30148
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
{{make1}} |
{{number1}} |
{{make2}} |
{{number2}} |
{{make3}} |
{{number3}} |
{{make4}} |
{{number4}} |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
{{working1}} million |
|
{{working2}} million |
|
= {{{correctAnswer}}} (closest option) |
U2FsdGVkX1+q358rAvE9esxQx1EmuED7kGmFrfgO4PvRvUR+AepHLLJY7PYKEXU6wHDEqpJik2+eVwENU9jtbuzxbVYKA8WgA900awlUjFRN5pbNYAG7lj2SoBPkyDa9vgQQbWqid5PpbWdM/ysgN5iXzA8Yk15qBds7TUHR8QjGgIWrkcTNvp+A+ayVPWPutHdt7h16DziSdP5IdrKB/GMJTB3HLBTLz2mgeGiDOZz6E9V+ZZsPrX+UETwonNLnvPOYyAxj94PoHnaAgV5wJWRSMtlKpJooKBJh1HXSG4j+u2J1yY/S72QGin4ku9ybTnas/3PnLYee2ZXqmIEUZQKIOzJtdhuawaNSiZkds3YJduMd0l5N6TmsMBibFNrKpBu629/fLrUUefeiKjsKLElyzeXl6+ib8jwuEKE9RiSAwN47+sIwOcooH/394yvNnjFPbMjF/oJI2T4RlcBcgBaeI9q/TtI7/ieJ4nJUHqg683808m7tqpgychMYum9tIdOyw/UMiBV3Oq1Btju7tZAmeGC/uDDj3z64cfliPf8Z/6ePMtEFBjbzaGJfjpHoXEgQs4U5m9t7OLjbmIJciKPeZbjzO+EkJ29/XBfMC2SfFSAEi1OeSmR8uDujaFgYWmmob1HpUAXeeebQqHEkBTJb2hEQ42+m/TTv6TIaa24EBtqxd3MoqMv75Cs6OZYdqcFPkSuPM/xiVwJHq6zEFWYMIw5HAvrXDAuyqEvYm+SOIUPhXk2nggDvV8gORnfk4S3o6W71mMQITc8S8kEloRwkg8IIzJYw+rENebA4vzI12oF0+Scw7CL2/hKh6WBtfHyd40jxYz2GtKUd2INiUbHtiT7wK9MOApE5bFZ7O89HhXkN+a/eJkqf3gj12iw3Y8C7Bs7PyThQJrkD+Y1OOUzpGz4rFr7p4Aa+9pf3v/GoZ+j/uJwvVp7prUJfmnT2w+XRs3x7txlJvVwEQOQLR+SDWusAtdpe0gZvJSLHYsxKwWN6d+IcfpXwpUoBE9bOkM09O1hrjRgWw3BXt4NDbhLd7wVJpoSdV0F/0P0d/JAKUe5PK23NVmmzhd7gl/Qfws706LMg1hDVUUecNBn8Ni1IsAqG/+VuLWrGf4eLa4eqgVZIpoSumQUF8EWeO0ZfgihVUR/AzstoXxL2nGAn52SAcFUnWNNNIsg+SjmpVlE8f8g+TyMzWZPpERua7jIXgyRTqmOlL2v2fJhUmUspWN7M7DynXWX4OzWtAxZZTU1KoGb6d9UkN0NWy5hiuZ4zFLnO6A06GiKLHgOf/iSiaXYGL+IjOsNGcEtAwfgYty2UZvO9VzbFCluI1qEyzEHcKdeYvwuE/kJp+3sRqmYLYFzLqRhY0O5DHo0pdxfH364JWZAZZncukDNKaFDs6zBobFpqTgyCPAEi3X0qbji0GAJYuD5hGHEEIYKvkraN1RNEyNozedtN30G5a7loF+O+kxnWyAG0u3JLrDKdY0c8NS67iSUG/SUKHqeMoOCtRpHnLQzBMUFvx7REGFMNzAf+U61MUkDKLKTZ7xZlSvCkMSiGTrSxWB6cYSuJ/8++xwiLmUXL7549zfN3JY64t0b68ET9Q8vas8lZEdnjiYYedPsbsLAA2IE9Xh8+I4mlXrG1xHej/8TrswJ27EDoBPIiOYPFNFxx0Vp/kz/5Wf/eIK05TFq1vU2RLO64mvrRPHITruAWaBedFDMTtF5xjT2K5Mka/vldNeXCSEvCzby5OiHX1XYbe1tqByM4SJTez9iXg4yP6ZEtWhUgadbvVGhPWMWjZoRFxAAAsZadV8B0gwtGCtNGhkPyuIFqGujU/E55Z9HLmJrmfUEEreWEqZlk0kvWUctMDbRuls+DwECbMLOQamVWzQ2DPMbjZj5s/KbYeHSaiwi8s2oZqNCE/rcg9TN6bvirEy4KfiYUxyaDZ3zxv6KS6rlzK7GWJFnsnIw/5WsNLRysyPSaA9FQgK+0Q0oosE8vpuQsG60CTGDyFvsDYORpEVipQq+LQFvduSHwS4Hv4Yo4PCdPwQIJBVo2erH4Z9tRYqqkWGMTGvBBHqJ25wc9On9UR2LKCKkivTdoeFQhou3oSZzWCknRFvT09kq2pXfAgmfODnX9rwwbgxNy4TBt1T1UvFu5bO/9hQy2BF6nKjdGr2qUWAjPRgeJKN7y8rQkElukQnC1REP8Z5h2Qdd2ABuhB+miUaGurZQ2JfFVF9X8zsh/PlckAKDvO6EjKoiQr/SDw4h2bIc/+qzDpbI3POFekJ/OeJsyLL6ix2FSSXqA3nmoTnB2txVKBmE1DKee5sTEaDYePwYQurmGiRnOSmAUkduKPmTPx/aBQgPvf02qfToVj6pzFaxBUUnUfb+kFCriDh39mGkKbmYi3DyYnL48o7PF4FhJNJac3CVMp4ZoYk8JXru94TttZ2j4fx8mwi2B7X42bVIL9aJ/GLKhFhLiQIz0XFrCY9cA7F2phc/4g3Lg4Dn9436OSKvbeduShDP6kruzUQNPP4F+rTOc2Bb3VoRMNih2jXGnVGvCC4I26kESAgAA73iBRTVcrPXidHxaYBiWljUsK86DcQqn8MAdKoXJypn7KRWFRre+aLrmblp/MsZ3sCvDiEHoqsX7bQt2KP3E8YN9NS+tJxrVGVVNSnVc1KKiK0uQ2OLARPb3qSXOOKEsgQNmrxeWhqZuDUP2RB8thxWcv/aimn/bpKpZgvDNlc2btezHc6Iz8T2lsqZDwhZ70VCJWo6OaKA3JLlbWq/xxmZ/eJJIOdl9WqbkNLtpq+c+HgvE/sdklsIaxocA5C+BzQry8Cu16vMbP8NTvglt49fiq2WUQJCPUhhLCm80x/H+ocaxheLIc/QXlP/9cUs1na8HavWk9OzHkN4uJaKHnCDxX4dnBd/fNLb30SCvRvxueyzOn4lj2yjgZxTN6iTFLJqwcoEg69TebNC1gRrMoYTIeiN6hgx+S3CT8rTQPTiWTrbhVQSr+hQ3iMnfsuuwxpXH/HBdMwI4kdrdV89nWVUq+bGrQbTzqNlv7FQ5ZuTryjPKi51Uqx2fKz0CgcKOY3ea9XEdBV08s3TUoD6aYPfeLpZ4cx95XzRAJ+BIc19wPLKJ4+HhhIre3Rv4gxdSKry3jnmOQIf4XWHU+eGAoQrD4bJem2hCgpSZUVJF6SpaRFFd/3JAn3XNePXU2ad/v43qPuh5bvwdhvKpZwWhdvrrh9XYIcijzQnTDabfMYSNCo7CQ5VYD9qmYQsyE9O0mhUYpPQr809252Z6ou0bjOLMcVxuAcSu3Z+qXuJREruQn0lJaZZUCvQVonarP7C0mbfBAO10MZIESYVlfOTMXF47Vj7D/pJ9krBxhB+q9OcqCNgnk7pbePcr3q05oKyKUhHyztr5DYamXNAeulS71zXGGXcIZM0sfDeXYbg82k0564kcvxFD8PQ94r6aVaNbNffV+h5n9und88yg5sFZNhiq4KnCQUQc3xBwdEvYJxMOpPRRb1baGLDLFef4nuDRI3V7jGwuQ2VJWThg6Xm3OTbFDB1dAYCoKzBD/6qZ4trlG1Mvn9cVYdPpCvQbgE6dM/AYphgGfgjcATphfUopZA+COtKyKOtzS4DVZ2X7jd7+uefgoyX3JfwHiGRModbHtinETIbU/bk7TMEBOkq+kzRQ8UohpfxYUJ39eLEQsNLANbXNJVT+j101gEJNK0Vv+jYeuPdgnyO4fgalXdzpy/mOJn9UACHC19SzvEhaJrEyxAgTK7yhuV3CI+Wm7w30eMnLNoOBlTDK+mhqu5NU1ONbAcmA6OMfaO1sqSEg09UQFGcwpNMmy73MZxzdIrvzqOFoyr4ATJuPVE54cldhV9+qfdYAEndgqAb46LiF9gAGqYQPylULu1EXeR4sjcRiCAGM2Jt/wEK9Cs1Anc1WG31D60ux2FCqS5cF032AHT2IvvyfUZFay459N7aYtDBCpOK6OK7d7xWNLK2eILm7wDSaYpjlIm7+v6BofXvCxjOlfEV/vJyGIQpofUyr25R8sAIOaOeTW9u5wJ46MZeopKocvw96tECWUX/fX3T6d6qGXIfrnJ8rUQoG+VXaQq54TBG+7ZRnbWvXA7qu1VOHQnqkpzQzut+Ia3fsK13JBITSPcTANVbDoUlmiXU711xqdYvQDz0YUSFX4icYJ/ngQ9MSPNYVlZghKTnZmZ3Lgv0nKzRm5y/RwD1f4leJ+aV1zu/U1SpVpgx9Tm4fR0DDbIoZ/6iB52/czxFM1nlmIBP9JucHKBbTLf4EA+Mf7s/vgC4nHGGzjqf2cGXXFeyzcF6J4/Coq4pdXpuDpAn0R+4KXQ+kdf9vTi9Zpdizs7dO/N1WFAeMtUrAzja2o+nJatBXhVMlfULiZDlU4g8nguStvLzwlWhgaqHope5vZhLzzKUet6SUTc6LDp05v5huOvIi9zAZ7WChfKNoZkHEd7kZTA64QprgKpY3G/xDBWFYwxElWvU02vvmqlxVCYS7F1qgfWFbR75Rf85NBI1g8o/6chy4HL/PUXcNAncSL+5aiOrDaM9V5OMbRaVGwPlQs7UhPmFrdW2TN0ZA7r2kiMfL/S4dhDCYkm4cp+AttTS41HehXo8pLFA2UvhzBEvqj15mjuMY2byuFPcN9G56rXUeO/IiNDBaTOKgsoTMOCTh21P6ZPavMF962m6fLVTCvKrrEWLQWaje9xZuMRE12aIoEcrWoZyIS1DzL+/d7VsVO9pTFFW/h9LeFHddeKMNmUZhpTm7qTZaB7YLeRViqTOLMT3zkH7uGkbyp75ykd3znE7im+XJ6yfJSiNCWiBx87Ynah+hdoc2xquu0UQixXWe3BF+tkYdT3bGvTsF9dU5mWwXso1c7WzcYuaUf2T9hIhNkQ80io82viq5dRE/kDds02Da+zfKiUeoYPv+s/ehY+N8KpdkQCjKk3LrNFDgAm2pXlapHoKDfzyrhSkE1qPPphcoqpoiPGSHsKExxOEE+HXzIT/H1yUrZhk2R+Y9/nUt/l/loElgUYowfg7HF3nJnHcSWE2m+XNmQrH7krDDZ0MtbbZCixHYFnhuCNZtBH0AY1mw6Bx5nA2avB/VvF5u/yR0K6mvEDkxwUezs4EQxfDwsVk95WU1Yuh1RDoRK50gA4+ZOAzW6F8C6JMczvvgCkbrtLdkxVM4Q8H1wFOJF9MhS+OGmm86XDduecJ13YLOGyQY4pWEmvTwIbCTy4ZdR7kDVKTQCiPOtx2hQq0DVJ7UnRkWozMUyd07eg0B3f/KdBLi8O+WROp4B1dbbr/Xr8smgMzKITTUFe3Yvmfn633Lvh1ey9HLSuIh5npP2oYiuk/8KEYWG9GI/9IbzsKN/mlXt3PSQ1Bu1ElwljSIziFzgXy7yYTkc+kvDlZbgqv5h5EzQvSNoQpKMmcs02KcsLza8i0rbsj+GpWQNbxxdvj3pr6wcQWvqwgkCks+r4IUd6013Oe4+d4SMqMJ7rroTQWY6U9n8X5zrPVIus4buABjuENLCpSlfGzYX8cTqbdI/1oTtTbqFIH9Tb2QyLYA0ttA6ZiAv/Qny0l0UaSKDISy+oJg3ja4OziNN3Xlupq1FZ4wjTY3Wrt71FWM4Z4y2FZRk/dRnORCKZ9nFvudUWxRI3DjnSP2JV+ZLRUNiXt03/DDJBeFFVvAJ7X0kmynE97HMllAtGCTFsTC0vh+AWkdu6KWZk9kXEzrsHm2WSRMfMJyCIeCgG8M5WXWH7Hq0DqSYSGOSVsMv+u0vCZlXRPgmuQnMs/+bJcCXp4U62dBtsnp4XP/m5+KbGLhAKD7akGHtxhFQMWJQpSON8gH6QrD+9gQbCjUNx1lAE0hxzSXTboZavoGE8lJlr6ilRm5SpPmtisqetzF08P8qqPNeDtwMR+u/8JZCvH4gSEL8P5zDJDPsuH84Wj/0izAItdsRU/r0dVWyBtE5ODpClWLAtqI3DL3VKarsywQ//nXGmNvkY9OpZbsmQ4CuhgAAuESKZQbTNyGQRTb0j6StMHXpnCkqdPP0WaKaHl9SKcEq/RQsZz4/P3qGRD2ZRFyXAgiLbHdn/Ah95AonJdmLMqM2ue2RrFgclLoljiAAoQQyvh7ad8qxLacPkBu9ufRmd9FfNS7oIqDif5JcU1Q0I/wSIwtS9feF2gxq1LggaT1W/8ogKzo5mfK5lDczXcqwiZeKSY+RzGeNN+aXApuxwBVYILoea0sUxm9tjRL7FVBn+Uz3fZJ+uBM2ssQitEdZEJXIz/stS+OvG+iNIWvp4KOhwpw1KgXeRYKlm45hoTQuTjUX8bgp1WzSZYKVC6/2Jmzw74ykoZb/m6WQpIplJN3PYnpgPLWxb6FkvPgxCvr7939brsOzmHW86rP/wwJjz5hEKUae0EKs/zbzIWnNPmCki0OUzIddSXuYXL3qQ5LxNP3UHx1r5hAioIls3D1K50/b8eY9xJhHNV6zAuyjEzXpJgI9eIrxdd69z1epmqL2TVQS3o39Ol3MuNxZX3iHkI8RU5K7oO2kkfQUQe+t5p14DHH46A/PcW2TVrhooxc/8kMqG7NXgSeBbiYbYHUW/xF1O8tSjjzxztBaavaaeRRFlGJYHbNYod81sgAcPyRsM5tXJdRCZDW+yFJQ/bhTlJK/fksYnO2zE7YJBmcMsqo4MzqJfTjATNbOtWuklB93n+2mNWB7kmpeFXp/cQ5TBdtr3+TCcUiHRaspABM7q9h/eL7vKhIIcifmOO7qvFXf4Kj19iImSRcTAHtd7tCk/2cwaNxG5xTGyoP4ZXycphZFFiIZ6P8IjGWAFK/RIYZazU9Ntb4uU2NPYsHQScgBIQvIYf0HAg31EfkMnGnONtadMeOyhV9KIIxcLAQaAuTJ0mE6VFKvTWYuB+vCqxB/2avRoJeU+XOhvRPiEbkYq+FDTQBTqj2oHrzuufKOFLemwGf8qjwDXO+ua3n3D0SAtkYP7+OtfRUvSDuYudi9HeGfuZcpyKFapQuNOPi9nSbOpWkZtOW6baWo7I5ExLhNy3qQieMwnYtkPdTMILZEgPAobtOn8wO2CTMcxcNkU4alVQlOnhad9+I08whUB+GkxMM8MwLzUrtif9mClZvEFvzb4v+z+Tlbebj87GKq3sB1aP2+HquT17SiuLNbLFNEzgHspz1QINr5oHCSoxSnd2FTkpJZt+gt0mII4nFQv6vJAxjGnRNeqK+4xGRDmbMLPJd01DRyVb/ujiN+eevnrcIPqz25cQLb2/hoPjAmx4AFsylByfJ75yRVM8WmTGIB6V7DRBd1aKjsPjvL1mH+YduPFSXyw8W/+Yb/lMkSbu1FMb/RP3FqDC5xrxPptvg3KiKtYNR3rIz0sybo7HxxBy8RrJGqIJes/e/GYXX3JHSY2mCSgkxoNp4fznZUB5jKAhtPycZjJPGOfaFxo5sG9uCNl+XI3Y4rqvzoIyzJeb0IVPFtYpGhHYXqeSLN2FF+VmxNJi0Wyn3cChxq0F7h+DnT/F1X5gEKXP+ijdj91TBGMcZvSTHjP2nYX2JP6/AdaarV2HaPpQKsUfE/0YCcQpJt+WekIWfqI4nQPsfJVYYBAj3EezqfFqDAQVlwJRNhHgl2mdiKLCWdU0hjHNfapHFBMohg2UOijSHdak/a7roykQKaEHbnLAqqu9h8FFt75ibXy5eLIH7vIKHwFRiwXK8TMHG109A+CSpl1ZMvSGw/z77wOw4xqv6Hd8CbllKkwA5Sxr+4olMrCuabpm58DFh5A2LdsYeIZ+V/KG3mRgsDHjU0BhTpGMlDnlVIhwY98+gwbk3JA+Swbyt2c2Rs7sGL3bE2BoDdGisAl1OvU5HYGVcSRmqeVanqOWwnr0iH1LzcI9QpoISIhPje7H4YfBS9PXAy38ocJVlHKck0jog579IkGRzV1FBDZlQhgtbiStE3wU78+ulh0eNZblCmwPurt4y36YfXEBxLW+fPtyteES50fTaRj2/K7ndWmOOMBMEW39wzR3mbvBaJfdvZP6nLofqScGe9URWFKh0B5UMpZKlVkk23r7miwSq6QdZv0oBLugBvKFqnQ0wYAUFpObXpSKwep1wxKrZIybLN8tA82Ed0Iq8GnV1JKA4MFJsY/Ll2QQbnLSEWVspoVS9tr7WaXcu5gJq1CjMgc6ns4hBO4+gTc9po8xZv5FPNI9EffYGy+THTeg8fT9PokUQLKZru4jBCdJyWF+YD/LZz2UVVmK1p/WabXRLl8GiNu/QUXJZSA1ybntbiBbeVWNKX/M2j1wMWqxHLivHI3QCmXFwQBYGbgD7RIp/NjvT/JdA+I/W42/XSNDgNkO34ENy/OXmA7KJi15sGdr+L0vjhzyaDH2g/NaMV36trZRtOlAaTY4FaF/RfioCgoM7Hn8UQgHc/AsAAEbaBP/dK9d+Ehkb7ilEbaAEpSAV/KpbHpKfvd7rZ22W2bPmE83H7bdVXmQl2haNtM7MN3Td2AC/w1NqzF7ksCMobkeqO+RLjiZaN9QGpwSjwv6pcWRjJ2p87qhL57cQSWE9ZZRF1lmQ7ibXaSc5/2Sh0egobZO1DqFtazmJ+A1PSLbpQqLb/DSuanpuicALOpnjQZ1lvz+w87tnl68MLFP7o2B5b/cXsPlMdw5v8RCd7saumu4XUJFBvJKbfZwW0M31dtWylX/Snwc3k+fUzLoeWW1wd0WjTdhtFrUDptpHYCAUYWNoRcdrmdKfwWsm3iPwTu3Fulqv30EF5WWaunRZ6fxyOiohaVhMId9rsJmf+1pLhgdWQz+MeEfPbV0gKna9Z3XCcovMhfo9Rw+MIC6yHh9Bn+R4ll0xaLPSI9MQZ692r3kECJRH1UxLH3lTKTUgTKCXud9dUA+YvzNm1mH/zSy62OilqTuWGoQCtLW1Y5x8l9ZpnlU/w5dz5zp4Zp8SBg3cOj+/iipc3v/EVgI15Fs6RneFo8gkkf45fIqZHj0VAUpNwgHLrlY9gqhmKakqmH3s7n3GFNpzYOL2QNWYwiEGlCNaVTMJBDUMHfmgr5a1Tj7IRqlostoVSb5kC8lHzG4hLHH9Jwx78yhACKeNk33nxl6mY3yvHYZ6s8MI2ROEQ9xuicm8VHq7F3biZqShzcy3+2CoMGuGVPq81pKw4n1rgzpnGywcueg8RhGdNt77/iBsVHZjEjECbJ+ow3T8yXSLCPnZesYOYxzZKWv8I/f7GWCDFRD1+f8y1AQ=
Variant 0
DifficultyLevel
578
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
BMW |
1 152 322 |
Ford |
2 901 907 |
Toyota |
5 838 818 |
Nissan |
2 143 805 |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
≈41.2+2.9+5.8+2.1 million |
|
≈412.0 million |
|
= 3 009 213 (closest option) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
make1 | |
number1 | |
make2 | |
number2 | |
make3 | |
number3 | |
make4 | |
number4 | |
total | $\dfrac{12\ 036\ 852}{4}$
|
working1 | $\approx \dfrac{1.2 + 2.9 + 5.8 + 2.1}{4}$ |
working2 | $\approx \dfrac{12.0}{4}$ |
correctAnswer | |
Answers
U2FsdGVkX18EzYSLmzbc1wB4TZARCdVa6dU6Au1v8MDEFe9MGG6X2QZCqy4NqTYaMbuXAMzgPHHbEpHSkhBkGEdtEwQ3wZ6illdC592sQWvK+Ch3U8j2EUCiUoUZao0nOlF4vOLHiVIoP+oB1XZNmvSRLcVg7UfI66Q2HbLq/RcjJDC6PEUpyo2kHp7wdsVZCWN6kICkyh88r0Xq25GI7DsM6BH0mF8ToAD9nuFZesuBDm+LJ48gsuj+cN+/UXPyWUnzfcBJxiQ4a0jXHstoQ+tGdbNj9GqvMYd1jV4aytjmy1OOA37GqF/VNEU/2bqnkfCuIqK74VFOSH+gcfB/xW4s09rmLdrwfaxBFbFjrzJVsgqgxnSY+TgoL5CpB1FgpWWYbtkkWVO/JtK9F3+OtBoSjAmMvO1aeO/XyhmRxxGDEijZW5AiYrRqQ3ovQ/J+GnJXG+y2mpT05Vc2xmmiZupUjQd/rU2zk3Q6byuZPLGo4QRLuzbQ2zgLWRoq9riAkXXXLi8WdbYyrodrogIlwMFOgFU28mVRCBqCwUP0D0ILfflnI1Exv3Fe4MM25diupTyvMifpZeS5rjNwVJqz894KwwU2pgYb01C1myar8P2+D9bxQtxICGEnyB1hjVbYh6hUOcDEPDE1M+9QL9WYdvRHINJIEShuYKaZIzFLuwl5F016U5gpvWAQVJzEERLlZlzRy7khqfHKhA13FKK2sOQAIWzTrbCTLz4ftMuA+S+lLeVSmAdCCWCyyj1ncWMt2NSdERqeZemApmkp11XabO0oJE+XBvUojWSexpl8Qvm1YG26RZvyiGDlyjbuAWHojHxnRP1X1qmnIghdrBqrLpW3RNec9v4SMMNAOwtehEQUvAPaokArSJNrpiuve360D3axVbuIXZ9tJ1A8c/H1dnR+qAWodkJiBTqJQhRMSJfOOwxIlYxjUUKhuEalvUFa7uGOCrj35boRXtTzvM0FKJ03hvhj/BN1vTfTYqMN9Kgzj69GKyQAcEDGa/OLAhcKcOgKY6pDCcVtQjUAe/x5o2mBd1hw5sBrR1li9qwGH58WUOe1Jq+8uO5HVV3Z8STbu4o/BRbklaUL5dMXRH+WNer/H90VlIeoPS9YhzAwOCyf9NeedHyrpL6rI5yHg/bbAIqfy/zT9EMO5fCmneCOIpftRAokj7B024Z9TFXCttjryRcd7KBgJT9Al9t+dOY1yRQFIFL4MRGrBGTwGd9+l2IP3yHZN3xq7FR24Jm9GW6iM48ddR5UsWFpi8vVW+zFTpmftSXm4WN89FP5yfCvEbvitAHFKlGFDFEjY9HqIrzMr7T7+rffJEEgNjFwg9Tt4BQmPoqEQJmVDj/X8IsNedVLRf4sydOw9mVsXG771bunlwpQ1MG91eTmtUoGLkapCGq+WVZoO6P/ORZEG5+n53qkxwx7weXatshY8D2T3IN8E2GbmK20M7RtZY3p470p3u3PHx4+xx7Jx8HtxZANfMJ2os+oyAM+2e+dj/6lJeGCrsWylPms2LRMdo3ZJbhWshKxvMF2ch5cRHN/uOMKPbVstFHAyWobnObqaHSjLigDteB7iNzJxCEXfliGR09sK4Y/Vq6rBHHLIMz6wgaKXHXKKezr3v/o6KQgXSJPfn1uo85KcRcFNBN7yLoskQP1l6DyXvsHqvpp2g4iGkP4k1whpN+XEF57hqw0KvmGIm/0sOt6jRA7KWeNI646+IVIaPsoL84EBGUtHwkCwdoEaqtgNFfhibxv9OtrahPPmb9vQS2Nno0JKAgf2XYJxbnlktRk1lropWcfltctZ7V1I6C+SjLDwEFaevM18ZWmTaehRAmulBvXeTts9wq/EV3I3PfUv61q1jblg+R4JZBnlFF+1PcJMAy7fbhSKzSXxgRfn55cqgtDrkmfFKVBu3DHNHtzEiKhG/4K6Pfu/Q9eacSGpsdCS+fSBu7iJUPTkyaYe7QgI729IL9iQSuYtX9XNcccKn8LK0a+oXwxPWVI404dLFBWxeA5WdJs7RUi+mLwMNQcX1BzQjO/d+yiZ52P+hW3drBQ/u9vbmPDHFzJQ5B89yv67e3wIIKoSlvZIjUlL0+aMZEflzGqGCKmDmTVrDt86Wh1PQGXDzzWRevGxi8sgNZQE11hQ+BkN6in1Qrf6ReSEfdoS2B2PEBRhcEPaHMeIX/aAtaJ8xa0xcDO3IKSvuAnBbRV5lnxZDgwyTFFE/GjiO+vosAUmMJ5MxfUdFu8Al8IqJws0Y34J0EtGgTzVwdnNzIvOB+RZQqj9DU8Vyi411yrFmKE0WY4HBshIB4/gRT1Mv1f6HnsNI2bIsHK9onIIIc94u3NWynO9r0nQBjcJzGd2L5/PbhcIbji+MZcBxNzuumpaVsT4SqxtPeQWWqClECmFfviyN7tX2UVaB3kXTz9GgiqHlrQ5eMEeCG6E1KTPOmxdy3G4967bkwhFfoMysakVvg4wG48ehnEbvHFtxTVZC28ZkX2B+paTPqAKBT4UijX7ouq2nHtwVmCQHxrG/lMrfKDMsolgvrLLOc+zop2gla3D/m9/ay/rKVHwJVG7qvlyc4Ds+KnqHKR+xrzcum85WSJl5iJu+P9ZF4Ms9hZbyvkRNYa49iUPwx8nuZdl6PvZD5Y1wyC4DEmITtcHzKrSeXZrJJkBkXPvXpKCTiMhFCBamFyQo01Me5A64UAfJQHa4kplSIOtER0cUmHsBRtFsPrl2M51DKkzMSXMR7KlfMixkpps/4j5vdx9SlhcWVFiknIKTjEM9+2Xx3nl3SMvCUCAeF6bp9ZklUK/23BkIi31wFwJ5Zj3ZKwGVU2HBn75fnQcquzvpbZxsI4rHPeah4EF5F+uPH85gJVwUW4DvIemiKwUhYB3z0ewMvyj1kGHP94Aw7g7BxK0hlEfrmjH0ibr1BuH+C8jsorsShalKZyUbpVRdaamWuDl2lORdScVF0uKFsvRH0clLCaPmAT9ROefBRghwl6zcNLqzXjwVYCrXPAydb9zbnTnWlHGtmE2Z2I2DFEQPJVZ/fWJso540RxcCVKTAUXm65NHOJRgCxidKpA1CKCW7w5rm5q7J6zIKZrLxU8r3ZiWVhkH9xzG8ISut2wq0c/3TTG38kjv2kKJo3BvBEwZRp7EEdGodc26aPGDPbSuLRPTBGljM+yFG728tOkD3zwAD5Atdasiq07aRI1Di0LjV+x3HLNmu33u7QzobFi30OiFrcqVh7u3m/WiV2QLprdVDzh6qmXzu7lZp0GdMjM+lnz84NWtcvT8oGqSDdhRJeepHYXA03chbjmn6TUAK8t15lAi8YtunO4YoiORHgTwaqeAXiB0kypNrELuUaM6v2E43IzBX0OlXYJCv//bYiVynfzTAf6ZJIZ8Gd9oXESDlBPMgsTDDh/dBdlrwDNyaio0PG/5Vn6hxZfLD3CExWaaaRQkwWUMR3OfyH2x40cyxeL8UFqChilNyu35I6Q9SHHTXXSa0iY1/wpxKIdRG7aFvWOejbhp8AlUaAN9krXwGBPiVJxNHtw5DzWGdFt1TfCDWkI8WWcFN1bfE9Qn4N7zkAnN/Pd80dt1Ntr6V6tmavtoP+wskhD7Jqj55DVhxru215+jbAsIrGAlIS5seXvHuTA8V7fzSCRZG5fpRMOXJYDysDvNxkQxK/h1Ub7xfTCuhQPn29m/NKpdujgdL3Fm3nJlOfT+10t+nxsbIlflMvA5n2YQDTGVaXNPfzD7cEniQAxK/+bDFKlVy52HsFSE/ydhpjWBSlgE9t0PtiJymCvEbfon5C+BMoXrpfqijlEk7ywpzbAm6XE4wVXTGG7SEFEi8DWdWb34OQPPvncM80GHg6YaotnyTSUVpTcf4JqpbxNgCfKs15RJfP2fVx6V956MpKU4iXylSv3W5cFxawGuHaaNTPK/UYxprqk+HbsyFeKY9nDNERzBp3pODp2u2fh24XeA5uq+K2b1uX+6OjvTywzOGyyzv9wr0Bo3iEStJW9lQ5mNe/pQS8nV6fx9Xxiq5hLDfoqwpX66oC8EfK9cwiEodchIEyiPl5aFTr73XqRvQ0qgl3Pl57RGXwMHJQxmCoHt6UW997QtBE3HSrDCUK0Dk42lERwlonDjDIYlY/YnlFGWrlllQSfpYTJDY13oDThKd6lA+qb8mClO55jAFlsb+ydDrey4Hft4KAGCGdQj8Dp+MxHfmbZN25bpsi4v8Bd1Wff3+VMM/pXI4y5Z+3WguHztuoijorX94UlHG8Sz+LNG1OjS6moWjcQNPafT/3KJydWhzFxxKYcWD1VQaNjF23sNjP6gEmW1EOwR++H9wtrKsHZ0ocZNZS+bG+CHWktQe2aBHo4V9ic4vzjZb7z4+Bg6Wm9FxoOSmMimBjXDs2aZWgMa+JPxiWcaAOeuXR93trHt5ROk7au6Gv8oFU7Uyb85BSbRXkJw8Uk1vs8O+2uIU0hhaJJgNlsPcUihitBhPTYz9VdFCcvOmWOedteGz2s12RQ+G6gYB4ZH4VPu3QIIBCuLhF72R8mEaFybPceCPaL3L2uJ9JOOoV/Hy2sJ3ly/fH+FrVqyl5F7ACw0aacih+RvbZmNcFDu/TbghiLjN+JG1BV6lzF3BJIPXnZXTGCWnbdryAG4WIDgzwd4H4uE8Giv3C8Ce8g+NtLiqaZK0C83GinTebYSO2lrJL1tPwb9yhmybkZrNmHLdCA7rH5AfPpkpZ12vegr++sju1bLQ7o87BPYqVun8NtKpwNkoztUypyo/Md1vfJnj8+liuMZyNlwXtFVx+C4mpK5qhXhQp07B/8tWFuj6o8NKJYkc2XtLhmVeSkt6tfDgpFc3ot8iD6F3iK5PLBV8hHF6yMyZPE2XfjEwI/WQpLj1gaMJhecmEikfuB8j0xvzce86HQlSYtBiDuvUAYeVNIl/DFnUPmnDdrAl/RNrXTE2UhMawqhW8lvfZhnETwYsCP/jMHBEltM0F3U/4e4VYbNG55E9c6vDpce5XlyzW9mHBwXIK8C+bifFaRqUD5JQHNsIf/qEE5tesar1ICIJ79eouvGRqp5l5wbLDEMBhEnVDGi8mkzqjinsXQOcbwtK8R4Ze3TeD5MzBh+ZrD7nfnZIQRCdoHlTefo/LtI0SGg6eXLDhxj7VOglAox2GdHBj9LSMutVM79OInsMWNiAzh8wxFlQrrwqHi7PRmzcY2FoRwtDGt/FfZv9lr3N5m4V4xgDrtWz5R7vh2WS8GpeeUXoGMCUB8W8uBK7FnBX0so7agllCwkIfHQZBZVioFGOEaaAY0Olv5TIzjtKHvtpkhft2SeAJCJARjiM/RxQ1yNATldxPwNbc9pNXwV3WDLslwGOZ0h8oe8c5CZOcYdjMHcdEaaJN7tStVNSxt50nhikc3sz3u+s8JaS7VNPalXmKClr4OIzcNzhWqG1D0NtUPpMa6Ct6GXTes/De/pnsA0rpVM25LZc4Xri9te+dpMQGJmEJSofmlkGfUTPMpR4WmvXFoY9/VTRYMgCOda3CQFxy+dY/KfW96YBH5So7+A0hk8cCfO0xk1DTG1ziO7FMQRVYcKjjEFpbgBFfVdWBY+OAVRyXra/M6tlpL62PVbdmxk48VVllN/gfXk14DHoL6wVznxabqiI8IdIXYH7ytf4lAeY8W0A8+ZdqoIIR3H6+rWGqlCiRcqJ5xFM9UaORfMBwuzuThPJ9a1+lcNeEU4+cxkEUZcpZDOTOVQ6/NZIDt18AMYc0NaIRuZJAc8FGA+zUYpOp5jWFasuTgkK7npudd39hMDuMHEAVF00gakHIwjQK49pXHyn/v7tmPX7w2ETiIl38ipIIv5dsDlusk5PyoZAVlBuG/NpzYagM6f30gEumMkP4tJ9I0fUTfT9dNd2ciavS+h05XyAZDzzffUSJzKdu/eu8d61WoXsmwvhs8iKxPV6/PmR86V1l1oD8zWwMLk+Vr773ZFgdLc8CzhJ9IkJajmInDwe4m3/MgDr7KPc/sLjByS+p/9Gq9IrF2erNCDet/MKawGni31mj7oa5+YzwcrGpPl0eZjSx0CfZSr8xtOfHNtWxyUevlQfgXsyj3caxc39Fns+salEl4Hc/zf8zAakk/XmNDeB9ecwpMytuAFo9eanc9xIz/ZBgKTonjQ4u3D4fte6COctnGx2+K04woHjphBUxdFUVqryPRdyFzArH8SIkthIpdqhFKwKt5qXDya+cB9+mdCYeoqf5uNl1nZMvofVWjMDwtCozQ93zEX2itG7STPmzpt6w8cnVh7Jo3lf0y+I9bBE5I1t9NJ779ZdJAj3XZJfiQN8Q1lSdXaUJ+ecfv3reGtTZumZ7OBT5YYLn+rtn2xoiwriQUH77ZN5+GieZ8zZgUbHF2hwbKU+pFOBc7jtNjsxF8oIcR4+Ly43MWWTkKsa99ml4gYsCkcRm3zwL4XNiPp9YijaqAEYNW+GyMj7fMPuvqWLPMHQ0umCJ1/9cPgjZt2Q++vvdreoGtcPYG6DA1zE05S3dRnffexkxl0acLwmczicYW1mGYtpwfoPnVWdTHcV3dazUUaROTIPfYRwWYVoLsD1naq+yghVuV5dCCBUTOlfaWGGsZjDa+DKjRmebK1x8j5+kcby4kWuf44jdTxxRqOf5C8st5EtcUkUeNbIWsZ4E9eJ+1JrQJeAbFFHTDjaccxrjItGYez5pvQ4ZwQUCRtZqqdYx9u1mZwetJwxhalHZy0ANvpCvtmRc4m8WYG6II9BxC/FxlMGx0TFCWjEPOeEUGCHY1VpfPacjhIjRkEp8A2s2lhdWAVmSib+lDCjmFJFomneqDF4akEThEFkDXATSgpNpzaBsgELGcpK4CjXzqFr1jOSf+MIvYvibEdgHGWYtgXgXCabFN9o/+AFrzI90eN+IpokNq+8p8301HN7jQMI3pFo4g0NzdBUt66FeV+10E9AVSSQ9XYKwv8JXdRaZwyNp8GJYV6vV9YQevLqWdB3XJDiqSrhdIUlMGnC6HcWvT9aqy3nq45bW+ctJZlwdeVFQLnyg02k9tPUmW9mDpNpPnedYSL7cz9cU5BeBhrg703gNIyJKyg9Zs93c6eZHHnTsQ0p21WH+oHCnSBODw7kLT3v1g63ped76eKoXtZQMNmSb0OH6K9ZM+JDiydn55O+CSaCHJ66D1hq0f1nzzQBeAxRZbooXaCIPjfq0Jug80fIpnMSZu4TyjEE4fE+Vekbm1+mlnT+44ZXwEnLABbGalpEAxq0uatYW2yXQd+Ho+1iOaeF+MRQGDd8gcGDZfUkcgmUyvcXvgpToLUzgNBuondvMQXIAKk04V6BK70lefkJmKXVKtKlizF4eDUKOXap/a5jshfvYe/IyGAFxSRy8grr5v0YMGDJQItdyNSZSJNol6sat6Yt9DGEvA3P1nS28y8f2BNrV6WzhIoJSym8RYtDUxq7Wg6aRZRnAWtN6e8A9weGkZsYp8SS8xGI2pH/V0tg2evQ2d05x8zlkx+jL6p4/DOET8mDXG/lmxhfyP7Z6ecN6M5F+D6Pu1fPQPjPdLSBTnpLy8JkB8/Un/KfMabtBLeLNu6yUAjUSa6HMHAjqU+tojiUz/seWuU0lL/9O4+BGQBRs0rvAH7c2RgOLZ+Pb3n8nuB2qPCYAajgaiSntRLt38Ajp4rX0zcfrAeUUc6iyNeUKdYHwMd0e22epkNdAkAGpMjg+G31BcFOLN4tihOVbqVgYe2tALI3Sex7ek8ua1J2yg6kU9ASQty0KnwZfRVsX0kXq5RMP4KflXE4+pmZkcE9MJin69yq885BjlGP/ft6hIlP2OZHNHpvVMhkefsEkjZyg5BC3/f4J4OjXwgL0ij5X8OrYWvnNoQvnmeLN+k594sYbW0K2MADe7YW8ZwLBAfEHW3KJsDkMDSqZNqYLlAfzZcvG/Y9T1NRBJyvaMEpVlbtPkxXGt60OL5nrAScPy/hlW95AWNnbq2J74JqsnASl7jYb/7n6xQCfn4WFOr1CjD3wBaPE91KRKuP4yWadyn78O3Z8TG2zNE5e+XC/RULDiWXQa8FIE0dPNy75wyeBQeiUdoClR0RXTsRk2keBFhpX4YVtPT1VCuLGdbG9SVgVYcT620SqqkVqSx9/jC+wTTURbVtYEHEgd8HWdXLqpxq/t1jV2VqnLhcZz97ga7FO19ZpuamYJb0Zi8fD9MUitepvnUAdiWgTKWwnKKoBv3HjGRUBS53lTbzD/ToDoU0vIWbqc9JEO+nAkzWytgN3GmzcbzJvn0/h/0NVEMJOY7fxK3Cbs0DZT85hKth5Gcmh8o1DH/PZ5lzuL66aCVojP+E/qsk/gUsQ4MjTC68MzGP700XnTsdtd2f7aGV80CQxRDWhOuSLIp3LiOuLZzMfE9VcUmKaKB8mjWN7hCe/tPQ5My1tk/YY7IoR0rTbtNq2PmYFV35G8gpYK0btM6mNSXmVADkT7MRuC5AztEBFloOjeV/jKXcMR5Bbi38M7g+Lnrw+86LIk3o5p1qowySB9twIv6LSMb9FtPk7XTdIjZcKK7x6rzDb6wsDWOrFVhq3ALBHTaD1Tch9be8AAMe9cZMhp1FWwjzqtrJBhObFTETWxlKw55u/5Xb/CcdqolUZVWtiPgXytlu5izGPiZq/cET07ugUO9dvoNUhu/nax0Gcv8PxXWyQnjqZ7EScCk8lryCtRwe1CoIyBcTkF1TKS1RK6gCb+3rQnXKzN+XemYZeTIk5fBAdWJCWjSMYR3/OPO10uKWu1nuGAcMnIBlrR1j5+O17l3RIiBiRWO2NTdSL3tY5bb0zz4icywD+RDRNfph4SfY0MQVOBoGM3q92UI6L5esfGnkoiVQVPcAPfWefbfuKhDxg55lLPlnTWiewzZ6EldU95HIinrWi/gz61tdv41KdYMk4+EBidcoaCY3I8E2LieHsLjc1gmsypO5E6T9I4gZdMpeafh3BAImRdhCk5gX1JsAtMQwweHw0AIlzB9bPqGkdZXyw9Iy3JjUkcUcylCOyh70dzH940WBrXOo1Eed7mJfDvSZcbOl0wKtd+DEqSGnq/oSEtonuoHQ8fKY4j7RNdCi4psYxpJvPpo8RnuPbpNKKSScElwrmYaGk3CZK4PVhVExdIBW98mSQw2nfzODQ0yj+9nGsbxaWbAFUwybkTTtLb4WqHHnZH
Variant 1
DifficultyLevel
578
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
Mercedes |
1 234 726 |
Toyota |
5 838 818 |
Honda |
2 309 222 |
Tesla |
641 730 |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
≈41.2+5.8+2.3+0.6 million |
|
≈49.9 million |
|
= 2 506 124 (closest option) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
make1 | |
number1 | |
make2 | |
number2 | |
make3 | |
number3 | |
make4 | |
number4 | |
total | $\dfrac{10\ 024\ 496}{4}$ |
working1 | $\approx \dfrac{1.2 + 5.8 + 2.3 + 0.6}{4}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX18u+CL45ZXavaR4SDMoFJk/ialH20peH+GWiuJl+s7GG9V8GvWtssjItefT22mZzmmfff2LhQTJH4SzVcF2N3QAfpxv3HXiRH9g+1nuqzBZiEe9d6tCKyKAvj21+svmlPa3TIm14ruuAe7ybyETW4T6Nl9pEl1zAsz01ROtdpaMLomlrO51z26RhWyvX7GQos8f7Ru0odBbEunfDNzCXCSYsQjv4McC+QnS9/oG6WZ1GSVxrUuDfS23MhSINNsnAe+CHsnh8l/fpJheEGr6Mx6nmDL7ZdVpiGUxP9KFGv4retErh7GhM6P3ZIm5dbJryFXvZoGOLjfxbY5NFp+EgMCTbIhgmBiBTfZebpHSMUrSNSh0yymjzL0Ud10egR5L014Ib0BWdAyMKPlnzWNCSQlYS4hRZIzl07WgplA0ZTT76pjr7n1zOUWa9CZYSNFKU+P+J9cF4FjvEcASvaSGDjAkNGrf5xIsIq5redk8mAGYKTY2wIokqzuo16DuZJfDWFkBFKfRBdxguL0+GKe7tOKm7IsXl4l1xJ0ReAnBp3kyvpC+27XhjI3mdKqkxGH9Y6eE67jEpTU0nBl+8/HfowNvRZES40BXYByxkZyyFga6x//PrTdLR/wsTeAbgCRfhiF0QosJk96Jk1M3DBhKEDRFsHaXnAGDUTgiEzHnqdwwqpSgIJmXmn5NZ1o4igvPns1MRLAXHeaqIfFEZQW50mZqVm8OJkKsyGL3R6BbRDG1ZBcGPrgDJrDzR5q4ZoAMO1aJGljDnEBtTjCNPUxQGqF6C5FT6xqU2f9rEDsHI2sNArGqm/k8WwguMlKgzdduW6b3O4JF1Dfe8NAQp3VX1lQomHqMl3BzjZTXO3vk0xhl31pV4k5cVoEcEeJoDAQfjIzDCPsu41KGmjVvFtdgYTnrkbbura0exu5Go7zK4Ji8exWV9QM0e3sGcVQAON04WKoGiZHzJmvs7ZoGYhqchf6ODdaeSORc5joXI0swubSu2Uyw7J9uzJq/7QRgGKJ29DcfZ6qKpTZPDqdvcg4UUUNqQ+p8RTwoFYVp2CVnkWfwYjcddFW6BcioOYAJNJSj8g+r1OuNPc3SKEKmpmK/my07Kza+UKjgQyz7xMLVTeS1pD7EHKst3LWZjf9TBF6Qv581P6N9ePkXxrUa/3bDiusoLYej0zbi449i5i3ywcMvxtX/hppPCMEnsQ+k6bkfZ9CVxrmX/Agc8AqSFJQV01g7Elf49rx6+zbOlOgoSZTTb48ODwQWr47M5yOd32TK13SQX0abh+tjxD+DytybDp4Vh1jtyQzY4OddTnTfQ/gLrA/RFGWo2P1j2epLZ6PszsvoLpoYcF4Dl6B5PXPM+wixJu9z2AF6i5bEJBEHjAI1ZYDwrm0XJiHR1kslvSZp/aGE3Oc6+/ZzDTt3UzMuZ4VClrSod+bZnIQRUR1QdZwMUxWJybTwl+QSbIfKQp9RWq5C8yEBIRsKRIgI9YdNTa8T88KbsY33PUqhklYEl3mqGjkPvT2nQvoo5OQXTNTBK8IizHatX14TxpNj0BZNFCquQLNgrZ4SBdv3ZzKPTVEA/9efKNrACI4t1B26Dr1Ph93U2XFbcSN7Qv3D3Yg5EqRzqmCLEjANhqZNo+1yO1xLz0lCQTNsmW7/YjiHGOpijUVrZ9FZZJ7niLgwjfyA+tlVXrbZ9yiguXacl0Z0W/rNkGvrT7v4rULVBLYhFQM2TMolG4rLiNze06sRf34v1xYlp24iVJT25EZqVO0fw3qDRXGKwiQdfsNUo0xqaMWQwmrP9eQ8jiKPSHD60wUw2nqjXP8rVxgvLCIds8t4ghfBolQsAW1iSNIyAG2YMY1qw1ldFXDNy4NzIx1fYYPUcsT0Jzi9NYoXQZ+ru4mRzoLj44a6vfj7rV5xlOKq9hgol5vn14E8S1BMAMIjCYr/kJ7Z0Gx5epa7DG44F9aGMbzIUM3b48/WtUpnFjv3FL0Fva2KAhcL9FCsVd+m2C9bGwBhbfaoPX66P0yyqo9/T7ZC8MDprrjjgDxNg1DEFaeommSkvZTKNHOrdO4sYVreAKWgS+FQE9eYMvZv/D+5J34pjQR5+A/HZvzLiU1YV8aftQNgWmWEJxnqPls7LNO8yLAJh1/xnPLskU3mD06a0ohT+B24Wn276QWmivtwOnDvNbqfVk7cI+3p1/xwVQOh7A8klqe7jj/5Dg0NJlo8rox1sA+xRyMV0iK+2CLS4fGDoWLaF7jaTGr85tkbSUr7JJB2LXoLKTIu0JSKlNhFnZq/TAd7Iwh8co8RdLt9rYpX8hoKholcijnVqRzefyJQwJ6moiuQYyPfdv9WfwzS4yvYp+xotkIl10w59UUdW+vtUBNLgjSXuzXo0RoEmNfkBbg8N/eemjrKbx/dukH3H/9xm/dlfe8VsE9ObFfeiMdMydMquE3H03KvRmVveSa/WFd9Pk57Y/IVsL5bL0JKIjR/TaXDGcgSByjg3z/eywbGn5vUcggqVqC8CBU8MxPkv/ihZ8YF+snbsZe876rOYGcuS7/kEIzr/uJKkGxp07SCV1/eDfr8BZftPBDMykQ3kA2HSceIygClsNRa/L+zxKibdXr9E6wI9BB8XcKkTX3il/YNar9iftxuUj/wCZVmYnIE9uYodDex/AvObZq6FGPLYv3K+xCZ1tOqnIp4nL9756zVe3nEsnF52uqfLszeljyyw+iA9ns0c2TRUahjtUX5TfljZiBGdpKgbh1CQ8JkVkHHSDVdn8sX9fde6RnZrlfloxVrdcutB01X2HfMQy4sk5wGZ8ID733grTPo1+xdIJ10Kaiw190KnolXOobpUmHLFFwpkIYNNDeNyqfwKpkhuTKF+fo+RmG70ZmYBa2p3ujp4Iz1KSGgBDu7Z0xyt4GD8c8Zx8NmWqfArkqeUS6un5C1TU1KcGggkaIjq7DMD66rg3lOGX9AsM3m5+RJpM4vVUlM81qK+i4iyxH/JqbnCkTY0BgPIbGJlQovqTgjnul70/N3rBKtPif6qPDNk0AeC+RVEUnFmrpbYfJ1L01ZoVq73/0/6SC3JdoraBhZWh6Ns9mh/w4dGO/GBvPPhteujg1CDkKHYL0XabuvYI7p1V5D9fBrK5kHsYfZHRmis0QLQonDcPJb2sa8SXRo3SLq/FtllY3lIOPNvarKS5+fPC4NJ6seqcoXMdpXnHqQFIqFxQSJd+w8uD6e4dhgEy+QMOJh7AbAbBMzI6htj0LAXLQ6kNBByVZ6EACmwTL0vcRmEMRJ2CWWQz4M96FJO0wFpAd4Ig7K2BSk0gPzwluvrXKu2+ZS+/z3YB4ZcSUA+EyQGj3vbXeOuB76nQRaHhW3MrUYN8xHw3xDFjiO6fASv/Pz+VkX/+z1ZZIsUmAqUGsdOMQLeSyBCJS2rymjpZHz9VuUzmOup1chQXAq0ujXjEFJrm6JleQxiEbCmla1MdHtFDiChnEwtQnD04AaA/68EWqtn1gXcCXbnp7MQAkvjIzovrXKFiY4GDvWmRTXIIwSAhyaQkN2cwKO6og3of7x5ptAMKY9vXlQ+30Yje3ntmjol9Jp+K6g91VCWJACNs4SSIuWsZCnnQozKCG8i2v788vEMXEUdCOsAx1rB6qSFw2B11XQZAR9hCPoq2UZH+dRI3hnvDjvkS10aAHJljinaR1Pu+Wv35RIW1V/1QTBC2xG3JTdS2vvzdgj8g5W8IxbNgnYjlrOslzOQ1699o/PeCEh8KEJmNQJWQqt9Q1adTFOZqkmN+6DYHS7JC0aDaZo4HsS1DSMaBShsmwFrR+lO74E4jNj+n2lUTEX5CkERAutNvwGiUXBVtS+5LgwTDdfvIot7kzEuVUKifbF+GDaKdn7HKA9sNaTVbNy9TTh9hYg7oJGrPHE+EdfSiVbxkNWNdoyX3uWFeSJb3epKMJm478QGTHh4JYE03J4Mwm6fe/czHO3XDXPRF3sTe3MZC5qPBACOkbAKjrPBtnihOD5FwNF/gqmEToLQNGCvtBXAVvo/dO+oEIxzHd13SgjqnninVEX+5ADikEJ70FZ25fDO4cCFGe9b8u++fba1cP2M7HEeFOYT9E3hFSbHb5GnzcHHuKaiu+hf8e41o8smX5oiuTFoRJj1seENv2j1aLy6eJNTFpxrQh9pcd0MlB3z9y6BbVgZEcDA62VRKa5DcFMX+nTkMzUwdVmCAUfHyKa7Pl7J4h/ZRf3eedATRpVInjaLXb//CQQHq/rPPDPG9wCEKEWpHymhcGbyjxA17JVZ5eg56a8cYVIxzdBgO0S6ylu8oBnYSP42QDFcGQItfApSGBBh+1ft+gZLedTN+w89Duw2YG0NbF74tkfItmKWgF9qRuLzOqGb8ytvWAIZMTcJyieiE9ZYTqZo1UNOxDOG+GNa3dJ0s/R4mpYgs03oN3c7N9ntQNIhBu1q0gyq7fvStxsBOFo/xjKA6JqwZdhKyhBnZgtpv4YBSCBWsx3HnLoiKI6HVGdrOOxCdYZinc+ezsIHGbZU2ZgkKCb5eDDilIj7G3V7UaJlJK1nFSedxcJApnGniZOnPZOpEDt5yxEhUXMSW4Ubn935WgBpyGUSSJd5AT6m0Fry/4NwZry2TblYVaMF+wXGwoyzeXtyYfh6/Zq2GiglDnHNakaGj4ytq5npNN6TpxelM5iZpFpn75qLLbHoApKqVSIuptMEFjzQQilhBMiLE5F49+zj9Gx6NyoVEu1LPWg8fWnEiXPHy+8NHfS0GvjzXkeFs4ZnojXEPPTtFKw5ZSu4BwvBeOjFcYpDHgc0hI8eOApxookLrgKpCzYUkkrxUeKkCKB5glFnxF4bhLxqdoFca0O65czJjbbczvAf9aImTqMZPpPwn51jMBQieImXEg5fnIuuGsg80s3ZBZ0JlR6shzeEvYTEhiFG66ozLonYR+y4QwmCuxEf8GvBEAFnQNBj+iq7fHT2ZlMJgwQopvyKVE+gX22qvybuSslsme+z0PL3phxSso2X8RviyglVmXZ8TmnBAHLlexNit7J6tmbp4Yw9CLoK1ir2JyRbj999VryDbrIh4ra0dywsKABnys/GDJbjfkd92+JDyfhWQbMIE4OXzpRuoXX1EIetj5MJDiu/aKHsOWde+rESfNzgNuOPv7l9MfFiTZJ5/1ccMgRSrdYuHmBkUeyc6GPqUEEL8lt6BNx5qfB3nol6tcmn0E0NLKyUfd609zqtGBdwmchpW3zgDdBmCFjZJAypsCaZwAJ0zWamgSZBKPBRWldSjfhnxDOHIuE/W6TluVaZat/O4+7x4rOkXUBYzSXS3SMps4UYoVjPkrim5iLvWCJouik4/SsGOanRT2N23EGk3WjYJqvV3NOK4k7nbDG2rgDgnD5kbiILHa9PKvkKUpat+DBuosf7cls6+PE83gZvPNj1wJzVrn9JQGIk6siDY2P+M65l7V6FNAOcRh0xbDNdzkTy1JXKV6736O18PDNIUcTjRHNRTPjb/PaL5e9rSzfokiViDto6lqCuCwptRl5Bdl9c+u3UmCaIjiwpdQbvzyKkb2NZ/S8A/Q/AgT6ZSJeiBOYYvUUOwgfS5f98HnIAE0m1eWPL8fxoRWBddnQxvJxXU+F4FaYCsA2kNnRp3WgCFnJjF9ZmC8QpTzFaefs5o4P9Sl5jZZHwO8ipCL7kHDKyjPb0IccBnnfS7adfCa8s/1vuHyfPu/ixMo3mYRiVnVS6fDbRl3C5ncoGZ0HRvD4JfnOTbDfuGOlxaDKWgDvfSbh0nkavlFpA0QfJ35fgaREOkYFiU8eMtlhhN8DX9t2J23lCjqnuMxO3mATyfGhQdX4kYdqRT1hRDU977wuDHXgi/hm1M5JETNMKbn4/688PrD/m8jvpOu4hGIYzjQs9cGdlkLI9dThioeQOihVb3Z6jpkOYWiLUuvvkMK6imALT/W0ilvvmXmhon3hWo6k1M55ZT3eyJwJgDrQyftH/0x3sSal9JNMgiII4Kbq/HMgEEx20CrlHrCadG+R7a9eHLu63qvREVjmP6+XYBX4Z00qj3qNimQDuNlDXg0EpEQibpP3pe0LpsPVNtGtA6+FHeW/L4//rTY7H+g/5KQh34k2dkwInxXcIwiAbYHvTA31O/+gMAb3rm13Rky0N0ckJ5A0bkftFL8pswn8Wt1OtYmqV98SscQLYVnEfjMnk9agZyfw3mxZysDHw+/SAiDUuy2Tg99NPjoYqo45rJbYmNyFZO+budxp5FH5+eObdk8z3yT+1ci4wjkXZ3PnJbIk951HgUYaAT/N4LFSdOvYu2bt2nY8mXnhY4Vs3BeyDMRwMYQdp9QIwo+c1fSHYBPSf99fuO5Mc0dYh0alq+kso+EKD401SPXIyypJx3Ee+D/GgeHrzF0TX9R5GYMvcLmQEsS8JTXHauucJ60BYuMPDz3ayegEQEN314nfCbSMM8hhDurdKCC/S9y8KxCh2F/KcnGRO00TuTzMf2UjiQG57EQYQ3t0BJ1VRKeMTz4g58qN5dGfnzn2YJq64zQr6Ki6SCGa/sDKuKU7MOyPugyDSnzlEOQ2GM/yKkL60KCgxqZVHkYdoil/yEdOMJzEbl+ffW2Kf3a8nLaEkf28XiU2FQ4A99GwPY7wfKLSRJS8THzwetR5MN3+NBvTTb3gYocm0HfvvPzwUBjRvUO2CLCw/kvtGz6PvkWHoAKLh892Bd8lapceyniaiZtnbHn6SgLa2MoghK1sGjGPz6qVhS2bdYT1CW2kEP5bRHFVPtAOyfTz79C8uDFpUQYQAJRjXTTIZrG1dM0xCVHONetvmEbRzg3pBXGgJgkE3ddVQQMJWAqaZjpNxK+PQjPXxt3t65PXCb8IjQtSs6Sf5pvwDgvw7rwo42XxKD43M0jBTmt+dU5FNR8EZRv6We85F6LtRVRIj9puI8Yf8ZKlX08l2Gy2WlYSOfCaEmmeIHoUpe29DdoFn6G1I8i6lyrhKLUfwnpT/fhj3lrPerynfCxI0HBGseIJkIx8dLOyZYdPEs60uFOpFsZE194lrAK0K8PgYts9wMXa7f/YeTg9DqVgSYdmBCbdYBqaL0chiR466+MTsDKFnsaaJ8v3vpObhhjW/pkcKDYg5rBLwOmJLHdFKnE1ctM+CLThAxcrAWGxjVcZPs0PeTgae4oTgu4n7va5ZW+7c/Smd/hJBM8VGhZHAsR2q4m6Sl02LytYXWlaGsGRHrpBmaZRsjbkpS7KovRU8ZIDihgxaBCzXQNQb7mRbMQ9PSFlndfJRHulBiLDEcjG2LYiZWCcipK9JLFDOp0AEcdwf0MxFQ36HIf9P8nMvK3eDKWIc2Xs4WgvX0Ws030sSJ7SpJZBy9IkIfHY+2X4d3edtDXJgJ/UZcEn6smcSeORMqzR2Ti0fPxtJkgt0+Pu/uqhniTRYReafcSVbMGTCfNFG1iHUkwf8d3Cz5an6OcP5zmtoAk0dI7JbuEjyfvD9JqYH8O23UymSJFf2UX1Te1F+XgsxOccegF93gv1tZOHJoCEHyl1UYJ0Cfqazts/cZCNUBVc+6W69I0HKX0tQAA7S22LV1vBvrCunZW31fT6W84s2zcgMyOY9gGRA++J+x60vHaGAnhN+xtAbcQ0Vv3jpOxcchvrYSA3/OpjVaNcXp1I+sGI+tHC8Bf2eoajvPNkTuEy3+iBTbs2GsX+Az9j1jmsB3PN4EZKKtfnGaVYAg2lxlSLmooH4//9TT30lvh4TXF9CVcFvXlE6eDtIls1uYEAVIxZb2L0MFf0OOuiEc6qV7No+eF2tWwIh41OzsYni+KrVsgMdor5Ixz/dkH6fFDOW2smXWSBdBLfSSX5hzDC9SXfvOHPBTyMdmceakk88q9je3jgoURvWeRXrf0l99wugr6ZBjnNnpBf2x5gsiA0yRBgq12eZdJcWoBqA1psczIAHwnJuE4SuviR2FCCDeLipA+wB6WOm8C5Ri2TJizfntIG3d3439wfmShMnAiNP1fDbBGzoQ6Vp+kgsBaqbdiP7UDueewzy8BuyshPu6UHXUzUFTVMfPJawI5U/tfSPLxPmNrtQDxBnZADrxGWpRX3qaKmmboRHcSVWZ1S+ZRdNwSgy8EPNKXbtzcIWyoEjalYuRl9sNgsrOjI6iaadPbaBn26XeT288Tz5vzlpH6EqYoG3ntRa7grX2XZEuu9O5yZ3TqrO/Lnl96cipGaWAhod5fMfNIzjfaQDNM1LmGxgxJkUTc8pDko/3BT8fZfd4YYhUBKh0+wuO9BPvwuA6dK884kBHYuxWTJ/HT+iyEjIYfd+95qBwXbst10T1XHInpLI7hJHSWDsYLTz56sEkiIabdlGhbatcubIXBoFsx9LK6sq+LXduVNCYrmMcMKENJv98LfuSdXLKFv40XSNtF5Y0axRUyWqtqIPErrop9Hfnj2naXOJpajIKXQ2lTYnsQe5g1ZiEvLf/wJ/OrYVMFXJFSrLX9Jt+3qCXGPzkpX8gnjREbCqmkSpbUXjkZ20CUop5IVBypLNmnnh1fwZBZJedwxl7xSzNP0cqjnoA9eFea0CP+I8mOHHqHPzlRoD9jTqPgQjoIsxOx1d6WDIUgJkiGo86nKdheixwXqVEOnzm61MgDxYVl4/J8FoJ11P8oyxm9wEYlNeBVW/zLazaUV7ZSIdssnk2aNaGeAUMJtAxltSjKBpi5rwFzHhjLGqllxUVl/l77N9uILK95vDAp10X0EYQQfUBghe2yzGLKHl5HtfqTyGNIXIpDcjl+qeWkTJCdwfIVs5XOeBgvEb41G2++YcgYK1ioMdNTsYNQzjE59CKO/Vo8nyZvdVrTUbEitgwHCmJjxjf7Ac6qhzEaLwfKd6IlCk6OhgA7KWeyCJV9oqBj6SVIQlAFwGVBThhnRAd511XMbid/CRl9sN4EG+odJrieElD20SuWNsm6hWISHoBRcPMFnfNXHaYyy2PvD9UvGHX6uyt1qlw6avybcPPKRyjn2W5hL8xQV0BEDjfu3QmCndJ64C8gR12nA7zqVowPf80ZyFs54ZZXbBEO/M8KFcoHQUXDwP1ZoNFKukNm1U0mM5fpcd0yjxRIR1O3O5OabIW0qujkeo+vywObRsDpkByVX6umYTBoyRahpKYMyqW2sf2QgGcEZEq7PgtGQylkp4c426W8s6l4zSdyuLihGsaVMrTWvwSzuhBAgVLk+fu0HQmjPL9P8Dyo=
Variant 2
DifficultyLevel
578
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
Toyota |
5 838 818 |
Volkswagon |
5 127 382 |
Tesla |
641 730 |
Nissan |
4 272 578 |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
≈45.8+5.1+0.6+4.3 million |
|
≈415.8 million |
|
= 3 970 127 (closest option) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
make1 | |
number1 | |
make2 | |
number2 | |
make3 | |
number3 | |
make4 | |
number4 | |
total | $\dfrac{15\ 880\ 508}{4}$ |
working1 | $\approx \dfrac{5.8 + 5.1 + 0.6 + 4.3}{4}$ |
working2 | $\approx \dfrac{15.8}{4}$ |
correctAnswer | |
Answers
U2FsdGVkX19XYYAjzLHc60gfb1Z1dkGHIHPFonSjsyhVOKzVjUV8LWRxvr42JTutsXAUFwYDrKSKsUw6RCjbbaAcTeM/rt3kXpQ4VRUsxvaAQItKhqq/cEotf3nr6mvoGosC8lXFRkmTqNPzIUq8vsUzybsB0vh4jEqK75LKmQwvhJJjK+c6pPj5VyHdtTI/SkVZ00K0cytAWKqOwInr5Ypr5B83zPxDyK+L5STaEjVgzd0pacz0wPZSuXxSGVip/OX9+eLEb/ll+Xpaz5lzIWt93AO07PLa3bTPM9yEged1p5H7aCeaW39ySQLdSCDw7LYYVO/DueHyKXktESjQUHcQa9PhFdAACSfQf4wsXY4zgg1E2sZ7lIdthuqBbyNQGw9UoFJklVXfsbk9qm2l8IeYNKsx09ZuMjeUuUiCbH/TNy3NlyqYc81PukKr8UkwYNz1q2eLvga5W5Gd+kmfmxqLerqIAzhwkOSrGhIcvrAIl3UcWsUSmxxKleF8f5ELx34UJHXy/bmBJPoJJsrRgYuQ4xm/r/8j4hJBIhjRhRmuCf0IPqMQCcz9myE1O1GMYum4VHau3EoZML1aYuTXYbebFrFpQLCFKWBuIiGDRxNPdH9GZMa8TQmwLl/9hr5wD1eXn4KfgIcW4jp1ingPoXQoV7llX8hx0ooBqkNnhflY/V38U/KmakzpD6//bzfojL2ax87NYUQIj+ngTZYah13OzmMzrupw87cxIDv8EvWvLaw8Q2Rz8aNYZTCtda5Oni/gld6vnG1HBl4ja2Hh6LicICHwzk/GpvXHRiWdgPEcPQBobUENfr7nLbMAYB57pEt6++3GWJqOske7O7ESORieJ/bN1Q5Q3IHeiVgN2A4n2SizyPUY1UnBbmmyp10D97RfV0GK1wfKTSEeeolsSOg/7iShh4gpNDCkW5X/Y4JnuTGHl6+GwgME74l4kvTBNmtnMQ0IgIGm1GQrOMzbuvaNuOST5+uLKr7+6a7yCidelhFx2NZNoMFTBo7smOxdXcXsb5WzhE2j63ylPZoX3bSEG1/WkHPjovZXBGAb/sSR7bXzQAH6JBS62Jpi0n3HizYzMMaeOVkDc5QLApE25sMAw1hIJqNg7bHXLmEtUwqXFiuhdjxyDzceW6HC6YPN2T4v5phHBmlZIepv58nQsYVOQ7JRNTgheErVLImcyZXYt4rIdxVzVlikyylEY6tZyvvKR8NUNvzNggkbE78Dsf7hAp11iFugl7w7gLuzZ8xeKnedfCry5sGlywCvalOlegjtl7ElkyQUXNQ852hI+tFDVPcqN+gUOvHFgwnSdNdXu6nUG2kAqimTVQEEQt0+Akov1DXwosICcvDO//o0iEAH6vIIAHgtVX8Y1qjc5ec6gHyontd9s1VCNbEmoPELk98kF5amDYm4LwoilxsKr4M8xkO2xzbvwgL2ZckXAlsIxm4gom520cmDyxUmWI8T6qz7CSCYCZi3FYvEMtzIIlsOK3Drth3I9MzkbmtJhWtIjYUfbrDryTXzbgrPlZuP7CRFKUHnaSiwC+ervyghG/UtkT8qvQLNGDGNobRvfUqu6avyW+RxidjT5p7BXb7nnoA5UJEhAn7BI4jSuYedobwXg6shTeCuRozd6U0FJITYzaO2ap0VDXG7okD/N4NBdGnjMFJwKI5Gr7wgxvyXBWR12X29V7cCygan8R+M09k7SCZGbj23gTInc5MmRbi4xRpQU19Yv/haV6YQ1JnN7JeZle+ohVfbaPjQDZ1UYsRCToWyTDV1qTY3xl44ygYAx/Inuje94RXV6EylmGY+E0GrCgLArlVGxUNXDBpJEQrMNGjA6+blOlLdR19Bz0HJgzKQ+uAqEoYnDgnQ+GYKDSZcaU3zvtvxuDjPY1eDbKDZBxtlL+aZzlkhNwlT7g68AP38DB7xgarO2TbFBBJAOfrFaasAacUr5UYqc2wBjBcM2HUAfGzZBrG3/+2CTKJfSPaNjTuaOFI2hA6TI4vCHecdXAQZqQwP0ilcB3Kv7SKSmZjv8JFW+CqUplojhrHDbTSvGpjcjqBbjtbSll4LtrSfGuBBXoUi8kxCpyeEg4TdG+Qk/bDTRUnG9GaSjvxHUhcobDP49PCOYaGaPk6K48REC/fpHAvFwVxAsoLuRbaY7PoIFtaThIgeCI/XDqRdEBAPgcxhG9FORouuHf94cYV2xmd5KDmV6x7c0+M5q1P6nzgo1lYd753AnAvoCPLz46/v6qhsXtXUC8Y23s9cg4GwDGPJ4Q/3NV7IX6MI+89VdzaBx0HvUiMpunIp2nzFLRAdJaNdJDJQIyEr33tDcRtnT0y1BfG3AEdmxqg1/Pqumiz7xSp3S0urOW7BRl4UYUSMTcNF7Xg4RaSUZAVXxJC66d1oXPq2fUWxLnX9lMXxYFXHa4VqLL6/eICj3xEJuSR95U/ewir95NPRBsv0uwhqs7CGQeIGwQDKL3lMknltipU2agpB3DtDBo9ld/EfhVGNI44GC2QB7ZIIaUEadPHD2sOze3PT5MXCuPh/eidKHbRsM7eGS3aVe49Sa5jDQ5BWAdvmdm3BmtXHPXQ3G9oCJVD9KOAZ1arOGCDhZcdDm149rFbXW54lVRHYqW6t8Lz9hAD20bq7v+iix+y48YiIirG8c00YLnlBhsIv71xXZvrRINzsMP5GapLmkoPLSTXScgT2ONDgWZiPd1hAZc8nhmWGDYHeawawLcBXJjtvpFChYm66VP/P32r2j2Du1A6XTUyUDb8/4V+Fek9s3EfS+++7zbbtIEm2H9mI9NB7eO+NyEYR3zzEJNyzd0e5Ao83l7jo/AQYUE81P0AnRn61qWjXmNsvNSSQzis0/L6mGf/MpO3yYxgfw79GfIkUy/fogXl1IJ24+QwTA4uDr5rG+Y5tKRoc0C15/mxvlpxrbBQGN8O1acq+ymrqiMUOdutHnA/D2KCSSuaxS04tXZQqaWWovx3GS5SWfy8xHAOY5slyrXc6vhAGlEIeidPpdFO52GV3U/sOVpKVRFQ9BrFNNphS5ge+Sw7epVXEOjeK51HTBVQEjSdB86Qz3qrMoCGiacL7E9JMt+n8uY4YNr+2vkFw1W8b1a3OVwFrCjDG8iBZpR59D8HEoXp7q7T09X85zxFkVIDb7g1p453kb8Vqyr5Qqhda9J/fviFJTWRELPMXG6ppzAnweoWS6e6ZYmqcFaM5gKIy2DEBj4GFpdGYJptFquvu890nxtT7pGw5mRAEsKbZXo5tLIe6GNcPoPAldKyW5NRlnU4i5KdtOoCMiz4aa/7atr/wxWRZymo5SG0qnXDoutzA6MjRmGhxnuQQFjW9FpV57aLlxCV+4954r1cG7L9Vn+ImtRiUhTuHbfGh5ZYMbke5MSL+kCQPIgTOCn+n46ackhMM8XhwPOyP2qaLkyUo7CnXFBNrlzxA6gi3t4RtSN+m4l2JXztlV2mbSNqKXRN0n64MmGKV0TadcHmv1pSvqgVCPWEJrld7sHyG8WqKmYgkRO9qS17UKeum5nUDWf0nwgMtk6M3ccenk/J6sWUsWtfR5xXJgm1nkTAUNUy+LgCWfIn3jMoDMDePFhuzb6hesJBZg+y04mH386jh6qHwDVpRuRNJnBL/pT9SqY1MtF4OXgu3gGn30U0wxESo8qBMLHYy/E66dJGfO4g8EYBes2I+hOL8HrWzuhKNdWoM/cvQtChsQrbftQu05uULo/3B+OtdekyjQJ0BKIo0gi43bG/h1wVrvBiYIZ2JW6fqQUdCfFAXvMLsyG3oM85mc6zcEIn0rBQ1E2jNhODJEUlIobQJlR1tV5M6KnIqM0IQgdoBIBalHy0VkqI4x5WmnHNb57rueOJqLZNjYMIJHiqUuoLcrpxil9GVmRP0R50vQfrOnD30m/sJ7Wg8MqwCmPWhyar8y8PrPob1C35Bv7BfllNAhBXbeI6M1nWfJ8cMcd4Ah+b9WSUI2ecbietwGAAuZj3odEos/srdkRdUEx5jfNAydn7tE2ti8eitN4ttofe17aAtSU92yPWht6YGgUh5padLFmc/CGHUX/0I+VV9MVSGbeOjqJzscOIAcVfQV+zvNhxL4T18dOOK2cMASpWtlXxSXEwe68rdoqLxT8v5CsavmE7oYYxzFbJ15zRyINMhbxE77ERiZuOJL5edInn0W9y/I5wGUZ9oscHCnQOGXQE0j+6P6jZ86B8J+45Yn5uk+YFTveWyJHTLw6/naIPITa5fvM1/mAYo1JC68DoowAHXlHyuJwjOObb9w/7gThCaj4G7Jhl7CDnYkF9wc0kLyphx2hqfAUdO8exWqWmDLbkX+/i7vQKTZZ6pTez/HdonHOLL9uk7NSG9mvj+0n3HUeN6tuQhRsmKiRy5Zt2tonUDQC8Xq1ppPunJ3klvGGFi6cywdmh/1NVIMOt0A3/oUDw+uJtGOUT8wgzzDbPEpe9wi8wnDC3BrDofW3Ale3LuXDLT5PNPBRnwwRI9ZuSjRKb58BNEuA4yAxYb4w+TGTWJx+2RrQzYh4VdD9Ui2yR3uP74stEwqZy/OND5/b3i0AYP71YhqvZHFFtQUh5/3a4RkYM9q6l8dNS/czd+bhS+RmOrShRtb3rt8rUSkfViZN+dJ72zsotqbJFoK9t4q//A7srYLiHCd/AYqP5giOFBd8fE5cFVb0tkqQAqbcibZvJ3ooLErhl5o1EELnSA/KMLzM2fp5L/uGEHVrZTySrCrEFYx/I1ZTBj82wyE53o/B9E8/raEgSUWxRRmStvflm5gWrqh11mK09HhQgb+rxnsocpYLDzbC0dAKzr0UtgQSXMNHiiVMhbEs7awo3+Izgy+W2mziotctzeahpS6k+gOT33cN7mtgjDM8UFJl9ZnNBfJrhCWky0VYOTVw9IC5SZiay6URPUICR1//12NQ8bD+8LcH/s5+7gvkCZrt/Lcv57vSGiaA6orC5LZAwT8r2AK1Jx8iJoJoIwAMESV9V7zM6bXebnGaxxX0CSYg5ZCK75+E0DlIDdvxSrwQ/PCbn+YERBsipgLjx4w/unIMytvPUUczEn8fmiL0IjXKXckWedb9OTj1Aox+uNgS9llKlsiMDOMDuxGV3CI5IBB5KO3Cor4WlmzewxDDfiFMe4bBb7YvnzND9KKjfuZakLaQRGM4yzXYn4v9QAK5wZqJZGn028hz9VGMQojHGfEaJAJHuYSKE9ltMAJqLeVguf7I0lusZ3672JxvCctKLo+n94l6fBWke018ef8hfJd1E1QkfREV0FKg+dlrrSfqoGw9AuThf1FLx5KG+oJ03xmkspHeEIYKfblhmIYuN5DCWJ2F9nxvaODSHLziyYX781XMBqCacAy/HczFf7zifJXTog6FL2UJFSP2mUo09brJy5/DTl8oU+Nigzde0kILyoqdour07iY2x9kim8xmMQ2FpNp7oQLIgOa71Ua5A3L/8+vMvwtgv8aHXASXDk/K2DYYA1tZ49Uwe9d8rYUFAf8XF+6M3S9RFcvJrBzkms9G7TECVcnjj/0vBKWi6T2rJTIZY4wbTrn59MN+x+IjcU+XY2g1mgRjgbF1JBPD4eROwowr+LgB8Ujxl+8Tq1YgkPLY4026cfsYvB1XzDrd+6QYusdyO2FU0qkfbX2noTW5uGPjyN2TVZOj2hjJfkgGegm7OvfV2zjhZOSqYaBy7EKyTwIS+IY6+NcbpFVRaY2JffTwYo6G0aFKMXxh6GKoWq7c9dGPaRc2mtJm08sz9wqrSk5cV/cEqeHOdFlSUsewa5L2/6XqUFAoAmeskXl/vcCNkp3pzCG5trBl4yua/CH1IUOCGgsVzO+R4FbKx7OiyR1DzH21lIUb9gvlo1ThpohCPh5G7PPXstPl0RJnI+7jYEsGwoqEP7yG7PZIivb53Tg4zly4TAYku1K3b6QWShkMKZ+0aENFSk3kVKUQ4EI5jfA3yQiXntSK/8MlxDLU45Ykq+cOT7HTwcYvdn3Kp5B3MfqPqFTr3QpkuBCAd99oMsCtu8adONjSuCIm89FKjDJGcLM/N4ZTa9Cg0BV/AcLhMmZMmKrvX/l4ssjWKzlw3ejNWBlh9hz2zIFRsYxH9SmMF00E9LqSlI2J0fK9O+VHQWCvdEzgc9LW+EuC1kggb3LEZVhHzGG5AST/6JPEzhJopopOX5q0LiqHnI8FunlUwZ22Mh3QWOF5D4CUtdDZU7q2O7acZxEwKv4/jGavu1EK/v2j3SdY9aNJ85jpPTZVJBpJG8wZCVccyTnYYOeC5plANKPNGvZR+sAj23pOdYfQ2+nj+yslyWKvTzE5zica2mWJZVqfKSBwmxlyTQlAeCPLu0y/U7ojwrvs08LaeDb1kD0S/V4H/ZsC9Yr5+nKnoimbbTkh/sN4Dz8hRCMrtnUQqslGwXGpUso2piuOLnkjOwz5kzUUVd2KFpLqT8tQZYkbPXwqk8AHZG5uisLig45WbxSYZa8at/nYyE/4I3gFJey+asiRc8FF+q5JM4dpjDtqIno+plZk13d6c0nlWv4ANZ/w143L7deGw5f16R03hhBugnJIaLXnsJ5H2wlm2chPSdoCIDJ2z6X6Nkh3tHrcpfhyiqD+1f6A+0/2FqgWj5LGde/DF1j97OsUP86QsofX7iJGUTc7egtPbLPZ+PGAFpTO1QywWdv4umGiYP+00uYT/v/+yye5zA5P6wUHwdiLILmx1T6wdKKdjSAYKDrcW8fTinEL8PbxSIY//Hwesa+6Uk5jwRUe6vVYOiTCbXK8MAXmMh54vFBtRaWjhRdyZKSBk4jaSx5vVHobOfei+y3Lfm6ewL2vRRZZn4G9quT0DNBWk/KFZJ13SvwGRWQ+JStvEBuASnCehaGxF+nV8hBO0A4bactz5aLYFCZrv/tNVpKeUivEb40Usza12G1uT12teYK14QiWiyagGFCf+QK4+6uYchO40jRZxOBFYrKAxDpXhvx37DqHhMkdpbxX2Aycq9QxY2YFNeyz52TOrQbEdEZvsTaMkCeNXfFEnNdbCqEH+AkS57ir/O1fyPqWV2/1AysTT0QSgXTA/fiTE8/RNnUVuEP/Ho62VCuwv800sfWswBBsMgQzIBErq3QbFAWZRvav8jOO0zCL7WOf3lYVlj4D0oH50DHY3+pIt1PcweEPnzTVuVInNfIYyQYsw87Jm5QTH2GR+FmOQI8IC+6+172ZDy3w37T3hryv5xYAOvNpLm6UTdzgmo9xP0KeGH/PP3hfcihgFvR83UiPY9HPeQeiaoBC/husqtVJpaKcik/BrFntXFGDT1YLLxGvkRIm6pygeoB3KhomlJFm/Q8B2iypQvv92sCzqdgXxelvqJteEjdFNsUCnGuOrZ2a2aUQ8qFHTlxEHQhEKJE0CchVxj12eAjrrH0Zrr+SK1DyWspqVfwumYzw2sLJ5abzfU5J/mUKqBYJDUdzW9CVROYxZw4ASeU7qWlp+EVs2z6naoiDe4HSlPDwUu9Edg5/UqGzjaj6gwaTUlsQKOzVlQOimO86GcBTk7utgXxs2f+sGL8cEV7aHmKutuFNWx9Wl8QfsoHUcY8fGJtDP3IAahfk9Cmv3qi6eNkGPOISpie8Oluum3DRXjorSgV+levgNAblt9uA7fq53Fb8ba0qLWwYAhkhuduRqiuTRaCOH5V6Bua7AHWDXaTpWc8oaNKz4U7cSz78tWCzZD7FqemNHOFBT8LeLazQDiuHLgCfVhjR/nuoo4I510Uu+oQgXvD3Ekh+3kkqEktewak+ichqan2H3ZALZwPQqcKRG0f8VLqc+wZTjRmM/tFXa2tAvP9ourMZHjyny4sWpHzxkDXK+0n6M8OMTPgLYuekY4/10LJ/LFGjs0HpOVSWPnEmR1FnkcW4a4l8hZHBgfHohwfUyHOULRJBV2FURvTWCMf2OctG3H4LC/aW48YessepT6oWQjOpQKpAQE9O20ac5RxL5KloEADq+bSeZbkj/7nvkpElEbG6H1/Hat81X6yxq09Krxkm1m6fhfQF3HDRx0FW6QpoCL7AGNuNEJecCzzXjmCqxKAIBqywrei3edqGrvJKUJeatnR/hfo9aYwQx9Ya4bAGDgxan7yJ5cwZX/YGQ059p6fVCt4Pbds3ss/CY+eGDYz1hZfqLr0ZbTG+bFEUln8jMZH5lFmpDP6TxjYOi9OablE791Fc2Ys+bkG5aMkPviTAGENAgI+MDR4atommNk0FDDl+MVAWxjuhCRry6vTOSLOh02PtOKs3PTGjt5Wz1Upzlc+S6qYFvsOjWPWM4+QM7X+x/PJSNyNAuscRtdxhYTVJ938hjOtk2M9BY9qBTa7ech3W/K68IfUaGficJeMxGK/zfnjD2g7Zuil2YMtHgtyNd88NZVBTV5Du0mnQg9JQ8mEvI/Lh556QyPWVvv5oqMUJO2jGGYStYXDD4xOS8+PM+CarFqTamcKOnRG1BaNW/kYmisqPBQjADroZ/yiBbkfBcnjz03cNxnGA6VdwH2t048BCHnWtKDnpvwq5qmyHOdiOnkPmMuu2oquvLzGGgHLH0IH0OypsW6HrnaXfQdbrzFPlSb7y/wOA3zUDwz3NwDiIgJ5VyShtzE8ZUPzzHbID/4EZzLcrlYQ8IJcO0TGPAC2NWrac0Nx1L+MkBMJj8hTxDGwocB47em9BzGxJP7gKMgNBAKZr6zIgUzW+Tp7UH8Wi+mfrtyK8vy2kukfY2eQL9sdmcLV2U7yfbhp81r65VW8+RU/pXD3O2PHikVdRKTkirzUuqs372HzQMNWn3wI8Nb03EZQiFuVOLu7CgDS2JedAKEAsw2OzbyRbc2HC56JRcOBU557fCUvXoch63+ZC8CILxaF5Kl4ui82mB6j51rSjfeAQddP+6ZSBxPixoqXXa13f0Rn+LVNb/USiG7+QV8O6RyIIRGeySXKXTtiIV1pFlU0o2covYqroOaa8yh7Psm9z3DbMIHw2wXSFlYRDd3jSguhEIyfeg9kW8NiQ7eGQ9pJ/SdAro4lcbu2Nk3F8IbUbOt1DJuYeBiibSRw4jrDwTRpuRUFCQfA0zeX6cX70Vqk2EzmkXN8SyJR+H+1Iscv1eQUDENwHY/Sy5boWubquPiHdBsZcS6aZ3NHtJlDt4cZQpjPmgqmepys/UkZ1FMdD5HWOyhmBU5Kp8xOkeBsyUgpRr/7V2q7ZSuuA==
Variant 3
DifficultyLevel
578
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
Nissan |
4 272 578 |
Chevrolet |
2 392 112 |
Mercedes |
1 234 726 |
Proton |
207 807 |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
≈44.3+2.4+1.2+0.2 million |
|
≈48.1 million |
|
= 2 026 806 (closest option) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
make1 | |
number1 | |
make2 | |
number2 | |
make3 | |
number3 | |
make4 | |
number4 | |
total | |
working1 | $\approx \dfrac{4.3 + 2.4 + 1.2 + 0.2}{4}$ |
working2 | |
correctAnswer | |
Answers
U2FsdGVkX1/PtMXQI+FdIxgF7LlZ+BhThWDbEG0amOCLTAsFkOJTrR5zJ4o0OkdAfzVLk3Yk7OKNfWZ5f+a3GGwUIRBYgj8p2Gme5XXly9A9M0OTEnogCQrApQfe7KBDhIRlpaF4nTqHaGOnR21tLUBvAAwLIceHykNEbSowoMBnIWwmrTTgxo62ehgrA1VL8/x94wYaWxGf640V6ACsp9FTBy5LQnlgo9dJzMc/gVNBfk/XNUmcpTjxrniPy/nsdj+nTYQAdHnjf9FAFv8/09OGp3Y5S6AabOBerpyFRe4dCpKL3pde5UnxCYtGhtKQ+iqOO9QzwkoHZDROxF3qlUmyyMhNYMMRJnOXVWeIp2wnHEUwJtBd3ssPOqfHRaeZnFLDwGK0pMSYFJB1PuRZakV++/EjW2TwlZkI7QcSMZWGwBr5aApuVIg2My/gSxTAgQG9zuLJTVi4ZJX+E/I6q8i1Z4JjNLUEN/htuenbFnam1SSilkUSgblcXu5AgIAOZiUaObAwFTnZ4pwPGoFe3GEkU/sZ/kZ+DvUahKkDAiL1BoDhGnw0w/gXeqNHsVeQr6a5sNnSrPNsKYC+WYR9+VdMxZuDfMVPBJXlitfLWs4FxE0UR4V//2qBXgrXoaUFy3hxb2W06Z1zSnJ+02UsxUIIUyhwEUdsfzvf8W6iQYE+rvRxamzxXtM4+MsqmBWcG+N5Q15L59CghueATToGYObSwH9YK4tuSb6lUaXHluWT9zgYpgLhv0/s9I3zxUvG2wGVRCaPKpjE09n0LNjARugCARNGwok3SVHBzhiMX5O55GqOkknYxYzMd8EmWUyuSn9xHO61ITZicSB4cvgg7Ua1eY8B+Xqr9H9Q+ovNLJ3Kz5vFaFi1fMmTTpa4sFC9gPI/bP/o538tWH1BxU4LrpKdoZjKzL+n+fe3cvRt4EXAoc3bN6fw2HfH+C7nk2N95pw/ucbHxUH0U+cnZvynC4nrEd/G0pq1aPl9ge0rSH5f0+Z5o7YcMrg/R0ECRpS2FJTrOFTh3UtJ+s5ArW8Q28yHCtudlImv2IBbOIWTxi5kfM377v6ZetEe9zpfk4HfwkP3huMvecmCTW/WlfxG+wmvrmfCZ/TuZ7iVFxg40BV17wydbrhqJjL+PajCgYavYQqEM93g+z+o6LWjanRrTn2ScOBin9h/qOFT9EEWJTzZD6XTnBrbQWbL+Lrkr51LR+zktE49dl35jWyM5rd1wEqRusecLZiHTEFAX3W+6fo8BP7hAE0QzS3jYqklxfLP3GVmfzDJGciGpIQ49Jt277rBhOZJcIdaZakdOzpN19fDcZi04QYOz4zI+isZnGGIEz8sFWV7pP44YL8wUc6pRBea0NQCNZGTBS6ui2v9MAoSGBNAZb2Nms4keQEwCJOVZOjh+BD8/FF8UGKum6+TdS3pH61P1N28Dc9NhaG0X7qsJa7l85KPKxvT2ctYIYGGxmT+/BMuEa21keBT+rGpkaWD1zTnu5F0SbAORHA2vtsKsl2Wjfgxc9piuF95WYVdqoaSuaAKWOLFSkZC1gxJanYrgPL18mjsPujdDkagtNLSrmZsriVFuAc15e9Xe1ESZrcca4B9pNr0oyz5rUbLhzR5SZHs/l5p6AZ/E/QjbuXHbPEKGvhPVmu5Ob1ZMqKBtM+mnmAmRNLrSOD/dto7ODGZuOfiBnldGXVVJgoyY4mZrC+BOXdmb8ttlr3pS/EK5OHsSOROJgFB75Yu7/D2O7Z5ZlwwjXmG/1kH6XKiR/nIthfpJktWuvBn/b/ZTZk4PwmNEksdgaYaV7CGSNgqCjif1Kc1FEQZp9+OPCD1+kuiyoerAPmxzougXSYSfw/OJAcbgTdEklyX69K9W3dbzliY9xkArx/QGSrzg2h2kxwuzaKsU1/73w5f1/rzlgGRD/Ww4RAGZpmteWsSurHbMVr6aywjkdg8WwLyamNWLBUU5xO40bjqHg51H9jXrsTAM27sDqKi+qAH904kesC+TdXW7Af5SRSXQix+0STzRZ15YvPB+qId9W5xgMWjLC4Uuchqm6MJPgqb0YW4dHQ6MeKhsE79XdIGcVYUsPAHRnkhg1jtcUD1tsMp8WOmIT3DY77CIfIUXhyu8N2HVkeJ1eQOkSnRogRaR2XHRmfQ/6wG8Pl0vR3k39k/0Ya/sy5C68dlTVZAtjdVu5hnpwrysrQEe81jpAMmk7qS1yrw9QmRPttAFoOFf3YACnwg8Qh33zqh6NZgUQW62asqo9HtJitYkwD5fTC8RqAOWQcL40tcimw/4grtD8NukXF/DWoisxQLSsBfwfjnpSJVsE3+mZ0wv1tZp+blD8MoNsdH4e1D4kR6NWaaaODiy4RQZe7SsQDq0n9TtvVyjlI0qWgQBuzJoo81PUjr3C1PNT0eb9j1icdzqrdGi/F2WD+iqgiFmpKpupNpSR4WvWXlMS0r4lwSeJ3cDwNFrhsx2yX9LZhI9/bdsL+ShtOgsKoWAGZB52hLdG/lFijIWl4Fk49hyFDdUOrAQAjaV+woFRSxPamJZLS47LXitSGSanRE/08IH2VyJlhTo5o4G7c3HjOodY/HQ61oQHmTBoyY7BTastc0ae5tA6VWFt0A3nMVAaaGzgvfHc9XAaAB5VLpMmG//uUd0sFi2ZwHZphu0amMe49fymL9hzBWbm8ErYQtxcazP86jR8iOzjW6V7zNJKLTeuFP4npb9F/2ZdBzTpJ4YjFwbSC65vPUPSA2s6lzEJNibNS/J5knY1sLpfcKT3yhUppJsYvlGxLlpOPpaSg8JI6+iSE8ZC5AGxHSfA7d+3V7ZZH93SzxTglX9WMI7QGO9CIrwM+ZAk7IWkAyyWZh16Ti1aVq5xlLEtH8e0DDknQOJCqdET++6RvYvC+L6mQoKdn7k8lWCQHk86RXSEZNuOv3HETe2ybEfQNzvSEgubOG4SL3S69zdIKRTzgRVrGmj6OsK4WrTqzzQQ1YGiHPIkVjDK796Pb4Roks27/cqsWMR3n3M3od7QO62UVA0L2rGaDpKRhFHXJC/yHS0L4H0Tgw1fQ4pRbsa0uv9NXLzCmmBybqGdU2sJ9VPZV5yZEODDvdfd6HHgvg+5hJ2xlmeUaL8bTeb+hUUd+XoIZgvWf2XJngRIZKxEeZ/ehs1fIwKssDABFo/eW6tQ8Lzewu86N69Zf5QHqvax3QkWe0HL3rtkJLpZzX0bMriK1+t2EcKw94tRohL+wuO8S2PJ0P8XIx1BHtd6pKSTAQiIsgZvHhawUVIHXww0oMV9PidblOBo4Z0PIofFU9tAom3Pr8rwDKkBxISpFcMmOlSxj1Rj0VAVCBvu1uuSKjwhO3eRE/Z+6b5k+HioSP4Y9mG/tSbowSHL6F9tHqqEuDfZSYJHecUOQc4F3+WUljiYJXtDUa9PQjv4a1DJfvl7di7nUnYA94xQJRYDakiIV4x4+1v6czH4XEboo7/YXqmVEtD+/FrX/jzjXfAQRCiMZpHUZIh5EPIpj4OdAMaRllF1zq35uXfUtAMFgekHMH2jFPrbdwzb0jArCOVhQdSFi/L4+B4oCKTGoPNln3ROpIvFaEmESgN4NR32mPNElZ/exdI48+uNL/sLv+j1oD4qVsLNYpht3Jra6OI/7vERaecZPDvcF2M8v0KRk8QyIw5+QsRRSIhHoIFoGOStZZ1YxfFA3tzcQw06cwABN/RG4WhFc2mZQsGtg3A8y5eNIVCXe2KkDVUTiAh9vi3oD69zyz53GDNmEO1KpBVBhdoWADX1xo/U8a5XHAX4zbRdFb917UjyE/0DZO1ccKohMwgwfuH5HpNYqvElsnoo0/ljiBQbo5XCIrwK+xYYWiRZF8cLzs1jULs42P3qbZwTxCHEe7jbTxieLd7PzJNjTgjaoD9n0AB5HdnM7KMMeNee+Kg/p/Zqg9fpsXBO6lHv11V2hF5ake1ddKTwR/Dp6JJxPkC42GWZqzN55gLOcxjHsyg5Xw38Ww2H7EDCu6cGon/ISZxEvCg+MIPkEzBK+JNR0ebpHQoYrAdHv4iN7fRXgetMfGHNvzszVEkCV0Ssr991LpIEmLD9hllQBX/SxpsLo0I5h/BS9sQrG8X3eX2GNMxwNmBWAM9q9aG+AL7A29sBnSkkgvubFhCAIb6P3aiKuus0Vam8gVWFlyAbbio5J5WBoAgv2T+szbLXAANeyGFqCi5ku9xXj6dX8U+Jis7v+gq4F5j6FyRpGPd0bNaz6m6U/FfrDQ1GUW3XZhr4ugfaiLv4XtX/2Z3xB9PFE17i9ZZcHuNB4+oxYtVyfdg0zOGPfVzZnF/eroMVoKFx0GBR/KumyLXeZwOzig7JTec/H3ZJJ4p2jYi2dcjNzscRkSC/NO+dLX3Y6eyYldRIZRs/uh94t0sGVTgxZiWiewdc3NX4+Uuk5m0naNSGNR2rNF8MPNwL9ZBkMzXf/IxYraAh8BiYCN87hM/7VbuGfY/s9zmbxXpZ/mhaNNNBsz6ROFW1kpyL5hg2tUOipG9VuLVK/FWgpP+rfhHBAMp12gXwoq8z0KjKhRqu7b0ZQVFo90Fnga8F1kLsQJmv4K/bL+Cl8DHRE0PZVubetajIZrW2dWGThhxmSTcWd1C14GlRlhEZ1/pYz30N/YyYOOStX6Oq28AEMirZmMxNxoEN+WUyOoG3tnDSScMqbMSmP0xaUFSPZP+MDa7Gy4jHEztnv9VKAWmYyDIFMqAsNAvC4/CnUusGOnoS1D9BCsp5mO6LSdVCuuRc/s1GZgV9fZN8RMX6rwKZ/r0B/MkXAX3ye81c57Qv8tdYOXcjHDjNKhk51Bg2C9zBFXt2+3ZiXXeK3Bp4w6M0zNxcBiGAfOPAaX1g4yklZO67ZSHIdfhSHd2qND57bBiBwzbM0x8V1R/Oxj+7pZ1o1AXLXZTVPD2v9NUsVKRq5Kcfi27U+sPfmGkPInhQdAJp1iKsZb9yRFvZnM37jLFQywEKs5EU/EQiu0bYWGG4dyw/M1dwvZJKzILvfOgy/+61tcpPX7QSpDBKa8oCj43uOC4+zpdnlnW49ln22Xfp9qB5YAJEnGqg0Or/5CB48y43GEqYls98C4KPH4DYTLBxmuparm43SyZeOricPdB7Q9D3wTNkaC0QebNG2n5OOn14R/UDpt2DKEXQ47mYUivf/gdDLpMnEio+kI5a0FkRg9cG6Tu4fyQU70BCq4TOcCfi5aokoItHRDkajnChYu8r22aCOmsE7BGrRJlnzUUZpy40CeZ2e1uAXDSoBy4sKe81cmpcrs/0eEuTbuL+qoo5tqHF0X9+NuoYrs4F4U47wdadCJCeKmwGlSbhrbVdvRiAKVS4kc3wuwxvqHqKpMfzm8aWdzR4AbWp53HyuwbWxy9iyAEcoB7ZkEqkQ3tovpH5HH39+jmd8xorO5xme1YeJgJl76UV6VCWe+Hwxr0pzzjLawJvpgAsTsaOCLMQJZXGZe67/GvAZhnb84Wq7mkPVYVS09Ei/VL23nTqiLmvQyjuFLXcHv/icluTrUNIkzyRuE3mynzrG1G5xyVmv/Qg+Fy12QbPWj/YkJj3VWxBIK554ogGEEItf4YpkcrGE/HTRhPBo40tcdKEh7pVHFB0/Cj/0FSWk274ZMIQu3OyWVICul+aEJmv06WPXwayNTUqc7Z0UG6tfSK2IoBotYJZiccNfsDCXlWIoAPGyuGgjRcrqUxL4I1J+CtA4LeUnil98FkCAlyD7oTYbfcPB1pLwxhjgkyOm1szBNJqP024aK9dPb9dcP7QjSppC+Zt+bzI2OWpGSKW7K7cy4qF1WCkjqWwMWSJeXNCIerQEoUoH/oAbMKUcfjUT93O6wIwCU+WKnwUABuBVU9C+zaCwYMFKvN7tfO4w/3zW85ukHd0SBfDaY7LUo4uAkVJmA4zzjiBI6Hhdsolb4/dHMhKenSqi21k+PcS+ccbS7AHArN0JQoR/2Aa9i1Q8E9WoiHOOLsqQt0MzJBo9pq+IHaOxhHggos9f496OYFHkpBmBkp4rXvkRDNwv9e8WOLkZclwI2NTmWujZQN2tigZB6UKZL8QPuuxMgHCgbwWUKsyEi1IlAyn5N88TcfxFiyALvdvzvJKZs4XxRF3Yvhpi87TultrSGhfnKxjhOZByIx+cbanei7G1pPk/SEBzf6NCkbephgC/4R9KT1nzGnsEkDvHeLYIFDcEWw/4yW8u9ZwoHBOPUhlQtE2MYOMgdmrABHdwBNHrjtp8xf6KSNuzgUujluH5nTBJXGIptjzxxPDUadU5j4IFcpw/BnSKkcbbb3q+8qV4jIZeog9c9OcUpN8vkvDFYlXIWGwF9zA1kIN5Q5kwN9ML2rvb5m7Ab2G30B8KfXV7YmDAs+tZ+usTbfQPZvbQ80RD2JEpo83rgMgeCNFr633uHaRltUKQD+v7IsfpVb7AWosi+3WMmwhPtwrGKEZYOLRTFWbduoWEyUlVw1zjL76+Bbh9smOiay91b8QnetYOBt9C77Xd/3wdvC9IZqayYIJ/0AlzBhQI85A/yMNaevlQiRPBmLgIUypu8d5oShD4H4wY+vGsIuDKDyO90/ac3DiGey2pn03aD2c7VqHHM7qojO68YpvhHkltZA8yR/FOys+AxW7Yx1xXdHeW7Xnuz2zDMCJUrLagS1lLxDmOt6IbK1f47Qh9itlQnjcHXVY+oMUw8UHZ1LFcWQ4CSNsaYGQz3qWWG02GtDB5yNkud89fZWyHs0M586YdDoebShZcU9aQ5fV7N9CpuY4Z+WnIp4hbg/DZ8byj0HlNKxnxChRCRd/Gstk+jmIT7DAX4EpIETc4ci6tI2A4rgwL0OziEwE8pD1c7YnN74E+akpv+anSOWSF5Z5FQHiGVoJYw6ozDLlNYjAbDOX3V38DRJYOqpHVf6z4bfs/cUkHYleHLh68w21grLQNjLf72HXM3XO+AF4JrQPZOJ4h6jsKrWoddTEl2fkIqQgwHF12n7jhBPAbw389iCqoxFOzTbiAh1KHmpFDyog0uQB9kVM01pbhqm2ocTXEmlOdQPDsaBdwUJZrCMFRYydKWx/ElAeL4adz/+N+sBG/6u/LLc1XV0UI/hI3pn2pq6URNJZ6iha/jFYay3mdxjOd81/ROqIJkMoaQhJx3cj2Hg+R9W+ETGPDMQMHNEQWbdbgrv1xgHe9AQDnI/Vs5zXose6qLah/XSHsI2Rxv2YhGfKkEQDppzjaJdmC8lcMECaujBDwzITa+EE66MkPxpEYpIojtEg/MVzSPKtD6xN84CkpFReUCk9PTuuWi5Webi0BNta1GKvJSYAnzXGVCNd+kULBMTfQZV/wBryEm9Ib698Vt2wLeMc3m/NDA6QK9rwlz/IeUPZkaNewQzOwDyzAEs50tGSTG6UYmpxKe8CiPuqD10la2I+PHEZzTqPufS5umQLgKm1HYn3P7cnRPd5gNq2wCWpvX78s/eGHabYQNWCbZZOQhPgr5Vms9bBX3nKFB3D3h+v1qiboCI2s8dNURUcbUsiE3j3FvcOT+wH1a2JIUb4eP+5lB6xPWQ211XLVapH6wyE/D3FtEb928A8ZqpwE6Bl6Y+753AekFDgmofqisvp3oaNADmDaYmwmV6cCCdpPl/EeekVu3e41pprTzK5OAD932qaFHuAN8azYgpXu+cwTVmHfhsb9zl0uAn99UEgNtv9DZ4zWzPQpNZSaoRPA+S6uLa0EnxkH7RDlp5TzAmuNExa5jWvjQyZfy5iPyCi2bwtl7tuwVumsTWYCDpvjEHPNJZtgAruCQoobkgxCVCGb7aVs8fDxTipnJPhRasSUF3y5wOAREWXMbzR33smqX5OODzhZkgPFR3zi5Bahj4x8veNkimB2jx1lmKJx/OEVPbrgwZprqxxrU6eaixVOCGBOFJ7qouqqJv6cVc2TbbEygpZL7bOeF/EJJyFLGx0Y6S4cdZsY52lCKLjXODrk8/pLA5oAHAnXVdEVSYdKFLtIGWMT336LrNvJKUQH3gGUMUKTXFhKuRJ4N+XoX3SphS8Z5+2efwikuiQj0KYSSYBAxjVIvZjzylFLnaFtTjn+LrkiwTfQSFhPtrtk5GiVqZ9p1WKGp5qP867e5/ifDbCfS9IGNkaO7aGtq0oM8FHEugw5+6vh7Xlpvr7oC2j4hYSi1j/v4Xt2f2CKddcCbIPyWsKf6NjURgG2gvbU3nOU7Eatp3W/J8eoIkBLd1vZqiIGNTBtZ4MixN9jjvHTCzN5PpxBFHnXzvTt9YpL3lY9AW/FXPsK1aKcHw/mdbBnvw5SbPVEdeW6TyuwkE2VM8Njgk0NvFMeUxqLWlLL+T7RNq7jqoLrgoD+8RncfeWeJWXDWIGPdI0rvto+Hy7N7Ig+/zxny3EHlh0jEtX+CuERvwiaVGu5GWn/D7X2/cJXBHjrj6ZFsCLFK6GAZBi6xTDqiqVAAHl+th1vdfuZFhgwFJ4K8ELbsUe74wLbRekXbEMpPC4w9SB1Yyach4i45Bj+AD+5bzwnTHPSScQ1O2C5QBaPptwnUMjGAWI7sXrhjBF3N2kNFhEk5fWfkOY3KI0iVvNwv5Y25XSbniyJDiYcWs9Zl7/g/uTgdX9MOLOzj565mrsECXecDWBrTt65leaCfTZnfFwiSKXh3ttIdenRmkQM2mgYzp/0KGgsyaOBWYHZlw2+li0cqvUj9cEcSTdfBp7QMBGaQ+cH5N8zffD7cXjwKxko7O8etwsqpak5nelYXSZ+35iYZ3uMA0J6Iaa2qwVSyMSRVeQjcndlRjA6iDRnvigSaEYwZ7pgqtcAvVZlsi8P5rAoMgXFCtChpbK9UCmvsOy+08DavhJjlEHAiK0vuCAnjlDLhYxLLCSirVO3VIECZ+vvtJEtHTzmIbTQyiala+PCPWFs878mFPWMl7yxBiGbPcKO97q5YDR8+ask38TMYP7Nv/lLlAnmmNKMIyIVBC9wlkzuEt4pKrh8obdaN7NpO92X6iSUS5h0H1Tgt1xERxl0bDhIdAGITjdXoK6GNrvdywOG/zuORHhPFcDOiGN7JZJDlHWjN4K+9XjK/dWmxUIUCLe+hQCLSYfbc1FVW+49uEoUdA2mcnm7VNnexUYEl8cWN6aRi/Lbw353z91ijaHK/dE7MWYGOmhDfV4UkESmglPBv9x9dqEkBkyRu81LbwotC4RzyQxp63qq5Ni1U8TDTZadVyIyZ765a5FlLmcv/Cpyj9jJmGGbYxgTqAdFd
Variant 4
DifficultyLevel
578
Question
The table below records the 2019 car sales in Asia of 4 car markers.
Car Maker |
Sales in Asia |
Honda |
2 309 222 |
Volkswagen |
5 127 382 |
Chevrolet |
2 392 112 |
Kia |
2 068 573 |
What was the average (mean) car sales for the four car makers during 2019?
Worked Solution
One strategy: calculate approximate total sales by rounding numbers in the millions before adding (eg. 3 790 282 ⇒ 3.8 million).
|
|
Mean Sales |
= Total Sales ÷ 4 |
|
≈42.3+5.1+2.4+2.1 million |
|
≈411.9 million |
|
= 2 974 322 (closest option) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
make1 | |
number1 | |
make2 | |
number2 | |
make3 | |
number3 | |
make4 | |
number4 | |
total | $\dfrac{11\ 897\ 289}{4}$ |
working1 | $\approx \dfrac{2.3 + 5.1 + 2.4 + 2.1}{4}$ |
working2 | $\approx \dfrac{11.9}{4}$ |
correctAnswer | |
Answers