Number, NAPX-F3-CA31 SA
U2FsdGVkX19Mn4VSZoyCuV7oJKdrcbdguoP6vjtmT3/IvWD4FnnQ1GYdHy6OdqaZAV2HZjM8TXCxlOJO+uh9F9SoaGH9ugPlKWlUt869P1g6L8kPCHqgUaaM0DjeMQX/5uPhSmVTCHSWFzoBoRMAjCFwpokHmTERX4klriSAZHFzSCLkkSZBfdyM/L86Ytau5dPzD7ZzNfdS8ZoZEITwOQUpviM5sRL8V+mCXmMUEnfAr6fu6bj8kz98D04FnW3j50/4GSO+0IBeKO3nWj/nyACMjCcq4yo7RZv4K3LIKTmRF9MyC+EWCpDLjiadu+P0JqqCO55mNAfLkCQFnq/bRAF/j2Aa+qCAaEt6tUjjicuqbShSV6nCGs0Y03h0JZmH9L/EkII6C2FVi2wQO6CKGEwg/8wsE9XO9ROuc+KiUgRP4N1T/DCr/uNT7LwVMKwD/WFk8uGXBIjZl0Gs4obhfMBjba5CHhlX8waAMp76fKEw3eOZ3RqZ+fJdjotU+xqwFl23FMKKKdPy06ST80HGqgg4BS+CF3FBcr+QrCKRkTqInA0Yz3jP+pw3yhway1KZ2SSBl1KkVQ+kTKtwG6OTYgi66eHYb398NG+Hjj2+cTaK2+yefgCci+2VBqeRTvTa1asj9FTj6XME57QJaYkjPo40hCoN1CbkBM4bcIFB6GWDRIyNueAfYpGezzvAuUplyiwiA2WB3ZIgd+bbR47aWxNnTjJerUVs3CBAe6gDoFB0qEKCNhVihr1kT6XmIGDD8h2jVdvDioE1BLdKqKPEUBvsrDDWrGC+iSuz+Pe/AD5rWbyUDSHB9pQf57DVdVwtD+iGBF0/9fAKmaw7+M09aaZqURLiTPdRg05aNLaHyF8HOXIYfVN7NepovnSJkvJc631F+bDwxkRxeIk/ZpcRJK2C61t73vVGXS4eEHsCMCaR4kbkpV5z/sc8vJHc7WS78EU5n/xhSyDOolbEVzri6vVnSmlBR7DOL/lB7ZyHCBotOVj5bBUCdgkHrnrrIL1CKMYUPKJPT6QnzJR/RLQOx6V/l456WEoJRdgVHhigpFMP2QcVcTgk+F8xKuRzBvQHr6VNmSqNbpTuslvq8eQMs/GyseD2P4mtamWdHz8AEb3+RKB0ddkaxettQQqoS0Cjr0KERo50pbcxFb+zfLzjtrE5TT8J0r+8AcXpnTu4wH5wijWYjq/lCOKe5kGgS3rtRloW7kjPlGhiy1JTmlsCyr3S1U+wahBc9mHsGnJsMghbo/ZyjxC2Ww/vSZNbCfp/4qQIwsKpHAFEl5GhEhLVTwCK7/y+x2KARWmeFQqz974SVHdAonIHw7HXoPXg4CCJ64SCES7YYZTM3J3WUicDAMR9FwFpaTzmYtxCTNEJZ2VSeIk8hFUwu42dHZStdkg9Fez8bP3JV4WVyy+LkQAzbMxQ7+9bBoTFONrx6BC5LKwHePfQEk121my8iJFw6b8W7/dMrpmmb9f9+OHesaGdEODcPYmZ629f0ZF1WbB6GzWN7DEnSWQtNZ3XQPIGT2CcyqtxEAgbgGXXxcRF8qtytg/zYgDaZqr6XtVNg5Fc4B63BerEgPfoYpJx/6196RyLqWqhDp11lgasxn8REuRKWG9fhXAYKJNlEcLAF97Z7Syt+4RTfP633IHH2SrE9EQfO52h4Sul2X6oK1ma9eoyhQAZ7lGlGvKU+U+GKhKqFsvA0M6+L5hETRbHuCPwml0pDrzOl8N2vJ9Qu4CkewHMwELzKW1ladfcVlVNCe4F+tXosM5YFimzlCTp995ucKeuEbeErKsQyrdTfpP6UmFOhzyQbMdKSsKnXJV+fsBjR/uN0XdnQYmR+QFzKcSkVju/xKHZuaDt/RTMppRblyzuB75ovD0yVf8Oey1MIdaoAma/al7Tc0cMAVLojkaGFevZoAge2ILuo7QETlIfLb+V9YblXEoeraJZqWB+0MQHpK+Z9lvlzGJ/1ZNtVaTVmqoYOmd5qFdjB9JcOzGNwMs1KppggYltLrQNA+EmWBqE++h31yv4v1A7h+lfaToAJfNBodv2SfSCVNAx5NSJHGLkHewgk0GQB8dDVj/N3wSc/ilRyjqQjqDdG8AXhd7CjMdNE61uzSbg/cV2I8Q/7SJQkylHGjT9bEOQsmaiqcwL+WQFP8T60OQsyR/zLSNfRiuDYbp7bI9KVPCDucq+QcaUCsoTgiSmmaUiSkDWeZMBEQd9piXKTZn6SI/HS1lF+zMcvEtSQn62EKriPGrpxEsVkRyIpPv91JGOH6JFKh8CVbmA1b0N+bHnNiujjk2umqokEo7EdQe3mEcxDpo+11pYGaj+EZOndna1FJfZ3VID24Aas0M6N0wllYPG4iB9Cwmy9+tP/CEnRAR/IwuzGtihH0QQ+XZwgkY7Aix1aawEN6+HeIQcC/lQHAjrmUsrTr/Mh3VjRolT5/664H3WDgGSEySUzxI2+E58Ps/q04JZ426jNXRo6uj0hkTxOG9Ovt4KYA1Sc0eXdUQTtsNepA297cebyx+PB2vlzEJV5jR8oKFe8KvYGVLkB12Xj++M35iDz0qS3ZoZs2O4q28z7mzVBZ7nUMeL0EEgdISuV3HH7kThaZ9rHwIgsxLwMm81UrxMm2qWg80/bxnRzrfbaU2SWZ9lc+W210dO8gHA3LyINAGZ/yMy4i4cpd6fTtYwv4b2g+lPlfK0NjY3K1/TPKEBTQZhMFbBgfNBFFB6o30SV9AMVvDygqGNnaUlsHoykYr015emSwJzVVDzSfUWKzI2tPbP9RYmGFV/tg4usWCRnkGUc72hCa9wdtpl/R9lEbwxLGdid/xJaYZuhRlxhVPr21SOWHMWt9hR4YDwg0mODWV8seknddgbIH/YSWydMeC+JaPefMfZUOM1XQWFlInQ3iMdaYgQHytwWbcq3Q1H5LNThyVmp1rmVLh9lKyx17hIjF09jHsHld4GpXopEawZp3B+pY1elivmOhpv2E2Zbx8SYnhLLiyeObt0XgbRyNF+DjPMVLoYTh2vSuPIXhAgFBzOyYpYX20ukBToJThOyo0bX+fXFbMAeuvRc0M0pjaeWogv37Uiqfgy5HNcKAonn+1NsmjlUR2Hm4VcvkEhHZh2LJPykx/5AfrNaNal9PlWV6kIpLr1l6VZwT82V6lXAFYydjv6BvjEjBawJut7mKMaB7LyZv6/RQaN9aUPl8s+9u3MbjY5/9bVaEnCfbS9G7NG/rZY7THtkzByRL5XaGVXwsnruOrwGDkDDAi6ynCbl/3oKyj4QPPCgN9K5nNvHSLpA18trHoCC2JFFYiFt+kCFwPmO5o9ifZSWd7iXKhE3D5Fqj7DDRgIERGeY6jHwGikuVn5quPMJV1cuL6T5coQfXd1PqM/jccAtlryEOVwz8JIrhL96ow7fUsPYyDg8R0eH/TXhlD6aQUd3r+FHPxfiyiCEyTbW2SHai/abb7/0564GN2WDkgDPrO+IpXPC2UaA2GgENSWmaLtzzDzO1uowPrVmlI3D0ioEhzhP5c/YGI+hjZu0OOlhgebYdz3s81xRMZ4Z0YWuDZCkZTH4pwMKmmIobFG2ZOdUkdW9yKiKwdcGTZfQWgjN643fgM4Fv0QAn5nl/y+hP72yMeuqrBBErrbfhuYbq16CyU5orYYyi1rWyvo/APQ71k4hrg//2k9Q9ydnvBXCPNaiaIL41WceXI8KCrqqiYK0SC4fpD6lmzGJ2R6iUwlH21buystGmUXZhh+g+cWM1EH0ttqUI6GWwOOHGqJRZnDWASYdb1kdm1tsEApMF3zEbSzBWu1K/TQ1o5o3BLSGHJlhc4JxeDbHU4+Zvgeo9ZT1R7MJcVeHQSTBV1zBfjajhowEEf1Tt1iMn/DWlLiI1FQpdppipZCZ3TAmY+aCFL83Guqj9pRXBKwLeg317T3dV9z9bT9R9+g8xxwpJZuIXJp01yv4NjleczOKsDslICedMlUAdp6SgCJas8rJanDL3NY9LQOsk3+mT1TTd9UfXydxPg2ePBSf4cgstmj6IK0udGOMuhvswbio0O3QsXTjshrB/UaXewQOnxhGSkKegT5IFjwPFLkQRZrK8VVCYEZKnJu4PyJ0bmXFteruUzxb6Sl2JjIGpw8UA61Z95h+yOvdWb6HAbbHfTmswmgk6GI/SnyQmKhq3Vpw07trCKXzIrZLt/5UbnTogshhMi9FykNcG6cb37wfEeW5OvB1vC0bHlRWBT11gCmAtBrWhHDlwuagtpDcnrt5X9wLxtl/DmHc6Pw/b/Btl/EFWDuwl13Tlx9TtLWWqQj8djXb/tSpZdpO+Jri5Nf+bIzW/QWbXfWESUrUlm8ICDeha5zJnThfB02g+UJZGd/ZAAQbCqArZT/G76iO6ceB/n4zejEVEgnvUOB6r9c2dkth5woq80r5Qa7vkeNCStRY7LeJ62KEthfZYwcLawAcrb5UNemcdT5abxhMk6eIJGPTPADtJzxUmXoaNlSWgdno/xL83NxY4wRyqg39pswjRBSCJijKMpnfSUiykyp50xSHlvBrqqcXyjfftjMsA5jmGFS473cqRjVDucAjWWORut5znrpqYPdkSakOCosMI5QTRsFfDeYQtaXqQN3+bsJ8VJZw21jDWVYnIlixBymzvX6O5jnIns2D0p+pxekD2erYFJiVY5/gr9hS42xSTqZB6DZgq+x1wvkYnPQHkkK9lPnyT3rkvLTsYe2K2zORnn54+0vsVKcCt7we+ay+k94BBlTGAO1LmZzjNUNZyUL8XgD/Pb9FeWkgMtYCAvwjsRl6gvKe6MOQbFsKH09/ve4YxMygn6qtOC9xkv5vuEbkdGlSmYMC4WREkUpMgWPMJuFh14DtOv/cqatU8WFqoCSOaob/QthPDTc66gWNLRAojxd8oZeuylxrPDg753aCoJQmfBkYpi386adTWF5yYMNL7ese3YaT9s7HefX3w0ezhBIWI72ehvzX4zd5crtFoTlYqnEEMvVyjKrs06z8H9kglZ7gDnZnFZ6uLiGO6V9d0hBLg4ACNWzjFsMWKGOyMVUvtBW1UhT7ZUbboorCjrrFHWEGgkzYJRP1QKyEZf2jKj7Z3IS2Q7OxTcAa11JWp48Jdb1p8Rdi8OfHBF7AzFxQ02yYhUfILH1MBnEWiBoCVzINlCIWGfABPnPCdiIx5SaeJ1qrXkRpUN+Gx62AyBhgD+9o9Rs98YNGS8HNYKjxly7XhxKzjmTZSI1nWccmdCoUxrGtfKVxN+FBaeFarpYOb6nU+nce8rcWwWgVMC9JUpZx9z0ju6iN3mQIuqjTGbSjdqmLi32XQIVhX6CYSaM+dN4UdAuKRxrIGAdWcn14M4pGdNdECEdP+0LOP2q4B/P4VWDkvG8LNgJgGp25D5+OT4hwG1hxMklxOe098NIJlLfpIIiFv3IIZF2ALoeZRO7EUPi3bTh2S+YD8+Rs408o7EWOh9L1clCXzOrL8yFcFtc93ElyShVj8mb0ybCkCTA5LV6CWFkXk/kgkdfHPSxAztMnq3Ds/JOu4g4y2Fi1daGbTAS9wNkStm8lA+IKhz8vljC28J8norESLB4bXbeHJQgStty9wsuhN8IYfHJBIzU6P5WHZlImhTUJ+e853oWylA/jmbM46ueTjUDXUi5vdZ765gKgdMPTQcKfLAdAkTS+7JH/bG+r+giyCrsSulwMPS+FIb9ZBN9uq0lf1vJ8C7MrKP+pg2EKPWCG1mh9WuiDSsW15b1KgZ5pTsAXGUwVkdhUV/G9HGtPNdITAlLxYTZiPmwDATgPdQy+eJpdHiJApSp0AGJ3oShvGnUrCNjCo4gAN4IpIfFy3/hulB5/mSoVMmKo79yr1C5f2y2ltNblzws211BW2kW+dE1BykViTNZcEwzbwrEpr4YfFCa77Eiok06OIdiEchzTb5PYUW/2nU8h4ElNPM9Bd5/ogFzy+T6fvfyvV1Bbg1lle+7p2QEIJRMC64GcN2KtAA98CYCiYfsIRi03q9QCtrgrF3gbSjtFdXyaGJ/7/6/LOk63dKhg3S4LmUPhwqJQiUb3wxQFkcj3QooQc6nxZN52nGAXaPV3Xj3CRhR95ByVIBfy2cF0JvWVh7Q+bPViOIav5cwCfZd4jiVjPTNdrRdGqFqyC7EKSNZINlwiQHZoav5VawOcV0T/8DhIQVLACBjMunYjl44pDNReh0xuVkgUN7iMH1+JSVtLWEiuWaoLe9mUucjHFbQ/7MX1iysnPK5Si4jeiWmbPd84jTXXXehmo5QWEEyyCXkgcudE0hdSriloyRReixYdt0CDIlcjm2zBnp74bIZsbVyVqJDXit/xXjfWisZguH6jw9nNXJj5QLgPFJ965BIy+kQWDV3puVirRHIufg/qSQCX7FZ8JVRIf/4qtoA9SoIY6c7NpULP+dxakUZ5N4Jz7yGR1MorjCO6PhisJFbi+YlyOcfyd72Gu1usmNT/Iy0zzm/pzaXqsAFrZRlFe0VXUGqxNXYgbUwc5MeyRQrPVaKXfBp7Z3k0NZX3JZkNIS1lLIUzGyESzpACJTyNyGKGvEkTd8dka+2+LsMV2GYe0JeJEGNH9hv9rQtkGyr3JbuV5FdQXLWgV3I/0+WV8by9HidNT3jMcaoKlq/7lvN4HR7kvZ7XNe3Pf3nydOZIPdq+/er3Qc77QT56aPWo6w57oUOb0gVK8VZdAL78AQfsZQd2UOyZe5kVX5QZ9udpKYKFg9REVnWies4YtrzEybh1Fwllzu352oUqJ3oBKn80bHuVWjUOr9LhdlRBgvn2weBXA9X6ATjkS5dXimwc6liteipMXRzjlYoC3RX3vQCv9rWmPGbepMadyf4GoeTC1J4iDYAtnGWHhMQwif6UIaRNoBOZ0QXyEHMdH4oE45mn5DBUgYU5ORRsrNmUBIqHeIe/DD8dzWwQp5Is2XKYolKWAh2KgKVXJFRJS99JaTxsEMeihTQr2YjNX3snAMHkYgc5I7wgAntNC/rXiWLKXRuIsUTqgxm9wli0FVnHE6VHV3nW256ELZ2M+tRJMR62MwRdZR3v0Qb2lHNE/CzBizCAzD9esAB/3nYVgGidSLrnvOJ0x6f5RvZ2LoMB1VqFjr+M0DD8pPjzAgmzI5bwXb2RyKw6X1RtM0YOAIRW/qB6Vz0zlNmKSWrmeWv+vmhqy24A4oQNRJ2xwtl1JJrfQDuVF7rvZNuXx5HlcDvVFsLMN59VkvRoHpDk7TwAC36fTE24lfwnU93BjkurX7PV3/Z4HxlAIjTbfA4pMhGrQ7UNUw7OdJ8tyKYWYyg4RnedKUsL/l3bjCYt5r4BcVaTlSkjq9Vg6stHEkyhYyrYHI4qpooc6Mpv2jDTK/lvWNfaOVq22KCN9ATpxupzzRa1bbCbdZWMc/6msBM37aVCp9B7BdLWTQ4UPgT3rk5pG20VcIcDJEaNCMvqd+IbRat0cCrFqJtSqFuSUT0CmR7Z9fUZxgIyJdU53BbVWWVTfjV6RiL37f2aanihi3NwmHhcvvnLdIqUSQlJsy1UP5YsmPsefGw5prxb6MIoVIJ2VhabWq70xafjx7sAowr4KBGvsyKwwB28Dxv2w==
Variant 0
DifficultyLevel
710
Question
Shinji used 8 litres of paint to paint a wall.
The wall was a square with sides 4 metres long.
How many litres of paint would he need to paint a rectangular wall which is 3 metres high and 10 metres wide?
Worked Solution
∴ Paint needed for larger wall
|
= 1630 × 8 |
= 15 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Shinji used 8 litres of paint to paint a wall.
The wall was a square with sides 4 metres long.
How many litres of paint would he need to paint a rectangular wall which is 3 metres high and 10 metres wide? |
workedSolution | sm_nogap Area of smaller wall
>>||
|-|
|= 4 × 4|
|= 16 m$^2$|
sm_nogap Area of larger wall
>>||
|-|
|= 3 × 10|
|= 30 m$^2$|
sm_nogap $\therefore$ Paint needed for larger wall
>>||
|-|
|= $\dfrac{30}{16}$ × 8|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX19rvR5SylNFCjcZ2ghFw/HuEjyvNjhhRkK/dYj5qxBnJOS3iIjOeAfBRFy0i9QTD6GX6F8StyXYtugYBZ/BaW64eNHfnSDQMJmQdP/hhaEOoFMGuhjE12Lv6o1Ao4jj0zCoUaYhoO1jBltzC7zUuFvu5mxRBUXu2cci3QvzOjaT3OZnMZ6c/k2aetplNkbYX1Zh9FoTpIEYdiIgiqnr8dLG9T5YnAVejjK2EKeDTkvd3KZAc95xzk2W9+gKE3i+TgdtI9rc4KfaNkNCGsdyqCwWSxPuw9X/I4g/s+5B93QzmXQpsV0AncMzz7m1NbcZB1CiRINlzx8ofE+neKz6Y0AryF+bDJZZqWgnT98ew4Mz4OkD1L3AYXZuYaEFPoXO5cMGiJIic3cvTDw6td7+fID6lhJOGEFAY+aQ/3NNNRcpfyg7kQWb18rYQebtnnzktJ5KyIGXlde8wFOzem1TQssWzZSRKxaC1J8MXxPPFhbOzx3UcrIrL5gNRK8mKDq8BpfwJ6fPst/G9lrh1AaQF2Ce4RjTwS+5uNvUjxTljpvfVJS/tPUKCVBTqeqOR5FWjqbeU2Ml9/HbYcfU7aW8uBGElZ9ueQRxUDohcNQR5v2dSruR/3XkJAqKvro7phBfqO/Z8V12tFP/BE9k848b2sSfec6XXFaAyIJnKo5HcHVTaPCemUrqJIynk3PGiCbp7Uyi1g/1dgyzllDNICwifv1y6s+rvKPItb+XgN+ujO16dBKll8Es3UdTpoNkvZwQqVq7dOKis+tykz3WeoQXpZ1l3fNUgHS1W04a/Ru5qBK/E8v0KnHuAGG1QHbUWgmvuJFMh5sbOLuE1YonGrxcrpQoIQB6loQmRmNtYfFnRumKSXRL0M7mCtq6JyJa8mFqELJ9O79VcXMKE6UYvMVdM3LNYYf+NSyKHU+eDQRX98rJ/Wb2Yv6L35hEQNxZujYJxJvEGIVAqK3peGlZbnh43GuDuE6WR/Wj8H+FMo3YmJn+em7FfI7LzNWuU2tvKT/8lp4n0L/NXMuguK9PNMSa6TAAnERGr6NLqAPH5x3bA0YvV3YxF2RLT4fcu1O4nNcsi2i+A5dIJz/YCEBWhsR7y8IL3M5BBDZm5uxkj3F/ZL+aT/yBxRAlo+Acb/L4thZuh/N58yNBeJ5RTlFLx5jUvVShu32zPnQ+MWAHJ21fXZk/zn6ckD8kVI1QbdY28RWG9/xoPrCAvGc6Cm+mGQ0K2ljkj4On7Q8KBqsvW0fNmNEFTycLkCCjX/4uYgm5Unl2XNZmaZbw5IcJkkI3Wb4zfHnilo/diKYzfreHoJw/D6eeshdj1WOerh9EHzJVRgvfPRMFqVZdyR4wzItuRvKK840VXoMNVJUG/oSGfzYndbLBICuO+vvZxarXAxG4UmSj7jEKCrkB4WwdUG3goqr5V0T8rdDVK6Wd/A9QuJNSIdpc3tBNz2PkIm0D9DKnVVhZUyBSyLEedaIliUBJ/Cw/bhG8n9nFx6N0FttOzffG3WVIwSZQV6x8ryCvVjyymZqP3mPSlgzoTECO7Eo6TjvWa/w0G64pTctSJZpM+OKid0lAX/pVPKPX8mSpTlK8hwrXUTKkvKo8F5f8JEJY472NmPeJi6FqDa8ODuFYPyeuNQx85fjivrLObsUb8LQly5n0hQZ7/ISXTfv5ZOMy+Q4JH6Xq4aXi9mCXqpJ6biyS6BRy+RrDzRU1MPU4m1ZdTUROxRtJG23UerSIHIJcjac68KzRrxLF6Abxx81g/qqrGiHa+iGmPtQPilmeRLVRR4C72NwmSWAuTi+qRf9VMj7W+SdGEXcKqipuSbApxCuynCiAsquvI7z4aK14cE9PM3HRH/6Vyku0v3qd+621mOzpOjPUxebl1h+Z3c3qZ5uwpd6D5Bq9rQg8Nfz6+rYmFv668HUUCaj6sIHxMq4R5Yk0U6kK9XJu61HFefGWRdgUzl/DP2iebG7QG4owF4QKR452wSm2a4AGBtpz6KLxMnefcBVvH7IrhFFiO1qLXXt3QiT0tdqooN74rCuL87ttX8Vs9xSvZssEOElOnKgF30SSOrWvTT+f9UzpUzUybcymOfjXwLZ1ft0QpHkLg8l9OJGZrbezaSIJtSsbh5WjGrVR1IfNry667PVMqmBzWMECMuawjbmAj7ecN6Qm5K+/v5K7F3DNTDUHuWYK8UZSheuwa05R8f1pzVgLHAI4g9wyYKYRQemmt4pjxcVLgbYT/uzhKvt2dPPeCV62XHJ85klL+gCX1aoF++qQeq/Xt7daed3bukZy2ihHMvFQGBM3jaP4ao/HL4syLAH5PykUCqKFBjdWvo5F1KCU+K7bLIxgsmLtq7Jh1820CQPr2IyIbhR6OAXbXswSh2pYq0P/RFH5DFeaTmCc2O40WZ9/rZU5qPfVW6XrxTATWdoJYLAxk++6pFQ9NhDmXkX5FFA7m4dqCjmG/VmLi19xbCfAKICMtjf80Xv+m1kpNk5qyy1A6wQVWKwYAj4DFu1FNDnDQUCeYysMqMP8jfEM0QaEi6nE7W4CWkE9uINIzQEcPmyV5csVI5KJ81W9rbNZxmz/QUuQS+Rar+2vKf9WLKe3DLF0VBDKVzqQD/krYrkyhCc4o4MFnx9ay/vMHsJFsC7XN2cueSt7oa5JFtXqQGxU5Ph4BPF7wI09pOl1LtcQ76HHOXqJaBcGYczKcdkaYeDpxtiV5+Ay8P5ci7SaAGOg4qDPRJOiddLKMjWl5m6yDGYCiIrKaflDXCTXBgwz6kz+nuIe1+954UbQM+lghHmKpCGM3Cg+YBb5hOntcj4haXCWyPcLgT5hL9+SqZ9m9Q/PJ1UithGz8U2skplsIzTS0NueL8sGXttEZhnF0ieOvt0XUcGXv7kg4PARuCP7mKqZzbllN6+kyKoZHhRuDeN4ZCQoVmrs0k5E6MNbNvj1b4M+6cKp+G1wRJdzlRvaDI+zztlP5pi/9ldl/geBENJB176PrrWUMdiPH0hf4n8frPD4fX/QWcVuOifiX1z8di6C4DhBnuIgGKUTXkxJw0nSpiI++dslwEOtkMuRoS4PlcZdvknmNkK+MxUk7nZLF1+TKPpq4sFQuLT3BqYfy69lAePKmRcV1UnTFMRn7JDod9efo1jdAVmunVeJSAiOiNPz+TFbwUtnvPUNqVQZ42syrclvndb+iJR59idi+BGMMkmXL9Hi8m2rSLhKaJ8GMexiufHllnCc240J0+HUjnCmtg5gHDjJWZmGY2KCIsal0Auy/7QgSdJAh6e0F5+P0CvysQC1ILfRdAokUCbsaVG/a9IMhY/PeEAFJBzr5koqOeVdx1sn5m8KmyA65MccTftudVC7pIFmrpfrCCbpTs5hZLHXqCsc3ifCKBFg12Ptabu8VnkY/bn7ybQw0RxIVksodfmai7XulmKiTuMVgiQQc96XJq0CATYVUbajldmBhHJmdWVL/VchCZdlAk2RsLsZqIcFqvIsGOYOt4rCY55ChWd8lXv39bBz0WIukLvNM/Ly8rRv+/u74iblW5dup/kzDL0AqeDJ6W6saM6UXL8iWngmcMQNWYQv1kx1ydxE1JXfIbuCYXnPhfY2MILM0AzkeBAT3FaiKNBAMX5wpoc1LwMMv5zqGzp7XRFsHR+W2nGtdoDr7h8Y/m9Dxsg9Y3ZSoASk4xPwq+7X0GTFoI0Vse+FU68NxWIYNQW358BsWl8yEDSguYj+jI1vha5SNTCzG8iS9cF2Q2tnSpcDdZ5rZthOiDKaSerhwGfcP488IOo95UuFS9rFVUeVHIuuFXgKLWoIVLi8hV2kCltkqzcIm3I0ydAfe5LQMNYKr3JgHtyJc7q/CELDharbxLbzDkH6EbhSHu5Wchox8qbM/m0+K+6xHycgkM2IArFeOCgtknnJ5EFg62ZyZILpZ0CS2DcDz0knECQL4aIFh1qAlk0tyi/IYuQ90l5IzCTYACyBkPZHMLmRctFodAe/Ezuhgn3va0xC1EyDN0HZ69y8c+Q2T1TEybYWje5EjnabNBZmMCE87IEnA5EgI7Ypah7pOogXAeDkGyKqAIAcRXAUbdowjGYOloCYog/TLcEhxZP+PsCcKJQ5bFwFQdfBwIShiIKNFj1ysIesm098lmOhOwnqUniCNzSM+Q7/+rDy1N5QyrG9+CsqHYMiiNR47r12M3kbe7z3KpWwAcixZx3zCP1iiEP63/WCcZhhyiK6jROVSfZh/CzAxVqIct34TMR3f9Twi5hm7jeStXcJUKVwDap4qdamezyqKWDZA6aPspiMkah51/AW/Wz4EuPwNmQ+tQjtRWa+Pn/k/1G5vRRHmaC3/UoDnZh74UtiisKV/e5/86DX+7VgWUqQ/Y1VVsqoPDPXAowHwmR6WxUL5s2S080nbn481vTFYjs0IZDwk28H/eDrs2ySkCgoBYDXiD8OwfgnA0Lq7dCVUnFu98/Iw/XAVke/+/hYbJ+eEiQNmPC/Fqb7c6Z4awOyM4bmhe4HwbirpcEKFSI2/0EXpdqsWaHSk0KzuZEcBvh1tehpWsUzShT1KX7FeWhpJ2+978BjwIpqDfyr2RicTlXYS/FL65i0XO+tf8NqBY6dMBoCregFthtHYY217acIJpoKq8HqcEXJRk0DsL38su8gr/13ByzmZO7tfAIUwS/Ymbv+uFEXCitQ2G+849H8YBcf1ZdQCATzYs1BBXU4zEYZ1aT5Qeh7HPcqGs19KC6WIA2PO0H3u6XSo811/6Hxf50I+bgb6GAU1joQZGIDMZ8mP1QAHwj5bPGzlga4J7v9rxYf3egb+tFUOdXDdWOY+H38ZsEZbT0fA1HWd+VU9f2tD/1aQrY6kC9AJHdiBFGKRzOkb2oOPa7GeBjcL0NiuyjMAR5FgezxMquOnQ/XAE0rAcZZoMbNeQjs0sqMU4G9KbNjAQjlx5ZA4yaF03LKzZpt4UAndK4clSEdf1epYp2j+MgZRc73/rrPxqQzQ9RAsG1jtrGweOQ7ASeKq7bEIhZ0qYzXlyTyMBUqQvbj0JgaR1gJzfU8V8WKsrszrCy+3gwwWLIwWP/abbim1ODeF+keYToIInoIlsbkdksf1eouvtZ4sfZz5rs8ARbDeaJMQc70VXCObjh8DaE4LZcLGjrhlV9xaL1sgW6DD+/HRQVEY58aeWJYnkbQQ2mKnyxxY/bQwiMJUxlIM2N3Bh3eOkX9w1Burhi/uBvtJvfd0uAqZQx0urqv6VNfRt9sznFBv5WTiLA0ZMOUr4lBShTsdboYpSSWBwNkskEzx5su4dcuJNHfGEy3FdjyUowoRgixWZFB2+L8O9/40jmNcP9GvSQX3A1StUbFc9ySZe6k5IHsC2+uEdWhh5DRd2BLSTpWaLMq2xfzMdwtvoaRvdRyKrmjXVJFncrXfCxurV7APk6UXvVv53x9svWg1ujpL/JTupsHw8sTGhqwnPZG6bF68IeQdv8KS/laJoQ5QH8bMJIayM+ZFSBSc+akA/JGRwOZ0CY9LRszmetDzGxDoMVpkiUaK7BPT1qv9eWW6JSJuMZ7RQjKr8WkKc5t8yFlypMp98jX6vIumjcFFPKb2bT4MNSD9XGu0vMWQeEtyiGTVal9/NW5W1jf3lYSJ2DvOL+erP+7eK9syZvQxJDtu5Fnaj1E7nr5WlkyK104Wx/ssnDZgNjT9/PoV58XKhyjDHOUx0QSiU9pIr65pSEXrHshbEmTy31r2D8UmnWRcYfwQgF9kbyQQCxYflfU2SNIRHiwna//79CMHKLbuLL9llFB185DFIoLnVTsN+58/AMS6zlxlz4cn5LM0piNKxg/PgwotXJr1BT3X4bySFYKHlJVtArm6WCOg51N5i3HXZLTKuIzOgVIEmWv/pzfamTBrCfv/c6Kc3WI/AcsemontunbN0FvwyFPBBCH4wdNMmWO86a6R1G69bU3D5yuZAjd3OmZvhiaK0XR260gWAuenPnEKJJJtg7uN+y4zhAG8Gi0YkWjd6bbqExu3KHOvZA5ZdDf1gq1+pUG2Mh2G4Pcd5n3QaGecsuXm0xEnB2mlnnsKDL64TpGhsj8HwT2QNC9Q2A8cPlF6sJYl/t+8B0zVq1HJX8R189Nmyo3enrr3pCfRmzrdxiOlXHGbolO9M934FrDjmIl3IjmZ3+ixARRt2GZDOBiaLROQqq4zUj+K1Zhxb2PvNkUqoyY0rh0c1vJOCNv2Wz73wTXl8FdisZxjqwOuUAsZuaUMZrcgoqzxsoQafJyzlXoB2i1AXSC3swLMADivL/FyZ/cxKKJtcpz0NVDhAgRIKXghYxWkGzsXCVnSLFp2G1txEwxhnAMYQOcJUhGP7N9Jy+WAZgyP/RKOsQcwc/qgw6Rk0VDkkoCgQSuCC5JHT1Rmaphc5QZUkJPhXoKLk6U+aTIGf7a3JT8/Vsw/P8j+1W/iw02MuOIQavku4hDwQ15IX2IZTzpYwfPesfFY8J/V8ojq4hrlIJvYsYkMBjbZdKluyfIsOjRffILvdu0X8TVVTIUY9rJbIAvd7FMIz7D+HzrQjCvJUgP7i5f/GeRF8vAt/IU2Q978jps10oSMwEqLnTl+fpvMRDJlVVeu9AGiIQ0emx9riWRFZmS7npy6H6tUfQndEMxGEII/gjd525BjF4ZhE7UdUAU9gLq/wM3PORWQgDHJxLD5RPWX2+nuA6sty2cMacjv7s8LtnWWwWAuM0r01g/9Wr740XQogv9auIT8ZTT6I7wA7KU9MhWO1zSSOf1jpddPl1El8HoVq9rkAnwkVx5UJ4rCHUAHQEsVSug3e5yL2U0+jeInaySruwd47QBzvM1nQvxsZKCorxrulIKXEANNMC6XcxdI3MPR5dkkfFULyGEUpKllZSrw6Dv6C1bZF27Ah5Q4PxCx5+H2Fb6CSB1OENR7GONYe7stbkQ/oPCq1LXjn/B79j3m7l9g95PU0ch16NsGDrFP2WBfBvmynHiq4gOSkSRtDAbITm/1WY2Fp5AUK7vvpxfEhvWV3SO+UYdwdPEJNCxm9ss91zM2N29WtQNnz7RMcRF+ZsjcvlmVjttLoEtRJvRurTKWk36DEn9sEA19bUX2Q3cLvqLNPGKGOEdhTV3aIbq/HOc4ciipdi6mIAF/UntqYPFq8ko9zCMeXrKBuDKFpSYixuH4ZAGlO5Zk4Db2tB3vXNlwVQGPJAFoDGGR7a7Y0Uw8ydXsExbzAuLlJFjd8k595pptvyn0oVgGzkuzu/6+24RVKsrJBDr3Xz01+DJ7tmpmAPPHRqrEoMkkCaRN1BMRg9Ye5fm/oztpL6U5OjPpIXfFKwcFirIHy+eK+GyMMAQ92skOlakXedScgaZtcxCHTsSkN4caZWVvakxbvKll4SeDTyAY0kh/pkG6I8H2TyVqgESEdxHtJAUPnKIAGxW67wyCHj2JxYmaamJ0awlwPM4MjLfHX/DmL7Tyfse2H3neMZ6gWE7mFwfKOWn1ITzpqf9h7jM2tjEneamMJVcFLFIFadxESlDMoKZ4TIslS5tVe+lFuicdGcO0jDzaiWxm2vE1gt7wOJY0bv07kTGr1rjdin3w7Y4Ob+IMNThQ7nrQij6C1v3Z3uWGOOKYn4qpv0=
Variant 1
DifficultyLevel
709
Question
Bobby used 4 litres of varnish to paint the loungeroom floor.
The floor was a square with sides 4 metres long.
How many litres of varnish would he need to paint a rectangular floor which is 2.5 metres long and 8 metres wide?
Worked Solution
∴ Varnish needed for larger floor
|
= 1620 × 4 |
= 5 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bobby used 4 litres of varnish to paint the loungeroom floor.
The floor was a square with sides 4 metres long.
How many litres of varnish would he need to paint a rectangular floor which is 2.5 metres long and 8 metres wide? |
workedSolution | sm_nogap Area of smaller floor
>>||
|-|
|= 4 × 4|
|= 16 m$^2$|
sm_nogap Area of larger floor
>>||
|-|
|= 2.5 × 8|
|= 20 m$^2$|
sm_nogap $\therefore$ Varnish needed for larger floor
>>||
|-|
|= $\dfrac{20}{16}$ × 4|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 5 | |
U2FsdGVkX1+dXrjSbmMkJz81MbvAjL0ANw19xf8SKrwKodCFk7Y+D9L45jsFUZaqh+KZFPjip/yOqGoU20U7kmUCq22Ikbkcs0DVSdK6EquluCmHidC1EMd4gwoC8aku740WJQPzOhrMHMct3wK20tt8zbgYeRJvIUVRa+OIhPkNcsB9JB39hhHd4zao820x3SqYSIO8A/K0jJ4jqE2oWYM0UO2lI3sEaf3AH9aS95Q9YJrBbhLtTDdKfpJdS+JCgz/R83B459/XiU6aVIbduTxqGnqH2F1IiOhmz+v9FF+p5EtA6foWQhg5i00pct9suyyAHpwWCWZybq+bhkGA8IfWoBmzDcup9FmLjRlHxRROH+MHM41MRhX13YsGkjYgcvijtWgclDc0f6GNU0/UInAFrXXpbpw7aU/UKSnhkQ2ZoQfISH2+1goowRfOb1vkma3YP2qb7Rla70HXfYdfr8IZkNxofiPGcEGI5nnCM3d0dr4slYcLedhqWUXk3FdYYeLQHfjZg0n29piorgjT78IxBfMMfLFxmyAO3NC4m3XRkgm+NND8L0YhDpTEsIwmwcHxrKaCPlpI4tzdxOBG4Z2YbibjGUDa/pGvCZdfkMHlQiXIc52wii9E7x0Q4kDDoKCQiAyi2Kpkv92Hh7tG1U+YEnL1goBifzYYwZJMmnst/b0YBnl2pnnil0ZtJaMxm7n0xJGUR4MA5ZkH0bgYdeWpmhboZlcA8ZDIU2XZ9ff5u/WHgkJxuMjgwsI02Yzf51DDfBDlY3M8IDv1hpdxEDKuBJLcY9yrm6cdEuWFV3C48W2o+j51io/rgJ372gRQ2g0/ZQgWTkekv1IlzGNdfPyrW2prrdQNwadAdnFn7VTlG8L5GKLg5Gg6GLCCURxY2i/4M0Qs9EP0Ycxi4LRx4hLk9zWJseM3dk8/ti6JXG/dHYRHp2N4MmbOsGnf+HxBHXWGhjrPUum2HuqdC8Zg8Ei5yGr4vzZF3FErQV87snm2j1D6H3kE0SXF9xm9b4UKXsjqOVhEYcgn6CH7s7PFRUfPX9qsFKBbgnMNl7WKMyTzQUrRWAjIUixuDzIWcvwtXkuKuqzNJDI1jxS4RepCIaNv/+zknboZENzPhY+6Qb3MGBobAZ/r2XqHSv2wDuVfWBcjZqBuvCdx/ZAvz/WQskX8f1/ktkQKSOOCU7xMkQLZk9+BF28evk3iB0/cA6uatFVAnhgrNT3xoiHFQbmYyA0gWpt5L7CZvheWxe5jo/Y7i6vKtBagsRi5v+xXlwhSvhlonZNKzF/QCulQhL+SjL6n5CwtUL0H7Tt2ePxPDSgx+lndTz6phMVrQazJludTctD6NTyHuLbBEvdjitNWC16aCG7pqXoJ4DDzmCHwN+uhwqnk0eoskQg9IGsuqXMmBQQ9qI3Xkjy6xfiwPCMMQ//S+NY51MFDqxwBq3eY3Z9OUOvNSi5j2AYz1k233TxS8UceBroNAXqJXMc6dqnT0N0DnEjwbI3Jn/utJJohgwgBdTMDjXB3WoeboVNoeXtIvF/JfIhws1uzGpIn6L+XZwMnrTd9SwFxmBSIWoy4jPkm9tjj1SjZnLwAgxC+mFYoRsGLf0ZzDsGKQLhX0twBLzIcEQU1T3nqL+AicgwuyvjmL8U7ubMWB/CXLEojub/el/vbSqbh6UJHDKEjA30a9cQy6sGhhFIBq4BneqVvjB0ZeYBxvQgdeafTHOTcUfKApZdwvOi3MtcWKFLXuFKrKomPcn/PXo+ikB/GQ91HJgRmXqNdQc6IG5Xqe7Wjv6IWImp3leJU6mUq2NJ6AQZ/eonA6+kPxGEB5W8waiiTkbkhsFTeG9MT/buAFBVKd7hgWcp28YupxLS43XUO7jeCz95uQBX21gJVRGBOq4GiAUsMG7NZB9MLq0/yepZoI72IcOcY2aYpt1uUMjIESzGzrXvd9u5aLwf/kaoPwJ1U/Ykid81zU+4UJIsFmYbWN5Wvd6LwzJ6x5iucRC8oPAXgnztO4jJt2CrosnC4jWH/Rcu1gulBEuashtRftL/yH4kW1Z3t11kTj9Z5ZtwlyxZ0l3P2C72fKLnfAMN6oNVV70YAVMN7ylAh+Ui/CAMa/acwT7SpZVH6a7Tn1ZxDhii3ynpE1fdBur+9uwvPpr/A9psZNTr2hJCX3TRJxu60H4Kc8E4RyFuyzT7nWeIJFfwFAiwyBmiazD70T2wzGVeW3Rtt5EtAjXxxIC90Tho3E9YXLCbXq8/zvMzWqUVlXyaA/geZhnCRI+LWEJw3UNz1FGuAcLEyt/kmYfhqUkU9gs2+FOZ2ocrTNuYxvlQSBEAauPeo09F7BGFUQwIvS4RiqctxD+kz166iLvA4CbIH06n8Cu3+YRlf1ny21Ixu2N5C2nXPKfcwK8M2xPlUfVqAoLczxjxc8ps4iTtYXel2gpqQYwj5MuOeQ4S9MWrWHkQ+hLO7dFleHXsbbwWMTytDQNkwqBMYIDxpzm+AL82Q2qpgTmrxMl7lin52kzjvjx8Agq3PI/qnXZoTm/7V8MfDmGY3v6dhHoUNnqN9YG3X9S0m6hKrmQfnGXFDTQMnefa0UVdPjKWg3n8qnPNgZ5igo/dMIAp+SARGwmuDmLtE0kBdPCUk2EaW7XwWHtOKf9HjE4CLYJCGVGffu9sJi4foUj4OtRTJo/fqJp65OH6fmpvA+I5krGKxbK7ysd1SQKK0IFGqlHRTuTYKdke99UUtYmdwEtyKTwYGmOfDTrDWIQcbBPgFJe+jKSZDRCsRjO8dOyKe4yYTiVmJ2fKIRV9nbGPeSjA/iTZyoU8MlAcf4t1GzHOo4FtN6udsB1Y8Cs10F98pJX2t3TMTbkPAEBkT809BaHHmPCsr1uzSl7CLukYsQtc3jYrjFpIvWizE8aRKD/f94RdL0emTwyoN//nQcz/anxJZzvKgkNUk7aQtejtFLVvoLAfXsnC9ZeJZ8CqmW4ObOTvP4eBJ1ifhZNVAS+WnYmcP/Ybr9/NoyOwSwJgDJPkY6QFB982HQhHJ67j2G1gA2EB75cQu3zYJyPA2Oq7SVailkEuTQRil7RXPjAryE66fcPdbeJNJTqIFXmjadG2/ps5iJhnKPsBEP1E35IKXQj3/GlqRbQkU/InSK5CoImT0VQginoXJ/kTW05qrrv9/Ahi3CttkSi5rLLxY4xo0EMKvNWAyxAKqdc8J+8QIV4QUPS55n3EORllNTZ7XUeq4fkQJa2jCfqZ0a7jNA1yyhBuNPDxzwCXFaHoQhpedqDQyXg1eCbnH4t1b48GNzaVsjujQegciNQi00wE6IoTDqtGDxFOsx4AqXrQozoMSlCFJzo6JVcd6OlWGGtfF8S7MdIIWjTUibHG/bHynz2GP5zhWbGMTtfi43eAxyriapEj4b7sLBDpPaUU6BTm2HBM6TP6bYvOytpwGLxe7OyZi1S/Z6Xe7FZJ/e2VfVPF1LNHLFpihyXZHTRqXs4BWdkQnmSa8pGxI0I7/6OiHoIMfahsHGnttXt5ANPSrMpAPGvmRA9sR7voeDoB4mIsSfpCrBz6R0iRwVxQi6K37/Gj6wTUcaEiga6NIYrA5LTAIGExvPrtjQw9GA6F8ACnrlYG+aOJWMulMJL5eSs+5M/AIFH2mFgNzHAfwz2k032zqCFcwlvwthvf74CzXNorlLrWGYZSmG4m9vj858tk/rN2vfcORZ9ep5mLTqJaFPeDNczzCKfeotMgaqdAXjbEqUGoOIpAQ3eisK3JvaJhWfEHm3IBKtM4SNU4Rg3Xo86bTGZ69mWU1rvp1ASY0q4I1uGv/2BVTLtjHevmtT5CvoiHyGXmalI5GMuVcrRXb/Nz1v3xt3USNOlsl101qoMZ2ZN6Y6JC2j6QIhGW7IM+sb4xnYYI3DXgyjx1lMsAW/tCw9bi6uc5t2K5ft0nvCjOA3WAPet14H+nxG8atqv2NM5572rYrowOM5tzr8csilfZNvqPZO3KqOf/dZvNlgXM67FASvXy/CpcMZVRi3Y5l+reaHqVZakuVSnrxTYWNNgR8Har8CBr3G/royLnKcFHbqy9VCj38M7Gz4tbi8dac3Fa1xvlhlcijVoU9/Gv87Czuzv3C9acimQ4hYcYVHnOHyc1aXusDEjVhFW+2f8/k1qoFUQ2fPmR1+C0mvV6nCLQ+1aEuB4/h9IJK1yoZDdFsgwpmvs55FmluiAc4Q4RFvzmnV6AN9gQDPubwvaU5cO4BaCpXBTro6bn5ZkK29Vw14csCMunS1DG9fKbA8C8N6/V8OC9MUeNFf0DxMrG4YRhbfrB2mUUUNQ9AdyajbLSju0tDyhWmQGqcTf8jb5WFaRxzD9dyWOJCms9szSJP5PJSSqE5TCFfZRmd6cAo7hbJVj04Wo23JPmh7G8mIFXwF+rTl5SDcQIsEa/XYf7q2zGxHHhh0IioIw7G+4oXd0FufCoRAUgzuU8Hc7mSr2Wb3ZslDjJNo9li/yYpKJ3PrugmNHul9ptOfV74LldHUoor0/L/kJX8+8fAlf9B2QKsHPAhRTYAokE2+6PjHpyYMRxR2ezE+OzwX3m0T3q4ltx2vWaunX4GGzP4porTw2xMycI/48icMvxTbbysT7R5UfK4Rm2ECZ2IXcDEY3CV4DK7OhzAJ55CVBlP/ye5thEbSnt6Q8Zc1xSEE7YLykmUCF/9owQeLg7srksIfexLJ2lDFJLV6j6JdaRo8dFu6jyK1XAOtGn6imMCk32de5O2bBF8DpU5I+ELk884fQJkvvO6mOIv6Ae9clvLLaLYlSdrIcQfOjfowTVJx5zTo6k0/GCaFYbBTBDfBOfpxSfFKJ/LTvZ8lmzBPtjZzCziVi97SE61AOzaXsFiEkhJu/zaa/Z52ZKmVDbUyO3+Y06aYeuwSzYeqe5sGT0hPy+e8iZhSZDchfLl55MA3EuakQlbdfnajhgFOnGzfFT89YtOMFHFf/VyRiRTMVAQX6gnpJpfQhO6qWG2cKHS+OSmoGDDddI5uZfW6PwDVYD3O7MTmcsnLzBjrLG7RomzJQs+4nW+D6kQdGgXqQ2rZ3QjqOGpJMGIfEmW2y4s2Yt+uT+kwuTlWFHtSoc0wHTdmYIifCd31mSGg7ggMd09Tesy7JxTBTQJKmiIO4yFiB0Htx2cbgz17CA+aEUIt+mL0BhNGmYpvUYGNn/IV4Zb1XwoW7MakFdGAAU78vRZqAIANO91OptV+pAUU3oQOOICGOqUPZHXBhxlyE8fTX7iug7WCo1VdWII1gIQjpaNEhmO2w2C/JLrzc46JCzyliFmX7ZF4FbQywLQ7RrRNHFlDOoovYVGp20C40w6flnNS2DsQs4Vn4QHNptg93/KrvKyDrjiYMlmjGZqVcFtfaJR3mMgbE9x/VTq0jXt4pCjZfdT/nOLrBoOIX1ofT9JWek8rYn0SSA0ecJhK24eWjaheePKumq9yGJJ1DrnsPjpw0qKy4MxbBdx7KalEEDjx2k81r35fgSPpha7MBplcPP5VDJrZ10Pcsk13TyUcdIofx1WYxhxhVJNhRf8xmVK/k6HsbSiRlQAeABhG0F1pmqIcn1pppj78GHs0dYz8MCou7X+f2XeRMQAJ5za2ufBSKnufLZ4riFvfSSKbtI/h2RUpIw4EQuYTWKqdDgCzr1WieQMG88b5N1zTnbKO7tyEGIuSivV1m25Krx1SAbhiyiA2Z5qp4KFfOnMRVDmERlqJqMcUyRrT4HvH/Lmgyo9OLO6QJAdLpS4+Bsg6nbeuLIUFvlxzHOG5G3gWCAEWL22LlZZ6F4V9HGSTsBFAUEBop8C4tsTIR1/XCRRN7IwfOPUOJjWgs3Bic5HSwJnpaMGNs4VI3yiQblun9HEn/cHpixxDTCZSkjrpTnQbh5mXBbXxZdU9h5wFKtSF2mnOkOinZEfKYXKqfDmR0Rq8I/Xe+soylbSsyzrmgYpTMG29yRNWuH6VvqJcm1alfU8xv8tmO+nOiAv8RZyW8WyLpIXOnqlmKRvSvdArfpmJYqfyuFOs3mrMyxFgj+92Q1lmY7skYmrpJGM4vCodbQ6FeXMRaxQzm+12eVH+o4QfNURoArvF/7Qm9OvzvJJQPqE8/2ExXQqzXBzAhAmrTkF0pwjnj8LnPzKk5rsbPv3a/+z6wxdaSbgIdebOPjmFsDu2lixAplMqU35VZpc/JOg8hmERe7bDwP1pezte1zMsFKLizlvrcGcOB2lJBUsxMvY0QN51fVSjrMe/tpajUKLI5KMQZxQfpVk8GGPIp9reyOM4aNDJMvuBLRNU2n53+e18Jjd5P/7uEKRPHIH8+lnp0CdkUDekrk2Hc2Nnwj4bIRVEErIgl4YBIPswq1/xIYquCgAfYczHDiHwa4arbJx70FTuLF7ykoZbGDkEB4bQLxsmoiiwaqiwbcXH0PVEf1/qv16sgC1y7PvP1TJuBFrJYcAB2Nw40Heauvf7SGdOa/jbrqHsqyvXfM4V5/nA5Q6Fbc9XdfH10dm9aCQv4hdSJsnhMJOkZ790dzNj0aSHry9NY/4Q5MLuwJLkg+ov5lf7tMhocz4kkFndYx9jdl3tZs5Q59aJ8GfEWXAgyFbivpxrCbP0aEEdEBTcZuWi2+6lYdEPCoEFlMBrDOVFgCAgLJqcFMzpGue1FQWwFEopoxC+fg5WjxiRtUU1odD1Pz0QVXBKfgh1sXipiow2kla41Dqj083oBeLQi9CH+3vLfBAGiADifMXWJr2/2hzkc285z3sV0Zzc4TZ5zPXX53AJqk3xEGVBBYgXowz1WCfAMU7/Ode3vAsaPPhvTHLShee+8TN9p76RhUTk4eRLyfZ0rjWcg1x2yvH1vJbLVtd4c13MQ3x4c+9YL6GKqfNUcZR+GAnDesvX1AxKre6GTHQNtmX77aRZzQca23se/OZmyvP0DWSm62Gb5UrF7guGIlcufUXUx0TC5q/sWbNnRnTZNfFv+u0F4JdqpNhzSduOwRyfo+bfbKynCcfq4IUpcvANLUILO0ShLuuhjzgUPM/vBjQp6y/t3fIuTySLKBdPBGzu9OCtZhoKKCGJntvuYNtabpPxpKzqXa8wJl90I+5LiDeUplEGyIdLSU6o0c1AomjMQPUo1LEsHVCPZ3NMao23NJc+X9ud7JyoJIfA6RW5LaK+RfnEaevBb/BdRORUVCNkGIW7BzWlYJ6j/oDntAWXbu2AQuQ0MiBkL4IWpMmthl3BJ33Q8Ae21urRuPSM5WS3gaPscteGerXHWfrzq321ZQLr1u3b4pYYPVUJyEoT4tgcAKI1aK8Cp2BmZjhGI4uaKgfz6WyB2RngPCNoTOpQ85HdcDDN7W5GzzZoygXC261M69O0WiF0zcrgfpryzaVwbMeK0ZpoJfpGofcXOQHXEdIFbIZ/tI3BNIV8L8kK8Z5ZAlnft7Po6xm1GBxwtk67Yahm8T+PW2ol683BHyziW+bq3UCQvsHt/e4NMSMPRPxiCP5MxOj6tBooV6TEEfhc1tM6Nry8rNEqq85BYTodYwbjJAk+jrSPehnaJ4v6TS1Lvz5VMG1x16UITtHtdq/o0pVUC5zS9abQs675w8MuiIuOaGrXJvYmF8yxg==
Variant 2
DifficultyLevel
707
Question
Bliss used 10 litres of paint to paint a mural.
The mural was a square with sides 5 metres long.
How many litres of paint would she need to paint a rectangular mural which is 4 metres high and 15 metres wide?
Worked Solution
∴ Paint needed for larger mural
|
= 2560 × 10 |
= 24 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bliss used 10 litres of paint to paint a mural.
The mural was a square with sides 5 metres long.
How many litres of paint would she need to paint a rectangular mural which is 4 metres high and 15 metres wide? |
workedSolution | sm_nogap Area of smaller mural
>>||
|-|
|= 5 × 5|
|= 25 m$^2$|
sm_nogap Area of larger mural
>>||
|-|
|= 4 × 15|
|= 60 m$^2$|
sm_nogap $\therefore$ Paint needed for larger mural
>>||
|-|
|= $\dfrac{60}{25}$ × 10|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX19btgsEFuDGwQLf0kfjmEcr/mqQHTVVAo3r9748qXuFEHs/vhRe/T9Nki0kKIYooziqgiEoQjiMOKU+kaZollay6V+VmOs2sAF3PrbEVC/0S54tal4sy8xeY+6ApfXavNFnr2E1xjG8tE8QNdFBekp986Q2yrWEFsdteSZITJmqobyaN1uzMjEe0h1n2q5gic6ObL7p0SrDnkqqISuXsoRIL37U1u/YT9zhfEmiP80pseJp1hJXoKPx+aIjJE3jbs5JJ2eu9e+qyLxw6CERVE7w5jxCmbtg5khKAxNgUZJKKkGbWrVTALhTJOG0TNp/4YU3dRrYD0g694Mb2wKa91p3SdFJa2wTe8txnbvhXPvQ8vkrL6POeg5FrBvfqvVevpZiHJN7P61r+fkSGsYKSoo+gbzwVxQAPl2xvr9NRA1g2m5xkKQqm3Iw/p2FNbugdZQu8JGUK46DAKHybsU03hx0t5miE2Enjl1Cj5Ihn7LE3nBHcWxnvi2LeBxKLstprG8GGjxOc0JQ5mnoMRN576rtpyeYk+8eppiiXTm4L4+yBVS0YIWWqt1zPIYMxHv3pmvtnG+16frMTLLUpNaskLcFpMO/wfeut4X2iHa/WUTwmbgR4D9tubl6fqXj+2NxKP1US0hJYOD8lMh2fPHhwAT3zbiKG0/NONlFTOREupyoxmZ96HVGYN6bWg9g10fOsC0Z3fkXxlObjN6HC40FXsGQ3JjhTm1+mC6t4BIJ6HrrvqLzjWBCYiRqZgCIyCgyRaNc48Cp7inn+JCbDubdPcF9NzpCNqnukWtAu32IAs0Ujoekuo1+pMtyoI0j2Y/iigYhRTFg8iZAL3R8TsMlsbKq3nNaVfEf79mNcj/XqKgw2hANmQwcjFCkeNDgjr3/wvIdGhGlKv/Ut90cRu5kr1vYCWTE5EgIRDuGeSTsfcx/MAlkhikqRPHQWIPJ+ZjJnZ5Z2EKIgCWUwbJcJA1IBtyU5OLLc2MAOPYAn2MFA8y2o9n2RM1MKEL6l375Qyb7GKu+9GRhTUk596TO+pbhEA25ugJpgFRkHEyI/IJD6OyIQDNMFUEMs+KTlO8Gd7/t63BD/+bFRULEzNQ2C8bjezbTlRExANsfKU+8n8ywE/qGOmgBYIKgyjlvwBvJp1Hu24rTQg/eCqKV1kAh5u60OaKYYn9Bh09RWrIcNJNk+CYwYxgweBjK1dyLZs1uaqraySLqgRU0BBGkxIdOXlfudl7TVaNhz0FAmyk2Rk+tzWw0hFbMK8FWQl79ND2z6N3FHUDxXeKztFr9prLlVO2iHBujGO/L9AlhLWyY3tcb0yCSpGCAM5tplfz4POtAH7r5WQUtYtcUSrxqTsMuOOkRVrdKesHCs+NrZ43AKpGIgh0y4rYZDFyYyWX6AgC8DOtNxEyDMnAe+dmoTcx2zxWuDqLj3NqU3KqnLs0U7jeRwcHSLjkIOWRcwxL6iYVBboi1lpDUJ4Dp+JAT6Bd9yrDeqBAz/Bnm7yYZGsrNP5KvWw3d5z6EqTaMRRVTr/nydyDDGKXLOO/klGsUot1FWDB+G9fqjkxcQODWXg1HfasUtgmjeIuCfAu550ISIOvrvo5qRkpNdaRbAEngE/WElzKBOCapmRzc501oHOHNygvg6pxngwCowD9r2XLicjOsFtAabTEfMo3Opr6eaIRFMg3zFjxFVmEpl6+pwNFlelrXdCjIf+8rMyL+6PIJSY1m3IPTPMzd4gk1aL7yhLG7O+q9UPrEs+gldQl1QFuWcINe1AqtsjkF3/cKMfqSZA9FSW3RD1EGwSkMNkT3lCvpfHxg0066cyMYj1flmbh9M7pMN3h0BZg9KbyRkzZk1M1jyZAY4bcBS2geurfPfswbfdhR88WI8TgH6NuK3IfSnf2i6H3S07iEvvsoq1oB1dEjR1sTfMQ8+VPtI6MHX5NLezI3E8Nkhcuf6OJPSmJI66IByYLWO0gtTd9XYdVIRQZsOL6WCs2rEwoI0HbjaAVdJ9GJxHWVXdcb3taLdh4cDohZcCAHq1tb67oRwUJMdAdyWUWJvx+iZEcDdv9XAoqvlB+fEPHYp5pmUy8ukwyMlDNd4XU5LIvW/LzBntt6RlBz7lwGzbLh/xZL1/6Qh5BE6Cq+MnqWL/YKMxnv7yrX1BSb1WUzaNWvmi4h18oSmfr2/wMfczjJxdA14ynKFnj7/RgPeRnE+NogEOr1gFEmgl2V58h0IN4oTcCIg61ZJ4NlKapOWO/aVzP9Fr0SH7Pqk+pEb5EWRbf5CyNHATT/mWN6QNJe46Y8M/nZUsOtmm9yWKjx5bF2A8cjcE2mHKRTBQV/+KitKaKuXAvOdDAUyuAUHBy0IJwvlj/Tu03kSt/sEfi7wEq3e+NrRJ1Ejij+8pKyLe1i8I2EQlsD8W5wBpetaoxUbGfoChv1MqvclW2q3IeQOw4xOzfwYQYQWSTvJUgUwGYXEO4yDktEmUeTNCcQpa9ZTBisWAPiRK7uj+tJ0kn1fqOpJg33k5fCitanQ9Qa5chBdMalZeFJDwSPmgejbnQE1Zheh8+gyhMuELzRj+5uO9GsiCfG5coRlKXxB0YYa1EU/LZFZknTkDkeHGRc66neOOWpYQ7Wht5FW/lABGXpxxipaLaNzB/UcwTMecPoB2qBtYZeZ923118c9AGZzN5qP/25GCpQwOlLjrltSF3/UIoOwmFwBcXFmVExncF9oNKhd9yzThibAHrTj4Zn06/b0sGYlyJrTh62LfB439+h8hnCMK+D5u9XqmqOUEXTTBkD32X4QAtztDN6WYix5s+vaWebb22p2xSf7ZTc5XuWLJzRKrmNp8TkFuVftLYh995MiI2YYJ5xAy1a9id8znDE4x6CZHzmH7te1d8c+BrvChb4cvj50PJAinfPSMJ/w6fciiSBLSwWSGf5F1vDKmMt7Q3MTHkDZnB2B+0oDVSVCai3pvUo7cNRjnOh+BT7m17QJ7LK9r1TdKOoQ6TW+BvA9iGGgU0ck5vIcEiT7VCZIqPPV2wCoLaMlU5rZUXZMQIZMTC4ACRI3NaicMqKGRV1yesBvhxmDir1Fk2BzprDRFnESPSOGenlqwZd0/KJoj95qQcgbZ/5JWQzm02yxfYvisL3ODgDxIRSErjwTe7FMn7FIVLhr1FZ8khTdECf2+0Uw+hfQIIC7Z00Qk3EppqqCI47wcMPpgigC1fFqa00xkCff4yvjLb17WIVgKjO+lsUg7ASBaRf7cfjJ+Ktia5+hq6srZPBxTYV/Nxenwgya8ZHZX5j8TfLHWdKVXKXNRplKw6rbALOhl6h6L2MxWixggITf7bpyv6fKDFx5jor5TxOQcqqYk6Bgd0Gu9AntIMgSRcX/vhcuyUCUXyU4aN3DU9VynxKQAM1z42tPSdiSqJdhOeiHapht3tl1vbjgTBX4yiTn3egyywQinOya2AN6aZoJu6KGjmgtrgD3Wr6avhCJ5VUzUE6HNaxG3hnOG+F8FdnXkupceJUJLc7yuFDMCxvQlccTsqz8pzBNrRum5XfCZZYRCcHXumL5OOHxJzeL3J6is+FGAE7C3TZy5kvw22p7yB3HQC66n2rB2bDqNCdjYht+5MJmd2S1apI412iUBcIPmc8kD5mJzdqCVy/VPmsAUhBO7A0cwxiE970WL7z97Tpq6BiFxrc2URsLMrOXWt2oQl7nGCbOoeqcBVRGiZcffkyFh62xbukzS+MN4okUlb0tr3o3knHuz1oNyMBUtcByic0hK99K/KTYA0/i5AbR95it/phm6kZNOuPMQIaKO43uuayV4iJwi9pAtWojdjlfrqp8w7071hmG1lQieOnh7pV0spiz0aXPWYmebuYUD+ZmRCFzsCh374yGMxFUxMxjmBTtli+UnuOvZjQnGA5Cl2nIwpRqSlQbs6mMDX+w0AgbocTs0EwhX2TEYgho0Sbl2iUxZyFnoZNFao7KoBIe9MUE9MN4w2cBVfV5FZ03lnP8jkeYkMMztQPut6PDzeDo7eoRPs63TOcBJlo41P5boKE6Fgo0wbfSdMY0ls5+9Swl8048bXdqFY1BoSyKOervMsn7QlvI0Tj/+sIg4nAXuXh0XgTHHa0L8Elcw6TAs+ZqBp7Q8OKLy6pzcatd6cNesP8Tq/uNMpKaoA7p9UHghy29JgYxhfBap+EAPM/mW3kPVxq3diRbsgPC6M7i25nuJ3pW+tIBeeMn+i0mX8wIUxWLEWw41nTWG95E66mN6aRfviPv2GDMki3OurOqXu4LGkRyXQAZH8v/4xp6CZVgJMSIti2ujozOFb1bK5HP6BhPpi73XVXfcEfLsn/raseNF3W0sDTKzCYhECxH2As4QsQ0p/WaiiyeYgSCTzi50brhAIRupytRosk+HBt8Szn9zMkrLwb2nnlpfGpnjLbwRx8JLmxufghX+0ekgcJ+IhoN0gXW+fvg30HjJ/1XwB/lQiH+2SaGPGLyBsz45+4uYESQCvgMyxj/GxfnvPTHyHc9UsPLujh8Pqq0kotv+H2QWCtMwfbKRXMK6uAQD8W9sZY0tPPkzkmB6/6rOVMNT/3SO88l8PxEHGVr05cqAxnqKVSdN8KkRqIVedPemxOXKp0GtGatrCvw3pCPbDBKFf028gMElFNRu1xaxhgu3uHWKq3AFriBQUx8mStoOfM7OqKeF012wxV0gvx9apW30C3/+lSnXWCv9OBa4hUmf9jrsBFRYTHdLNyUP4fGHmovcpiyXKTpmq7C3+A+/I5FzH1YBZI7KSeeUHmc+TrVAZh9WEI/JaYKcKgsineMIJhmmOfLrYD/QhmwRtG7Po+y9eVYXKgFtgZCmihKPI1avdGQaHfxwyaz4QvG2UIPkL8ymrLgPSFfWi8M355g40+tkNXFGBkuAhJTL3HWzw+qq5kJOYF44EGm6g+6xliuCW5BlNvh+MengR4M2hk1aEjZ9E9zKvmYl+yNp5biQyNVfoCfc0WVWGPUGU3cKOuryuvD55EHnOeMTXsMnnYzg5/gRe1VogCHck39PyAfGW3fJhlRAet5cSQH9wYY2c5FHrIVA31o4WWF6B3vPELw883H6tyey11G//BMyf98QObeg9vMxa8ePcHewmRIx6ft5SEN7TtRtGjNTOEvk9KjT2iRxH/UnKS16xKFVXvCX5ql/KhOf25u7xStP/Dq08POac2xwLYrecSDdvzP+ntNyLJarYwIrDkMDb0K6wlSbvfLnejInIoZohdlsTkJjT6aPxM/8rU3+qliI11O5UlYo/21vPuU76jf/UJ+JZrxKPHTcDAu+4DANOc93ozYm7NKxiEZjSv3EQDPujDBzNIhNnYLimeZ1TTP4bXxQaoX3mvk3b+s447yfGM2YqdF4EZ9n9+1mKywxnPGozqVLrAFVdSZxAZhX2B7bjZIN+L0xDIDI+Ipk70wxxtCOCbCcYZJfqzfxQKhi0ijHN6wvb0lTkuqiTWW6emetrdnhFf4vs7ShIHl+Rvebe8uLl/aUoT96XVHnwbeEiG/NnF4vF4PctLOGaRqPy18QD6OiJBjkswezfUEm+toYnRrO+jDfZ2y/NeJmZ6cXZCIKB3fmF/qKgXNCxcK8r2moIa8AkDgvlXYPxkNDoF07N+0VijV1ZIrC/h1BAzxtWDyqbIiyMSjCN3Cpv9Rl2FHd2ZE6qDkMyEjfvc7Gsb932asf+KTIoHoaK2fpGPwE9wz3gw8d5YQVcwkKUKX0ZbbktnbfvkkzLhIugQ0VGQKPbMb5+6PXZA8qSqQYFS7PJElItrf6u1QCLDO0ZWU/FQuQ/GBcpr5a71BUini8Ssx4NxZNhRddSnoXsE6FRtzZjsybkcZRC05/ZMiBuLA6uuZ0GmJEHbj9tz9q8jWlQEd23xtfOLvFgmJ0Mz9zg/TRdhy2kZUAfYPpf/Qr/Ep35XceiSskFScUwn8ipKcQnIvhDfscNxNaAbJEPc/rznRRbb5qy0RVp4dXk4Y75jgNZaFfNIG7Ha2Rs7K6Vr1nqzYSDIRoczEvldvI571oF3ituj5A2ep8/EmYd1eroAh9Po4uoA0zZS7hdRW1EdPCEABArlXOcdXgSfdwsjDA/49Ll72bxltZ629+thhEo7jqS3ZtFH8MosBhYlew6+py6EJL1bsLAENZj4xjxd+/wmyMtilTbZJmFkSXwAdac+N8uW0YNOcGQpmeiAyHYdMXNQqFfgsKE9fmqMhlAk70Gj/VX8w8Wd9MPZha0GBd0vvqjRXfgzH/Fdk/8bpKMePew1Rdumk5QAwiV4iLOPWObRteggsUkn3dAKHAdvcXncsrfc+9hcnURSesFbeX9NDduTmRol8rkL6Gnzo5rAl3X5XAEoDjBx7l9DkqocVZDptdGC3cXVZCCTH1m5X4jnD7uppuQ3jyM9A58YS8QC4TIyDoV1Os5KaZVrNbyfcNM89KU6DCozajvMgKzFcQQSfH7Ft1Pcmd2y+owZu8jZMhTWmmlq5/2CqzzWD/sVdoLxmMpPMeFtSopW7IawaOwcFmUM5u/7oBcz7vihKPF5TsC1GFeJyDE9wQvkh9JnpXs/fI+C8zpmYeD33+QBy/Hui4mAgj4jIZpTn7gEqtCj+Vbty4hfoGG4Tod0oJni2HC/6oPNmfwtQ/GLGWHCPpznatr4Afg+lEwihJ2lJLZWz5ecdzVebjCNZRGM0XjnW3ZuY0XlYDJQrbq9ItXMG/ujO5N8n+WtpsABuFh38yFzTXJrnmY5Dykz9kdztmoB/jqz0+Q3FHbp0sqFD3cj5Pt5LFfQGt3B4jv6Rn37abkvekom/e7cDR0S+aWw1kE4UiEgPhS0MFdybyI8yxwuxR/bFNWobaKOpGZFgAIbF9mZUFnhNEQvkwGQFf9h5Z8O2qyrV7YhTyHSunzyBdMJY7tqAZVEQi4u+BXM/j/l+eN1pHvyZhiu5mN7UiaBgg7Kerr4udIm0NzlOAxdW6wsOzS1oLsr4+Ndk8vwrFbexThNySUytxx1DWzJagpNT3uhkMLURiWDdAg1JVXcIMYUQ/iGw9xR2Nq8DgWRXxFPfDREgbsWAJSIZIUh/a30rNz3yApsyhbGBLG+s8jOL/PPsbv84EtL9oCHB2CAf2lQbkKHywiJauuGlPtLCYroocfZo8kJZFS/1qPVrHT1/WHh34nGMyHge18n+YBqKPaky/4c8BqKbdDTS7zufnBqbMB4NyqhtkuCUn4RsXZMJSmqVCiZQPFANWkS8QO4Ns9dsugXCdk9jdmOXaHL2OAuso/z5dGBVfEOyAQ3aD+49f9V6jbjS0mWCq2u0p3ohz6Y2V2HL8wvDKk/ordu2rLqraNqsHOO8BMCWOoWur57OEmeXwjxEwV7bFkCryAW7OZzbqpXfpZ+q6vEluqFiLQ20LsZbQdAKs/hogotvVhS0f6rKvfjtVDFfqBCObEX/9Qx4IVcXns76CWNSlap/0wxycHY0aYuEK3r8I9qXzwsvOqbvoi3wAuC803gS16a18rIA4ThFVl7G7I8EbqkzD3UNjuFYZO2TsPg0Imgi1TKGSVaCh+Bcc20lGwfnqq4Wl2b6FcEXJdeEjKMmjE7VOPsJKIi1I+kKUzOZ2dC37oUJaF4QJKmz7vMNiru2fZaHZWk7alT8UZh6JLLiVWVP2s51MJsziTVf7Yxs2a5+licl4qnO7QC+rAhtIEVkbDGASNueG9hw7+RakNWgCae5oV+XSqa2I5kN2AbsnqVGI7FaODQ/fUtMN9uQXzkmdmZXiFG2R1gUj16a1844pVgIkH5R7H5tfjnVwDDP5E1ChAUvGvUczPJPDoeIzp9TYMFZgv2JpGXTzVJ8i3X
Variant 3
DifficultyLevel
712
Question
Jordan used 15 litres of sealant to reseal his driveway.
The driveway was a square with sides 4.5 metres long.
How many litres of sealant would he need to reseal a rectangular driveway which is 6 metres wide and 9 metres long?
Worked Solution
|
= 4.5 × 4.5 |
= 20.25 m2 |
∴ Sealant needed for larger driveway
|
= 20.2554 × 15 |
= 40 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jordan used 15 litres of sealant to reseal his driveway.
The driveway was a square with sides 4.5 metres long.
How many litres of sealant would he need to reseal a rectangular driveway which is 6 metres wide and 9 metres long? |
workedSolution | sm_nogap Area of smaller driveway
>>||
|-|
|= 4.5 × 4.5|
|= 20.25 m$^2$|
sm_nogap Area of larger driveway
>>||
|-|
|= 6 × 9|
|= 54 m$^2$|
sm_nogap $\therefore$ Sealant needed for larger driveway
>>||
|-|
|= $\dfrac{54}{20.25}$ × 15|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |
U2FsdGVkX1/5qXBoiDKDr9QMrM1PQBG5J0tkhIGjko4rXIkxYtUBnmBDKL+0EOfoUFyJ9JboO+H0PKCXU3GuOxnFsARHXRV6wFOtwLkWli362lDRzQFx6e12M/GlOqG8qmf1swrsyPwdlkmonj1ZQC5GUqmROWcISJ3yewNxuRlXvPrlJcAwdSwlQ850qOT2keMvShk5+1992XmndId00Nqn10Y5P9KtwhZvjM9lVNhxzcwMQevoPZihmimsqcN0wbksFHHNNJqgt/H8QqBOP7ypfQYyRmcuU8aLHSbrv5ckdGGFiC6PO1QIbmMTJf5Nd49+khIX+8xVxwbB5R24XHDKGSPlYk01ubOpg/Ew4UD3yf02FobiXTvEhsRVtkFGVIAIz7gRak9jrCxovNk91ionz8vsueLLgLG0wEGiNkv6OU6inAopAqahKrf2U1RNse+2ZRoAIf45OjkWeA8UJ4z1R9PbimXX23Qng6U4n6A8vc/L6E6r37NBXlcuRNrYwwM43xs2OYJXSzfxITo+kpDeFdwhCXE6P1qjXuI/4VrjyMS4/Qt1SUqzdmPdyUHVfzQ/hS3oQZB5EijqcKpPRAItARWvkM6YT3r9PxX7ov5eDAnhvTOGdFETui+WBoKA/4KsPcBxKkPyY4LO8FxJOQTRWFWhgVLG34DhL9yW9+GpUHtGjekXSGks0DM5vL6PooVwgAKX0xLYL2tz4qSWwXL4ADbfhIENL7isNV6ECdk1JoRSrwLdV3mplliBKv1hXOWgUblfakzybJoFryUdExA3P+TnRR4bGrNOVq22kbo67BdBAxajaUcrYL0MbAO7EcTo7uLM8WSJrApmUosIZsdR9PUjyonLBuW2gE3E+UOFzFqqmzafwNVh+DdsKahCw1GCUOIMIfiIo0GJOG0Ml3/xRrtMW9teeI/AaHFpTVStiY93mu6ALsPMUbDszRQ2Rt0t3DSXSXhGfnPpbU4sy0/a1f8g2zZ714HbG8kyImCe1HerjvA31V8WxPfsKZ2OOIwHfRJlpBQM+UX/vpFCU02JbB9/+Cul21fFhyNkw+wOIfFD6YSpjaZRT59F+DWh3TttwRblKyV4mWkmUueWU8gAjd4pMKE7+z/gz9XkwbdVspOKW8LH//eDNUEDYZHHytJX45pSqUIdax3GHgyyqaZrQjbWarxsqPbI68lbxMijNkFq2zjamrXU2W/vZAGNfrRT6k0Cy3YY96BuhloRLGZhsRPtg6+SqRwGC9ftELmovHZom8Rze1uSavvLgPLxoGGjCRwcA1Sn8jnmjal61UyUUPfisK+CQUQ98gdlNEzULHZcCEfefboKQ4GIQTy8QXcQnRN6r/LEHpXS8e59dpfY+ovSB9a7FcF4Estg9CeZ+Zqlwl9lrO7C4cNPP3GlDK91yOLutkSbUf6z3FYuzA02vgTgTgpW3EM65PLAXGnHI0SmxeSRE2d8znoHgcdhlCR5yrb0QNq6Gh02psiouDQHIwGZ3yYN8nZwlGiamC5GhVuB0GkKYlVcyPtt9y8dTahOKE9D23+7WQXnkRc6ABTHo4Ux4ukPCnOsoTsOGHn3aTRA3iMjwfEKNooUxsHCH1TozxJsUER2PZg+fKKXsUJDFONW1JGm3eDOTZDtZEiJmo85WnAJET+tYcLwl5djAeN+8NdQAn3t5fvKW02TIunAseBnGTMFBPlT/IC5A5R13FPoucKDN07I7QRUev2GkUPS6VH/hOHaiv2mxwT53rhxaVFec5NFPJrFLfOohTd/iGMh91Xj/ktdrqg51u12JlUgH1O9uxWxaZHbu5XxQjD5ffrK1b3X7gy6DdRgkG8LLI8PrW4syZz3MXSnDeTNuuM169Cj/svR05BGGWxq3i7HInPcrc2KezmyQBQbfQEcfbaU6U4szqnvefaO3iibrZooHaXuGYs01yP71sYj4/4NOkkjsIKlSrv+BjrihLFEAir4uuZVh7jm4XdbC76V/Px6UZeMEj5vwwIXkiDENPB5j2cVRrcbFmiS26kC2xHd26ULYwTr+7fk5VH8fqFJ8kz97JjGj7mLBa6XRHp7igXU7wFwvu/bm4M1H4KVln8uPLuDaiPRn5IyZvgCRVXLzyTm4nYDZwETYMaCle4Q+N/iWpa1AAVMkKNq5fKLeWGjwmDUoklBgOw5FW9Ei25tT15UWX/n01T622NatKyNn2DPxXbTJP5xkmNZvOWC+Ou5kCosMeMY4FqX9EU0TMs24jtZHyWwkrtF2Aj5tn7/o4aH0inVlS9m32+e/tqnot/eZgFaanH1foujTPBl+4XB0rdeSbkFBslYEzvKhin8uh4OxUGfYj2BGcrftnTUMxj5a1oMOPdNCjkVHt7uefiQw+PPxzKEUmBGjxrFG+idORWZkB6lRKltWDKTHiOoLpzCm6zhpM1oBJOjv10ezMXXG9DzIjvwug0tnHtdJyu5YsX561T0tC1WxPdSm0DyHdlZ7HSSBbXdL+pjcW3KSpXvnAwwm1Kdn+q9st/pr7FqWeBm3kxQHMGJnpQcQ+W1BnXGDwWqEsQeItPdms6Nol63+5uw2SseaXK1LuqSfYrrXmXxdOAVO1Y7mGp+vdo/GIb6p20Fuc+Vu0j09yttl3js1812FCR84NnH8uRT1PUsBcpEesMkHIdgv2s8B3/AK6h4uBtiZG3J3+VRIjAE0T8Mc/uV86r7hVVMJ9LUexnVda5REeULLOoYQeAenAgTDdefIyInqwqModKV3OIucazsDOvqNGfNM0z9U6W1HI7RY9qNkAthIsA+jHTJlw9PcMrVJjUx0rcmbsqbLgim7Jj8kmpq8Rus8q4sPgGuQE1f4anKaEyQllV2IVGsgmb4fuIe4uzKxUdS7jyDg1T/gL7kJWcsKe6PP3KjBcPBeAdaXI9YYImlGl+ZYlJ1TWt08Xnve1nPks3rIoZykqopoutqo680NfswBXT8RHz+FsJlA1WOKgtqDTT/Oj/f4pFzSPWphgY0g0xAzNr1vht77rqcJT2lrScYtmWTlvR/OY8Kw7oYaQzFZ4HLg2XoQd4Rd8bCgcu3KSrJtmyDw0RqNPPpFr8otwoBeRwx0KXxt+TCsA9Zmo4HqELvJAB/YbrhVD+RJ2d1js/Nr08FHkAbodrv4fMxf2zpOW3lCQZK3KrtkuYZYnKNMbD3xJrjxlt1w8Iy7LGIRx5xcJbkCOEKH3gRSIVXE22XicvIO6udvac/Xv41fYK6GxD3g6gIIdnzFkaIsqqd6n1JG870KCHR4U4US4qzAodbWBvYGNyQT995hNM/m3ICZus4CKPZxCU9EL50hcqpHdVrAQvvQMayaHUZ0WHg78fliNPjx3i8GevIemSyfcOUeS8HerP+t/YdtLtxwaCvCNlKXh7lDZlyTwfitiHeT3NMDIieYzg6fyQA505YwFr4evCDNYMn3FrA0cnSgi5FSM438+FnKwJ7s9wQFODguI/iXKvlmGTfFXaNSMvOT0vsav5MV4tDKQToYE0f96Gi70gnQnjObenonzOfwBdTiYkGFLoVDqNPfn554kLVTD933MyG/ftzEaaIUEh6URE43DBj50JnqqLfm5DMsl99/F52LgPVeztX90wRUxfhTACfBddg75Bv8WUlLDcjc6ZmE0FWHsHLMePfUJeAko+NXMNbdUjS73p/+1yefRjM3CEOSRPvSqeWxh1YNmT+JVFgwfeEqyulOjkVBIF5KEfJOZUA/K5YFizm8PwRqT+88Q7VeJJ7vRgRnSLiSxis5F76lMFE6tj81AZ15KRRn4v6ujthKRzrkb5jg/KHBJMEEd1xz3Ynuwspa4kYzsanpB0VikRhI89TJNAUnfc72yCKhu2YVDyW7BLPHOvF/AaYZYHZSKtoIbeDKnRg6XDi+tfadci5GelCx5zhZwBI4h8AkPZ0P3gXYmx2jWqunOD4As4MnCN1Bf5WuT6kUkaMtodkfTW0P+1tHrx/po3hdsgcNczlh+B4fm60VorRjuGlmcNQaQaNaeouLMvj2pFYqJKdTV96Tp667OK77AngXH1UZ9LqD3bB9oV1YrAceLrFZHmrQeHzBe4DK8CSMabmaw59n6NCk8s/ptE7FBCMFVqnvZFx/WGsD6I/tC6JgDaKEbwU5RyKTjKH2c8RChpuGJjde8NzxQAzfTx076kl9jVurtTlqLG8oP//pkoe1JC5CPDCMplpE5pYoylFIKDx/9vZDJS15GXGgIiyuJlIHhk9SWKCmMZUhe25lA7RTBF3LjhOyrgZyUmEYNN7AboesPX7pzB+Z/KkvSHbuLP8VGTeX1D9bfKv2QOWTSIQ3eCyeDPSE8jMZhyvyXpoIMav3T0/mb3YhD2XCgga44mq1ahHrDikydyM4qO31xBddiqLke4DzbWSQDoHPP+TPfD1EgPTA7MKM4w3MnHAfYatb084UxLaKtDo+qOD1Vxk+3vc6afcM5QbzQDvYucs/3w9Uwdn4WMMnNKy7wW4+K8ypCJLUGQY8cmSkShRGDwXKEiAvkRSXa4sIHxfGotbZh9EZWeMzlLYOOE2phcEP1m73KsG1OQcpW8OFNRT+IewlzdkhwRt/MGcdl8z+E3sn2+hjVwTfLclLRbb/JyrBwSIMHYhReeXiEr9en9L6BGpUbFT4RYfM9g8q4qNcx3VyiHEeYvIsohG17t0ame0TXtoZ/uCqXXiIuFmSQ3KajT83SQ9rbXJua4Zd1bL6kMmc7w3DNx47QLbot45ekzjzaAKnPDx335a8fAwLS5rkHzTAvrs4z5YBO/3vg201e0H5S9n1it9Zp2OfqSrlHTr6aLKWRyfKim3HdQFOi9DWE5P3+lz8IZWND9Z1tLB1VoCB/7nOt5MBq11OQPWKBeZuXyvYFM1MditNl0o+u7JdlQJg7PHGUFan1N6lcL04J8MDNFGIkWMFkUZWowQS93pGtKv/0iId8iPNoKVU3UXWpoJdkUZ7moZTQINCeMDNEMyyDANUboEK5r4e3CCZUZpz/JQbJspLVq7b3tdKup6HTtvHv3QLcZ4XT9qSZtOgYEzhxY/vcm7QxDDnkFdRvj6f80vr0Cn+DlNB4JGKO7+CBj1sFP8oBLdl54pTVzd1yWOhzfzjTskFEIrgtWIU2Xkvvr5y4FkMUavKZ7yffRqWudNoLax6adCQQd+yjN5bikF2u/pb8Ht4nPvDqgWbWeLvSa3GAhA97zlMQDlRfJ2sivtQl39KnCrhfV47RZvv4ac2d9pXXj3dTu0kcHLTEHGuX+PCBMJzGbbyFJv4rRnWUMgFRIaF+fYp1i4MsZu4pE6APjge08+TxBa6mZe2Z5Dxchx4l/8n31CdJczFZfrjwqjNYhJDLTAp7JaDNrOaEBtx9ziXamS5Y9Vqo9rAFq2s9U/cwvfVtkaRpA677ykts8nGy6QNsj3BRoxPchA19MbRWjR8/EZapDcPIeWfpo8kd6ChWSkwUCwJW8l6818ZGOS5q3xeZg1I6cDaMHNnPOCr1wucYO2NaetdyiJsLcDs+5FzDWFeZzieomIYG3gJYbRDC4n5QxsfSiS6ePwyL0OKGgmZyN9Nu5tuxjl35VA7x0lH9S7YwtXsTryHdeeGnsC7W15Hh2CM/AhqDXAWSv67Df3D7MVsWUBrz9UlUwG4vuSA1Ip+kQsoBKeJz47z4kkogEISTV2wgEp7qgDWbU5HycFpOjihcpeXkJsQrG1CIsOOO6KbJVgb5Ut50dz+x+EBHIxA9glnizf6Ql1XrYKTLPgtg9qiSnxeVBs3jm2o01wwSdot+GCSQQZgZ1E1QLQ1GS/G8p/mLQxJ0979kaOEOm5ZSte2bvZrkN9x6FDiHkF1ZqxQ6Xk0Pgd5Y5wGHUOPD5LecPPRi8oFWzTVeOYWvHqwmelniqIjZnCWS8D6n4kRrac3vhGsd0W8tTuNzlHgVWV63icKdED1Oxeh9xfg52N5C1DPwu/jktDbfSMZmbillU1u6L90WwOKOXT+eoLAz8Gi7W43MJQ0c+LWWi5mmhtou3sRggoovCN5em1rqusgoNHx3gyOEoUn2bfknq0FXopLRTgTwQyFRp2d7orcnTobbrdjKFuPJ4xVxvxEu4uq+CeoT2KEIzJQNA0Qcw8Eryws73g5aiQ38c5MHX4ITro6vSLKQNlaIIS0ZwR6SUfLcNN6TF5SNiiRW91P/4UuLqNQb+FbSu7iC5LeirjQIHfw8+WWJiXArPuoTu/uXqndrTASBnwRrhfZx/d3ptYe4+a0kxgP83RnBg6jF1GUV4RZARzb3bl094b+mRNx3ypvCGvHcdwJPPOli9z1ceYMRATVdKfBvDrj/9qKI615+iwo6J/82q+SMcOIEElYjI3PyrtrYm+Myw6IfcwjBv185Gl57llLxxY2oc5T9t3oXKRhk+GOq8hW/OyINf1TXRMsXh2pzWJYtwQ3A57rw4ppFIKxJ4taDSg8waGuuNnHeiAUE4hGRSSXqE92jZ+3FXPcq9L1rINvHM4PW6nY9lNtmhT1QMlTC9k+XpqZcSHPVdvqtkIvYduyBdcR5+Q15hPbGKfsD39uZHGPMXv4qKxMjFGTe2Keh95i84wHS6N1jRzfmW4evs7eIBV/tUAiEvvLt/Zt94VU5tCKB/MGh6xAuLOyXn+87Ua/nSgqExUQ9kjyh5I62c9IWmPqFkIm+rtdKS11NTrshl+9jT9d7zOw+cEP8i0mw7MEJc+JKn2hII50Qit8Owl9JkA9XWvKXQLizmYOwu3xI7We1pD/2cHzJfy8aLADawlN9N2iBgz1uEk+ieQWLyziOqXauppvDKZnCpuVzsXUX3GQkUbwwTMQ9cGdc7EgJ/GH7HpG37PayUiTeN9xBGX1obnsTTCCjjTwtv0xFPBebtdJrvKOMgu7Dkgv3ctTm8I2c33qFsWrPqjoiCIvWKPHXPv7umsqx21jqo1U8AXjGExwLWR3xWnXL1ALziq2VLooA2iCFkeHG2/l6exwYYzkj8216zKpMr2u6WTVuuehcKXN7COxvGyrqkDIOWigyG7hjRUA2Ctkq1Ba0OvCLN+KOXzXQfS7RebtkkmfkgF/AEq+3ECcBusztEge34xGuorHJIxgci929zl+j98hfLPI9UKGeRI9wnQt8Osn6/lvqS4IESsaPJ+R2hwp7OetuCYnxx8pP+hQue0ENEiO1YzY1dcNfvRmVITexOvZ5VJcPIhVOGjzMXC/Ze+xK4fZ48QCbEBfFO48acvqxjlzltvuC7h0/HEdN+tyj5uwELYHLP/dbphykH6UmKvLE7u8hrPXmQoItl6uY/jZMeJms8CMllKiPMCt5sUah34cCeufLWlKQLIqiZE5Qohoa34hMOpUl+U1muJwl/BKVOtqJmcgJgvKUSk0p80KNaaNGfcojaq42Nfv8ymGFKvEZCgnp3yc+ZiAvWGAvQXAQaPU+YPCZS+9kUtDIPecazOAc+qhBZ92z8O3c1uwXMtz4Xf12KutyCESW89IQ25NAPVyQFIkMz4KzuiN5AdOtcXZgrj1EVyRJvoQLQsFbIq9OAOagmqS+ROpB0W4qweiocQNFvXOhMnVTeASHgybNJgtmbeH6QLvqKLPqksZWz5hNw0Iitztw617+Ayd5g0Pa+sGIgIFPc92Va7hKwuiyBSufVjJcYCh7qCW0KFFjnlCH6fFoFyVrDrhRI9XvWVCWQHUpdWXnXOSP7EnqJGSP108A0/ZWN4lAivnwixUg==
Variant 4
DifficultyLevel
712
Question
Wendy used 8 litres of fertiliser to fertilise her garden.
The garden was a square with sides 16 metres long.
How many litres of fertiliser would she need to fertilise a rectangular garden which is 40 metres wide and 12 metres long?
Worked Solution
∴ Fertiliser needed for larger garden
|
= 256480 × 8 |
= 15 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Wendy used 8 litres of fertiliser to fertilise her garden.
The garden was a square with sides 16 metres long.
How many litres of fertiliser would she need to fertilise a rectangular garden which is 40 metres wide and 12 metres long? |
workedSolution | sm_nogap Area of smaller garden
>>||
|-|
|= 16 × 16|
|= 256 m$^2$|
sm_nogap Area of larger garden
>>||
|-|
|= 40 × 12|
|= 480 m$^2$|
sm_nogap $\therefore$ Fertiliser needed for larger garden
>>||
|-|
|= $\dfrac{480}{256}$ × 8|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX1+8nDBVHekFQBXDpyQp3hiHJeViHuwD/C7JeqNpB5FI2VLFUEavRbTrdMxavrRJ4uJ95WfIxxDYKAQ1WZeOG8dwu2pG86ocIQQRDG59W/VgfqdAn70Vb/NDpAlVoV+qI7svbwvDQPjjhVZLcyNNPMkl3U0kydvQkW0wPuoWgW92qill4MXCVaZ8DLrV3AYrkJk2zORBrLseh05Ie/qCERt2Y2YtDZHw8SVZ4TyTtb2EWpZj86pbI/ohuzW/hwugZeKCpmLpoBqf6zEk+Vh/o/fMI2QmD9Acy3ZYmHAjU+nZOOsGnWLHxnXj9Y1ioZtegFjf/GWBlAxRgKp5aPfEiCacZKrLp5PSD0C7XOH/EdCHERD9jPyAn70+tGI/91+rK15G/izBb+s5u9YSbuiVj+piWMzJjh3gP8wvI9PouWPEwJ11Lvy+B5llG/suEQFZr/s+hhQM6ggNDs+WY7pYOhxuV8nm3jyBqrQZShu7ryH2cyWdsSp7roP9nJKoP5ow/2DxBviPkDj5xkJLvK8kDZUi4wJ7WiYa0a6lMghJMzgQDcWT8GRh7FqJDu863Ow5WWnEWpfKovXUcPPjJ09+Egwxux/l4dYAOV+DtQ1V4PVFoQu7DdtQbAwV9D0PMPa1ddr2MM4dhBGNpceFyxjVW0r0wfuZIczTuNGG+L4I/c6giVznNXEOYhhxI9Y0ZVUPGsFWar+jN0IJUFu/cfx92r9J9xv9O3JumcyzV2Jeor2sOq/lfAbqFNZSJMAfJl6BMhUq40ELvoLoSEGptwAvxONG/3qX6QFlKRjstPN7Up0H1+0f5vxLSghaAdbrucGsHlgIbOi95iz/Fep1aLro/PgwPTqsEGhs9XxAtYlAeIVTyUuz3eMGW5s6pP93yHwXR8Xb3HmR2NPfEEkj6Yyfd85nzDxDDTfAQvXBGqBDEYgAqC1uElbRT3vo+jnyEtcZ5pIULRCpCvKrxNi6/oczpNaTa+XUVpF/MoLIDD/vxgWTi7MjCInMggxKqBP5K6981JqyvuYKSYMVHwWrhyggEZg8/84K+OepO/p6sPt5qtp6HOhZyPHaWPxhga6RW/l8zkYVhLNprfPPKMyASO0umF7zc8NITOuN0Ra4t3rItkk3PCy1IYgxX6TZXFs488aXwSehAPCYYzSd6FVabAvkIN4+WXGI65uwlObq61rtfjtfy4BnaNmmFTyElacK0/1GGDPzEyUxvqDYvVX+HMlOhGx5LXytOYSFeFDTulY/DA+Hn0984u9xCFthvtp00sm+e3h168LD4eTBowk+X+x+OZlP53Hof2X1K9kMUYEBZQTbOjA9ChLSWDtUyybp6dPcsshV7lovJhhHEcX2R4DLeKbi8v2IFXhCd8Aunh7Zk6bZlqfsdT1edoqHR6BWbQULnHLn0R8XvoBHHrtNEszcNikNEgCdFEDCb6zf6R3wkyhryd1bIDxIro7b1n/5IfJmYlwlSfK3SmUI2pIBSXsa7ycBTSZmHwTjPvsbEQKYany1KSBVNLVUyngfq6qpjLVt5oHUqvbZmeXNCHL8OQdLB+J4XTEY3NgI/MEAQNYXGBpbiav6geNuZogb+kL8O31y91kRc2PX73O9ICwxcTJfK7SGTjefqD7FNqaFJgjuJ0vEX/Fd8MsbhTCZxalDr85KiR4gRmoj5mI8nVAw7hoEiuYJcvdAOGIgsx+n0Q2bNBvNI+4EDSn5iFHtX1zZSjS2iCdX2UksbfMYJDKhkpsL/vzUxfgbgvB7Jj0d+/1rCB32/wYa/VA4Ucwg1wNfykKWiNhVspZ1VPTMZktbE5T4hvFutM04ncaRj8GOmSrqlQck+9fRYj1SQ3zYOGUg/PXWEV0ik5f6OfzhX06ze5PvBGKyJ/nxTxJb5ZWah3QvRSYwYFYO4DvL4FlyLJpVtpTDgrFQfCQ4Vo3Lc8fafO5Scx59Ra7Y0AU2daDcVvkQNQ0lmjlDE4wYtpYc2TStgHV/S7c/dPuHU/p6wz64ObzuncaKmaNrJMYt1AAf2w4MEdQLUwlcKDLNfVA6DiAuFhLjnOw4Y+/B7GgKHJSRo+yXV0L2nrw4DTXoHtZNC8EBMhT+3AmL25IfiibJw29qF/VmMm0HT6jITPxXJorwGmYu3lF6tzu40RKY0H/4jLvoHVfj42cDo3+ClFeHbzbTZ0ofyCwecuHEanBeVNAEVVQJ2V/bKKnEGOHju4kHpCbJPeokONULDohhzo5XAX0cuqK5U/2Lh9h8wsOr/ddj/F9lp6YR0yFVMMp9PcQgacoN3ACyoqZaA5GrIxm3KmAB/RrQe7GiO8fpNRJadBSQzHHkZYfSTW0XjRLzQWhy2+SPiX2pErh1brfc8S75ACUD1YD759vm9XR8z7eJoSRmqQk5QpRSJ6aFcZuAl5WMAdvt0USQd/b+2peDdcKTrWmiBAT6JqUNoGAYj87r3T3tCAMXxUoOVXijvUjU1fZtsTnzvLphj5/il8wH477jKmr+QziKo2/M0IiYQp02SDsaKpGzNses50M1zM4FDmd/e+LhkpN/NVE+mCM4aA1EVwlhP4/+VJD0yPNOpvPBV5b5sJ+rRxy9+R6K5xIvnYn12ouJChZMWsnGZmB6lfh7cwCUvCK77E2UBatc+yADZF9QPqe9VXg5/8vaFuNhaUxZlL9CCfCIh8qsa8Dq9NtQnCpo3aS2x9BMplNuH0Q3lqaAyZHJMGuJPK6YlAq+B/o7lHjqqE3g9xQAic0Qae+8CCzQFoEadTVJXD+qTgvzkSF6xBt4zXvWySdMdCaO4QmnUnpYa/HVIhHwqG2p59qWOc2xLRv2Bz+FbJMP1oj36V63/UOFOd4wQBIrUVDxooz6I0kzANwnBGFWD1RzKfZFyX9FViVaME4nBfZm9QIYElDQ90thH1CUwXTRe+ordSNEE4xT25opbZorCrtRz9D/9ed4SqJv6Z8VzJjHs/e99yEdVyEYGfg3/O1GT7b79m5Emd+D0m58c9UgrlO32BA1fiAiU9CNDpr6vIb4XkwieUQOjRjKrF7aYcyeBlQ2nvZDx7sWugOlXwABIT6Trf7GXqd7XPhDcWTkKS9Ec5whPM9bcVJ9HXGR8lAYWxhmD/Vax4cLSPFKKw4aF3JyLfH4zQcYkyU7Dx+e8B8nvnYorE3zAvpYx9YcoNQXd/QqaT0UlSAUuujjxW6jZP9gya8weLokrLOuM1q/NYgsKy0IVkLRy+dUjJMlUdVfw/4IlxXOg3nEC5l7uhRiMUNJODkb8HdyxhI9sljcx4DVdxiYXlP1KMc5kmwJiRgalErxxxeOFsdixkhKT36H/R2sUcguheNEqiGsbLrCGiP+NIZhxNx4swQpmKM0EmFU+BC7+TLi2hK93U4DoFBoi3ndKzLQEzuVq24+qZfZkFxvSZxCaMRtVJWs6xXCQGtTyVpcHikC/XvW7KrjmI/L7BFuO3torSYss4/vBKT7ixQEAF0TMtGko/0wst6zesR4MbzVr1/8993trsy/z34k2Z0VdoR/K3GyHBUQQGdveYp7Qw3Q7sKDbhaeEDuam2XaqhGtgkZDeVS34p8Q38RC8zXBJhf4EBsELdlRa/4T088037qeQAHZp1I/HDqVggF1FOsP13hBX7qHkTfptoqaOQNWvG12O3doplH3nwqtu/GQxn+r5J0coYX63nlscpcE31rUzon9ayV9QIOgfkDr5oyVaxtjGfC4PIsTGp5PHMin5JDaqKHQD+QuOZ/u3etaBlwZN++DszD82Y+L8uHRCXfpKytElTUm9MKUg/XbZz2oAlIBRQwDbB7wnaUB/Em3FLOvgTM/nUTRVmSO5Y+Kv9klpx15G6PdbFicCTCbfRLcNriMIEJRDVvsVm1YG51yIwRBLdBYQyllDn2NxQEckTo4S1drKOEpUg20UFKthKc8sZe8hTFPG18HfrSvilOVNJn/ASvty2umF7qYVXPtVvblD8GUGEOWsDaKADtNuLQ0c/AaGxkCNKQb1OAfuHgsR5M8gsG9UFfLwNb6v+bIXVZK1Ou3rdMX+rb1qdqJ+nnnVe6OfwZyLOrn8+NRbAFumkYSeRsLnxn602C26jrMvNJYl3VJpTB/hXPpoaUUk20mvwm4PX11+HSHdHyYgiGo6Z59957YZV5IbtrEAWumRiAQtTIn41s3bAF77iAd0VH1IwgXq/Kh6JKE1qMieJdBFJGYEaoAr4WH4V8ZTHIlrSfYsHUoG989yArFM3uFIB+7OcB3I//bp7SBbv0jZxUmBAg9CGu9zaNN2GgfaguqBVFkodSWbDLzdJPZDd7qd4sW45mGvsaqTf80KJCgaPXnjgcuQwDfzrZH4pE8q9lV/3lWZ47ta7ngh5xDtUwPxduVFWpz/SGsRTgLPqbILnHzTm0I1UJcpQV++1gJPewvNx9kI7M7Tbf+CPRVNlcZG0VUw0mhCpFcXLREIHkhY5wYxsPuNuF1WSodQeDRE6rlTgmBHgvp8mtxGeCnNrR0vj66A7l/+nCtWaP3mNz0HCgM+l81nknejjCEYNoT5LF0Zx8a4KAaIQN4m2vpl7SL4ErTV48etgclCBagsQrumZuNA4TUSf1YjXemewuVK0EFU4bN7zMZ53YR8W9k8gFh1And7Rrdotg/udaWoMYru/NJ5xMYdFw2kQP6UXVMU9xt/mJRkuZLuRK+g65IwmZm606k7kiLmNFnCAEv0PjKKihyU+xpcjVHCgmUyr5tYrgVqon/UvLzEdoJB/af5utPXrfMHmpZELoNms4KTEqSqaOTvMGtmaX1Ut7ydumfSJafLBfC6emChPbovQP1Gmr5vZzoru7xr9CS/hgw1Ww+DeXOkeTTcq1d3uCdd4LS+z/6oW7WAvzy1oKiAhURonpud/E1PqYwBOhYlLqHZw2ynGaOq6KAF2MLjssXtUjWxUCkRrJ6OalVVQTQr7HopDiVYPRs/bKITWc10zQnkCKZHiyRUCHMliP5IHN+QlxPiN7gVeSqVP9t94sSpxS4PRG+1MCK37THjmBQ2l7TwcK1N6xvhT6QMFq/HX+gaWdbIU5k8KJAChgS0H6edM7biofJSLKnZhhFEBewnn2PnLBFPKNSxsjz/zg98BYesl4ZAPKgFf8OlXL1zdOq5UZ6++EJ5T0ji7q/bj9eLWT6ncvfYIzo2bDI2huygC9ApLOo1D76G9UDcw3UTVCajx7O90y6TVLGHgafS9uBfhn5YMIxtx2seGKbPaHAMGDZ+9T/5arHq9sLTPjorz9SgPEs94q2n2cYpmuRQPLysDWuH3oJrlTne3c3nu6sbY5OC0RwOjPzV/MriPX0ebKeMTFFsXa7DAZjLt+17ER5pDaASqYD1CryKUkNVu2CEheDEVwEf1GPSP7cdl3VxVVt6O6ZOJDrL8ibstj+/dpJbasTBXfWADTxkl5RIg8A2pyrmH7IyU9CnnEyh9QMU3gXahFaBFEmwcQHaUndlt3QSBTILBdII2dNs3YOlX8Q/c4VkOv/x+fEQj99DmCex5buKqFDGUsSJtGgLiSM2UFOajOBgLc1TBLaJyQic17WJvxOl5KL8347ZBDtTBnBXTLLzJJIZSvFB6SfmGVM3jGPsEQ1ZfUCy3kBF5TWKJlYrhSJQtnM0dGfiJ8zlKcaYqAepS6gY8ufTlj01qaePzkMMlVOXyZGjTI3t7n53QjDCRFsCMnhZHVZeHAJXofwaxCPYYAXuf2z/4RJ7DohZdp91Eq6g1O98usLQCjFuQzA5XkcZemHwfPmDibCXeAw91yzEKmPlNeOBUSEwx1T+XQvpfGzMjeip9tkZmnQULuvErm9WZ9i3FtEEYhqpYHCaDNII7aWL7bpW6oPRY3DcquKc4puV2lEtwCvvsAffklmpif9s4tvkzso3Qn2vOWqcua9YNcRWnnl6XGSpLI79fs8sivB8oxsvcW4pWS9+Nb64vzTCtDN1XUsuHabcs8k1YhAxhVluI8igQr7XDOEuI7LqVvYXgDZty4fpRL63ftKaXqjzfr3m9YIDWQQ8JsQDtJSJNRGqorbX3O68oa4+NRwJYIlmwjjzZy8SM2crI8zr0LutRCQp+uyzsz2BGCZ4J2ygj+qk3YPXYE4PAMTtUVPrLsPq7BX7mvr6JybGUIe00CuZItxc/LQdiyrAVARyIMz4vMlqPZDrOwoASdmroHGAmvH9GN5TzWRwsLTV2iXlLeK75OyFZdC5ctW+9PB5EGuMzNl8mvtbh1PDTo7bl3UgzJPiwRGJDz96qw57OQeqnmJJE1wpAqHkvxC8oX3NUUSQbJLGUuuwF9dUTNAcfVymaX523vMyiRAnL4WYKsY+Q8LlbChcmngtSAIBUX8tv7ihTnpmK933yQKgkqeh0Ar0dOaTAKUeQLy/u+wI/KEM50hk7QOPHZUPPaeW6p5c+ADDjxRBw8yFrz6QrwEKtUhlroa25gtpImQDUzsKzyfUMmvqAX+0tCKnLHfbSdM2hAGuhunX2uw3KizrLEWcVfNX1ow7DiUlFZUYuA/McWD1MYSOKlvoFTj+Y97nATw9/KgQEdnRWKNtekkYuwBAdnd4DUIn5zWzk493IIo7VlQr15gBc+8JNXQEesDyEJKUCw8pfV3Vdmu4ekXBGeLjgFJp7pv58TqVauCJWan0VN3dIb8AxZpBF1X7S+7tiKR2h1FY0oXIt/Fo+/FldV8+Ml/AoWBid7AgThIhykmlJP73NC5clVQX9skmb/FAel++6VpW6gcHhdJgtGBYYmhL5LEWTMSAYcLL3CKiWquaJwqK2l3zsBZEiT4ai4ZwGu3LjwyWolMFggugmk5pyQx0PB1c5se00eUBwoerfzsMTfxDAMGvC41TIC45r1fiRz8Gm8beio9opjMmLXMnYb2zbXO19RVsEHKDKgKZbEU1Iel3c2Nu04Jf4NMad1TSjxaESRFyD1fZcyr6WyILeCtKcBSWK2j2CVKxqX7N1Ay5w/OpGiBpULS9TCRJKXFLOzdICn6Ojj7A3Lx7woEUq5ZxoKE12NFbgOum/7z1kT7kXd9uAC6DylrJBuh6mm+2HXFgkSMjQD8DjbmLFpr5nILLPJe9dsewjY6+hG0dd+A+eqBmXa0U6QRWYz4qJ8VxvuGf56DHov9qpiwBhlQZJJqCy7+Ks9c/IAnizEuDTUZiEszbLRuStZBGLuMchK8+aXJz815NinXvKFRjTvlk0ppqc2kvxPYkMsVgCCeRGJWotuuKV1dhoXZmj1pTVUgRgdzc/uM0JuiwQMvBDRMh+xn7+TK+hJw4u0A2FmvowMmSFv2wbt4yjd17MqtTJDtHh1+Y/7MPPt9RQmwnEOgnAaxcuUoJ86qB/gAFMBlA+BkydoqgQ9n9ursxnqHzm+CXLWujUcLTR0rVTKCoFrNsBNaJB4yLgDsoO0oMGQDPn/3xOe9Sj3ZxroXupt5s+1Xdah1vMtj/qUTCdugt9ThELy4KiH/nhbcCbifBmH3PCWh96yt7h41UwMTNaZgYfLA3pxrIwquyZ75r42Gji6oQv2I+2wfNZ3BBb1eCunw4Lo0h0OXz3fWI/Yd+U6/OSm1uaPEqRI+fgcLQcRd8/mqfxkKBIEhiylT859NeKyS5IP5GN1roi1pM+jZzBLLqfsNLt1SZzkIt+QLYybJgnK1aFLeqzoS/AsQF8nCpP+FpnSUANV5RMPGKcU9d3Xb8E3aWK49atffZX53POAj0gNWK5ouX9TFKJU8W3K9RsYmcOSBWrORoSEns8ECLrGx1eiPNiWpHQwz8qQrB7XhFc3QvqE28Q==
Variant 5
DifficultyLevel
710
Question
Giles used 15 litres of pesticide to treat pests in his orchard.
The orchard was a square with sides 25 metres long.
How many litres of pesticide would he need to treat a rectangular orchard which is 50 metres wide and 30 metres long?
Worked Solution
∴ Pesticide needed for larger orchard
|
= 6251500 × 15 |
= 36 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Giles used 15 litres of pesticide to treat pests in his orchard.
The orchard was a square with sides 25 metres long.
How many litres of pesticide would he need to treat a rectangular orchard which is 50 metres wide and 30 metres long? |
workedSolution | sm_nogap Area of smaller orchard
>>||
|-|
|= 25 × 25|
|= 625 m$^2$|
sm_nogap Area of larger orchard
>>||
|-|
|= 50 × 30|
|= 1500 m$^2$|
sm_nogap $\therefore$ Pesticide needed for larger orchard
>>||
|-|
|= $\dfrac{1500}{625}$ × 15|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36 | |