/YKXTgM77PH6edmuxHTwu9/1R5UFW84HuvzJGPVNtzN50fsUh1AgHO9ZXTxAVfCHLIzg4iNc+XR47E1mQ4BaDwmekSAIvEhCO1sy/0j9Bv5mN4J1TP1YHT67a6BwQ5ghSl9XccAs/oAxkYAbFdKzbdU2+llp2RCMYLA2lsVp2maPUPCUYoLyGojNBPDdjjzeqERcjHM4YHN6ZlPEmpcO5JMb8in7CdUFVKX6wP9dKq7IxKDzxXOPVI3FhJA6XbgnWw2vSXiJXhytlbY14ntz0bQ3Zw5RIZIPhZcXt8nsO5aUdk+hnMH/rtg9PurTJz4/jwSViz5hw4DLLUek1iOq5jkuSuX+KTeDXk8CgyieUZPAPGJZyqEzC2NLdJRxyNOKEwDHWS45MaSqJEBTJgUK+FM9T4u2ZVJcdJkdLAjI9+ihUeaARezsoUq6kt7vAaw4bEypz2TeoTYBZlEXHcRhjyy6AEkCcYX5jpTY8VnespJaSsYpWu21fKZNYn5DrrFu9mFxeqjohJmeTByO/4PcqNmNVmMEN1FchpqdgKJ5jACMBYEmwY9CdSBQhzcnZxnQBom2SVdf5N42pX6Irvmn7bhIAW3Fv8up1g/VG9ShsidXPXziEHchD0saOPIWjdcwKWw1aoeFZTRTGMhdX7eFgcORAHhRCBQAEDZkSHa9X9xtGmrGkDBElGlpmVK/JGVDXRdpWyLQ/LH1jE+u1XHBhPQrjBumjdCvMI0NaEbvEdNa6fWzllg0GJrDbEHFrAThUGqHYVJiCCdj5fUQAqJgS9iJNZK7EOM4k5IDYLH5RNWbA6dtaDWBXW7wdsaS0TtGTMD9FQqcnjWK8UIFEvCuhaxg2HPHWRyNJv9oGXrCsEt5IDfTmYBhwPrc8bGKo9+lUoOwWhw9sog2zP2Sz8uw4QB+z+3VL/tA/uYbUxmlcWvVEYgcLsm6uGI6slPlrY6S3hKKDJ5gH7xXhYAetM9y/1jx7cf6Cj/zYBKjeltoAvNuznMHPrL7rp8DCgcg0UjSdrYap3Bs7tGg/ijA7+1wB8bVe4+BmU430A1ms64yl2yNTCEGmiJVgu5hfHDO2sRFw6RZajxRNDu77/xB0CxENDfo/K4V0DeoVdWWXI4pv6x59fDQWqhNEskOpathS/ek+K2F2MmL06kohf98XSx1nmS6v/gT5YW/DumIR5E4esFPZGRT9BPdgtPYigKhIno8FhtliFor14PYlAR7Eyq+gW7EEzNkEoeAMeDMC6lQ8f6tnVuzelHSHJB3UgiQVopJTt1uiy+/voI+F0ehcJRqH7N8438kXE/7ueqoc9OVb3qtOl50IPVR/KDqFf/Z/7v1VXFMWGfYkVEjBzZN7Och+eemFT/VVgquES5omRmYedyqaWY1sdawb+iCPiau/xFbai2U2YJXd6Q/AEeNNLol/U8PnQPYCOGrT0mskLTv+N+3op5cfVeCSyWiiNptzYKSSwWZBywjK2g176LzeiSW6tvy2SxMwucABd217dEqO6Ow7Z4gKF8itRRFDwPgcCk1k/u7oku++QXS0UBYJVAqQv9lYV9qJvnzbBr//8rwJiMI04T2j7NT9eRTNcTcVgaU7rDSyXjomlvm9l5Pnjyf0ZwtGFnJfwa8TtdGC4idz1BQaHSbBOHcB1hNdagDlHFvylhFXiRpzU3tYYd1uPUAYqa519kLjsXMnZFEdDLKmloUCm8RM1g50yjTzwAI+KJYtVlX+PbPe4AHW1/2SFbXurEUHx6ILYN8n56Zd3UivdQttjBLXnO7CyIyUwMOlx1baXIXx7YujeDAO9LT1w0CEEsFOsN5FD/8IDczJ9FmJob3I4a1bQeNaiYqoQIMbR+aA/SfR45bU54daSvHyWJs6IlecHcSLIF/F8iod3yDo3RqAhj2SZ3H1Pd1kID6wv0TsA8+KQKNnfNkMN5fReChsrADm14HB9FjGpvDALZQNjfAvOCMkSo+QCbYMidxPjSFsKXhJcxpMfLUYzJlNYznIOWl/