Algebra, NAP_71000
U2FsdGVkX1859tvPahBfzmmTixEYUz/E7PVeyyK9XNjTeg6MXgT0dc812PnJKc+M5Yc0j0IwlqkpkXReaR3msOUUXIld1zMWpbKCrIizdTOwm0Z7q8O5ivXJxL4y0ZAQKXaBsuOVtEMYQXzpwAntj4B+bfZChNLuJp46ayME9PiFWQ8Sz5aP00RMgV6DvAYwwciwuFuWP5uKO6G7DNTXFb1U+5wA/tlrSy6tgGSSIrMKyhtRXD4mrdd4EDzDGMcKFib9wCtHU+SW+TF6vPOIwgRJJC0OLzpGgwADxKoD6/cJa3O1PUzT2UM4XKcy6cHtjDmcUrfkjyZGspCMMk6F/9IEpLpq71At0mu1hfmYMvdcaIRqC3SDgoLjfC8ON3Ft/HqP6VByLFDywneyUPYGOdk4seCUwIRGBegPp2JgoMFaDJET6Oo39APTx7bMKUTVEBm8D7RRZ3OKDLp1F6ilD9tOPJFo2hny7BrLerlJwl4sx3SRpx5b8/yztd0cRBTRz3KlXICW02KQFbw+NA7EltjjE/Wa7MIfAD9tTyKYsUi2OgfBTdXvE5QpD205extGfbu+GjLgcmlkK5Rc08xv9tocZJUBFVCnF1En25U8d57eYaqkHhPwjEuij3mbVOJVRP/ImiVRLUJVM27q+mGEMPm9+CsBvfmteSkoDpDvMpD4Kkd65ARk1E3uAPFXrtpHI6lK6BKaGImGeR/3Qkud1ZC6K4DX5eN4AMLDm4XrmWSHxolAhfjrBlLMBxFvm0QU9KHA8TRMon/ZHXVL/9a9D7yDRIhvLxbUoSugivozeKpbpe2FPyKjaEBjVJyL90avvH9qGjQL+N1+aFAtN0LzSqGdghX+nYZgW1FLOSbu+NuBa6mJpVsHNMw+rnDOxxxrVeSl+H0JZXLPCE83TIRP8NxanucjFJcEe17koxGq3BLrTQ+/RYezLDPStCoznGFmaW7jN2IOvtz6l0X83qv0+PLGkfhpyZHN0svVcwRhYzwRL5v2V/NXvbbucl6VbSAuLiGATsGFVPlCJ5/L8TG3EnJoPWxDK7vyCFi92AHOIYxCjV3oqqaLDRMgkz3IPap3MKQzy9sskZF65zxOCLwZsdPieuuStGGNS6uCjX/RPDfQs7VqoQpHJmOfzb/rNVI1bbxQS/IDHswzkdHgHsCwlvRCEbjVzFD61idcMJDt7gtN3wAFtFAimg/gO34ML1TldeB5mqGLbITtkEQ0fN8UQAK28oKg4jAUunhq+BM/CrASt11II1667uaT1xVY4WnS+RZZ1MxmHMGuIHf55t4NGny/m8yaA/w1zfzNd90uazgA46LGguQnb97bKjmr/ilL1lE/ddUZ0/o36cpqVosCQxDFcyN4YkQ0dH/y9+Es0vNqVCmWfUVadmmw2PbqRwHI5neN7+E0yLhXWBWVzqwNsoYyQ0Rs6tbIonetL5N472SfAb/DGQuFTYnsSLxGkVs3y757k47nJnwXGdx+bACHbnQOUwVePLeBUv9MOtAsSQwgAQdOaf++LURUqYJXWot2mESPeVJEMDqbcrAzu+8tiZzKjf2XXwkz3QgDV5QwJusEa7aWwV63aPDLIvSJ6H0h9Yf1z45ioMsVCojlqjqB0hlI7agYDTkGvtTaIXOUKfm09kytnnf0gt/IOAht00uYzwTz5Zojzsouey+LgU5L0zEveNiaiKGKTHUtK9b0UlHF9vC1ANLJcedEo7Z8Pk7jfljAIDYBO9DRbV1F4xlpXQJpXJtPlLG3h3y84Xv6lvCtt8wURb8CJH8YxPq8c+utwX/3c+Wpci0th6zMNPdiktfRrIUrtgRI2DUKNqT+Qphs47Wb1picrcIU3B25ghYniMcaktnNRTFAKPSH++Fz3x3tXj5yU2XqhTziwNWmOb5oCUxMiQtxz4dYIMWicIr7akmq5URA2XtTshDUuJOI1qq7zUgN0FtCZpxy6MCtNaqSBKN++vuyqr6RR1rDwz3GLRtv8GXyUB28d2m6y2zRTwzRdaPxHQ483RVDhGOZYO9qB5ghuC4Jq8J+Ata8S+X5d6AunEjxlDuFggUT4kHA2pBoGqZ0Hm0Gch4ClOIN4whBxH5H1+7OkXQdJ3o0E3pHWDPTUY5hhjghEfZqyI0vVkV1bEmRV9UqxDS3WZB5wS34L72odwPHezinb9jylXvkx837xecy6x386U6tZgXKFWdDlCiVbE7iPPeDPaGu9N6Ze+KWNosAbLsNNrfJKtr1z+Ei9O0eWGyQ6QT0/fbF3zub7qA4VyL3B7Vpv1da99Z2TXXQlDpru604/YxAKjCHi9ybqL28F6OSr+jHV9hmzKSGB+zawefJfnSvECR3a/N6NH1C68EsAvoG9L2r7bI5+nhLElDj7vgSmIpuR+cxAgWGvlEzU+H05uhlnEXiA3DGmWV8UBXTQoxwMfzvVTkKxrLsU1IuGWn2KtSoF4KSjbUbCc6JEHg+O75Xma2Nm9sqik+7R6F0QKOUz/B3seWOAVWwrzPFoTrC7dfiqw/x8c0NwUgbcyFf5MxY+XEhutDo7dxC0BEqXEbiZcfao9kzuW5QKDmQVWg4G72kessmBIdlWodzSxe4nF39lAuzYlLYXHbSbSd4tTO+eQv3pSJ5Xoa1QDBkkBCiAM0J6bc3hDYE3NTPOMszTC8bqjX8/0kRifC0ulUF7r10xQT04GUEMxNwgAxvk1WxDNppe9A1srN6qXEZrzIwxa3HrJnH1Xi5CTWTiCVyR5wFDAwtLIrjzKmSiKyBJbehQP3/cQFA4eN57LbLonlRFa93zIQ8NKBLMamexkUWXSzTa9y6MpHICp89dUYbsHAkKClZVB9ILp5tf29pfsKBTlGEOKNjtUPgfoLaCYz/hKF7UCDetvMQVed7gXnzO21+9R9PZMsskCE1JZtm9iHgUItq8V/y2WVqGElRNJ3PE7X8jNjgWBQuRc2IDACmSarQgzJ7nYVOB+WBMmyQ3M+2/+bsL/c1jvG6ouhj5GfmaKjuGLrDTWj4mlCIeKrUTsMVTFSyO4k8lh6kptOCb6XWYdvU/VVIEvNlNoX1alqlH6Qu92Tx12vL68HooqqDqwpCbV5BatuugBjLfCNFQYkUytNVx1bVmLDALI+Q0SmTeu1i9TZ5aBwGmIv3zehSQnTspZ3yyA03OfbU88SdVysOcdkgCYyfCxdl/uIuYfndf7TzXrjJZzH7ZBQZoU6LR2NHblyaEeLIcO51S9W+zib+GMKTBVspouCRRTZegwNLzeBMk/kTI6XpQMsSySfzEx3jPdCL0mN5TXVtxYb1IHiGYck3Jttin4+DhbUSP15aLPfD9Sql3UsrMlOK08xkNPIx/inFNVG4jzwhA3CIO+3HMdBty8flYb1j4ceEEeMhyC064u66CaxzDm6HmGQek00lMzUkdi37ag3EcHc1EHjbyga0E/hrvRzXZ9kGXvaB7n2lz7YZrRjBZ5v2RcunONo/OZ/9hY3Qsa+0eEOoicp3zuKTDS08f4nb+ekKJsnOLgoUdkwNvMY3T0O7w0WAcDZwxSayBzuvguWLr0subXM017GGlHY37EIBZCzcjlVXVInxliiokOeBGBOPZlvNhBNK3Ac5jGNqLByClkLBVd4minl0xDq1j9zFndnOvu3jbvp4P5Uz9pm+tMtFiZH6oX8h+v6BvrMq9kCw8pQWQF0h5jeHWMJUFnkvG82M/3s1RQHoXYOv0/G2uu3HLiJN5V0U8zkRjTvPD6ev1yHQbqveacUbNv8kMI4Bd1sPIP8R84jVpua7hk34VMcNTBLWCYaa2HFcB+E7iJD83w5zVcw+x3JdWWCS8g39l+mRLKPrvsvWPoYG6WhFVy279RYTyh365pJ48Rw0SQ8PrNoGb4gY5OIYQzOi0zsVz2amxbp74lj2a/dj3Ehqji+1TDMJ9pGq+SdeA2uJs4DyaNdBnLtWYRj4Gsg7g6ue9ARtPppXO5gozwXxUSpxcJrGU9Ly0RTvncxWLJOUcX0KR2bouzre4kKt41VHPTidu5VdnWFsK9KxBNh9p4d4WjKhClJ6c8B2+Ok+2cMfGor/vsgHWJ0YCinwNIHh9F1r8JCKtNcuWFX81p5Pi5oUTP2AmvUOycFtXCs+1mcKYKZd0HfGxXEMH1V4Q3VKfvED+lbSUhKixMb8/l1SNsrjdIKhZW201nOLQS4sKUl7p13RPLaw+Y0saL7HPzYmKaleX+8H3MuA/oChxdz7YiuE8uMWUZX9lzIHNnCf8qYo4oHkUQ7Idl0lYXiEcozR+PwniTqYOO2qrQsf4T/nzHIGWxZcerm1ylo9KwfYj++RChOVCSjgT5VDoYGDTMZMh0RfZ9kNuWk7gj+27bsvA0G0yeI872IYUiGFPd8jvwVTkHIEvSUxnF1gazbC0wYohQYwwRf/jgEqj7zhI5siQbrVo8II74k1XHNEOrIyxFgxqQDkSJeffTzmQCdK4CzU0eI/sYXisvS7K+ZW+q6c/31e1xKEfsfUzNdZfvsRanQ+sNysere2i9aexnp89PyU2KbvuSViwO+bHjC/d4zGdSBrA/SpoqEj5uU5cDnWwZrkB4A39x2REquU81aO2bssif0czdcuefV7BrS1UfkSEpCxWJFi3vAysr3nxMkohKzR8mfEp4bkeYtFsjgo0+jX6MIkG9BFaMMF2zC5aFIhRg+asaBfVcFLyFeGkF5XInME12oUdRHTxVpbKxYeOpdIU0M1s5UMMJAc5FeQhRD7stBeM7Etl5YKf5BYmt/w/P+PUEk54W4oajV4Ic+aj09W7mETwiLqqI6M+OClnp/jUHc3+4whhrrWBKB17v1IHAWxjcoIxxXPmKyIen4WtTiiWTTVJvEeV6cgUKcMOdQTnC2jNDXCI8jR0cqL0q/FQV3TrEj7NSIbISG1VjfBrzR4llx5Kzswil6ZWi2yEvlRt1YGC2fabOtjj7zrbgpe+JXcpZVL7YSFtiQ7lQXYz/9GIWuSoZjz9mK0GGuRbDZQUShC7UJ8duaOiQewsXHHwLoD6betkZwL3CEa/AnePRPHxge5PCEiUeQihaK0mEvXz6GhLjKf5a5DSMJLGDqFcozgN4qdhUv9TAikLlJ2kENWHFVR3bNdAyVI+WusPDNLj2dRjo7cAL/XSk6a4MHkef0IsuHc9qzO/oRZlTXNISNPZMhzLdYb31bkLdpGewJ7WzRnaB7I2hEWpu1TC3n5d/2kVlu1jb8ieKFv9ASlvfhahIucDsdDDOiI/nptIWbTcHmDI4NA7fSxaMVUurg3GBiv/lT4Pr4E8iLNXuduMBph71VPyrF1iKZLxvFl/keCP/CEN/dYRKULVEFq7ON52iVmfvF6FGuWvtqT9Wk6eKvCuoGONoyCKFZrs5nKgSQhsrqWZUMgH/ezipHeKgT88ldnbg==
Variant 0
DifficultyLevel
372
Question
What is the first number in this number pattern?
?, 88, 92, 96, 100
Worked Solution
The difference between numbers is:
|
|
92 − 88 |
= 4 |
96 − 92 |
= 4 |
100 − 96 |
= 4 |
Therefore, to get to the first number you do the reverse and take away 4.
|
|
? |
= 2nd number − 4 |
|
= 88 − 4 |
|
= 84 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 88, 92, 96, 100 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|92 $-$ 88|= 4|
|96 $-$ 92|= 4|
|100 $-$ 96|= 4|
Therefore, to get to the first number you do the reverse and take away 4.
>>|||
|-|-|
|?|= 2nd number $-$ 4|
||= 88 $-$ 4|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19rxNxxfHPLNei4ZlsODzJfe31W1YNlvQ0CmL+fXQbB7OrUMpg+YOFmz6iV5OlylGwq9PKt4Pgt1XyfBf/JA1221IZpUO4xk0OMzcY0JdQYBj2h90SK7i9aBM7kEZmcSlhhbZdagV6kO4xzV3DSd/CU7w/FEPW9FnRORGfkkUguOYnfDta1cTQ6DnOEeCVwXYB87qPyTTgNWU0hbL2gzMJNFZvbrNGi7BloEu8p+46lbznnelkSng2vWh/wL2/MCAjNsLgXIxVeBLj4vPQZyzoq0mEqSs1GMUnVNlg/atGQx+JO3PeKjEVRUegtSZPdIQK1JdB6WOitoaocJXO5/Sxkh0y8mjkwr+/MXpk7CpUdSrTYwJFVkoHKdJGS4T71aSWmOSLrF3+HCFVOtAtkVa/7Bh4L/pbAJMSac0oC5aPxrpTlnt3LNKpt5lzwiqKMf2XJGroeO9O7jWq9e2BzvQUk74nU8MDAh/GmB2izyrf1qlBK+XkaIZ5WXLSUmHPpMNMh/FvXYXiUeNHMTtYH5Xr3HQuX3OnGv0Kf4LGiFH3rd7468wHlS5SXXy718p7JZW8hJbXeZyXlRnjorct+jMXaH7R2aFzezp3EqgpmrdDOeMzjtvU367qAHCiQwsE4WpR8Pr9Ab+7k0j4u6g2PaSdl3u7IRr3HuG3vCIPo8v5y81MjLj2sKUDsZW6Vna6H56Fh68M+I31/5gbtkifeQRY+WC5EtXREiEGSKbL62YkAOuiw2GhGpDfP+MoOzA5G+56ZCaEuvk4d+up7EP7OO9scM6lFF0lrQP8bqzYozke+PgF4LUL2S6Nch0XKQ2T8VNb1lGmKr46IiI6Qpc9EaVuTqDTGWOieAHFK8NX9K1cOUoSUSrTTHGjDCiSsNiGUGt9AzpyBlnx8o/QBGNv44nrQkWBCJXyuhh6bYdicHWJv3qChnZAcdsGIlDJ1gQC2tB8STragZc1ZY546CYgWi9DvgMgoCOzOA5TxHuvPU5a7BpvKFdkDf+kh6Tz80JJLV0jE835ZOwYB04etLDdoEwFiyx33MaOmIR0LiRxwImFs10uWUeyH6WGL7XBCSJWrgAFBeUHaHNKUpJtr/NdjNnqNmyjYF51q2yGTgQT6le/CfEIpBzeIQMZuHTRFizXSesxWMtLrnZlT7EPbh5J8xHmpvdDOpExu+86vHObuucKKUtWB+WQq1mG7o9CoOIDxLq27pgW4Xo/60pmwAcAgMnxFcu9AbYRcBu+dLc2pjvNvO8K/JpJDetU65x/A5nAaT4QqGtGh+7QxmlKfdAnFBpz1QDeW6gfccaxNxkrjhhqNTFntWqsr5j6Wf3XxrOwHisBdLu2YXGMtKfpLXjpt5KLjc9erBV1IzE5dGM5hiaNwb7cA2zkLn2NwZiDCS53m1ZloEtW7HfwjWCGA8d5aLFzr8LNqEGmvPpu0S+F+234onoBo/Uo+LbOqfjkCqxoRMbGJ6+RP7TTMspB9qfLnSc9rBykYhAyGQLkw64AAzkuCDE3jH3NVNK+y1yYl+MOcH8ZrtFJpwz5iaF14H3YTGF4q2wXmXbnn8QEkr7qWjsdjPStFao/oXJme+QRynoScDg6rzOsvlkV0YFV92F5dc4GgPxXvgQx8CFUPUv22ZuSB+VXvPxeCBMn+LsLpsVmwlZfVC+FQcqU9SnhOT11kFkp23Tp9TYUz+I3CKpFXqe0xSac3Pqqd7qh8Qx1XVZ//AEKvaiT5Xe0Kiwuj+mwBaBEOqtrb71rvB6xu+uXrCkQaznSWz6D/UY5GvB4B5w77LdNpahM5YPGQLsQ5421gnRlg0/k5t93Ng8Vw+002AGH1TRy9VGHd9Yx6lXcFuvHfbeUslGrBeR835j53QDVo3X2Qq6r0f0GqnxH6kjAxOFKWAbHUPwJzxUrhYAv7J7xRueGeTB0h0rdFqxeNT5DNxewdKu2i2azGqBfJdAi7DHwYCGK4hrAiiJHvRwyFM2Rze8VldADc8hBB43IujX9RT10gki3bcWeZmlb875cZ3F4aBkRMeuEm+OkeH8jnY9c/H2q0wgr+wwYaGLJKk848QWveRv19DIG22RU/kqf3xfZTjvB3iACHmSmQo/UBaJJH5kqOuNqE7vHdgEXeXrQFNReW/wg1CafXZPCEkxYRqWUWi3W6bt/U9lFXfg9Npvvq3zVCWK0NPbovvO9ZuAwhZrY3vP5XbZfbWOcvQpeSSjj6XiiM+SSBQ/9JtIB7VhUKAfiQg435Nwb04YmN03zibdujDiQB6i7xJddcIXPvswlpV9YRro6GUgbaHpAQ4BPh50HUxniBPt8RCV29yQH7iKNPQ/iyn0gGhENUqfaC3LSsOyTjCGfdleExfwmZFxBULPlD2GBoFVeCz0c0GZhPszmIyB/kfGh5utXjMgpmRlNBl+WCW17CR+iZv5vKICNAZUdZPimnQBoQoMr5c1AuQKKWCJL0kVraW2WL/1inai8qmb7VR1DFhXUSEjKVHizPFscomslQBXJOvc1EFx6kX8YICFo3nV58bp1lx64HDtpk5hRwK+r8VOxj/6CZYxJomNIbhpGIPQ+rlYqXlG0lfLlMiOKXl1HGkMhk2oAXa1UTLlWAQy2iBZxajDqkdlSIiAXyryV8zVbnhfRs3zt9isvp+zFxpf+oDSwZUHj1BUMougbyF+M9ycc02dkIgQShHRM/SFhKbFQeEKSxEA2Tbd1Ysnxt5/KdkbpW7H0yDFsyNf09WM/hOf5X77+XaAtbElIH207p1APQ4LlUrwxca1S1JK2jA4npD6iY0SXQywZtllRJlKEZSvfCJra9JItcuvRetbqbusb8doHTjVrJzg8u7ZfNxVXGIaGLnoiGbn21X0MmwaU0LSSwgtjDTbEUEQFwB1i5nRJ77YY/nM2y56hoGzBLRzoCclaVXVT09/F8oCCeivc64fYZ7EP1RR6p91+luTVtMlOHA1x+8WDmxrIuxQeNVY2qIY739VdwrAU6k77I7YXMv53SG0+YLRQjg5JRmyigVoJ0e0K2aczGYW3/YcHoI1kBZkN5SPEUCR4fco1zez5V/TGFcGXu69wEI154KHDyvJA6iv2mlWWFLhH8ElAxiWWIiWkxhDXjPbqcdXg2hRECeSX5PjreADXnEBGGQy2AUZE7WUTC3pIOsT3wnX+O6G16ZYiAYBf/5rO/0MRmowL+cQ4jGGNAcH0ddCB3f4nrvmVbKS9FPwzC8glggSI7UpsGYPhwnnRrbuOVW2KTBWXG1R/C1ZATG8uPF7ivPm09f8dU9uLnLqdjzgckUUhnwOEfMrnGjaZfMcZxDMAzNnBDXJKMhEHYAshw5yy6jQCjkqPv9KGzGBGCbxJ+zrvclroSzCwEimV3Ptqqz3KZkRCBE8xSuQ2kSQcJsv9ojT7e9130CFMnCtcY4Jbti25UW7zET410GjpFe12EPYhlGVB8eJCU25fUXoRfzyyactWUVJBZYX3v3G8vTlifp9SJjgefSQO56xbJ00P/yk6zNwdq5HgHrujAjv/v+dfWuUt4RbdCXFIPHo7uA9CU7Hi8qErPAteaWScvgTStqxllAKdWsyH5jrYd/p6BgiX1rAJNy816DABRWhvz5ihiUc3f6+j7AsFHQqKQcUeLCYNvSwJMoolY/wmcy0nuI9dNZzd/Vb+wIk8PICZWiN/fOj+jDju2fNVB/2xClINAlxIaNPhzcY8GmpbBnMx0gva0l+EaNg4b1omyl/wrt8/ww5PUeJUzB7OkvHv7KeWafMtg7KGaIkhnGIJ3HG/9i86NQ8zN8S0+vJp19YXBQXhK8yRO8GiiN0zYBER+56EHA5FRRFmZQL1uVs1y0Y8pRCj9q36W4PN+W3TPLwwjxe/hdEQeimjtcCFJaepji0EDpAQIwF13QXjcbWVPt6XRcLn3VhkZ+wvL+Rp4bnOc/iqWST46oA5j4C8zIMItBvUYKE6FUYr0RTingyR+iE1hrtOyhjkGohLSDiCQ5yD78V/pQwK7/Cvtu1gQ8+JfGBgObJIZR3keKTpdzGhrko08jXcRbmwZstbyUwq9CD2yeKs6KJg4v1C3EKlV+x0LqevE48PuSZfiZLfIYQDrMUjI9+z0c/KQeWhLF624SUHr3O9qlKYh8aB9/gLIAx5qAvsWfZqtcWRt3gmzgxBewsvaWrsv5Vp3SbLE8RNU9cNgXOlczdtmUfg/WA07AYCu35rY7haNNKQpKrxUuXeUFRJEl+QnTivDsUdSIDOEbIcx7DvtA6LM5Nnd7QCszCiqksq2ZkkB7HPhahXG3q1QIWfj8Kd4eRu9cqFTdCv48EGwsuQiJ1dp8kGnKNskkVwOCrDqrPnudwcskbrLdi30glTgW6yvIvEQ5AaLbcjYNyVtE7ampQRxBY7H9VvgOTUxJT4zvAbaIRPvW+ZOOoxdV+aSaLeW1bFtxhABqEiYDNL2/CyXyvsJ3FgNa+Tq4oLkcUWs45Ps5FtslT7tlZMi0nkD6rkB7eWJI+8URbj4xDlL6Dtjv4EAplFPsosT/UK6uK2L9AaYUydX6uoxdD1xLomqnRhUJ9S8RFCq4LWL0/J308zJPlKWeGj8uOdpkU2GlA2bYx8pbqRviuv/8PGp/h65Pb8GHHPsY3/5Wg7BQktDXEhThJzqZpfQUIdDMEB+0mvPvVRChXs+LqkvsTTfM11Q2u3EwKJy2udwyaCRLuv+iSpfOwr2O9PLxuFVr2tCCu/FxI0h5mtro2+h60LyzXXMCjwbC4cpsSDzyqnnheRVH2siBQ5/m3TNp8nKgBfBZzLPxV+sMVfcBWzlhHdI7Ni/IzCytgahfGDAHOlawtMVqNRExjc/6VF1jae7zsFXV5kf0d+i7CVjBOgRvrN4XV0sA3UL6Iooyar7NWm/OxDoHUH3bEnl3Nr713MxQKWLyFZIl1liEmLBNjRMQSIPyiyRmTFwX0CXAm/s+F8J55ApyoSJ3zOkJ5X1Oz2RsFixm4JqW+mJv6Rqs88rv5uGfCo/S+O0KB78PTb1jcLeQWBrz7/FVTIpIilRC+YBbbImYOclXcfl9dEXVQvKK5P1icSPu1BLDcAFekC9NvWmI3fcPaGS9qEeJHKEqxuTCU/Dv29f6ugVsQv1eDor6Cvn6rDHzHqQe2PuUwphsJOEBvBdGP88My3eAIHJVJ41omREtWvmZrCXLe0jcOcjcBtpIH1mjx959oEXwCax7ibe0/Llr9vBuR6/hEZ6qrvZcEilsv0DeycsbtpKavbHJQN062ptS/pMEJQTp1SgYOiExm+tY9KIv1925OaTH9gJQUg4sM0WfLIkKcRgy1DwVMFyJDCDvfzMCeIWmYd0T+LSqDECTt2uyzQSJ5jCF8MQ2pbK+UcqmS1W7rZQB7YB
Variant 1
DifficultyLevel
374
Question
What is the first number in this number pattern?
?, 25, 31, 37, 43
Worked Solution
The difference between numbers is:
|
|
31 − 25 |
= 6 |
37 − 31 |
= 6 |
43 − 37 |
= 6 |
Therefore, to get to the first number you do the reverse and take away 6.
|
|
? |
= 2nd number − 6 |
|
= 25 − 6 |
|
= 19 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 25, 31, 37, 43 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|31 $-$ 25|= 6|
|37 $-$ 31|= 6|
|43 $-$ 37|= 6|
Therefore, to get to the first number you do the reverse and take away 6.
>>|||
|-|-|
|?|= 2nd number $-$ 6|
||= 25 $-$ 6|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19ZixhpESyfyvZypvGyqfBBTK6ROIUOepqjDXRAI6Bt+s6gLq8zsaKUUfFay3DGHQgaSOneOke8aL2vbAqek18sRaTWtKbc6OU+U7pMWKJCoYvIFkMpfbIDNvltllkwKxXiNd5XBfYwpRlPTTDsf0HgRaJWPDtQUtNz8VHJWFG+zwSckqxUY1O3FoHyR9FHFg4WTkF8IQTX6qJB0L673s4jN27gbFwzSeSxHmLKYRPHGiO7PoZeSzHIyAUYyIMU0bUmBdv2gm+ixWayYtQj/38dVpmEM4dDHrRrl6LIO1D3vXA++6IIf6QYzOvGQRAXV9MuvygP0YxXtQuR1E31fBtR1hDyXE+c7PMLCnTVV8TNaKF2dHRjCwdSR4+ktVN+O/vcRyk8RdyG9Zdb+PU4h/QSXW24qFVjmn4K6UYJPh8O5P/MbjOmmrqBBHpXvLlAtdlEzUMHR5jahBCgXV67hQzcQGwcKVBqdyPLP3J/K2bC3MIk/1yivc1eVxeha1SVRL23dq3dErVfccDxbW9of++YNjEeUiE4hsVtiTNuAskfuDH1IsgrtLErT4TXeMRpAW5N0RXdOZ7jVqQBzSpzjh1vuiFxjEgphC/LuKyCYS0XtHYR0VqHH53r3GUJIrlAPd4Jzzmy1YiRR9wg38scLAuHxxCYuBiqwNn3NX736+q2RINAeTe+NmJ0Zx4qNUKmvkzxSLTclsLnzaRQe5LdQFIjRgnuYpXpnIT9cuNF3Dy8k6Xbrm6WvJPg8hYt8yOAoc24az++DuZZ0lXxFGU0Bra58Ps+GWLHy/14CvLiWj7V2boOJE2tLjB8X6DyGQ9qVpASO3WmcZPU82eCMeaRZlJaI6O4Uv9afEjHUlCPJ2IJgPwYZg2XmRMTgnPBSOU1XIGoHyjPFXHOhNfMmiLCIH9htpyhRkPHC15PVNzibFjJc1S2uAhCDzB35pXQz7zB+XWMigfupKbcuoxrhBKjUtgnGIZjyBcoqQgYSgKB9s9RbiYlhMS+SPj1D8XLyl3/ADok0/JdWtQXz6EuL1yfwSxS+f4Q1iNDAZiJhrzdDG8ZxT0hCYq0X8N4Rau97GVh1PUEELDmvfumK9OkWWyg+dLEvRh3GOgSjbz8XAfExq7LJglevBVfCfxqEEv5hExxgHqT6mnGkEAUFgjrfFmePzDLhvewBMs69Gtev6E8WNad5kuenmVG0kEwqH8anD/pf718VO0f6m35HPsFrN+CzMrtoVre9ZbnDVEVwd1OvN9QeT0lLg6Lia48+Dki9fdgT2EaRnOxfOzp3TsA/i1X+/ydA7x+BLsb92tqKY9H5gkojmkSIiWU6HlJ0MbelsHsypZTz+G9U0+RhAClaDwz0Jqz1J29syIR/MN25XBL1/64INmippbQtjEekqU3RQbLUrl3WG1Q5FTvnP7dMsunOs2AbGylZ6JSNgm6JK+DpXTadkkWc/E2igka7efvPrevXtLAXw7sIff4q8yuG0/pdBU22gxgB7BYZrlUasHylv5d9/tRxhXvE1pTu8tqXEqw5C2ME3ekYQ+hUcv+kkWoqb6//9Sqx+pL8yshbG5dasXgEodsX4GocwIxcTCJpHyc/oVxFLdBAvtGg6zsG8oVTClOlR9UAAu/QcZ0aXp2Fd0miqPNsr6MO7y99rkqcZazIlvqL203WFoPcSpN3RKm24wC+BxBiwWT+9RljD2Y4KflWRx9L5eNkjuoTksmNoA2T1ljvuQse+6k/nQx8+HpPTjTDTCrBVMXLrfsGbXsw7sEbWM8qNrDEqWacyXR75HKByOlKur9qpE53pU3FT6OG7iT1fXZUaFliah63Vw+TA/9PIyuS7mbuqN5JyMMUGQ4E/OpRtJU5T6Kq27fFgF2Sw06DRkcq1BEkkNzur2Z6FT87gi0Ql52vihDzp07IbUJGYTMmVxw42n5ILBFN48PzS9NypzvxOTQrFVD0Ar+cM0mJx3tggnIvt4PAd2gt1iEr6VOesPvxVzR3s65ehLyZRoCdY059SZhZjH3ODCyFmLYv/+iLgs5waG2oXSv723WW8HFXphGnaVzRZaPVuyhxA4bq/XMnph5ysxIhzNk0BL/UYshxsVILXKyqFNpxWcQkpiiKLAbhwLrbdsZ6BDzTUk2jfE0o2tbVz4fLNukij9tiGTy6GHsFlc1pYx5NCsXLWM9jcMXiBMTWfjqEjc3SMu+lF96GJEvhz8re1Ii/EW4Q+zZKdVK2MlEfW67NiPVHvPxoSWiYko07xVhRonxxgPVtoQAeE+qDsDt3O4dTYZogpXvsbssChJnBxrIEtSX+QEpYlGcl9I4dA8UFUT5or44d9RJgrkCJi/aIS3KXNfjV3ju5LIWLQvCy52Wv9LjQ2TkQqEVyihmFms8TjL3k1IALq7Rwfi67m92Lk+6+29EVo+n0/Kk+xbGeilLWjVhH30Q/zB/2JpwdzEfcUEZZb9GDLiDxAcgAmVQP3aFSnnieWbD0dm6JUvS6+UxnGNzQi3moMIMwQKArnI1uR/Kk6cAObIxYh1V/K/lKaTUbKqUyonxnoWQu7y0GyA4fCfOiLMp/yIi40vGg4DncuMvBfimm4foLlxP/ZXZtbJg8IVRBM9EyoUgHvTOANv+p8MemZBguzABNN8jhCIdgxluQvjNBcHF1UY3EbsZvUPgW2ABxBMiXFBMMuITyiFHsuCqaPX757J5dR+t1aaPMgB+AN1SJbDmKJHLvTVPuHS+izHxnbCkZUQ2vVtuNL9yFLv4kFeX0nNGHgCgmzmCwOURPJ6d7G52npqFAajxUb04kSFxBh/CatJQ7JwY404sA9W66S9VBCc31emWbOHidh+UzS44UEHeqZfSIQU4/XfseuzNSowJjeeoUyeHpqAt4wWjqm0yEV/V0RBxiNMAEuNYd35ho26X6vuCmxKWFL5f2OhyqTiAz8S6M6uYWz9E/vFICXFWWlaP7Jo15K0c81b8PCwq9iEvr0VE2l11U16h4oLuY/p3W4oohbzJ1/hHkkjNGkzUp2Cc37JHtlBoMT1LxDR6lb0xI9p1xcpRDEM/pSw/C/FW0jYiVrfoYkmU4ptidVIedlNgiqj8p0yHT0HmNqWCvIWB+wGhsr1qwUQLe6/rRKVpretvuu5GTM8HGAIgPdOkRzHKTXnI0rAEsoPoFRWqxDMOvjA5wRgpzCdX5ilJwuzse60AF2gx7oiF4EVDNgVMXXSfLWY0ZkRCoO0gIIzhS66lI39oP9VDcsztnLFn+PZ7+a/PfWgibONuQhA+dd9u158/Ocfc/QXyn+xGCY9qKwlGXVvFD8IbslTWmV+UrHzFB7UflhA2rV4n0MkYksXgRzRgUGTXS0Xylj9B66qhhaxK6NXZubtyOWhxqVyplIRkB/r35hyvEfJV3RBrNgezS5ADDf8ta67Mc178fwRIFPGg+SIcquQf8kv5DkQnYXhGpT8UVgmSrdxohUTvwuIIf3hKkgNxGeXz08OBTURn2Nc/a+Uei/nCYUcoLChTttd1OAgjymKw+E7VnD0hoEgjzmU5y+opBtG8ynCZtdih4MlYhEemzS6hzSleCp+x1+rm0Iz/2xf6vwfChm9wl5vB5XG5dtJ2AucQWvZyHlHs0BnOPRBBAGeQXxuuNn0fHriwy1DBEpRfIEyfhPAYy7Do1W84SkxFq3mpARFQXp9e5nrgOSJzOZE+9OwQDSlgwnxDqQFoX+zWSH/GU1oY8JH1Ere7l7iXFiilWkkiK8elCPpUkPQj6oa5g3xNCI9TJDC5ma2/nRfjM6u2BVnKIy/fRU+cP5wdIS7VEQ9cchjNO7g/lbp04n3aC2j31iogwp4EFARj4DXJ/2YVvN5PLIyiZ7MH6YhI/aEaFDWYxgHvjllE/vAro1qKeQq9idi6ziB+gE2kTyllfS45E3zWXMk8+qOEhIKeng8qEhFpa3xIxshb9oZyI8+jrTqMO4d9MDiYfRm6HzaQtgC3aR4Cf1yK+ougauaMesfkTOvENbWhQR/n6gNEQzutGE4XKhqp4ngYK3WcD64SqqOjIWKFp+b1asCnKj+JzwvKpyFHG1FzRKpj2rDLx1s2fqk1Z0opNNH3kU+xPlZBpLfYLJWWi16q+kTsZp9v/UmjyygmsJpjIcIF9ssUYj88NfZ2w4q+J2HHluYXP7SFwojIBfGl93o11PL+du5LkA2gW921BjFE1sn7MtdeZAc4bXihWPjieLWKS9d+s9Q3YTSSSMAiBLGvFklPsmn7R7eZ/5MPgK8wy0rcAn4uCEEhuFlikv5Ryh7kwZXj6qdbOoAIlhUdkuHsxV3qUnbY6C4tWcYBiGuNpXLNY0qmk1NRCTSh1VZrkzij3GVPhKYu/RHzEQwSAgEraKgd5bvGCG+hkFAJcYTRj2WhIS+Q9hBH4PQTfRq1oJGrCnvs6BpclE3UL10cRMHRh2PId5xpjRovBaGkRwL7fzzLCEyKEjFGh5SFf4Tv2XB6su/es6Nr8KRjI1EqEvmpMiRX1bK+I5FPlPp1yyIevmV/Fk0n8rI2UuRWfPMRNW+5WT5z/AtbosGza6KsDmF4nMUViQJD7gC3L4dkeILr7zfmR+jAo8izkxHqo5ltLH7IzWaWw20QoqyRzeJLbFm0ntpE68G3k46pRpnK/lj94Nau7cpDyme884U7WK/ghfav8d/8v8exMIYYFY+Zogdt5LcDimO8ZaPhjqjyzEhLyudYYISOu5JGjTW7izR2ha1FMtPQ5Hm9IbIHlYCesLSN3UGNGRRCsExOq/fTcjarIaEhHTuDE2n0ljI0EMG2SIvyF3lMU44qdlMuh2MStbxoa7cVmTFCPq7UVeVn0uC/y8p9ssj7JOilgUU2t9rHcRGuTzC4QVt6WmeCsPYVFeFBO/okisFKu6sT60lOPG8HmSTnlVXbREaLs/CWNc7emLimxRICbLjgYBHFiXZ/Up2UTZIsLARRw5VW8J68SzSwPSFPBukcryOtTTUJXMAs9qhTz8lcnoLEHIQUjfKNZ74HMquCxx3Y1Hi8U0zmJ69NWA1CNa6JflQJdGIM4trrDCGxwYV6LSUWikecDbtzezq9tc/Dj3f5V/OZSi2Z8iT553IWqSa6Xhhe8msHFM0ERAgQ9IX2BGmadueYRzeBu4HSanFCxvJkt4eXyf2i1vXdkk3QZBTbLcUVrhwkjEz6dOzYUvJ6iHWpovH7alp57YDfu8xUVnnufEt9XZoOBl2CCt+BuLVFTPTdi1tN2fFi1Dsfnf8tG3/dEcmBpJMtLoQwMX4/gg8DyFckwfAK2F7WWPvqqo6VaMLcek+sDxmdm9+WDXejZMNtE3LKFiy3yPriuLiW50CPZ99R251ga4c6bq3f2nnh37VJwarjei91s9B/Y2CXl3sjEJDY+1SDtlL8oBN3hLnNsYVncoyCXFHo9DBxSOo7fRtjbPKRwJ16Nkxswzt7Qxnu6doDZqLcdj70SD/HZ25MxJF4boPu4ptv3ZvDE9KndVXoK9c3/frNYNP1L4P0HScvaoPI6HMInfcKfz6uzMBv6YIJ3GDX8WERrHn09oGHClkINYG7kI/ymu7YNAkNTezPKyCdR8M63o82DnJGbE2YyYQoPFrH+1aFHNK9fRwOrcjp/xldjwJHfW846eU4itg4CJyPoY5+9/+UBVng0P6XDPwDIsDs2X8+EjyE2VSrGVqm+emMSqSIwbCwn2iz4HR8Ax5yY+QG7m5Si3k0qTPT6osTvdvQjeTBXJs87aOZAbHy5sC+ylrzALOUYhLP31o2sJSwQ2zLUn0WrAr1xf9RLCrwCQczcjf1AuGUaHVeYLpm+3N0TQvbMgHSgkWY/lqmgg/7hH2En/J/C/ygOZ45IG3L+YpedoYpHEZtXlXBzHaM1GF8mAgywYD8uhmY9JC0m60/5347MAKI5eZoJI6bZqVtUPI6Tt4CDtTvNSufnjz53dDA5TpKsm9EeutRECnN2ZoopSPBH7nKD1frthvXX4eQu1ZvGTye6ySWpvNVbQEYZi51Cl/dSGsbkyL7QIweovRetc+2A2gsiyUaehS+to+ULbZHmj2bo5cRZu7Pl2hvZOJ21/0gG/s+PhgN1sgavUqSuCx5HI8ycFnKLFkHXG6sfTMuN+P99PibAceYif0QpfsczCH9mI+y3JpEv2D7ZRetfMHcNTKH3M1wbETpNn6oTlDqvCoLQlg7jr6i1XYkc/FO1FgZGLVoHqo97fA7Qu5Iwf3zLtgFes1ysScwisqJ+rN8hn7bXHqHRTJX3m2m2m38cEQToZ85Kx4kIHcc9v2KeQ4Z/Kv0fJZXMHjqu07D19WjBar5J0SBguYi0iOo0NyOMy+5EKruDIBb3rnvokX2YoBGtTN2kZlV6uSBBkpuWTE7YadRzxgQUCh9j29kSQ44+YYvbqFfJy5s0/Xl42oG0DniMLXL/lU8c4fEYT7wvDHTC0JbrCNlCmzUEQYsRt1S+Pu1WIrOXOuyBBkgizUHaI6EPX6zk+moJ8YSrRxpRlz0wg89S51otwDqNkNqdGiAMo+Sys2m61sEkujB99ntT2hx4KcW7gKNNVbZ4FMyTcKh9PZRnZ/nrg4IdsSfPU0LpSyxCMN2RfByCPvp985xCIwEGTIuJy8MY9OZmE/mVcTPc/GQkJFi7ZiBItjjleZ7aptGrISS86wKK+mIpC0BzwuXRz1J+7dibudmWRyNlEpTNFZCtgN1LEbph3AOYjTz0XaaL/S5pxNwJOkT23t/Zg1Su97l+CqYyOmglYDizoKcS1QHff3MF7j7ZCxqaV77ME1H/X3KDJROgeH2J56Q4Umc+9Wwub67FQ9zfnyf6KZ5KWq4Y6eFv0dmord9YR7pigImn+VIer5tSGWqj2AIzVdhZL9dB+LTcGa/DLmbQJtEg9hRh1Likejn3n7hGr8+e47r+ph1drDX8o6K+GfkhYP7SmeGULIGPmhYMirmN5CiHMflYTJ7Cej/ZF/R9PLSyyJeEI1BdTA0Hkclt8XWZjRqOLH2VKvt2OnlZSkZOaLCmAJLiJcYFga403r9tw+cRohW5TDIkjiIwrkc/90Dw90rDFkOmrXXwv1glxiG2R1QaoXjul8Wm0vF4gvlSgb0mLJ5uhxLgVrsw8uBwYWZNrdA6RGPBH8nZlaMZJesZppIoW0C0iDSRQEG2Lr3Qijas52ql+3hN3eLe4PByHYNuUjhuTYEo9fiz3LfmrGpG3QUHokVuQ7kRie+jhncLfrSGxKS0mYFEeUWJP/j
Variant 2
DifficultyLevel
376
Question
What is the first number in this number pattern?
?, 60, 52, 44, 36
Worked Solution
The difference between numbers is:
|
|
52 − 60 |
= − 8 |
44 − 52 |
= − 8 |
36 − 44 |
= − 8 |
Therefore, to get to the first number you do the reverse and add 8.
|
|
? |
= 2nd number + 8 |
|
= 60 + 8 |
|
= 68 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 60, 52, 44, 36 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|52 $-$ 60|= $-$ 8|
|44 $-$ 52|= $-$ 8|
|36 $-$ 44|= $-$ 8|
Therefore, to get to the first number you do the reverse and add 8.
>>|||
|-|-|
|?|= 2nd number $+$ 8|
||= 60 $+$ 8|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19WZY3EWA7rqrUrWuG2ckkF3+W3SlHih+h3XU4kTNsKM0IsNdVVQ5WI7wCSCU97vzAD7idexbG+Ol3FaHqVGhi24Ct3xP3wfTnNjG7he+Xi9R24g4wkVMQLdbV/hjhn1GvamICfINriXPJoUM0nUjxT2S2bXcZWJOkXMs+8dXisI8gB/yf2eetWEEWqIFFoCPCYM0kMkKq9DYLKl/NBnVj4EucQhW5bF5wquftiduu1NGr7eMn7jNGe0+Kwm8TsOzo7sdKR8aBhyUJw0We6CBN61XRxoiipz4J1le9L+x/MmH/3RZvLcYAJ8sAgGY1De3qqvn7kA7mr3jNki0Wydak+R9ZIY5BtvsHOFKKNpf1SvQvmsNJ/+nOusKmCiCwGYgaMvf++JUjOaeezoilzgwy7Ms2o7rXiD76bQlRTZy9ufnzbRWp4MIPF8MlqxblrT7NFi1NjWGp5/m1OteY4y3UF/6zXwO2ZfpmWhALXui61wfkkh+AJX55Vf1bqUAKbVQAVJk21MkGbJinPNu/UwEVahGI6NpHFZpsqswkiYMrhtzy2vQcBTxfPY2mnmp3UYUTTuF/t6lRiOZdf8pGTNkgjxqtEQPyDDOlT4sE/hL/cgC9b8CxfNlu+iDdfx62qHvfM95+8ihZExNyUEPXmArGnUn17rWuz1wdL4A2DCDVI625JjuUPHvVH83TcVvXOxyzztitVDLwcoIFSqYtUGsgTGOz1YiqyAKnGrfmXlIvw0SpPj12KTrIeeb8S+U7RPGnl9nkB8S9zn6IEFYf+o9Envgn9d3Jmtr4LWQSBIy1t03o9QcV4Az5+7WyhTPrUEl6oyF67J0hUkua/hDI2IM3iZnsoek400QLfPQLUxX3VWXSbROlPNWfxL6yHV5nPLFXdYE2+PFRhy801wGKzgss+qDgNndx++NcFU7giW2nYVkhVhO6kpJfnRSfpPTPdengVzRyt6Yq2JcWCGr0JVLWvK2o6KK2s6uk9gRXTc3YsnNdHmVrTpm7jaiRG9TdXv7s0wL/zcUPsFlNrXWO68Dy6nGXOh315pFr7cH82S6Ic2NHbm7+vcoa8k2x6zjCpNdxiivVrxh0wh11tYNo2tT86pwYU/T9DW8Un7D4bv7vvqi9mkz0MEL1yB54Yj6sPtB9OF7J4tq5PJmkejc6pGmRpY47ZuOjcsTd3v50wUUWxfovM953qf7/pEGv38r886v8JC6GV7M2QzzArCM2Pp9885+Efs9vcPVoFX849SPVxZ5e0OKTJW/6sRpRnly0vXwF/eOZupcwJYwGDFyU7Xr9pob3vIyoDUsjGoinsf/xlC4HEkZcCQyWQ10yC0Nv6yi7Viqbc4rvXSGDEV20QBiER3zisrPghW3/CaMhvhoVh8v+tz/Jbm+4P+BYRQGaGwWBmc4CJYjKBXf+HIJJJYomh8L+AQjIe7QiPCnz2iblP6eKP2LpzgVSX+klekDjR54WEEPvwFBACjwjuPa1eJc2y5oP7K9pEwG1j4FY3O5RcprebTkVU+AzOC0iB/H0uI0Mlk8oJ1qDySrs+cJF9lyZohrN5TSfAOvdtZg9KtMdOaJbgoBw37V7s/et3DsH6d90SK6zS688UehzsFjYzswuMqGqPW2Eyko8tlfUo6t4o/SqF1qBr0GaUq3Wff6oR2fWvfHjJ9JZKZvP5A+AdJD8PasFbMAOxLCE0RHYLRC0OpX2Q8N7JTyOgwS/WeVmjiGeNPLyx2xSdxh7RkNsdUHbyWypqC6xbxTembmOvG/xx/fecQwmvBnaUA6CGITycQAwwppfaBTVfRMu/grATcDV7LCmvdnDlbracEqkcITu9Wx/XcVpHuU7zx6f9X0pjwuqoJ4Y7oXS3s1pEIqUrSoKhi213j/tf4EuAHkrcP5pgyr2V1T7dT0MKiredwECyBR5JYSeMB5Lz4wXT9cdkTarDdz3dtukm3RGmj36O2KUYfLlqC7cL46jwbWLG4lFXk/fpe6KMqV7qj3cyxJSSnBOO0x4OLlPV4n+Ao9Ew9aKSnkCX8BxZv6Gb562DlKl5zr1lWIpd+lMGqtQuoVUqm3XYhstLkG5NmMGGFO5KmNm1lfhSfA9BQc3vzyfubZl350I77J+bPXTgnnl0OqO5s0Kgpw6P10ZgshiFSh2/Eu5iWwFfWm7RIVOp9MEjZxDAFskvPKrlQW+3u9juhG91aZrgMvKvrbQT9JbRJVz3dy68P3CemiRMcgxtjiFLJTQSsy99ao3XwTsGQ8UeIubBt20YPR8wKnuXsC6IP0WBugE8WiQT5eEsIsSaHkBJorIS5EZTvcgvbdHl61W9OabvpWAH+zDqbRKf56x8w3fvMviG7Ws+aRKBgCm4BPD8moy0mR3MbsaGS5cblhBRsQ9uuezqXvfX1SfE32Ktf8MXY/UKbYSnpGqB8OyGEGWSkdyFShz3zkqOAJlfYh52HxCLeYIgbmAYxo8Jcl6meiCYopmVTtcf96u7kZU8OMs5Mh1HuNsmRQGwX8zcmnaebPmi1N3UF1Zjm5511rIxhN821ZEXv059RX9IGJv3RlkplCnqlzdK949GX5X8kvNkujrctjNqDUAoeFkzFirkcdcR5AxRT545cTslWj/Bq0Y8U0Niig7pz0WIup9mAj5vmZ/deuuocihBmeOM5dzdZXrnEt2coGj6R23CobeojF5wNPBInGtNy/pR0mwbshAfwuNirGI/hi7CTM8AAIYSUPybE7IBMgPTFdSgp/k96/y4Xdex4ayDCm+VpJi9FGaq5xT0fnxf4dK4aEtP7gafUK/JR9wCq7k21GlIMS/2GZ4ArqLEAxg5+HhWsG7anxJ0C1Ryhhw9GoyBwpH8aUutCa4xJQscCFKWGlN3NlDucNvV6t4XTstGRPyU2BOKyD4UsmI8L/gelleps5pdzThNEjlh/PmvpruMvpVvlbxzHfZWYQ7aCeweFYLvMPcFUZKxk6LcxWA0mMDlIV8OjlclDyocn9lr523C5AjSDdHJsW+W2vK5Gbr7Wpd8H6z1GlrZUX7ZGUXJBQBGxviXE3YG8L8WTTwEAGBgfGklP8ZfiNwuvhT2YO/d9fQepUCRSebVajiVJdMFOjEnq/dSE4pJo2nhTywbq5pRSJEEdYwtDFLv+lhS9Ft107YxBXAkYTEuuoOzh20BsdlILUVQkyQvbdNjNMxczH2PXoRosbz9Y6s0zDyOIecvfafpvisFcbPlZQ+UsgiRmqBZp/AZqmuu9KN3JkJ/Ohshf1R7LyitbtuyoNadAFPZTpAGocp4Xv1u85FGAOMuKbzQLjmXTf4QwBKUAfBqSibdVjyiDVRB9wVcwugeJty1RRR48LwxF6xf8VIs4fYUqxODLT+hOID47NHPqdi89Yoaf2d2hMjzaUQVNl1F6cF6LPGaTHdsi2kkQTXUBU4U7jnLdrtrF6UcPAHcxxAruMnob/fIq/G0YaJUUgIqJht129aSMELFNCYC/a8wonMnRMt1BlLQkVyCE+5fvhuYtaUxNsSa/S2e4RV99NtFAqpkljh2kg8HCVZJ4TwZoSiyRYn4aKclYedc8R6e58uNISEodEsFEdjL0V+RMDOQgR/X2MyqrK07zcg/fI5clE6eP1ebOfMbhnJV7Jp8ahNju56t0NwxnCy60vNNRg9fK1EON80QATIBPakORWtiO67xvZ4vC/kzLwh6r8+69A2dYeR4ncC2fWzssgzkk7FVKveBQMBDU/FO65YmMSXvzVdG9NimJXQRDlQXeJbxrRf2lQ+IQR7Tg/Li0vkp55KEyfn/+TyVRKlxw05hw7Ck3Xa9L6bgNBv02xkmCxNkgXGhzK/s1IW5IjSJ7LkZK87jJvoVV9MfdWJ+3IrwSfhBiMwI0otK/vzjvoWNjDCVvGh0JBAo/K7dPW8LuQmpntRs0SzDk4vc/3obmLblwJrUODpmHnVpPXHHxA4pa914p4rDtv0FWmdOfdP7j0J69DrHJ9vPG8HOQZ0GbVrWLo4ZPkQcA7yAXqaCFMAvv7YR2CL3Wam/wY4qtXvQTE5/anyTFh4uxyPISWuOLBDf0PQMWkaKr0vQdxqRJgMMOYJ4n2fad0MN2O+3dpM5xKu/G7ZWKJn3qXiuL5NkX6EwsFI0gmDcQZRZ0GjHb2M9RfYfsAjlsRDh8aQShUjsX1bg04BhrCNLDMaNsny/lZ4bVrows5o9yfQhcL9nj3atNXVPF/4ju5ZfWCI80UwiDpalDGOyoDHXlcYDZGe/dDzxH1vOSjtbQPzsMnhzGlgUsmqo6ZON3mYmDTb9WVZpFZvN9AEe26qerZAUdjuNAf7MelJcIwCxEFOXUqoKN+ksKsBH2EdLfSW0YhuZMCGYDgtWrpqxnYBCuG0xv//Fh4hLJMqq1pDkee1dkU9/D56+7w+OGuAuonVoux7QDnapq4SaJ/HWvzxMYSg7Nu5I6s0U7BGF0UOwq10qX538nSa5/BNh5epUyLSY5f1cM+HafJRfkaI6ZadS13pbanS9vvVLzIBMBuT6AmqJiqK9yBC+e2fExXFAtPHkzWw/LGy2rdjLEoXov4fw64t4bAViGQqKNIw+Sxv3g9xHc0t0AkkiLA/vqqA0id8yRar/sUW8pqreZivLFPCg6M1Jb/T2H2hFTvZybmuReTcbfzEdK+5011WvDzx1NkQ0OY1tY2pWkIi1DqSMqn/FBRWtqP2mFEH8EbaYDLpW3YrqofDtCSTyHdx8GTR0vj6MqgVKkIdsiyaGs3M06nkiAtnneD+33Jrgu3coaxooJIEvK10LIu4ZEbLDmMgIXbXjsVoL8/jiGpbKdw5FO+uoQopzNVqCzhJ5J1FTD7VbGr5FMxW10WuGkVvmnCBOyZ+uJ7KyDqDkqCW7gOu4tMaNN8vNkO8QZbrWvR8522PdNLT4bNuZIXQ/bcc5+pvpbbNPLMf3odWMcsroC23kAqs8v/cfNCxVK9xZ09Llw0cyUVaMEJRaiwhlDsk7GSPxcTYjMyT/SSGL3tdwvt/1tuso0lTvmBjyiBeC32KsXI23roZaOCppK4YBSWYy23fqYZjYyOmapndu5DNz8nF4xHXxhbFk8+urJuqz+M9kBJvawEn+DazuwT3CyB7otwnSH+UXAQnC7LF2/RosHxUBNeJ8EafnRDJdU149mvgseflYV0gN3tSJeof9J1nELNK9rzmYdX1dvXGo9GwRUQ2qTUcnDKDGu0aTZsBuMIhw3WLdDjgu0UDcJRdnHXiir9Za0DHPeUyWGB0P/HjuSPP1UU12XxWhUADe6ixXAGWJ2/fKCnUv/i5j+ulB6s8vB87W5xueD7/Z61v5O3+7UIF8Zx1JATXqSBWuB3zL35T0VAYJ1SDJNBQj87kyHOs1HvXPEIvloWwsrBdefxaREGuRp44FfCsQI8How8A4H3AeMiUNi76G5B8gTtVChnQERhAN0nDWXlgKfCXZRjfAJBKInZH7R8rdxyuxmuFRgQ3hLH0rrH/x7sduJOeEZfU61k60MRsEduQkP0kKUu/fdq09O+u2ZmdnsAR1fCfDL1cjBkChq8+mY2sr0F21Uqh7j63xfI3nzbZiSrZMwy8UiEjjq7dvSF9sHzGMIpFH4GQGG+5bPf4zgwHGvpeRkKbeX3IA2DhT5JflmSkecjKa2AIxThYHg9DkjSqxHZ6Bxt06RInA9zia0iAEIFIsKEgvBmL5zsnFzWNnsnL2nmriNxqFm0balMV+JEU4eimMA0ZaCo3WLIZ1Ru5TmG54uGIU3RysWRG2M+JoFbjuK9VKRymL6ngooU/+ZylpgNkbIq4xTnYHQhsncuHlUeB0+ECzVI6LrRvOLgD16zg2zqHqmUQawZmDky4R7AOtFDRSXASmq99Ch3N/O7Njn9CwyQm9M2TsT/KMaJL7TccX5Gf2BhFr97+ZVtzzSQIcVZVeKg43w2Pty3dzlY78jBb7BS3TJobLRHTawoGeI1NIW1aLAppjCk5wz29nNGRwoqpPTOc9BewKvs1m17XzsF0ym1zVHC+LzylArUdxXYVxwMiIdHlbS9P5b7SYX+n7Qbt6Y5KszAwN6bZVua6aOer2HhFN/YS2/rdJQK1D7rZKam7Ee3LnsQP+/XVssZ8yXA69qVBUfTsgvQoOzFBoM0NklsVG+AkKfjmCMtR6faWfQH4fTnGX4oIX4/MIgm/SnN+pR/IX4EAb1ZdmnvgGqMxeRNnIO0T6ihSIWUBIyAQokjcqQAtCxEC8+o9VysObuzZu7RucvP4cjwkE2kNpL8XuVMHOnympmrsMi5KQ1F1p6/O1HJFsC3JLpv1FhmD47VbgFrkO9KwgJZRtrc25h2RZhZ8vQKlkdsXPY6+0lSMb2XARcWsW5CuNvl7lUcNoFnljWUyaAPlMW/HDBcU/KTLNUp1HvqSQ6Bx8bsWBxbIgYD+/f7Ed1paZqAILs/Aa5YtjnbEDIDMkr3Cefpwj+AhCph+vulQhSf4Lw5pIPNxDF7oQZMZjUaTOpXt07H28oXwnIwEHEzVRVCELYAezcMJqk6xT6c157ezLvnipCoCjpsDx2nHmc9cI4ijMi87Q1nPDeoaRvUtd8Nhgvk3/4xCNh428P5WZHQJmBOIFS+ZU/IbwOoRShfwRsF3Mcoo0GeMfyMnqND1NarJUdzeER76jx0iNPsApJ2qQEe52q5dnwXgk5iHsFRCWI6rFTq1k6HFpulAuqIdTDvR09bi8WtmrkTiG7znqWx8CUZh7tR2HEsWRt8LIbHymuUlXyX8wqWpthscL8MbLBhzcP6WHpOsOyUFeluIbOigWhegntba13QxcVSRhzE1oj64RZpynRXMia0JGi9ahfTiVl9DLcKO6xoFs/LYj9oKt8GQnW9IS8CHgv3lSXqRDArNOh1t7ZBNy7t8FqMxRJ2HNrdUNL40/yYtjjKF+KKKX47xhoKREZJm4Ab6Iz8JljVPKQkm1C3pJMh8am89BLyl3d94qgjmpQ3pxxmpm4DfGvRVcip/bRqY9FgqTAhLLjH8JUnz2zGfTqkByItBdhSJMsQS3HNVNTUlEFMzLinOI0nTW2TPzHwI6IiLQ8JyOB1Ijc4XtClEKM8YirQtvFjZTliH/jUtzBfxnJjlDU7F2LNc6roBgpcoYO7/idhy9mNRp6F5dgGfTDJlAtHkCglGKKvADoatXIKqHoTDodt+xd/Cw8hdFFIAN70H17QOzLj3iWSFG4C8wHBLO8w3My0oZysRSWwnfVEv/5b8ZOySlOKnIgxN+
Variant 3
DifficultyLevel
378
Question
What is the first number in this number pattern?
?, 32, 27, 22, 17
Worked Solution
The difference between numbers is:
|
|
27 − 32 |
= − 5 |
22 − 27 |
= − 5 |
17 − 22 |
= − 5 |
Therefore, to get to the first number you do the reverse and add 5.
|
|
? |
= 2nd number + 5 |
|
= 32 + 5 |
|
= 37 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 32, 27, 22, 17 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|27 $-$ 32|= $-$ 5|
|22 $-$ 27|= $-$ 5|
|17 $-$ 22|= $-$ 5|
Therefore, to get to the first number you do the reverse and add 5.
>>|||
|-|-|
|?|= 2nd number $+$ 5|
||= 32 $+$ 5|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX186Qh9w1oTZ8yUZLoRZgVz56OS1g+KjVM8qJHpqRjM/lYtozLtzMtrmPkt6DbroNxJCMFHVf9JNGXh/9ztgolnfmmyU1q26bpRt4CDvJYzyHOymT+WY13Q6TrADfhw/oQVgan05T+1bS0se4IQokeowYuRl4R6SfU7mC7YFmGdjLol8xLrZVFg5pDLUeYXRQ0ZYAXB3yXXdq3AJFcJAyTyd3PCbUVlkJPe8GpEGeJcHGSLbeGXJSNcwF6rv8AOrkjRVf768/opYA3nWlOQu7h3RwT1d/h8DbY9zhTwUCkJTWdR+5D0OEQAZHIqpA+Ut/CnE6kN438y/nN3ss8uvPZCkTsAuQf2Wt99GmV7unSGhJPySHQIeqJShcMBCUfdlorlRbZUV73CjypLOydypVDzXD3aUL+vBVyhOYInP8jCXhsRUAbEYZW5HMCkloEQIMY/2rZbJ++iVoNSiDaFgej2StGFLFPjQZe+93w1XlDv8ZZ4PYQBl6kVvl+gtEOdoWUCfe7yiU4Gw5w6YuWwc8wSJ+lyIikObF4QJQi5v9SkZyvka8eW5v9WFYIXx9xNx34f1lG0NQO2s5KqAThPXCLMotl0Fbv4mH61PtcKARArDdcDnPHH9ns7JmzSu2sj+5TYGTihlltzVvGf+/mYysWZA3fBGWVS/Nfedudb08fqbkxoLNJvt1QieqgRQfTJOp4NEgc8RVf+7h9TYyEH4rtwW9W9vVPEp5tXiWmkbRqbXiP6OSRiDiDubF2SzFDaBmtbDef2RAuuyUqJwyG9GM0Oj2T7FOMT/Pcvr9wJioCWjTMlHFpSwsQBaVPE6ZnKlERJkf7wFrV6Ui9C1x7O+dgpH/qZMqQqmFbWAkyGlRlk+niwLbK1mZ/HJGt+fhPPknDhGs1eb8LONOSqlJjHpSKfNPKg/ngYFgJuuU4Jzz6ybvRLxoXErfZLMSfHJVOUpMNuiO5lq6YJRseAflpabae/UCQm+7W0Z9mT7Mo8wRf1J/f9Wv7sRNmOse3yOZOMfHzhK2tvVIPaCWRzR39/28W8XPF7NOw+B8/evX85PEVMZIQ5Ao1rP/pHer63sXpL/gyjjvtHrG3JgBg5svpIw/yM+1B8NnUuRU5FUpIrLoo27xY2c+PsXf1XTvtR8ojimvWs/pfBmcEKAzsRDI5LmVqsBWXUhVLt52MXSItZLBSxDq9i6ZHfIsDfqotSmFG+d7GzQjl1eZYXecDCztsPOW7ypqq1y5BRPCeLiLSt2ItwKCoH5ZBl54SzioBpRUQ1qobuGFUd+Yu8R94aCbMf4wmM8R2IXQLvpl9k4we8tcTUKxbtzf2wQV9Ln/zmuBgpb8BNQm9eSmFQ1qq4DsXMbPcfZO7SNfyBINr3ycuJbsA/2pqJFS4h4EeyS4bL20x9reVc9nAtLORmQ4qqXFW2aDNPPWBQxnkTxhN8GKQPbAwTlHTUqelZoe6QbEQcdzbQ3XUiH471gkUfvy0gxXtfEGMfTyO+8C8pCwAnYhniPGKQhuK9w0FgvRRdF9ZnO1a9vpUlY3GMddyHDeD+pfsQympq5gtdVqjsLOzvFXIKhXP3P3k2d0dPRkkQ48SJ0lUeIGI9ZuS96WUpBohecQOPqUu+stVEjq/6/u+GZ8ln6dmgHUusEJni/1zwN0YmT8f70XWrF8Z4jasP9OobByVL75q4lcIRb5RAfM6OQXvP34MAYWemKgsfVAopCQ4PR4NMYXBaWkQBDl3saDXACZNK2NAZHOLl59sCRrat1b5SoRebdHdQTHSB4gCHLt1JJ+SmhiAWjkFT/dctB0oIp3/3aYrtao8Wu/v6vd3/n2/Tk3ubo5UwXsUlf8uFO+ANNCehnnL/ePebwq3oMSTnr47g3g5fizPhR6EAI3AofJViMMRUNL4K4FuSQu0HoVOjf0Usw6fRSmPx+1/mpcdKPK5uMkj3z7vrIiyp/ARCkB8nGQlIXEgR7Ml3SW21lD7CBoyKoNCxVmc+PUOmqsiqPIDJJx2q1PYmL+G6H3rl8ULJDDIsz1riYTvInSjl/laY0KUh1PYhz1Nz75NwC5y4db51msTSmdJGRjKfKplNuqZIurDk/dTOQ7eHW9I4sQ3L/2j4JgYCnP5flAYGq+KCrl3DGzn6QN3YjVnKBiYQG39GA2IuVe6i+piXu2wiGq+Ifiv8vc0CYzqDnOt3oL4tLQ2PH6Bb/ZuOfS/VRuWL+QXJtIuaU+geIE8OrOXyt5J6UFpi9tcBR4S489xCiCcU+705Ba3wD0mZFEyfpeDc/L7K77I2REKG8jcIW62SJlaCM1zmWmb1gGreR9FOCaq6Etj4oKZHRFCdehMRI7CDZscYMISWg5I7lPEtK6Bl4zzcasd8jTHowkBe42NhhlB2SjkAlcnnFaGpLcgBeSWUOvsnmGbNjspe2k/+e+otGiQTxA2glVYpognPaNgjMbKb5yyPGETeh5LEdQlBvhVqH+x0JKr0vD4y2tRFt3QSnbO0EPHNBSm84wrJ2HHhgbDfQkEa3zGzViYjU6y23T7mV/1Y5xqrwJavbI0JZfctXj6e4NYheajThJ+Jwxaam2tV4uZf+9yvOIB/nSnBiZC2nbDlgrdQdjQ2Y5myU1YIvdKgwF90LpPHH/CiFmyTtkD88eKQybOLSHmB5Lkju5tYiT4ntOUlalGsuljgQydIyBGAoQx3ugL61ybUMMAvJv1cOHYsUATub+VoadCgjUqtyr8qilJRStR36DVqkXsTyqVEHpf1o1a8nLW66lqG4tlUUFqQRdcT83BniLCIjj2Q5XAqUQHlu1s0Dzs4ZCSN8JvjtguxlMKRJMsBOlndHgvKFPBljv9JwOt8ll+0ymsmWVeCWR+sodgPChQD2DHklZE7FXElZ+LzaYVsYpqWh+0GG1V/vRPzTB6qlFKyedtFOIMgStnLVyU5QhhbFT8WmCEv0TqxgITyQii/MrAPpLMRqByaH3zU/K1aP1mkXo5mr7WK95oGMZs6njb+DiiWu429bMOsdFIORH/J4RRN75RtFyfzVxxFDuyySwGIUsQUohVjkZliZyJzgVnvofs3QNb5I+/ltZEF9NgbPkWs7c+21XQJNjvCGsia1pyQwRguc4hwmplJDZ+jI3SPE273gb8EfkQAv14VLXFgMkkNEK52X8j3yQ0WaN8GfzKvUHYxDtO9v4iZ/jvGugAeeJ8gKUf3VXS4PwRX4VRDVB24lr3xJDNZnz0rnMujEdj07HIvIFSUh0K9esc4Qe0bFAKom6dQG1vhRT6ZSXPVdg5zwqOJdI9TxM99gIg9rkTPeq7mBZPlixsBuCIhdLBNJmZwMklUwsh/G4vi6vwZLwAt5rega8UhGOJi1TrOIRc7hJ0PKK2Il7E5RP0IFGK3qXZY+ltp+MObsqujU6NRtz54foaXeyOMrof4LXFeFJ0KYAuHiSFxcQg/f/Y+GUDXm7G1ZPYSK0bIvvG39DqdsDduX0x2Vlzz3i9BQ0rpltlvONuZYLFAlKdwPrQjcVG/HGodFej1YX8PV7Amg8M7rdj4k3lHdnKa9SvsKxN+zQZTJbU5Wmzhu1tpVBM8EP+eqSNdrIhB25VSfWgHSkIK9FlKau6HT0skcVHBFT7sHlUM4FsBkx8sofJlx3h9iUi1aXjoG4JeMg/cv8HVpidQYWuMKDBdHRqGEebmsNykJ80f4jmg8dsla4meLzNnshQ3FDLALJ082FEj0r9QEIL8SajMw3da9eEUPE2D1OBOBYiq9Ic7tk4t1bklxeJq5lFymO1enVCGWBRbxDvBD7t4Oa8j6BzGR9sYHNkylJkjg6MXKS+XzsuR/l71rL7cCs/p6lI4ZlOrpRYFPsIvYayCtfkVS5+36nvGFDfh6h2Kv2CKO7gQbFMaM9Hy4LwFJEuGtkvvtZtuK0bftz1KboVagyII1UAadWe9+shSzhHjFsEZlOyTgji7G6fZclvWfYqxT6GDkxPvV5B96JmuUwcin/tDejZFlJ7t6D7EdDgS2UWWMcFdZOY1qCQYTLWEr4ZiLgaXgptMYRG+oGsEMWjLcFjJaAes6NSByyZIbYFScXz+TTL5W09sNPM2HMMYp0+mBiGCuI5n58Qgra6BUFLfwLgL8VM3thIBqH2w0+FtYbvnX4R36sGdbNCmKysurxeAcAH/zW3pIzeef0cjBnc108YQmUmR3Scyu01/j3PsjAXergwFkRgSsbP+xqUKXplHWhDFnaU8auQina5UXm8UN7WZqJvfYBiU9X9kR7RYplozxsMOI/kiGHo1z3gaH/NWSYyKvVxzcanIpfXCn/3Nqk2Ar+cwyQX7Mrbsu7raZG6kdgdB0uvY5+b6PhcXIOqgoWTOMKn9YeIr9DRv57P325Vb/QUTqrIrj8z4uPxUmhvzBEff1LzVoixBv+jkXBRDUNCLzvjPq58292P7i8pdXoS5+081J6US6xGjH59+/Ysvw1dRKMgcM9nRxDpqqjt+Os3drKSMH52iA8iaek2Vl5x29FGHAeW6l1TtQd7hvAP1XYF5F88+6v0MBbfDJ2b/hgxLqaiY7+cTFB58inErrcP4jxOZ/2lXICRB9iV0hjg1SNjZ+1ulWlUKTaQ76BkN+JDhY+cmXYUIZg2vd3dajwYxgrpgEcXnbImfM9HTgl5Kk1lZDFv5Pl+H3x6EHHgzInQGtKtyHtGbBGR8Rktksr5wWWEh1PYoLzkqMEZs2C7mfcCQ48tLxjHYJi1oVkuYBLuLjB1V8Lpw2xf5o3KBEZTJLxhrwc9aOVnTrifikIGIeaYY+W5/5TrCnl/hc8KYwiHeoe5RrL6bCQydULu3M+jDR0CbVBUJ1BlVPeOYKYaZsxJ4uXMlypy31Y1+MUis39oH/AWnGzMJuK4888uNugYHdzlHoBlsJE2b7w9QWZ8CAuYdCMTi+VW8VG9JB0Dxie5XdnIOqstZ76o4BzmgPC+oG4iva5DACfHCyjq2uKCvt/7vg4Ek2n5vLTchQrWim1pIIvF/jR8GVoIcRlhqGtRtZ/09JXUy0TJ5kF0Voc1Z6BTL1UcI722dqahI8+DttpjcbC0ldY3ceVmp2Rur7UP8chZdQGOa53AJoHR8RHlVx+W6IdobM2ePnqlhj3pbrFfw2Z233p3Hr/u35gj54kJHD3rsa2Aumfy1OjZ+cz7xuyiEFdiV5Bh6E0/eRljJj+xPWxsILfp5HlkJktlrejZf1gXHEg343sfMh9XMVPhNUDaSM7TMyEmmOQocttc4eh1uUTg/W64g9F63uujyXvOuvB4w9Lp1C1sN9YXElYwCkh2OLuULjl1XBRgMOXVBy0ZcaRAXTQLYFyeaVGWS4Up5B5xy+4hShiNHbg6q8nR2q6pr2ojcEblLqgYbZBjPjk5rwAGcnLOr5A9LE4mtqQYPrlg==
Variant 4
DifficultyLevel
380
Question
What is the first number in this number pattern?
?, 110, 113, 116, 119
Worked Solution
The difference between numbers is:
|
|
113 − 110 |
= 3 |
116 − 113 |
= 3 |
119 − 116 |
= 3 |
Therefore, to get to the first number you do the reverse and take away 3.
|
|
? |
= 2nd number − 3 |
|
= 110 − 3 |
|
= 107 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 110, 113, 116, 119 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|113 $-$ 110|= 3|
|116 $-$ 113|= 3|
|119 $-$ 116|= 3|
Therefore, to get to the first number you do the reverse and take away 3.
>>|||
|-|-|
|?|= 2nd number $-$ 3|
||= 110 $-$ 3|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19OKdfn4SZ8d0/WZC6m5sZsLk6d8tUXANakB9QTWv+cyMUxGi04ApjT902NJbnCa5R32YmSjcJHBqH+2erCzTX+QwjTUS1kk1ScUYiRLQWDP+2MLrkBeJFnOLXFv1kLwExahM46D7niUYswvZNNnNGFEKpmELAm4z48ip26/Uz+Drt/Pxdfq1bwKRsX15wdHFZWyvzk54EhJrvmoqHSyYBuXDa8kv0N5mBE0MXb36nEVaBEN80+qDiww3s1abe5qyky1KLkFXyDRVChmGw6UWzLHZZ5vtSVOZcx4x8GJqgZ2KqHGldmUOT5JPC2Y6FZ/ouCvaBWilfBcatzqc6XdYjCFMSqNDLcZZPtjAZH0iG6OXRtepdwhKjY3cPzHtXB7LO2MFazHqW1jphJJs6dn0QX/fjsXIXXgaZ9osbUwI2Ddt0pgcqpsK+KtUy8SdgfRGrWg5ji6iLPiHK4wr4diUJ4r+gPx5aHL1itq6zh/cyFXJRmkHRw2ToGwikSIv47CffrOS1lvb3bnQ0oHgTZ5gqoYa4rVPCLeiFx7WTKeHIDdf5fkpVGZs1kI/9xISR6+dnhg3moLl+EsfVSMZphPMsQ7PkXBAbiPs08oC7p0PQ+lnjzkwXfHLslwGeCdWDCDcT6KZOhtL0ikzS8S0Mlo1+30HdK5n+STjXE+h2mBiM6H9kDIvq1vOUq4Vdv7IOJmxhQNeDO3vD9lWwucGPmkMrtDSphAnv58FvZcI+hXf0cNxGrDr2X0/nFYg+wXcH84epPxjaiQ+ZWENTFlCzBGY+ZmN2nhfLGltwYN3qwQp9p4SUS+wWcTJKoKRqr5y9YAYu5vki4aVChddcux7PlUwVU7EnfUdrgHb4g5Qhu3XOMpHIhNJCsGyNoJGqZVB+iUfn3ig/uU6n7Ggv7uGGOcheNl2G/tYTtmP94wqsdikEGu+12gxrWbbfpAs/cau2wJaoFlHHmGbox9zorQ59rNK7wjjY48Y2xOe2ejenQypdpAvKnU03A+PMiqEgx++Sbt7LwBoEU1OdxPmy7C4pxSGa2jgShy8/rwgPtdjt8euNil5yGfXOV803cZ0B1uxC8K6ayG9aZYKvgIPxdATo4SKToDRo4AambpoX/8GZ39kB7VYlz0QCexubDwc7aYZ9YJYZp/ArupAY4exIbaSGT/5V1HQwOjJZsGDVQQGK7vwUrJeAs5xDe5UtnR/ZW03/N+1rDjs41COqXBNPTvG6wwQUhTGILWUX2J5FSxNn+m5JUmVcrDPNk5kgfpg5WjhW33w6x0iVzSwOOzl1jEwLhn0PC4t71lL2lWlwPyBlgFsXxU9awT+0uBpyzVSrW5U26EtV8HQXiN651802Pa0pkxaEddVU1Z4NteH3WLy75Yi5y51EZjt1wg6WqwCHxiShrkV7edNuCyt3MK5AsMQ+YDBEMFv9rbU6NWgkBT3MvXGGLKIAgzaYKU6gX7OsY8vyvD746cU174XbMoE3a6+hfgdiwIblOpXD537Si26CJSzylo5IqTh1HtURcQBKT5cMcBgOSOnJ6UAFkBtLf5r6NHCAKlONG+ePbszHrPPMJhs6rxkE8t0q/DoL1vYVy8uJyqFLswVHIoXvzfIvaJMsiALUEMgK7WK9cqJNaNHjzQYIQM9QFFwMBzjN51Degxcl0bsp0h4DxXgQJ9c88/cli8Mx03W6O4NDKX3XZPZZsAURWMWBYGCVak9ykuLAZS3pEwIlKE58Vs3NKJNRyQogT19pBM1ZKCZvvjU+MwYJHVZz8ttM5TNjnuTVlZh2//ThlKJqR1co87xhkcONwlUTGMJisoBqoPy8aP1yPhw/ZNjGolOo4AXkMAklM1PkufW0mnToQcBjAC81zSGZ3BdzGRDE0SE3V1iWKeGb6fb2Az90uuk5amKvDnOorrazSWnV8UL01cy5rWbB8h/W8Et5hjVvdPjn8ObPS42zzfqH0MMALZScJTf4ic+YuEPpMIi3AEn/e9RzGavV1JOv80dcDF8BLg/1rjUXfajLqULRMPGiPGB/ZWKWFq0qOWufVYQ/clFerUrmFsEN2l3z1nQ4TnBROSkLQ4DCnWDe6wQIOzmXXuXidwsgte3kJ9lsRUDwvsQtjMYDsSubnC6ITyiL16tmwlNwio8X8K3PHyhEm1g6ZyBPHwHhI1BHuyeEvbXBLElip2CzBzl5vdIMXZ4evKMMroRqoAdn4GDpukfqfh6jirORCcJbnoRMR6cIW5hAmgvMjYTbk+ECcKMPLRBwTTeipoJbYCUUFMWaasnnTMCf+hAp/P/yg2DB38CzSodi9mHsPyjxQTd/lC2CX2DXIDIFejX0t1t/vQsfEuxzYOtvB/ocsufgs5rxHYJ5zEPkdkxB5PHJS80/SuhHCUjuNo2LMUWbnrqz9HfB5yBu50Kazq7wOshH9w0eeF0FL9j5bte15JxgkkNDZUMI6DluqtTjyb9ZMZhK+3Tkc+0Tpp/UdHstfoALjyQMSOhcLjO0hJjCS+eqQcqgp9xKLFR3ldJLr7k55x/QVOzhtQ2gMtyNvsRPm/WY364JnI07IEwUwhmO0lX0h7QQDbze55+RvDIhEziQHXNESGmK7od53YZJCLzwxk9pMRfnWGeuqynsarlym0I7hnzjuJm5SdVIYZpmNnSJ2c01yk5hHyQuH277KfvHyDIaa97oOfuye+d/GG6OZ+9xtCh+bgy/uqdYzQ3zaiR6msMPPWBPI3tlz2RP+nSmvgpo50eeyCuhVijuVVDHviJdZ5bnFplDYnfBTnTfzRZkl20i5EoUwRbBVUDZ0aUVSI8wfAcVNXmha2uSRKeFy1RObM1YZLK2AhGHaKKcTsoGzgPrs5hEn0h56MdhheUDQAhTcIA4cApnxuzUmeZTR6JqVn5GYWKjOtPHDHMjEQmxM2EFi4GInkA/TF9q+6bfvEKmcXAoykyj0mVx+rXBtn8XKz8Z3etX9n115iH4rmeUC7uv0MJy2CMP2XuR1Fz7seuKxeTZtmUQt3KVoBTBjJj3XhH7g5JQF4isQ0Kk9OnMEGGD+gkEmUWs6Bdqr5wNWEynukZx5ERLaEMin+NIVbx7L9aYMqqrCZbcRJbnj3cYOtydRxvTF2yr+G+MEvXu73glwPu02B11++d750BK2ZOPgu241KTmMEI3OPzVZA86QMaaaCilZlw+8lkQkUnVLJDjLt1GcWSW1P5UNb6mAecsGTcFc0AFQLbdNBeHIoyuc6XvKcsVUh6WLmrDlNssgrxvqYraUD+vTzgGSztlk0JoR+X6Uo9HWZVsUzGdr08qPmPCl1nu9hp6/rcUA4UcaskjVWUzyoD29PCiCvrIpLMHafp0RSf4IIWeyU1uY4HpsYVnBXqw5pavvTZrR16L/vPYeQzBJhjWVLPCoUe38XbtUEjv9JyBRhs6+Cwx9foTmqsylkhBjnN9revrknO01fRuxNC6oXDnredGS0ns6yw8IEjoX3RYXkf1vwSuMkuF7t4LrvuwwqqXYWCbF4eQ77RnUf5l65Bh9oPzQcfXgw9ZabFVKiupYc9Igh0qdVPJNifN2brthN0gmsLeMqweKBFYCqEv2Hx50hacJNe4a00vv+Ja9dbb91lgPKD6Bvo/s4eJCyjlzr2/Otz7n56tM3UrTpqiGriaYtJ5gWYwJzVpPZpwyHFKyihbt9/C6x1ejd33yFXCEUadoX/PyGEI9S2tnYXixutT+SI8KqU0+C+SEbmBArPSzewcGjpLNZBMaaHCI2DpnjzVljmuA7PqhHnq1Rq6JrcC5iVELZzJe9qMXBsNpoJePRqR0Bq4mTaGEAcc5zZ3T1H0cM73//u3MyRrAQDpdk7faP/ijkOzye2ecBnGGArwD/z0mZP+USpJefyrqH5dgC/+2aqesCSBLZntf9rJDBntty4P/5DF91vXB6QBwn2waHCz00NZEeo2cwJuhmlHlBr+ePipfGJmHk7btUpoQ8Q3mTu/ZrDbZ4qEq7/FEV0/j+1bEA6JBH0PM8/FchD+uduspaUAru9csDgFkRnOKXiskNyB449r6unGXeGa4HCB48jRr39BiT8dYQYwu+JThhOOH5QhyrEAHRqv1BCbkBfdyHekYCNJQnTObBMJ0ILhsiEyBUKfy0Vhs+7T7QV+cm7dBuuzqzRIeYmKK0B0m+cVNbYUTXZ+NC7ySaeSBZk0ih6zfD0G5bwjhwOMCqBRNTWjOk01ae2ECOslGCCWW/6FARJHo76DTx3MsSz1LgnrMiGVm6udPcjiYp4PFaU6x8D+zdNdj0EFxM1XUwAlQX+S+K2Htws70sdyaGI8j562PUwJNZ73yKR9ZvzV4PQYmSEyuYHViqHU+xCi+ILDNt3uo2d+QUSzfvRjpPH87E9DXcv+LCIzdH4kTwsqb9WiSxZ/JwrF/9Ev88k2VPG+ojsJ1S1DdhCa0ElTHMnnXv0tN4ctkZ9xxqlG/VVC/UTttinfJfPXqQZGaaJe7+GF+cXvh9WWcvOnDd7mrNjQbk9oSX0q6M2JeKCwmDLshx7KghQad53cMo8oV/rwjkv9zB1BqyMgOpfM+7Ozzlx8HhwKFr/DXCK4BN9AInF2K1KT0BNvOLX1PLik+MEiQdeoPWIt5XfU9yK4ufbMwLnEgMomo/ehfOyN4VNh9NSESQ70jbcefPedlWHhUvIYstaU7D0unarP/Kqg2xDxmjA8qWdI9lX5V1JPqpaqC8vM124EjUj84HpEwN63NdRy3cFvfNINpaaiQW+XWW1zCA3t9/SwwzKoteZadTQk+Y1hkTMCB/U0n2h2CgNFM+IU+EhxOBnCcXymW8/5M6jVp929kJYowkdKjvN3KSABSoY2eML/FMsvjMYm2HjYEdemTo0keZWOVjeQ0vp6rTjNu2h4MoXrzmvCRKEtAeRMpskQI6xWlQssNfsmrSP1b688HU1r5lxitERQSwqTiHWl+OIHr6/WPNKoVIjbVSGvWMoXsq94mnBUbf/QAl/fErA/EJtZbevxtRkDd5DYbspa5HeEl0Li+hAAPISZFvf5z0VLE52ekMqd/QTCf7Dcn/Kqj+sTQgkfleWTswLm+yX1ZFzb/EeV2D0VrdYen6vfW0JWMV6kec6oJuJAO6KYnKXNv98VhgUxuD1QAzi8ZZxoCziN0aLS81NMbdTl1gGTU39mlZXENWsfa9RwXGkUjszukhGTvzeP/HzYs9obPJo4r5P/YBwE9St/6us89qCTjUrG0Y6F+ARA3L4KDJ4Gm5PJb71cQHyZSVLyvbnv2o8CGVX0fcZQMjtq/OWrZxVFoNc0NqFxqKCODg4xMw6thfKevhpxzFuAgV3GyYSZP7CIj/C4mzvdy/dSNdHKvwpzCBCz0sqPVPyEX3tBKVzkuB3ly1Ee3WVXxP3SaK1TftlQI8Kmtf7yMeoVuH7xWjYxAkkjmFyzfcb3gpdi0B8kWr0TGOCtCSaiYa1fI8aZoKOP2wSkPgUmZSxmxMn7/+xlEJN87l4QhCFrCxgRz05D3LJbCj9SqrL9grXtLa7rWzdD+gUIYTkCGuOJroCuegoTRc2lZugmOTMd4axAIr+aHhBJulOD47ACy8b2GIzBMj/fX2+rCdRGPMmdeqvusMAVzsTJZMFOr1mrWtPbW+QDMKuQFsGFXEEko/e4Y2U/qjSpuoK4SBSw5TxVL+qrHN/QFzhZgqBLQhL/y8PZQdBATNok2sLnlxP8yLbHuIsFCpzXUkU70GgVaYcMOU4ERalGkExlLKSPaMBcTpzm3ENr9g25p8DUtkCvXwsAykJCPP7uH88G704Z9G+dF4hzVLeXBfwySk/stuvUDEMAQ70j6DEIGP1x2gUP1v7VhnAvjlo//QVDT0haUxSJTr4uJtX4P+b30zYPK/qmtijKnzWPA1Fu9cX0VGTMx4UGgpzg4IvxRtz1ElX0ek17P63KkV71asyCwwodBiaHDGyWz1Qy3jbmxohfeWTUdHMXu7CSu43zpUSgQd3+B722Ek8Zzpl7FVJzWzH8yArrUX9i72ywq2t0Wh6VtWvGZC8/rWrMcxlaGgetbayXnscjhwR8h6BKsyre8aQVVSGJNT968I+TV9OlNWkOjBPks8Ian2eVeQTI4vv2wV67fbJkJFhsK2VrSZEj/QbYS19tZUT2U+ylzsLHxh0AGpFQ0fmevUcIfSK3s1jzps7tBq8Fr81NcFp/DV2vZtKiRcxPh4ydrgKZ6NM9ZQUrU7zrZtLxY6w/+QKdkAHwJdJBifT7wmvh2QWF6Hyhevrvs3jEorcVmjjZ/pNn8A+ycrz/vl6Nu/cp1/q02A3f1BK5OF38CSTUe6VI8iMVxEQsvq0q8jlVdMejMkkWoeDJQRg6zk0wmlfcc7BCvPYSSsdqvq2ESHhNuwWeXSg/lu3OYq8nfjI75y8Uki1hh2BVKAC1WenPUDC3wwQBUNjipVFes5ZcPKU3P1VP3CNJP4bsoQRFLgpdHslWr8KaKczes1JtZzrTrRXlSDdwJUEgsVoWjEtuWyyfQWeR4j9LE2YjvFNs+XqAyYIJ1oENXXRjyl/SN1oYiBxxpwLABHpBrml3k465QedVkLTmYgEDh+gy5DDmnPPkByIIo8LBAM15+1B8OH22Ahyqz6iNDWnHtLuEn4mArIa2GJi4+hTXJtjJUrF1hRfmAvNnGQe3DdININEnr6Rnm2+JHumgtZRvFh7fyWRSsAv4H4KsYO+d1Wa5JvRgXJEF3DbYBJzB1X20LimVGBAVBj7IlE4yUO+s7S4Y8zGCYvtGwaD7dqTK01jptZ/rxBPJdcuySyQ7ea6MlF21lyhrFQQCkfIj2tFQ3snzbuS1AGMFBK43JQrb+ZIwYeiP265ND7PbagDtP6xJjyC/4w+Vh5L2FGliG1YN+vZMp4rCdF9p21jQa6nRhyJ4c3MSyAZZ69OeRRXJrGHA8J5rr+tON+r3h5xJ1mYmz345O7uTpufV8W/XDTJDtVVuzLu/J5LID0Gb0bkqEia51/EcPFpD0q2eTGW7b5Ul+VQLTrFW1D6FcJXPcY1c49vFkPaEhSnEEe1bQB8/WxuIda6DXXje1Zk/W459E8IVAGXpl5PZJC8qqphVihKFep3VwVkL7N9m4czM9ANQQ4OqIDYLzG3ocHKWugrrZyP7Be1/2WROJkEWlGGLBIpK3wznKbePrHDt5O7mtkB8fIYdJ6zVqcpP1BVxL+9Yh14DEadLG3w345qY5U5CoffSA4bUNi7vdNsJPADQGHLMPfxGhHDG+7kudmkxHq3nsBqu5jA==
Variant 5
DifficultyLevel
380
Question
What is the first number in this number pattern?
?, 250, 220, 190, 160
Worked Solution
The difference between numbers is:
|
|
220 − 250 |
= − 30 |
190 − 220 |
= − 30 |
160 − 190 |
= − 30 |
Therefore, to get to the first number you do the reverse and add 30.
|
|
? |
= 2nd number + 30 |
|
= 250 + 30 |
|
= 280 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the first number in this number pattern?
>> ?, 250, 220, 190, 160 |
workedSolution | The difference between numbers is:
>>|||
|-|-|
|220 $-$ 250|= $-$ 30|
|190 $-$ 220|= $-$ 30|
|160 $-$ 190|= $-$ 30|
Therefore, to get to the first number you do the reverse and add 30.
>>|||
|-|-|
|?|= 2nd number $+$ 30|
||= 250 $+$ 30|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers