Geometry, NAPX-F4-CA27 SA
U2FsdGVkX1+m2/SKGCYhZ/t1d/sGG+VOrdI6bJ0edIM7pGOfaRLnmK5FcE8CKwytTWGiJKWADnYVy6FF1cjwXM8QemWziQTv9Z/J7vuiANQAZaennPyd/9XdXrP5ZsrngPRLpP9IEVjUWgKhMa+NTqwptdtRw2K1cuOb8+8xtXmhY6rX5NxFBMpfxlAyuzgDUvlFlrMJKViShDCjD3fMsgHsoD2dKaWIpwtjBFdn3uB8pqKZnFOinJI/ils1+dcTUmpaSOcPQidgqsII2EFEmLeY+djLMxQoHPgQlcMydOhTsFbXh3rpy8PzH5cGgeAnnVHKLC3PbR5fe9NkjdK4zmqe4MzkMhutUh/VIHOjbSFAdrMn8+Fk8+hhVdzVDS6ulWc4i44uCLnMeMvcLXq8fPW56pMmZ7e4a5wh9qh7zbSCvNtHqHnGHshOvIMJRyx1C1jEpNYZ40mrf2Oe9Sj3aTGL5mVJcF/ku11M83q4GTFHOpKea73CKMbw8xYgT7xbMuPW8aFRWJV5Z+dbGjmzXzLM4Xeel2Soz75G1pSyGXwvgI0p3h6LMoPc1r9JEMuv1vbA8STqlrZCRfhviQX1rtTKt4NXmGiAvllV4c+fmTNs2a+aSgjmf7AVTYkHSxus2/SJppfRRE5r5v7s5nAvXoMlpdWXOL7uPkNmbqx1JOgsFuLEDrPee2c/5WcWQLrg3PhtWRoPJTQseXC4nhK4yIGC//wFQhtLT1/v2YIgUNmUUWYKz9FykKsW1uyRDpKtOPG7wZ8EKKbt33qpiabD8F1UCha+inERZKKBJWANXf5b7wfpJngOR78filb7FcLOLuGnQX6Bvbsj1IfDx+UFiDR8H+RPIMCqwx4WJIk9Kydig/7zqm70O5Dt6ax1HqRiY9TX44vgjbjA43b9XO9/7JdO6n0/9URMr6O80QRZL1UJhSN5QNNdeXIl88plh4bJPqJRTckM7NKLyeG5m/roCrLgzjqv+P8PQZjwDaJYOwklRekukV5KsHUG5SEgBTb0hjnY6wTr3rByztnh8+vND2mSGJRUItjufm3W0RWi4Y23pIxoPlBQ1H7EkR2a0suduBxC6fzD64R/g1dLPevHhyunzbktP0o6t46bTRe6qzKTFdU7LTKIT98Rw8J/DFd++wGpAxWicHbk6lyU6YswWZbJlibOrPukstWs2m5m9FFwOtsOwmf0yGyrew8Pj/PyI8bGS+nx/XMiYaLJSSpYMUlsg0TthbLLlwTRHmxkqO7HoMzCmsywcPksUDtsnCavG67pZUFfjzHUNST+q6DzuXgZ0WfLpBf7O+eDii0OeEIbCWuKlEeVhQkZ22u6+V/GZBz7W4bXCukI/1d2Q/WiIosGl3Nn53XqofHdfM9mWJ1FbCE9HfeM/ln1PevTmmY6rBrG+2twJIf0wxtOEv7kyJdabxiNrrPl1bACfo0rRlOeCIMsctEAkllsG4CxVZzB5DvNHQnEJHUAVEAoW8NO7rJkBvYyxGj6Xn066P/GHuZ7dgA0cgV5TEkGR5g1EldJC7X5CXOsax3By8xYWEdo3j32lSK9tDMEm6mxFyAe8GLfzS7T64xYLdf58FqUojILi5xMWZzYJy3ESpINDS18GXqVEVD05J2ecs4ViMxaqUySAzIsO9XzypWZpUaUT6mFXJ9S4pxsBC+oVyguURa4uWzUoz/9pMvLZo0fdOpFvDrR8gST8fRFGmEx0kA+9WDUiybrmvm4x8qPZaj7FKnrlS1Xg3yAk3ieAGuoRxWatvPRrcgGgD8ugxDXbX3SYbOIELQi82RJ6CYp1N7GQ8iXfLfwO5HXSu/TRV0OgG/Xiqipkh+zIHq5bNgbgMFcMN0L17NhivwguhIN1DZOh1SJpiQymEvTNSI1XRqC5dQ9h6tlyviTtBukZX/h0q6VwN8gOQk3dwqdUonEm1jjna12kEA7AR9zWUaXIEqCRMRPPtulZ5JbqWLBT/Oz8RSeJfXUCuTXyR+crtlkaujic3gl4+78tehEICJ1HmtiM7l+oyOS+j2wqgK2ecYmh5lHpp/BXZ8BL+9RAu5ad3BvQNo/GP5XBm2sAFSZF+/Arc7yp27dCHpY8zZF3ue91lvHRuPDxtkS+hxlKRsvb0QdKVQYcd7g482aLfKEal+Ycxl3zPUKVvI++xuGmbI5GmwaZyWmvitkjDcN23szNxqA+ngdYaxM0kqwKRbpujELWcxvifXgXUTO9sUi2yrn3ZfSOZCypbPcL8hHXG5kA2PAk6/UohcQt/P/3pTASrFNBwPs2WQh/N8yj62YCyXcpYlUik9jZ2Dxvpdu2nH3ZwUbrEY38G4rzpg0YQrxxM2gll8BHIkPJGYZJs/XQ5lPOBQX3YrkNsqSVFWnkLiUCUQLunOFep7oBvkSToH7lDIe9WJdDIcfPc2rT2E+AydStG52yeHGYSUsdjiu2KQ2J0qitQSWkBPyakPfufb++dj+CHQWCfb8SvAiRizBzirEbcO7xrBQmbgNBC19lnTxxbwlDeXhkdQcUqujlcnP45et9WeQd/+2GnehJ1H0vSEn36pzlEmnxhvKXkOJYb8WHzrmjRDkqbuqM0Y0NISTTqT4ERkbBHsFIFEQr7wz4pfnMOa8cuLIMPIwYUhWfVfbgGUT/vDblVuPlh9aMPg9vMo/PJ1/rBoquSiuvbs7F/HBIBi4JsXzRlo8uv2VKnrd2phbkLyupK0xAgplKUiaPgz1ggFCREdHEKjgruQs5SWihhyC9FW6k3wClAASbvRtluUKLL3AQyJu3oZb77bHrlUEp+dzjKUHCJLFIMO1jdLc3BeIoPj+TblpCFjkdRs9dTrGzO+obb/CZ08C4lcWiTaa0SzJXK03UGCfB7Kd0zfCGJ/1x6BBrJgd1OoLZ4/yv29SJVefrBbK5o9sXWYqZ2HRruv1yLs/DwSI9lSB+rSPqAP3TO+utXCa9f+kQqQaWBcYnuuHRo137t74WgtVTI74ruFhYqWWzzCWyIiTQa0fFH12bybLIhltGonnxGnaUqD0GwsrQi9Hp+YliEDAs+Z9A09PU/X4izAlV9YVRQXFalJD6YFVVpuxAzzKXnicXHS6YFht104g13f5JYPW0gGkC4QOiPoyGVHqf8a0LQ/4wkq4AQOKbEln213OA1LEaTkGt5jjmYmty40e/2ZmG17MShv/55q0qaLufn8kpfefnwy6TgrC7Ui6eAkeyqmN52bgcXH05G8/a/2ybXSY186islvKziRBJA14joAWZ0aAWWMzHBjI+mQ65ZnHKWd9XTT3pNeU2NJzVb9R9UCKzDeHbDVf1JD4DcSvFBV7I0iSyFTa+BDhKCA7nbKBqgkI2zllF4bT9bLv7aVGB9ri7uaDSfUNg2xlOTylxXaZ8eSqLBmqAjZxPWExUzSntoiz0Kb/yigFr1pAlL1gCHQmmtC5Vb7lG15REDapBOhVg6kSWTMXK0jp8/tKuKScoK3aeg2Sp2EghAcIeG8vAA8Ugg0uh53UzHOAv0Qg3iJgmQLvDbJ75HvuUdko6RjmkLcNb3SDgY1Bl+v7RpJKSzmPkFGgXUCCu9vTTicZ8r66upy3wWkX/4UF5hliqj/WhHEJI/A4R+t5GOdxma2X/g8jNz7a1NKMkE1ypklKxdo2Lu/JiN3np+BU/Tc6HFWZtT+Xq8pK9KUUYnCnNwQwF0zQkc67+fygeWLq2oP65w3SZjOIa9g5Kz3st3mUCFyQMdjcoxL6+Q4NMVYVRkju+g3tPMuVtpE1NS2AiaCSiXroBHSF2pMH9T5eCZimQ3cue1sEhCJWvWWJ7SGtxZFy1cdMIX6BO7St8aYM/tarj/ICNyvJkSPaR4w5b6nqfb+aLWoxBs69ukDPttEc7ep48u0c6RadpqNiTCMMwxz8v/3C1EAEXpFtdgpdebJXsr7hWPWLSgVbqLx2gNOcmFtfmt8DIuQ5uEGem04VWhK8o4uVcK56Ekl70Aa1Ju6tBm6M5mSiV/PBze/KNh7JQj7ioqKaEoq75137+Jc50zEjZRyHmxQE+6+m91cDwtgkN0gpGKuqcalqGsqlMVENXyRQqrg4U5TFJF0KOGi+KicoGaztcgiSbwyCkUeK9SbDwWO6pwQlswsBszkVG8MdsWXUxe94Q1byYMMSJ7U1wnVlMRPWjko6HXMaP0chM8wKZBgcvPExA0ODdjqwuE1vTN2zxlZ9uhQZr76/efb4LvFli3WrQJW3Dsfs0sk+GuQHC7ej47Dmiw0yo0w8hdo3c+PKd6G3RU9g8nFjNfZ27jVvr/mppMOI8rkRY7AvePkEoHJaDV7Pn9C1klr+hWKvk4OjHwS8cJYNs/BppGkysZQvDEG1CtNMx0AvrPK5NTFPAxq+ar07wfInikm1kuLEVnmSDV2+X0/eWbgim3eeRi5InueV2cRh2LAFuPKFzBEvfrUEYU8gubqMSZkds8vnXDtziHvv/PedoXPw0J+Is0KrCrs+WqeI1fQNDRHP3arDWvKJRgR+uNOnmLyPxJHxbRpw6X1fh9Bm2xuV1XPDKzTWP4CbONFE1CdiB3JKlIsEuGzQXbklHlv88mhjx/QNsyWTTVXOg6A+HzXaXak+dNCXNVm3PzLUzFy8Pa3G4OrUo+ZFn5dJ7djX3XAX8sErHj7ZVEn7ZesXwZeXfXzkal39A+SVgXaxUCMVhI2RJjX8NCPjH6F7IVAfOSo4xGpyZWMnzHY38mw8QzRUuMYwfNgZbFILGBV1zE3IQML9SKOCKwN3euTRcp7Sw7G/6d71aNnc/Xv4cPygis9IhFyj/1Gci/LvGj2CrTv5fepA6sq2hm+2FrUzVeCLo7gqK/q0nqJI1SxoDerI9rRsbsNCDbfrFr0p9VHZCNwxaJ1wk80MwxD+SACsgAsGcgZJQrrpslMMIqVJPKPLBwi+dtm82qAVJBRYlIsQh3p/8uwxkIy2mdqIhveGoN3ioKahMHneVo+cu3sQnhu0e/f60yipasN31h4qK33PKoLOmtMGBv6sjnG9FfKbmZ6lk8Mchae175Ix+sk+BwqleIiGcS91X4lK9RZbnRwHUE0sx+K2xlAPNcyMzgfTaaVzkCji/Xi9uh87+XhAEsqS5fMwxDWVmKChSjc6TLEplo/bNz5wp58epjzjfPzk4CVFmXGjYfYI0rn1Znkinnl2xieHbsmRDlBAfSRiP/17zlX0+/r2oKda6vTa37/zXDX9fOxuwVLxSU15JGTmuWrxKmPXMTCkyDg69dtzGLDzES1TnuJr5hrW0dAcKxbIsWqcXkhrjnAs9D0esavwLGtVnxR26RFMDRWPbo/8suyicGy4DOziq5cEDfOTP3yM+cJ+thI51ln+KwrFS3kYHfis0u/L+c417AMERCRjQCXVonlfo0t+4X16sSl8HTaEv/C89eO5gtTMIiH8cyebg/Fe1YY6JT/sR+pgOY6xfbiGchsAK9u/LjP980iIbPS7rGgIX9p5ZTMBhgMMxOSOFwFUb0v1szggFKeo8MLPP5+ZrTEb0enDrScIp0LpTPpqBhEFXT8EtHWxM2ckDuzF7jS2ggFvmXND9QZIK/dIdVHY0DfPKsylweM/uYmIrHwczxVpXceEJNyNW/es2rBUpUOECABOdTy1iVVJiGg5Qne3TZXaK6PoWnIkqHobPvMhWyrNIzXeLWtD57RGiafiXy+33QP4kV0x7Wvpxt66Q0Dl7E6tPtS27hWikMmTAFfKExFM5z4nwtt7DZilZz0jQ+eT8cu4I7QVEzUeUX7QgKTHIbomDuqfQy4mup0dbZk9VAPJvPwnDUO8ihbuwzuVpyuHYqdhzHUxHoIZRQe66Wz2ETSGjpeVH9SwirNRA6QkHkYJflfLJpiDRxOh1NKW8g1dxRhIIeDkn0I2sN0OC0DOzdZkCn6Biso8kxO1qvtdhMI6A80217U1MwxMQRsCxv9/y9ayTQS27diN43dQfNcz5PK+3tyVm5pdykeUmmgDs3khbTRSf3i4LPDNOxJkTIvkNMLcueY8GMmDqyBwb8zzI2a+75CxWKqkO022cmS254dgMLGGsOKgl6vjqAuNQIW/bbZwzTWk+xfSoUmSyiND6KhmagHybIpcN4LirbDGuqKJ+C+F0QlmI8Tb9TTvpJ3FF0FkbKRUt4ZehfxXng55ED24uRsuOJ9d5qFOzOzrdKpDqtn9lmNtecP04YVgYlxqTyv36S4H4Vf5VlvYltOHDzAQDWZxj2Vzoow1ii9qBnCtTy86xWLQWqo+UXlXTBkgMGOTI/psk+FwWYyx98/KLc1BQ04OCn0eOuBKaGwBuBc/f2DEqnRPaowx+/pWuYRIp3Xn+1zTJlzZXQrWxiv3XlTP7CB4LULX7T5swM0sIke0iyQqfRMSG/18WYHcs3VyHqywxFv/+3XdkKWJbjIBTNNOJQ71NfONhspi7ypdxYrRqDZvLBRwWgvwFEr/VRy3q/xbMylXsu2rMQDsX0HNr2YVzmMTOL/rUZyz27zWsnBXmja+YnRgkaZ2ry7OuwuAb60R1r/90gw9p4EKD6XwBW0X8HJZqb6smx/50lzsTN58Awg0TIEjcALBewJcDG2+LkqSkCG37YOAnmQEweZ4kyc5TdeV7d46HLO6cHAt95eO2PRxZfJGGkAcGYzpXfqz4oCbFQnG9jsw0KCaLi4IjoPvQxW6FH5HWC5szep09ND+DXk1A38Opqsaf2CqR0pioSjhla6vUdbPIJ2SEK4NYMYrYqoi7i9vVtpPweEPzIBdEXTNXb1hjNoG2dyJft0oDjafCwwPouI/dckZSIB6y58vsH5OKi+GDBZbbjqDkd5SfQW3Ghki8MBHDLOCWZ6X1WYPBjK55lOdjDRItx4ROsXo3crGOGMECX1bo/3a69Cj9duB1PHlFhI8KBu70X/7kGW5vrJs1GxCSeLnwapdhhRTO0lAAG2V6nBkNjMU6DYNDUUjKfV1Lu+aBrEFN74jVRWEXTDZJR8tmN1nrsVlce6t9f0VfZRJB6RN2qbv7YmP4EzS5qSzd4YmiWnwsE4VK5Khf9ZHqa7bkeME4nrJekXhJ4rEPaVobEPAcjt9c00ee07b7nxpYfDaBoPTN6QzoU+F3yQ91Ijdfm+B1djagBKHfq8AbAKuS3fFPPNJyO3BLr+Q/69NrIs3qEF3LsBQxacdxlMfXxifpI/oAi/XrD47MHHtr5U38nfwY6PKz92S7r8jVyrNwRNC++UP0NdELwbvEkthymSaJKeTcBUcR9yxPt6AtWVIav5nQhsR6bdRO9Bq9qU7kMfWnWm6G7ZhXQIjjTWLIh5fUjLeavGP8FrbdArGQp4FbCM+I8Il7flLgIE4maMDQ2LL21eMEyxN3XAD273XTI8vc2OE1jcmWzyYmJ3N7t9vAVIWJli3Xk1DzncP7DYpm7FCDdAqz/8VBUxj/oDAWQGngVJTSuUhOGBEP4UTDPPnn+pa403mnFPq3py6PVO4c4jcNZTVXVPlpFPm1C7VMdoZ7X/WHFSBpQPUvtFUHnleIHpmHIMnOlgMBm0K1ctEQWYs998mZRH7n3BoAERCexnv6vJ4cQrzsytl3vpXTOzU7lqoBY2g94Y+rTY/MhvImk4MHn4khTkK9c/VZpfRzWAsppy84eiyFIOCE9WKVw/M8MV3qOrszmHvcselKe4sBl606dJVRs+1onTVCsSZIAN/Sx35Kl8Mt3rqt41d08hMMdQSRobbHzhYySfAQ0zTTJz/gK/pPLCsABE62bLqZZp4970hi3215Z8LfRCO6nEwcIPybT5yKLUcJCMoay//fCa7ljmwkQNL+yG4u3ikJLSMzjMJXmd/EFmm7ZhC4FHMoum6Iu2z9hye9qThPhPykt/2kkcsrSxCijeibBl2P4fG1yacbR1vtmoK4ghdy+1TafT/LzA7Dxj15S/E4zvJESK7UKQTFCxpd3M/no4u2Yc6OETdb0eImvRSGIBpUod3BI3lcDSLhvzdBrInTDlbuOGx42+5QdJQb5NwOo/u9tdKnHXCXgI0sSr8PS5NxiL83CG2NP9aX9d/H0HGfFGTYXiMfUS8BLhWN3BuoTaQfQ+uBqzoqk5cKGy+Z6jAp1nZ0Dlp2GXRcKk641ED8ve+B1Bk5z1CsAAFjIJP4AdmpP46cHbcSL2zH7YMHnAfOJ5iXxR1pvkX/A479Ja/SKbxBsa6V5F6l4mfDBo7bNuuw2XpB6k8bB+ui9WAou2WUgnARj5F+z5NDRKdSzZVtN97pdcITwcqDqmG72qxNSqtG8cMTUF0TdcXcA6FO8hLPSC2wWNYDhFeGwR31K94BdHgP6Dt7l6/NmgAjIwFcfevLbkhlD2qhd7f0TpCLgNXCBPrvDFbASpmVRcWaQxmcx6B/WV+HA8yLv5Sono43vt5L/9vI0RSfhqSU31p8RMCxlOrkUUpdSo5tYDqvVen7YUO8Vz6Jgjo/G6dV4QZCbqNkzKSfPV6aOn9KdKfZ/pv9FyVsQyhgzyqadNUtNPepVn3Aio0P/ige8+SyA/UhLMbD5U+T8R2zK92mI3VdeA4Tjgw1TWaIpVxcFmgvSmvEL61B6K/ANgQa4gr8PtSVFbCxbpflycIff9cXnPbS08LvxtS0sVuCqjStp23/EBkImEXcoZRWcg/QnihNzRo4BdDXqzYVwo55PB/Bjh5jGtwOJ/bsEE1I29dS5CscELshW8SIRYwjWCmWkS/mmzvzfBZxLD5sYai+lH90Doxe+MygzT0Usfvj3TKxlFTWru5D92H47mjD4GnCEDEeir4bokWX3p+buqpW75Zo1uTbr6Wisl6H+7B1SuCALo+kJNNmr8kdYl/3E3Ovhm0Fr8n+/3fmMjohVfi9VCxrD3ajqPxw9g75umTOzPlnfyQVwmQg06BdEPGAaSE+nBV63a47NQhDYUIYZxqp4hndMvUmYFUybL3j8ICVt9UwPOq7v879LTxQPnFliots/FkwzQ8pv5Ec21ZD11StGkCi+rPorYTq5pYp80PIIL4TWR1jHK4Y3hRfMhaTP3ro7j32Av6KQzmwpmoC0DdSSvkko9lw7KFij272s9EVb0Ry4qpmNgvR9h4vtExqziW+qkAkej1WEuYwqIhnYHUjASU+AHEcynIpLWWmwmHvL+K/72k5rhai0/CTW4/WSuANFhIngtSY2i73Ohzu+Ro2L3aGrvVkYUNR7cTPkAQmqEtF+akjqOULHnciGfm5wP4gKZb8aP8n1rjMPLrQiRiQEWBVjxMVKdC9yg9dmkUj9zK7GBMtWnUtwmwTZFnn8FCBJ7es5OLm5bBGUOqb77r1sjvpA89dpHQcpC9DbGcDByB6QIwmnOnqr8muCEGV1K4J1FeQMm/YC6oUgChsDkRwHl3Kk0iQvXaXOpZbz3bxZM0Kb5Gq2mQEQuDnEb5WNu8f3yuDCVor0CYAbq+FlH14YafH7tO89uWgXIFNbm6lLWTUl5LHKNsPzKLUbiPOsHprQGo0Tp6RcRvcFsljdQzYti9RHM4NcpG5/t62Wa+LNufNhjzVhVI2CwIrhl2OjnhZG2+naRtLlZiQKhOud0ZwMfcvsv0qGM/1D3v1Qt6qF6lETPdAHCfrHsibZrckm/7C3Kcm7FNETIQDeD40+m6772aGOD3fCeUiBxXMJJvoYUn0P0U2cDAinMAe2UqA0IWlmmWaVVKPkXy/BWVrcFvl+lnV7PU2O8WOSgonJO+UV1rE1Lj9XvBegdEO0y2+PVRWvQPw7N8pMIbyTWcXRJNnJtpjwRO0udPcZhoaUf4/AXG3WLRn/IBdxznUkleMZlO4fTMy+xQkLhWZOzgVgdLTBA95bhR7H2OrtL/cFYgRoHf3V7ui0jiK/4hlvmDQsVSY48yNbe0/tb1Q7hG4OejDzIFQHDXuc4LiHz+hpbqGPZ1hpZgPldFL2sO7GJzNQwevYFhGdNKsNaqg/1OuWqHG+7KsWGwPH997VhxbWpJoyGz4YD6GDbLwOwmhtUTXcrqdjQ302Vwy51c7Dld1JG7zCsay+KutNAgJkUkz4xl/FAHAA4tXBZwYQEu9z2RM3Fz+0K76jvC63lXmxushirQGXrFyZYgrx3G2+IDKRmDj5MFY/htdDTaWFUOmNe3d9hkghNTD+IHXlrjOxGDz0POWmPcbhr9ZUc/oru8zJNlNE+zICNKcduOhSxrfCrKiIVNxWvysBWfaIcGxEbSiSuiojT2p41B+/VA2nwSHETpflrIx5hCOLaSh0yRP+n6ENU4L0BmirP3htHRDqlvoqq4Y0tdCsip0LaHEdKRxVmnVxyQJTtqYDqc1BdgYK8wU+lvW0QOTc1Gxvkdl+ll81xPSDLXXX/2bmb426jXYTKcH8Sw+zGaZpxR2kc+U/XU5YN06RkApKjBtTX7s7b3exBSBGFTt70hJWgIZsICI87aF+aC62mEoVmDGQ75Wbt7YmYd+4ej641wJJllSXs7YEYPVovp+M4sjmxPefdkWxrnPC2QT6Cc9JDbuRSAOrv6KnlsJ7ofT91jNV0vyXeDPgL5MJSc9zJn1+iDiczWpmaPLSndTIi0h7oe3gLmzZpoNWizBJTNHvMZnf4f7qB1QtqlonmRF+3f2a5O88CaJKtL3vF/BeAn2Q81mWXuevomLhe7WXUmipZUojtwJFM7XeTcTBLVTdOIxPwRPHygBJRexCSuY/b8ySGBHwJp9flnTQuG/rXhNjcv6ppKv3vUSwGNeHD+rqBRKmvqRKYgtKjx5GmEDMU9d+JPlh8dB+Mcw9cgVGSxTQdPUZ3khJq2Vq8nrne3nqnOnst9MvpfvB5iRW44T/mteyySKNgqoxdIGGGjhg+0H2bcEgFFH4BnTz72JQkbBo5zDNDbuPBO3bERlyTfoProSjwUx9+p0CgEhv1zN3rdI+ujeYNrzbMe7wMBcqQ6mHWBxEhZpnKGlE7FietM4x6Zqeh+a4kZmRPv7w0J20EyejQuajd11Uh6MFOp1Kp/z43Qfmvjhi9FSmeb7dBefjnS2ya3pCAaeIpt95J7/irvuPgOkMESiODwjwobC85ObHiNgplswwDRYOleGn32T+HhGO8heFQ9l4+QBn+memKN4Ho/K4l+QrSyw4TncZ1unBnkPPG4odbfgWZXZDFwi0mQRj19MW6/UcUdS1vQ3QEio2lUTN+zGA7fjeh1tLl0/K/DMn2hyV573UtQfJbbnX/3WZc68UyZixUHwhFcKBtDlo2dLqRDmsvBkaD5521s4ozmnU0z942Ooi3xT3kqKy7zB7NAYs0A7ayYJEJeybJxvoonWDOs+C+NYtIfHlU0+N/B2IBgpB3XLeDKYMQkUs7ySLsa8B7NctecrTVppAWvddXvE2ECHFnxjhlVgSi2hOI7OkS+hCLyKreiDtjExQfUUIWiA6jqiIBtd3MpNF9t5dbtbGyFULCUc8OlgaT/pUpsggZcwRcwfxcj7q9bxTk2H4EGMZgVexxD8lCfauEGuYFyKAigh07iNV/YLLXo+LuPGQdrC6eKDZabObEM3D6jMYpgg5vMS9U4HIOz54WYyv/cXTOSoA4O3WNqzfJAfDAj+MJKC+vfc6/D/n9J3AtOSQ+iOFYMBg5A8dkKgRX+jyNgPm1knpxHtxq5f3b8t2PMtnKGn52McfSKnsdTbOvV1Gf/xzgtmrM6BKOEBaeUATj7qxPMXniPICFcn7I6EzaG/N2BDd5NHeqhd1DHHTwYQNNd4pT0xb9DwzUZuvUci9+1LgM/sWaUCTPKFmuZu1L5rACvJ0HTMiTR1sZ19EwALU/nhnG+gStke8oCGmUB/DFn/Mfzr9lJv+/aiyX4Z0lGIF0k50R8rbqO80v5R5OsHxznKrkvlD6chMKecQ54fPCCQIZ0mQHE2R+BpOqp3Vi9xGquMCIIxBDA5tjovthultwpeaa1iDOa9mY73NIOBvXTC6R0P1Pq1sef/E4/9pNjU8BWm5okvaog9NvMLNW0ugXdsK33B528Zr9dxKTCuwrxxhkhZuexW5WwTMbRZJ3P0+aZm+LjeAIbKL1hUdPl+AXgKtOBdJoD+Bc4GFn2MOOGca7ElTgPkmQZMeQbmaDKGC2/AihXTDGwAh8Ucn8JGXUNmDFjaQV0ivM+aUYPGgQCWx8ybrSWYAdhJvwbzbhvj3ua/ZNgcbgdYiv3iPTe4gmcdvNyuYyxxRCSjRjUL0yjV2Ot9c97Z1gGmoX/TPfh0pmFQQj3GPlnxd+TENaFpyJp4wTpAYYhIgmKMPpaAnhtCRAI0gNdnosXDh2jKlCKh3mLUSFno2CR1GwUxzePnZb31sWf4R6wLdVJxfMG1aH2n/ssuMk21PdTt1gCcnK2CSDPUixCU6Jqsh+yG0z/6cbMDN1djJ9fEc2ekAG9x+1UYz2wbxqPaSCyGZBw4OmZGe/j4voC262qHTeMolEjLi0wuvCMz6tivAj9VuVDe5m7y4Dxm5pwv9RtfFxOodFbQ8K8
Variant 0
DifficultyLevel
715
Question
Six identical triangles are used to make the figure below.
What is the size of the angle marked x°?
Worked Solution
Consider the centre angles of each triangle, c°
|
|
6 × c° |
= 180° |
c° |
= 30° |
∴x° |
= 180−(90+30) |
|
= 60° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Six identical triangles are used to make the figure below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA.svg 160 indent3 vpad
What is the size of the angle marked $\large x \degree$?
|
workedSolution | Consider the centre angles of each triangle, $\large c\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA-Answer.svg 90 indent3 vpad
|||
|-:|-|
|6 $\times\ \large c$$\degree$|= 180$\degree$|
|$\large c$$\degree$|= 30$\degree$|
|$\therefore \large x$$\degree$|= $180 - (90 + 30)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX1+rCGDn48ZrFJb4I0QbD2dfF/jpWgp+K5XB7akZ0m8zUxZAJjy3KXxuekANt+6SR2NkSY8vTGac/80XiQsbXjnNbys1x2icb5RbGFnavzc1qfs6aNy0wzd4XHBoKKJhBg3MQbaoanl3z2ADGnNGrktDUZ4DUs/gXGwY5/riH47Xx22HSSXSBzVq1hceh4feVLvF/4ysA/exdiTbBCL3G1SVPJiVJKZJJDP5v93Mgu5aQnBBnXDAmij5L3OBrUvGRv3oIjjFWfV0Tj0ivtDsh9xYKAakJyhqkNB+aSG0CaIkMS65jm56pov5nCm7uteggdcKBF4SpfQFSIj+ZdqV1SJv5XcHIpzB/fmdCyN1R/jjtuH5teBoNXnucm8J/MRRRdTB//0IZWsWAJ63j/FvPZrj5XdcMyMoTpw3b6n9ME+aJz3coGbtpy4XvmK2331hnrSH/3KZZ6Juq+71Weri/zDxXs/ETrnwIhR7hzi+LokKoYlymu4wq9xg71YcS0BJyrEWKz7wxfN/Hs2BMqqcb2zD0uZMDCnuVZs/yNRQ3DJtX1h575J3pc/Uq7wJ8x04GjdnBWQ+HnXRkEaLEcFkyi6mv0tSw/Q2nANDXmFCQDqCl+pLUr7KPSu3NXE/JbwN/XOeWiaXEMV1A4xOYuTH6fzrv//v+3SgLPojQVx5X1L9ou+6UU9kTpfQj8p7WXXJViO8yQwZ+FK5+bfmNV8pEBaID6KOJtDL0lvOrftsXmKcocP2wdVlbg04Odpq45hGkabSShtxScmR3/L9G3XoFF2m1+Keuh86ceiJpDvbDSdu5wGqfw1J2KRKW3Bv0tfJAuuVJDQp0x6hevP8hGvZ9fI1dnu22Oem2e78v2B171XIrPSdA30rvTJgEsIxSTkD+uFqG09TGfM20jrpQ8ZL5lFnHMrfOGIOBmZKe1UWGqRL7Rgn+r+HiPHbiP86P+TlhJNxKQGtFTKK9crpZ90d1oQKotWjZMqosY3Qlp1q4PB28IxXJLTHxc8Z8Sphhxxi3aJZoaddEcS8nMiYraiT1RjWs9yly0LMrdRnvN/C9cVp+bcf3RnLqs+Q5dfSucnqcK0T1uAjE5iAGHYJpb7tZvhn5UBKuJTCk6/nsLin2hCM99ze4tIdFwbKe+InLyxmf2yVx9A6Z0hvO9ClAFok0j633dlUWf2DDEYL+qTB5+GYHvvYehFAyOjXkmw2SGuQmHlOarEGi9hvyfQghA00qut1lTQmliENJyb/A16ufEfNe/E3VPbIvhcV6G4wbn5kxWB2LFxwkVpvmFxiVxMR4zAluWe9HsAVz64aDdsa6nfvMG4KQ3i08k72vVitCWDEhFJn0+hyleFBr/3vIZFFYEPTPo9IeQqF4EfzgGJiir2ZKU+ckR3/epWe/rylkcuLaKuZ7dtJq3ByjvUMmaNviEXrGDCvSrtqNBADk5Lnp97xOwuFLK12qCukppTRHP71WoM0vfQFRY81/gU3/VUxOFULM8y9hEAb30i3xM324ABGeB6kuqcRtkNmWM+cMxj3hOJYOuDaQLuhqgB9Adbxdr8o+t+R1gzUnO/yQY4Z8qbpMRgZOLqJJr/gzCLt/4oQquYWkx/EersBVqrCDKaEHHLKQxIlbQKqPYkspsEaiUkgT2N3k3FPt1h5IcGPzc9jiHuyf8Q7pLm0gcJcYM7BwrS2ia+pCObM25I3DMUd4sui2qBg1wl4MT0auzHeGf0TJkHjYAByt9KynaAvFbTP+PdiBbk1AAljbz++aSf964uxo4VLI0MEeMprOKVzQWNxn/M3b0pNmiVRws417xZaYwizkEct62KRXlyEeC2aEyBkdI1k0xiA6nydBEhc9bvotf57uL8IAetG7CaTOysH7T+/76RaOmyguyRrJMmQpIzXqJdx1FYbXR+MLSJon2GGuCMLS0xRhOYtuGpHXBACtoIXAxXvuwRprx1bnQJcvlKE5ee2NZBkJY+0k0hnf0QNSl25dVg/SO+b/P+IkJAvUOlv/dCABDcNBpth6Yn8H1VYKZNwGPP718rNcBxtvdrxJWiTcET94DlNx4kcgX8/fUCrSunDi5thzAyvcxMKSsLdYIPAg4FZYHK8PbYOJ7tVlo2hvpYdFT7xY/RhQw5ujD5Lu8fSM/PNGzdA80Zk0g2+l7D4NHBFK1KRam7M+dJjihgRdlIymTJGnJZQnuTYWqmL3hXI4Yb0yMN4JqY41AKj8t5LW1ttK58TgUmSYcomsOoahPstqtR/gXJbf5sYthqIKhum/OfrKtNX6YTxCOdmGIJSNCydlRkM3AW29keidw6otUmVtQnm7LBsTLb1hNyqBpKC5splvoaUEU8jq4cjHLdGPa/KxCWZu3UeD7JAn4+7q7W2r38H/lpc5D8pQ96Y0XV/rcDARfqD+Tnt8QE+Kw63CprNCD4FcLmpT37k5YMW63G/9DpHTO9Szee3vxfczUs/F7uWioXtGwFx5eVf3YFojE02dVBlpOOdBCWJADL8ywfwSQ8q31SkpeTN7RpqnnXeUV58FGAISyCfGjNIrGhYu62GNQ5LoLX2iAil4ZNMM7IUPIlkMCAdXNjGns208IryEvFA+3LiD8iVdPr2by/1/bXCnJiC8RhBzF48vykPA4HFUOb0szYZKMTQRxvvwxLedTHhVexEhHayi7N3VOOleuK7BCxSzTPna9D272qyuSCcovCop5PK4YgsJ8z5M5EyxLzvLzAuCK/YH/g+FIPXXOTMZovrwgxeJhxVse/5vMAJmD3Evg+LJ4HuPvcgM5dQx7uGuRe8MHhs8p5YyS7CqpCivLBlGMyN7ZpzYv9qa/oEZ/9muaTHdpW0mHksipbYaXCL/BAwVZEWiOzcihanmmYh6QXwRhNK+X91olFRm0k+6vivpJCfhQAzlHMrQhG/e/KRf1/uOVBSmYrbqFS/d8l7pwfJ6dif56k6jJDIH7OFscYS4wX7dMNrBOU/4m6MydNV/GKT3Lo5Q5wKWsoxQZLZwJjsmW0xEp+GTzk87CvGqGzKOnA6G3bTQFuTFskx01NEwdwF1oFd3+pgCckCaEoCPnof2yZy5B5gsJOwdSE8pqvga3D3SAsCbenH5QtL/yBy8vVCHkCA3MgSvEH5lZNonuvCpdpyueyIWkiobFX8c1ZTU7tUFs5jNo8wam/0SfiFLit9S0yEjTsWlFQbmzteamv0v+Br/sXq1wHH0kjjDR9GNwSjHNd09kaHZG60wpM9CFjZu+ibrD3gSnFLtYQ1ZWXMU51v7XggNx4z75Wr3iYyplJ95HhuXYmVzjxjfsLLz5QcLkAttNiOfOKokyinrzQF0fJkZaXorgOFsxLrBqCmEd95A8sEvCjvUzhwIMYg1tvmsOqyPC4w3/jFqiJ8rVJiVX/YA8QpJ7+8XSY+xnjOJ5eR2bD04ebN+r/oYD5OmzmrAEcp7TxYiXAUYxdtMWAPWN+wfSrLs5Hml4gSlJO7OQEzl7xrFOhdeeQZwP4NusApf9aY+Sidh5flyhjOeb17PV3kot1TlW6+AwFtf4numgQ9bWPLbQYvBM1589AaiLlgzUvJNGNEHGrgI0m5PhvdvnKQFUJLFkQCTeLqIr/szGXcZva4M+OtEn4G4irYtSMaX5d5G8pX1FjgMnpCuO3LcJgP0GMx/5A5VJtrTmwukPGnwe6wl7yvNCYwqs67E9D83PzX/iGuwlGdPUYxRivv77baMUPLqirK5VuoMQLo7b4Rj8e4JESSKC0LCN8AqSzdeA4iRxN47snaDRhDiLyNf7PpBV6YfrLUFQDs7NG0cm9mYSk9rx/TpaJC98oefjvSw0pY4fnHXpD5FvwzcVh5lNjabBG4jVJF7dwxXIXfQhqnZPXKmd4zIaD2hxuLO5gZsppK2fNgBVvotsbqxvnCg6tJppSsFovhqHdXEgNc4j7LeyK+zIhJ/T73uaI336/RiU+D0abp45SUnx10oUc9xQ33WFhHPS2rKMxTVHXUXfRTJMIrO5b7Sl4+ClSIFUhZADbQTO24GEFkF5CoqljXCXJepm0pXdTh+4TYcuTnT106ydZHYEodR71VUFoEIVREJENz3EfzSi5TNM+lOJ2qLGQgy8ckPI6ptzWEklhIeQq24k8NpMCwr6okPifwVfLVwjHrGvOiGOXxHGcITIGvLs0q+3rrYk2s05tawDzU1uj0RJCwXRwZXKok3IbhitXQHJJeHDTqYGFALeVicycuegtWnXs5whgCkrHF4kGmqLhYDw1mNctMPYW/lhJ/YDQ2VuoVTevh3yK3k4rcXRqvQ9m2LmQYLzAtGKgDBB2YGXJqhSZKfU4RdMyXAMl0z4Jw6xKx7IaV7gMM9MINZlecPl/Zv45Og6Az0fJH32Un4nsrOL7Uvav2DNRB2uB/ijdFYsmNBgLwonZmzotkd7VRiGSIQhn4q2WujBNLBsPtGfZMsIBAxzvaOzXqc/qlhkRiPRAMAnzXBUBLWhu/vcW2mocB6FEILKNeaPTve5plxCqAqGZv3GXj1LenLRBf330zXNl1SKcytzF9akmPJFeQXqTFpkkS9hAvGGibXXd4VJrWk/8LbivaOn8ycCDYr4dq/wgYyDOSi7pclmLXlRzYzigA23efd1z59O9calfW5UKHkS3/HX8eegAmBFCnGVfyzgrnIjhYD8FjnyoTIJTwvWbgRcTISzeGCCROxgljlyr9obIze8wyR7k8opiiEo3ylzix+5ygukIA67EEnxZMvIxv80l9PjvN50JVaX0WoU54uTw4Kz1g4ZB6MBxbepOb/fiuQ3ILJboBZVL79JlVI/oK44bSgSkoQYoI59KN4Gb+aG370ZQlMZPspT5OvPc0c71FgSN+EsjZGW2E/7my8rZmKRH7h/5Iu1+xy9lxAbdTq1pzRaCP7vbvFTgNm0kMtp8S+HTfBaa3fdAWqtxPATYeXvDKzaD2Sr17lby3Gxy4a5SiTcpdvkHWiU5uqrjG7ei2YsICI/pzVG+4QTIJmVjem+iMzHCIQ/ZspqJ4jJZWPeJwagimQAGsiBrUhR7+9mGtbvd04h54ZFXXeQ2/qvBq4WN60w8v1uW0uvNak4IzOfdWI4/plCkq6G8pb0qf9QmyzMiX2e7EjEP5vhrrQzvoMEWZO5eNvUHNWFIRyj7erLZEvjjYnRhSnLFvtvuFEc7xRcz1+e9aSvKqJe/fTxukB9KAUb64jG/L3qFB/bpO/HuCa2TTF7sIgGJV2HD4lmnnCwIOC7xFlexcvLHNEBpFI1nNobSCtWqbkFE6J5366dAO1WZpZjOtgxopWno7XXUOgEDQ2NDQr8sALFaItDOSm/hNHDlPEZt4f7sqRZQq5Y+1wKI+PBokgPvj2g9+RmpA83O4xoS2wRDS+7AKZQSKd62yVkosee4hwOOxJarRi3hfXVgA72tteWlLZVVMaStqul3o8nqIgVO7HLS3BYL3prJLVw7HzgR2cjVLHIr0D45Y6Pe4HsijAasbl8z0CJu6MCdwzNdZTFSkIDU/eRngUD+ARARpjcWbfi+eN3tH0JpTD30IOvUiZHUpoXt5zTefoxQDBz7UpoQEIgTYNkMF3Wd5YAjeNA5Hsp54oN7CsLzr5fJq7QnFlJJv5R0KNOc5g07bzFWE4xAWouSIa2nXnyj8QUDR2o0BtgXBJzabfZ19Xsj7i42b2tgQKJr28QN48jGGEe6hd49s1VlVH/rH9hGgJhxLsE4tJ5HRd66fiPUkoWEfVGoIeV9dFFoWlCOBw7euflQpBtVd6ke0yp8eTOwOwiN0V7fp5kaZZjy0RY41rUDkDUHFzuvPwCZmdUdNlykvJEg6px5leqh+il45UsY6HiEDD0lcsGO76kleowBe8l9dBh3jo5v6yWyzKZITHQxFcH0ZZc3j4IIDbcrNdyt03ZQrRRtlfaHGwwLpBP+CR9U7EUafRayymUkLjVw1rCbrXHhJ0b9/SZHsta4+tUeA4jqiDx9d3q4vk6jYFNTtYfyyP/NA8Jsc4jQXgFvmG3+186Q0/rIg4y5wFWVrqF5RYwn3YXBaXb1IJomibpHm2St/Bb8aOqTqdXuzi03a2scaRgKOqqdssDFFWYN4TzsGJzO4mbmOz9z7OgBhG1LR0BnkNhKEMZRoaNBs817lP0UQQoct8E3Y8OYZmksduXdXv8160eQ8Q4yMlBxef13VKocENfCqSme1eNRyv16QV3tW892aLgQieOc/ayFB1+WohOyTqbgIMfJjdeLq/cn0s3YoHMzMIhFvcufbWMdjAavvyFHZmnfKR9naYbtXfP08GdeOesZ8FQ/PqKxVCFsylCe32IwAiosu4lOEBls0vsVDou7sUs2+e/OhZEgpO6KktLRSsIZWsMWehDtFPpedCbpB+GhNypQIkRAFX+xFwE0++t75E3k9lN9FtgiQy/+sZvwD96U7NH7RslTCi3YOrE17eK0CKsmgB2cy0ImzgSe7/kWBSjV1co30dkjGMuLS/9lXNPq9jWKlyPu+f3gydaSAGVG740vSJzC2MpaUpd0g/+ktxq7crzGYXqbSyE4f8xDDnHbn/xRUf/fLU8QkS9fxB8uiR1kh9yzjBJ/hhuVtsQHBB+hEFZ+b7KjInl+RndQXxjJsHAxO6LMcgM4dUfBRgoVs8CTiz5Tf+9alZq1xZ3BxXNOAfIhOK5Al2BCUBo7eA9p2UHEI868cVC9r5rI9562c1McWsr75GyX8AqUr8/+vURt8Gpz2i03Z9XLE8ryPlNiaDr3OSn1fY80WEFMzS3LOB9ic0ycufg+NOSNJfry1/wuzD+npdhzV0KCu+3Elubz6leWPEL3KOknQ3UxL1jzIo6zrfhwqeDBQVwlGaxwg3aUVhe3hqsd0Oa1CzJAMmqY0JuYWjlNN1o0IkmwUIJAqbLRJ4zIwfOZQcEgK+mdALNmHxPER4RSd1EprE4cqUEcKaB73JKUXQ0LK0gUQ7ZwOE6XnRt/OOh73weWtZD7baccNbxckfoUSAT+RxJx9lCj1ZXi4V4/Dw5mWRcM0sNdQO6WNM6B+KKillrEE0V9EjeDn6+F5YqaBuRFWd781CrLfImTsfITjS9RZmvOcX8HtYR+a4kjat7Ta8xzYNMKzqdswyKjohzi1JoaXckZSbWImGNOt2stS+nOCHQ20lwLDrjY5Wmw5H1oOw+QAWf3lu/YYUc3ZUKJYX0x1tvm4h8Jrmr0uTcrGteVtFji9YrqCqlnjyOVrrE1PX7RA1hdZ/2JifYHmNnYNePiiEEKI+qhD8zbGIE9JcDz66RbvzK2Sf7AI8PUpNFQ9EbUNJ+4BMa6o+eQ7fk3neqi9C/H1OvZ8gr2ATj2cTBfT2ysDOUSR/sNqacQ2qePiZeCGc3SKz0cNq+SLEv+dt/QVR+VO1IXIPUgZVZlHoGIJnkO6t8PwgdluUkuGKcePfo8uaSELZrhrKA0AmGo5/HyIIdJSdUz6OitdWhmoLaUzbZaRrNgq+kmVbpOq9qa0QS3zSTbfif1RCxIsS31Qh3/7KXQSgj6RowWtvEnYikhw6fULwVNmZWd2ZJ4BZtpSWVuEmnUthdXEL2bVaYcCXSR4XznH5kysm41kmNRaQzn/znxeyzBWsTZWvoiklQytmh13qqHFeDQM3eygrV2SuXM391SX0y5U4RQ1HCW+/GyChQlfFsVtAEIyia3ywYOkuAgxCJ2cZ0uzxlVZl6asFUzh8NmXXAC+SepZASELIR7h0JQAXjT3+517jTnmaZTBSnCZ2PloYTOnhKtguJpAwfPhlu0+UWP5idTv0T7MJT8YbfH4wsd/79LkPmXOF/UiYIFCgX3RhL27pMMR5GmC5BuoboBDTk/LjyGiWSIaRQir55EbqsgFxmm1Q/xPo0SXw7PPSSAQet4sM1iWgg5J5AlVy+/b2FJz0YAFAlNfNWZ8DuqLrwO4cG4+1/xZrYSjTWYFDD2NlDzjYKl0vRlftz6Qa4M088zcuPh51sKPGGGaG3+EFgibfbNV0IWT5KOl2nJz0BoSWUa0ROT4RW030Qva3AgHDVnBMYVNLR8JOXzS6/ar8e0wpR536NAmRtxhI2kbO0El00yeANYoGKfJqGoY/i3E4KUEOM6pU6UyKROhc7X96vjkny57bPsqS57w/c0o27kq7MBefBf5I+yKaxne7ridOPK6uROZZRPgOicx+VWHwmA0zcftaaXktcZhvTy8Tj/XfRcmSlXNVyYdsGfTZr2R1krnMz9kCRpBNMKC+Lz5gOVOCfm6OT0BKwWQbuwQJngLAIZ+9OG8hzEofktTEop4LSUWsx+cbtoHpd1HxEqcNgzug77TPn10KD49jmPFoqnUkbswKmq4Ux/0/P2PU10UTZiiXSQWINqQ+i/8ESsZy6dbI28HIewtyJ4JZWiGd+7qE+6EHsXDJ2aEGDMot1GEtNBVYok6xZa1rX4fSGZrye8ZD7tSgV/ANv7soHQ5rrdK7MPBIVEMFPGO8cwJ9CQQfcRV2F9jCJEcAZfW8SJR2PCJQ2Y4oGsMYetdBmZszGqFVwfg8kHG+2FguF92LDj5O6bpHNhYA4vltG6IpMhM1jEF2FqZeku4p1PIXL+dN0eERxEQbFN55XQ3h925x+Gl4v7Nn/MGbB7nsMb/DnOlpVEJL7A5f6yTTESOyruDaUS7/SIdyJkeTi8hFzu/dUx3Tqp0hIZaGegAYqxy+BthtofTtzP/+9Xv56fW0anCQr/uXaE7m/eX30bLcb4YxrtLtrdsmJapMo4GqRLwuiEDTskaUV1H+z3duEF6shpo/LKTUuHfGXRCB9eJe3oLuBZmNeUV+wKKDTZoviDh1Xd8ux5KEzcwN6yb8LLHAM5hXuJFLi2Jl3+yYVvh4+XvJvLLflkKSd7Zq5Oe4kXNjNweZjuLTExo2x5dUYXaW/sBH6/npwe2cOhPgeJ/JIvN3piKIDr80R6WQVcpZB/5qE7Vefy12AGjLp5nGwvkHxg7XeeauopeSPoG8g996i1UF827FSsOoO3AZfbMXLOIUPUaI0puYEi1Ogu15BTOUGn2E3sGd0sPjtLujEr5ggrhXMMRV7Xk77sWlQr1MxTxgmdKyQs3mVMbBWjVJl013HukvxRd3WG0XaLzNG1Z27xiKQb4hbzlxdbEfxmUax1HJ/sInNnpyV0nkZcBBV/X3UqcFJemH47BYcnN+oMKIGYr6CfEaHb1ZUARND8AHWALE7Qa+Tl5RjxoeEt1t4PT75euWfOscD55FDXpPbJiJ5HW6axUIkHUA+5ikBHl/SjIZWivmaUUt+NZXYHK5g/EN8zIg0MvlrUTXwypONppoGj1l8Xn7zgnz1epNBmyqblA6biud+ea7LkHCQX77bB52rTw7iPlJt21LuH7gvDFhNqxiMHKc9HEzYaifn2tVANS+nDqgyu1hzY+smSjhiDtsjaphi7Vqn24qD+w2IUzFqG+O7j7VhE45kU4fyd3Xe7TjNImDHtKhFGm4TVvE7omPVjaEV8Y3sp4Qsxike++/r2kROGbJRipTH/nLZsO7xsxir/1GeVe2ueByIBEoCDxLu8iGSE4dc3tzKHaJbdZp/JZmroyV/euTJGd3xBunrAJa+jJeevsFvoScH1ovyIW5147Jy95m+7k+qKzFp/EaLtP8OU/Bt9/U3noHu6rkys5+MDqf4qgn0pI1djyh/6mBqctnDSNwADgWMJLdYE5ipJM1KKKlXBM1Pd46Jhb2B9Tr7zW00e7YTq70A7aUXr89ID6J1i/+/q7CTjDoc82gsCo1hwptVzfvzU1pXKocjNwTV53neEwriHdLwv7K5Yj/qEB+ziIjbLLFc1KoD7Vc06/BC6Fhb2I4G5eey/lmbqsoAx3sEsyCsrj0HvHBZfK4+CjFPvRAIJNmJz73bmzcRKEEl0Bv6iSyZn0Qa93FALU5l4Si20j1MxWjk3IO2X/HUVAhCvLXy9QSXhWzw1yHO2i38aQnIx2irbapodUiSAJDd7KSKiP8hYnoNZibhlrLUdNbTxKJZ+HlX+KJiuk+W+WMdh2L41IbJ5fRzrFt5dYkuB+YhBvlfdP11hpne0aibQACnaUZyq5QnX/8+k486+7c75Wws/FELbu0fxc3yNaQoTJ4WCqiEHwECl9IhMNLByGn3tncRQq/cJMnNWFnnwZIMOk6DoQwr7Z6ROAf0wzncSpQyAoW8j/yMj0TgjJ/yjRPCjrqPorbN3MFnZlSvOa5s/mJx3TRYm9aEODH0ZDstIOzy5gvmj4v/pk0QSLD3eMwZ8f7xxUkZeqrgu7B/a1cRWWeWRwzHIAU47RC/y7GJoh+MpimyzlgmMooqFyaOG5nO4at3WfgJa44rSoHUAU/P7T9/C5Hxxpu7i/RyyacrAtdtRJGSZTMcSqW3MttEjtkCsIgtBVX+CClcUGSm2EXAYVrWazOOBl2t85oPqv/bddWAsJTiXgE5j3A4n+z1VKbx2G0W97QP2XmI9qZ7QEZADfP+cE0CSEcWmh+IfjNL3RU8o7Yj1DupNto59D3aQlADDcg5Wf9drxQN2lYDoEo3FNsE//uQ/ZDzBusqi0Jr15dEu68Tp+rpw9x3DzejTNzCvlhhSNsoFMrpPsZij38mGZewVGeVGlLP8q41Kyh2wfICbSXFB0FkFEAp24akAwC3wQ8YrRxz66DSn0XjQRRCT6WHc6YFsCjJcLS+EeTRsy5qSjStDHDQvzfFWKXux4EozAVqbNoZZ+O9/eTgQDh3ZBGg188ZB9jIdGAXN2HBXU0pgDrEA88rFpBNmYdJaUDLlUqkrafwXPb9u7wPg4UCtsUOm+2WD7SQhfzf+HOKMv/2ZQpa98PDW8QUhtDtroGA3pSjDbPY8pZQyMh7GXyqXNJVwq6A2HIqqd3ccRV530oKzR75wAgxP6JHhzn3jhgnkAJxc0cvTtCuC5L9J16A3IK0C/ecHMlk5y0h53lyMy9ALREGCYHl0x/pcTWJXLFi+lEpilsOAEGcOL3HuGY9dqP+OfNHubQAKOHSv6WOPQ257B5eVpuoqLd2hC2FhJha/ZbS5+iKaFV/4TCtoZes2SDmZzh5cDoOZXbwajGmVOimZicR3QEXtGwGXX4+HMFHbq6l9nI3DZRQYzOWMl0V2GfHd9BSfoNjOV+M2zyhNi6ytBnQh7fPyR8+7+CS5YvmNroSVaj2Ms6mEhD2IRGTW5TG9VUwSvg3f7EDFjaB1yX8LuLXHmu9zcbspv/96uxW3LXmDt863nx+l8SunsftMif0XwvhhQibHFieJLRv1zKcTk4SLPi4N0SjHibnknOqvEzmzBHPXcgaM3yv/SunYqp59V3xRCu6ZckZut1xH3pI/hFf+J9uZZuiFrWcdc0UkKR9EnpOIpArelU+Xev27ooOabfm6Awzk3TDdmzEDOBIn0/oFSFzlsPC/TjxqtmJ6gYgZOUGZqwdxaRw1KtedQXN/21ECR7Wwk2q1JcJU17EJQfS8QuLOjO7vKNoZ/rhaDD+ojUbyPLV2xiFIfLel1ROYUJ7lsY9Maljg4wfhjXofC0Dh7agTkDiXRD0FabhR8LD9LEGtH0Q09bVWk7JLn9LLlaLxamHnzlhV6n7BBHeduNzR7jBgRA7I7KBtDWolyII45boytZXsVDZrlYjH42Y8lm3TqXuCtaTHhL6XmGwa2+UFmmPhxShB4BR629rumFTt+PbePB1bUHwveiFmBHF6TYgzhMlRGo3DZgjartkHdp/Rh5XdkveJKZ+Bww9qxqqk5dupHQ+LnHhqo8AlRexhGWe6zL55c1KSmy3IECFXMdj12pOOtsYtYekcG6N/RAc5Q0prbgq0E02EOOh7QG58BNZEnIQIAqvIUDzQu82IUvZJa6plqj6d1OqqonnDtmOt8nYsvYoCGxC7Hy6TCxJeF6UlOuduINSOoeJQRVJo+J8L1ILMApj2n3PpJHUBboYBn6YJTtrMY3LUQvf+1df9m3uWqn+NBYvDbXX8HLQ7DfkT35J0U9XgkdaCn8x56klqUmkbzXrhuaib8y8g3GBPgtRWzCiXtGiwR4p4qXs5lkAh9xXLfWYSmOQaeFWjrm8qxQl4qT+VGWQmh6ZydH+2NNIDHx4atLCoMlenfNiRuZZEKM9vqI6tUkpQiW9Y+7o0TawiJSfJ9lur3BCYu7NJM6XM5i4pI8Yn4f7oO6L7CroeiurCZb1O1GKJ6Y9EBkvS8KWTlFJGbVoxTztDVA2ceHiCWhLniMLVUBa4Bb+2SKI/dyyuxKuP5GvSDD8CTlLkHFXJ4TXdckGAM74U65nA3Wa+UOyojVVZEPIOSGqST+awKOfHj9OBXvMCt2GdV/3FMcWk3NWQVwBnjx/It3eTQEIPPB+Ke4On0oZx+AEeID1XolDbvQriywwCeBzQFdab5AMg+kYUUgOyP6odCqdYEwWk63crtvZoCwGwbksOogjx0wLgjc6YJ+Fq1F+vh2n6wJxXRboEHt4j/VeEd8wiFStCCmJgd5Hw7Rm9Xz9KO91SgRuMJDi29uCDQE52daBFHbOxD
Variant 1
DifficultyLevel
717
Question
Three identical triangles are used to make the figure below.
What is the size of the angle marked x°?
Worked Solution
Consider the centre angles of each triangle, c°
|
|
3 × c° |
= 180° |
c° |
= 60° |
∴x° |
= 180−(90+60) |
|
= 30° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Three identical triangles are used to make the figure below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-CA27-SA_v1.svg 120 indent3 vpad
What is the size of the angle marked $\large x \degree$?
|
workedSolution | Consider the centre angles of each triangle, $\large c\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA-Answer.svg 100 indent3 vpad
|||
|-:|-|
|3 $\times\ \large c$$\degree$|= 180$\degree$|
|$\large c$$\degree$|= 60$\degree$|
|$\therefore \large x$$\degree$|= $180 - (90 + 60)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |
U2FsdGVkX1+wkyRI9pzEY4buvscHYyGNO0rCELEMOa6QGBwLQMQDA2lVz7h0Z3WJ01d+KQ1WY9p6wtSJMN/K1Mk4AuHahpugVGMVMIZ/r0B3K5a8m4f4VxmkLWTmw/HTErNtPoxXp4svMYjTCa4MxPcftsSL3/zM6A+HXZjr+DnSviEehj2p2uIo1dcy+jfKF2HwTO5iRfgTdVzhwxRgm14YHL5MSz/CoFENdBPv7t1petFT+FkKLMSbYyYDTXw5orS671VZJoxv8+Can0dhFriCNP/BJVvBDyZybrxSChruCBK700kASFxUMvwuItwWb0mQnCEzTOpqFikQzDyDtndBhhK1tcAvp7W7S5NS1jDKD00RYWJQvZDRBxQuUxwoBAHbhlw+PRWqPsC1sBskPJpNovh3C5pi6KgR3JgQlH/eWrIOhk8VS1mEYj8BgVZ1+fISfUt1m9lp0e7VwMc+WvVgWjLvQvvpFdqSaolYF+9xPAjAJamasPA3AmFW8wcaj+S3lQUWcg6WhE0fLYfxeRGXLp6v7Co2DXwQ8LIubyBTZQraBYV24Iv/0D/Xd8lCX4AiP4Art2Xyi09zriD9WTyVpAa5EFOeYIKVOI2c3KuMPuPbXlaEr10GlKyTFYSCzKgjxcKfrGHhgghe54WeIWlrzUJA3SyKrghpCu0MhdR/FFpKOgS5jF7vuTE61f9if3LGsstICNuW1KNJWONV0BiDsfMpbYOsD4HVt1qjbdpkAde3hMIs0H4JERrkQQmovLnWnoAsfkdaZiZefd5eD1Y/Q6+q5JtV33mrVqVjwqVLLbzycbyRmKKx0LraOiz55amZLtQrNXciTj07frZ52PqyNDn2pGpjP4hKjACLc7g6RYzsuGHT6oJI5DzKEAkE7w22zKXX+L3HdrhzwRPWSVHhPX2S7NVm+UPF5+N37tGNoo3M24vKMiwS8d/lF/sPgMN/vTRgXLru7cFupwCz5soRdOUxIMMiSHXKjKWciOXvAUKVTIlUsV5SQEuCmrIyhuMU5szj/0qXCHlkah1YLwsFcAh/Tyo/8/svb+GBeoehDh63HhaLu35fffWoolkw9LcwNYNCh0I7kImdV9ToW5Q4vZteQKi3aSi88Vq0lmKqJTDWUOPpSza1JIXjgF2X8OjO6Imujw5iU2RwWx9+bjcQ1irPcl+meMCptVEY7jmNWy851x/VYY+8qVXt0D5p+h1CadWQF8ud8mXEMd/68LfCZNpLa4DmtM0PJk61tPwyvsgfwhL9nk7QG1FgWilcfnhQ+gkJ6+aQei/AHr+SFMevwxEJ39Lz9Uw9FotUNzgKOx6wLZXs0A58n4NV1vq9wXLtrVnNZ3LonwTQtRUxUORV8us+JlE8qmN3Z4hIqtml8kuNvgQWT6BneW4T3SZMtMQ21yJ/89DE/vH5GeAmvF4e/GMuFDTxQUp7twvofZg0eKciTBq4pYa0Z+dljlxJxhui9hDfFIaL5AizQ5HIlddxQfTTWYb8ffCCmdDuJUdrwXrj0WxJPnTZEc96BhtemPfucHcFbkfhOg0FowjcooLrdit2ATxi5wm7YLaq+zd0lbTYdQeQk9s9OZ5kXLOvH3WbCo39HdfijUA0YkelSo2LuGggsTPPgsWNsi0YTaAgZFrV17V7GhH7yRKcB5g/3ISfhfYL/3Ev7PLuFjtyelmp8xRMZQru5I2qavBNCpW0xCXSJSPS0IWQ6HGpksazVPRA+Qg1ekmy4YBwh2hOOKZX+TxdVeO30f6MelZXsadUPMB1Y/idCPkOxiznwKsriMappgrvTiVMA8FwUksu6E17lkvVvXiIFH/781jhffJwSvrMQWPeMkPs0BcY9EYmlG/NJWRP2f3xAiSCv+rm/b2mouAU/m4G4+YA6bhoDkHroEjxFLkcSpg2itbXymshemekl+TGFZAbJbX8T9jZoCGgInUMQoDbnRzifwqZlLRTynBVnHprTLfT+sFAPp1NU2Yz5RalSi17UALKwMXZ18J4gqPK332WAiL548748m9928uk8x4ebQMDWQZFI8e6drw+lIPcFOuSmWLSKpIABr28UoGNm7GvMcNIrIuwresVdUkQWE+gZFjrzuyyJGYj1P9U8nRsytD4flRFbrUmfKWPPdYpg53aV4zstaOI3HN7E+iu4WTfYvovVhG3MM+dpSCKCbcG5rCs7jwGZMhjKaFojyDsyGwQR2hSbf+hZm3p62HdtKPiPso1AorTDsWClnsn/Hf2+bd+shNZJ9OrBXgefxiDQvd5cP3m55LdSjEFzBP+1gaUHd7iXywONkUMMR4+S23/Cxp4CiR48YAp8Enm58ck5KUuOlxMN045gol2pfKUAGg8BKdI4Wy1CD3FEun676FooL4Jsz17He2j9gR7CVNl4CkQ69liEI+JToc1F5qut4T7SIAEYZNJS8u+NGhowu84Hfz4Kr6fV4g/h+hD2PlLHUVbPEBCZ2EoEfD/z64Gr1B6jPNT9sB3DtubKPg2vFr/SOqZRGg6C+b5h/MLgQgTUBxE2c0n/KSCrhJ9S4qeDVq7VcI1E3PH1dDVGLEiBjotO7aATAIbDJMCgYH8CIoUwYstZFbLuLYLxvPQtAlmR6tOHKh6dAXJBPiB6CqhS9iGGwuF9yw0fZakIMxG6xA/XQqx9XAC8TrP2TgvS31VeHPyxVvdxfq4L4fi2GtAQD9qQFHCYYkNIbRPbt+kJif8G7HlJBxTJZrEkyJtwOGHgQE2rD3FBHXdJYfGumOqyMvP7zACTmIEek4Tionet5vSg5TW58/lKZswNNydsCOLwzxL1w4GZAqypIfZOYu3p9Y63G2rJS1z3DhMVdApvfNxoSWhxiHUiz31uA8uIMnI1Epter5h7NMZjUd2s9zib4gCH+E8GkhSF+wKH06amsgO4OGwVn7RRvugVPuZIe6Jq8V2vYhCWcis0dO9fykrl6Pyw0XaawCqbsHhCzT4ePgNWBnYq+FsxAILNDuCt3FBt6VxAEYuuKOGGkDkcaAJQJAcDjvm0ovTmerbXs5J4iFowxFVOgoiqPU2WtZZ96toJL5bMjV+RRyDpYTG2BhbRnC2E2IS2jt9pIwLIN/jj/LsXu9smJsEPjgg42E/JBF3P/Z4suMu+51O0LqDaS1udK0Y7tYCGDsD8JC256zm9sqhCBTdEiNWui8KaEpw6tuFEk6J/Y5w5QtAAy79EMSKP2vXq+yIZ3N4Kd7iV4iXsFtbU3CxYxb2pf/xOq6kK+VT+yVlQgQD+QmwyQzMrdjtkXcfAnV/jZLw91R+jfpQLOmyGLXuIP4RCI1hTo/vmsdX931FglEjLVEs4MDEljyHMMtQFaESvLhlwtZwfU5h3jMS0vAqomNUcdUfOavBMVzdRxxLEANUg2eDi/aeE82QTHvbggKxA/TWTxnPR/1GJBQHoRJOSGlmpUWZClgan79anQ7/53kp9O25l6NFkY64ymbNdDlzgkHd9EqgwPU7E1J9ECUoNYJcW36hL9QkUQgGc6Qs4bNfYLRueIZFx1Qm9i0xQkFGYBmXbIBDB5HAjkmNn1cf01zgOjTAk8GzEnMCbuh/3Hdi31WQFnJmTqpwMd0+cv8jlcjAbXdOeIXNNoL6ym6Q3SUdq35ircQmclOlX3Y+/BcRu3iskgXk0A3vh6d5NI7TMy+Nr6w3ZigGOvKONcrH/QJOdK0g4Al4BFapMQv6VgKvrx3/NREzYoEjvJRjmfoHOCRIoEJA714MRQVFa152XHUG2Cvt9Ak/LeJkUKQ0v9igE68ZfHWCf/ZaHFzSOSUnlSYqkriEvygp5XvfGVFsi8jJyJA6xZmkVT0g0beJPLtyfO2wetapLsZOFoVcQXvrL0+my5VOdcqCREMWYySI2yES71ZHhemin30IHC70z17ioIy7OuGLflApne8v8qS4xyYgTHR6K12AxEAPZXYaerOrVjS0GR2I4LzxBcLDEu0g8rooPwwVct5wyujMYNHlpQuE0jWrwojzwcZLJN8vjAjqgqVyOmSavqmVAkAqW7H/OegogHyVL7ND2DZNccIgXC67J/1c7I79wqY5XLnxBBApd3H4MuPdhjU1g9ejCAmSyySrlHBvfjZ9VxXZz0GN9IDwpFv48So+3JFzeSHGycmUuO3uVHqpJ4ALET+IQXxEveUVyN8oyFORIug8xdnoBQdvLaSWQG8PZSb6BZ48U73GlBNmOB60y+9Iy731141F904Gq2j8/wk/Xq8wRVtA56CfvVl9J3VBayq0PonlATBQc11M45uYl3TNT2DlDC2budqmkQJfg4M+ersMLGnUINKTmbgQnlUpizTU8DVWfKwNVMyJ1GlqCa0l7Rvqznm6Rm+2IpFi8r/6KrwGtT6uzJtnpsOYQMtCik2sDL/0s41GP/javDHc6jeIHCInPZxtH5Vyte7Ll7KKw5/IyIycr4uY3xY83rWAFmKlrL1iP2xjtiVYS2gKQGaO/lnAnbcuo1tQ8WWE26cHUNS8y7kPThlhcu2wzyTIDEKlCvn9qVNbtgUlYNjk8Z9oahEIjgIq85IgJyAEREBRYUIG97XllrQP5807Egn76+QJPhJ3Y4WOar2ARFqgPS1yTlQ84ulTnWtSUGEuKMMFRqD4BpCMfv+z9vG03ffC20s6kXZCxtGZlB2hrO+yOYHV3D7Cn9BqpmF5YNOsVLXoSFJJbBw0U6enjJ7L9Qe3ScgjgamHtAnmjZ8j90GkoULqsEq6eGZuQpw3Q5LZ+XZs6QljLKo6F+pZFSat7nPZurYUpX9QfRMi6uDlF7bg6/ifQTHb1xcnhImjx9CNSuJeEuLtVfeQ5AXybAkuuoIiGqe7kId3b98H+mTD3dwFrR0DeaPzciXZfaJiXet3pxYWbwYq7ZBvOFrmF3/ksCF+aSwmcG/wuwlOKO6lPcj7KU3TmM9WgkkGJX38hyU7oHzkmEVoK4DCGEYsOue+8RWXH64+tMEYs7KHZ9VTHXyN20tm/fgvylekcc7XvS4QizeM0vjrRUHy9MUqSxlShieaRenjmLmiiIfS/UGr9RRSaquUluRPn/nOfJC0yA0o3lfKPy8qdDzhfmFpxZg7hmyKt2rT15ZQle5nsaPreZwM7d4wPO6jb6QguV60MFCB54vMcxJ3ZW3W1C5UyT61yq7FjugIu6oWPQc3mu08e7qdeYx9wLTAxIcuVCNChZBW6/PcanyEEORNnmz7nrcIp9QzXTxJP8LNtzI2h/rNLCGi7+aGLBZi9NKg3CB/Ma4ma0R4gEPnqasKm9ZLeWfts4YWfHX2X+48BzpdFsml1/F/IuI+NLHUXuhEGUWjjdPr8moiRz1RvkVXKpmFDTu/r4zpzMaW+6ONPMsKYv15nD39aNjF37Otcc1hXBEO8tXXKLwZWPSKYsfIw1aTLc1TUDPFS0KwCv5aXekRSbl5p395QsTVId/tBCxMB8Tdj/RQi9Y7Q9NaF/GaLm6M411z3clDTATcOpg6JY93sSz1V0BtMDWOx4hEu7u6KEd14ho3FOOf4svGwr8E6kpGJY84vo+IXWs+U8MinGDgwUfhyACWD6Hl37IXArPXB34v+Y+RtrNsPikIPpifXmx1DJK+KHWZ4eoQEvVB1MjEB4ViBsMUHMXpwXky5BQe3akuqwm1H7Y43M7LXdnyXxdM6HbT7FbbZxYzw845B5ALb880KhQHUNbYhRDxJiBbylr+V0EnmThdDKPrq0I4oPzEn54xk+77JJGpRXqIg3AjWL+kzgfgO67DH5HbARp+Wn0BcSGKsoy+E851vkaPfwYYk+Geq/RcMQbzADXkbVQcqUZGse3ZYskVGW00WQF8Qywm0M0VjHhruZlZTC+fIdmbidIbuGGHbvr6uJRnSNhudKUVWyU9UIjp8aZ3OIu5GfQY1MKZ7HEEPkDUp0IguAK+LTNmXnzat8n84GEdtoU6qZcqF3ZxUwnLs92mUO1fu6PUH4EZFpGw8Wb3/TJooJhTH4QtUpaojBavi/5bhzLXGxj12krZoYkCqqJWSqtlSVHNevi1ruPgO9q4WmI9gCwSvddeiq94YhgkOfPT1EU+GUFf2liZpP/oWiCdLqQCyV5Y2gMjZlPmiDCXMbatYVs725/ayjJ8BvtJGMqzUitduqShUP7G51NGj3yceaFw6LJWHlAVPWJp2B3b21G4Jt0KdGnNBhPF2KYS4lkC4B9Yj3U2MRm4KG0bt3/ehBH+yYOH7hTb2v+vkeUQe6oKwdXy6ru3c+Zm/POge6JcNe9nxBNQSepv1p+2ucOTk4qTyOmGKAsq2Vo6J62LXis5+hAl+obYv3k4dXhMw+IpEAnnPN7K7cNfWh3/6/px8DRk2Fatbo22RhPmSmBWyjY2RrPFfsIu8zRx/+TKbIGFokc5m/holm3qQ39wMUy/2uKSelR8bkKL4un+FK5eJ7xUapNttnpTcMghQUjqVryVA6Nn0N08NGgdOFAv5vYVunuyJoTiqcgd9Q9XEPt88APEC8tWMFPK4cx087zLKnfXBpmSUcrssOg27tEKcWIueUIpKtM94CO3IkWXkEa3nLqJzgnbPZ4sWvJp9Jz7e2kLrbAUH536eA/dIRQAnhVNrasNCI50LpuW0qempiZTUETtuOdAkNAsEB7x/o4aFsVkcSULb1baWbxn8sohEse62wBH0WT+i5dtKF+GyQL/mKHnfZ6VzJksL4KdmrAUDIEwYV0qrPQbqhSr43D4m9fFRknAgQfQ9Yz6nEKrJye+k9uTsDBoHVgzom3x0PkTQJMYnIBCzJBbY02eF0QrUqojcyHp+9K+A78xXnZvD/hC0XY3VcvKBcr5P55jnB/nNuyY51ORP0LubNHn2Ijv7YipbxlPFHdLcN0U2QFllRIkzgKM4dbm/W/w2XoEpMVsPE4ukwuafYCrgDZTnkWhgHoIBU6Zx6iirwty4M8wU8ugym98jHnMLAZEJ6NuQp0xc+m4WcYx4eGO28O9exeSdQCl+Mo2wBdXR0OCSfz/2CWj2IZO2Bbe1mcrP2sXH3EHREgJGlOqb+R9jZ2DTeRF4PyVn8ZUapWv+sssyGU0ZnsQdODRNngINPNYpOi4vwbO0FH+e3jGcL0RMwB9URLYk9nveQUH9U3j33v+BQp4HPwaWhcm0BilyVbVldcbmCkJUu6E6o7T0h59hjpFRH1BAGf7L9Scu2oLLMZs0Kz6QoCP0lMaAQBgYvo10Sx7SjZq4KgDUvaGpr8fRzot6vbfaHJNqKdG9rPq+y+dlvLM1G7lfEnHzbtogVSXObE94MbBJNG2rb4VJ704sjGvUSEJqU35Ab9wF9MTTvM9l1qkdBwbTe9zmT/RpxzsXwi0vwRW+0WTVzm5UeSiaD3alvsfvY65kH/3QoGQlO3PESN8Udl4RWz+MDZGwOV0feavqQQAlWPm7E8cIEN7vz/4PrD0KFbiGYMlcp5xFoEowIdNUpzV3PHWeFyJ+XdJ4vEbvMvUO3Rx5U/gL9HADurJ4c+FQVI4ORkThGQiDLz2Y6FmgHfbdXBjTKfoVgxCuF3ktAJTnjSJbZVO5Uk229d5U3ZO11FEn3GHkRpZh5CG8zQzyJLDwqJM7ECfDOUG9B1948bhsegc8gB2ggBFXwpar7eRptUgMB3HaqDk9VwAv2uVUaqXrqpMYHhmTnEIYYzaH/+NLlnR/jYy4PDVFFTwL5cod+jZaAXqnCSf2NtJEAV1Xhj+NxOnPHWAOfEXHTaVMch4yGyTPaz6Q6fDALtBR/zDe7O9Rvxa2L0cmFFtap1Feds+R3Cg02nJPQIfl/VmYm0ZmMOSaA/KUvwGopxZNLAW5MSyKqsYrYQ+DYFgGffJ42JZ6aOKXXPx1mFR7Go1iX6yQg943Tola0syl7Vp763hEWn32us9FYU6nwTFss4KaK7kRTB0pN9EFp1hx6NHFzPO0MtF2WI1oKT2Xnr2ZukJ3PstI16bpEN4R87mGXrMT7KfdBFQA6h9jY8G+sik/PpZFwIJV15aRB2Tu4cY9cs4QkWs2rRgU+8eSBX0loRHylpu+jUcrREYSgqUY7R4skz6OYL2LKgVaRi0bkxjmjUtOx9FSVIqD7fF0T7yR2TSJpbiizCCSVGmqYUdmg0LmLNduiTWFuc1tkFOPtG2Ohs+RWObHFDSLdCjdkT1wr4zGYqN1CWgiKWrjQEGBjGykYu0zm8cOtK63V+AwyctpjjzBAA2LPKy9Q3C1T7b/F3eOhRDz3w9jk2bOPDlcuoJhCa2KbTM4sFUrif1xjMWm8Vswzn3sQvqPdYpzVkhmRMqOwIfbbzwU6Ep8EQPZWQGro1s0GuxT9U2jGuL76dDGch0OADXVg6VmHclnj/jj4vMb3ZzRdl4AtbJEgWsXO96XEEgI1giBXIdEYhvRLfQuThHnOBS8EJ6aroOiRnH6DJs/9O4YgAUQeCNal3oxF61QgNv2C3dMZeWdxhDR56oCmEP2Co1r2jOZsdgLuyVbxA4BnPnSic70FTVbUNe/2K5Ba/jQjr26w0aaIy+A+CiL8J5kL8R37KhnWuojECp6Lj+0VmqT1PCDJtDDLFSjkteFi18/ZrH2NpKBDLXqZ4icuLMuXGvZmCiIM4kDcTXwlD8cniFS1Lbk0iuSQJ0bPZa8wXtyt6aTyG4Uz32fozJn750GWtAVJfKsGsAYPkgFaI4+ENXN4wa2NzTn89X1fXTNppjht2RCVpKTDR/f38XpashNWFdmAHeGJo9Oia4P9lH/lruepQMEK6nX+65Q/sHFdLxxzv7H8BsoK+DkfkJg657xwkpPnZHuRQxGRSBD7+CtiM81UBSbEUymcc5BTbTpcd1DeIBFmxuh/MFsY7kV78tqr0TuSY5Prj9vDgtARR4vuQDFq4U5ssCHnttsGO3pUh3gReynz7s2XMs62Jwm9Tb+kMp/wy/0SB9T49jRa/JAeAWkktobA1C2qxiBA7u8W6GIFk37TRh+X3O6WXxrKj/DezpYl21+CHlwwLIEdVth4EmWCmCUWFgoOBNbBcVL6q0RUz/Smydrq/mjVTpxquWtuo/DB7cjrwLqMMmBBEm9cZ/kJM2DmR+lY2k0iDDXpTC33NDWry5OwaM1WvWx5dJB1FYSckFuo89ljuvK/Hvwq5L3NtIzXP/IbLR61jKj1dCTS4ykVvs0P0qdZjMKRxrN7EusDWkLCduIgCCknFUtgZznOFtpq+OLC06S7sf6X12/Rg+mZg3+TuiWGZMyUUIiLZnADUnhMggG05B1NLvjlFEpqIrPMp7mcnsNW36i7ENfhZRd0B7YwsyH4pFKspvNAtek6LrTK1nGYfH65dn28N1LKTQzP1nVid+oaPDGvEMO40dcyzRFw5vTxxl+5WThRCA4ePFJg5cbe/GY2Xw+WhQbzWoqqN5pJ1qqpAICYyjFpyxt7AvT3ZTeOppMx7fch08sTI/y+y3QUMkodYi+I/1JTuEfug9bzui93HubLKxHC7vPorrQKGLEvsSoDC3tAx7fcXKR9wGunzjNUTlPNbPgRjtRLEeFPYriNNTvzrCEBOBo07oPP8jvAOQSl2FmJWNkfSuM6+6B2oCOE697mvwASfnCcuo2wSXNMFPwdwp5oVCpt0rhXTJ1fBQ7hFHSz4lMMvPkB13qJbTPa8kkO1nYPW4YrLaWU8VTvDt9891rL9bnB7Cturigfop3G2DilU56XS+goOyGeL1X3wnoVvJ/5HY3lMeNIsFphgv5/JQgs3ZUdKzsRE3yNCRF09KhXmcYG1e1lwFr5PE/cLLG+5N+d3f86onWTYKcBRfkpIt792/4lgOWPMTWOd2PhGMshkSpVf5K7/YyaXmHJ8MVDlOJAxcw68lYZCRW70hZOnAZW92F7nVykxiMv4JJr8EmQhly7a7ov1EQ3pRFMwUgGLCvcxeD24N1IfgyUpsDxTI/ScgcDf5A4zkkK9sMxzm8Mhbc7Vo5xwD4auHhnC5C+OQiqEKobJhN4uI14YnbRE7rMXkKrE4V/R/MjQtLb4hry0IyAN2W7LCfdlMLujOt2ef0ZBBpkr9W40qLVjny7BbNXaUkKJOHyHRc4lT2uJfty36LaomsQ9udJRKgJWNc3ktWtZV3t0uGB1xKSNVrzEAhpm6iMVamFBSQCiNfNvS0nBq4jUQoB9yEEzyHVYDSNr0z4AfcQNHYHYvGwLjf6Uhq4eh+6G1Hr5ffkLSvnFi3u6GmwscTQV6besPhYFQWUhimUP97N0SdHaPR8hZNuxzmGvaXDdCFeuAhk3dC+Mi/Q/Q8ZKKbIXu5lU1f5KbbXuV6rLawgTm6Z5fKAyXdAfg7bZowCElBoCE4LGY6e75mHHRskADbXgVVojyVNtosNZVjs0T2wap2gk7ZHbWMAX8u3uQCOZJDn96W+jLRxTbNTxB+fO6Sihp5gXiFMvNiHtsSFdJsabcMU382oLC5QuKUt3glx/qg3peKUUHGowYAy+AqiU5Vh70uhOkwY6iHx7jxXiJp1D6gEqVSfgmqlKZoJdVFZjQYK8la0Nzz4bOLMxuDLrTFT/vWBMjKaK2YlHKQSyGHZeSd+6M6vHSOZYZvW5ienxSkFMCmfWTExtvsbRLY8LRiMgkGqMRM0uG4pZKyrx6Sjdkh0Ry8Ulxzh+5lOmfisMglDL5YOliwNm0w8L+XFEcWeOI/PF0hK3Uzs9Ika4AA9fsVsp+4b60niM4u7ZzArrOFL0OlVZrw9Cy6D+Bu+uufKWLt+FfwN4O1jTm/Nr9ZKPqeOF2HkuBB3PDBSczKqyBnYwyUAKJl4NNSMJ83QWg3gYAGMzHMlrJPLv0MEJYm/NQZU3OXDmgXUIfv9Pqv/6ClqUaN8gjrPq6xPwTxGzYqq5gRztTnNqnf08Xsdrwbvxhfzm0PgQZqVO78aveGpae9zdZWQv+eHghDwnsn9tRE8RqmFYs3/bQ2/6gN72x8e/jcLzuh7KJd5JHG5ctgDab5i4KirOwKPrgP3Qb+W3ZW0XBQLluqRNUd9TQF4+d+wnLDnQSF8y3lxeBAPKHpJq5UPjvPDgtVqLof36RwkG/eliR5NnzzLDNj9Vta7wo0tPXbdq+sTF/JqF+suzOADlSrltwr3u+VX8IOLetRKqJjdv2J2fYjtik/nBJOF78WV3EvZucaiXXHZDah2VHkwiJZI9J54Z2AOGYKLPz1C46UE2DbDXov/YwBaegisdtsxaVysUI7NA/n+KHI7DLwL43qiq4sz612ECKLOeDsozJSe0UzYx1/eCiDbqfOZZBXDqreQyZGhogqfBZkpvIAUZL4aYDOxgrVB6iWqxjghLxDwpDLScDY4NvIiJae46Jw4G2xg/eg14mY1zcT+XSSsA6JHtwmaVn95cE6rUzkz/ptqs1FK6BaxC1CKaajuCtAElUNXUg94JmlD22xL5TXhgcezNQxziD90zkWn8IiwTN825psgSzGMnsUmPk/Sh2Rey7133qfXpABNHX6fOyiN+w8V4ViEhNCGccCqF6wHZ1oDYyNDqltY408Lr1o6/psyTxbwWEz6WUpAnBR23yRr8p9XG2APe3+9FAQ5S41RbsU2KP8o46rF5KuIXG+yrx+SEjJEDyBcXsJ9teEwEJAyvrgoLfexpaf2OQk7TkdNbubKaLRPHq75ahHQt02wcmoluFASdUbITfjpw4qEcdkFoIibAjtKXPtxTwtmHJLHjzvQAAGz1Xq0+hOwdA0A8+ZM/qcrrvYEccRh1jEl36vuqI7p4hBBXqi0JrRSlQeysBTBOB0Nkm38p6ba/rHHRmRkBVqoLhEguNoZljhYygZaI1t3ztR+1x2+jku2kLKTOcoY8iC0DAJtyxATYIBDLjIlkdy5unCn5UgTheDZ7eykO8L/ZMXdKOP4yS+9fhM7Og+ieast7AIxgloIEk3guW9UXBE9hWVU3GKQ8mwZRKDTA+ZURTnEZkfdqfbefFngEynyw5xzvCgxpT6DJM8b6K9oBX5rZt7Im/NSpi+03tFausFLnDZBB0Q1amO+xlliY6dTY8IxH9soR6ZHfE+xdggQwB7deIkA/w09dCX8BKXWqKc6mKYZVZ/k5i/+HrB5uaYh7rSfTSesg6IiUWxUtD4D8R43cxKvjytfZMVsoXOp06+zsF0b33MxMWvZW6wfXPnnA3g/mMSBA+HTYnSi5XjaRPghjNOooq2n3RUq1/zjPpfFESmiQV4Ls3LMpaD9XDBrem+OgR+E9QCZie8pE1D5YbZje/EEPhOsdaY52qg7+L9X4pUFq8v6CZvGP7Dn1B3rCSY5r7sFgTOWeYzFaKQrvuMYYju1F0+5aU3Usy+u6Eqyi8wqIwYLz++5/BBlf6jiMBnUcll7gm0acY9TnWwMGFr8odbpqlNRmnAmZf5Iib/OExER7ZTEvNJr39H+nRvRGn4/0hTlfnafYxnoD/EMV1fwE8bSXaF5dx7tS1fHiaewSbKTWWzmYf9+MI4zzhi6Nxa+5bLpPBE5aoKKf4MLzynzVzQ09ZjKv4MD+YpisJTAVOrgDe6P+XpEXSoCiiSv96uHbbV3yyy66ZwAILPA+zLah9tiuOSXkGjEt+UDiyKP3b9PbMejDMFuHsjEnequCCj4ApALSXpVpk9JpYg9w15NyVHSDq3hJUcA71k51fUY7iv+83jh4qXg6Pfb/IK7II1W04
Variant 2
DifficultyLevel
719
Question
Four identical triangles are used to make the figure below.
What is the size of the angle marked y°?
Worked Solution
Consider the centre angles of each triangle, c°
|
|
4 × c° |
= 180° |
c° |
= 45° |
∴y° |
= 180−(90+45) |
|
= 45° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Four identical triangles are used to make the figure below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-CA27-SA_v2.svg 130 indent3 vpad
What is the size of the angle marked $\large y \degree$?
|
workedSolution | Consider the centre angles of each triangle, $\large c\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA-Answer.svg 90 indent3 vpad
|||
|-:|-|
|4 $\times\ \large c$$\degree$|= 180$\degree$|
|$\large c$$\degree$|= 45$\degree$|
|$\therefore \large y$$\degree$|= $180 - (90 + 45)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 45 | |
U2FsdGVkX18O0CFXHeIMnIcfB0sqllc9/RbSL2rBzZ9Lgu7rSN8Kv9uz94EIGOmuFeP2OpIM7WAWa55em5VhKjZvO8a45ysQ3G1jcTgXizbWbRVST2+PwdBjHQY4SCYevwLMWiOlWstFF7SzIxezg8ipvW52F8jdSnX3ir9F/oQNZYFTbwvOF4GLeMGeOaf6biXqtf2VpFjl5FtKeIA4JjwoSw2TaZnnaa7xKr6+nTCWPzMrU2Z+0MtSZXwbUSQmxRo4G+9h6dnkP0PZcy8aeULCAJopt2w6y+ITYBiUGxYPdyaaIpNc8YZRMhl5fVQD9GNdPyLninBcmBTdte1YCqLHfoKCrXyOFLZZhr6SP5SsM+tBPF6vqAnnMq++2Z4ix9kEGKkgwQfB/jgMzaR4cqvcRjLFPA2AFjn7hd/dYuFwxdifGsETLQ9nZrtFRNlVsci8xqd8PZgOnJZwLF6f8l3HzwaH9i7rmxS4Qwgjkt9TI0TkiZLaZT5gVfkjkG8NO4lkwwr35HpJdhzCivyBE3+czUtNx8hHvqGLdIDSWzmOOA2zXfMmVOl4oHCvgjCIXhsohpjyr5+iVJh+pp+9hM7E6V2RfGuzWePcgfGSCkeloD5fgq3B0XampBapapTVkWCB2eELCMtQ8RQEUnDsH3uMAGqx8Xw389GBxk4cYyrIeYkR38S/gTX5//ar1+coU55xMCgVqttSjr3EpB6i75j65C8u66p6ywXhxiIG72+1bikZ5vJtvQJzmKT/3hfqcXj+eZw37j6w/zFCSV72U3kpy5nVGLZ60zj6i844r1NUjBoTw5rLLP38XDURUy3BxvE8p6eU6EyBZ4UgAz3fRbq0cAfql+4OvbA7VrpAEqfo1yR5xOzCD5PybgTwrT/rD+pck5trViAvLGwvx0/D7ABwE/91cyWZq5eFrglmt44HSb2R7j/u/9Qyt3NV0sHyEIGsFMaBDSgsYSTstBu3mD3TvzsvwpE2ppvJIWckXZ6+MYHr3tv/7MVuCj9p26LDQy2kFirSMU6rmPjT42XFbAuZ7UH+Utx0dMEXTr0+1BQcb68eVF+/RMJJZ6R2ONADJtv8goQ0hezpXzcx4/m9AmbPAS+7KMrSplk8jP5OPD0C89JWkX34rjhwkbryWVvDxAjy+y0aEKxZ91JpsJKKFlJHH9OkAruzihS+HOh5Cng80pnZHjT+mHXAWiw9236IRaV2RrON3rlBTPvCps4VF1esNxRkw9Ka4LO5/p0WV1IugZE9tjinmm22wI5WT56h22hNUhS/7JSERanJnqeoySpkVNco+cDJdoPHxAG2lYtLV9g3rFypNMx+hzbbvehrxg7XpRM2tiQu8ohau1UZIOhcj4K0s+2+5ZZcWdgHLWacq3let7AAcElMsKgVVvsrfPSh/YZvS7WQQ1d1wvBMjNWUzTmRL9vCDZSHhBA4M3y3S6lyGyd8FcsBE0gk78War4uvvxlDhe7MQ4ZJhf2z+P+MlMXtzGo1YQS4BBB1lypZmHv/3OC63y6OZFIxFzIXS70vpcYOTfbOSwnR2g4gW8V3BFCkqF4PIwvNwHab8d1tAZnjy5c0x96giyj1iKUqW2K02nZsW9S8ZceJXUf6+uIn2tpY/FOd2hje+vRhM3tNwPVChs5bgUo+e28J1cxj6Ts0qYogS+wm3Oey9+AmKi/Nt2o39aMDJkub5VKtdQB3fktXONjt1mEkYM+AYbdfxQ5S6nYoGfwSqcv0gBmXCBKE8wsSsQiwdVkz8MjuL8E6//h9Xest0Dk6d7Zx8MHacwOS1LLiu40+Ev7T4PBmG6O5+YNHYFhJOUq/3UlC1ezAHdiHIhGZV9V576jHPYSdy5oo7CO/HRfsDM3VoeW7PD42h7VjgV2+QXpKmB+3tVFjaa4SVvb5Qy2N+U1ZLJdgsOqAWG2uHAoSCbAC4Op6dNDc9yOwfgFjzbN5aM8MschxxfSgTwOQEcFchsGeLR3eqrffYimak8TaK5t8aC92kyCZRAbxKOwHPu2JRRYB4OwBxwwdXPCDYxDWEmGB3GWQ1+dw4vGUJDbtTlg7uXr2JundKkWe/xl0G7N8b2+kqwLdWBA3rFAxW+GwaIFZL47aM5IDlRWWemvBBXzcFwLfaXiivPuWMLpkHrGh0yCbj+l3xSweyq49kG0tFqBCaJvCi9UUtTG8Afmjfp4aOYCpNh6KDo7y7u0kxzZTYaVNE/H/w/Co3FVAAYjHkOlMJYcnDSb8ofg+R8goVIg/qcOWK7bmMt4eLdkEBVcFH7EHVqxAQOh59KyaExFBYEx+Ew3BVOJ/N1BXDaMep3raSeTUoRYcvaVh03fkr/CcCTcj4plBo14UX2+o/g/eqByE4VxXCY4CdV0yt/7nDZpxbturq8bujhYhik21NFR036xE6IYGmNqd15jiejlZvJ9fkgT3FGqVVX1tv+JNnjsr1pSkmEdJa7vPQdWaSm70tI3yFdxTKj1cPhqGif0LG3sFIFq+8DunUS/mrex5xzHP1JhyzZjXwOQCZbmIz4E5hW3jxgLhMyO8BFEJeKRAEO+j0r2aYHjneKfRnWUQ8CCbDXIa5CgVVnEdZx8EbD4qZs4eelNJLfhJEC14VCy+q6l09TR4TZ52AuUXpcxMrfUBffCfGWOGDYEEG6RxQFXuryl/eTQTYQDJFZxT2+2ueTXyNStC+ZeN5Qy/YD2pR3fQeeefMo2yULEB1QbAsSGU3Ad0aDeI2KUhlqH255NCiHq0rqnFWr+0M/CzuXF8MIAKsvmXBVxaCaEyRo8B0bMf79WxNRkz06i5SmLcjmZNWJYJjoq4Yn5nMosl8sojN6kLjtBBiPl1lX3AA/gl/Xb5kaUmnND7Yfs0UNtC09u6tdk6buTnM1QZKMyyEcDGGFLp23jMR/dRDqiv52NJVa3T7GqfcMtyMJ7cPPM/MiN+4GtMLYq6uoHE3WmESbVFLPmJsmURM6nG1DHXz3pOKsuWGgXv1UNJPH2JJYd2eUISvz/604beMimenDzgSfxF4rcuB/TamFCHJ7SvdfA3uSvBzZ8h+O6MHVYk3MsSasjUyboJeskfdhvE2fQS0HQGdjvpEonCKP/VzY3EkPtECZne4fYhGV6PXhNQTkyEpHb4h2Ppolg8N3QA4Hm396wpeKd52dEQCwpfeMBXL//8yz990lE2mcGRN/z3EGO15HxRLgvlFaPJKVzUBMSfFE9XVJc4xIShS/3z1femUET5u7wvPKRhGGR5k9n/OQIR/T6MmvJA2FSiE3rnkoaYI/uP4B4ARBOAVMlE9B+WIiD8JpfBDKcZeW8DAWDeUKUE9DKIdKx3yMEffS9ovTk6vX5NH3vvaMKTmd0FAXg+PX1e+ZQoO7Xwi5+CrXaf8NfMPOytagYRNETWNs8u2BcrHvr95deczAe0dcbdU1kp+DNaDAFq572p/XrZhzT5xdN6qa+aUzfQiDlEY3/NWLpNpx3DWdu/hLzOjpMXVdJgs7zUpiQpE/5mfDYoJPfjFHPjCFVM8blKJzLKH9SIfajcJA1XDx99Ln4d7hUm4VTRfuK0/o/wppjYEPmT+SM2F/BibuyVOLbHHKex/j2gMA3ggPVD1zVG/TMCG1Slm8favHD9XHEN9YIO3nQutevrAbFfmV+uOI9cCitg9sPc3ViHQj1lNtFyiSvhxITyTthXvWR44tmXzewRbRc3Wd/yheUFYM/fZKsL+E1KkG+/O/OEPg7L/LuTXQX3hs3k5jNHw/1krUq58rG6Ou890bifM9NaAauiJ+9urC1bPfbufGfcgpOuBHtgVDcJz4XrF7NxR4VkdRzThymUmlHtt0O0bMCYqE+Xl+K4rDCWIG7c89k7fiDpprOk7jULkW+OeAIeOQDBhvcZMWo6I93zOVlNwfxsAcRvzRnzmqnM5aPhf5OlUDQIKLxXxa1kaBAKpr7MKhQZ3F0HSJA2wCPMHyQyujEHegfXgpuNhI9l22xIyQKejjz6Za8iI7jiPd5XcTlWp/T5LhT6LeJsb6KG79es3e/PiZU21124mhi9N0E1uoTWc4b8Zravui5R/XVnO+wfCUYgaLfz+OaHGV1/ID3in7PVOynDlnw78KlFFjiDf5lqh0nx5zHhKab+GICkCa/MSq3taNOp6Y0F32RsqKvd4D557dK8wCkackMZ40jOakG2/HAdyL9asM3sz+LMQl1WLG5jyhFn8IigF/OruYWRVkZTyRu4abaMCHuXJU6p/LRIS1h98g+oE+VZhJu2akB1MPWgGwMbTZCfXRJCSyR3NCIHpV2k3XCHZZ0SrsTYOf97wRClqohyFTbKuxwLwyKmr/+CERKifKcR5qCXLItN8PiiIoQ6xcDmvRSaRWZiBHuLjEtqjnBG/PBYI6ftaxVaqaAFeuKJ+Yy9A5Cykv/WFTtefUOblduvOdOcZAvxRnJ/zBQtFm8z2fV/2GmK925iwmtTWadPR1CAlCStvVqEN8YoVnZwEF6ZCm2sI+alBmywn5UC+lDoNfBacqXrT/ypR8Cobjy8B2nDFW83P1H7lYfxXSsLKss9uQ8C4MfFLVcXifbTQMvB7qT3xa0NKenq6GJ15qsVhW511mAsYXmUh1BNgSsLi+mQxKjT05fhWR9CS3kXnGzpYSHHR8XQ4vBxDSxXvpa4ut6GctyF+htX6KSlOLZn6e3VPCOKot1YkUntnTWnO+MSXvkotZl9Dci5rqzvfTChFfBHhk6CddR2WPh1lZ18m60PSCpUFFnR92V4DknfDz0UXVqZlEdOTINBmPABYInhb1haMLQkhW1mAiFpi5IzK8PswJQko6HEX+XW1KJVkkfJttAxoCLY7Z68KBXrw5g88gYfvhaTH+YBrocn8NTn3QUz0nbuw5EnIpRGFq+h66lnCrzECTclKW58vn5788OrJu2rZRdFT0MA0J4Bg6+ZXTbX/5NhsP9pZPZPM58a8iFmcngUKyXgF3mWmWS2CYRSZPDQSArO/5JSG06cZ59l/EiQANBRgD41zVN0hnJrGvQJZy7QXoxXoMNbwtRkTN58WeejBLQ623+Gf74U7fMCoSJ3RV6Hr8TNohYS4hgULu7Hxgjyuw9MVuzkmbJkglVQiYD8HQDwiUtEAJHEN8FgwXDIyYE65td4zqddF0NxvPqkUhekLXw8EYz+ZVhbCJaBjTDVWZHc7E2X8ARvxC4ga28+yexufU9V59PjtQ9riuRqK1B8+1ilK5kTXH3Qjf+lseG0MfRKwGXmQDrH3QJHMmO1j7Jf1qyTvHxs+io8fkVA0IaBKVPCp5vF25tmr8i8Qu1G2eNewkXQFJeaa5Ljnw+Gu22W7ttQTaeIUmdhgaGrjKmiF0Pk3vk9/wNxuzNcWnyotWPrqX8C6eaGGn6L+lnOtMWNYDrJg6/iFladQXun+bmos3g+KfqxwZV3uuKCefeHvYrAblJzmp1cQmmMaOcH0SWtmgc75PQ5Nuajplyuj/MFom0jUmrn3sF3S3dNrEgjVyUasl9v2fp0pBg3JESQvZRN0DL8xcsAnxtjdZFWHX5CglavCuT5InHYbys3RyLRVgZj6W/Rt8IJW0203UAxWufZJDb0T4UaYFA0OphlUSyMBwJvoESijRW8jbikhjmqUwYb6e1zTtOXE+gpmYH2cTZdzXEzvR8CXbzYMqv/KVxfTBUDhkEt5ejFNe+3yO2ZbB+weD6yZCvhJ8a+IS6lKt9QfWfkNJeyFF8sGZwbLs1RF6kGz3GguPnN0I6yofTaEGsSFq4/R1YCC+dztITHCdqPQjV0qLXW1PQdYEa42mCjLHCRKLGjw4g/hev1oOzIA9fnVR6JTdnanjvyHxkrP5TB6DY7dTzBGb/GGW5uRqzqZD/mZGC1guQNROd0ovYyEHFt6haM2ad9TD3KTZqDz93T8QoIjIpmWI61TqmN2Yb6rnGsHcbpm0kP0SxfEB4rtkYBjGA+r1Am+8TxW0nc7NXpKfpGUoEH+fB+H5R6n0U81pfyO25bIXJ0qWe5wWfLS+ykZFarm+UsimWdY4KGpepGlNIBwSComVXnmtRvS/cBYw3onGfkDFuoAHwTdqj7cinQeKvW5GOUmo/NHKdfq7WAczvlJ3g1B5fX0US9xcJRJE38E0vpEINxn6T52TKczojFOXO+CRmv8w5N/40XIZHLpDjFFo/hBn18+dVBDDD+ZAzQ9FbA+Tf8qfOQS2YO+tDwscXLMLaC6T8vqBibKKWX2xXPKxBMsfiUCHP2qPhQPKAAPtO6f1IGbVRFKdohklLAjtfHy+YxnURJEhwcpXVlYSV31A/o2dNKcWoSwWbJLuqrvBMa7GZkz2XT8+4atiacjxXW4V9Tk8Fwv6R3gxb3hsJ+8IUv14r67RrkHIIXJ6SimyrmUM8oj/s0pV0qhMKWU1b/5wpX4hxuBB+G6ljszQ9TzvtS/4yEQtQ2DJskrAJNTXWaJwCIMwoj1PKy9u3ORILzaOcsuGDRUCek5Jr43cuzr6DOyTIc34U95NhzU5gvOlU6yulYfrG01sqBDmj4X7fe1NIasvX+7j2CY2tl77U5iQfMkVL/9lwYzllS95lXKH54so77FBQaUiOyc5IKymwu7oiPLb6ioAkdEVaNbzryKQ3yDI0CSSCWQa1+QjzSAE1m/a4o6nToTnPsFxrtCTH1wd927tzCkFvC7VfofoUyn0acaXimNEkhFQRh3hQgzuf+Ljmy1tgf7iEpdgFldeMWyS4CxXC0Obso33cqO8RIz53HlGHXdEG32eL84QCXSyGW1mUr3I3NOBRyVPB7q99uXSes+pyCyh+sfJa9z1bGfEUqbrpp79+IRWlrxYk94GNWutlm72yWeUv5cE//azY7yjEKKI/iOy1uBN+D8BMSWot6Wh0GM3GllUPN6aMLd7c5e/9D6ZFhmWInoMmf9wfaVSU99J26G4ZnNlv5IiavxvUB/LeBl0jXx3XtnBqWiaytS5WHQ21/Ww9jTjDWrCGJ/hGagXxjACISrFZGYWzyLgiBduiPInnCDK7Cs0QJhv/edV0x6O0jYY1eaoOiZsN17h/EyOgDAhoKUL6SSD3sBlYu+hbU8AVMvIOVXhgUiEqyQvbgHBw4PE5h/L3nLj8WGD0b5YIhV5BeqI/3+AZ+AVL8HpIUuG1DMifYqvrBispF9ZJe/8iVed9w/eRBoCXYziCmD2n2vIh9a/Rk2OHtWTo60jDKXplzUL6wTnMauFj/6afuDRBBtvgQ3gvWCWVPy/mHUKzL48F5Hq2gPzY6jcSiTMOrZYbOZrVPB1n7Ps0tluwIp7ST6AQTQzgdD1HYqAa9NwsnN3znKjxpgdzinuB/QCtDCp+qOpq4kdghaPxx05pzjL0SVkteVokuNDrfHf8bLInZup8H11BpRr48M+2DF5bile/zJFHwgxggSa7VGCvBwffWIhaOapuTXwNz5Af7rJV/jZYaIB+ncbJLzgEwco1/QSgELY08MdULKOZrVeZ1UwMDKwtGgzwvWbpqbl0iQBmUqczodM3o+96/bqrzQYgISa+ts/rFd36W/d/LUVEoq1ky8zsUqrdJCw63nTElSh5xWXh8SQWr58KDXvPIj6OVeTKCx+crfzMEgzw/8F2M+GIqD2a5p0psSLAdNbOIbQaV/GyOOcrlKMGk0JFrlVrTJP0AlMUwV2crCiZdIr0cZr6luChoU0WN3oWRBsvGwf340KoM308fCPClrgQNh4QE2Cbl9ZQ7FqpGLwdQRBH5h2UzyWNEESnAfVAMZ8+Ebk5FzWgZlet6Edl5d7OzRK8NB3y+PLDsNSJ1mcIwxvy15y9f3ghNvuQhnSHy0IgijXertnNodGs4Lh82PeSih5Jw5S3ioz3ifIfi/PZ+hymp8CKrWUFXMf0zZPL0eail0WvEekbWvVFbmP9SB3jEcjYd+xpr3dbPdLyomhHzO4pCrfHLWOSOUB8OB6kPXzZ+NvEHk3/EUqPYFYT6E5ycOTy53pX18ccjxThxgbaJKwGxl+ci8MQWnks0sp+YeHL6Viw0sE0cSKJ4BAFXwgap1nMdecYYbQpYTvD+BG830K9DntX66IKT+V7wvn2n+TNU6Uw9/4BEKRaS6W9ZrIul1hzDI9v9UJXBbnSiwiCUANjemNq9W6zzo68I/gdrj6jYU0FuEl5y+2k9RqR0hfQacD4+GV79rXV4z7mPdoFjiiyDTIuxWvvyqr2r7WpKRxX4ryAV2BkIah0qkR3d0VSbJkzUZ+6VndLDKAPAAX9MTUN/EfVSYTxC8eKv4bz7vvRbcGC3vG55ZBjamkBqSLhIYoONPAgL6xiSb7gbVLALMvotokcyyV1rVqusgd7uJ9R1pJDJowTuBzAvTZJOPEM/Zo0PdkmFwagpzW0aevSjhdrL1jDw3xgORSkU1Cc4jrMKe9XGh5T0yN8ibNUC8KG55NGw56R3+zrG5ubNFp8UP1GoIIwG6NRcEMT9FArgp0Xoc+Xb0wdLuEEpa2xRxPcb7Ipm/lvHJOgJUybNok109XMdZyhnNskKkUrbiSuGSZOfNrh0pVi7rCOIUDV34ZBPVFCcj7DnZ0PA2mDdCLKrXLTJM8sDVwzNwYZAkdGGsPM7m+ULbWnHsuZic7KDc7Ocd5bZZG4QV/NjMJT4ClyfuVxhzch01MZJYFQ61sfXgeNFdpMl19/x34j5rG+H5U+XjU7kITWDtMCLJptUJlpktq2lXMCGNmpa1awPG1eBdmBKN7AZTkplHy4dHh8VfzaJEu9DgUU7jx1R/KPZBfFpJuvqHzqYMXG+QoouVwaTp4Wkm9cU1IG1FdAZAv72RBS6Ey/UXWEV8RC6QzARW5aso4x2Bi85JAJK1+A2DGx2NAjylcRaL98Majm2tgJNYbSVmvkKTXD95nq+9O9La2MRojISWQzVCmVF9Oz3GKQP9Lz5AGuXVU7wCaSHbCI8d5AAFTHuyHlTwpNY4H8E6sVTXxdXQXsgRHN+2EL3ELgw5uq8BMZ4/Qw5E0TwWWqcL/0ofUqMUGiQ5rK4e6bu1GotUxqnP6ADnOC0TplyaaGkoQXfAYj2q8E6TAlTaD2otj5Bcdiyx7xqyOebWPbAPvM7QGTdh5M0ZnuPXbRS06vOa9hlK1kIdOeC+rs2mpnp/BvgN6lZT5gsLwswAUkc3TyfHORCyo1Eh9R/tN89emCptJpJ6dNi0+FLyo4Spx8/urheIcvbcj3fN6ebxu6mF92bg4xvGqpOmNupLmQmslC0KOZhj41V04+DNOjtlbs0hZfezoiIlKG4ggnnILUKOeWMgbVjnXgU8RH5bJY4hzXYRBXWG6i4drq9hmew6LvMjLyxlF5gmIfVd009B6Abn1DX9aQRjNLBosNo774spOx9z5b4NmZ6rXc8oGlowpxOg3rMU3fLxDI7UlLPJkjemU+QqAfXELl+1ceT0U8wG6YqQo39F0+ohTxr+eIQNnILHwUCQP7wr4u2TdQ3j2IyNjYw3emjJs02T5T+o/pSkVrPBlbfEf2jB2mfGg6FfSkiJOOu8Vsl8vR0QBugrWv9Yl+AKyH9VQksR3C/0QKzRVGgOXli8D/B1CJlmgTsH7XKFJHg2taFJJi68k5730sPaTDx9BR10lT6rQo6kPS11nepdjLWeDABqED+hGbHSj+3v3Fm6n/RradESRtR68yOAKs5AOBxm8tTDPhyNkR2l3DIThgngZPkob+JVm5/j7lgI5VbduDY97Z5p48KFTXOIOrkORcMXIsP/PLg4fawDgqLbNya8NvWrThcRUdP+ZbTN5I+2tyMD4afmH6zMBXmePLAJCfF7XBntrOlBgU+2Krne/HnuNdgKGNnPTVUoYmppMjuCgaMF3DEdwyC/EKizvA85CpYIG828vVi2foLFjuWc1zh2By7AJAgVMVAzB3wrmTC7SJ5LjqbJOD5MsEmGa189GweSg2fY0jwHan+CmSu6H9BwRriiyugbUkJaZtjNr55CekE0qSKPetKDMz4+d4XNZWdNc58e3+BV2628P2Vnr5XD3MVfCDp/706xHpflePibiY0ZeiJ3hCfPKdmKGwp1AL1OLlrz99EhX0JqbPgYHKl55dcQBijcV63iyMroIKOu1xX9OB616NX7/N7i3J56TCREYsfRMulwL25UGH4q7qaxHBgoYkDIRB0tusBmfXw+xdF5gkszKK8k3ki7+Xu3B8plgs1J7heUeJhdFq7w7r+EdsOQ3X5A2qlbEgwPtHUDdjBrAP/Wcsdg7aM5jfj0ZHJRmtC9QDPZKLC+j7n8n9j+Rtbt9u43jGgFyepSD8PwGCrdQ0WGoh0jtDGaAwAdwJ64CGpZ9MwYkCmEDwvQkzvY7fXt3XRbvkiEg/wfMB+dcg4P6WtUs59kocWB05yyAFRl1ngFe7AFCGGvYGHM+f283JdbL3kNr0qVRR1oqEKCFq0CMVLQSWdJyyimEByv9Ymdw6uiVwxq/0wIiSb1HieJ8NcamheVduxphbWIFDcf0L03TIKPs5S6ztTX9tRcnCR3jziCXqZeoqsEBWIvRG/pGRK1ZTul1oDjVIamNdfI2RU9PkZPBj/FP/xiC+MYAS3e0xvZi47qpSnfipsXuP5rBWWdB/FmDAQIUBp14XAlfd0GMdkn7Rr/Mtdv3ogLgHbTNz0of4tiAOZAAqxL0r48m64GtJogRD+F9g43UZb3/Njj47XaUjCNdh0t0e6IguJFhTES8DXsAbJDBaDXqAMRGV6BHoCEk+VBYhbRjGb0mVe1oLfGj9iQ/rKPXnCPHYEKj9asr7B4Wu0EVW6oqlEVDpdGXN6SXqqDIoo61lraIobwtodn1Whb6xBWqFrLgFQIqsNr98X3i6zBvE7WS06+Pegh/a93vdrJ/RV6lWoiMTCZPGdhWU0NcboqyIWdogFyJgr4jpnPZfjG5E+LunuC91ZcVz1LC+YSQGvBRIPJrvaRhwgrMpx6RMFrOt1OOjt8oLHv5dfA/PFzd/sjKbcLeFIB1uCHufgsZtxNSrp/n24QKagdlx3MMer8jcsL4TuYk77kIdoaDJNmQyJV9guRvYWPTZALGUK5BcXniQgTS3h4pvWQbC1IhC8a2pRT6ww0zWFkEUosOPfl3Izx7Wlqf67DtGQCpguktljiJ3qauMLR1I+AeLPpZ6E9J7eHHjqTl7cHnZAtPUr9pJ1ZwTfP20TH8DxBbFK681thGx+lUNhH1ekieW+6x/9Z5+dJiYRIA02hiimD+qfEzb7AYtzAGUaNEMLTWHSYfjcC9dU/TTfvCKxey0gqRy8zbrQStvB3xb6n+9A7820yDnee7Od8dD4aeLQ+x3NkBCdEXaJ7zos3efq8VatkTCTEXcJZrbBfSLedcbmNsfUf7ydl03Li/VXBamKWvgZPwr687fbIBQuNSzVXJWQ7c2XiiVyr4QlVHYeIx2qMBCLFnLQ31/dJso1u8TFQQVcsj7AGdXWO20xwGdueK7UoUag53BIgTHhRkjAPxDeT3PdGMI8NFINCPbUEkgXZhS6No9iWYX8xUP4Dvcv41fyydN32mlkPO9F+1PTTNeRxOwcARN0B2Jd7XqQ+GcXR6JjRuARQTiOZnNgQTizksDJqpzRy/nwCjLCe6Kil3FYF0yQnWjuA+UOv38LMiaJBc+Oi5SITSfwMOdweKTV5LoGJNJKy8G+YKfpbptyq6ye7uHBrcP5dWOOrYqjCUxksKO0ELmgZMeuBBPi5FR/rkeRiDr70J8jPtKLK1bJSQfJq/RerOsIXX0YWb8lm7+MbkxnrZJb883mw7cWqF6omTOgA5RYpMNlUhZnqUVr4Gwbf3ANSOMB8//MStFJykwf9dQJvY2Wu+gZZoHGji+c+lw+fKrDQPvgeyPRnucwSOU6wyfu+YuwVSkZrbXYKLoF1EGi0sZHpCLjsPSfdUchLEVyr1ZL9MnnpfYzPTFausg+p3b82IurdbVT287bnBk12H5iZJCd5FT3sCLChuEC0e4QijHWB0h1XfVJy7McwDTwcJBHy1SDnCIFruy2FhdqMqvlYVA6j4Fap4+kVppDYlDAmNfH5PZ2RXZGjBQRMItpyaGedhlZ+/r7dJzp2oJ2bmBOobEHf0aEPPcpXjtWF1RMwEmzRCt3o2dTfy2hhqbBtDXMNDkkcvIn3x//cB5G5dGtXh675PNZjF1h8yr7NY4ZMRo90Q29fdNrqOvdEHhUyUBu1fne8EmtxONF06EbVlNEw46j887+Mla7vozMb2o/eKfea6gnFKWXZA6/D6SC5rzzFQoDGKLfqLnBic0VgG2LJcL1k7HKFsctt+ur7Lh1VIo3AHnP3LoDpB0aCpkkxg/psFvwBEU8NxBDCpHGLbBEH5eF8ZOwHLYlkeLA0ovhaBHgeUM4HYChwjdJDyUcRFTFVtoGvhJyLoDVvBkD2rjSgfV8f34mtb4tj7MxCGfk1KuIGm1aQnHO9H/6EWtrE54l/Qr3DuX7LKdTF2IE6x7Q4QxvMElcI6uP+65TXE0C1SCgq3SFjFpYrf9vYZjyheLY6GNsbhvJzIOL7DLrtv14
Variant 3
DifficultyLevel
719
Question
Five identical triangles are used to make the figure below.
What is the size of the angle marked m°?
Worked Solution
Consider the centre angles of each triangle, c°
|
|
5 × c° |
= 180° |
c° |
= 36° |
∴m° |
= 180−(90+36) |
|
= 54° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Five identical triangles are used to make the figure below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-CA27-SA_v3.svg 140 indent3 vpad
What is the size of the angle marked $\large m \degree$?
|
workedSolution | Consider the centre angles of each triangle, $\large c\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA-Answer.svg 90 indent3 vpad
|||
|-:|-|
|5 $\times\ \large c$$\degree$|= 180$\degree$|
|$\large c$$\degree$|= 36$\degree$|
|$\therefore \large m$$\degree$|= $180 - (90 + 36)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 54 | |
U2FsdGVkX18g3bOUWyDSsO9p2qSCPrFh16bU/XLhkpFQzjNjkRlUapwjfHmRA3GSLVeyLLtGsEAXl0zSgBdUDaPEfWV665jEd185AZRA7nZyHfVAEsjaqf8PffLyiAJTpBBh2gps0a4eRAUEjYtIAacfRlzVZoZWBvGCEJU0SoGEVd8O9xg4Un3eEhTM1LEGWd8KMnJzyzEXdNEY4oOGVHjTJAdfU8oKmbhYE0vZZhT8rWW1Nl2HHdD41n++uCeZWKM2cNmtxV8K+5ERqoMoj1+hdfq8sNA4+aohf0EPAU+sYu6F80yXtx+T5ErwLm6kP7klI4Sdh97c3fRVC9QtHt105rtliQrIOlif7+srYnD2au/cgKc7ggdg+UuI3EReTs6U88QD4qJwapAsts8e2+iS+2P5tAHQ5INvENw7284tpSBMu+15ZYbTb/r3fqnthuTkNxMpLfj3bPrnSsMb53YfG039nTvQEQSBdHnCa+/8NYFt2h/RAxJCTWX2K2PYv6g1aW482i02CnsQ6nlq50ddVQJtNV20xGt6+of1uQ2YvjdoUOgrRXpqYseiHc0gYpu8u3D1ihiNK6jtgG4YuWEeqrDf+rdLmiszO1TuUFe0mKk2amMa8wSJH6c+w+HSZrVjj5uHhMGT+zJOU2l6mfHyCWDSymSvRhMGm924qaGjawyPeFe/lNrrQoievXjeyxYU71hTwI5tN6QRHC1x4YDVqh+3GJEUo6x2t9KpPF1ZFtpdzmvma6DUBunaUPw43Ppb9JpUl0X2ECNY1TrVS2+S49q/M+HTylWO5OWo7P+zVM8/EjiZ79mv1USwsSk3GjXb1U9oqGwBWK/S7R6fjMcbn/p+PQ0ABGF5Q9B7KiGm5EGKc13zpsap2h4fkhFSYnctjx9+8dSlV5p2UqYdXSxh7Ouww8yOcKav6HWkMRNMCGnSsERU7N/ESndNtSZrOxs36GMfzzVqSDw3UKPKtbITcofstSJrB0WycQLJJFtZQi/B758rr7TWsvnP9nQ0gDfJykAmqCic8YHQeAwKZFV9iAAXCfIDIeCFEA+xsqWfgLWO6RR4IqE+Jm5sifdaV3zjpLWEWV8Po8z8Ji5HS/YJF99tej5kmMg6HPz9bTHzRxqc1DqYE75bA2U9tpXTe3tF/QkPIC4xWwzVR53p1QpoVhBpaR/H6GIfX24jqQyanSYiINfqk3pTKIB1upifU1jkw1a5WFmKhxyC+sxTYe4WWdH/4S+2SYyQtm+NWiq2YUnZpkPf2fNgRfgAu/D2cQWXgnMJV8DqRiCMGTQdP8ly8IZjAaUHDBEPgDmg1ipm76t81fxVNckfgd9l48PD50JnIIXtnG7XJF+lpF69FPxqSTYpTGnthxOC90ND5aH/tLs+P5vxr1tuJIEtWrBR3S9Ab1PnsNZ4Myfk+GOyFMZUT2y7T5CDZDPvvSbFjmlboeZzs4DmRBObLWmc1KQgj+hO6iJ80BcrFoYnHIwiJdSf/hfr0Z3vKLjagNMH9wzccllIablu10Wlc4+qLDVrwQThV3aBYQSR7YmfSTJK00yGsg9u3xVa3DhWtwwOzniJXpWb2aQypYt0m7sEx2B2HMjlW5AkqxRt0p8bw/3RzeABxZ5Q3uilX9m3thA8ayHhJppS9iDVwtX/LYmX2+FYxFuUKSeu/Tj9JQM+hDmnGYCCOSI+vYdInztEDJl9bk+oz3hBoUwwYm0ct9nV9n/VlA/UU2TAZk8/P1047+xpb81gWAEEpLZ4hTYwwAEkkuq+QQ4+Q1yV3Rph4rVtS+5OqOGqzUfCwXaDhx4JWiWo7Fd8zg4/vayb5lFuzz52iudN6uHnmryrY5fsD6h1Krb1gnjfUHWc9Jtc+bo09sN6+ciEoRG/Ji3aSv1dmwFW82C2QIqUXiVxQ6amch9GU6mIr7PlU7lFJpk5Q9amBtYHHiVsYGr62WrvqGODKGX4Myc+Dg6s5SSYuCZBRcg5zcZ4Tj5s79+ycK+oV31CDRLgvu2h26rcHIJTmgFOhk6UWdVnxM2CuQ2Nvr3d+8zc9HgbOwDrl7X8UpFPV6bfucTJshXHx19gaZPAW7H4Hv8pfwlcFzS1FUttKWyWCytuBp81hrLXLfnHb9grshPbDRKBF4urZG3kh8iQUZ4hnJvygApZp9LooWmD4SVjYl3OftQLdEBGK3b6MGxBGAv5sokOQZVgHSWFekiqO6oSL1X0E/UNr7sKTt32mPQ9fKX9+Q7XHNbujKdEbjnsfI2lAkjKsG2MoSDjhhWJNknDQsTBuBfuK6CTM/A2RO4Caj/OoSAmaV908De+/xHvOdlOgGs3Gy8cim8TPkOWvdqe67eLH4YP/RJE/x6sx2m/LWBAZj++LXAfhP289qw1Rj6zD2NQ6KukMSObu1Z0bniDaaAD/oqgKCA5YRcWX82tE8HuXUYYu7BEC4vx6VZTk5GNNwQg+mGxfGvZ3Dci4t1d/mnWThKrKTlCaSYfa2UdAfFguG2K3c5/6RWEgQEEAoBW7k9Q8D0i8qoA50AxGOQAxQUx93PyLeX3MwApquZGJQT4ZhdJkSFd4Vf9kPMk16sEjViM6xnc3Y4CqBe74uE0xIBFLpKpvZafvNPqItD46qSRldUy2R3jcnGs0vhoOdAxq054cJgma8W532FF1pNlgMk0OuiU8sLpjAXSJexUYMwbHWT0pOvcch1pC+WmDFFIWBHzLdWzg9RbYjnh0B0NfAK6+50+a9Q3m9BSI2lnzvttJqrpJjjJRP0/l9pbEBZhXOGDJgd5Qr5Xpqz/QXV1DrPNxC3H7/YxKwaMNqx6y/D69+eaVoO0xXCFUk88e9gJMEsZCIviS70xKhvN2+zbOo7aWw3udCTs9zTJk2yswbOYtJkG7gYSnNi2HCLujJLVDOoyWgx4xs6CVX4haKxezKRw3qMQ3XHryPzrgPrqUvq1hlbZZQPvy4GBkfbfzTT0x5oyUEqXb4wUF/eFssZYkX1ZfIAtgNYiotYOJrWMQ8ArgDAq2GAYkF2huUu12etmUW5EndLwfdvKjPUrOkx5h3oXdmAz+O4DPxQEsSdxAw5IgeuQT3fhxp2IPNqZKW3gn5oq29vedTAeEL/+qIQKBlPBF60kgO9DLhCKiT9hajUGs9XcAV8R7bWbHxBWrI5Ym+K2e0yEEtNlWpDx9+qQ2o/Ln7ILjD20Cd2QhU6FsokH0QbCGZxqqMlWE24EBB19JxKYwkxvkr8G1jbSu64JzDTaXhLWPHLsdG1Q1ELbkX9XmQMzswPArujr0QlsXdwgIOSRIak+S7IIkOs9D7Uso5v1cLUmwaspdhc1YqJBnU3pHR+KQTSdoX7Ms8xHdYBIeNUtM0NzXmI9/WTaRMY2ehx0uAUSgv8mY8GRJMZ7UzL1zJq6E2gvpkU6S6+9E4XrdlFTCac2umZKMlqK+ibCiJzfvvZSwjMqGRfNSmU9dQl8EvVb2JUcmZyImpDi5atzW8A2EABlZXFxEG70t5TsUGx462rgT6E928E8IZiZCsuUNYAO7EM1+1U71D9qKgenR5I1ZOJ/XLGVP/zMlORYb/tboNPP4AYJ+4c7NCzarfwBGMqJOKpVLxLT0XsGE+oBf7AtvGqIFsKXJf+skvvKZ+usyHm/f3LtKZNcfdL1fbM8+iYpZS+JSQBpPBQkfwvGvQHtQeNiidyIbjloNiYYO2Rsq9d1K2WU6v4QLRuq4uyV2ZWmoUcW9cGp5IWrSNG4YXmPFyi2naph0v0wkgazgNWd809cMbLF2DfMIickcK4loM+/AKLMj8AtIoGN1/bKjqkfSZ9VAjAFVEU9+RIhLXepfyMIK3h3ZPHWPqEl2/sxJIGrth3YDUyB61Prc29VMe6b5ukPROd9l8EJZDICjC/qTKnzg48o+v/qbfCmDy0R3HGi6h7B6Y0qO/CRs1i8YnuxRAYlIm8V0aRtvi0Y2g6r+CZFUx0LgENZ1sGS6u3K0iFJvtRewuInvvzxU6lmB3+AejccMOlCJhyekAUHZV2Y63ij/80y7M7lV3WTosdx+nW0YQuIt1kTP40ClCEXivUJ9XKeRTKD0UQSEMKF2IGd/RymAP0/XQ4tL8rNXIUeSN50/UnMjaKFHw3xSamEpJNQc82wh0TS6S0ZEJOHNa0EjLnvpsboHEfXnrs6Na04uRHMR1LahfC/6UuCn74pb/AYhLggQcRW4w6sZTZH6Q955UZBh12d63VNL8Ppp1Y05qbjaPscp8k8XHRYxcfsrOEYxgfgHbD2tFEZWihaBxnUpuAKgF5FB1L1La8DH7Ix7GeC1Y9z7uAeEgYf0e+KxvMTrDj+NtHkRXDErI6odOxUr2QKckx+2c6TcjFy15YcnEXSUqUQc3capeo0QKYcbPHBVcqZg4qZijPCajBrQO7RAXyFzlb7Kms58wA+L2h1tR3U4x4lxUL4u6VqNPJaUCU7lrKDj6kYdcVDvLN7wB9c4f2dfFdnajeBhjmU95fsrq6eyGv9udcbI+QKgIajr3zgEKTPzkdpitlM/CUZFFt2WAK5v1cFxlxLy1Qx9P4SlQrPTJ5n4gBUyybM6+mWWAkR3YrwSvr2bnYvx9v4vYP0gEryD5+C/2juB32sm/BgA8nx7bQtv3B9pbq3v2ysYnBgNJ1D5XDtT1VYiqP/CLe9UkwqdWYgEk9Lbh45BwhE1bkEsmOW3N/fN4A1klTkCCoY8MmUEn/89m1ZNFKX/Kz+97h2HvBAE8++UU5dezri+/SbZSbATGEddrX9bPjOfcoKk1Eds79UfdwREz4XU7VF77zuHs7TAya24Zcqk96hIq9IIEHVSeqEEtTAUC2GZhmJLxW/w64BtjbB8+mDpSzqbUabYhVFIESthvgh4GK7nrhN0+EmUc4LueAXFxWiSHBWE1GT38Zg7tYXVGaPw/akTCIfDkv+pF4Rjqz10+SXK+i3TeYTd5VTYezzsjmZfXaHIzcJeUufrWwtG/yeNC3jlR7qwEwB2ganyzkd6q/KAtMqSgOmmnXGns+7dinsgSyeqnXCjKpwvHf4exSpMvSmjEGwU1cpf3Pu6Qbwf2vEeBtK94nkdQSbBf6bQLd2yFegojpfieu0od6bHd0K5l6pOkbMs4PwxDmvJWpUChde7jpUl6Hy7fIaXWeStnPKifmXrWLVLUlpTxVWgeymtRSJUySjY3mgOnpHTdmoK717nU/1Z0PwZ5QkmVAe/aYT14lxOoc2qqFDSkLjNrVdWfpdzVc44nDjru2vnSj+NJ0f8JYm98yfDTFgLEjR8+Yie2ugTUTj6lTwsAUuFTIBDCKqztu7bXy3LFPskw1vw1SOfx6KODtsAFGu4hatucGwRLlozkOtCKBkf/0koWlBWsLXtMKQpX9yh+bMuqqHyCqlPwews8zaoFoF339z54hO5jGJf0SLMaXZ5A5BsUoM0Kj9Oia+q4P++D3B0m3Y6WYMRUFCNnk6UTgbC1htUzJ54bj4VqX7lErXFTIm/dwZ1ZBK6TEfhBZ7GtWXBqHUxOUo6V4m0NWbz5YxA2Ot+awQWq9qfIQDWUO4zaJt987BIz4J6IraT+pi/feMXTN2UJR4mEEFNBO2r+H0DtSUOJ2ckEEqZmgtinbgNeM/Xz2ufV6SzauP2m8YjZUQ+aJvzPlZBeZ9aVoqshPMG9V4Zdp8u97dUUTWRlNECz14/58wpWal7/NRJHc06KIjpdo8fdjK8Wb/PhMd/2oI4wcRMxdXjt9fTp8P8hn+nDe3YJErXEIDCJdfsIIOGuwBi4WalwZV9B45oZb4NDQ4yo3AHinBREIDsK7KUMfHsNN8HZojXas+7sT3CKR39iG6I+G25+hHauE7U2oPuvbl6zQvblAyvjP1LE6U595ZkKQu/klg9y/9HtMaAw/3ES81EIGsoN3HmaaSs4fmm+LhO9WRAa+y17WaQvXNR2v2U1/yobdrBlZs0UgGiCv42qtOrald8VnbvBAi++ihL7F/ciOHK+zMqM3Ox7nSvl398O3/nhmv4PQb8PHptvzV8ZPtL/KGTWZcJ2sYVw4toJT742f5t8mK3jBGXra36UfI4I10sgkIyxqaYZKnjZRGEJwpu5Fe+jvs+QD8GqhdPEfkshcI3+GzYBjVULeE53yfXL5d6Ild6+GU/Mi5WHDZiCqcyHW2sb/7MUdJzDCoq2CGNr1/uQ6n2RGqTplZZXmiuvH3Bybl/Bo1Gbu5B93cmRmwQ6ORVCR4hShMG/POnjH65UZ3HZPf9HUpLW5IKUzLaeo8gAJ8+Yksa/HzWXu2NS0MIHiNnV95EhmDJvMqgNRpiq2j8Hyv8/VRH6DRRkUT9bl7HxqkzaTRfXaODNEMDfpPiQSIiP0omDehL9DUVQowSH38SD9qSF1UPsWmb2u2hkTCST4eJOVUmHqJzcMebgUQEM/2XjJdjdZ2pdO4VaaLhfboIbTHhBi6OAtA5krogo8A+pGNJY3+3Sdp4oyiY5iaK3ToM3EzGvk2dYsyRGeIMzXPx2nKKe9lIrkMA7FguknQOnIgtLpcI1FOX/KJtwI9IMQWIjZQIS01Cee0p6yR8JoPsxjhYmsTNKqyqsDVKCHPVcbhSYishJy+deleedhSPHF1hJYY2QZF0gIhRpSYttpszUxrnxJV6Gn/tnECmD+muOw4oYSo/aM30/67UqnIiA4xATR78DKh114EgYPERh/PHZs2x06zHzKspsyrJ4xEOLa90W/8cBfxUQ5/DOgA4u9EE7P2mcL6PWKh3Vf0gcvxHukB/rvxUMcMjZnDvE+4HiR5z7YEEJlrqVMj6TrUzdv1ECd5NWnJWfIqjDgSZjxRX9CcNxU32fLUM0eGcFEWtpJ97vDPp2w729o4wSljpiM/q1rdwVO+4SludbCKszveTWajKgupf4VQiOlCED+p3wNUOiK2z8zuMhSMR9UJ8LXDSHvpw/EXeE+7FKbozCzLYj/7JhjxXbM5dXOZZyDOu3qd2XVnRcoJcdgm/5HZ+O7ugSFV3ZO83xZsSJ4Lv+4O41FJuGBvFZLR88AlRaqbEXRdCCOOG+99bU076dGMXL3LaD6KN1bV7E627sLDKQv3s62Q0+yLa8n3gH4gpakKSLW2QjIdYhLw/8iUwdnN/AsnCdiElEkvk1/8LodhTK9tQSUy1hqgb+JPOYtz+fyruZ92EdiBy5ynZ3CD1nJNUTypKSz5OMw2aVdYfiqtKsctEt7gSuQw6Q54eobgIoazloR1jR1Xp706qkWAQ2bnrLvtmkOyZ2YZ69paVuxPfzIZ9g8WKRQqH5zGgSksiV5hV6Q//lOzS8x5jiXxd+mc/ThQ5aVLWxyOPbP86kcLStKjtgwpLV6cy/fpOJJXlHcIPQOG5jjizXXk/HuRG2ytldo4lxfMisSYWHRiS/4GUA2rWvMwtbX47s52cRTLxBUymMAtMx8cmU3X4XH3sWmLkJ2353N68m5hop/XfzCEAX4Gs5CetklsghGL5lyNHgklrSPIvdy7IsEt7/b5LtTHg3V0pkHK1Rp3mkhhan+bxGYQDuz09byEV+mgRtjqV/3+sfoN5z6CodfYn5Ego62Tq0AwsCS0X/DRTBRJdcJGzuorAMQB0uWXm2LZ1EBAkF68uS3MST4q2TX6jDw3zf2xm0zU0nVJ0MvJ+rpW1JceJ8XU4sXJ6NU4mZ0dUW5GRBK3NfOO4eDCHucG7gZEf2NrmJeH+xCLYLCpbZgf5JiIT2K6eyvC5BVQogaQNRPCVMW2kxve4cxM8qcfzj7IHLTHkFbdhDxBzPIGvYkfheHAvVQ0jL/bMaKvETfYT66DdHYMBbJ4ansgKLl/Pq/tdt0G7KALHG2z46xN/Xy/3cclVT0RK4Y5EPjb5V43Hvor5HMihxg59NieR1NOhNFY29Ygv1oN1cCRD4hRZyFE1chDyPtgiZ92IG6KMEOwo8AW/4Wgf3OYReA1Izjx6jJGsbJUCvYedERXG7P423KyOjxaXsm1mo8kslczAPBZNNHzSrlN+ogerJicGRdDn9qfs7PwBsgVk7K/oQZyLWgwh/lpMyIkoGCGbmHflnTyZ0C0EgsSnlk7yX/gqoRvWWGL0pPtGByW6G/qqTMvNpg+RRy2eTvgbs6dEfqQV0W6rEuN+zIFXU4rFEWfHmT1c5EOWFq5JRVuLDroSsdI+CIQ909doU6mTUJ0mVs0gjmBCVR5qjdHiWQ9zc4MrnwU8/+8QwLKgkLjYuMxd3Hy1UlXKpW4kib67ZnoORVBPmvGkLbbly/tocT3llJS4PTwUZ+yivX+jkmcuLIm7e5Z94Q2OuEnuTsxK7WNsyBIwIhvam6iX1sN1TGpjPmb3mnBoxdk5VrEqGlX+fPfUgZDEL0ntVB2IMilnXcM4WZjm5mfaXiDdkrLMc0m2pgu7BpIUeIsD1koGjB0/xm5SXaJ4vc53EM8nyzn1gmAMDQOwf1sUJ7nt9RTGuzZjyu3VsIMkP/K5W6T5x2p1t/6Wi/WFeCZE4Kas9/kENR3ENpum1AYirArOD6cG+wXb3K2g0M7HzIG4S27jr2hbL6SxHQv9kbOd58r0z5/qa5/QgyJyKEhvRzhameMfwNqLhG6Os7xMdKHLtLuOwoCf1uhel6eK/bG8xxExkv+3y+wXO7ZyS159MUjhE1J5oIzN9LIs5pk6tMhFr83JyYNvYRa+kmzqvPjiEi/d0/YBYX+iX4GrnAnl0t8MCjRzZjmaGAULt/yGb6SaeoKy+JheJtpErCr0VbZY9DIz4aIjOsuNsbvZeRs76QWcFqZI9cWxwPq1Kt5o4Zqn+9NU+yG92k1wbpARwWc1oVV5V/sOCWx1wPOFo6GUGFu7HQ0fVWcSfqZ5MPx1q7F4Swa/rd/5HQ6Wb52/eibuuoMI8GRxck2NaV1xo5DOC1Mqh1Nrq+2pEeaS+nzWjydHgXWC3QxkFgy8zEZHkq0IKzj1by7xcTWuPymKJBsq05heZSCfFj7cDsKem7tu7u5dIqV/QaTvyXbPkrTa2CflnBeQU93XmhcoKo3KWbouKBW1PrPGUCNe8xDCon1SmTC5xy8BGetwoSv2ltxhqxev6oR4fytq3Mizage32IE96eui2qRatK1GXnYm3ElwJr+F1euXzseFENcUB7jZ7rbnVQJTKQLB+mR6VaCTxTCKAbP62INx+cQZKi0oLRUMSoNrJnsgODzOAZGeuEHJPQUpiIsYSjxggK0jfrS+0AiW5biGHoSi2Bu83gDI7fV4d4AO584F0qi7Ho0tp1GiXhRxQvPKiOzSUbdjcpIgde2k4k8XDpWIaiL+b2yX/hCubeUGRdM5+2rmqc7LuYKmi1abRaEbouXBP69qdTPd95K10AncO8WhFzqPyKvs/GL/et/89kwsXYL674jU+QVW+0vrXaE5LE0E77oh2Nk64h0wHo4OdG5BtfSU+ZlIYsFK6VzvMR0RNUGfR6bb0zgc6HSBkfH1mVC416RtZ0ooVW+NvXXZc6JTljBAIgEURXx4mNmsyp6rvz3KtnUDIp8yY0q5aRKoYn/O5qLTlWJRZcC/ALlknj7KH18p6aT3jH+noclnizv6lvNRLk8qQoQLK7eu2GYFgmRRjMW4VIy2ZJb2THVvueVTi7CKmV29FFnLdk1lvI6APyjEII3uofHW9UW3II8fPi2X1/FNeGecnNY7Y9kPWxgXxjqNVEHZ4dI961De8pLlBTWSElsu7g4k7Be29ViPZbVdj6/AUUJtNdtshqlpvBoa5arLWPuyfYXpI59DRyNS2QfdmwHX1wTQHAxe5j6Upov8/powiRkCp45thJBep6SNN/Ndx94w70X2I3qGUeLlPJ/I1SoB5nZ5X+Xr3CH4aR01KSlRL28F63NOOHYL3XueURyBFdem/Y7fVZYK13avWxSyIPkgObPHjB2P2FzhIhLq7KpuGBARM/YnbM1ExsW0gvZdNeNgiaWpYPQFKAbeX4LqdCj3W72poSwG/6ZHjaojTIoZMjKBqzZ5RKq5RcqD/UOlVk+BJIeULgW+3gagdahW2IVD/jM1j/d+sNFzngdRlgNBJB5wHm8016+KbD7mtkdFiHAFSXsZR32tPlyczfNPIrqkzBDrdwfVw2Lwz1WZmkGqmWEW93jVIyeMMf8CjnRPCXYrBLJGzmrCn3Cs5c3k+6ogj28Q73WPIvmgv1DA/Dk3EvmTs7yxecv3x72VayRUIMZTEdAcuPpamLqmWw/WSJPoU8wUs/hSs/onoBwVVzjz/jXpoWTpi78p5YL5/vhpqGprU+Oa4rLW90ZAl79A2uFVMA9ZEwroEXHHpigD3F0sCitXc6UV639QwAu0Rh0m8WFXny/BjPZdUH7kUgXZIaOitowDeE7BoTpa5fkgouCb0k0LX6s+nbukxdMR3EQG45VEpd7MfbZSCWPrfjjGymwbgVo/LTGOKrce7mGO3JHj9AjeGpCkc/NMuQCirAlFWkM2FcqLWbPtt5owofvdK1UItanRrZwAOaTG82tjm7UMDChO5l8p3Ox4dMLEtX+XuIjK1GZXwnB+lVLIgULSJB+JOy612ArJFdNnRtgoLt5q/Lbs4q8gLzerC3h1xmOVSch3nPhUyofNLLwph2Cj+l/bBon3Iu8rmQ88KRmebgtVqI9hCpTqFllogTzeuHqNNEYwHhowR1wMfhiXf0qgcIkiMsvs5qDjSkFpt15BE6nLERSAgHTF8Ts5elAIvGr9Yc6CDaowRnffpxrXlfw5lLpA0AYIviajjk6z0phWfD6HqA5WKwxE90brknMHoDLqdz8XP1UKUkkuo/9tIijnhorckzOuSCuP5xAWa4J5ec/QeVY0mRFURrir1pMQ6kJYoAkdzpY4kAwMKz/jLebroo+DOt1g6EKcXCCRVAJTa2p9xmgx4YSwoPoqCSbPtxVU6SJFJkyGxzf/MYylUUW/LEyFTRi5M2ixQ0r+bsCKMu6nWDwUm0+FEj2AYQbnnme+WSlIBAoU93ml2a5Okv5gi6vcJfM2SjcTpgwkY6GzjAqhM9E/vyzesmStBU8xxjtdO9E7mS0zttZ+22sTsd5whZe7q9/Cl6BMGRilxbKUErupY3zcYw9KNEZk8TArLGJ11i6w8PEPiMKmxgQkqdGM3cXaMNC8fCMPxxRzlSXnl3URI2C/fs8JzPWRiGnWA7DX4mVJ9i25VEJufCQAc1g3Rh0gpOmZiVd7a/lT384Sinh1GwhMZxH/Pr4jMhpnT3V9sgEZO4Qhzsohf3ecPuj7mRJoXQ80LKQcF8ayWHJBAFIpiocSey5FsHSmQYvhVZ4IZEoOm3k5sBjiTB/Z18Yq/nd1BAtWQb8cSM9vVNpqVrr4oxjg3664kac9mRvV5nnYrd9y/9TvmKYuowA/wOq9xa8rdOFNdF2+sDKMja24JvVMP3lem7h0UGNMRsk/x0YSUHQwAehTBXes1KUqo7fz4FftEyMuF+UhCfdBQH1QTmYwCnp6CR8ZCp7sRUpYwHTCAIj85p18tb9iyjCr9ZE+URXVUpLih67E5crlqJQAYK3TojjfjK/KtEYSl9KfU9C9WNvEfa4YLvyLThBPl0zsTE2M46gA6C7ZxeLOa5ym++6dNF+N/yqPPdWaUnT9EIsoiW1bJqQM7du4QZKNkdvoF4/DYZsEJazyGKLZtsHIFm4ZITtGYTNTylj0+iSzx1iGqYePrgEEBwU+M5xrtZaBXVbpcOauvxG1rrU0idLesTLCsh6lb+OUm0fetB9rVahvyfD8cYW1KXrsOuwDEbwXQZqkNGg/dm+gk0zAkASIT+cGDLU6RfWlWRs1+/f8v8WJ8bEC8nxGTuMN9t+JDfhg9I+hLsnSKtIBst1TGMkzcJETrQq8mWF8Kv1N2wUI4xu612zLANHj4zvPFF5Tn7X8AOzZ0DPQ3PGauySYvUa3CcXbrAVTW5cP0EJz7DbAYrZdu05GOTqWW5I1xJaq2S5o/IthL0L0hwwECDJZYuWiwUi51az5myLN2GeGZXoJDx/Mp5z2DZLU2DpGdShSAxYI5FhgV4Z6j/TfPWU/iS2/2bk6Xc0eD3Sl2cL9EBTAvOc5lRCzfEh3Gn9BRUsFwiw/nLPwP3lK0UWL31n7hf/Trx5pgiBcBQuJO5K/zuAQI0l7AeRGHkMdT+OK5mg3Sp7lDdU28TSAgmSY5cmZK+NgDggQcy5aLlO5Gak2cf1OOJCiEkRajrTY9wj2GrHe4tQXDV++sJg+v4HrXlp78FjwjotZmOXePzgcT8c9AwJLZlgzmfTV91GjvYU4xWwX5ia4PEJ+QcgLYhtUiegcWooMTKp4wCZB/103x0l7YrENhxvMwB0Gbzy13GODyIJjon3SL/TJ47Ra3i2GsYq5tVGyp4/0OeZewnrQcKzjPdtyOoujwqSFeRF4KO1XpW1GQ/DaJl0LTvWZXFBydFhZz78xh5fDxX1PEedHbSBErIFw2V9OtsFs2YAzpPJshGOkTxXFpmsbBiKqymmjXJicOItacEIroYHld9Fj1+b5hsV+BhFYCkySLLg2Jcj4C2zM089zjxU1tym
Variant 4
DifficultyLevel
721
Question
Twelve identical triangles are used to make the figure below.
What is the size of the angle marked x°?
Worked Solution
Consider the centre angles of each triangle, c°
|
|
12 × c° |
= 180° |
c° |
= 15° |
∴x° |
= 180−(90+15) |
|
= 75° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Twelve identical triangles are used to make the figure below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-CA27-SA_v4.svg 180 indent3 vpad
What is the size of the angle marked $\large x \degree$?
|
workedSolution | Consider the centre angles of each triangle, $\large c\degree$
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-CA27-SA-Answer.svg 90 indent3 vpad
|||
|-:|-|
|12 $\times\ \large c$$\degree$|= 180$\degree$|
|$\large c$$\degree$|= 15$\degree$|
|$\therefore \large x$$\degree$|= $180 - (90 + 15)$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 75 | |