TZjQqYB19Q3hL/6ysej3YfhhZvXtkvVHIW451WIQEUhPSi42KtAikrKPiXX46yYAlWpZ9NIC2NM2NoebUpBNYIUan341xPZ/mmRu5La2I28qnb3IOY2ztwaDnJ+xJf8ekFmiEtPlrElgw2vFBvR/EiLny4jyJqhs6q34nyKroLYbTcenSwKd5+Y/DCUnxScRB5q6k+Nh8lZWGmOnYVShZp0xH95/OSfRSARTzLq2wpP0RHcZGGuGaD56/g432sUtHD+nj89a/WLoTc+6Ny0Dj0vH154JFT9OWLGzy9FqRDb5ewXsSz1JqOBS+RaPteAN00GREX3NkLQgQf8EK/A/2YlCfI9AdmNpoiC2++Emi51RTcnkS9r2SUjC0Pluuu57cao+E1hWalqGB9kTuEIVMvqy1WVJy4inON70SSTkEgFx+yGJGPNhK1LGafqTKdwpprZ36PiKMdutfZqKaVak0BYnZn9rpiXGDczIjZDWayoj7g+qcFdrVYHedTfupiLbunLiFWOrqasljSCUmLAEWStgfgs59BOfMVLlBRtbqwkw+kaLd9ZIaWifdtBPSyTHgM7Jg4DPojZAtdSd6MkPnhwr6p2gKRXFgcOdpHN07r0sJ3nFovSo6iL5OPz/ByF5lKLBntBkfC2zBe+wKiPZEyL+rSDrOCAIUim9WaVPQKLoxHW8RtpgT/Io4T7eTVuDh4iEfir9YKA3AqMW+BeoNS2XDX9GQ98W6W4elqtx2+GFjUbl4dNwgk/XuRy8IbTVHkw4XovOwhEZd8PNLrO2AcH6WLaRL9vNt5KJCt2bLAvzCQPVUebcltKPwr73EjqCEzILg0T6LE5lbaWz2rGWTJKv//vj3lNX3jYQqlqobFL8WiOBL0FYuuGkqnByc+UHaEZlpv7mAB2xKnWh53updeS8QDQOaqBVM8fWFy1KFniiFbCKBGV3K8qHQRS73Hf2ZB34QvP5w119yRpJKxl3DCZipkScUWDTxveVs8HQAtIFk74GNNLveW1mc9Lb+c2/ouPodBm9AAl9JMaHVlQxAhAeM4FPM9+JAbItd7s5+BtS7uChwLmkC92XEskYoFG7ZzRskYqdXwT8je1DCXoB55i7Z7ZBzYcKy6gUXCBVewfc7aSBd4Mg6QzQnBkHqYRlvjgTWqlsLHy5ZZuDyMpB0IEaToq3kzUN/utywx4ctamZWiBAxLC2FktXeRPwP5gi9JJlE5nbAS0yMp4R9LVSzcbbH399xqrD9B0FQe7aSDlKpaSDPMtD75390Mh4fCTIsJPpdqihPyM6UELObQZH1pDdhKOevYbXxd33u81RwpNi6dRFtAa3hpK0JZFMtIPCkjJoUdp0i51eIYfPflM90skwCEScVSX7kEZ/6hQY4fLIuSNUB4IH+xo5w25Bl7ppqmqyzAHTVBLxo9RekUA2DxPq1YAtoAXz7od9cuC03nvnooM4j2v5veeEm2BbaRIb2v/53LUrRC4mlSGckAiROVZx9X4t6r1+jK+An8Ax+bO71UzM1ovjoBzJ2RqrTT7+ZXcySZwQNrhjswsgPi6iEsL3rwuK3HpXovlsijO1aJiOxpmSqziQ0UcdKXowZSRdUogoAgJmZCcXsEQBUvN3FgCJfiblPx8ZcJHuCc4ECLkI+2+n9dZsqoT33kIXljx8seyhfOz3YowtEOI+prnOI1WCUdvt2oWb81EkYrqUJKSSuphIex+HNLVpoYoQfkSdAA3sseIetGVJGqEy4nv/GysIKWVg1iHSW5k9HjRG37DM/aBXy3Ee/w6FFo+I7b5okDawseDGaP6iwbgloTKN6wOjqgzoYii0z1Vw4rN1rG2MEzwMmaLpDip70I1lRR7ioPjtByLPugaJV9aTTNfE64XDQQrH+I9NN72+pLJnt41mIn2uFrrwr/FhwBFLwtP2yxcNVdlklaQBkoUcuXQmvEJvpHJLSlGUhYysKsks2InQz7oMBbVadKZ7x47vp0aKjZlX+YAT0vNimPlgZ42UV7RMTvB9NF2nzDYQqI+7UCVKj5vSzi/wF4kKaYtWVhELySzJ+kAzcNI7elHUKjZTRQJURlsjGEkM32oa6GZmrfSIOsN5MxzZpxYwfNs6pDgLVHj8PZwg3IhPLtYGcUOz0gWBhxmVWkOg7vmHCLj/mU0c+Crvs4UWVy1XtTARWojW6Y13AbdsO/59r7N5Ssnh9ER2AwnAsq+Ig8bex3v59NNDn0P2XjKlQJc/CKzm10JaczCJqIXbid4Z+6l7Mh+jY9XcjGjV/orIswsHh78vVhLLcgk0rr9rd9tCHs2SvNgAeAbAmG6sBJpcihRluQc7arD9gB6VcxE2ikOHnPhQBBBvw6/nDjWU05nf5hyKFJtBW1FQ+ns6Kx+PYBjFc8sfXLpSbnaIsGbAsRoxS6HEDjZBZ+kFZgvAgRQkZ7upotIwplUY9SUNY/NvBGTa52DZTkLPohtbZjC8c9Sh73FBH6HsOLkPwjKyNMRiyefWVq6wN1Kw/tMVMmdbLyfZhZP/Xu+SWQp1T1NbyI2Hu+Kt3PwBxGwvRTLL0zIdFJR4Rhz+YzhSLBWPMgJXHy76A3l+cgDI2uxIXS8C908pkt8Z61H9heUyLUZSTdMbn5U+uHqrWWRwgmV0xVH/28pSRVEM5IkTFgXSa3tTHZo3ZaJV5MRO2/pgI2UgTXHc4XDbA1KO/w1l9PuCW7JehwFv3AtQ7yTZtNs9U2OqUpHekj9pPJWVgmYGLJGPIum/sZNJbPwdSzcTsna+kzgk8nYlEcoh5/xGmyg5gRcfdRcnIfCmoNGjJG78f3Fpf8x9CBkh+aJkoxz0zqqXfXMm9Gigp8JX/uwfH0dCjQoBnkHcQ06/TWR/RaX/ofk0E3xqqV6RJi1qHqbwbzSEsvmdJsCVDkzb7D0AaIsNTzDv9OWEoJjY2qVK++D4GPAZCrux/MtaHT596Ru4c/ChC2kRs5uQrXQpTaw7NbbvF/I7QH1b+YJUebOyTZf7uUTa/MPwGYexQ+wLqLNHT4OdWbxFt222XsqGPKmfya45T+1d4WW24+lXH07Q+OI2DM4Vr48IVZ+dKEQuJa8aTHE/Td3BgXdQQ48a7ImcR17Qou1NS4HSbHTqRVW/vBhj03sL/11Mx7vjyCnTZ3jICtjepj2h/PJNyGOpNNeI17Aa7wx5ksgGUCN0n+HYh9QjMu2iLxpsJpBVLTdFobhMil3pUyjHQ1/tyOy2qBYlHEA4Nx1QFaUm/mhabtfhrtBzWfGar/ljybd14HrRtWGLWvsbl64FxB5gCO1zaJ3Hv4ASFOtui22tndrO8GECiZZG3HBl+9Tb8iKEoenXVNiMDolP1sXFaKrfEEWx5Ziov8/hxuRIIpy5nG81WQQRAAobIOvTOtw+Y/B18D9y0mXXeGJCFkdA/RkaCWLyuisJUocWONrMoQOFE/JL14RV4N5fiqo4jU=
Variant 4
DifficultyLevel
614
Question
Squares with sides 4 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (5 × 7) × 4 |
|
= 140 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 4 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20309_v4.svg 600 indent vpad
What is the volume of the box? |
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (5 $\times$ 7) $\times$ 4 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18Vp3cCzQK/zp1vdkSSbEhQ8mt6+Vk1r7aU0207sqqYSoQ6FsxZ8W6inIVJId7PrOK1uCTyrPqD2e2+q8aFtxWmmJnJRvhwtFGJ01g7FvXDc+1vcat7hpghR4jGouYdxPEU2F7TNY7/sr1q3wNju89749xYe73vWaX9nwNuzb+MDadYHHMJL9bBOhhUG1NXA9U8yQKGc4FlIx3FG5iGHQQnHndjqefF/LN0Lul4yews4cgbiKJGv5vZTno61C4qeaiPUUkd0B/nlq0FAFT4PrBwfvDqZnn5QatTqtlF5avNtkiaaZUfuZVjwzUcTB6CEwDZo+zwACrYxzY0G0l0FOzg+MG+38NDaejLy37HrJGHgRH9D+3eRPru199gblKVcy1qtThU58mparzIuJg40yUDTY93S9dWXhLGeZNt+SUW/+7hAIQPJtc40ekDZtnTqPOlZWgR5oM8d2m0BAV3AUk+WfATp1fBnObWnfOQEpEAjAY5fvnrYlXxPatJ4AWgBgMrLhqsqxeLGgdKNztOWtyFHUyU3cRJTU7xB+eReHu/9hdCCAcqT1DHGFHL891bt4h3fQ141OxNi3NRhdubc32hBq2JacsWmROgmr3bxPCGhSsl52RL7VNN4vMAvKGiu0AdiwAYCcdYxMKmz+MDSwF7Hj1kKx9l/WTdARMFC9p+WErCPFz4PV5kJzG8JfBGsy26fAjwHpoIv4oOB9oWLYtD6GmA1K1g+UqLeibuFw1AMxcv0fEevdhGQwBC3YuyHyni4svZGsMV6bVaAfRvUeOenMTfhb1M5LZonZkShR/MMnkndpThfzgxIREVkYjMmEX+07BprVufJyyWlAI4grqF7rc3f3OVNEpui666FdfPDOOtH1D9BI6Gn85f6ivtCIUHyt9EVz0olgUgERXz1/4ceixiwXFhYSYVG9o1sFSlXsMBhtvx2eBVXCU3PjKvzT/Kl4yUx2OHypDxHMIjW/gsS9J/hEC17TPa7ZCyAMjeMzk1XH0kZdig4Bypw88jGdDz+Gn1w5QTrqjFbCAwnvVXrbJojyJ+xJsrd2whTru7D3HkrfYANW/P779Qw0LOKvjjhvUwyzFIdPV5cEt6tqhsAweu+LaRBkdqnL5N5dTunA2fChrgcqLXP4X9KePsjYdB+qrAyBeqcK10xVyYsoJDwbpJEY8HJIR9R+QL/7mL7TOmw5utljmty/WBwN7tWIlyAPqrjlFGsFYynaU1SZyGAp2+Arz2NwYst9JbFEYrhOO9psfs4SXY8u6RVg2Yho4hsK1zLOwyX2ze66mNickZp3ye2ytpOqY2uDD+/4C8484YQhTrDfpFoNuMwXUQyvrkPXA3xdzCkSQB2UhI6B3MDRXhi7HGkwaNw7xggUyYObvwDBj6IMOVm3I185sxmdHGCoaueTPNnrlaDUtaEobSHV+Y5i/cUjCYb0Ovv+p0Etyq+b7HjQD71lmxP6DSjKbvPUFCIxmhJe/5JN93Op6cRPHx+qmAXNAsJriYlRN5GiFoMczQL9O3TGgQT8szZ+5z1TWWq64W9TE/XaeA29dvSpR68kOZ7J2fX/uBI7Ip0uubsdTCq8DXGbCI87LQy7kURFzO3qUvBpj5hRZkFkSWq3yd8gg8D43ljhfoGq7DDwqrHygiiz8KKqxVf7Qn/EWJdXybXXcW87EdwwpMAoe0uUUbncbyBLOD1SS2HpdHb8B3QeSoldOFmSzgLDwzqCO4hy8z1+f/cGYz6RAuV/Qbfs/S5XPNhmRjA3hUfoEzvbw7N3aAMtbV046Q3ilG5+yu9re4gEHscEpKiUYhpnENrSKf6kP0xC2WS97qwbOTw7lIrWSIj3DO7F8qqYRJHeyLBU5FhVhol9txqg+cv4r5Z5IkF4MU/EG0orU1gKQsd9Iki/FKhHeW1Zb9q+WEBPfQ52AtLJw3dLWxOVNFoW0uyGMcgoKkBMJy6TRzYNA5yTWIOMepJzBpnnDsjvUDB4aBFVAOmCm814r3N9XJ7CaJSOvkNU/9lwsab17o0P7H3t0q4xhXKJKWy+4lFkHLvFb0YNg5Mi6TlxzXdSu0GR/6atL9YKocmirrNfvG2NdbRdtnNL0zoP1G2Ap9XP3kz0RzoW2kLo9ijlFHbErUlRJFqtrobDSsO1fsO4YiWl0mjRJj1Zp0+BZd7/Z500ahJLPHCiK6MrnACX+eN6wR4uS7tAko2sv0tX56czS3KjIpmNKQqbQUTW96YIPo29qXkyXR+7fvk+XvucgtQzVOdQ/xHWynqQNeBVAUwjslMvqZFpzU9I0dPvn0mySmyZBTyFU165pgbW7niO6bH4vMdmIdlPvIdcz7TYsuMHoUZ9fVqzUj5zJfnOTH7mNM86/0+70FA9oSFJxGXr/sOq+dodvmoHakASoj22PfKg3YB4seCNHBFLwd5D0XLrdVz9R/pIfKEwzdRELLdQ+MpNNqcGAH0CSUuUmDhW8V/yE96wPw49+KUTxfyReo4e6DeF9HBpqNlGH4jp3LkuWFqm1QJCZv1rKxBYaxYDtWMs8X0frucBQxmI082jkegOy+sjFzkSqnV5rRT4pU44tVpSy/nORn2XHuON4wQZfKGnugXeUSm8NVboBycUDG0IXSujuBUY4r/ufW2dTchLkNtaG3WBW8FtZmqAQPtBiL7IlYSDcsxyicSyNuMcpsLUuR0Xob+VMui4tXuQJEdHczgW6AACXL7cC5o5vhWEEJfTS5m6aoylf/ROXn61YnSI8kc2N07QVyTM0YmH1uL9uruo6ftQvH0bZtpxJR0e6dOoWQt085Fi486jMhavO7Q5RCE4bjVxsQCMn1BFOZGr5yTibQigL2QkfqNlrhOVA2CmNkV76rCHpSDUYzxqR5Gzpvgf1FxoASh2WB6K8zRI2JMIVdOHT2XKpj4hLozVXI/1fTlns0QwS2ZXeMWjZjkn6uLXIPTXVZqEtJfiqSy6VnnyAl8bTL6OmDQd59HSET4P99r+4SPJRRAhDAM7xEv3sqXyhCmwfUlQVf9WGPMEzFn9QPD+4ZeJ6rrWeMZkLFU6DuPWfMSSrYi1WfEmrYIvubzJIqblZ/I2vVi/O5p0gpveMk3Xmr1niHIIR+s7b+sfcZ+D1t5QyNlOpYZEgc3+IzD8xFDgZouEi06Wx+h4rU57xNi62pZXTqzG+sD0XYKQGgB4FACOnKPHHE29Kw4ssOAWBtNOOasPEn5Tfp0oZPud7lYs4rgweVt8TLBCadUDuBySJcqalFjw37WyuzSjBefM2c+oRf6Pi6SNsnuFu6i6f0WmkfyT1ZJzpAwG5pjAewyyhfw8Xa2RoLy5C2Rt1AbFVOFtdEPPigSc/LLhj7AUVLhKWXz7z/z5uWvbO44c9gzuhyuHjla+rj8EWmCPbe0esM5d4bo9Jj+YyZeLWo9py9iSIKuckyclDUarJdSAszQwfdVGSnS+86S+BSID2UscRPagGpMpmJB156dGsM5pEM3wGvqouOUe+K/7hMKKkU2Y4HsC1fW0mJ5+pgBjICokNFHD69Aisht0x2EmId8S09qvW3Oarcq6SlQJYhmG05dQ7Sg6sIJmiuX4JUjjK7BlI7QVMc4B1l2MSGskYw3FUdayRFhBduVfbUd/NMrRhnweMkpwf2Z9vED8HbrXgyEJYk0fIjL33MJfmzPUiaaJ6XABbL5Y0LWK71Yecw1nj5cL7hq7hyKK2IGsWqVRergLcCPi1tbu6Dbo2UaSWGzFIQ0IlyoZ4sad+5MUgXuzyMYP6c6vbb9ld1nkNuoGnpxeAsLBt45WxQOWXAljIAIja823elBR15tcHkW4/3pE2RywmeEbcD1saHnEJHJ3crkOePZ5W4LyPlUBM7AyIwHtzm6d27+uRY+9/t24fddZFczuQVbsdQ/M5QxX06ZUvQCavz9gFJrfE0SE5/fCUfcvfwSxor0gPqgtOv4FupafTJup1ymM98dfI9QD4teGhNBxfUYHkfefFae2lJ5hM3bz1RteRU8/JUcqp6/57vFIzyeGNMfTQ59vXJUamXvLEvCQ3veNmf01PMDR081LiAuBa0kIus/mtvEE0aFZRJU3pUzsGvO0CR08jcFQJc7zWVJtHrOExLHkv5Axy0cXJ4pDjjxele+77aYfOlVTp6xZVfIiSZct+V/0Osvx8PKka5KnyzH134k620OTKBYI+8vAq/P+CoTfpf/Hze/Gv0CGG3mYmy66hxJXIAS4xJHrWUEsGlKDHxv02WG/gbJBE5lgLnD4Vth5JNIliIfzEGm1Mvc0xdQEbIxzzvpgU4Rv233AiV9cjEokdTZe+qNfodD7Mv+dLDu1e+t38TdD2Q49GPKw/2ljRwxO6xd/TjGF3Qc/baqBMP3NofMrE7CxFUGYBZ0rNIRyuQIT+SXyHexvPgRmaCSUzCe0q/5Yw6mdnDlIa7ZJSmpfZJQswNvB3wn0wn0N8gtlbmdifkvBJm19RsAIPAYjVDXncqz+JWYzGUteY0jPVIeaCwnjjgeA5Po4MHbMjbMrPv0FSDdNf3lCFdBfhKS0esBCzkT0SCgBp59zy3htszhf8/D1AL2aV5eCQqjYXZDAaZD6GPWp+UshUpZWzuauViUkNxupErf3dEYlFTRUx2pEcWyMShOtNyU2Q3Xd6S6d+FbgeH1A2KK0Tus4gwCfHxp0szkHEfx0SfxrmSpBsUC9AL0voDL0uSbLX09hlObRhWpLd5/Ts1Ul7MU4u8SiZ9z6FNxNdFYZMjx2kEwonXY1Cq8t6bUcvAfVDoPlM294SEQnEBBJJnJe/i6m0sCBse3Ne/mBVoPBaxpribWO+xLpJjP1Vc6aAfQcB77bJ7Kflc3ov/ikYJZFJk1sWYr+zMG/VW8FDZXDJ7TjlnA8EAR/3tiruZC7dApLgsFNfYSMh4cJc/dZD2w9rOh9tzyAwjeDK+WwQV4j/gEyoGAGR8cxgXHnNMSr8+tGRFwDEzMZ/oB7XzAHgc1uCDTjBfMe5v18rhTKsk4iEYRcpr010F3rU4o4Q7JnaXyGoNaomY/QKIQUZXumAK5/LaO+wGCGKJkdH0IyH571PmQrPL/7+XzqmXsNC29WlEpv28U+tZMycTJflmU4NV4e6serRD4u3iGtjQjMiytfJzGnaK8Y7h7aivxpAnd37fsMdtEXDTDM75FRD43u4gDxBf2jCL53DutdKTeDNRrIS7/SE8dMQVWrwgSx6n2NDL2MEeCxuAprchsU9JHR7pqoGurxcK18JwlAM+DxIFvIZonJ6wTDLMSdeOu+z+ZEKQ9g1WX8jeBFO3DnfCcJZdBw62MtSFM2uumZfSGVLGhNqBRUkYzM3sK8lmREPDcBal4WkGa+IY5uBnQ/0tllkLOhfjw6RoFrwUVyNCbmPOEmYfVBe+iOuf32720wGula3xqA7hKvgXMGmPfk0jTkcB8nJ6m9yq+bTHvunvF6DUOHDx0WGwDmZ5HAphmr5nSfQ7+eyNJO1BEDFOjWMjWhEsfwUKiZ0qaJheJePtTSFY11jkghPviDFvX5+KDGGZCpx71rRG2fkOqUcek7RW6Lanmy+iXxyhXVoi3IY/RQsnDJgAu5L7cdHnUUHfJJicVHBJuemyJrn+3W0WBaWABLhzT3UH9PekK0Sz30iyiZdV2jYKb+vxG8jaX5zrqHYDcnN7H80e8kqgMt5/gRGr+zbJdUu4enuLDSUvNJWKXPja0Sjeh0m3ZPm9EgZOsgoHICfjJP56shslV4LFxb+fvO4DSVOyNHfzc4v3L+8NeiJZi7VADO6Ja20srqTXt7XYLrMTZmea5q9wMYpORHxeQGm8zQAOcgT0Vgvw0b+mHn4EgV6j0nUgWM9DylLwiIwHj7vnOwVId9LaS/dCJmNT12D3HNONPA0n4to8IPWmZs+bA09yZOjQZE3geY+WyZeyd+c1LNT1JJdN0ECc8Bt5HdQjwrckzWMXxKvZzRr8wvb2THlpVtSfDBc9PGSzLLDvDXNXjmQEFU6jZxySFmRaleeJ4TXe8p5fmKVbcBDD2REmcMcq7icNxVF/TTBgphmgYBTOPYk+nEoZCWq9kJIxpOcMYuovXdFUJPgkxOurIYkHHKAVdWaSs7lUCrX3I1cRVIlbV/tnbzc4cLl+kzJ39TODndgUB85LxgGSDJAN8Z7/vs+93+Bah82kNQuPEYDkNMSKEFNbXxEB7Kv83kSuVwElavVvXx9ys18pkQJf8U6jR5+FcsX0fYAYi1d1Yxdon1q8TzVQ2vMnngEVpGWr+w5V7s7iVR62+7mfjabmx3oIZMKukD8rFaY+ru5nI85W2pLKqcYp/8CCc6QhgOdbLnf+MqqmmzZ95yiY854eyusBNMUStWqOJQd3cAyrAAOUiJySadmFjUuzwIOrKwfSMVxa4QiISp+99M3gQ36/Soo/WC5EsgQqB8VQMMrxhh5VIaDl8PbKccILbOSHdTsSuYwJOi1+svgTznqKFyRKNIeeNjkbtwBXb3nX64La0DGm/N3cX/UcxJYEMWAOyhRjLEi5MvhN1609FyiiTavjLfAoBnFOM1wLz0EPC0uMqACZpMekPyy37tB5+LZgALRdeY6eSdMxFZL68RVhjn5+UTkEmrBDoJ5IiE0TDBlOFjQEVwiukV9vMdXTX6EXWx5HLJNBRjd3ZWuys8QWS8XacR1MNubOFyAwmMAPs6e6+rD1SkAUvmvDQkSGDFkZzvllC6whyXOJnc6IyqCnZvcDla3qcjwc7EEnS+nxn5OPI5GZBS52YMiBMTMtF5JTEo0hC7VyOzTSIU4bGAo3zIMpFp1r1KmG+00c6whqz/+vO+70CoGm/b7BC/knW1YnPTTqRpOx8iHdrOb9Llt9GQ8HTUfoWKeQUnrAi5dnAYcscMKDe78zxlhP5If9IV5f6UXlAvxd0HrBGpW0lF26xaabN5+RPvhFVaJfpfpWmc4tSzU5MJOcYdxZatAJvB/w7SBoqxlik/nC0J/E95IYf3mdhTBIxLI/iMWbVJPG1ckUtmSuHqhNJaSZmB52NYf0OwZUnyIB2gGtFH9/lS7meMVAI5aDnVl7dCLIrkWudDvVHuxNSio5dpCDfvHN8Grg18wcAEKKhMoMqzAjJcXVZ0LX0mglsrsDcd5BlfIkHhVPIVaj/36etPfh+iPoO2X6Vh5w/q7numMpCLZtsOeff5uxzdWoGv2MzQj9d0jdhil4ASanmsaKykA1Oq9A77fb+pIdJY1CNiLHdrp+Tlrx5zch1yZPHMSsO//fv5alk7hmS94XvF1XRsZW42bVzlsplKyverEbDRI5i+HiXYdHPSRSlB01WgF2yHsb+fBy60XNkcbVwdsA/snLg9mjTAgWjWomMjMsbPiFAVpgxxFm4cGPDx3Hqbkl5E/b7I/2lnPz2vCm6WauR8xxP45sIJrRMVeAkxVWYoZ5jzcXZ21aBtA1eVXQ//8hf0eftxXMcHmzHks5f1Dmlcq7SuNG5/mxxTuzN81I3bHuVHRzA6FoJ9qP7EP+OU053o66kBmcs1BdRP7BomVp7SCZmvhevutegKzj3XwTRu7Ts/T5eHjN/gbzpipM3vz5X4agPDZROBBCphhhajBkRm9n9dx+1fcBBqTJ+6aosyUL3T9ByT2mg8/Dj3fQK6gcHqZLD26vcGVh72LRMwTRNfr4rj4MVNBLY33FlhCj2mCBVqkANyoPHTvHn21w07qrweQocba1HEeWJQE7O48Lq4vcqouWL+42iUZZddAtFa0K9XBGeHEjL/26qoXA7qkwGl+0yQ7ZXPPQqWcBlAlt4Q63VtzeIZUqn90GrLCAzH4syEsujsi3dqyQ4e5r8X4sIg7+nbVo5BAGhsQB1jNBBGIffB3DjNMeWFOsBBQAqSz13f4uHbyqypqNTqo8BoktCz6kTZj3Fvq8+ogPw7bVF3A7nj5nb/T8/I2FX47ZoV+svEZCnj7/Z5VSVjDfQHUfSPwwc8MAgqV3VmOrq3KYdhiHBlyDemyZWRcQJrMqpfMoUmqlY57kilwrIGRtYt+9RteGXJd8UpSaJMBuzsNmhCLoZmmDd4Wal47ODp6Q4jNbtkS8FsGVGqXpUDO2PKthWI2W6bURKIOrwOJvcd2b+5/hC9lVgNKBLUspNqdAG34PrMfPe/AXrI7rB7xN3s1au7JcxE4NRl3uDHODCE2sm8aboxV+MJ/NA4OQmtxKxTT7BA/0dojfiAkr92G73YP0uRxK/uLrky57bREIisvn+hETfHGRMYLJ8n9+MUwNW9/OyrPTXJhdixHE2/sWzvtD3WzYUpkvGbOqp1V4thEj9BU17gwp089A0iY9mgQ6+EBA9U6HcKzrH/7QngFLHc82jEfDZumJBvykEyZRere4DC3UAs12uwQuagaoka2xU/CvKilnCwLxhBGXSy5uHWNcNijonIpfNGqxl3byz5d9//L+9CNy/xuUiBkzR/vaAQrwamgd88xRBjXCeXmQafvxL2dpUEt+QZ9C+SUKCoaccRuBE8IT9PGp4iEsbCThNWxTpgaxp48pZUTqjL0tnjBIeiDGBPh8i9SzyxHAvHoWertPZ0Ar6dEW7AETHXlWPjGOZ7FOcTG/fHYW66MBiT6Nm/FFOZTmviIauVDoCTITyxgbpi9OxYFb6QgRyJyOAmA/BZ1GBVjA/tDrW5nbSpqZtRQjs6nkTqFRpqiURBcZVDkHRnRvxaYWFsp8A8mVenMow+pzMXoFxufEm4/lISTHb8KNIjXfOYabz21s/0OYYKI9IGHfptE6LIVzplYfyXjGE+MXh2MA+xNBrgPxo17Wjx+oGG/2iNgtZVWYTYclJqx5I5kqAOfgoTlR4vfS/mdhPQKJFN75LiSvUd5NXt++poHU2aAc5vZsaHDLdQBSGkQb5V4ekCVdQNwlf/u9NT/hkZawwN6JMlxAN5ZwrmoOhgljI1soH+b72PZsq52OIQhnB/OuTYu+e1gb+l6R1o8x1LC6vU1qmSowS4EIw/rsP6BqaGmGOd4QnhABMwubIObwtZ4yovY2xmKcsV9g3JhlnI3n2OhW0Bj0wzFOQuGcY9RzL+C/XFRZswUU2Mafm3K/KxYXIEp4/IxUZa5lE47q2C//iiBWuT59zt/6KdpZmxvpkGKE/6gn2ANmpXPtK+xlk5BPZvKSOjXroUnsj5GHrrW9jyd0G4h+n5LgeElWvZy5z2lVtc9IGqnZZda79LUK0B527KXnRUBJGjtk07hJZJFKfCG3e4fF+rk1MupzEiV8EPcIuJM57OQjEfVsQUve2sFTovMsUabWiWCwfbPys3KbK575xX5Wfn3vOURoy8U1jE4/lZ/fZzQ6nnrETQZ4tly5l4pr/UqH4A+g1IJqZ0+25LhgY6IHhb1oCrwLXQUckxyXNB1yjF+BLzq03iqMdPqGjy595uGH87AS3H9ob5JQ/E//yhOo3qvI
Variant 5
DifficultyLevel
612
Question
Squares with sides 10 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
What is the volume of the box?
Worked Solution
|
|
Volume |
= base area × height |
|
= (15 × 9) × 10 |
|
= 1350 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Squares with sides 10 cm are cut out from the corners of a rectangular piece of cardboard.
The sides are then folded to make a rectangular box with no lid.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20309_v5.svg 600 indent vpad
What is the volume of the box? |
workedSolution |
| | |
| --------------------- | ------------------------------------------- |
| Volume | \= base area $\times$ height |
| | \= (15 $\times$ 9) $\times$ 10 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers