20348
Question
{{name}} {{activity1}}.
After {{time}}, he has {{activity2}}.
What fraction still needs to be {{verb}}?
Worked Solution
Fraction {{verb}} = {{working1}}
Fraction left = {{working2}} = {{{correctAnswer}}}
U2FsdGVkX1+XhShrRszL4jJpl8NeE556TEkt0eVi7qaD+a3lMEBBnr+bxuOYOB8H+5fp2eiEyKr1BirOUU3V0JulIfN+ZOgnTYAYhlnjzvflwy4N0UZTiJAOGn3EdYLDu/RsGcBFYT/TxLqiFcX0HAM8ESHf95fN221SsdV0ydhb8HBxtn7iIbuYH7Xca4ipk+CtImLZ6DnF1knlWCa0oqOtwgxS6teiOHbDv/8zCvHjSp1QS+zFm4IE289gYHCszovbJqZLu4UVeroL/atCj1ifml4LIvjQzUh/CtaeAOqvi9/STOkK3cuIpYCPp4orTQOxWEacCUxCYbfD40ZR8221LROxK12ZijY1WD63ZZenU9HSFiFgo359ojek7zKZtnzICLkvRwmWZgHbmoR3BUCKbvERwW3RFyZz0fHrRfUgtcUUcUiME0qyfQnrrd6Jn8CRv1YJIKSwz3IP2ImpZO8xx+T+YaMnTM2MSJfpfoHRIfq+jEmpJbs304B3wTpXB9qDYxYZKgMJhVxG+X8UUaD3SzcfWG6dW63aE8J7I0qIrd9kPTb8rYCF6H8IYlrissoxFDOoo+Spfb+vq6LuOHOv4O+Jji9KWbgEkQh1fOAofXDiDyKmV7tsFc4srH6do4C6AydN1deFMl7YUGaxxdERfo0nbauszD8ahO9GeH/5/TD0poP110ZrOG0B6qIHxPUVVzsP2JE5xnSzCcK2AxkgNijDHb05n/r0JbEHT4dHk1wE8WiaJp61/MvBrvWZvVBkYm7Pm690pvC+NSJy1DZP7wdFNuCbLjVpEYYMhSVyxQQkLD8pq8hbC+tcYpvwmnATCWUkOwU+ymkAnm0xehM3htYq9JHk/0yfR+O8tu3Dbw8QPdDDDPQ667y62k0MmwpZZt2UeYj0VnPxn0SgFO5yR1wIBx/jjTizz8582D6MV5vRGX+DuE9GvVHCoGoPguWk98odP18sbBKb3hC/O5oHQeLQHMvlwldB9soWYzAf0zvI2mbLPa4baS+Bw6lESRwEIlCGHZ3XGCaAeEZg/Wy5BEB8GzPf03Pa3Q8VJSSJqbe3CmSJLHF5JWu0DJxW15G0cVhcRJ3mqArYX/DlgnuuLlzbIwSBcCVqlDC42UuMZaFTRPI63t713mV2gNXaWLv7VLvIUc4SYvRcw5SWJkKifif1zJINlbBTdQ7ivJiMB+70eHDLuBg9pdDAC2GPFXINHPQK6puqgu7szCn5yAWClPEeSD/dUadTx8gzmZ8almpA9ykeUkNLTU7j84MkPoTtVyKAXVSaI65jNMTP3KxDDL9GnzgJ8cj5sQxUyV5cv+w62aUI0aAhkUD2Vgw2rNlmpWmTJXWywBSax6nGjL7904lc+slL16idgdXO4/q6UL17urRjrr7kSR3qvZpdiDQl9QcbAcA+BlXLIOjP+swT4PFoa98tvM7++hDnUrLt0eLqGCRG9F+AfJ7pK3WzYrtk3Jtzlt4imey4eHEX8nhdcPdR3ww3sLOt3CzmMpJffgh/t/cGPYOwnoiHIMUs1136XtQozLm2RqREevln6q9VIYgulATgTWAx1X71vWXOYAdIJJuGZTZRpXjhhFLFUENI7synhMoS4wQmMdtf6qrMMRfxjxWrUliWeuQkpnow7emAcpUu3IyRztFztHtHG36SdLUXdI/z5Hcu+QE8HeDIvzrC0buD7z1cfUcbn8SSSR+348C1VOWMXuyO1xomq+JTtIo2kzLo3pMUSmK/WoHrMzx/OvlyZvfPG8Hxuv6kIx1R/5fJXYifAFtUMFZvjNQGRqjcK1gkTd4U23qhH+KtX1Zv0p3Uxv02WqmQBJsv+Xlx10yGKqiaoB01GYZlKk0UZESC2Fp7GvnRzoHLGRwwLm132dVJLgpcmPAsHqpbUIFUGJ6UrCEUPDNGib9IxpmhsDdcFbSpOzql3QcUiHe1ZyJcgyL5Wc3hHSDWf24D1lNc/MHwlWg3nEB/+F6x8ddb4UPwU+hTYDws9xSxm4AtNcV/7gSWiZaKM0UY6F43VMy9J6fm9TFr543Oh4S1LC8SpjB+Abf82ezPr9Rt/GbcwKVgOoWDW2ASvv6EgU200E+USCTIecB6emWGXJ0Ucz/w4BT6TZr7XjkT36ayOSOH1TIEI8Gk6oAKtEdTLewCXJNHwc6R6gw+h5V1Zm66U8QuHXtCEHod2UEio8dQHNDWid+sB2ak4E29cp8wKvTXe8tDwM0gN1rZr9KgYOXztX7PF0Lkx1BWbko0DqcDVmW0qPBcYiUpDMSkj678swW3yetkHi6ltaglcRhigsEuQ+/TjHUpePrnuTGiyAxaBclE5ewwzq9sNBHYldMRJBDUQCrtcAaGqZ4AD9eDgaGnNCq9QA0fJOITBJ6ac5qO0SJgsVEPtRN+EOVR8b4jIX7K5H4q8DShzq7CEVp6qM8jJ6BUl1FWzJsLZ07cC1gNwV3YUz7k0NYojnHOVaW2TY8JZroujAcHNZu0pjwFP2zYFMlvk8QWDJ+Twcql6Om+pcfkjXaI13n+1dfLv8ynzQjh8j9EN/pHYqStjXVfM7LQNEC23QKhf0jydUjEEo5H2G38m2mJgrn1/Iz01eymlUoKqRrw443hpJfp0BhhJfCnxrvEQ0GGbLDybHv46WgmQyvlk3D8aAi5RLOEu777qQgu7ST9uqfnLuynCRQKQrg/0+n1EdHN1KI5jSW1B1VzxRM9lMIZNwx+3GoGPbeQqHsFRkHwQ/ZxkwdxoQuKqscc3mkFABpS9Osid8I1aLtag9PQ6yZ0kjQAIwW3jD+4kWoibYUs2GNi6aOz9mxxag3Sm9D4fa3VoPgXrYl/vKLUnefSaUmYBQlRxZzPZDcWqkpFNax4uCrlGBe0uMghrgRnzq3x2rVe2KSKmAphtdVwO6uEUm9ui7JaImaz7FnEkQlTSSB55b6rnnbW3eNR/ooOQ5hfkhDptHYhhsgBjbHLLGasgMc6EDSDnbfS90e2t94qdN6pDwohkxHQ10T+rTUpNxrlAx1O8n7to6gyLbzF4Xb2/jzddxs3FotGZwhUhDJZlmB7bcRTXE+Z9PxKe9QLBx94j6l1yludioZVoT5BOtV5tmJgaXXGLJMGZNJ8S3oI7PkyJPR+fo0SbecK0kOXau+OPMIottV75tw+l5zWyFoQ1oIpqDQbqYkEaTT7SJxQ8R88g6nX8nEcYdteZf4kvw1YXsiPWehguS0al8o1Odh6GGrBMBTcyJ5spebyeQ0ObsiOJkzy4vHHOnnEGsm7FtpvV9aFmSlt3HvuHPgEGeQn6Ojdatwzr48ma93VmMGm7YS/Oc+yVWsxK1Y6iDIxuI5EQ7twmXhUt0ZIXXa8hEQ2EjTbd8E+6CQtqpTTsn7DBLILAxYZzXp9cuDHhr+YB43M+wVS++0XbTPGnz5YR9vnZQYwHO++U8h37oePcCpgUAlkeqJ2QaHXSF2caW7LraNJ6aY9njrUInqdGEUQxbLy6b11UFZgEYeNhIqjHX+y7zrS6ldQFXokOVsud23aqLRtJYJCqKlj3Rhdg849GCel+dd+lfo/Zaw14sQXS2XYaWZ49RkOlrXP4KLi97ol5+g1U5j4JhyRjBJwhFFv/GgBTfwqSy3HZJTgsz/unlfYNg1JVX9vRIyof3nSrgMIhnstBr6owlG9HzCkdF+zlo8u4LfKa3ATvFIL1dy47BSIKG7dJLOluu2sMh0J7kAW+389r3vwZ0BJJnVt6RkOWL2LL3D5U76xd4MGK7vtJ6R5Dk7ZB5XhbrBOkyBtLlc237w2vMJXXMCfziIOEwvSJe0tKYq4XW0z4jWAQeoSVNaEbZWiz4hGkdr5D94Ac2WnKJsk6q7/Z8tsxf6D34IrX41XPfiO1s8f8Nui2iosGrQT22pJr4ubEgHjqkIScsGk0jbsT8jW561gNFCeOI8bnnBls79gtfem3+jhRQpSsI9mXH+0TVyIZOjOoTNQAaPLxZ83wDXWxC+pMoJqLeTyysyyqZb+GPlHhXygd1iVgadwFPF/Fz050NMPSFe/R+y7KvDh+D3DSTzwFbmcfKP9Vne+dBFiHWV4Bj1/5REVg18OdcHtlPk7I4fREK1aYJDn5JxsGovB2CGIGiMYGZPwXuUqedAJZfxwS2ZBTXxK6hWPuX6SxfVwyvfLHjkfpYcBljPc/viujo+3J+3KFzZeE8+kgIyCcY9EYAh+27HoGs+/wQniscZSF/qrkHvIHCOk5mEitSoG07hXvdwWmlYqApGhIkm87SkD5nHchbZ6UPGbAVfreXDkRPuuOoAGFRSTtHMMwutlJSgLp0W5UT4Jz7nyqQnulHw2/5zzBK4Lq13iutJLARS6EgvOuAZGkRedfJTbvl+QliyoO+kGgZHQsE0dfv9+Xl24POoQCrvC5IVZipDrd6GKjjQRP30LFtht1pKZxFohtL1ObAHzsK1LVSsD/0kBuuVigEjn5zDYkK6NdwppoyfrJu5P5CCuzkaP68CNljvOEsaRs2zMj9POr44AINMbYK/+pLmhYOhFXyx2o0a9NUAtLVxjsi0Y0GMLhgiUdsfX5f1OQGhD5YW3J0fGKVoP0HuMOb1w+logmXmzJdS6n89yY29XZNS8MevKHskugsSc5aJhU8dYxZxO8Q2euvq5/f62myR/s+Uj6PRuIuOWEfmKk4GFuVWeAKmAh4BpcNumJ8iK926I1rwuPrRBoTxFmN3Tx23uwC1qQlDjOntiK1+Dslcjr+o8+8Yk04Fr522ye1/wWMBdXDKAN9xucNcytXo6F/xQlDBA2TDMw+IyIyXRXwQZg0OFHhtpwUzAlPlb6FeYJd39tCIrq0B4RrgIBE0P0I0aU4n4/ku+6FjxE0nVSNK+qkxmPM5Tk/iPFYDBSmY0/5w85IziZfZo2oL3112ZLRpuJ2r10872mIa8gEsJtA8ZnkwyWdkQuOc82o9xjDEbXvasdmyeZwhpIIfWJf1CV4FNZZjGKvhFaG5tcH26oezr7opmIxkP54/NJBEyQ4Hcye+g7u8OK1O63LfAkIDNVayzHmcQPZ7Iwmg+wsH1snrZ7T7yD4545+prNwTccXRxUFhvxQqILODGJV89+nhQ6/e/SZ1ko/D4AXXheRmjImFaoEd0eXwSfUHedUkCbfIdWRDRWkOLypAMmkf+gCKx1nWjdb3WuabGSMfUyT8acTDtx1UdoMH6Eh4TekKKm9Lr114arWhsTdDVKo6IWt7Pg6IpbyZ0v2Jatfc6Lb9QliQttaWl+THSmBU+qAvBv8tSirfGb0aT4wPKy9DaUumU4dITRX7xZmhon8ivzhZh3ObuV1jUQGU1kDwaOZkr168t3jjhUt1Ie/sUR+z6PCTR/WLV5Z/lGdAByLEaRMPsp1KQpFu6ah1BbNVrTZbQmkGWytTodsZSWyCopqTLJL0HDE9tEPnsWLWHrTSA5k4wZGIYM3WOEAScXdPiU99A25JbwdVkcqgCwETk7z1wmXKx5MqwrXaAisaAocmzkyNwC9H4lp1pDR1H8+2nNaHPqQU/zlN/cGDwsJjjVdQARj7Db4wtil0xs9VqAFmiB6XDdLgVDxe5KbPDbBPmcnuW1DhrgcvHUUdaT0htF0LdOsGIIJFTArnUwbSHCKnFJsOC4z0q+urqwPtKM/chkt8vw8y+aVO8pfM3h+Ie6H8Wu3azgoSygBXWqbiqJw0pzt11yFVaCLn0y+DABYoMYqSlsXzHOkDfkfxzpR+e2CoVFLy2dl17hU0I3obC3czatgHHPw5B6Taw66euLbkgFfTLXs6gkwF8jZ/5IpotqJp/DoCafOaTx99EPK+Ip8mVGbk61IS4cgntoayVjRPtT2XP86eKET+flDYqcD3tfDvZzH2WT90oNbW/XTDbaec8RyPI6rs9K+AdwdInWMKLRvM0wAQLOwoRZFk2AG32kTFn3Rj4aTJA+7HJiKiMb4EesWVqTV4+azfGannJ4gnUgEixaMrCHfXeo+PUubgg0ku2SYAFNJCeLV6kdxrCLzgLZ4MIGhACZ+FQdBYHeTEjHap8F2Oor/RNusNdrqPFPADTjAJ49mb3phOJ5jv9/BLhSCOrnuBJ4ELZCk0s6qFDF19hErAaX/sRaBSinhnOw4/s2bWA1xMqHb14mX9K68id+UQNqLOJJpX0SxqtVKl43ciErDIdCc6u4DJ7QjBRCR7z8RHG6As/riz9NDJafNKKfxJnh08nX6+y+j/0SgsPYU6xhrUbuUHLQWX5xiQxtGbYClWF7IWHWYsXyN/ZqXhD4rU/UyoQt8W4bSkoCJpb20JRYxuU2B5HiEZPKFsWTfVcDqk2GYyWQXMVRAiA9j9ix00XUvk23EK1Xgdb6L0ZL846b7SfqSRxTcl5RrucO+Qf92kfeWZ6AMo9ep4Q2jGvh+vvJ6hUza/xoCjcHVMJjW/6/rbu8kAGaiWHKEo8UUPIiKJ+AK/k0ngJMFmCOPF8oVA3Ro1vU7FgPe6tCITKDfkf8j79AQX9IgbCU0QGt1QlCp3oaDzHY3PTvLCVsiT2CRAOuWxdmX9WNntJgm40wK7yl+u7SbqJXjq8zaYfMBC5tgimNZMGPth0tuHEc/EAKnogGyj9U/S34l8aemuymAe4EBUIEJAhPOktka/w0Xb0qgmsQRU+NZ7v4018A1utnp3xoMX1LkSDZ0sV80HZ19Kkx7ibZD4/mv9lOJihTwzwzPHKugKCZL8OXytpToemh998hOx5F2ajKT6hLOJw5rmKGOC0L+qzvBXJ3hZa0sai+1udyQ83+j+UAVY9SWfpBCx+EU3QsBt/LgAwfJxM9nfaGswa0l/l+HI+jXC3lewqNHVPuA4if8neGlz1tQErXfd2W0x7RDPZZtaRYsPhHDMa+naBwsJ1WFALb6G/UzfXvMgCrQlNhxs03rhYNp7KdTU4f1PzFyJhBpUBReY2+4OEAzsQYYmmSUPxgyGQaOinNifcA3yE8wpr9WrNMmmzCb/VhwV1zjCta2BMj+b5OLQ05nrkWVX+ypccNUtd8a+1Wn6yVKYN6R5QK9vwWveTjq5PuOCv7sRT1fUThznUVf/ZfstEuUEWjfsPpxCL+hvqhMOeogF5Dq3EJ+NpsGoaEYhSeuqLneoJNJH/vJ9g4mTd0Z0oq3DG2bAqa7M35kuYblt/1qqsMYKvLTq8/R06ezz4qWRXm/+eYSy92cF0MzvRJAe5HGj3JMWG/cQhZzUZ+pMpksKJvDG2gQQZGVpLUQGah/CVrMPJzZadYJdp+tN1MXvikctNuOQuuGWzobUwTzirV/GThs2wnAevjFmiZtYnj/crvaTQJJtMkq2fWa8nUoHiltW+neWQUq/Lwi67RbMCg5eSXqBpRPPCuYioSl7kq8CXFNnem4yh0okMVj+M0Z+dMSZeYN9p3GZ9e2vVi5DdW+asIztaaCY7SK1Ww/Qx3VSJR3Uy/5Ikol3pudnvb7s2hB+OyuZ9QvtIsHkumwcqd1EFT6ZrHC6YqnFNJKx38cEUBUFth3O6+bvrXHBZ4IDjti81wTeSU9ftej6eWNvM26WEDH4RrssNs20HgsU0EKatUPejVje0/SWM1QWj+zcMB4hsI3UfL5NlfMv3CbOGSuoJSuqzLN1JjXXoqmdhdkvhYZppR7o3sUHHv01Fd0PCLjzxO+RYIQ/Cf5uJmZa8im3TaUhZtEKr9JcmSs0QC1T/4DW+T4qT0LUB2ZO7QTnc9SE+ZtXbtMsYgUch29uLW17KYWy1S+oWlq+BBP87z6sMB8WJoMlwCouEAGddOx7yS7oRaXqyRjfcVMFiXcODbNToVBaOIxWR8qNHishuIDtJRVutf1uuBkYxbHR8QRgfzMy7R/4mLjcolPzzTkfsF7VDER6z8xB4A1baB+Jah09vdIgP167su4QQaHJjJRavwJRSjxXYEcQJvEIixjy68xT/9/+kwb680oZZFkS5LE6uFk4XZ0KjMdpQQquQuAzTGxh95diFqxhR4vsJ6KtrphPgM59oDb6Gco/6hUTfdWGTOje5R43hCsT64MJhOXd3TlHnenv6emIZceih3lK+gegxWgyYeVz0zJQ40GC9JXeta3g0sBE6Rt2nZ6wFA81xtQRknw4Gbtdesm4KfnlaJPZ5h2zUEUSMSgrLj8YpHKweqHih/kuYrySquJabLJh128YhOGmEbZGp5H5ZAUljZgDHBY3DczukUJmAx3Rpm6LHaFVPDvCFTeTNETOArd6++2NTDY8O9x0ZJw8x0QuZYExeIvTTmMH/GjiPT9xIvoGBLuL25uKRwOzOTEnu52DBTYEgdZdQvFIDSkyz608onuFAcaNKc5M26g81qh15IX4VE3mo/9lZ7gO9YplxifePc2EREbrGXllWtDVaXL5J7qgVquJjE0FKZn1YhggTJq3YwcEkfeN9hpRzmXqeCA8dYps7xyNNUGv5KVTS6uSFJbj9FhvS2D2OixV8jQ+vhHtRmKGNh7mTCS77UAC1yUi3zEdzmSErs+AaPlajIqTMDhPegoRBu2yJOfxD8SFgPiJ93WTVqtlvR+5r76vawD1oYzgvMmZtftEGFaW5drE3CmfwkWLaoSxzwaTlDFUSUp9kq8aC268mer0O0DpbH3VhBpFfXW/6d2AkIXVxxYFbYAWaqOKGLtuKYiDJuYVEzY98aOA9X9oFsGsbdpx2egltq6z5eFNtcCKDpVcHuCWaErxXVG3YREyy3zx//nS1OGE8iS5M1H498fyLJBtZRv0FxwB/cUPGWM4JBuEIjcm3ShqLb+OfzyzVWOgwz3u4A07yKY6lJZPWiJuNVltnUt3YNoP2vDKJ4REnKEveN0wvA2r6iqvTqyKa1b4Z3y8pVJBxzFcJ9D7qX3PjvE3fG3BkWxc8l2izQvOvTxPWSdgVo+SYExPdY7ck6LHYYs2tQ+JjUZc5YDuKPBYOR5yuEhm9+dhbrIOrwjiEa4U0NsEJ6BZFdqpzfJoNKK9PV3qNeELEECEuBIOwYOTXBBdv9nNjpP5VCrrT0nqt/dAHO5S1+aW/jIc7VQlKL7R1NnAnU4zWNBOR0I7AnGu0A6XIYES6mTKjfRbX0E+j39LXtoPPhCyfScAj4ls7677od9nRFNITGMQa14t8nL8l0JarZYcKcl4Sl7/aTAIfDUAooTPR1fPUDXt81Qd5p71argvJkMUW9VqMbCrG74OGkN0lt98fsYn2/fXbF9f1hxi0ZKKJJQoCKAF3ZaZ1MaoKmmWuwFljQbClUQiMwkOS124tbF87xqRgJMMipegpwJzWTqTBYRuSkkIgpiM/jaOoelVZSAHTrxabFM0+BHWUkI5i5wbmHsUEUyeCPgs5Rk1e2zZ/MJFR1BmjY+uGJ9+v9JW+cVVZfhx431xC8NwssgusWz/5/L159BvZXGqTB/YnS45fV/285kZzurG2JXYeSc0OpBvG7kTgQM6jEKKkQuJaZkrzgE0vV0yPLNZaobvHULOqKE/2G/pZKcAZ39OgmugEuzmLwYg0ZD49Jnd7YV1HP5RScXCttC7K6iDAwwANhQf4zmzkn26waI8EIqyT8ehubB3zgupfWPDgL8/3/ym3BhHpucGe7vkGNMVEVePrIxX8wXE8z4uX13mzu7pJTndCXotmcZ6HA4Bs/XZsJLzsvwziVk7Vkg0/tGql07etkDpYX/0fbK+3O+KG2Jdx6ZbtSsM1jMXurolnqAh6akbQPdEjIdwoTgT1Co/5+cwucdv7mKwugl4NP1/XbE9OXrNnqLSySOKMddR00/diu+eidHDCV4m6pW4gAB0mVXdk4LzGFfq7BOnTsqvv9Rmocst3RKkCr75NhBUZycwpDGsBf9rY/w7PDkW6TgMLLniLz/5LvudKiFpQw8BnLb6UGMZ/6p0HUGoFz5LtIUqVxj4Bve64nM/oeYg2+gcmU815Q/1Hwd4EKEn6M7Ejxym6J0aFJAwq8Bam+Zb1wrV4YIMnUWyhJ44YG8YlknexHSXDTnmqHV4LhRi3SShUcGXjmiMkbryq7EBEy4Qf2wTvtk2R13XTHkcP+3kVWzyYndKxnc6Bo2UGOVIiUxg5HYg8w/5jCqI0L2PIEUBXUfGEDWHFx2vBY7H44Yl/LM9kCazg6p+ajuSC0WGqMsHMrS139JHNkX4g0TnRKBFCNc56kTkLAVjnDJKruJ0JgREKEEHBTgj+a+CMdwfLs8rojTN8Pg719Jj+W1U1FBRZ8EQkonKs1Tlo38eKF7zE2XsxpdKgJv0ZkbSS85/8XIPJeC5umISiOFg6mCNU3u5P/+yf4S+0EfFfY+Lm+f4XpkPFlkcMCIzEcSThPchGlx6pFKHzTiPLdwY9UQMyEHvsT4/tD5tfo/fW5OewbN4J5ElO2VVRLUI7MMC+L2ZmmrMGijCQ/e3NMD1eBVvsLKhHe5P8xPN47CGXpXsz0AuZt3/Mj/JSHZoADwV6NVh2cw6dBG1aEM7UVK/G/1e+dX+kiszUxW4msuVr85vxT7dgAD8VD/GmjJvyol6bC0Tl4cKPvYuhVW4Xjxlucam9egi3bu+28SOKa8YywFhhBUpvxTL9ukXqcporQQRv4TRNEVXZzSInc3/na5C1NmtraO51F3L1SKGeDwOLPzPdJU4sRQnGRHFt9SGvp16qepvYIKSa/MnEPzKd9y7/6rgn5JudSa1EHzClh12y7D4CA7bQNddUACO1M+ZT7jG/V/xRY8XmIB3JG4zdhRrgGHmQVcPfkkD+nVUsAYjrJWMnG6SbHBTVkOuY+JNP2y8p3bcjC1aHlMr75dq+4r39514NEQAzd6c9uxXbUi5AEIaG1br6saH+u5Ub/1SwDlVTSG1EBrO2LzM0PK51VAUde9JnebJfkQg/BbWlPobIYv7Hc4leoOMnqF94gR6baSOGY/W+wqqj2FApyAb6/Ub4/VJtyS5cNlkD/bMVgPw/DCSZiukTNzJ9zHiYg/BdYZ0nRpqgW/NftWIOExYuguKJN2zshCsol4cCyWr0W/AdhMKeIsjuNmNthjJaJy03aT5f7oskvv0tXhvFVAF/MEZj14Kacgws+pLej8XylQPQR0FSCv7wJwCKn7kamQvLcAiEo0tXBWHaIJQBq5THutYPsUkiZOiSC8Ig8P2JzzHmUyXb7+Wla3jowP3RTFRAa+fkW7iR+ihYudEX76zeI4ijHEGUFIehnI0Y1N3+UZun/voQjVXdbbTeq5mEd0DYrMih1kKj2uEPp4ZBL1oBK4AWS3qZ8H5fXxbEcWpyuY7V/sd0oLVB0OpUUB829PeEnGcCY19fnbQN8O07jRUNvnIj0B3z9zGPSPFKmKqxMLw0YNkNlQOSv/Ui4TlZwBo8/CajDmN6kuARIE4UWY4VSFnpN2PRpDQZCNIUWWOspMu9izmoe1J4oiZw82eiT6O/Jyi1G8aA7CZfMM/LXH9UANL4dDILAt9XThXJgvSnvSH1ji3Xn7IHc//RcpYPtaFG9hQOeUnXGoi/rLA/9tL94Ve1uHTAkZ5+LDGBg5Gjrd8RdKze5tKez6FhDFI1sZG84RnPlmhVzvX07ntfdiIEAEeDpnLX7cqSKrxr7lr6Gk5du1r0jMO6az8jgT/KWlO8K6GsXAkrOFsPMlk3/3jHsTeTZjuBXkbFIcVXyt/7ixfikAsd/h/o22x+LJeOa6MtHealqadXAf8jh4K+naAwGjRVINc6/tGN8b1AmsIs3DoBikdpZZc521olx5S99TE+bwZLUXg3eyBMEe5JfTU13lwH+t//4iwtlTpBXkTwRkZXaRC9D0BOK/q1obzx39Cxi6tcZ0bUTNdzcetcQ+roxgdD1bHMnIISxDj+mIuZ0i7gzuTx1PEBjCM7gqO3j2QRbMPwwM19vrBaW4m5VSwiEuw+nW4KaG94VjAnlaInuFnbtbapc0VJVrLM3UPhiZk3T8EQFmuzpMJ9IpP9FgMwIyG0nWC0G3Oc/xWZkT0g6Mg2sfhyK/2+7DBR8yOi0RV6egtdlifTAUdeqnX3Bf0l8v3dP2mXkzdYPf+lsxtYjXKluRN+sr+Ya5y5Ri9mnO1a8EqAGlypMVBtaXvrAzcrazBUN8v9DAGAyeQrjs9C0xbfhiBdyAnAggdDDqJTpQ1WTha7ObA2hb+y+1ys44+IvRRTuuF5uPumgS4u5kXezg49Ob/tqfZWE1xebazYlR/TQI7oWlAlhbQeTMF2PMpj4/IBNqwsvcBiRH1ZcyiRZ85T4MVaxkSV1kD758UoA5/XRFw8XzcUMyEbAYdtZ07DZmalXHMcIOS4+i3sZVxyeGRhcUy1uD9DTMxT8t7wKDRx3jcALh3yHd+tlXwZgqakz2Cpy2KIM4v7HvZOyMpI1SQIwFOgKbvkGWH78BkA3dp1Lift8tUkgyPEzlcDYF6sDqpQ+Zp2I4pLeMp43jKk69kJVz/HMKoiVVVme4TJPTUKDSaNaBS9x9xXktpzLJwcijjp4xKeXJSNd/kVVzeNOwwpL4PQIiOKFQvHed3hszAfZC8yX3z17gMXoH44kMN1PWWutf2NorM8kf/dEg8fIU8vzV00Sw3SFUixp2KPRvm3jYlLAeg+hOBb9uJwFxUoGQviQUxJPiCl9rSGiI6g84adNWLDrpW7RdidNpKUW2qeHqbkQXS1k8liqtFDfhjor711q2qjOLVU6zDGzDjoVxFC91eYNMO3hyyxxIRdflrpsBG04MG+A6GeMVdGlXdPySHx1M41dEo2v89QpDbwzf9maQQuAGu2Cr2BRSekgkuZDHOU8qWfSqnGXseEEuXR0EOM+IdGKTEzM8ywo8GeptSPftc1zdly97p79gsTPELXf7oIvXkabaHdt1JiMW5lwTdvlts34OwbaM85GgxwTKwNfzWEvIIPX/o191bEt3Pubge+6h1xgzp2foWvaAAc0QGOsdnvOjz9AgE8akNNG4TiTCfp4/Ms1tZ2AC356ev3fxt+ct7eVTeVs2GB2ypOxnM2BQjEAUbhQHRQcHSnc83X03vh7NUwWotEUzNsTw/F6n+B3B6f+aRy5BqjUG9SqSxAPZ0JLiLSnAyh3a2fZGwUQkRrZeft6kOTElvGlJoCUItVJeUwu6aDu05A88XTwqIQAmdg3GhE0Z8yxqU+qlP5fltAQiLR25uW34RHz+6uWLVn2U8clRAYUpm2GmZajT4ITGCLeTWMGKwOl6gpwthsopQ0mmwOpHHspjy+0WlObGGPWETBg8e9ghQTAXIaXvt/DMkeEW6CiumsuJcm7hhGuNzlQn5ZHGM6lh/DNz/c8UHzkpb1MQLXH1aZHNQTNEm1YNx4zbXK2ftOQTla9ResDOkWtoBC8Ky9ya6iKWpIUAEG/zXO0FdJaF0vfcxODAPfJndFNwlrdrURi3KOlCsM5ZDvM7JagvByn4Zbw/TKuQgklhRxlVQVwo35vcqWuHmwCmKbOCrFNkMsUdrKw6FT3KcGs5ZW2+89jbxgvMsSaW9AT467n4vKLK5cI0Fq18NcRRBrxdtOJ276r6v14wPVg2nM2NYgag/3ln2HraRobynwqr5Ei1RSxAjqd2CWKbu4m4tL4mVXf91f3nmJN7snW23pNqRYFFXzyyWzf3WjVQagNDpOUQ97YI53C/oS/TbUB1WALMko6FdRe09E2S7Tr0lwPGQ+QtuQA53w2HFjM6O/weX6tCa2vBbzuB4w3Ebzmpn+WtXUIKTcmMt86T9+Fy5MFkPM9O6jnTktGy5DhuFqf27Yv+GdV+l091nODZvtQD9l7wqZ0OHz66nv8IzINV3wVF496KPnmGRJx/RbKzlatKvqWWBVNyAIYLUgTv8RiQLnbQUONT/SUm+wOZsZ8oTzIIOnkfubdQ9S76q1bB9XHx0bsUny5WELClTLyNlJXksYkBC1w/AEJj5D+o7q7WGm5XxQDLDa/2il96y1+CBZb57Yw8TrdvzigdN26aIdMe0ArFHwm/bIf960/ikH/n+DuxptlIUTFdtctIv26XeIdGFwYovcjG5oG/LD+LzI6pG8uwel2sL1jhmakAWQ4ptclwUTbiiMAtqojJ931XFtZl3pBDjc+1bMlQHHGdhqlc8MTBV8+agLIyddnpNuqaebszSymJwCt0qqIYpTtM3HO3Q3Q1b/j6JoSdD6/PKhlH3HWC0Wajcuc0rIjA5OxQUHi+IkcODQpXPhZ2W7g7TjmLA8Vn92t6Gmw7FSF9qwClnfdQyN3bVlmmwszhMHj78NCiifjscmYoiTPsGBUmKeXox/ZmPBHSMVejLLfx8hq9JqcScOuL7AeotNh5ctEW8phqHWhnAlPW2CdTVUb64gDC3adn1+QdiuHupwhgHEXOC5f/9zVEyRaRjJ20YQq/aLveSIn8bl3/ZAJB+j+e+HCa4iTAB/atyiQw8sWhOaaI90+vsPuqViE7P3/A8zO7gHwjyaHdnxzcJBXl4nhVeSPWxiOPaACWScru25E8KZGreyWbHxQD+zuItqKFxd6H9n11V1ZL0KjNyiJLa8ZP0XGVr4xULmJirYhf0qvjJUgW9byusOyON5sZl70nLjFY5RvWdC/Qf5TBhbQ2V4alCjKeb5JEtZK2ADz/R79H4SpH1U3qNHAIBlGREH5omKQFtjGWJRtrya3gtU4luRmbWgvDlj+aIS0IPYWaMFdQs/MjXCUHi6U0caEe9dqkTFItqg+GbbgCGYY5qEEk28dWRPs/T3z7kZ3D5qsxMCL2J4ArKhYHDjpi/ghXaxj/SpZm0BmRRbYOUEr7e6GCmT6m7XVPpXaDW4acIAsql5GQED3Hz97eK4PZxBiU0GnIeZba7fVn9IJS2FtZZcranuwHi23EXUPk+WW9mMXrv4ENyvhFDLugN0bStXIsdZBWdcgb6ZvjTLIJSLpknX7olEWyNewxgWyTcf6REm5jWqiEe21gzWL5ECUvJVzqGPfinCst2mphmJs2Qby/lZi0Hl2+W/TOMzSfwtvS+VpLVHVxOoM/evO14UGTci/o6SIepd53xiAM+jfUPvvnxXMxqbQV6AuK83R1+NnAi95KW8pClAwRFu9zra/P7Eq5gToRizSZLeOMOWNEndzN5Nm/a20Opunxr9WdJtQCLKScrYKpeUH4swjScb3mKsu4UyuqVn8qlYnGruefBfy/zooitSpi4XDrTK/GwhC7RoaocIvqmqBAUKjtoQQSOkTX6+o3c14KC18gcmj3S8nA6orotUkjeWenUS+T/WtVhsnTWb+aReyVQ8x8abNh5WBC8kAjPRPglUjVphoKYO6rr5RsCTCeIo3qeP8hKaczc0cxSHWvYoA8tRpGOOgCi9c5kLmSi1mkGf7opKw8EU1Y/Jc1Rny2f1BenJc/f/X3xaEz0p4mZwlQuGXWqZ92Kam7WgevK92PvzqeadsJlM/+bQde+Vzv/cJFKmJkmNgMCrkjNlUGHI+fQykc6bOg5PkYVG09VtiEOM4bJfHr/95gmvPFSMMCAb9X8uq9uwqZmZh5SYP+69yVYsAAszUeLoVlbpctQSYf/mYvwk6OfRxoBHfzHMr/vVK5jl3ldE8MmoQMo49FPm+gT7phj0IkCsdpB5nhm7ga4DvRpqLpro8mMNAclAi0B6TvyBu2J2wljDlLyV0C+UejCyxY6EpT08gPms2LuuuKfplNvzEiPv2UvR/zd8K+CxUzpkjYEgt06Jm+NwYv093R4rMRChiJol0L+36c312nJ/Qp0s3n1JEJ39tCObYNnpzveARoeQJgkozJRtF92ngC92kNd3qOitnQ3+D7607eNzP1BDo8mfdjUJPB01J3xZ0dRCBfKXBH7YScBOxb4+rYphFmPJNEVFBx47QjAzRJ8xo0EiHY8BxmW93Na4i0ZYKnvynDjzN2jsIYPnpObprBnBh1K9xPdRKznNX+1HuYKhcsWrQ2befLp9FrJE0gROE22ASDhRVJuQLJj2sVDe/zJ+ENy9Al6dP4ci1kvIcvibJLHVyK8cSt8z+lUoCRYO+63Zu/gM7+q8AD+b37i6S9JWaN1N4zaAyTWGhYgZsEwRG5wBvVmMR02OvNv64urRZu8LCdTr2iKik0H8fL0PTDYeUgtBN6y0ZdCo+o9SawHMipmr4iBSaj/JSX/i0DAdvjH9Pnt3rXZM3aCMeBSYV78tTygVufVf9ryGRToghVsFMbuFbxQleXZwCysJxlplCKZiVHkzo98iqwOZufynZbqx8IR+GGJ1zOzO8k9qGDwrFrMsckopRnOT7iJAwDqFMMZlmRCObzVQpPJpAKBPdmuxjk3olxyMm9cg3yoqtuqs2cU5jboie+i/xWPrBr3PoZqnxQAcOzQaPr8w8vv8f+byTAKmMpUl52xxxUgMweZbeVCS5f7k5tDhWDkvaG8aEe29q1aKYGXBqSHhSwK9RrmVKhsHAuNVLTkYpPalS1Zy/pMJhWNju7IfaQW5m3zdx+hFZy6Rh32t7pv00R40APlmmzSh2P+8Ck3zHZFp2Y0ESEUiLkKdKPSOB+R0I4kiMWctaCBf88F9RoKe5fk+gmcfeXiTaqyxrwjRZiOQTZ3vXFnKXw0PlYqV/pKG7x39I1ksG8EabJeGcBbJxXEYmVm9moIflREKk69O9wP1akgJSQ2s+8RywwKzdmnUAMmE4etpltJwIZ15bCx2VkiJqj/c04Lv404P3sO1iUpXvRf/+capXpWzvLTFIWM59ykUhI5H5WHe2CkFfGqPpV+kIlm51Aaw+TI0KgmBMtLTty2w/wG2MOwXsPgWhXWYmERYHMKtM6V0zxCIoHyILqGh3N3ssAPrBTuRIoRzew6eEZw5Xb1g8xBGk3vlDy2lA3BKN6Ij+xKk7UAvDTBJ4Ta23qfjbu6qMBS4Cdb11+z5jp2zMPBsQVqvhXntsgqVcRi1Q0sGXnS5RYEbMHCo8tCbGYtf5eDgkjGq0rKE47fV0MQ1EPpkIQ4SNJXW3cMoptJt+lqRUaZWe3RtBDXCICxmsEVAvjD4wln6IFs5bAkYf0ONQURl/o0AlmRdNmQvyaU6X9DiTtEOlGiVy7sVL0UWzW+hobYqmPMvXPnr76c8fhl46KQfgxyHsYMzTmCMbglD0oJ6Fv7yeerUrd5KMVl2R7gsb1So
Variant 0
DifficultyLevel
593
Question
Angus was downloading a movie on Netflix.
After 30 seconds, he has downloaded 85% of the file.
What fraction still needs to be downloaded?
Worked Solution
Fraction downloaded = 10085 = 2017
Fraction left = 1−2017 = 203
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
activity1 | was downloading a movie on Netflix |
time | |
activity2 | downloaded 85% of the file |
verb | |
working1 | $\dfrac{85}{100}$ = $\dfrac{17}{20}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX1/3ZbB+ZnjLVVwxk6tKSetPz2lkq88nQBdodpSxUfLIvu2+c+BFKhaZe+HXpwM806BmsSyiGn+PFHKPmD1ycxda7LGhAGejUuOraAH15TcxzDQrHFnL1LnGirdixOn43S6vCB5zBr8oO9dimBoACs6CgMi5+O0aiTthpySIwgQuokES9qhdvsCSvBKpSIt3ylryKwaetE/R7DxJvbfkEt57Cp39G2f+E8j8BD8gHINSB1WU02gx51/Y39ylLLSBeXSwPgJQA/Q9F+SKQnhStFsOewAm4LL6dAKIxDptj+37PY0Cl3OBHDmSWsU6FhFbWUPUOIndJi4I39dsjRMc61TP367GRmAnQNADnYuxFtrWJbL3V/gaj4b6mAyJ9GXvFSk0py9lEChk2EHpa7DhxvU5dhpCe98k9kk2+5iLQD4fXhwogEh7kLpVTAAlnyDaNc11TkiIlWu6BQ7V2cYJXj+QdfPbFrmDrbUd6etp0Dtq0qQUnJ7gUjzYByvGXHAuO8BiMMDI58JRLTNGDYpYfYMrNrHJJ/tOSSyxwRC5KsiBBKi1T294PzWu+Xm/3UgAYEgdMbR3BshASpHAO+2f6aOoTi2HsOMliH8oTOaJ0Fr9cc55TCzR02BSvoTRK+yzo/2BT4j4nKWw85XnQCVaUyY6+ZA3LEHuR0M5DnJs7MwLAotLGTshSZI4RS0iN8DMnLuEMuc18znr3vxbjEo5+e35aEQCAVf/ljISjJM5vXY7vHPDrTvT0dVNQ3fRMh1t6xS7gqkG3yJj7gVXRDoviwMGqtMgHyXPmDO2Cw7uHrmDMQI/DDIEWv9svuiF//JW8sW5kuPu6stMsOoE2Pop9W/+biedWnQQeEN7qXlhU//DFgPKgQXcf68CXwT3AanS4D5xz30iTmAlf3rczHNQLXb9QX4yi6ftIn87r9qmhk8dbOS2ILAWAFj4rB3fJoRkbk5WVbzszAErRdwFk2j6+tWBXlGaRxNGSGMVFh3xK5A+3LC8WhG/WQit06+4aKxctS7lRzuLs3jIYw8beUdtMJOZqO4Ky1dqp20xe6TVb6rytdLksy5XQFf0AZpbX5Z43JhIjLrtRn/VzWg9BKp5WyX+ysK/iKim+tbxCJUJm5rj5tBuGdR5Y+S8cPzAjrRV1Asqthx6CvVhouzPf5Z/RGTDsgaU5EvrPZR+8raX/3PNlFTI8ZkKB8a04YvXyX1JVuBBPTDygMZ5wgUU2RSoGDT/nKV/zeb+srPIEMv3wjTcce2OYr4xsV/f/zU6loCnXxWrw5Exj4xUtS2HtpFbu1t2c1erOfq/5sNUe/iLxbUM5nb5VRydZpR34GfQMx3q1vp74hDrYutI9j6ur1jV+NQx8dksAtFjcacxTZ6u/oiFF5acrEQrV2FMkMvDfwjjzGxHK/sbiYnUN3OEY5VozXw22fdONQapD5W9xLplGI4P7zyhcm/cC8F/SsUwkoReDk8cmm8bTzz0lVZFTV1ZjXnEIUSGMoJ4m42F8CPfRJj14+8vk28sRDqcPcAA5/n3hzs9KOYpVAN80hUsCamIFXQjYZZ4/6nfgn4v9Cz2hoLbDO+FM9kK1K6TTuzQljo2wSjUmd1Bk2GUh11KNMmESHDuxMTURfDHt7se6vjrppMUd14tN9Muqvd9fIGvqYcAiY+USd7XHIpMeg3uM3vefyF/yEApUjxfjfno3nAvq6HwI7qD7yKxBCn9pSOxiu/HLnRKDTc9KdJ/E2GhkEoVWihmtMstKZZ0GJufFfc0UtdpFTxQ5N2nksaeEmR0JNDttp4zXylMs8MmDoXdt10k0cek0usTLjUmK5PyzG98dmCuIZj0sUH+PMC3r+gmwrBNqoRzKcSYbDtf2iZmcgZrhMrR9goqkrq8/Dy/cvBirHYJCYHpDakDQNma8Dig8sUxA4ijjFMuEexTfxMVrOEopQMNQ02PXHTBfCEX7NWEXc6vl7c2s6SnwGAYQrSx3QkkM2EwY0EtxHiKX0+wO15iYpJqAxrWT3K/S7W8BSXIj3O73wzFkCBPVSYsd0sDGr1XZH40HUCvhZccaEckVtvIQGiRo0BkLPajUGbh13bpVnXJT1rdg7yZGxW9058Xq9Wwe0x0zeXL0i41gVdsZ6azEhyp5gEJZ2Ztvs5nA2cT9XQPx9G4xg/ibqS1QliuDdCZS8wuDkuuDskJo3lSCbQ7kadwhdtlMPOCbxZxGuG+4FLsHqwHFzA01rAtAfETjL7H+eDrTJZ4rJlELuQpsEIIE8roHFvm3PtlvUinMRxW0hyIreTDYn1PKSmPpHo/R6DdJvLXfBGSyBmC8KKvviojgNzKqp2jz7ZIVrtHUQSPmdWUZEjhZQf4umreU20U+5Ej0nm59pvzbVktrbniPL0g5Vp+kLOwwUEI7AW8cC5FIxNiwIrjeF8N8vUMQlEiyA0r1X3WQ1HdWCeAqJzIszQVBTxOCyN9r+TJawXX4ZZE49eKgoRNXIdTlNaj/dBdM036z1NMsWN65hEu5LqCFJN1CfFlQKIM96lpa3BWo0FoTCMvL5qwubF1pjyK8k0h1/GZdfXQpFePTClZAH0kmAXHfcKQkxKLCgZiwo+KomnNsYy+KxBpMBHCDfgqw2n0evcd4sYcS37e1J5FJG2OncnwtfqkMdPBNjHyC0bbOcULwuO3ku++q1wNGanQsY597OorjZxUH1i56JJewNVfik7CJSe/s1nys+yMpN9YWyVyLo4n65698CMNzcz8+757RAi6TMY6y4TpJiQ3JSxM3Aj+971OIsU3TapUZ8mKNOxHWGfjYMqZJZ2I++R0zdQrVfiqDuA/fOQnkzKIC9PI70d4D89ab9zmLlU/IO5cThkG7bA4bg2AL/zrcH4gx17XANcClNJ8y6duRcAHPDiJGfkom7HBTm97cQkMWIYkJe96GdyRMkzH0BcQ4T4AP6ltDg6DD7sqHxAcQW2LAcvTV87ieHA+lwI9uQzM7r55ZlRtPlZlH3kBtk85IaVpqHmBHSKEzYlCBZR9viVH3ZGNFFu45eNa1FmZo1AmGDEPKQim1pm5I4Gy7N/aR77TJWmbwdzk/HCBJElO3ZSQBrTzo0jmED7Xw3VJJVSkR17SUe1k5ZbJx5by9q15+4RGznlsMQIQ08+iEwbDNbpk4c7n7zffREQmT1oPbnJij604yHxJRzX4APUEXd7QC06pcMOd4YDae4Sxebi8DNWvCmBgkdd9cf2olOBMP2y+dQ6nA7J8AmxpypPVrT3yX+P8RBWvvWqo4Wr4eCH7TW6bvjIFDyMQ7Xh4tk1zqb2fzBGF40X6QMkY5Zrc5AudF0hakA2dKqQZJ4oKjFOBNpynRMNoF+h1hWXKZMCcSKe7GGF3VneAK9IGmM2wmmzViKF2AvIPjJKsPx2tiZrvXY9n9E1TbsYHoIceUxWF0xJjlfrKUA2Arxqv/9s0016rskmztbeDILxZ9eYf7javuf/usJSzx6jmpsTzq3sihGdqgVEnDzcRqsHai8ShJ0KIXl5vEUyYl7hfoaN1heFYWgglataFgzQ0ws90VnkXMo2SY3yKeN8Ln2QuHsC8F8MyLv4aO21BbmKtbhvvS3MpT8JBrHkRMPVIfOMBn/paYvwgaL/+weCgaQH15su+VuDEwduXdzPhd8VGpizfYenyIzkpW/R7AiAtCWeJ3QNZctuQZegVa/v+od2yDnQ/WXGfSQOH/0YwwXpgf55S/6HyisVqaW8P/lioe7gaBp/nUSPBPZrrJtPCqHa1Az13yLfJwTOtRV2ZORWYarBv+b5y2fbyYPKdnsoccaSryIXO30Hhi9eySYL3ZSkUH4KfrrvPIWrcLw/LbKca0R17u6iD28TK2tpySyVdKjuPtsZhnXHZQYyy/ZyhDMdYmS5w6T9EiBl9qYUdU1RnSvB2c9BzwwaCKkwOSVmckrkxgvk55rTIXEhAQQikHgVTM+tXEpudUvEGq2zBBX2mNXaxwrR/v5InRiox2IKTgMhfqE6wp41PNXSGeFp1drsYuBt36UNI2CGNOv4vZmP/I2oK66rsbtpDXj8gxSGxfl0rwoqjrIpwh5aJ3ZvSRT/GvKqNq9zMBIRwDQvJtscM6cHxUO4xQ5sSLB4j9peLllSvChqJ2bTv1xh4Bpva2+PguQMlLY1XQPe3jrf/s9XKu4x/ev69Oyk3srYpcdvaoQOi9pLWv2bE+m7cOJwivbtRXNdFGNDLQ2TY6cV/5yNK9Ew7HAr8eBaQoVwDx5L8jIsb8y+3zp/y7trpDjGvVthjlUgJl7M7h01ZuWAqV45dQHIAxpYGh8YL5lpVoW0V8A4I3fhNou+hQOJ/SKfscwf61u6iqYdydS20nCoL6YAayDlT9G3oNGFTfOvS2+J15H7e57T6/70qVyzjI1iHGDuE85yWHVLNwa1l3GMxZtzHt2+9NwFzZe/3pzhisTRGxbrf9/qKE833iu5XzcHOQ4+FQNq+LEOEYEBHZPf50+5wm4SIwlNpOUlhOtFJtWQRAnytM8uqAkJ/LkzS/eu7DkeEvc19i7S4M/ycb8xIfE5TnK5u2v7s6veKmoCxUVms3TlH4amLn7JJMVb4L1gcBVYGroSTZOTWxzyft7GjpPKWQ2wc4zPgxH9WJY6Qi7+57ykt98a2WYGbCAJVBH8wqRRtisJVvFPHQVeLBuzJ9o30kDl76V+B3sQl9kBTEjq3qiF4mkV/Iz4NNKW8DXcSAErbkgkOl6oHvbRYK1KwrNiOgK6sgb6A596cTaFFNGIkettVxDVRmTe2XNvUa8fcWzYpALZuhD4yBOQaF8bLA4PwfzorvBGzcjMyMtPE0cK6BehcwRFXU66QpTG+8I+sCAsEbGTEZHjwwwbsejt6GpaDJmCljyuRjnLx3LKNQFKu6AttUzUlyL+FEJzR9mb3iQCSo2Dz8ACeIsBud97UjynFkA987coVi+/uGM0O1L0L7dfkIB/VZ0wauu/l3VrCx2tM0gBPUtwRynPf+LF4cjXUnbxA8v+zH2++qpNIXpzojNO0EHGasu1LNmuy0JzigeofSxffbUzhbz7zhJlXZ37uyKpTvZVVYhCfO5YpVfMbZ4rwt5OhJ/av8Bkc2hyNKCRjF9nQsgXxv6mi2c5mtEev28Q2/PoWeTZ2XT6uOL1+4U2VwjqJVAx47SCVSQ/sPaZPXVJsiE+r8OXTOjsPp6Na4+CswzF+RfNyHK+J0CoruSqc92eZYDTfFL3oTJkuQyY/sWT9o0DDS8CVSKbRrfJ9Kd9q/rEcJNeDgcOuUoSwnU3tT0cB0uFsokRPIc3QflRCKJNSwyOH0UKyXf9uUvhgbDko7gMWe9dN5f8lFIDmtsOGEjGdMQrKcbeYBXK3a5166zghIqOTW1wsSFoREeQMIa6hSdFYyVE7z0YZxHdtm8azVhvJVdqZxPLYjUDME2MqzPkyZsflwYCvnkV7+uvb+bJ784tczMOwdaN6/yVT09gvYm5DCaVBp64lQfGZafzRD8AmCfIq9sOdco2qv6lo1SisOj74KCZsqdrl6DfOMZO/7dri+9pQAh+/IuvrtP9zDRzUCZRV+ik0yF5thmsftMbeBUPZA3uwZrXDKJLmsHY/zA6fN3PeC3GXYlfSSeWGHBssWzVQ8wp8P8OiRKdSMHnskMzOQF+bS+OjDpSIE02beECLRusdwSaTAMUuoRzr/YoPYE7wZn4HL5eoHmxT8zqLzVKTyJ3zz0wm1yH65vpoyMlzaIOK1lqBU7qtEg0sqfhMYRrF14e8tPz2LKMh1RJmMlbwicBrwsPZOMb4SMU2c/fymnHPfczCRs3+GS++ge/IdiSWIFAmpQp7WCw+jPjsRg8032tgSJ9mn0eHgAM26aU/SOWPsHc9tTM3RO7MsOpHB5K1FoFO3auRLtabgjdmr5LsOfUExITZ2Nreeb6Tbj8K4Nbhp25S79CUMkmRkCaoh5lVQJdWsmMCGuD5cpwWn+MAMp/e8qRYer4oj9hr7NWdkDq4b9o3PgG5XBD2K0XOmGpv4FR5eqsvDLrqSwy5ptW1G759AIalLuzsT/URMg1B2rGKxkcI1pV0FxNZ0D2jqZUBkMhiuilDnOQwA62ZWHJ9ed0F0+rZPadfgPIWs8k0pklkpJOzdi2uM2rUABK4MLm/h45AyeehYho6ENpieT1om8FnElcmkehCcq3CPUby0BQlmzn4gBbG5EiRhNqRVY2++sNmCU4AACAFbOw07H47fqgbZ7oC8jMCTSEjWzDI9xBKE+PfA/PqklZSArwMGXQR3pkqVdorQ3bjL7YekF+wX0cQs1gsO6bYwCTspjCCAAvdhI43GWmxtUddhgRSZd8h+3R9FftLD2gPWbmYWHVdSQks9zLB1xPOw4HKZwMm0Egca8j+4DpqhsnZWOTRIKJcZtP+FpZef6Q5ZM3NcD+zcukwxFlUV2UfKpZzU+9YAIM+vNDN2MS8M6vTnkWWNvide8nXbIM0YUivsFznTZtPI3gCoiH5ikxZkrh1ro1qTrtJsN2IeT5K3LSo7dj+6IhVj1pPHPFn4T3+pBIjdRPp3Mep8mneORHBdEDy8SHzM9NmaSA0eyWmwmwtZV1Y8jsoCjGSZxwBP0Crf7+el5EKBmhd4/0KQjqR+Zi7ufLO9tPMfacbye2UNy4+ad1ELBvXa8hLh5F2jB/n2va0ToLQbUAgTzShz3rMbTIs6mzhq5JbaNrslyScfLRJ6kuj1Fa9KmihxFbw+e2OrQJCgTPzRKgmqm/VdMlx36AjZpBQwgEEZRZP7DMQzCaScmlLtgIj/p+d1nD1WLGnOuyrKU68OjY81tWhUaXCj56u2ts23u5G5Db3JzT0DTpmow7odLUU5Bt46KGXrIfqQZflRJMIh7zG1LgnrSwMLD2uTwZvEyNZAJ40vZHmyVsQ5MrBx1BUh+oifS++qnc1BKlzSD79lSwsHplU8BfXQAHmzkG3rrq5TG9644PQ3iESZxEJGTpugrUfxg+I3Ay/VT/625iqVzFDf3loeajG7HCVYXN1TOfCjoq1izVlw/8IdzBjW9yZFMwSUPv94t9MtH9LtEnfcTrcd7zU1JSAdAUKVEMt9ssyUmjndMQM1ywNgeTA3Es8y5Wggt0bpUePi0fcVrMRa4MWRnaxL4P0OQYEyrxVkyb/AR0EmAlTrOCtCMKEKA69Yr6Mi9t+TfnlnwbQ7k+fZFISxD0NkZfNejkeWER3UvgFfUV1pgvpWd1r/m3Jd0y18fXplKlrhqAdYdg1czh+JA4H1lQXQNPRbJIMXzT+QBt27ZAIJifg3AI/oHJmXPYgZCbbCWk+UXN/yX4DTCKq/BZjGrbQ4Ek8oU9VvG8C1P57coyzigSzvx/qDWFis5R5OMZm53tbRbsrzowVifBWhHk3KccJU7yBMxBOyiuQxsygfmlOSpQlAOZ4PBSQaqkcLbRa4kFKdr3SvBs4g/RLJAkirPjsyL7pmr6OH5AY3wjlNacHfVfN1rlv9+yvMpy5+m/Q3y6s1/0oVN5DI2pFxolSJ55hPjRd/zTXlGJzRdwAhlbx6LFG97XJotcZsNjh90kJuO+vcH1f8lK7SKpA5Xx8IQrtNBfpTQ3ia19cKUIUXjVfN3fiR+qfuNZ+jhkF6n3ghbx8Vv4XnguY/8dZdUwwr4OsjjwAUV07HBx6T6JnUNWILXDJUlwC6t4hmSGfQUJwX1trAxvibDkMnoPuG4Fgq9eFlfNgIpZ3hHYllXiX6CpsWzgeyjg6mGA+pc2KuboviwF0lthEozDGEEl8GAwUeh1uqkr8OyFW9EipIChUEKJj6ecVYBsp3eG1cN5/0ju3Lxmhg6i7VHvcydP1nP5j5SDnIVxcI3hFC3TJkDRrNV+XcvHtqJUJyxeIIuReEAynUS0woRjKerTKkSv/F8Gs5qXdtIof5GwgCRD2eIcMUulEiY43KjmyQIclnJI7qgw43yd8KIBvEChH2ojSHyZMpZse92GcbUU/Ic0+RwsjpdSBTxLty9Dcj3QEk9fWVHzkUSa22XY4eKZORwSf+Jdcx2YpNFqpmkDedhKgVS1O0vMVrs10Z7mwCm7GqOD58ssFMB/2u5EP92X6qXt9QGGqr+30mbXNDffiwitVdJ85RBNUkwyb6ojBSHr0HQrXReiqO8Om91oPEPVJ2qhDc2vXS3Tw3EVGAhAuHeIEmAqaLc60xprS6cigs6cG3gAuFrBpwrJIOALsfnwMdk7EnNzrYtQquTr97HMBKHfZZ9CjXFryO3OhEftYckAzjT5/6moOjCu2sYnZ1OiFX7KyRqDTk+CWIqc8Ip6Ery3nMPjgtHD27LVTMXZoxQmKTTWVrz9ze3D23j+oeo0ebMoAyw9rK0ryJeoWxnRK4WrtHjZhtW3P+xCYpNkwcWX4PT7/fkCmkMckW5k5NWLPfxKX/pGFeRwOfYtK6ENl0lZcI2CEt8Crsjux3n18msmsJxU/tK3FxODsXZcdVdBmtmtAxd1JQk3ZCmzF87I/IQ+OSyuOvRFzALoW3NPPXua0Vq35pMoSL8nd0uxXACJRLxkgURGLOmMzqrk2rqpFkmyH0iL1M9EbVKt0sIQiz04x3sa6UIhXk057hNQPnIp9238ju2IahL2LUq2LmqlhaY7I3ThSEcriyEqn2EoQFCz0k69QITnF00cxphitVKStr4AzPjJaJRlAVcC2pTheoHzpFcRiMaA69hWmGKX341BscG7SLcRmTvvXlIjxffrb2NwCOiV72b8/8Po1KrdiIBv4EsfTL8LRD0pxyk9YzbSTQDFJjBo/QrECz3tNCWqFVNeXRht5NfsBktSiz771ttOwyyKcUDSKTXhCZUfXYfzS6WpkOe2zzFB4pZjkruZOOqD8WGVlWinKrLDfK7DSqU/yrfHXvqZbwD4Uav3XBIefhM0e6U2aYnx6Clz3GSJzxP2MeiyDH23kYMto2+0t9w9QJPhQxSZlpH4INo5yrNkNJZT8vgsaahhmwpHlGQFFqXhJioXFI74Mx3lkyhiMOnAfzD/FWMlihy+iiKzR1HhvvL/jemKD8UtPGqUqV9St24eZiiqqZ63WNDHvga70KxLR6zni7Bt4U/rDpLd66JSV/xlJv4I+EyetNbw+wdeBHsXqGqCO0cFR2MUpkgxssQ5t0pQnYWPaC9VwCqT5Alt8wFYrZXn+2Ys0SK3pwzs+GiYZpU+JcSKKrHzxhM1H1UesxMgYM4ZwJqq+3DJI2Dx4260SqXmQ0aSTPOkxIxaYEX6ScoWdckYMwratkMIT95mQCS4nk9sL128RP52fsakVs12xU9/vBqDsqkRl9zkH+W3Rrk4ThKPsRmrqnOcIO+R9GNZuaqv+rdPsF5P5dsIb+WVmW9SewHZAPebBaWRviS+uRQq1/g7wHxbQg0rfPbNYvaQUCF7NHphnBC+Jx+4kOLURumDQi4y1cQTMaIUL0wVdYnM8B5UGm2Vs86leC0/28gBE+YVcCNyk15Y3O4JPWihgE0UoAHJMQRl6KPCUYNsyjElN7jIDWqr31JTt0KHmr1+q8KCOPfatMxVW+0ov2E83F4TFPiPTvpIRiShdm0x8v542Tdq6dPooBth+z2UWYk76MID22ds/svEFII8tbcpoJqN+QHLOHIBSgI8LClRxgdM3cpT2lnMd87fWS9qiKSu6Q3+SHlr+fzyXyyn4Qfz8b1Vsh9ZTZe1tIQ0emYt+2OO2fg4bloFrUR4QjHBiKib++ALt5P08I+/h9J89YdvKUy5OZQuTjw8XmU7tvi6965WK2lYdDjFaavXz6rB0tXD/plHe7dFJR0CPhlJqKkOZ31/qpaNNTwkePmDPlKZ1IvsBdJBWt96Hn8i8zmhjO7NqWlqAnCXeyHGFleJTzg9e0kv/SjBDhjSC6hlnJ8Y2sro62JpoTBob2LzWUNMtWibPUvjpunJ4mzJy9GBFsWpJnvu4eKyzrER/Wiy41bIEnKhmj95L4zQEbFEYUvBdu9PnMNA6DVpUVZr9epKCi/foKQUq/v9qEyOGejd4zdJryWGvzfTxsrJLDDD942A8NSSAiqFZ4AhcSJUAhETsetRyx0OACbJBOPbAfVi3k7/DLchI1LXmeRflOWvCnk2+cDTezCyRd65BStu1teaazdn+juFOp334jaZmaCnummJ+9Gdx3AOPCyTtMCbuXhXAoqUNm4J9+EKgAZ7qv7GYOOvJjsmsqmcQujGnovUsC5XedHjf7ObDaGeyHaRl3Exu6GnquRb/1lKElNDrPasU8wge5rwUCz8iLMkTeqr5L42Cm6uhzDzpf8Z9HacBDzMCsPZFqzeyv87PojTqHT2YFssTrBKRWs9mjBD7NWEJg+PZqc+w3w9cSXEhCN9Hw77a5e6Gt688AVEoykWKYyqW3ZXcCF57rGYbU1+JxhD/Qplb0hc5cNHc52qbkYzKWdqygYDibmv+OAriiBNf+R2CmEKDBFF6YqgniqJyFglGiWsUdQl9y9lSX7ejKB5qMZsaqrpMnKSFH4SIZmRMAzl0r0g/D1W8PPaD1E20deXA9dnw0VdueTuzO5/DpTBK1hrQ4EP1AxQMKKc0CHq5KwgMqNGgbW70lZU7xJ/UuvFOHph+X41rPJR5XT92S3sYLW+kqDtSN7YZH8/F9CXIa5rfL0bmimo0sL8LKFUZyRRpXI3xfSrnM6xGRdbV41EzEJ+tY2ns68LCb/RZFKe3KVa/9aV8xEuOJTjIifhO80PWJnIZhq9lxUEdOG4XYeLu9pbAQTWmkOZjhYvQDuZx2aGZIuKAokjIMuNbbJV+wE7JGNLWLGTIHRbPzZSErQDIUM5dIplV2y7v5GmbgixDhzSr8/AXlJtnH0Hf8kMxAdh+DCHM/VAS0zkU0X8gJasu1xy90KWivLhK1ATX2T9xndAI2j326usssaoHAFpe939sxheJvv2k2H38uiDR42iwHOtpqz2uQJh8RDvK3JyDs0syHVk/l6KfjBE8iOCW7ng20n/4aCUTmntuuIDtysrKOfrxm2tHIs2bF+XqpEZbEME/jE6phh4pXPcszUW9Y82SVm/3eYpsR1swzdAeoxMw5vhm2Qa/RnbYnzULSTpUmznY6Bal34+4ier9hJulSED+aLSvUmkwYUZvxneBos4dt+7m0qhABH1MQaCRCRVi+DcN1Fpme7Nin8nUKLRICE55/zUKcN9QGS7CNlbhVeEz8bkHNAyZBYUTdqPz7GWjcJHjElbXK1GV3rZhx7Pq5roTQ9AiWBieNAtKO76+ghGCWtVorcbw3mYMSQVpabd2WPWZnnlX/g+RqOKvJdDZTjRBoH/Ow66E1AJu+DGK2yoEvPRmIvBFL1Y4/ttns3ezHn28bhDePPDPnyrRB59F5ayxknyI4EKSwPw/3aSieKNxHVB8yJuMLo62jIihnS8f3GGMlrSTN9DmhAbf+5LxmGDTMYnEQaOFN2j1qZQDxrq5HXeqWq/8144oxoLWVbRbr74wa7/tMrmPZnukzjzOD5lVKrby9cRcr9v4zjos+GtTHYQVRP4jtsBBSp1yH5Ehh4t7yypLDTKvjV/Fy8kTKcp7EjY5yi3afY/xHrxRkMHX1/7K+iJ5XC1nW1JUN5FmEY/tnRjpwul/o+zPd3n042OGxcL2hVF6rUA+xP5RYZ2TcAbjYiTqnowHYeoqR5oQGzkjGuVR0eN8DCE2u1bsMHSsbToh2yLFQKbtdwjLvd9qdsibJyKCA6xoQ8X1OzSYbus07LgkPdD5L/WGdbv1nKphMNcXmAsV1Tf+b2MAQyJGtvP/1t7mOK9ChxEOKgwgJElD1PqDKco8QBpQ8SzKtv289LOEUSs3dgms+BHaOQAiaewRmmekCmXlaOMorHyskFoPpm42BzE8ZTanmL4UO3qXIoJv70MbxZ4LBixrfT48U2cPYblpxZbuK0E4u4Op4ToQm0ibzSXn41McfnEzdf9t9VPL2PjkmJW4Inp8cJom0Grbw25k/Hw96IobIuq9ekIC7n5+nn5eBADPWqu3xUMJ/73vwndX8pc9Fmdp2S0zp5dv/prGiyVjA7LMFp5JGT/sWT6CcFCJjAuB8e1SC/cuArEKMPKxOxDsRSRfEQ3DnPO6FldDyILJqSc4FTqmgzc+BO5i0gvRbZ1P5B4TFYlKD8SjXm3ztu/rdh3LxxcE1e3qSPRtkzYh8iHfcQy6kQip5n9RQc5n7UCMnPz+mPcdC3PQt4mAnDLTFu1TDYDVLDzgkRdQuycODB7afkgbTGmWEtc3dqAqsgcIMNuS8QQ3LxRYMFSOgUyQco9ipZmQbo7vkaqvTwOCjlZCz/UpXpq8DGbLd/t2IO9+rrIJSJRnOeP71nABkiLTk2/Xc9lYB8+PmHv4UoC7sErcN0UfVfSDu2tRUgqqrrFX1tMO6bOFoNjt408K3lCENGIV+TjpfIwi1RJXmwpdK5xCd/6+Ilrtt8cOWUww/P6kBsxfn7sj+1GznzWEIuh4PvulvXqYeIaY75Wsf/dcFQpFM5ppddBByaDH3dkha9h2MU07yECCLkGsFr7dunuL+0ellU0n39Wf2D1J5nHnNtzMGgHqOcD3ZM6nvCUyd6ffJVNRJt91kt+yND/mHxSF96RBzpKOJcLF8jzzqsoiZHD2/WLL7UYuZgehAD6ZyZE2dMnTdKLA6SpcyzYD4w44V41tqvNZFqnGgo1358gf/7IJvAucC7XugsYbD+57EDqSbN7bLCw3D5WNGZMxLbO3+LpbnpBuTl/CmTJuEO0k/AXvOIUkddiyfu3USNUR0tXULQWpV0PVHJv6DuLraObjqx3QKP3wAP5fjf22GKAgGOCHc+UQ/ucMIEuykO1anzhhPzfZatutZYIoFhubzLj5UGERBzH4st932uTZoEveuTTA8wHfvmmVdRhuGgQZ75krkzrSdobxVC8L6r9b/TSnTZ9/eTyOrdDeDvkxDqNd22Vq5d2g6kSUznxfwNduMeT5kdmkabvJLWpAGlhx8V7mRNDF3+7LRwRR9Hp2FI7utcMo1AypOggTJnpsbVKQlfKLgSZZhkSVeHfzl3nIOes78qGq2R9mM2eFqJuzYiR5FxwDc8RXFBG1QAUlzn2zYcUheGF1sc3nDktNaeHBbEezsrcqf1Gy3ppeNxvTwrJcTi3EvVA8QTai4eIjFkmAw7x9sPgC4Azai2NnJPbyfMu3kok9QLN2UFSLkkYQShlJ7AtUeDiWzThquv7rXDykoYl+K/CbSR44wok4BfJddtbk1vgkDUTGOWwZNZWh6EdT4IzVDWSFZt05q2JR2UK/MmbasW1vBrxMyqncdCho/O4IuwHe57UWO1fd0izgfkrD7lwC+cGdQ3dQOhyNVIMLaOumGg9BnYC1LtXr8HU2xLrANf03AD3nT52vyTxI/JK/Aft9XnCho4hAy5MV/WOCj5QXDbKVFLfDhuveDlAF1EWQvJgCNsCs7KjeXx42Ekg1hUt6rV3OxA+XXBitiWBSJjGLdDYznvbkOb4DSzIywf8rWHyfxsqnNcI/vAxxxjI52n4ahW7sfLqnSk1SVahjdZxr6r4wod/pKaU1F284NIyiwFXWFgYmBoltjSu9QSHm3valRQkN2NXQmMwVPXu8NVOEFyciq31pTn9POpCiolbyL0p6kqUQpRj4CNMpSQKCgQAY5Io+wQ//vt5uBFgI6D2fLzLOoippD8XSit85L6SmjoDcTorj/r8pwdLmUBV1lWxSS/r/nEfUla3Lqnp4IJUqv3JmM2qTDE5+OYraSL/5QQJJ4PEwtJnd/ZDLJnZzA1qlcNBDTwowqUSCC7OaO4mvEgl/kt0tvAGbsS0Pr4fJpWAykN2DSyxWvzB0Vja0WzGkThwHD4BLQkAb4T4V87uW/3oE68Za+Hxg6TmNU1dAC+FLsYDMZ7+t3VXiuE7fCPzttgBj6sCoyy+jrdlmE1wR7xHvghDe7kOnTQ3UX89yH+P7KDKEgZpLb9zTjXT6TkUeOSLx/X1wr8n1C0VqcGkS1nqxr2r/b4Gi8jyTUHoF1WYrdEHpqK7E6j4pwKSMCO8hjUefFY37xmFVHeHrH+AAzumyZdFX5HDDfGsG6avoPcFEoLz9P90aFk4qGXyFETx1SirBKF8T493gMqVCZEOpQG0illcm1lrJWJnRg8DN2mjrK+oNYI9SQwP/QVdaZygnEgW1uRF0/vTp8Q2vmeI0N6wbRCeDXedu8Kqzh6vkT2/dDcEfAiCOiHdykq9thPHVDrTuBF6r2YVQ5MKlfyhGJQgi1s0V70FKKUWq3sfu3z/KFcyDmyHo6kT/4Ns3CUzR0O4G4+QQFd4yqy528FTYFVfDZFjQBbd9XGZVAaOWrB89ZzoBVe3rTbgIvU3byXpyBnZgo1qBt+zVxl3sAjtC1kisV6LMzK0Lv/HU1wRLEo9dOxnSBJvO4DR7WOWWWfodk2qj5HsgausndeEl1+cEWIdlCEnzY2duh5rqdA26KwoOCQ/e7bErAXWVUUdR+QIT/LDjLrtdNK7k1EtXuWEf28tr8O5AgwiqUOzojoxgHeS/lvc5ey0yuQbCo0bj8pO0wj/x26mN3kILw3sPE5L5ZIfnz0X7+WDj8/+f8tdj51HeoYTKnPsG+QByumm5PuX/oVz+fu5lpLn97oGN8FRPJcajp9XTSJ116/TqfAgex/ciY8iTOZGEkHdtYyPwqZ1lzlC8zxZ2upfu78KTJqnGlav15BJAW06xIMVbym4g/MAk6PqDH5bQI1qsCbchdQG3fVClus5BCLtHmfarzVwQI/RjgAT5pDbuf8Hs4QB3+s6JAgXHeKhDjlOlfquQW9WKemSkpLObEXpftLaBgoPG9/JJosh7MRugG+CaK3lHJo+TXcMkUD/c3SIf9YDDZVVLWutEyeGV+SWk132S5RwVIqYRmU3W0WQAC1xsOJVOMgyGDGR7D3mrIoUmpN41oMEgrWQyptQOq1wx44eqCzMZY6REPAcjJQBircVJ5PB/QnwrwrmS2WX/ZZ8X/IbgV6e9LxC46mKyw/+Q0MMIvOUhPffDbJzVyNRwfcLA4ox4X3njMSO44YaH3vYVkHw5G1Zi6abIeHjFKIMlWc2xRO2RapPItYC9p5nCI0rWUjmvTjEQjsjoGed65Yk6mvMyP6W9mtaXD2nlZcEul4DB3cOm3zO43aZ7L4uPslkEBPYsIxZuhBQXPCL/7EGAWo9BP49HB3Pr9hqjbv4DmxYPDiXBMZ/q5JkyQH+u5pfFDZJeCfneFH3lg2S0JDlJPx6E+IutPvUTZXEe5fO9LMF8QLD6JMOfPw1372Rd3PhJeWmPEm8i1evvx5GcOsNYp7W5gAuODlobDTg1pF1J77n0e2O7tl85mjf1VlIoS7bHTIshehv6RxOhtGfir2SS5KtXTrpbwgmpZ6JzDhG/buBrtCRUiMtS4QHMVrEcet2CGZhN7PdU/THmyvF7cjb8rbutnIDzPd9l8eRgVqfNJzlz8NMd8vlrL274c8tcipnU+JeIFHTueSMntJw8PFRGdoNXsOxzp79wt4bSTqONPOXFGNhIVgWWc0S9KsIs611Txiku4TJBp2di46c3kzNzg9CSzRWUc/QFZfYQooqXGShlWSfldxgG1pIzqtakZLD+hX6t7PtanVORWpXaHt50GfK6pOA9u35XILC08KmT4xp9y2aZdpP/wlyj2tt2D2RzaqnWQaunZ5g4/mVH0kJjYtuDIQ3L2pSm2A90pBtEo/94RhBdWZEKjdccFJtCDwrhLOFRkasUzdfhzHmNSHX8wt1WbkGw+LKPHKl59J9nUSc2SWGXNTaUHdDm2p5KqjIJ8dnTWLy0cmTnuQBHUIQw+gaxpWACiDn8ThTWdMWJjfAHgPKjsYHYc8wIz5FsknrMKoBFQu0dYfINmYb+9FKkNEhsob312/2BbCgYAxeib0vfEZxhwGQ9osg4C5OrIIXSv2Voj6srgG0j+C5LKQ0dnXas+2c1+RglGxXTPVEfavkgiYJEQaQ/9vfPADiw1qwFk0ItK00XAtGU3dJbo3Ojph3fxeZsSEBSo3bTxoqyRGhDDKCsI+Zm/JvDgpGgVS7/IXIos+hT9mG6ROdsj39hyZWLTKKn/KLLVLMh66wQtoDxMfUFERkzCjoP6P1N6lbpFcUrLSOuYR9njuTL6xuXEYbvkyN43z+pDlmzwZT4nyYWr8rjKsmcHGjwb2ZVuw9s7mWPAmu2vgQ1EyKX/ofOmtyjaA5/0YQK8x2mgbW1U55OuhENuhhEq8TZIRgXmqNIBbqt5ykJOMTQ28sNCO3Yts+re4QrRK8dosME9MKlx37PT5iehfcN5Xv5npN+AJ/1AN/SsJpVQF7zaKsT68tjgM1KvxFHMaRDm26U04UcmeXhDIvc15Yovf5GBdMNVRpXU+2MDeA+AS9gCnNKYE7J6QHFrQB7gVRJUjb32q/OFnx9RYdfSXnKuGOPlrUtZXIfqNrdMA43An/tF0TcUSWi8XCQfYM1+8HqxgF6f3CmSjAl8Tqp04HFtuTDvPxWNg5Pde8zg3fpVS2jZDlnR1M6ctZdT3FuXMR5qPysjANlcgb1ZxU0rzoyVfzzrm8+MAIFmuwGcuE4FX/vIlvO3W/E4s7Wvwt/TrXQVeVOnrKwpnFK3RSRd/kcjoPHVgMXC43UsomZ7rBm0qmH76qrqfOnEyEde3TKX+v43y51nkpJ+nrUmlvSrPtBm+yQNarYo7uCH+dtg20GNrZcpsYni+io1WZlu8EdJ2uhoJg6ZKNuHVJUwXEvVsw4Dd8jPVePsImLd3Ley6oCBaYgosEhwHP1rRVoLZTSBOEpnQPin9ycodI1fZN0tYx3J94q51rFDo4HtmXJBrdDBHxuzihKlPeWxaj6mITNhjC4/WgmvXyOdWHyJdK8m8ZOP8NCNIoByT7SgQ1UcrU6F6Eyui1oT2MFjEMu4yQ1TOJZxOsV7D3fQp4Rzf9xOs199HBuxdTNzSr+Sy0bkOE2WmU+vx9SAcxdoYWSb4+nTMflEmgPpnP4BKCCo7iyo8YiEtJL52eFnLPvCg==
Variant 1
DifficultyLevel
593
Question
Sandeep is filling up his new pool with water.
After 4 hours, he has filled up 45% of the pool.
What fraction still needs to be filled?
Worked Solution
Fraction filled = 10045 = 209
Fraction left = 1−209 = 2011
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
activity1 | is filling up his new pool with water |
time | |
activity2 | filled up 45% of the pool |
verb | |
working1 | $\dfrac{45}{100}$ = $\dfrac{9}{20}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX1/HkWTpaBAuVkidDf4eF8FiaYlambEsWvTJidVGpLVVY0Il0+Tcc61kvqPnhcVELSoAFs8pO9jABdIXzXf8DQl3fPdAFzm7+3aLEXqiHJF+Urpyg+gleGwol7Eqf4HsOmoJeg8aHlRqMgHUggYjKTS08Beq0uwBJnMpB0v0xRvYtRSxMv92RtSvfmQHksiLHeENHdZR9JL3rg0JL4q91egK4YChCs9uhbb4o0VwvFYvH4ziLpsSXe0t+gp2YRE8c2hRoPAFngQ8UhpWrQA6z9IJ4B/zdgUMTSl0r4EOSo9iYm+CLm5grXJluNkQi1oOFzOf1/yEZ4PyXMIuEwTxssiakJLuCMGKlOfh4/D8ixemeyJ4eH5Yy4u6neLRnl/1DvQMfmatA7kckWZSfYz36SSLP26QAGKV0Eu4NFlzYLcCVuQqTQAU8aM44zKR2Z5XFuP3Hsrp74h70yuD8qFFlpPF6PAalw65Ar2zP5RMUPEda9RPKziM+UrsFi9hZuVUtQC5ksb5QY/dM7sswqzX1MnxxkQlzOW0oBkQZLATCdpbxAKl2hGKWQlizsS8MK5epjjB3LeGUfyw2ji6oGbZrxVckLFcdOFdc6dsmsBHGgyRu2tfkVM3wY2osxwnjzHrMKZdHmP+Z56vQmbOpGfLBkWK+eeNduw5ImrCYSGovFRfxP3oe+CL8uHO6uwMg/x6V+XPdK6i/Uiejnt5LCTkipL+c2XBH6e+lWMywq/B/TSlMzlpnLk1HceY2b38JvXqaFvXvP+wvselda6DOAETiyMTNNE0A1KFep4Dol2YBIVtxpDkPG7zHphC1b5+jFCI/m7/zjgVTpjimyJ4eLhGZZPEv//s8rFLOwcMKRDoD2HbD4x83uhTUl52p5sxyAWoAv+Qbis7g6smdjGhsA9XnSBIamSgTh5M7Hk1wjo7gIxmB0u9PYysE0fuY1bIwRs9sSg59H0K81/4I+O1IbhRVIvYobEKJ4PY4QEhhCjdqseeZznA89CAV0OLNdDaodecLcX0hyb2VBUe7FArqEmf67QSWdXrLuzdfQKHjG9NJtiDbjj1nbW37hGe9rSvs+wniKMsDYIPwADRoXVvXFMqKVDv6swQCpp/GYHFTu6XZf8v7jVhk/2QrM5+P/5SBWloKGPCA4pfEB9YXAOSRLwCBUWns325KTHOynUTrAAYXJxb+UudTYdyC2OeEgYYTRUZgPX42dcANZ0AvCoes8bPO5ienYc2e3ecY+TyujTHDsBSwScg3ZCGITr5xJDfqF60ymjnCkjJ6mFpdkPYMgRDqePhne50SNfwvtSG7xoq7oWOVmNDQ7xpre6RpUrOdX8/hmrHuIgr1pETyN4vdZXyaQyU2FveBwhWP/01sIRWDONVTXcupiB3agDhoMG+e2A6CS45oIBb4+Xmwc6V4J0Uy09brT76gNs8emqDfqwYvNjycnCPaKGuTyOP1qw21H4ESb/mbZzJkYHEV94y9WpG0SNQI9ZxVYfB+VinUKreIg7a00nYe0miXasdl/8s+4Du7Ev1e1HTOphj5de+09h0FxC1S+KaS+2mPfv74ppL93vl/NKJgZwmLLiHccis0wPW1afRn5p06+u2+ArgdyKbgiCsvNTLhUfrY82oHc1CHuK8O0hkJ2YGNrhpRq3T2guQwiNZjMW7CivM3abXGKf2FgTObetUNIHWnl/d7HBhUg2ODwy6HfkHSOrzT+3Iwj+i9nC1fNJroIOyo+IyG5lmShom73uwrfHCxx2lafj2Gh02OO9yDfjjcKyWuLRmZ+abJvNWbw+/fP0VQ18raWuLgGHm7M4PH/4apAv5HKSiL7oB3QzwzNoSUu2pIIQemiKa8eChLYjCJckPXiYI+DmhJlP39wDDt7K7SkcIPf86ML12QDDspPka9jgIa6t8RQUwlpuk3zGdMpsBmP4i9qXVqmJy9SpdLJlgLTp5oRrmV6L4/mNMKwXDh58zeTaWpG8jaGS5zVP1N4laaWrch9BlmU66DPex7cWPA76+jzfnjc8hnU48TQGNOx90SXmIf23PsxYHAiymiz/aCVzepwvYWpPwXxPRhWmOwv7xv98j8JG9kKpxNx9CBFRYsAofYMN9pZhsKH3udpdUUlplZoRSF4t51mO/GzY+9dQa2Rvxy57D6oF6cgkc5ZaPqrdMEVn0DpIghv1U6qCdPWQgbl4nuhJuTPWAvbK/IxDtx1Z/yqwwo2R/M+/h62mkf9B/T2dsY0JM3pWyIAwzl5YtO8s5UE3wVIBd50/JvPrRyoR6WgsKbACj4cFsNTtuacBaVsUnk05qoqBJRjX6fNwLX8jrG/FgdYvnizmLFI2cqykiVPDjXlTW54LfKkfmbDRU7g8RlehxtfBj5rgWuc/RlaE6Vr0TTZVQtGt432H84qhy7cVQHR814w9HhOpG0La6UDdl4/sjlk7NDf0hG/gheqgD0Vl9zS4tKhcjekUHDnqKUj4hMEE6RdPG77MBb4KuMz946RPnqjorFkdC4hh1fUYzA/jVxzj7blYBTb8Ah+03VlVkPM9sBZJouLUXu4SkPfWGuWRoFL2k+C2opdUOu+4jZO1azbSAEE8127HK77CPu0bxb9V7L2N7YYi2Mbv3GI54WgWQ3Xl9VI69KsqE92CuWwfTexYEQ5CzcikujRAkKQqlknZWfk8+cF3S3BYc3xZcK8rJjtQlSSF4gzHkmGd9tNYIuNfR6zWmfZ037C0yq8pJnLypz5ViHAhaKuHzrVB2ryycshpVBe7YO9YdLh0SxNWv6FoyQdld2UhqZekBH2sknebJEkNHsPUDce3Ls6HNAu0/6kXhzkzpkgCVtzEnibQ3gsGF4Qw0i/7OmvpNcYQLtZtZgj5jjUeAyOxNduCXx8fz03xvfbQVG9GbvMzrHmWO/MFWElrtogscOs2t/7FB+vT1D4dgPgrrxKCmgdO6Kst4H//+9YaT8fMeRf0Gefq8j/08ong440AZNwLj9m0/5OZMU2qgK7PucRk3hY7wFQKuYRrzj7T91ovPZ8UOjtbdtuYo2X+Emx2xzv+fu3gg6HFrNtHY/13Pz1gRwesx5O1qBzJBHGl9t6Bwk4hCSgl1MISOP45bPylQ9sWTQFwJ8Ojx+B8p7GcTp5Ac06vQd0ujqpH4wI9HyhL7LABFWqHHNI7Hf6yc14kVs4cPXsXj1oFOK0fVN4Xp8H9LsLszItjGfY3onyqTjruSYUVJjnga4AUCYoaXUecESYguHkwsZqk/E1c40f5zG2uEeWCLbJgdkU+ZerweEQK+GhG7FqgCeRN32q7V10QPGuq/z6PRJehSVV30PElw2ji0gqWoOQfjTQF1BNSr0r85SEVYnDKEw/1sHpo0yGkKmoDiNI8aQCB0oyhKn0OYoNofwDxPkOSksYFlRq8FY2jrGaP1qNg+69vhqulN7gmk1qa9wC4U+OE7I8iPpeclZDnXHnc1QRB6ImfMfdOMpmXsdMmU6AOpw80WDHMp7FIMV7rUj3gGImBcUYwYtA7J70d0mOnSLuVyyN9oXTud4Ou2Ct96FK7B2trS98wuX3DA5N44obysH+6uIwK7gmpeP91BK5eElG5rOB/kDJJ1nGS+UN4FNBkZFOgoSPeJGlOsZrYtLh1naKLWMK4hn3Dr+GnzzvcN+N9VNFe4MZ9p7ZXwDw5HN1z/PKBP0MzvLe1sZ6J6b5xwf7+h2tRRO5pyw2nHzCh5dRVmr59f9Kv6r8G5Gpa7dU6Nt2BnyRMrCw5vZC0DGVNzslnHzxis3QbW96p3RWSv37geYEDa6fKnnGoMhuhJRAPJEfk30DKmmMLtvnzdHUrpuOxfwmEPa1rtWqtxpmPuBGjlQwUAkW42XNYWLsNKWGyX6uV4KCZP5+JwslW/5t2QUupILfJ31Bdhq3wenWndGgP6rNSZYQ3wDrDQcLjupt1DpA2ACQH/6hXNY8+Ute1m9n98/iKZaczdFvSUndNQzNSlzs3eCH8MAT6Y86BeKeLZ8MmH+q7QqEnI2kxy8THwGzZNnsAXu7KuHkUqT/t655+ZIRoqMOxwmavbgMMDmPDhHnNqPoW2nJqza4qTDlC1B5EBsA5uW84mxgpKNYHp9mT9r1ZpV4gPYdlekYPiC1M+MOmxbe7xxdAThSurhhZ8Hj3a+vmhSjt1s1F3ZaeJtFxxUqJz+dLyO7ifMXqsJfCAylltqSXptRGl3vyY8+SyH7XSf6a284AWbq/rhSU80qo1g8gxTP0ODODN7Nu48z0V9AuFbjYnrpPI1O/LYSTYCatplbKrSQC+rJ/u142kIgHt/duLfAg4IIPwesrnC+gEdqu7aoGeemOiCV1AC3Ue1JbePUuZx8WSOZjmH8b+h8Fgx2rmD7Q6r9pPuV4iyfr1SRHNAs3P8yePBnDUNPxjTIZwEKOz84xShcJB4gCE7Lw0yxumU4QwSLOImeJJjddbREtbppo77P4SV9W337EB4X6QIcV+WjyQMc3brBkE2X+EtHh+Zi3flLFXVQTzy6dP0WVX09WOuaKe9P+I0SKlvvHXuPx6Mo/3/Tw9c30M5frX+tV8KS6SnYv8z8H6sijJumRay7vOqNnLZKSLK+vgybhuYMJCQU+jq9LUAHuwNOyd0l6Kp1wMvFa5CenxaqIc7nqpHngvRBUw7qgdLPu97YQIFO0HG3/DZKti4tYdFrP5HnmRLHXr9lWrjZ5A9xy2X7RpGH+JRk0Gfti0+1Zo3jbgQCjBKakYXFTlox8CM2qwZiuQ3ZklTKZKQiyHrMR3CSRhDIHa+gs0ohzn+03IErT6kjC8jraWgcWVKawlhcCnzSIlXgA1P8lrxkqspvWlSRy5QXQKq8NXt+zjkx7vZyg8dVfjOJnC2UoZsudw0jckczifdmR/IVgtCvxK9pxKfpNR5wylWQR1+18i+IfCqWOY40tPC+J870BikiyFLxFyxJZ5Qy8C9ixkx3NGFgvOxQ/aJD4oT4MbpuMnRzWYx3a/AMrpvBW75FNqEKKJpvvFO1lSRra+HswPTnErTrz0AeOtxX2zTF6H+oF//Lg5APZjjHW/ZGLPsdpozGAlzJg+2+3Hv5AEFhoZjKSMKIwdMpABQGcQp2/Dn2RDgu4BzTRJv2C4YGDPv3kRLg0iqNHVtl1KSPjz0FVQki2lIPEPrK5WxvQAmovWpEMLWlB4HsFeTpmzQO+48sqMPTk1TNpljsIL7G7FlLSNx1UAcOqHs36cPTTk50YPuMUxFAxKkHDK18bAXoXEoZBkjoF77/GuhfnOFM5GHtSDpSszlE8Kba74PobKUVuO9hEAc6Zm3U0XRgvmFXA9IBbzfpy5UrshCgKZsYiwy/hUHD2+PxCCD56pTqrQJtkYvVE/Xkdd1cYpB2NE9VFcnYAIlQf/Art7ZvQ6BB69WVZSkYKN02onNlz0Xxx1KLfmAUIKV+YK/BEuEnR0GKlg64Akhi8wYRlrVCYuVjRIV3Tq+W4FLqHX3hNc1++ie87xv0UjOhXPa2AfGu0JorMSwQsiVhghIo/SGxuFNihdeQQSrrIfUPYwURLEzfyBs4yhkRS53oMP0nCJGhiOiaOPiRhSIHqvntlRzo8n6DJ8x244Ui7Xgqg6x957tShMeo/p4J1YbTyvrGXw6ar9d4kRY+fA/aQpIhOhyGLj1bmVL1AKYWppgAE9FxDocm6DzSQfdgN2rPNHa13fovwIvNX9xKbIoPZM1r6yH8ZcGxvteJU0WBH2T4xnOptT6fR7FGMgYxtSz2JGOXVYWVYQNJFpo//fZlS4NRAadH5TkKeaCVOhWgbw9WLMDVWGBN28usj7YwbOkA0DqDZ+Zfp+noSpqJqb7R6Ej9B8c+De5YnwhovOp28y/hedoCjHKePMTPuJVe15IAlUMjq9X87v3HxXVvP0r5u6KdE7nZsCrDCFS4wrwkT13JCfWkzSNeTlvVXF7vSBTXUZZzA6Bz0a/4nCJTpXIKT6oAatnirIxjpORu9fUly0hpOh3wC8/Q8woKPZm8Q9RBmLe/BZ4Qv6ghP++FiGxQcZSRxBuY2kx1kue4zsHNBhoCZ1SNtjr1PXc8C9RmWAQn3TjswOYJLkWxnT7puyTD+RIXdFlBS/2xFUrofPR209pq9rPwpQCHpM/g6Dpc5p1zx5ARvvVN/RUf1VymDlZh+2gziqX97aEt3h0oaW/ZXiY7+Rx7UKr58pPeHXAvgfHkiOQwKK6t2w7XmGD8iq7efnTLN0a86lGw7knPKh58RUBwwYEuAUlU/638u3+aFzW/8m+ZIoLCHu8sCN9FkdzqS2jTcEjeT+vA403IEYnDTH2vHjcD1BJv8oWeXqjQUGL32CQw5krvI3a2tBLbLxEHNxNe4XFi+kDtVrRWbR7hQo9t5SPp2zKyxhhRuIumLm33QfoXJVPkUMnGJnJc639Xb9R1LdyNzVf4WjCDd6kMNcC6IcvicVBzh/8GpXmnds2rYEUPbe4p6K1Sv79McWE7ZP543nq6jlbGdHgjj5JJGL8ZJyEeggZAhklBvJMrGLD8EZys/c9zVxXeWdxoAd56vG6YLMKUSkBsaSEANnpg4/i7q7RrFn4DlD9QCASOXDrVlfbKDOWFRQ+rLIbtBh/3RD+85LCZY1pg6NeoselD2mPagbKJ9fVZ1LQljQg1iB5hfMStXlYsqtS7bpMKoIqkEkYil6o8CpnBrAIfjR0pgwdwuNoSB5o33VTXMVic2n2b7CRNNrw0aRw8Msqa+/2agWY+nlJnRADk9Jrk0eAknoL4blpeeXSs6ZMMAb+alqcVxM0mDv9n3cYWC89rqnvzYUyikML+jib2Rh8utqDl7V9y386Q6SGLribUK/6zchOpdXUU52OQnavnIb18n44YVTaEDxSUNhemCo+CWKNg55i4+r0Zq4T0pDvXMRmWpw3+csATU0PGpqKS5AiSYvFcVYun1f2ETubH5sgG0As1zliWJ75sNMu3aSVESvxiubRd6EF+JPQ3a48e2SmThdn0ZNnOWX0WHLUrhm5ZOj8VmKEWfQbUan4GGFFEalZBJLCVVVq41M7WlGpw8lp6MW1wHEIog8JKwI0uSQkYM7xaogdjJV+6KZ+Wvu0LOqKZ84VhZ6zVrTExxzU/g/c74xA6/tAuEfsF9APeV04RFIlsb8VD4qRyNq/njfsKwxROIKD5ZV+wQthIGPblutob5qIRKePbpLlyuQds3QghHYfWXFfoHyGjHWACbSXJcjj58lshCNGUdQ4g2io9TK1a2cq64XWYQGraoVZ2z4dssYfhUfaFS7fXwN9Yz9TDqz4tGpSqVDW1lWYQB+dpnnmCQpVgUZLtYBNPVuVSsxlmJGHi09PgSdSkgyNEyygFd42exrM0Q7P4BY8DvDLxcJVmQIwIYu1e0GrafB00C8zi0ZEssW2aHFTr9NoWfvdDuxeqvBXqGBykNQ/1HsXumetgjSVGpTcQdnFXst8RLoxDLMYdrvL/QSlrgMCzN9O9ICnNNcOwjB5LttsAxnWHTvAv7oCFU31E7yXduSmHTQs+bElnIeHjaBx1Y9ICLT5thPDTDD1P5NEycoRemc6L4+QVqeyVNPjLU/5NVvXbC6fbberidKKFUwAMG2+Kd/dEw4ZbzM7k5H3pZ6NnahRLvRLqOFUO+5SfGLRovmHXWrlJxf0CWYkzvQMrnWBhX6xihm2Gg9O/K9EHUV53/tGni9XIsAdy7RH4faeXFYQWdBEdkIftfzz1JAHScZFBxVRDxiPT/1JLWhliWWgBZumf5KQGm4BS72N/D1SL7UsNjnrKyTN6Co8N3SF6lI0PNqymoxnJkbqRM6JhIquiYkeIKIWtgcwrft1Yg3+gmf+MDV8LkXyvMPlWf87ASgIfYJ/YdSq8ANfYt+1J32LEjsuQrOshEV2fEEs5dh0ALWnp9mCwPv6/uP1qszyiJwY8IQgRGffRu6dK98u08HRYRQP5sNAhhOTZ1krZkTnEAD8JtpVR6I+y5dAvPyvdQZja0KD/NQW3OAQuYWmhHZxO4PGp0L4zK2yZlpPNQkAnM7gw6pF6c0zu7ZwTCFKlSEcP0jupCUV6hX7LiyuNl0tRT1aNdYRfuGOm5k5lPGAvbJbtjW2u7sUkEyZmaMA3BDruL7DW7vPhNDiCrlFR1a/AzTw6Y/jk4EIuFFQxpHRAaqE6BIdH0kQG5SRG6x36L9s81wWsdBCGHbw26nSOhco+5qimOlXh5lFbclfz/rdrsnXqNQh0jKNxmNIZW14gfufx05HZKEOdHrhyY5LAO/vjZKnplA8uv7gX0nfuUjV7LPdNcFSTJrOG/riSL3xMNRrmfg2C+OgYGSeBAG0fTM85Ltdh4t+SgqlE8KhCCniM/hVujhbxW9feZMuGzvB92IAmEK0UJ7TlYzVKmghKqflslRkybBkusJ8o/C/ZcIUXeSrXOPYcf0eaOXPfyGY0Y09YWz8A3kbKXXa/d+QhO/D+6H1qYJdupcMG4ey/HgB6JmGPKmBsSABUbxmadWSblZZAMPaalsqCvlTbXOt1ey8Lj2qxnw3oWnXoRkhA0B1hxsqCMPkClfMbnI6oV/RiJodnzz8/LDCvgGl7pZcKe/Xbqm3+qHS9w45xRDYAXlp+SBauBVux5VhchEhFOS38XpdkQ2WQvaneE3H9b/vV/pDx/UE+VXKgqFloBR/daXhYMpCfZ+g6sr2ipbfJt+5kuUajSaxSV/+IPqP1T/pW+GhgtK+thdz3WfOqkjcMTwxFYDcrn85gy+gp2Fuim7Yh1STjtf1ORXdcodwJpQs9BOp5T1v5onDdYe68yMsi4f6L2coUnmatCqht8JAAKLSbLWTQqp4ypg1FSt1gnvmdyY8Ks1nNUgS2r3p7plyH/mqRxXfgNTdx13FORK1Vp3hnwL/J0ZWIZBb57V6a5PSS7dwQZc0fcBnqsW/GjuD1xeBWeP9MfI/fwNWiQCZWi2elzanM/uuZyiDPOqccLrxM4Xfo1P8vEIqg0tdcner01XjDzm2p8Si8rUlA6iDBzknn1+yKmtVp0M5PXBPBD4sGNF/IxAKylXRxV3DJUpu/AYuMyYCGS2Yk1pPa9R5q7nSfCx1dYry3TCeatjQX6UlGew+zbcNrX1aeW8AreNlG98jYWnabXqh2694MUROoZnsROiuaq5YEo0MBAhr0+uQY+YfbW1kcEtGi4wgVSNuTLlb+M7raMG2s7ln94MUAU02/XVql9WjnvCe5RCQdyo7+oeZq0v5ypFUx4DEYtvDmXzovloXy+EcMYvnJQBn+L/+vbi2or5qFJm3p22aShO21iVXxRBMJULccrxNBimOOAPykY2P5j3A9MdxaFIdWYpdIEmVcAE0rR8zX0M8NcvIzYet8nqFTpymy7HcWJtUWXt8+T1XDWtuqtS2c+OuyfqbH9nVRC1MXtFTzG2VfZWlsrBtktT44OwfvbOcKPaRhl7IXzP6oZ7mjVQ++EfqPGDTzIMG7icusWTsXwj1sPM7zo3GvC86wNf93Fnk7vjHRFQh5jPyfHKgnB2eZdrSUXgMOJLZN8AbdDFfQoPXLvxZnlzHxxt5MWehjLDBVe+Nu+mvhF9CQj2rBmSDvV15F95rLENyuyEKp1RhkwZmDbkQdSWCpArk4iZCnohq2ebLfb7kJey9VyjP+XReXbXSQE8LD7uzSNXYRLH+2afe0rptmfsLFnSXR2Cd2a1iBtIvPZseffkRhWhRT7ciLQSNq7TdOrtnuB/byNdqs7JDPWkmWxgZi2yVYmjbqEc6zO7Db70E7YdaSl+e/sw/lOhCdFuM0UV2ait7Q/IhKpYDsjJ84wljiHT5K2lmpLWgPnrH2C8xxLUZipxM9V2hc9/Tc+IcwzF+eTFvwhyvBlgPBjrGQacV8Sl2lFJ7dOALKzAghEWhqZE7eI8DiAh+rd/KeNK5kgY0/Eu+8fNWFt1YEr+Mhgc020WrfjV/v8WSOZfdQsyZibDc4cBFLeca1x51/TDMG/mUhvAtcTQJ8XVfZ5jYWbOhervf2YYjiU00RK9AWU2qz3WrcXmKsoT1DXZc51Dc4sGD/ZHLcFaLV8nwchdAV7nEDcW4CLMLaIe4RRxgQoKuuUA2Mh5d+HLX8cISIfW8Y8ve15WY7+WV2jhuGPa/qRjV+H9H+eYj5KffBpiWxpMCmZULOHMWnHc9hxOOasD63uKfhfXqTKw+Zv5n0yGhIYP5SIjtvasEJsYiRHwBAoy+J1NEY4d/Jzd2Kox+XDj9bFtQt/Y+fRSeueLPYKKELymtIuE/jPI6TOlKhy2weU51tZzttuGUHj0m/SHuVI0Aq3J/fbiM2BI9NRUqidZ3uLs14KtpHj3h9qieBFEqpADk8gfhAvx79C0xKpgPx2dVK7cWS7iRV4CEH1fj6RZvz5DD0D/eDV9w9gVCU1HIWIYIIkzwPdQsHr67P5oUZdG9oaV8cBZpTfvfdu6SxIzrIZI29AA6NZfeJwdrXJyuWKU3Edr7ygpaQ8HwKCh6vOTQO9WwZvhhBZ5DAnEeT4+3aHIkELh3AOe7eFtMInC2lAsTf9O9Did0Q39dTWI4fP/kxfKIDoe3mZuVmrDf1IvCnQ8CPyLJw7Dg6wvjen9TtIN9cyuEN+DIEqzUrbch0hRv1tLVxEfWB8/oO0iAcoTMlwqnFZy97b0mPmGD9AP++FCZSG3juwjkADs1wXmR5jV06zdXvc5PFeKDr8bEKgXDv7vdhI1RbkMFwpB+mAWizsvdwd/Cc7ub+AyzYHTyQ2z6G8qRzi3LozVXsFzlbKpehpMuwHbrOKfUcMgrkiYASeTfrz1i9Mkui1zjpZvTXRhB+rGUtgW5vhH4XXsMtfQ9ciEFi7rgRZRQegRCkgW4OP0DOHso7/I+tmnUDIn73BheiOe9BOPg/YJmHSesr+Upwk7DY+S+Kr2aZKf6bKsGH2QJHYTcAsM4nVp5qcd3POuvL4/J3WZYu+maD9NmCvtwvI1XlTZtV5lNyYPrxdMUkFuQFj6qb8cc2SYzYBqXcKMx7eJct78j4Racw0lvZTRl9mlGheNsOE13dUCzToJS+uDzJpHMuiJIq6aQifZdY5XAl4Pm89yAKu+IyqIR+6elk2a7lHkMrjhNcT6Urgk6HV4buuJtWM3Md3ac8icfuITvKDsK7tz7uWmIi8zh/qszC3e0vZ6x53LVkVCy0IJwkYEPiDJ9Lx9tXDCclqXJmbmYAi/f5Ml3w2IhLjUzf2Ww1FIcX9H8PKBvJcmMr/vNAzmKlJgu3H+9my0d7veYBGDt/+7sCmlUY3yFR1RmG/a6ntobCnEStTa9LwjlGUuM3idaYJRzmny7Dx8/iG5LwZYepANSSEotXZJ2i0U23DxPFGYcwiYHpnexB3H6NQZR0wWzDSP/X/r2Z7wqEub8Wvi7IDAWEfMLerThTN7rbOivTJJwzwouYj3VGymYMfoPq1LWkZWshbg6IJHDt1x/ZZ1jUedz05BYspA0m6/LJhdL0mxABi/1oW6LmQpXKeM4BWU++6ZDVzbaJOrRkfVUfTMK8orWNpb42EjZ+OPgEzfYlagsLtCaa0W+gEutdDfdxrgwj0uwiCLaZpCfvDeY3FOSoDzpjPlLby6ajIMi5Iz7uSgeaNutErhqob8Tx++yYs6YCPt6Ruw2ymc+xSgekNUYrqfAySQQ7mGtNcdSlopIrODudDMMTn9T0LUwpkjsOaIjq8VX7u3ML/M/Fjsz6gbL2kIbJMmnIOD+q1MfpJKb60uhE9wkOj2sBthNisL1+X48pf20aIkGuNW3XKq1xGuETdpup14KrOsKZn82wtFCpAhwjevaWkYMCwYMHKFqEkfz4CMPzXJeu7btqql3d9wm9dTGG6gRCyjiUAOqBCEyWpS8gX5V8PlcSNNvnxyMZ3RGtPpm+aA5ZksYvk7twnwC5jSPzhMCD0ioSuj41Qh6LkzcBfCqGBjH0Ve2//t8+I9xV0k72TaipbsoHwpKmgTAcROUSAzCh/GTVyxbr7vf0OZyuXDGkYBmNsEi7j8g0PBUYIYHYTbpI7acO5+NomymOkczAc3+S4MruwnNSyPlTsdeqWSMrGf8bKFFTFI+vnZgKG2r3W/oQ5fSQBbN6Vj6WytyQ4I3QaityWAhJjreamKSv6MfMwQJQOgvGVYXtllD89CBiqwSKwJz79+351OlGnbNrM0ANLIcw485I95cEv4m4ikIvjpO1uybT04hwaPVztkefa8bgSoLNeZFM/c6XZlszEnugrqMedrHkM2+nMk4o1L6thCKxGNEg4zomj0YEsAYKj8QN6/7As880jGw14g7UsGZixxZ64edZ1z34ly1QRZHpkK8sLTdekadX1AVgDBcBmd/K23b6669i2G9z5ijpEHarN1zZHZvY5eqONFgJjbZE21D/62WY16qR7ESSx8lbwRDszRpJ0bzpUVvJAyE0/J53sVgD0HT/coPbeZKJPTp27klSu93X5XBLL3woZYqjqmCq7tseFWRZ1yqWHHsm09AkNYAfUldmQADfKS8KqXwMrivaaFw785rSZ75jwrIhOEVotrVJp6vvkgw85HjWCJQA0XoUCCMTSftPRUdilX6fXDH0yENV8v2Hy0bbIRhPV1XZUZjP7I38mbVJoZdBZomq1sTrj7niJWTxPpFGHLGJLTcWSO9EEUTj6xyZdJtrikLPwgUz52EJVbt0UW4sHCD0vsvslumlXzQCzT7KH3xvbGQjQOxANX/GVgwqPfXpxXER3VOjfFP8uJK3vwYSgJniMSmybJAVLu2c1UlTjNMgPGqk30oH5nAFDPIfYm8ug9b8Zfq6SLeZwnV36fuDbFcvAv4Y+5Xgp9Ce73PFWpxQmGaQ4JmnKRcqPscrf44gzCySAEAxZkJtRrF7hPKJzDhIpdsGRepuWfXQ+VaMEOqvfYMxZ7frV7X+y1HRoM4ttQ7TMWo6GdjfE3tDRVac47KdhslRCyul6s5MSqSW0ZWB/MdZyQwibpxtqbcaG761qE2UFQQi0oSt9y612EIpiP/EMzv779kxPNKy51m3MJjIP/L3QYnCi2LdZs++Ybx84HdUgQ6KDcgLKMuWFDVuS+btjwJ5I1//fHirT/hnw87ym12zHW7XkOLnnSd8wHvGRqqUNmdifOkUR+I13fyJK7eJcPdn9Umdct2V87gVVOf9h+ScpF/px14UlBE11EbaypgzN/+2iAMs5CYRy0KRrZD3CH1J/c5o11FZIuX2FUN6tmViwvC5YD8L35k92mNDfZPVok9PeqODvYBA0pi3xu+fixMebYkeBFavSbGfm2gJ9SpyghU/sgT5/a6TKQFQi55dEVjHiGWdPLBlPWKvgoWHTn8mfMzA7nqlMtqZHqSsP9jH9J8nRrAXMTwPnfJwzPYepsAbUetKsTHrSmVF87JkD5FFAUyBnogED/n5u4WEnZ42OBNEU4Bknb7GvwYCFkjX4JDlrNMVebhtH19v7TBGJIErH5VmhPb8Fn5ikyIAFd4u1pgteqTbV8OPJ6sd93BabNqmyWUF7BNytQDzef+Qs13dvP0y5ANtg7V0q0kVl2fhAuOtTbeSAVFNHVki4udS1nEYSVdHsO56sdRs6jDPSUdRDG4UWNPKTi9I/KKHfWalHVc8WklEIN3FqbyyI/yeH2Vwk+od/7dmGFArfC6PjEhXZrTyhfQKNqlnZxVRBx66m4G1MN3/QLMtPZmawN+g1F5XgtH3C4/Mubugwj+0FPXox1Ifx3IJnwNT78xhUR0fmlq8jVeKLScIt/x8OZAp5NQ/yjLXLsme/0GXz7Wl382P2AfVLd3ynQ046QB2gbXc26HZY97V72j5cuYJgeqBMqlliKJsqcyPC315EegnidD8ibOrncqDRBKCBUnB1PKbPsPmNphmztkAqDBity9ilo3F8sXW3bFbl17kLlyW1n10mSz9vZtNb3d1tcNXEb5WZPECc3P3WSUgFK+g6G0iedDMqMTJ230/QfrJgJ6t0MiNK8/xqFwnAlWxg8Pjldtc6y7/kjkepgM4uWIWU2S7MabuTdD/c23pO2HPWTIkc1Pt3pIbn6K0gmpri9y2ZnyFkkpf6wML36uA3ZHmN5xPJvM7IVyGrSuhANKnikt4lLCnLsp4ZwyXEl4PQWZ+JvglE53gXXdrq1K6ha14zo9D4fi+GkeKxA3V/HhgPSxI8d8KUJRiNWA2oWKlrLId4ZDA4nwpsQbnMPpwYQRGbQzF8sUiIIy+XQLT9xK4Yp2CrWQQMh+S5GB9B8JVUjWLkW6zvsGN0u+edlwo48o3MiQSJR/F71DK6YVqnd+ndfsQy1zBRIAlVCcV1OYfJEXeQioQ9UV64h1fB80Odu5f/Au7D6AlJNjpXmDkkjjh6hcZwhS4zmJ0tuCTOurfPFzjdVyLOXDVaF+x77la0Qu/AwSQGexBcXsDsActBdTzRWuIspgr59XhxThAibKIFHY3Ktdy5oixC2BWjNHIkXi85fDCyX8bDLFBc1E6KoOhjpnM45ow3dVPMxHykIVW8Rc3VyzepO8+BZfUCPKY7YD2yNIsw9Sd7IRGd0fvH25L9zQ30nCZQhxcCHOVWVAWXRlUTWH2ilLEcq1RgJxKdQqJal6NdCCqTs/pLnABlDiPG06pR04csaWSz02dMSvbBcVBilV0WVURnp0O/uOER2x5EC1SxuzWYmDwSCdRtQ2usUquVQrGZ1T9w4oDa4LgeMisdEKQb57qMLM6Oxkj2Czo+PExAW6IAgX+fYc5a2OOPmgqBFFnc7akb2LZw24YSc1fLrBubkRI4zM+Z4JYM1M234YIvOrTSaDPKuXQCfiIXrDYiZguwHNWKj2knAeVShC8izJvDWY+A0IGT2PYeDHhzpMaeKlAgLxk3FBZXh6z7PBoD8Kl3RFZ1MtlIHyEDglg6XNjyfkP+s0AX6/tUPq75nvbltpiSOsKRiSu3i36a0jTqplHjUhYQrFtnsNr04cnwDCtTL/3Zyrvltze+X40PsD/K94VJ4ZaSa0V22QQEm2gWjMFmdLEXw5DKSTpdHy9v1x1TiiOJPDaK7Ef8VkWTAPOFZXdVmgeSjgk+ld9OTrx9R8fh8VR19dTJhLWkoMxKYOzYzLq8i+jBKC4dOQVP/dOscESHwFd6y011SpUb07MEzg1rXy1v9f5sqfUhTUbSEhnhIGuzvvICdf0RkMKMNdf8gRndBlfQeVImCjD9D8xPjKMfkzAbUMeWYgnH7WXQwcPcg7epEHzzQaYRi962xsu7TdGJ1UYYaOr0J5xs7yt0KBDjHfLkWgnoTXD21M3S4Dsm8n5P2HBecTVEX5uYlXZfxN0PLL6KOj4XX79mJmPtOArRUlsYQdz3EsLfUekDkfTRlSZlN9d25mlGYSD2dcErq2dVYFpDKqrCXWGpbXLaae5TXr2OI4cpwfGHiluygHEPqQMBfioCuZVtYjTinvyjwkAMl5Ewu5K+BoXUxPjA6mRHi9uI/a3Qtekv5ehpLnfQTGgmM+BVjFb7QakcKTzvJ+uAKndO/OVyv8L4WkQYMuyIdxajtfr36swIZVD+ssffIpgObDH+AFYZQIMj4jJoQLq5a30eEm7TCTNLyjCvAppRJqNgwY+aXGg6dFwoGSLBmEqY96QK7SoEY03HXdF7lUo0mnqo48/S/azo4vqS0NRMzXVD8ft6007bSGnLZkllLH9CG1BaJJwtRI9wtd4rUVnxkACi480pLtACf0L8i3pucvZR7a4yCUdnmHVIxc8DN2+3SEr2aWEPfwbMfigViG9BBN0306lKXFhTmeXrYlRNakUDztb8yrccIBYPJjw60MxAVRL6T27cVJ1KyCY6TYqKVaQjuIR3q6NPhyievxBMhdICXkdUeUL2jKwdIgZpp63fGy/Jk0A5W/dvGZgsHv2E++H7eK9v2uxQSIKWt749ygp8gkJH1QK/cYpXQ2ojD/NNPZcGuRsLEFu0adpARXMR/VAfQ36ts+wkDkZEnurlgEq2RPjC6B4K7JYLPAFaFFa5KX/d2WiDNiDoscGUlCRkKz55WOipVS95zyFcHVol/lTNTYjKG2N3mDOqAX8AFL8Z4iWga1rtO8e8u/eTSivDvzK4rfdgtKsoYMKnDl968AmkK7TNMBVQHjBLpKfEzgzd3S1CNw6zlEIJq+DPzNi3UI980oacK7LXVBiwKzps2KRRwDs94ZmTc1whaV0qlmeUvfqe/kJTeSgB6XtfvIO3Ue2vQl6eamRbwX/2IqtVxEA3jxZa4LX/89X3L7ER3g82Ae6sRNfrsd5JyLRpAH932/Gw90Buo7PNVRU6p/6Jcs8QZfpiS1oQqHrNL5c8ZBTugNZsBKPF6iECs9LiSS6tIY6DbJcuJDrj2SwC6j9mKwBItaD+b6PXx1STb4W23fCuk0kaT9tpT8CqdSK6SNR3kPaCbl61fC+GriBRttG63syxjEOS9pawiXMJPN6mgDBD46odWkEs9WRe2g4GT/yt/qev0DEJ5gVf3w33xjwBWJgWRa4JCFQ+s8mU663hX7MSk9yS+oYOXWyp8knzcEa5velVnlKm9es0F/qXNQ7F2GnWcNQM5S8b2KJ12DZlCkfPXFqWkEYeKG799p7fAxUlvBOlRRXGnYROt3J9t9Rz5/kzb6auZH2h18IKE75FGKYhQJzwyyLmnmkloM7qxbdNFkTDp3NanCoOu6dy4ijeLEBhbtdcOZGV1/LvUQe+zj2LMiD+rtXR4+rtAC0B6tXgnRRzUF9P4RsnjPzsDBTfOuREIMbQcJwhteI6QJI5NYinG4RkUpE6YwkMZGsgGRG58j0ca6QOAskhfktBWVmYUZmkRqb6j74BpI9n99EyUkNBq9NPhvDwR0riPMF1eaczdZ/2pHjyln4XUMGD0SHKW5FqGkCqAjWArKsp5IqCzJQcVUiyKfSX1GTx3jTjD3CSAjubk++btSjo4n89WgZh8dkcf11CkHdx32pj0xzQY9Ux1n/P++fCsxm6UKrZopYPxDp/j9YX5Moe+51mwnSkFFOcPAYSJYMCdqgc6
Variant 2
DifficultyLevel
593
Question
Con is packing mangoes into boxes.
After 2 hours, he has packed 35% of the total mangoes.
What fraction still needs to be packed?
Worked Solution
Fraction packed = 10035 = 207
Fraction left = 1−207 = 2013
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
activity1 | is packing mangoes into boxes |
time | |
activity2 | packed 35% of the total mangoes |
verb | |
working1 | $\dfrac{35}{100}$ = $\dfrac{7}{20}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX1+oo+AzCHq+lnb299vQOIKNsS3s/OX8JbmuxldbYWqMoIzWGlBrWStcOWjgGnlwGURZyN4M0DV6AUGS4vjAPN+hdB/fxqCzc5DY7nzQCBZzem5h0JcXUaGCCQe7ITFADgL+OMolZ/yorgapu4ntbcKkmQdg6Xif2cTxxUPNbjBNWyxYy5EjV1aKpPZS1p3cEQrNRQ4yLlr+tTFdFfWLfL5Vd8HFIP3RwICNOAJ2mK14X1V9mcnHp+FLPTroOyu576Sh/MvUOY/O3VblGVMpIleD0immJEfIwidVmLbOjYRZ3YllpjaRTZJYad3FVCGvzHNekdaBzee4iZ1kDZsP8jiXnm6FyjZnyHSruz0b+2SH3jAW/rJlKTODR3oa2GLW0LtfqE4qfN2Zw4sZgYaJ9yStwfLJx+4VpoCeIOd2cC7Lilr/xUyIDhtqB0GIdTTnSdp84jn6EgW8jRva6tEceNPG9hHVMc6PxMCzFMvH25E8EGbJO4XOaue81eQUG5Szz+25wOMDrUUOM81qblJDP5KlhT11UEzeLVLl36oYzH4CJY1gdbPGLLhl4wktJwMvydKvSzZQtx4BlSl3NfCcF5FenlOmDOplmGkiqIywiWAVBdEwari0vti8dbtXIdPmIHHxVZ3qwOwxuT0RS88gohI33JdguDznpRml0UUhOhJB85ooeX1iEWI3hJSQ/w+TImJdeMdpHvo2AMr6+gRr1Bh0xGblbK5CTTCgBc7UduKy+sIN/cirUiAqiU8yFffIDhXQFJGekrIkvVwMoxhDLz4I5O2Nj2W8cZKWHqp6tpIF2SF8gJMtL0g3TbRebROv1ci4ABQFVEHgVV+Dq5KC9HtZAf2pgWKARfU1GZnjI4hgRq2Xn/n8d9EtzpA67IssmQSqX43AVkTDcM7I/qk09WZCIE7inpbgS3evoh0Rc5vPkgsTTHm4lfvEB51STIMAsvaAx0SFPbpCWSNCaNYdh+02q23rsEb4yr2j5GfvUEe8a9PZkltdq8kFLxTd2//mn5tu0yksHLY8BIIZyJOV0gndxjNrcEXg3mwVYaW22zymTfWWNZPTJ1sGVGs6L/XP7qIlknT9OpGd1pWFX0fqdJAtzd8cFIKDNJVJm0is9O3S5lm4LQWU9jM6zuLBszg7EQ3r/dHK/dDyQrP6tTgHMbv+dn0hOZpQX1+H1z0VUUDjYDD5Ww08HClgshF36lJFbBNagZIr7bFuzRfb+9qBeHwEL1XwncbqyYHPaUgLT5+cjzMYptQ5pea26mIQyQykZLhcpGX0S6GEv1BB6wYuGo0g1mhNYoICXk8wWZfD45xivSr8+/KKWx6BU8ktfWP6W8gF2dJMY1ckLw22QVHov3SN8qgO/1fZWHl+T3XUqc20+C2L9NGIzWbZmatPa1jvX2P23OC6fYskErLSgKR8VXek08+mhAXyH33fi7QDP+o3cD6CRlgfNb2dyK6VlECAfzOaCBuEGQAW9bxmcDWfryFzVmzLMFPTrhOSIxmXLBRBcVtyHsK1YA0LjdEgWMWyNPGyW7nC0GrsCp1x+0sKwSgCQcq6rJ+VUhNNoI9wU3Bn789Rwp20z1GWyjs+67S0scwweS09FFoQk65QNNa/rP1eZRLWNZt9jyw5BPdjnsRPlCZm6W10NuLLLFG8vcB8Lebyp5kcXVO9i0vjmhgAmo0QzzHyH+/ihA4wLw+PTTHDuuVSp0KCK/LJDIoOLJ/JMrctmaJRVLO7pRM4Ta1hiu2pMAnOoaZgw0JuV/TqzVvCB/dayagL3cZ3XwQPOUDcOrw0tm3lxim0eZgOYQAmxEmY7UabWJPxPTWOzvWT1l+qeqUuHTLzIFDfU1Rhwsl+oXLeVfbZQVagqMwO7kPR908HwBBgNgGdQZA/JOdyV5rhYOypCQuaXJvb4Uw16q2Ze4pM9y+Y8WCpnDhhnvVF2ITmsD/gjBSS/qG2Z22VXhX6pqLwgpJx7n+/lZkK3+i/UUrYP8L63Y0YKpG4Ur3n/Z4nZMbMwKzfL9hQOwYVFtv6HJRGIBkKdS5wxreL1zgJuKRSWP1/thMKJt+cRmfi+IiE2Gd1Cl77TD/k9Z0SeV3hnoA8rIyvlGqFycTR63sCZOO7hZJnoOxNCCOvqMk9n6xzGMnnJhc7/FDBRwkm729YD3S2G9PPvum17CtZY9eGiCUJ4k4vT/JUEmjNxXtxC6oyHSQd8VYSNg0gsehUEj0tTqzZwplcm1SKQ1oRzDGI+4JvAYLAA8ZwNK+Hw5Z8Ze5f3KLB4hea3BxFzReN4Tf6CRcSu0gxDxfZxCFPY4mz3dz9KYSaP31s+wuQdQ5MYYEsXmp86G55lBEmWbtPCMP8P+eCoozxzJOxZ88UOqcoiVCpMLU/oPPfKb3pTDkaaSVAvxDq3FEYfQdS7KKljOgn2ZRWbZjgye5eNbLX0j/u67G5u8uKVISR7TvPxpiH3wQVa2pq/oQy8sm2dzEYZGcleIleM77XFtnfADQlb6ejYRYFsM6jldrA4TkWVSq5xhBvBMybcKiGy4mMZTo1Tb9yGnNwlQaymFYunYwB64J4HEoUzUOS8abRmai9cr1dilizLi402PuYEp1/be6niVX2/Db3U5QyqKmUtBaTNxtZCaPegtIfwC02is9v7oebrEKIp4AP1+kAE/grchrgCT4qPnFSoBiBu5FAqOUnIJFoLSPJinFLjp9naZ53bwaNgP0wVlw1hYRSn2+2einf79RIcm9J3JHPmXPPb/C3szDA9b537UiyHz1goi1DdLGiT2I8izrBt21XT1J1Ov+gchLJ43RwoAwW9Te8zXz10RFKWHJOma8/3BXt7aM2izI8mDhLQguswS4uHHn26O8ezSSP2/ustTNOXNFK+QW5sa7shHYWR8KCNbXwB1PhUvi2XIYqHSbyhIGezTJPfLDDuN073lMcowGVVpC4HlmMNqtIFW3IgsCbS1uGIcSBb6Xbj9eKaSt0KPis02itBs4vUlde4O8cGz7TvE6c0nUTOrjtcVWy3a3BQ3mvyB6P7DYp0KYwfp91IMUrux2DNi6r62pB+U+DHLoBW+LaLJ0fmpghZlKfSIgwH5XHRP5vj8oPK3I8ypyn8YbUe8TJN2GKVfkVIc0nRGhuirjpCAFK7Fr16PfDp70CIfyLk4goeiST7vusiFA2ewmiScOnLJLQZVsCdpL4wrEvXjxZ0CvyjwtmGOxOKjmL3+upeFCus/RSKJcJkoXXv7JlXmEnvmwsDTZjhw+Yuve4D2sWfI2bEsCyIwCuRHR5Ud790pZRFwRQPrnEhQ/dFEWLTSnIphjJbGNT0E3qj8Mqw1MpzQ9WQg+HjzPcccfpGFjTeJEJTdUqe8jqi1vJ6t8RU8Qo6fyCEVXS0yVK3SgFOVA0ay8Mt+Uhp0KoKSCG/QyO+rXie9/zeVJ+YoaBBZvyCjrvxjBcTH7diMIlg+B/jaKlbxYlioaGXWDuQdbhPXqYCDqzry+UyeQTqh5lehJ7vdnYbujCGzOsJdzzwboTtaEXAL4GaRb6uTnnYsjpxv/BgkPYtiMLdixCO4BICdi764jYE41xMTRPygQcv7lVt8cpZqSlzYEDujf42labH9A7mih/0nJ5mKcfacqUO+sT+npUcfIZvSv8cgMq1t07r1WgSVX/BVePDBvHY3xmlMVNWVKL+VxLHyrOpp24ARnojWm4pR0bx6RpIDP/VZJzQyX0VVST/nNhU2qFMlw70eF2Qtr97k4Sy4Mw0fSiI0CN/yRUlO8IQbKMpfwSHX8kWfWl8z2ya42QoVjeRuuauvN5g45JsqIYjWA/gz9anV5wLQeOmawIczi/dNI2yFTXLdigrt1qSFpzPYea8V1Of0VX1klI889nnuQWUE0u8P8lbEoTwAjfmJRgakl7gFvuB3MHOaZg6fl26N0YbGxxqDS5/6wvshMQahexPd7LLpcIwdeFEiGlJdX6vqYGVqjvQHYOuteec0cqfIcAlYh3REQlESM/qvIkfAWAW/1RMyEK19AYOq4olUVg8HlgoNEVyGvSjVdYzO3XUIDzffQ55HUzJZN/bz4ktMUYy0VYj79vjnmzOAaPk6U9i3MEbc/BAR0oVNnqw+lkqYODkTYbRYHC8BSRWeMqxdutbItLxL7hd34xBfr+oLpwFCZaay2hRfa8msNP7S5tNuO/EyjVyjeA7F9ohyRruKNcmrK6fEXlbrPt1thf9OPkcthGwHDnCM8dmivc+VBpawXDIzFgkTZ8FemkB6NSxAp8lViDnJfTH8/hyEmXlFgQT7w8xQEDUNk7wZD8TdWIAUYmXEXKV9bCyu9vFyzlPTHso36afotZMEn0QCKyqjm3pZYeu1KrLstmVy7nFsq7IsPekWsqyID3/6rXr676X/0KHvqGbdAaY95ETkEvwNyJ8ZGYyDqJZkl1cdpDLAyuMaX7WJyDyihUHhi4YMhEbUx0PyDEuPzrIKqHpkkJ8V9UM3FEJn1Zs2l1Fz6njKNLp4TxJ9kIZGrZ79Op6iyJwIfYSGGn4SzcNFcjMaRGndjJ2uUESQ3FVmU6S5pbSmqrMMQBMWtgMH26cmVR71AcWipPghIIAzsgbuZWBWmU2T3dTt8zKSbboct4pOkkepHHSeDSH7Kbz5+xpAoOvYlLYmjOWLH3WSjF/nK7C205TIaoptZESp+9CG/JrmidT7jdWW6i7V5yUx2RZ8nTRqAeZ3j8yJT2YqttMMZiL8CYhXc78icr9+cLxq+kJSCz0wb5g/NW+23+lVvL6zIr6KCkO6XYCXzV6gMVInep04kBZQXEvgJ+Pm8i2FEhLnA2Szgpj83MQIvBhuRihQmZRd6yhb99G81rkA6pIMvCQqhDMoLxqugaefx6LsMU5PBC9n3FJrsuo7GxNbfsCkUg602huFWkb8I6PimBJu3dFck+ozIVnYGzuPmSQevDdNdtgz0y/lrbou/abfNEdgUyb0P74f6N3wIixtWro+2ERaZItiW68NAozP1LaQ8prMhL2YFKyXMJlrAa/Q9QWCwUO8Hpy2L96l03dJBetf2B/EZqeQZnCIqtBBV95bLUqzPy7iO11khg8szvhuRNOXcWWInNb65jAZHZXm+iImCtczxXTtr7G3BbDJCD6XZASRDbTUGrwsQgVOB1+HteapuLcrl9UgEkaI5H2SsUjCFpsh0QHltAszH/mJ98Kn7C42rx3H3UDL17oeQCzM83vLqU3XUOV48lwL4YEwGOx99rNnoJvODhtsi/gRI7/pmGob77O5sTeFaB86Ce6qqDv+ZRXM63Md40uZS6tfNaShP5h/8bVjU5vIKk6pFDSj009Dun1BZNSHUO+IZpRHs1Z6ZiOR0/0VF3R/8MiJY5oVkYBaka9lYwP20grDAJ6yWrsUIRQy0/VoVEvIWygpPcfIk72tfJhkMKj4V04ezDz4vK60nhLPW+ho5aNjw45Z5AO0m5xCs1zChN+otN5hXgyZZI55TFc+/KJhK3jNEojWX3dHBfS0XNNLYQ6ehAQohnSkMthv76e5mkcZuKFzclCfpvOFM3m3U3cF6nzijF1mtGSWfJFqiODCTSkuS8FX3MwKAtGpZ/w7Sw6Ve4HHDRNmQ0SJt+Z1Lr/0I8sM1/GRloqm8dzh6u59Qz8SMYjbOmYkrSRnynBH7eofq6Gn3x6MJBcsQ3WMwgxc1Ga4APE7LWnBaYEJQQieY3zlZtld42ABbNVqncIUkDm7gX2b82ksRe2Kpjk6INj9UGvYJy6Z91xK3ZMVkYbWmU9sJbX7+3oZy1Q4ZGRAOkuZ4tGz6vdH4LZAiNoquur93HkVHapzkVtb6qbprvhh9hPoInQfJJn0ipAbki6aIYCmRCHVdHiOWS0s83bFmiywwIBvPoVmOFvPTLNbLvSgR8vWkUat9l9IGlV3fkerU5SIaVr9crRd91T9X7xIW0CffuNUnEzCDI7G6bMVMsdP5alFz/fYfLNWzJVuoYdcloSyOGxBZESdWswEOb8DN2CFcCCO/ZQ1fTB203zIrE4bdsf/yIlcM+suKSv3naTBmvdvO24fJCNoHlf1I9lRyaPGllg6mz6LqkGZaQ39DlHDjgoQq2vq8oDmmtu4rSglWS+zWZ/giEkLzphIOBkxEkkTznHZKphZ/chKFQGrRg99BGM0mxjdh9tQB2pq1yZQq4z3Tp2MBp/Y4xP3pDezo0y8sjgOPnqKc7ndUDE/azyp9hyW9aOGbkyd7BuZs+4ieXhO0ogwVSw4UyBAU5VErnPNqBgSlQdsI7+hlyxrjY2n6D3yeiRvuzVE96bB9QBrs0zS2fAP99O4FjmvcmRzMVNqXeAFMgKTeOSbjfDK64vxoNjqdAN1FkSejZBS78LvMjWJgEcFsRKTpuonMXDORlsBE7zJozlD8ZN6xsj3UOwf0QbDS/GbORdvVVuufePSW22/NYgryh91IDICuPs5gz2ZCWiHiM52NxGOz8w8/DatgrALiZHFiL6cg7bxXniSvyjL9qZw5uLp9Zh8NLe0iUFIoPMXyUd0iygWVG0yx4XvJEUVE59STcQGRdfXMb+O/ZdIkh/9k08pyJONdKpPYtlsreU25YFh0wgJjMZ5F4fZ+e1sAOYcJ/TYcY6xh6evW3Wv0hr3pandAeAWLbc0xxOMUa/zCPEFer13fhhRw6McLXmqJNs3ausxgMlkvk7J6mLsW/M22LQ4OJgF/bM4YSxpPRIy93d0QfjxvT5TYJ05fvgRf+lTLxrDeBOHn0g7zFDmvyFUfkysclX6cxb4QtDYQVWRGtOiOJbQaCgqmjnjMN3OpimJxaCrMSEDqFZYB8mQ8VQcvoxfcj18jL2HBAjbtSdmyky/p9WSbE4vPu9ARpWgijailha2HjPAhn4UAVpLar544Q6QfX9FoMugUUs8FF/1ELAkhSr5c2qsWOz2Va9QnkBLofzzWUVp0nWmOqUQ2G3GBlXghlCgr+/4xIC90fdkGqP/MYINBYyrn0dnXi4bfx9amoWlxfkJwBz2K5P8LLg/39AEdPQi8TTgRbmEGW38vq7GuxKdWamHsIyBhPXRxC+fY/60j8NvPPLPgKrdnLvF6FK8OHihm2ApW6BPy/P74xx0grqRNH7pQfuGuDqKADtlVpaFvVriH8L1WbVBKLBwlxO/LIyvtlYR7SvinYX6cdU2UjNON05DBCrjbgayFUJKl7XxEQSSW7sq43N7duvD+bYF2QeLj9mQMRIKwC/FPvZUmMOvSm/SsSSy+PxZtX0k1jbMwf10WxJUR+BYl1C8v4WoFlxEn+xtn8MO1FZ91F5z8plci04jcxgRIPWiitJYTJK7V4bZPOpOimGOelgWnMl4plPzk1ZI2aWB6sxcZ4mmee71bZAPLomGDtuMi+CfZcN/Cv2lGCzVoex5ZoPNNBmKxmd/ROWAD9BsRaEI/2gnc+ywYlFFWxvJWDv4Dbd65NQpGmh95hY9LW0dR+f/VUBNOuWm4eMlLczB5N1vBUAnSLFrLTmrcoY6A6OGOCPJ8mN8KzgEt+yAA6pToFrMn6Ooe6BtYSYIXLxBCbanKmXpPeMhIv2TOUO0GAip3A3OVitJQqXI7NSeXbFEtxpm+d3/QSVNOfXtyGs0pEFl+5pwNcjP5f6rQ5mgPDijkQ8zEvWNVr4YgUYo2knLXL3SioRwfUIE+NCVrKVkk0EJ6QVEvtvmFsFhMq54ymJ5e4nbCBSnzZJ3brlatwmqcJ72mc7I5iwc2KgIWRRg3/9CPv/Y0wKNMk3n3i8dVRZvfevCTJ5T/VngCagpp9j1Syx/c7JRmcOAf8u4jo95qisoDzbVuE5cu1WQOYFSznv0m7nKveCKCDYsmUW4U3bcHGRmSG6wdwjWB5bAuujDYVKZ21ZxLPW8HkPE6lBA5V6OH62i99nRlmAy5wxvTdL6ZmdryqK0pXrTFDFmqL9klAoo6AR9p7utvNhZ2BnWaG/PqnzOh3Xe8V54VUglXpsmEzgi9DzTDg1prRJFy3/YhFeTJuPNLMA/kpQ2ZT9BFu5GvJD2eXXXx6rLGMyJenMLvJUIkKbRkmdt447YuMp8kN7MbM/h9aVHqqtRn3CnIj3nlyNv2VHVzuCO2OJpFxrqA5l0y29cnCqYGU4XbkspcfhlXI6lJXT4C5O2BFTs+6CBDWhTO7j0//3eiJst4qLidyRLy4/sZueuVsLzk0kXFEvG4hAMbJ0Dn0uYmsm18TIRp8+jM7KbUA/cpENfzqcNVvB+2XXTCrXdp5irIu4Upo5b9SYvhUyKM+2EJimu9CtvCrV4YZUfeaKj8vyfYcrn2UP4cZngdAboV8nUWyLKk+JJt2o7jvG/cJF5AXCzwI23O+HqXYjM5pnufzhfk1GxVierew60XjUgsG4C7Yp7MSKMMAh3+Tab8a/8aV+8mzspqc+Szid9+JKwrFqpIEk39KwZW9VWB6AzuDUrepy/DZc7/GB4pDxbFA31mGZOUinZeAAzHVZx7TE2lm3H4EmcFnsUkPQrVZFqcdqho1S2Evu302S2IF7/12gV8PG4K7WDPNtqNr5PYEgrA2Usgjm8duk8l7Mm8F7w9IGkR7jR+x1C1RD9jLocDOZ/ItXWMpjXm8pkr8bOAK4Xfccz0ZZPVaIhCYfkdAffPsbVSAQihY8ZrewMF7KtktDMoe8RV1F3IY/q3wkNrarUPGjW+Sb09q7Vw+F1CRS846yYSNgvEHevrF0XUIUVSxZv55SgW1i/ShnEui4FVv/lP/8Yc2DKTNMWwClOTj/36cZVClqL5fs7O+DlqRHouTk43F34MUzFHz0g7TMuZDQW5dDTSVmGNSomKE+3iOaWUhceSJefyNV9hhoG1mrKtD0DYqfR3bjEB+bJUO6wmG7fBp8/EXNgAI1dLy8wVIvvD2Zkf6LnbsbL+uRXO6tao7tpr6YQsyHIZzNIx4kcfPrW6d+YniJH7XVHJF7x/e0lcrqJyxJyptCk2NM6CVq6MIYzIEvIQIGY43svjC10GNLPIkTN35Qn9HQTClTuLbgsLxcjZOYMPI2IsDWZKSKHikwVSUfoIlNSBGaeeSwHm4qUFv/O+FV0KP1hsnT2qlKhJnQ6K3TgzfmCNDwqPcITl5xMsdqPmRHDop3cX+WS1ZiQVrLo3itgLDuyDNH3NWXUaH5SOSBvwhgqb4vAnDpx0LIHloWKh7Dr0GAOun4jvCpsjNyuWtrogBnP7zf3kgEkuF2nsaFCHTmh71fMfnws+E0NZuFgtczXDj57SLdyhgiZ+206BlOqzTnWEDuRDi03QAng/vgQXdNFd+CDtByc1aDy+wC3wJY8Q6IC2owErXMXcG+rJM7ecpqzKcNWWjGmxM7twLbjv0ANwLUUR1NcvS3WvL5r0lB/qu/F02jkB3CxqXgWSAcLKI9UwX1STOTbJF4R1P4qr3Zamyk1pWcqB8ZhLMKk9kq4bg2KccEnaGKndTC0AgbIF/s3t5+SZawcdvL3MO9DrKoPCmGTQwjaOjXjPXAhV1Mu4bPFVy5YWBDK6LkSBQilscyD8ANNpNBbk7ryFxY92hcD0/T0+qzynP/3+siOTGhumlQs5pKyR2BV+NvVNdhPJxtVouAI9tsLYPNkle4edbyHVY1UHG8gC89O41cG4mmNGwZIUbl1Is+IpayyUhpW9L06m3535/8krbd1TS0q44tdT2bOKfpM16vBq0HAPquqv1lDdj7ivATKjBgdJgyA8LbW1EMcOEKddcoo4EOMfiwnXnLKKzXihUCTqshGIjZJ49BgPRavl76tzgHvljtA+zxk5TrbDUAje1NZj5n6keXfRhAD65+GIJOz+JAyVRwuchSrehaDa2s6dO04zVZ/ohAnNQfOZUqfpYdDHZGJDSPv8P/bFeCU7yW2rESsgNt4g+TNWx4y9dmVrh1IfCyGn3Fg6++hdPixeBe0SYbaRhli1Y5fh1d92ZLqP781O3ZNaCfsOSh4pQ6oFuac0gbTkvokaraFt1JRj4Q+WkkYQxhBhIHmL/qBKEL5eOkp5lHmeY37K/P0r3UI3b+81DAlT1BqhCbx3qoF2QeeN+mpB5fdbDsb+OxL5H3iJcxDjnYTA6RSH4S1HJdyAiuOXvHvOVfxgtH5bFXtSLZEl2p5K6F+BWB3ukrxZfd8Sw3GI8A3DyRQOVTc8G4KxjgXE1+Nix0N8yqamqVznWENol3UO72mzpKYMzOrUwxMVsRFtjf8xphEGmqwxnRC8M2vkipGa8eycsz2UZSlsptp31W3Gl5/sVPHhoXTg+xv2AJm68fbIWgKlQG12hg9/WxDQFCmGsqGAxR3mYVRAsaN6Fh47OqdhbVz2PzWDiR3HwEQfrswFQgP/htGrG17onifZTte99vxEqup1wY53sYEVh8ALUc62nSSNx+w0JYo7VVbSLP1OWEc5xFuuWKamPPzyMxoiN1QVq8jJsNiWpqgNhwtTQ2MgIVMCOmsfK/36NEQGvZMPD1UUCT34vV275EHnOQmEuImVK9vQBbvo8dQZ49eYPfFASohK6f0pKfYEbuRsvsoTgTPk7Rel0lf6HuxauMuCaa7Y/2MPCi70C4yhqqMEWb6fBJMoBXKtWyb/Yjo6u0Jw0hNiDYVxxkDeyEN4+ztBoLoUdOabacm/4I614Hdn600rA1vVJl0t0AnYZ3U1/0GWi2vTO1oVpeQiDyDPqpmn7FkqpBJ0Joh3eTBvoa9v40oX2QlSDeU9mY/OB/RKqi/kMynD80Wi4mludj7a4TOk0PiP9wQeXk6I2wOYstSLs83CX1gpzidIXK+sZcwRFLE9+GizkQWH5qTOU9BZRBgimiU9WMQMWKoOk1AAAm09CUZovmYZr8bbmjW8ZBx+gEGZKlLAU4BiuQnoOdn2sB4mX+ogk0Oha7PJYU0SAeizCJzWhOMtyjzlzqtVcPvbNLr6vR8kvlEojT8PgBCLLsHJujEZ3g1hvbyf6HHS90bRo3kZVX5DDiO5FTTIhGXGOoCI6/tfwwVtyR+vrLWgh/ECLwnfE4+QKo9NmePN6ZKu+ZafXRe4C5wIroYITkMtAK/BAhD+dZM+e2sl6IQ8cyyyb7erIfXztWkNty9rzC0lLBHMdBcb5oJo2iipEg1WATxC7eysJoyyYeUR7Bkc9fgdwKqj3DIeQvek2Or0YTvLZe/nB/BJmTZ+wuebsMviInC/bL9PXpt46MRrRb7/8pJtIMFaCt/+SNlPqOqhCvpO9c5P5QDOCzPq3PpsGjk7sKaLcPRVDcZUNj/pWTth5ZPkanpouuYu+NSs78TT9z2PFTUIu8Dxc8ymwM7MgUXdUHKPCKyoNpC2ClFbS93ECDpRHfJAlboRzQArO2CsZhbpkSQcExtEuvoCi79xbtAU2yD+ShhR/Hrc8DkXVxTocZduBqMvjAXB4NSdAkJ8b2FtDNQ6X3hMojGGCWT/BzBmHCbUVLZ+XnBmnGwaB23pUf2gtOqvjJdPrDTISGnHqiRWSaL8DZD2F9QnPpM23ETuE+SZtSzv1uOEVbPl0nGVoVG5gQbJzGdsaal8A6SbikDXGuia51vQT1Efv3cwWIWU0LBS1ngiBANvQY9+z7KDXvxDmw8/aE7PRYzE/ea8Z7M3sKutMP/0K7eJ/fCFtNBqVnSu9vIrAVnn2n5FMtjrO9XCExluy1SWRuUIFlv3SaNlVBHt7ADgfKHYmlmjrIOkg0YEoYxveb5j14wygfOhFPY5DMAkuoqPxvLjDlm0mnAI/Co1GTGR079nBL0N4dZt7KcTvVOzyZD9bLNuzOlS6Wg9+2Auy1IyXdf3avSOhGwqcit5QZWxXI6a4Thg0TQytXC6oyP/LneFLWG77JcItmR5g8ZfXcalMYrTdADdO4XP2C/PSoYTtAHf2EhlH9n9LckFFegRNCRy3mC85PIEr4zumnc0S0AiaDPKREwKELepMgPZVRdJQofYircxoaQEAyDDkwS5Yh/sIw+LCwU1WytFM6mWQDEbPnHPQHQtqseqECfw1WFcSAlJ3E4CsYKzrxEpq8b8U+h0yb02obUSQEwSgygusErYv5iiU85Dppmb8AxfkaXiewjZfeddU4tmHDoRRSRmCF//SHsF3IeviyZYQs5f2TTpalXTKRt9OS+waL+sJamMp3N6HSV+S0XnNrYoQCl2DFx2RNqCxEXV8mgI8MlSGF6Lk8D5sXAmmZ1NVJ4Tc+s/9qgguLrgeRP32YhFpIeF85+N4K0NI7+JCCWkpzwADIzhjigF1DOM+10QwrfwnpNxxDuzQsapjR3KzQGxhD6DDtDKOzHwniFL4SjTPnrTqwM4t9WMfHqVOmF5K1E9gkkLyVRDI10oxxAZsklDpirkbhkh8K+8OcSCM9WGIGXIyTBs8cy22OiCwCZpMTp9PioSuSQ/CRsvV05uIZUTJYium00PJAmUwkDnw93AE37W6zS8O80D+zU0ye/P8EWxPWCTvesvprdoMd2S/VWf3FvsMbo5f9ihU7FDzprG5MWd9ILZf1v/2vFQrnKds3C/EkpIVjIytFVlwMK3IXpNb6RvnxWsAUP05ThF8p/G25NLbk3DUo0qqMEchI0ywTRp4Y4tzMX8mUvhACAh28nXKKl1U2ySv6PBPnplSgfaVww/7PjaogzEGfylLptgC5wtZ0SSG+nDx/z0wYVdoAUXHecfYx8X0OJs5VwLXtDIo8LPxEy3VMEcMufggxtyeQgzOy0mVOFXrEQuza0BYsQh9arNp/GzsRp/8wBG5NIKiitzeElOyvULe4Ht95v8kBT+WS9P6ltGGKrK1nsl7eSaSJ4Uz2dlvabUqz40fLh/gOvT2bPdZmxeo+h6XPoVMud5xfHqyizinHlhlfsrisryUWbeNFzdSOE5TG4XGwNHK+8NLAP75wdNntVzzJuOmjn6vGwMxqMhOrniK3I4htbQ78vE2yoL6s+iM83YkebL4F+jDBZPaCV+fY+SpIzVMZcLh6fn9VM4DrYE7QdgrMTC2DtiM1TZFb12SVHTqht0u4tRQ+3AFqbPeYQiS0e7h/C1/BK8AbZeRZ7Cxaxaxd9p/ksW5PTabhrBxwB286ujKfre2wjQN0zNJ3K20H8gTttY+ZOaH0qUiGEz75HYyUggIoloLoQ7dUG1FTgMsshI4HQJmd4p9ayBDXLEbsGp3ncMYzUoE7tfWMhOFoiTY/2mYbMqKxpFRdm26tJS2n2fSCvpUKQIbmrmn6eHm0xVvAuXbcJkrkjGZg5fUX9KjDjI0aBWfqhLIzJfIfd0OoH7q6VT36BXWW1LUJkoDs0E3DvkS1pHaG3YiJ+YEFFN8IohOzEwqxV5fO1WhikFGPCQiIcsaWwmWOgs2VdUrU3yozDeoy1Db7Ev6tX3qGub5ZZkuSjwKZTgR42mFkHKbWbBlu88pwvKNSwZdzAGG+mmOsj9cjzRi47EpcymiJaMX4AjP68Y9ImPV2qeDAwbbEH97h0G7q+Gq0BjbMg0byufz/EKHhBOizlF5vO4GQ3XBoaq+DLi7ws/yUjpPjdrMZBn/WEpHhKHUWsuR1ecScNjc0ShFnYv15aaHJenhcsTW8Yd9jDqm303NJU5tHvG7ElCXd5ixSPJsPHyNb+xY/3nzNvjT3T8dOdP4Fi/IG8BOC4NKT8k1vAGSOX78NTHEHIi1Afm7Gxa5tBEFvz+TlChC8kGTw1tHlJWoEva1q39FrMYfj8XT5ksURzvf3We1A6PXJvQuDMP2bdB7WXZAIQ5uy40+oRsC4dghZOFHpqun1ByK/E7CKAVdz2X7N4yz0wIRQB/76n4EUL/F52mi/46ibLXoUsCqtrEIq6Uczul4Q2D+rrQKgR6YfG4rkrKGW2gz9RSQKrBwipGFPncy724VLphUNO1jceO+vQW7YdrfH5yS61bwVAE8kv9aS8crPkuTFjSTb8557U6J1d2ouzhSJLRjBrFzjGh9t7Y2R/UL3UxVz2OjObmMXomeM2yG66Cb5m/wkxlt+foCZIj9onOcAyjcWHwMj2t8Q/1eM5kPxu888E/OLVgN+z6ngOVLgJn9WW3wFANw9LDAdQThKLYFAvbbRZere5omB8f8wXmhmqHOb9a7wBC0jvLojV8PKWmXsU1sWaYkOTtVg0SlF4yMDQ0bVNSR/1LL2mT1ACUq6r/pFtjVPg+nI/a48uZW44d57BQBpWL4+dlh4QNcRkLNBjXAvEx0AFCnj7SvCtJ7RxSysfN3w1R2q7TrXtDOBi47cIqHzfNtMzhVQzg0HOZz3spiSoOQNAKF/NrbSJnfdUyoI/aDL78Vf/f8q5MV8spLvE2FcCiRZnHUPPvDcQYg68Q322c4ZMSs19x//8je6l8nXmqMB/PBhyJLtJs+Vdo3pFFsQpi7O2+CXRL7wlYaVBIDT04azaT1q4V9TCJCOGcc0XpyOJQ+FE9kNmvdEsb2f1dvmY3E7E4GkiEr5+6XQKERhsAqxf4ooucpYYwqRsjjrXftC2b629PMnd5ca3NIoVtMxnWYC0yrxlSaXzc926s9wlKaKD8k3XrZ8SbioJdtMk1Pf3EprRDncOe4Q3BUajdm1EdShPVBuG7Uah5pBmNHi9h9aGlrfuC31h5G7U6kE6+A+ZYDJT4iwZINtOUJ5icjCtHGBdgRGph34avNI3bKB9YDvmp7frJlYHlvtSzQtywMdb3Htq28JlqEX6ql+DzUt7FswOXuHBx0iVsa40ITFA1qILvrAPeX2f1vX/6bXSrfkPO94MvGp0E5psf18RhYOi6tiA6fWCj2tj4ZUgkbdCBF2DLQsZlXPWrBO5XdO3fZTjnA1grezjgxiI8isNxlaC1GAm+JgymhoZ4Hy9wkSRvgTZhJnCR9zFlE46BWl8LZdvg+4cBnHTFZC2GC1U9sPEdjVSwckcXqFzNsybRjD2OQJSrZ7dGleTKIPRU1G7ACmyxQGxwuUf1Uy+TIJf6J3G4QwiY+bHbq78EvSZTIPZGCs03w1JFUSBETgMh91A56XL+UWL/fI9pYxKRSnc26r+/7NoBP9GUK4TPjMlOAovRibgf6wkcFzMx+SJ/RSW3O34CnASgh8wI3Tl2ZAWTpmdlF+1vYNDnXEmHC2CGgbpJx4BR0RQIu8tf3iTfw9rnV6n2NzKgzNUVUx3yGIXAKd9Wtnm8b8Nwm3cm8qq9cysDT8vHzCdf/H7Hx0KUfSpbIl7cCzUidP+0lE3Em+wJ05qEOWQibbU2iwegOITePtZUvckLwVM+k4/1821MrQBAuzXvbUSOE/WtJ5EHPlGXJYANT45hcND92IVTtyn1XYDJUnqDPDVmBxGiBZJcGTFU+DbB9jCQvaerivnyxP4JPndw8Q9LOPL7TE4TNIWMgJPZhB2bJS3TqzdbgR0Xg3SyRjJ+WNw8WSoglQbExtqkRtdD98yOJO1AtfQIVpmeCPdZC1kcBRKh9h3boU5hFswsP4mFsDIAzi3xQmwt8lHdp9MAwRAdVzEQZSJ5QNNKjBEPpUCHCMCvmJqlEj++wj/plLfj4E8lfxH/CrzemtWG+Y1P4QnXWCuDLv290pfYVGRn12M5Py83mXvlbjBu7KrZFjZHVDMdhj+z4SCuTvYU4b0Od9+GHxqmRsQa2ISgdtO7OsrfqFMalOBrKl3bFcKV/3QmGnZuA+V5TCP6WbqU9zhUnQKXwY6wGpBswKMyp/chuR8kqUeZEmDP3gvqfWj4pSavfFe1Tld+HsV0yacYbs9k64DeOKzG9APunV0I4GDPwueL1UcM4y5WEH4i0Z97onz1isYMS7k7IS04ZNMkQHVVN0K/Db3xREY2KsCyf/Eu4SqjV0SUo0LAYrAvx54pTMVYx4OG2+2r5q/wjnqg/PeRkyWG2Len4mmAipfHDrbHSJORNmf85Q/1UnsUF/D8kJ6x6MWlrJ3PVo9zX3LiH31Ll0nXPIc8v70njBVJF+1RUr3Mgsf4bj8A/cKwUO6eFRzT7BsqQN7yZKpEgDMPjvmrX4XzhCWC6zCKyldhM1SLAhhx4dGpFaHP1mbZRjuoqB3Mk0w1f1pfw0G/dPzXsqhurGTOqu2z01QkSiL/ry/pQEH7w59okrZivYArvh//WlNWtTfCzaY8sG0s5B82oj8PgQC2rziMGvOgod0941L9TD38rX/HEZL7apUYj7/+HWILYHGWroRKlRTxyT5UeLQNMBhorBAZkyKyGDXWqmCLXIay0lqt41aWTKHHqA3Jgdyg2NUwVPj0Zoo0VnExe6PrNQukNHBoC4uNzTfr+bsME6iYAceTC5mv8pMPcPjYYXJ98sqN7ynXKHKtTd9h9m6NdWY+1J3SxGQmgp7kqCclKYuiMyddZJDZ/3+C9IrZkCqCtNgO2gHjTT6J32fAb24or3Xe2hr8st7LlCbQNyZAYp4jwlrYOGxKoB/IQOa8/yE7Z77XYsfoOxkWOJSF/bcOugz+zNuVH0yx94/JqVF/hpmSe98pxBS+nuffMR8bRnv9L8+uumOVb+Bo65fgmPyAxgsWhey9iBDsnbXIAj09ArwrvhqhP7Y1sutwYTCrjQyZwSSqY08u2Ckgb83agt6vcI7dTITIAvL1VuPlMzTMs66vW0Bkkdel+P8feuMYbzkD+R9yD62oaeisbuu7gSdE42IlzVpD+xpo0xq3p5w6ANsfATeB1KU/yDPsAfLYecf2H9l32T/q2yKq9koe8HTzpSsE6iq+jR/vm1eaq6nd1LtbIz3EY2Doajb1cBqGMCd0yVAVPYCgEcOZbXIDxfJR5NUXOTKjThU57bjEGJlGLq9iYRmvPhZ7w8jrTXsNcINXjAcGus89UuB4V2sBIoydvyyw7XHbyfA4ku2MasCBQeTKI/6qLU8UBStvnTjmriLAevp9/nJo7ix8ckj8e+qYnw6WiQZd8EYu3O0bofY/GmQAq390Dk7QnNcU5gWUUHH+Qfp64wROQ584k7PRXcI6Cqk8P7OHe7DjtWFg3JArV2WtJEJKfz6O5OpxW/ZUE6HaUQAisav4IA2+d3JF1Xj2w71Y6OxcwNK6uks7xA0jG7FvBoSIWTKwRLMx2pPv0UR9Ne+9fnJTUNiKh2vmfKYMg3jfwIQ4xTHP0QE+JhWM=
Variant 3
DifficultyLevel
593
Question
Carl is doing a walk for charity.
After 3 hours, he has completed 75% of the walk.
What fraction still needs to be completed?
Worked Solution
Fraction completed = 10075 = 2015
Fraction left = 1−2015 = 205
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
activity1 | is doing a walk for charity |
time | |
activity2 | completed 75% of the walk |
verb | |
working1 | $\dfrac{75}{100}$ = $\dfrac{15}{20}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX1+vg+3ZofNoZUlGn1qbew8/z8iMySqUSPAQWdr3qxq+XkxQsRy2KFYNmONU5/CaCIO4S4VGLHYczIQStKh36FZMgSaOTw58+1teHenk9eBfTshPkmCYNlXEj0OMdWMDJTSDgZ41m+w0rdKgkRzpBrXAVBsXQKtozHaWKcgPDLuTb/bmuzAzhEFmwSMyzQdI4r3gfDQUYAED9eqa489bUMCeTyJeogO9lJuw1k98Mq/9SL8KjmOX8fU3crRePnTjUis8tce7oYDph+CLlDu5hMCEZ2HkHq+C53CcliWi+levVUfkEDIzqFYIZydhosYJy0bY/LSts18DuANETG2aTOsbwq9Mk+3DiS0eoQ+3LG5ZuqIlw8JGb5dFBvCKPHD+b2mYef/xZljYFUh3aBt/4Hd42s/RYJN63xKxCFDxPZRN1Ify9siel5N5EmANJVmj5bc3lggoqlLC/5zaczwUYSrni5LJB3j1yl5lus4y0sB61OTnWNWsBo7s9ibwbiObWRxzmqFzdMaKtC1miBeAiMkpEQNm3Z1ECIADjPDS8CMIXbpl4o6Gs8rf7BI2Ohzs3PqUBxkuR3Qt46gAjQHOY4OuWAU5fcB0kfUAcWpOmE+4IZTVCTEgsW86tLbTqyKKZfJB43VwQN2W6BGBYdjsA66CRu2JB+V915iIkMX0uZNkcqb47gKKkrjLcSHAvmPofres9DxzkD5hwCjwlMO9YnpmxgM5D3oR8E/iKK/RnEtxea7go2KO22HXO7ddh1WlNPYMBUFWss8NKtieMCpYU7PzRFunslk9p4JeB3q0Xke14sc28ZATFUBHEtiUopfGwoqIgwz3Wwy4ETj8Jxt5Q8EsC+JwAoPt8amqqqJiQYmpMBc4HDnQaiA2Sdh4Jaa48VbDPaPbL8m/waN3OMWLzSLHnpgsCaElMWMU1qEzzm4RXoTi818esbnW4aKIes9LYAi+QU+2/FOq3hM4wx95ZEBXzgWMWTsYP6uCEUuwPKE8xP+Z66J6f5FVhCqQjtDxqMSykFQOKmr3Hr1QHBbqacuZ1kv6/k4ZW+ITPdsEVD9DQovmsyj6pgplzf7gfBjgHCYygJj6HthPoT7k1HNqLH1ux5fxONhTWFkfbmPu49BTRt5FvuAGoXVJot8M8Tp9IhTkAE3DtUtX1k/jI2uxnA1/z40RYieAlKcpCcfGUQ6VXNl9iGMLUOpJSo0VvpK6jJHFVEWe9jgFks2o7U6TmP75yoc+Ue0lkqGVwyL/CpQNEtSrlgXI6UTzBqcZEVoDKgDVYqWZ1uH+Lu5IQwyzGDkGDkGO9/hbQr8D1LrD9N/H4qqSApFZWqJgE2MX17j9CtjRwl/uCvtkxAW7V/keoZoVsnhydpU071TMxUXvJBPrbj4Ue5XhRrMvz8CK1scv1vkYaxLAu8/OSBgT/0NFGglLdwJWZcsw3Mkpkhyxr3kDYc8odf0W5OQQCTah+xEazq9NlnCzR7gC6eViJ8nKN4LH1numuV7xcS4y+Izf9DRUCh79xA1h91x4PrMBu+Bi51f0aEBp3+gZiJzpQGIOlPx4i5I+ZjcaeIX/p0zFbk3Fl0dpdE+jCpBXWy9cAdLN+lknlNEFn7F3tHIk+DNiojguI0ssNT06Ubgw3A6Y0n4SmlQNxXbG0q12+cO2oWpQ8Re03SAWdOIpT2m4VXt++ki1QZKbOWAw8nga2Hxqd47osGO8WJ/HnBND65rnjMAqUYv1kF7+ebxdqsP8tcKI2YnmLJT1I5kfXOJvqXfBgor0Qj98T1yMclek4SDkKOV33XZ/61fOGb5cerJ0Hju/XfZg7luBNPuUM/YZWkTiA/Bo3z/sEb89fbI2f0WXgPGoGSgl09e44dhr3c74OokymRzOD/u3p/r9Fl2N0CUvGQh83+H4SFkkxmvArRjmUOb8sNOECg++m+C7UpH6L9/TGZ+Oec/H+ouyBFQhO9NL+kHdr8Rkb6Go8w15QkoTG1z9q1xcLI8m8LNbnU2560rE1pg5RO5bQkXREmjJstJyXePOsdmC1u0s9KN7BLwV1RPBhK/C7VHAJ0U4aX4c58I9BTYwKPNC7QQnMiehhi2U7Iikbbg5vjrPQ/6s2OfIL8LPylg9g0KEuWhcz+yn2XdNl7BlqLtrZEkDhrpNN5wcvNHvGOEvjNRM+y5PwvUfrU+M3yTUuIv/zvUotixIJAhtOaPujGxjT7NUO5WywdO8ynTRyXK+IKkq49PCFTKl0LyI0RxXT4IV677acqDsaVAEkebn2kLA7zJmnEMdwMYkCiJ5K5O4ioGZCu4G5hOXC/Hx5WBdSbOLO2wee8L3lAFnUFRvCUeBdNPQ1L51EtV1s14gzdkSqpvpav2ZhiL7xVLhumyA5Gv0ObtpZWroccQpmaNE/bXqXwJ85Ei7HLN9IfVHGGHQnrEtnwIx8RHFwJOpFPKF7YTc5QteCkx1C6X6GIXW3batU1Krjhdu//gh6h08v30eYB0FizN6qbhN5CPzWneAvcpA8Hc1V32/erkZB4voHVOqw72GKEkeGVGKOPUlMdyEWmMX51xh9ebUu+vU40ypxCVFWkPqkJlZ9yTPpMn1Yj7xnQqoeF+5rDRcgF/ggEO6JEPsSVWxF1qXNzZPoO4dFrzelLEz5yoPwq1p6+Cd6xA/ag2VYykVFYwia1Tmc6GXRvPUzekXtuxju8Yz1gP2E55reAtzgZAmbZt3EAEirqa4NsJ8dRvFNGUx0m7/YwxzdhSK2s1qdk7YwAOfO37nixO2ikNUJ7D5SukJucsHVFIeE59Oz2o40n4a/kKerZICrGXkL53GU5wbLuGiNUOvi7aPWtp2Ea2f0p7+meaEEXnztOGZTSLgJDZ77kXhY6UZDirGwknHYracogt1G6bx6NoXDK235F+W9+7Tb+keaxC8JW+rxk87X8Z3QGcgK9pKd+APjG4rTCUfFcIi6XI8qN2VpH0MW8LvOf8CrIygsYTMGZ3iV6n/xV8p3kU+BhyrY9uHODBWxv/CL7kwVNpcQyXvPfDKRhUXyL1HVo9Wd6MgiJQWOb9C3O3SORfe+EeQUwevHtYcSaXV30URZvjiVoXIVEhqdFyh30iwNkhOoJiPycjvoeBqRyvJGNKSohwgCLGURD1mzzkjA0qUEs3/Q6RHpnRBEQafBtwZPYuIhBGZcQ1agJaJun4dCTAKB9HZrWK+BixKhx4zbH+uphjE27DVju7zHwKAbJR8hgpYBKG8NDtDX8zP5HbyOAMjGFg2XsYoDBZg6ESs1c5veci/7wsQFQhD5wzYLGR5OdGGJT/4exyRtGOrvnt8/GaejvhA6b0O6uJhinwVXFQxFiu5pCecBMqPmBbQGtu6tE4VsYtgEqESGSMoBL09MoF1HFMYCz38gjwUEUELwPuShe2wjQTltixaRUBftxEW5xZvxqodNT4X3IomAisOgOA8yPea7CoAmPQP27aoE7Qx9pP6GGPaEWRfDtNI6ZlVevE8UnQpqlLut6f/Wjs8fmYM8O/mwBxgyhnKZ3O9wQb1lEHEqIf3iLKoo1Rddnh242z1/fLgm7re+IjqCPa6VRhFSqwTGiAc2AphocLw/f/aEYYqJnCrFsGWWgdw6fNlOrSVWpjowOP2lTi6qan6UDegqmPZmnIrdEFGlY3oiMligrNqgOOIRi3Rd8kU4VB9+YbhwlHc7mXEkf+B7CUKjNbJjpfJF4fCsVpjy3ZKdTCE4RBB92Pic4WSxd6zO4rjV2NIlXrRfBeHbBgFrGTT04lPJty0iLoLNBX8HQrESnA60z36HvH+6APXBwMU5pU4NMQNeF3TbZercpGqX1XdtPc1pUP8dgtNqQqFMMqwpeeNH2neeV7YqNxaKjfWVGod28kR6GFPLLKYv+AqHhWfFvfGBqDoK99vVgPBjHfhAHESq0LhA04A5RoU7+2dPL8posoGq5A3+Z+xjSGRsWJi5DDy+XBlUwKeNE69YFZLFVRu2rIpQBELhyMXsa8pvknFd5L25KCw4bV65SFk3GBk6SKNPl9nJxSBHhjIdyVztHsp3utD5spOXY8v1gHD6XyMdw0vaeweqjpJynmu8u536EKM4QmeHPBXT+qMSIFykYOUWo9MrEV9wS/YKnI8e3gZpOaSpc9sL81WZKT7jCGgq2AKtapVFi03/FagtY0CMNpaAE2T2pwn1a1bjaTRVOwBv5PBOIfSLjNbiEytSN+Xan5Jm2suIBOQB8GosS5i9zjeJ3cWilsAcMYgDwwSwOnnIixhYqWHvYiPuIvLdyyyypMKorpbsjzw9Fli0FrpthjD7M0aabz0unB3HORorxfOCCHVFOPsFL2iMOpRitt1nixtWjsvMju19DHeLzbvqeLSrWhnk0iCVxdfpYzrj3HrDrwDp/jaXN74FlmXF121jfCOXPUhlkT1+NFGTGX0KJsoY/JGLAaJCeBmluWM7gnU9Qta/++pHLRHImLZWd9jmI3TEXCy8vYMSsvLZdUgl6XTmdQvJ2Dh4c0azJUyOozuIqT3BHxSZkNikCQFr4qaZzvkd29lFjWGP5YQZjIX7T4dfmdTICiWDhIAIdrvOIYDVkk+dOztqigqVU6/tPV1MpexHn+fQWxF+gLtYL8/TpkYhI0NaZjfkiq1IwaVvNYPJxfsDzGQAPttW1/MNx6D+I+I3PsYpRcl3JLHHgir/l8b+e8B8KurNPrmE2bCRSYWitJpatyoP2kWDTNXwJQPw84nCtfJqP+iGH6SqxJKi9ttY2UloqhEY1+Nt9MWOf4QAtnAa8K4DbiO0hwBfbMTX4ODu2QEdXRcewwt8xE+j/bG1j12dN/NWZd4UqPGuXzuZXoJOAQE5uVZpLGRf03sRNvWwCCgSp5bHw1vtSBuViqr8RpcMkXHlSxwhULc1clj8C6fEA24cwl/G9Hsr9ty2ujgRPw/BpY9OycTnDfx0p+REoFLqLBKBKOen/v/JOH0vwG7eXwJKD1TVZr7na+vEWvvdlJWt5QorHYgxbeQjIBau8L72zw7DHLqIIyWSy/TG1bQapROMX/Gki4wsj1eEiUnj/8ws3AxrXbFan9TQkW25SjPr9p9fv2CPZy5VNtkINv3fUpeYyy8gEFDkRTvTevg+/dmNMAR7C4jvu1jRwx+4XOUHTp/O3lZKs00s5OIgH8PhVrjwiWYaesFEW2txpQAo/HwJRpyAd+3os9a6x2srOKyi5+MJG6ub32Xy1Hgx/k40o4ZY3DS167cr39RMnlBtxwO8XCbq3oYaNFVTNgRQR63mskCZelwNarQBbK5Hc9fHpUqRj5Uto1UiSspsFFJ0j0SeTAMzidsCjZ+yiD746AUxobn7WDpEg1gfrKxwlAvaTcNaUWBRAqi/9bO3YbUiQzpJ2nbsq+vRhQsGa2LOSdpHKtUM8bxAlueTEaN+jolQpuJXXvx03qJ3vMKNCkuNfnQXVtOKdvlMZWg+5jNubhBjTHOrbHiFKPRzHwegYcI1U3XUc9cLS9jAe+kuT4XiPGkzShgYUxgZyhjDXGggUKvBcskU8CZS8K8ZWNTFxboneQ9Pxul26yNc5UkCLNTvnK6i8B+CG8S+8GMvppB0s926zVsfA9ZRwmShcZUXO28y5ZFZTnINooxLEehZ1TBPlHYjLXBF/Vt2BV0xIagslzRGU9oeUwJUvbZ/e3BLUgDcQyHYNaV4OZilT6WUm+7vdZzklJPZmPxkMKTM4WmXfQ5TtfAbGzBtIdo3dnmDdqhw7DabpxwcxHcXCqJB3ViYAQJxZZZARoJyg/ppy7Z1rxxxF2rI5r+tIvEDHQJeU/oaWkX0hTAquSZrTxIzcBeDwVFU5cfupCaZn/WWiEqxDmpG946uM3IZ2gM5P37adpNa+y16nCfOxSZiFOXdVqFXNQCFShCKalyy6u9dncGj4IisctAJ/Zlok301XqO6B/cryeAtM9e8G0kzBTI9rTWP5tcP7+hq/wgiuUOjn9An8hT2Ob9GkbxzV09oeg3XrlyjBSOd1usq0nI14kCbtBm9BjKGbD0fQohNI4wiyF4+WQbpZaE15ygBuHSf9jaPPwbCf5n+Kj7dHA7iF9dYW6jAzlyIhmBzvasYp29mDhIY0QbSv8lIUHigyG+JlSEMZeANCbjSvu2nBLxODE+WMuzkZuSsHqsyh6xn95v51abT1sSnnkIfuTuloanKylkohVRA25V1OXe1f/sfCl/NK6/7LzYEBzp054ggRwPxOJsmLeSiNTKdPxSANNX30JcYjqdqFcovfwNGzq/Zg72qbdA80eNu9OEPJ9WRak4iWyBWuwdSEoycUfZHtsTLNXDsf/eoEo+V6Htv1ZiK7maJfpdM5ipe9kFAabLCDRk1YyUNZxaJz8eWsZm71i7RcC2pByvmGUswvjX00Dwn9sjA/dMXt1/ouXSbbz7rwjX1fS+RZg49KzYSBmOPkpK5bm7lyOaByVAfM+oS0YClyI6c5eULF4L98TfV325h9Cyz8JAF8D+Q6XqOwSZRs0Cv28T9Zq97BLpWbdEUp8X9RM9lKM1y519mNT4kFDbY/FWqOQE7ImcoT7Hnewdn9zEKN3OmWQMkS+Aifb39JQinU9RWaLTv+A2/zyQ9W51UysZ3Ae9MMaTBnc4Ssf47s+Q+OK+Ew7/4aIR/oSS3S2ePat2Jee4bb7h4NXwSfxJx3zileOBVguiO0yLuKih5fXKpItFgdxhG+6hgTwlO78oqPTFgukN3i0OB3+8zkbKTd9i8BObi53G8aN08zce7FTBpbPbQDQc1OGLkQpEYwjRC/kkxZl+ZWAHa1NbtY9pECQkzUU09/4x1XNX1TYz0FvUyrAhVAEvepXyeTd/94YZnK2Mmt/iw9JT4yO+/fjjpzRlT2KCCmGmGff+ap5uh7ffU08LMEO5URKAKh43d037CHZUzUtntU6882S5qtF0/O2u7Eh/75GbWY6nI38qng4Zw13qmc3fCmP82HOKdPhSFkQlR3w1R6LMXnhaDOJGE59K4nwoiBhF0IWT9by3XRNjP+fdHkzkFvCPSlZcPMaGmgMZkiA0Li6qg2U3aQnVsU0+vTxON3s/vmSJeAWYDjGZR4W9ROO0nhMrrMyZe/yuGc+UZv1BfxeqUxjLCnwrc9gtB0nRNbLKJsahDvYj+J1z3WAVeJUMytBCEOsxhi95ma0IhDu2qkrH9zpV5YWPLAyuPKClv4Lr9UEqi31PVGWs7pupZPkQquhGXXJof6xLi7LyZK7J9/6+xDDiyjoRl7Euc17r/YSIqxmBzj9n7xA86QGRIgNqYh1UdC6RUXrG62cxgVYeVmchJuAbr3LlWAl5mlylquE+2rC1m58TlbLNJj5YcvNvQksC7hMiffjOFz6Ofd7Yy2zYAl+bcCXqPpM3oayK5g13kHlmVJlMCMYojZKqtVQrvjYfFBMd3xYlWrRf4lA9/Cjzbwv7omGffEWU01ZcQTuDN0ON41Wh9uuYcpKfD+vm8UUzCJXJLKSGjpwPJqmknbOkHvxzib9b1JGh3YHUKSx5kflhaAm+WqOSFJTWwRFiIrjZCc9u/xxcRi3ocabvtAwqEAU4xOk+t41PWZEgjuBJhXsGJhlhCgJ86uyaR3LChRW5KUMefY/XDSWytkbBofvYonAIgJDSf80Prf7sr02+nbJtrf4NOo6MY85ykUBCHCILHL0IKw4M8FV5u13VL+XSQGHb9jXsA/cp1iYyaPvRlEYzkycm2tQ1XvmD1TVgsTS4K+k7o/uVP7V3Q/DHWMOS35EcNoP3nZ6gDVKEzg8GIn0Upf8962WyFztdu4ZWXuMk1qHqCZJBNZZovN+z8dRw7gQA0CorVb05GZQWy6CjEji6tGgQ99hUH2yAOzGP60ieSjBFC5zeXFTGcVtBFWxwayJink76yuKTgFIni2Vjz9giRsXfGXOqRJKv30ni+m5iuYYniTaNRn+Mjwpy3VeiXWelqIoHgfXJPyK3P8ToP1HS0WX5nQ5i9/ZjIvTrQnd9RNkliJ7ebtz92llJmAerwrksfVruq6j8sc6n1eaCk7HbO6Iuru0zeqBA/sEPE97rNgEwlp+O/ndRSujmXbzlwJ0PnrE9gtN26p1lBRLn8cs/29TGvYjBvXlhbyVa1meYjwRj+/fuUuiUamao0Liwb48pWBymGB54X7IRlsV5LiXpSD+6JUekhIjiE8+e65dyQ8dCYWE/+0dS7LiGerj/5fCzMj0f3G9uGAoUqoSrC5LL15VbhIECVZ5SDjAcoai1Pbcu+loMwz1rebp0Y+SlM3f6Q2D/2w5hYUdA51ai39+PUBPNjA+YW/2CPOMnLgJcTOPfv4gX9rYvEXxJyLttnjMtnZevww2d0PdD48tffXqDExt7zumG6t8AuAhUfjRa69F1Iq6XT+6e5+bMi9OEUtb0obgKJ2PKnyRkyEUgwvtwYQkoyzi9pQW6Nef7xcCsb1y7Zjub4RaYpCoaFm+hyvgDLBopiMIPPJKGwfmqdYgHBuXQp+DC7b7aS1t9N1on8AKcRowjdkhCeMI/Cv3EpcXM/uhnXsEQJJP/skYjYxAFK6Bll1Q5leWoSsLUZrnHkTR6aJRo13HcF5ZbMp2ZKYjqFt2m8hyImyk8R+ce4xI/zPNByMIIGWeCp+k/ZcJ8qmYwd2N4lu9uH4BbBzz/VFRp8NVkG2/7eVYMN8lZMQjxhIfObVxdi3Dimd9alrJxKjq3SOAZXxiF0zejv2LLMEGRxgMRT+x/GbA4rXulm2QsmxqacxqUHIIhjMes97YHLXPyPVbiIWi84v4sT/dElUTHcRh0qLHdGkge1k0IkJHbkm1RQaMvgoYqo+t+4XQCQJi4a5+90JQpi/4qMr09N/zLpj5+ZAv4wbtuFuvU5GZgcWjK6Gxt/iHg6HchJSUwJHCBK2Mt7j9ADR9sXYH+KXEgnCMpYz35T2vdup0mcHZERE/zzhjdB8BPuyqZWYIDS6EKa+WGwpZKP07+XrJVAXMBLxCIix38JpxtT+QbpLQ9u3Jl+N778b9zwqO4tpS0VrkPzrGiKsQ9/zFHz9Ctf6EXr0eTT6AjXzaALhJk9mQX+p0ymH8YXNPNco1jaOAna4dUvjsYHNDmTRrWap1IN93uCoJQewcK0N5txy+jp+BcCOUXBuNr35CoJm6ci4ZPh13NDLxeY6weR5Z32OusI3h5NsqxMJHwTwv51tC5RHbvVRzRfR0DnGilaGXQ/HnZQ5CJeFV6iMKOVVdGrucdIHfVSRTcbOBrX2J8nPRGn2lO6gUFbVd7W4j/GZZklB+Z9ykx8DUTs0/eW9/vvXJJBJbUFgu0s7fCh2gNVmbgBvhps3nmZvCLaccXqEmkFx34X/CL1YMQlZ4S+1UFGiZn7MeUu2x2PcWiRtfdjfUv0IPI2kOEM0oQ7TPWGmlbfYAYmqYLTy48pWjTyu2X6qlAnxL6qipkNHW2ETatD6itzItgKUwHbqbE5G8BZNHlDSWm2MMf23Zy03rG7ml8GYiCGSYf9oebL0gx5cdXqkongILTamIh7sB4qj/GbsUjRpKHkz7buO3I3Q45qLxFofUDfOqMpU/HVmNpL/AslE2GxDaIVUl0nT9K4biz6OSQ/Kb94Fihhc+m5huqT50yA2vQiTiriLxFJqy2XD58OeQIPCACLoiYaY8hcObyKVUQtesHB+SIdJ6tY382WlzPl0nqUa1SDyJ/+dM4VPBAHG/vYsOCz5KhuHJyPXYwMc5Pp9JZNNLhdaVWvp8eR9aXNPfnzFp0KevjyHwJ+x9ZWDlHyn/3rldb38+zmGNPQ8FrA8ImQrgWl7gjZqk+UMPoCT3Cn5sJCVV9TVmVjL8vUFQHblfm5+jVf3DNi/9DKymCuiv68gkNHWdGckvkjqrEtiAaFMrvgGWa+uXPqwoHznNr8BlKUii+FcbS5OWBm3SvbHJkxmw9KlmLPOa+2LR4hYNMyldyCM9erkXkND3oK7K369dydIBcTKeWbVjU33qyj/nQeJttwY40jZJYMn5E9lPCNBpDdRZZWEmDyKbMuGgpqNbJl4ui7gYNjtkD0csXxeHdp/fcauz9HSyWFqwktTxKtZ97lWNh/TTnZtQ/q/E5TR3cHa0DTA56h1300q84faoerWE3Dsghn/Nkau59Zt75+y8PNkUzGKkRue5SeoOo4RfzvD3Gc34MKZJ1xmjTLDcAktQQWpjkHn6XtlC0seudqGiLhECTaFjU068YoHJlZnD4R/AU0zRMKt6vw0h94vPMti+kL2BhyqdNyu1qmbVdIpHTiOYNdobcSCuBoPbIO1+PZ5/pxsXcc+gzRtFVuTBmcKybUWiEza1DAqdUXO1p2c+c9ipUzS2+EkCh+GIdt0gfsUr5/1C0XwICkbFbePNSFKlsd44TQ3N8lNm8+Pg9CVXUl7DMaC74J/syHQ//9E9kyeW+G+5lxnxOUuANv5Ay14udas4rpUgWO4DhumNeT0glVWYAv/h1dq8WTvTOHL4mv/cKABJZ4Yogaun1JbXHaELAxzMKcx5ZwSy9tpVp/Hnc9KxKPT30Aa3M3j+jMEKhcF0TSyc25ImuIfM6tfU75CAa2BBOu1lrV9qBRM9O8kVDsrnCMy12iXqr9wgP5761Q7fP3wtdasT5lWRujWqsoBIqQCBgRoL90I9whDHQTEEPbBge6akRZLTLJFIUWVGX7ZETQX/iKhXGBRZgnCdAdKz+A7+/MA1GNsF94XaZiX11X8ZX61jDg8zbqDXKAuh06J5dmYyMYplStzxCDJ9UOsemO8n/nbePpsLBwECCQvn5kqyZSSj6P3QhPuT0tJUTGNCNwGibKhXOIfFgn4fxm/mSkVy8liNJ8dvsZ0Oqoo0EX1b7FS91J4EijDS0J9YBtfYWGW+/UEQlJb0a5bQxuPp6WdvcT8Jmulo4x1TSWee3q2KSG9WVwarxGAtuJdM065QA3kLXqTTDpIo2E5SVD2bIox3kB77L4Z+bXdZj95maEmeD8Zl3nVdncktB3MMyt9EpgzdKyrP9FD1ka0tlGcCVjgeBAYSZgy+xTwJBjY++JesorLBxS51u0sTtYcavukxkb8sTEKudTwnS6wU3hcpahc7HpqDtZAF2pDaG+p6HifBSq1f1Rd4DrbNCM945KFCEZZoQgqRHSU4BA5xvvZ0AWe5/yDTBAGvaCXvg2Xh3Msjmwyelivz5oT/pp2Y0BQrWWSH0uJ29i7jjmFizpMq/S0P83PylTZxymbAk65VwZR2pvfBSpCeeleF+9nRqe97vjJ79g9yW85eGp6+vvJzpGgcipccltd03P7f5dAbGdob6/dKns1klOGEpUbvQ6oX12PlEu+P/6q79PHy1AI7TtPCeoSOTcZUW3rc+JyRgYKVTxjB+TNTY27Bn/Hj10GCnBjFnSEgTPZHcfKL1knQNvByNNXpTDHreIuy0EB6CgFP+/v8xqnSIAieWvEfOlItZuXCXNgQ5Pae4jp31MzpHUnwhpZSvy/KpBLCDhX8YvlWj1v3mvoo29PEDtgvI8bRRZ0NfGZCuNUMiPX/uapRkZDuHv/6TCVt3SGLB1pxIvZcEAEtQoE+hfxAKLwBL3aBZmmtlIZCLk2hXljVZyQCuwHnW49YvwymDJWcsvaahG6itY39bu9v6iRuWtCeVrMLogOYrEqjgzVML30HxPsFEI/HdeDDGLpmJgN/7sIAW1qbpNYP42I9hG1/LlkUn9iV4oq+ysxBRzWi5ooTQWeGW6K4e/JComiYkv70Z5pbj9sX+psrOrfoTp014RP0iwhwCMNgWormPaC2Ngl9FOFUW48EPH7BS/3JNKcj1qZUMEJwWgG+fYZU1vYrxBgPMoyRhvIiAJWyy17fzDnZFnak+4ho53yu5tO02I5bweYsjmfshVtbr0wA9G24w8C3g7UCQC51Edn8n4zhJZyygPhdlosQM2MTeLQ7Iim5WW2XRiY4ZQVePpVMe1nJDlwHSNlsrIHtl/qq2g6T1YFim+7Tim7/pLgJhrzUijoczhK9pUsjsxxRiADPT/VQQtoCU+5NK8fAh7zQ5fcLupiH5odW1U4CSWDyR03zybL+4V1FshLlgylTC8J63xEu43mQSK48KNZDV3ZkCYlsK4Gma39HsrlqmRciaVm2G80PoWxBYi7fL4d7GBYU6t4oP+fpgYvL+s5Z2pqzDoa28I6yuSb54t05+xjAxWHfgusJv1HoP/uSrsdRGpL6liqtsv0rCIxOiH/PU9xddXe6yAVB1XRA9YO2GgyNFaspfMkRrp/W2XXM0EoD48rIDTBEoHJAcn7HFi14c168Vc1dDW9vnHliRZSKewDwxebymWfK8DSOz3oebOgZDZBGf+faZ4VZyy3EnQt9t0LzHhbodjfma6XSsgM6YZ9QpNzNvtZC0bkNuLBDPQLbeVgdrnJPtvo3Mk9aV5qBSHkcTly5eUYhCqZHphfpKxu/uZsOBYF6n6BoyvVCIeSPltUK/BmC83yRkp3slWZ6MDlad2GaWjzd7GB6WS9OzTWw++I5AIIqf9QQvRHgAH0YXStFwbjOUB/BFf4drdl2o5NsoKlhNpeNY5Z5v+LLvGWYUTgd4EqE6Gl2OPb1UwiIq8muWKZnO9xKT/kxmH/LOKTlqTOqLnOKM5mOnb6zZs2NuR5+mf49hdDpu+ZZmsb70Bp0yHuz+QyjlqowFZPzi3M9VMkUluXW3PFnbTShK726GJKFtwlcpC3RGSm8+VCKk9IhjOnocr/Cb2CFG7J+qE+lSrzcq71kvgsi4Ds3aiac/Aeg0sC+cSfhCqujwckVVv52Ze39ioMLT/6GlS48p6zE3uYgQUyMhUUGC5/g88C6xYizhWgY+iBEiekEOwk7n4eURHHOxYmuPEf7UPdPEAiJYb1/hbVOONxZGOKBJh8UCmrBIhoYaQibsxDKc2IQMcYCqyavwkdcXdPwmBmAo9ppyi4PPDLdGG3Zs9XTk3L0Wd5XKZJnY3Cxv+NsRSrTSa0mIfyGg110vfe/lVjA3zAJHsfjlQdJ1CnVdI/0qrxtJYeiTgtM7fLkANGNMomcnqJlfriaXQqD16vWkj9Rw525ufvZFB8cEVn5HpnzcrQLpH8GK9QwwJZbG5pdRgGkGKyKHZATxBZGAf1RGQDP00kTXOfRxpqzenHBLRHpErtIuCMi+HK/pyl9qRBZDk0DHwVvXNo6dX3/b+MT9TRaX6FMlLMJMyayxg8jS6gql60TRs9rrYapiTn+RUbarbyjt/27dHLsOMYG+3K79p8POC4gRsvmNuKRP8t6sKBdgQlFigqgBfPiMeAu+c2x3F02a6A9k222Myw3/nRLUwaVid7DJIVyF0O9y43aB2lWrnTEMPNFJFJQTCrnSVSiiQmmYpdJdT5YqJeFFfYVynit/Pgg+E72RrjP9y6M2JmFxAtRwHxzloNgll/QC3D07rj2TYJFM7siFtfR2/aP15cvFMWl+RqhAPVBC6vLtW4//vqsDC/Iet6rPJxG08Ngt3MqTNs3tFkltkLwMQ6CFqGNWHUt6/YIOw7angc7jbJFrL7n4K9oHmPoZwk3zgnWxvFpFz4YqJFq1w4vZPLJNzMB4/LYkmE4IXym28QbqSXWcIUXTcgj8BJzoNrxvqfYxeJGq9wfSA9dfDEL+fEoSBwrs9Z2yuo4WEaYtZlBiLqXu3csn65qwiIBLCaD39somGrOviMdeJVoJHo0iW3YOY1J6ilRO73+TGfNefT+kzmOhtkcVJi9SGWqQ+jd/Ywg+sx9Avpc/aAJW3JiTwIUph8DRp3oWuOh+ocEp1lqXY6PMKA6acuBQC45Q4P/VhpTXMIjC/sl39zR91bQS5otvXyKuqAVpwgwntqHOe13X0fddLz1s3BoE8xCLEuUaLCZT5eu/0crCU5UkedVYfcX62a4uAifMZpotBxX5VyJeYXCL7ch63R5RvsbKELyxJJFyuhxFy6nFndokGTrAS56jnjzSnyBtky3mM/CL917fY7BgSN3CDH6GnKrzQswUgf9q6e/6+fMAjl6r2sOE4HmW5VGsNqz4A5F4IN6CB0UI4fXXvj9YkdLaCOOrKd0W3lfShEPZqnfCggCbUZhEazTrWUFTdmL6m8H4z0O3lxIkjdX6fQ+iOUgurItQS4JX3/wd2qYRt4w2FGCwtFgk9cHz7s31+r3At2g2ZEiTD+EFLClOXL3BCB7idzCcBJcurwV40/Xfg1QUUFzr41Z049WRCgPoFy6Jjor2VYEIjGcj47k96ro1SGMVPnM53pV6arQjScpI2MmkFxXE70jH4urBTj1Gb3oEI6btUttx1mKF5ny8e1ZKan5as4QTl+XV6otbklJ46iTMcAKipRwqypqK0Jyncl9Gh/v8YBB5xwvyLbm1Wn3iqq32z4zzT7sOVHaelrdYhg6TOtujoJqS3n6Zrnvw4ZR0W4Ba0R0gcLzU4/+r58RFXRMPO7Hwhrq+tRnv0LPL4no10O8+FOCCNidPhXNmgggoPOm3obwusgzrUMVeiAQbjq0xA1orAuSTHYddC7+K1qmqSVEOastm3bky0HWpUaZFvPeq9OROud1EkUNjVr/Qtvhq073bGM9Apr8Q/8Nn2Zl61jcNVPtTCC8NsCcIQ5VBOcuFgf7UqHhO3Q88QLYgK4z34KRTzFcnL5io69TzwndhnlOzWQQkQQiunnOTDcFuTKyDFawEPbBn9AVR3l0g8wB+wfbNQUz/EpEA2c99bkSXFgv4lBGPV9R5dhgMNlGW8E5xZy3I/10o+tj/M3V512MVDmuIYmEWffRdnNgYe16oUNN4qeWWI0TjEsQwkfRN1j0rStSbUHOinM+GDHz/iHKPAF1BCgT9Dxite+7GURtYR4qeBYWXJ6eaOMa6Ivo5bmwgv0c4yZ0NicVZOsI0V9w4RzZVQl0u+mHpBwuPBpE36ZrRyBqEi6+pr7hAxS87QA0TjyjakbNANCpTGKvMXVtjMDvWymz9eTEtV26HScDphIPX/89Sb/ffF09cHOMxr6bQIViogKbvC9alqO8AXc9ybIT/xTh0RJ9WdnEPXaY4RzgTV+wnKpi959+4x4xOkq1vbckKC5XOJneNtG8eNIcKciTy+xOHHW9WP5cG/9sGXLJuMXzjPkxNG9UEImRunOLxeg4wwYrfOAG+us8UZb8MFnKXBhMF6SfznXjOPbl+UyhT+YZzUm6ZkW0Dd8Yky3bgeSvRexx0eWvmoO1Y1VtdBEdDdG3+zqfOihg1X3zkQZ7tJF0IHvc/ehBtOsZrO41yHUcuWpJhEKycre1Wl1+v/4CVU3YB69divvQLeUHE90loDjv/OuiqFddGxa+QIKJ4z2AfDXLmTstIYpnnm5/uIUQ8m82d0fnpZy9pV1Fnh/XXTsSNNQHf6DFMMAnzZTjpi3bXeaYCaUeiNIGYFQZ683QAX9CK9p7UXLlgVGNool0dRWAXkzzPQ2+mDIOJWu/zjnnv+7rO2PXLUaJoX4gzcymcuC6OlyDNgV6Pcxy4FsPw6StQRfhpFAkFslK+MqBXqcGHoklJrig8w+Rg4lPFLfBeMipas7xrlskn99iSfZGkqXKAGJdwa2YUFJsYfZOtOdHFR+OTNgoZ4UFAaRAoyG8T4G8mbb3ACMg8jkKTBjMa+LL1jpS8Ygo9Kl7ADHhcqcWQHjEPgCrPLcFp5/oHyPqvUY4sx3FdqkmF5zgYX98zccGTm6Xlf9dqjHEUGJCxuS/pdDn2rh6KMOjRUEJcvBN1VB97SbNl3RW41HUmcuNKH6UjDwtJLi/Vw6XnvxooC2jrgd/WPhRyMJ3HBU5qd7t0F0cmytS5g73+wDu/8Zc5g4Alw/UIxKiSuu/fA9DtQbX+lJbHiNsloEI2dMK924mPd6Dke3yRhKSimNU/9wCrg3N4RUHr2Om6iqPVmrXFCAvsBntiqn9OjjXQJou7o6wEzU2suZaU3jrodKLepAzpxf5pbu9U3iu6I0sWWS4KhTR7dQmNI6wsQqCoBT922xWvq87kOxyQv4ynimgAvWd/dw9zz30/rA+LD6ekKipD6ir7pNMm0VefLzy4Nba47RYwWG3dP94/C+fbOi5BY1nkNnraxc2TKHPzELXPiD1+XDZyu1xW9PShHIqX5+PH4kZdFbNu6LAsSfyN9Nu6oncHnUzN9uD0dedwY1F5XAQi8rpbZxXRIDBciXB4I411tkYn87JEMgy8pIBCpxVxznhKnHyF7faOTK63n2FqHhooeBQhlqF9fW1+B7V3+YAa2rWYy8/01vNKJPsceW+uu/KTzS07rC0oCQt/thBAT2G6Am17D9AOBMOE/OhKq3+mDA6F0KmkMUcRJ6xddTeyTsr0VB0PcmHnETG8OrcJ8C4/OkXdsmEDGzU8TaYH/i8l95CfLVVkIBGgrxXh053uIm2botaCDCStSoNjfibcGN36kF4l36eZ4/RQtxKN48zuIxmuQek+OG/IEJ0iOJmHeBFr4ny7OCNlalTbY1YLHpUIEU6eJXCvLvwPTanzXJ3VzxnRXmUZX+j6mi3IsRsZ6m0kG2+F4nFZqfnj7O7lR8/DwSo1P4uKuMCA4IdeBl7WcQCKtw7UplP/+gQ8/dw8eHll+1t/bWnzhjSwSOa3+j40t4K+hbY4yLiP4I93439yybLY0SyvUsut1YEX3MYpcF7C19h6icQjdXhASbV1lhswPFX0EkM3gD9/jHadQryflg8TC9yfBTD+AWpJucQhD4eZgicl6wgKvEA95h4SGVXzbbBgebT+nwXATHTo/JVAR/ZdFII06l43PhaeH+uh5j1YGRnZ1/uJmDDVWzaRcja1rPWlpuE7ii/G/SRIP9r+8dRp/lMk+ONpgKowdcYPtmMo+wf+y5P3h0Dc2eH2b+A+2nQjZhEXFBp/tn+PtcFtmGpRV4l/Y8rdy9kJkd61lt51YJE+iGNk0NeLVbWubInsmYyXxS+YH7DPWJTlSMchDQUWHEhR1Jw6Y1W8+77R9WDmOqhO/ygAayNjQ6A5MD7rWA8e7kISF7t/S1JSQq7TffO3xshdM7Fu
Variant 4
DifficultyLevel
593
Question
Krusty is raising money for a charity.
After 3 weeks, he has raised 65% of his target.
What fraction still needs to be raised?
Worked Solution
Fraction raised = 10065 = 2013
Fraction left = 1−2013 = 207
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
activity1 | is raising money for a charity |
time | |
activity2 | |
verb | |
working1 | $\dfrac{65}{100}$ = $\dfrac{13}{20}$ |
working2 | |
correctAnswer | |
Answers