Algebra, NAPX9-TLF-CA26 v3
Question
Which expression is equivalent to 6x2 − 18x + 24?
Worked Solution
6x2 − 18x + 24
= {{{correctAnswer}}}
U2FsdGVkX1/uhc9gBtCNzZH2jGd4U8AXp/IYf3NE5lABzQ+vogFApUUy1Ggf5a0pczg+bR08rbSPM1nMR4XUIxfOCKoDPboH4DS6+pWR1+RwoDomEamerCZEZwVUVCGWNe5Ws42Wz8CWYFlnyfjKnJLvFetq52kXBONhv8/dCPuM6Il8f8X09cAUyuAghB2gdCZqiA04/UGXbsTjFa8nwCKAdAOxHgPPAZADFisMPz8CCnrLjfw1peuhnFXnqxRRLBRc3gkS3+GPYGaV9RRCjHouJWeZeiSYOEYgTecEr588jFHmrjS1GD+4wduVopP/N+yqB8lZH6q2Mwn9UpRoE3/XPUo7JSk3ZcUKk9dCzFVERdzerSzC+oVB2UVx6eVqnXeFcGCpV3L+BfaqUGe+UX0QF9qjCKyG5wfnIR6RisIip8vz9ZBYC4oqb+YB7iScdhUz1bvQTm1kwC+MPnAHJZHVg4FkNmTTxtGjRRFfw79Sd1avfNaMrk26kd52Oz/Ai+BEiz9wEHuK/5vB5cBiN1uewaDvOr7B+cEmncFjtQMwEgaixh53MkP1qU6gsFBEPIJpKJ4y6pIzP+L4ygXVIR+ltvF+Eq9nrIlmKOKyIYC124SAvs3abueMsxAjlxEMKk0bYrt7Lt5sDXAb3OebhdPJd43nAuwr6dwoYi6zvNp5ta+NIC922bdc7Ot5r6eVd5Wfjv7o++HnSsr+u8o/DPza7rK5eqMTnPo/hZfsCXN8ANH+Su3cOeE6WHDhjIcVPboA+tiZ3Ux/cADbNmlBIlXpqnwjVpG0C44ttgNkQeSZkbnHjfQPmFzv79bLgOmch+SYW4KeXCml8/M/OxYQ37Uk3RBiGuxMo/Ptspq/joOU6G+f94wuUK5th6RCxYZhdnI4zYBMwTcnM2M+USR7v4a87xEPJ2E/O72WuWt6AfhRI8+kds8u9HLqmFYXFPBpwwxYkSSXlVBvOxkNZpjErCTbhDa0yoy7+Lq58omXxXJaTh7zTZ89ifrkJAksbdYssDbfcZXBjDzCq60ZQdTlsihyn/xKYFcRNVYXUpFDLpBgIagGtXPhp0zsWcm788iphTf/BkmC4PYzC3pFPwpeAu+kBExEL9T82iSqGJidQNhAsJJfrL5o7TSzYoyNbkOWKANrVcnipIftMRtMWg2z2a0TVZ+VtMipFs2cnH6lU0lczMtlFB8FTxbONDh282gKr8gx5+fIdB4Yb1zykiB/KKSqHQxu4aPjhDcO5rwRm4crv7zv5/LXrPuboa/hqyzE6wosSgGvHwcQ9/YzoVuEMAWCNFIPIBXX6zs8hipH/lkM+42JdDpDyUmXtT8mN+LOqPfC637ttlhmXJzGwxwg8FRSKJ5uegHdr4udBML+vs3lFggFGejC8naikUMY07F19Y4LWO4ZR0xd9M2chqrU5JG5Wfy7b1Ih8UY0PNM2x1+KwOUXMj+NBo96zjdmHtaJxvZagWG0sWzEWKjguKBTOeNjOmxofiG6LE6Yg9BId455CuK5BXUJOHbAfZqg2+kaLIp2nBUunAo0IccF3QYbU5uyN7/rTnUsaobX70ocklwq+CfFzfdzAu5fnSLWSB/UPaVbO7No1hNbtet47Q0W30rJ425poKXyey0ELSdOlby1gV52FeOmCrlkySPl8zEXAspwAvyGhyTGsrFXbaeJoF/7KVjyBsniCn5nNCgVA0E8HLtVtBBNW1eSC+mi6TSMJ1RpsKbjO2HZJY5TsGXYvIfxQPJ53iBR7DGaNzn3RC/MfdMI6ZQ5DCktFq9rkhSdg+xAa35118ECmgL9OVsOq981C70tLOo3HXGJUmgjreCQPQW4LOUSnc/87zJXZQZiPA0xfwvuTLJlkVUyVJmwn8wOGEoy+id7efoj0D1oM2YIZQpeF52VTqJuEmk6Tjy6v06yj1+cRZpUcoBY2O+d8ee0iVHy3iKV8EN34Xcvolsv5wXzeHjoj9jQo72/nWuopnS9tf2y1T29I7C3lBXpw7IsqDOpGkTwtWQcYkiLC+kP3+ihHGjRsnUkKMiyLjolGyLaMOVyT6pdmLF951dijCBOS1PhGyG1IRMNfwoau/K04vbZ/s+btlfyg3r8M7wSQKof8rvqaB35M50TuPdx5wAwu2ZrQ688bpkEDJucmWwN9onwI3YIG1tDmfbI9eUaKokm28p0DddZymf+fNwrZ7Yo23vkxOHC+q3xkERIlfdSav3kH41eiRkkbPh/oNMW0rQNORN6MV/j22qWuZ5OlmUTQA+zcsWZhoUwYtEYXC4eVe7K+V0DZRr9zztdaDE1Iy0BDWmd/aR4vonditzrmnRpIUrr9xFy41oDVyeUyZzlVlM4FPY0k8VwW3z8xrDUnsi1gl6qlZcCOMBNHed24VRkEOf6Jdc5sCWyymjIlSMF4tnqF10XsB8Xc6oCdxqkjFLRKS/qycuiqrCzA0uNhKw1aqnbTw0bG9YIbCfoQWpfYuzh4JM6qOjFURb3gvRmSr7SOWbBq/17L4cley6qckTP1rrfZ3/RdqkEpEAjED3gdjy//qCBB3c4AMgVJvN3KtmbCzNfzEOf1ryM6AYLogPQnTQqypcnpOPvpfJQnA0HRBObAP6Wvg/iG2cVIauZl/jckRfxsJWYhIfQoiGIMpMLgRppy6nI6ZF10Gr/BI5uxhq8dbtP5880NVxyxFpVSP1CB5byFKOex/0DUNYU1GFP106wjMXYCaW5W24+LUFU10GbdM8VOuqEQiBL2EGV691HiP6XZYt/d+P3PKPVLfZtYvS36djgiAGKQCweo3JHRSRYk2AEpevVYfQUAnlf05hWuUdzJU8CfP4ErN0RTDT1noJ4A7YOEAxznRtxNhTVN8NI9ihDSI7pTd6cDQVpJHM4fXSsSgIbg1Je5EDVaB7hcShPv5fa7TTCbqp4quwz5lq0uaXoK9haYjyWCM5gB9GKwkXxz2yzFRCNwUDu7gX+c3XLiS7/8XJelYdgIfG8FFIAvR/bM0iPgayE8pg3DVyNPGET1w9hbvAWi49sn6lR14sVkpdaVDRRSw9707jOZttkBew1wxUwO3KyNuEIAMNd7z3nVzYrUEO7OKFDCMqgs/i/jKOhHw95RmkCJtPmYwQJgJjQlKX9P/C5yvJJWP7H4s/sVJirbXZPTFITWXwDdYTja0c9sLpgIGKIZBGTBbf6hM6FzUqYpJYbZ12Q6x4Jc6EBmo5Z5JHLPfInFX87Ikrf6ViW9zWWuNMuh+baKNiqHZ5EU3TjRPIZRt6utbpXkTjV+QJ2angbZkBgyOyiki9zzdVs2RP7QL+b9XzSWb6t4p+Gcen0EodlErYzBQDzi3bDTC7KUMKkg+ukrsn3FqVZcArCQfblUD++4L8q6uDtaItOszirkl4Mi3g98oLHxs0rgX2j67QYrIANzuuUgA29lE4xLhKPIWfHzzPKkWXGY0D+ilzXeCVJwlD9py61IJPhXq2MNl0kuC8XprinxzJXEzoZEDPRjLyLHyXGXJiBo/CeSKdDb2/vbnbfTjq6gtz01ZLRWmAOi5peRjCWP/W0Sj2CzgFagkE7wOXykx90Ijf46qPejkaOYSDuTCgHU8R2KBLxzQ1RQlaWstLeyUNyUKRF73pBNQphMN1KDwqS3R5Z832QbKbq1o9CWlM1DXKfmxD9EWstPvCDhhDnGuLrceN+MtPSo4urmt5eF/z548KcO0zBh6i7LAPvZqRNTF6BHDi4xkK0qhlH8YDjoDMaXLrGEupjek+LjPMsaTv0f0u0113C/FTh/qZlpw+A5mbOihB13Rob2LQC/vYgehZk70RsihwMXJRpZ9mYitklHxJ6oaaXy6gUfeMztvIrdspqnxQNp7gJmW6+uoJXcoijxg1lIAsdG/IXrNitqAagfZbpuMmLi8CjAyOeJ8Og55NueZLWauDd9nQTp512sdgI/zbDoJK4SBsM5xO+ZO+3Bxtk5JkJpYr/rducIXC/7nGcoLm0pzO1vMyoEMM/Nb7o0/yfX0vJJ5fAxUVHIGmKNX1GsCrtsnuqq0vW92MAamPgWr0act+27UVP1KI7J9LrysfS7OmZ4CII2geTPX9jLTWfPKxIKW8MsnvQ1V768G+DyRRK9XKD4KQhnsOel0XK0CtogX8OCi7oqwMs8BzSJbb1na41hoY4rkkeDqjF2uZkmUC9rH63ytbe/v7RzhgBxqXsx30GTLpzVh61sz2DUa/3LdwGRGxs2M6Ek0A+00yiFxGUmkueKBzbUQITXdp0rCJrW0Qa+ILEF4R8O+KX9fZs7xoREWDCuEcRPbkZEsI/B65voAN7WOxVWbMCbg5+uhxIlJxP/zBsNfycV7xe7+yrCxLz4UOOLjcFh+Q0pbEPXrXmPZKa7HTROJeo9kLWyR4iGezuWxyX6jHN1zS5r0ekmCWiN0AmIp76AeC64IoJQnwP13fZ+2sevtXx/vZ7ZOJD9/C7HMz114wi7y16iDMaqvXchiAV6pZ2MmU/uB2fAn08webQzpHLW7jb6iydOHGnU4AeBBNbtdp6dNfVb1IyJuAK5HK4XLwXsrNzX5J0hKh/Od8nuDz9kCDJVL2Ycor7DDGjDdYeHkaT4W3VrOWha/G1KB7Ehbj2eLiROuO0xLVhKGS648SfRiiwuMWG90djHRJOlenbZOkgUrhxiEuo7qTXMsKS+v92f1BaiI1CszYofjbulGDgIXzvCYwIY2QSBO2+O0UzYYwbAfhpYkfyM/IvgFZ3nuv8hZuwg8zx7o7ZVcvWPojGZmhyXqRKrKMKvqpi1WzX0ZwnhJNmSfFyhCEOB+azjqBZyr58DHE33IJbRAKXrdbjodlKjyqsmqAIXLYJtiFNN1kv7m18U8H7srSoTTe8fSz/Sp2ABZ0XB/QOfdqBdNMhl2o7/4T3l6FdWH3QyNqMYT7lIe036uKzLHZr8rcelnCD4Y1sPPqHGxJJumIFDZlIfBymsa209wDKF0EjsX2DOpXEdqpjcIAzVLASv5mSVZbyKC7RWZB7DuvL07DR+axN1HX6DHDSEkGl8y24GswNDQd/Z7FurQWHUe7PVaNdUZkWNBlfWhwv5bCwlhRugn025VyvPSSvtwBB/M/4JgcbZ91yW9o+goKyjfjxTu+UV6KPRs3+hBdvu7bW5U8WDLIwC2EGCJG0zG/TEg00H0c8fX1T2vSR9Vc0zf8kwHbrAm2bNDxYlAsR7wSuGiS3DQeavf+Pwjqzi/0bq70CuUuVMJib4A9+D1Oed8z6nCdr9LW9mYHM5vMFdciLTPflTrLcIb6b8b0Gb9pYcvfPV6XmmQNgCMz8X8MCKjUOGbwV9KRMGir2sQZd1hrvAMsBop7JTsrgBaPfYxTY8y4XCUp5GSYsLCTuFhpHwXD+kb22bYI0XyXl1smYgkPCXSI65dKpUrvvZoOx1HBMbqMy3XqOXYitnT5Ux1SZq9vlmXoukhM892UlT/OF2T6xDC3MnO0BsD2IyPzo1oO/D9f6Nx1BgjlTz1rRiARxe/yaT3w0ONguk+oSfTOfcEdF4BElfRej0HqKmGJCMGQjKyPvYsZ1zHM8QCT+jNlkOUzZ+6RHcorIs/Ss7b0nPZCpfPTsJCfd2tmdNfvbmSfmaNDNput78xUT91Q8lAaiyBmmWuhwib6ZZwjYuk+7DM7n+Igij4SeuiDFQlpgukFR9GlWMG0ZVLoAI/SIJK2+UpDhBeRiCBmJGnFPAaMtblRrelxBzXQwRrRK4fhi2wtoINM5wSOKe5/8wLmvUc+0pyOeZ2ssO8C3NxFWAviYwBUHIFzyPIOIshtl3/Xc+ITQD21FIchpbL4URS0g0sjbSgudeuOErpF2qOf/Qy5lR/ftf7xiMYCBAq85ecQug/MKKcv2Ez2kSJtPVmCg88MfkVyOG8fScjg+KqS1g+/0r0KY3A/Cy+MnM6O7vL0UpqtoWowFySjsayWO1cyvrCtJhVk+JY4n3UPOu86OssPXXQrlr7dEVrNoqldv97kLwtlMCznez1zLIAZq100eA6QbDzzXteyp3prwoK/fei6OvLfcI/GVdxpnk93b4FgPJ+WCkp+MfVRDsUkGCg4D6UWN4/BlwYfvz7crnNwj4o6Sp+SNAvozFtqwGeu1LTC57xO2ekMtpIRm+5ePa3jSDATcNp31SBnPxFFhhZ72jtQXVRlSeAQ9rzgxynl4WqPCxQbp/RnJDEQwniWUKjBIupNpA/ImU16bo585H4NPtVB4+qHbioyqD1qBClxWHggRbPoHhKtPTKS1XyNxeOxxM05YBMXGcmC0OZNweNBOx7cLItywAKnt88eOdB2O3GHL8DFijnql3nIw8z/nekUrLIDHwjEugKkkddMIcMauqq9ynouO6isQhwWVvSJjeYx6ovpqhXX+3yRvG8O7DlHEYL4CEKOJMMiQ35+9MkfczGqdpPFI2wCRVKQf0259gY5M2k62XNVzlfgBxEFQxcbpwd33lcvuAfNANeJQclwNgUAzbDknv41Lj8NlFO0UY6KfMn6gz7nKrsamrdXJoyPpGH79QYbDPRxCHQcpWRiN8zNbBPp5elsWbDtBuKXSZRENUx2105VPniZI/6N6eDT7fB8tozEho3cOLRtOlxTfj0qPb/EYtNFI7n7Rmc+piBHRC7Io1ZSGmHIupAmW5n4w8pIP27uT9G9/2lEEX6BXrP+1gazExmwKAJwMOa1ZcWA+7RH7ET4n+ai4Oy7focK3RQiSZs8NGyxmzb2V1ddhqeyTUSvD9k+wsoHijkXnkWlilpkwn29HYRZ3VwIOUscNDO7Nbz/OYa0nHBx8vvzYftLlNtS1dZQ3qdnX8k/k3xG/eNnb0VUqQvGmaCEKDrXbGnj2oPqzo+njl4JCzU+IMpTLz5UT0YhBPwbKe+QkmW7UDIAjovr7PfEqMX70YVEY8+6AA/DLTaoeGfV1VW9IDWybxo9QUx/YddmojmsUAcTEHn4q76RC8nHc5DrjB69752jVYNdLZ8dY5489u3C5CCryoH5qSCwPa6/E9809soS/gZ3rJS700poQYGbdMn7Bo8ZoE2z0uQrUhuHLhMRvrfKPNUz43SY9LLi+7f84eAF5pk/IXKhg4QVy0RGWUspwjGvIuv/6P+45Rm9r/Edv4t88h2GqYo5SSdCnKsWaOTfR93znD61mXBiWbbHngqaSr29yCNZFrzYVbADHUugWagMjMiNrOtTLFWPmSP0+T87MPsQ6oo/OZZKXYff4x+44nkvBEpoHAP4djO1Jm6nDA9aaHifn7QMp2o6u/wa9YrzRG/geE+U9S2p7vHXUW/KiDy2rsUhApeWbc+uQdWklmv/A8DkwcAGx1Jni1MMQEs9dy56J7HjD2q+OYswFnT2ff/Y+kUqnPtwtOtEpk65hEWgaQ7yXAqulcQStlZ2pFTKaOS9gu+G+OenfLP/iRtaWwzcf7FiTDUOZm0uX4nUew0pIbCao378Ki2BLhuXlhmEgs2q1UYoyLnFJIh1nkOJte2hkBDODSynHtZcou4Gkvt2oAIoxrD7Q4YfDNEdVcPUpck0uxqPEbyzVqPYS2/1w9Xbt8gqyxNM4wCW3PC1InPwMVLNcHpqg+UISqkFEk+4N80td92zn9AuDbU535qdAxsPxqbwGa2b6ykejoUiYK16q2gf9sKtRC+/1WgZvTwixAZ05PRMg/RGMAHPdBIjeSq+SKbEZ6Z/8k0xDh+qU9A78GcnpQEZuwaXiiWOb/P/l4xVFR59i6+O0+WHG/Qp1XZ/Q/1H4KG3PgThNxBfcAc6xFXpspAnKIPAGRvmRFJ6GA+1PVEsacpG3ZX9Ke3qJJJ3EADEC1eRjFiLJrQbZSjxujwEZoFyjVHTV3Tr3rrtuwd4DxPlisSAXAVmf27N6vYJDagR7tbv5nVoM16qLS/E0vlEeoNgxV2j0eX5aOQm5dhhbFW7ZsAcXAp6ykl8yEhtvKlDigeOZEYueOha7h3JtAG0PgZlSiUjp8GGRzSVkARaZHY0o1Y6c7kN7DLK5AVOltPUCt+NV9xqSQ42R0dKIeLPtPGof67AYpJ2b+3RDxcSaxy9rA0X7FQHwR5m3bCyrESSsM4cm2OtPzGPmwTXD8AK3bqPsYYv8pNDdK4NMKgDDD8edLMt/XRseuELRC+QzSfEarwekfzEvqVTabaLVhh8x7Nj0TxPPXgWbhWStMqyPo1kEQfWNxe1a5vdhdd2/f22T0KAS0Mb68m3aqijiz736D7V1PBjTJ4jwO8uXsRAFHK37Rxpyt7ipSObiv8RGwd3OXpr/9JdAKBgMJ0MNKPntB6Gb+SFyr/VcXOYMWFyOKRrlQrG69dgwHEnythVnmrOk40YzrV4+njmpsknqBOuJN6cCRBeYAj0/9SIwIHF1jjBQQ4UJfB0S5G4GsmpbRaIdHGbRH5NC10NTb1Aug4zsKFkyl38vGo/4GJ/dbMy1s6k36cYMLKHJyev6HmcDUJYjNTyRHTNRuAyIh3fRA+8aWAudTSk5zhFZTL7DP+o9jzDghE/FA0jUTpdjngVWrPG2yzv9pYAkCHHu1CFiAP87OrkSjve+IOWiEnmKnZGP+tmjAbLWqEQ+iR8dM7WAf4fnpey3ELIbPfzT0GplReBoaEM+X57tMY8PMh/R8MUcU7DFQzPAWw7nJeZf2bWtDid9apCes4NzuMNtW/dBWVbNjAxKDuVyW8XJVJTrBdzjdNyRjG08Onm5wRuxYXEPNYFSOVQL5f0IyZOG1k+4tjGA0HrdGGNKxL1vbLfEORZejwxpmyFVeka5+xQ8oomO0w8LRN43PrnV0+J+6Ou19AzVCq2E/pbV9IsEOcj0s28ZiWmrg7RojvBSj4/qjJurH9mwsAP3VMGgA/LSTIxPtmIW7RFXFW4tjuBzqOQGoLmleTbLhVqRoJ/mcNocnxr7GYuP6Y1Zohy1AXOu1riCPXd2YN4VPs/fGmhdJAC/uL88cPL90R5MC4UpWott+AQLvPIIP8Ns5DxgzlsxNtGHFBk51CJ1ciYleN5LVPDh6iYQgE79Jy8sRfefeeeqajJ/NiNpniROz1kfE40mhUbv2HaeUpwwHsQLOX/M0cIm5M6itg9JSA1pOsYmZIMz9J2kTR0fRR1SKSXNQnB5AJ2RtqATdcFCNd02QnImr9dYYN30t7NE1IMWZ3gjzRsVI+YKSutYTlsjjs7GrvYotsnPqcQajR8MyRgKrslmoolxWB8rQgYDyasCTwyIgExOwSqF4iURCRzQaq1SFf6O9Df1HyQuVgpEvoRAQsQG2HUbPNa4bCKICXbxeO+2vMEC+Yve33H0VIE4hZ8M5DPgXUtGaa3WunuuVlK4Qpwco/qOdkZA8b4QeX4q36YCLq+QB01rIyEGDXqg+Bg7VTiSMf/80WzDAfO6DQ1QTBp1Ii8i14LkxHW3RDf82rSgTH6f0WCuDpFCI2yofQ4z4b8zP29DTn9HV+oWzQDdGe/hpUabtrqI8b0ApAaa45k43QSJEpapxtrTHavpNNo/a6jqcqn5UX/gTpMSvCZmDXllpOtHeH4jop1zyoYlT0tER1beRP1kTPJLcurmlFjSKo5M+fPOfboz9R+XVtd3Y3l0edxpJuM1wIMkyQ31bE4u4EsnZdTqFdbsnf4uAqvH/0K8bIJrlBv+C2dYjO0UO1XRo6/9RptnpSMv9tyl4E+Zd7LS6frLQ7xIpY8cpGvYGQnqtSkm1LVwenxf5DluDM/ktkJ8l7pQ/D472UCpE7K8IjwrcOBEt1+wY42pYHEMztn77H5gN1kMUU275DH6Jvf7a3EXVM46i2b0gnQQeENUZny0V853vIDAxbAZe4Dudn8eT1+WI4CAwvxNRsKOdydmYELBfocwkFcVgGGrqq72yDoM8/p6rraz7iLXl0h2KXwVzayD4gs6Q+DqwzvnyHQKP0GaGihEuQ6RO/s2b5j8Dcg+kR8b5j68M24bnhS7eA/LxLbJLJAzlRdQEfA8g3yRI41zZrcIbPUnvkDPrYJHr4CMMf5iAmW04aILukdD+6wbtuc5rUWXx90CjkhHKkmgWVB7NVWPJe8hXmXczQLIzrQ8+EDlcQ65joXpXDCi6fx+zpPl+CiJAcr19ugCxHEtfd4UVN5tfO/e36Q6W5lKKGYOnYZtOg4mNvS5y0BFaLWcVLmqqGnUz0Joj6o0mTJs6N1Xfj43FYOastzFfNlGakSbrsGZP5VJWFmJ5IMv78WoTtTxe0Pw2TmaWIZGL0b2z/Mw7JP8RRMAio9dLTwoegVmbash0AAIs3o6tUYmvOmniUr928qmQt+fVz+3brJVWiTAl5jSzBf7rOLS62wP4bAfQegdv1yzZvSGgMQEn2gPiDwvbFruhcR/ROLLsbhsypjt9ThDbUlLaHcanzHPY4R9R9DXuQl+KwJDwJLf8UivbauVsxww9IW5SNtfmAELahyX0LWueViu2XCZuF9bx8Tgd7SPIP8xxBvyiRDKBZ2ORb9TqGPpiqFQi8x20J+WuaaguNrvDYFyUXTujXLHSZDlzKluuir0W6Zqr9XvnLjRbQwStR+3o+ykSOEFysg0d+FlTDIIJTNPXgl57IY1+Va3Wmeb2g2eR6bzUW0nKIPopiMcR3My7cWOQi3lDhyOQjWN+B+30LY5CHwtA3JoiQpQSGiF/QaVIQuhfUljqvuFxwg3jPtp+Xz+gCI578iZgzF5is6l3yr7M9C245qdlOYcyzefokooZ6kS8jMdTfIzovTbKhY4BP1i9+sCDtRp/UdtC42pHQiR6tJOxJ2JI2w8Ch8QFv+rQh3BGO+qBtBl7JLdpr7Gh7CmDW67b6AaxDn3Lrg+OfJ0rAXuSr/AvmZomg/IMff6rcYyT3MPqYTIklpkCOBS4k15tli5lGGNcaeRH5OTPHw8t3Bjx22Q9Wu7vxTeyfVCcIiYuqa7ptwUBn8wMwIqU78+gQZHGFbfTlh3GHGEwiC0BjZiJNvjJGiZH7aepB9bFZ+9tchoaP9mhyCHoteiUBFpsDr7WxDz5bj6K32hwzNqdmf5QuF5xF8RY+SJnsC/58p6Dve16Dgr+n0hPJXy9oZBp38lhQcR08RHRupBrBphcVxSR9LO3Q9ooBa04uU2T6MD05G1fCtZeIdl6GPpmxiB3Eu8ZSLpOnSwzaJghdENxs+zUMCXfoHPHt2Xiid44+Fku13lwcKgtckHQxfOcanhk8NS5hTN1U96OrA6KzvmpZpjn4bGkypIenrsCwz+6ttjggcUtA9pBPzL1WOlZZmzalo5bBBUmoo07y6fJJJiW2qk1Av3/uoF6eQtwN3Pmw3K8OUk9mTUmCieo6rqUGsGXVrgGPo1qS9Ggd1EyrUzh+zl4fYW0K6aJhXxDByXmmGONPhMtIqaUNoX0ntRik/qwkbf9L+idrMAJJXLXiSj4zFtFonkJ4e8ivQkdrkKWrbQkmtMKEmHmsTvb7Shv6V8AdNqpvYIZkpepau8WZqL4VWY4b3kWgikzbnHcq671ORvsFWh9c8st/v12jL0y9r8UIVsZ1O1JaLeJYrr05dtIPx/JB8KxBfimBN66bSBkmga0lB1lQG9eBKb5XxgnuS6YEG/mUKO9Oy1hFcqeWcHnR0ilW42r5bqNsqxXx4zv6FwBP6lr1buTZC9fRu2eo8bw/z39UKZnAfALnr6AREGYxLkIiyl3RvlyQlfJxJmJBbyV+R1QDczEtEgAkYOlxA5mCxQwvWDNLykzXL5u+8Gd57RzFCByJP6A55p5zdy1ZQWbHUbNEuaxa7klVVOa5FSXVXy/7gZWqBb1KlblINXZSrueNelXzXnwz+PgAUzYA5XEsmYPI36mTyiZsM44q9FUDyO+dDXJgkqnAsQUrm78raUJiSkVXVrM0zpn2U3CHhdsFxA6fLuAD8Joh6wn+OP+5Ud8CkO3tmtAyu0TPTrFTWVeWcnr0mQ+DozeCNLI4//LtEVUInkJwv315nBctRW8Bff4pVcwzV+XpiHlKxCKF0AUWLIoj7mUbshRDyA7GLzDoOaT5csLYAyAuuig9RWle8tZEsOG5VgVTnXZxGzx99wbdglZ8CSIuPqFkiGTvrwX6blSxL0azQvt4p3IEpCd84AS6E+MW3yuBzAbKHCYOvq8963tH24OcF+QmNKd0XFLdhHXzrwz2qP17VFJmFCphFpx2QsTYPPOZzWya4G/V3VuK0eRYp3SeIRieCIgXaBj1BxWKhD/Bd6/7R8AQ5LsygFa12IKeCgCoZWzFWTdtWtVmKCM2xA0OQuwV0txj2nkIiARUE94lojdKnYzjD5Yw1Nc79LJPZBy1tKyTGnQ0lVDpLyOg04hI2knGpoXkZPtfm7E/vBiLVXNcjPTpFUcbAjC8EXMd6vwfdq/GhJdvCF20z4UCytLcekjwfFnE9cahcYNgfcRlq6H8fmhuhiWmUmC7YM7R1jogK2eR9Su4/DUwm8aZmzXqhbRvTSbyPzlj4M7cwDwEpChP7eih26VQtKt/bnGjhnjL/NNRGPC7uWG/M/opbQaPmyTxLHuNBEx8i3mhe54yC6JY3f5+wyIFSZPtp/iqmVbC0CePPiYg0lRPC06ZJwAuu7DagZJOVnMjVHTlrQbVSW/8dfyu7dda4kYN4UjOGHFEjaWYJjPStZjylDYF4QthGmoiYWtI8FlIeo7eJVPADg2+PJhhsE16m7nlYOQ+MWkiWMKgoltWmIwjxIEyGG7b++51rE1gGvm/YQaQkO9HwXB/b521KyHulMrdehSMA82RDNjDilrdIpk7O3J6ilUxmNYmEwrIf53QnEt3qDL4UcXEIxdSqWLqJc1ezy8/BkIy4Aj04vhn6FQVZT6MCwUH4/I16Fx/duzwrs9BrRKmKM6JZ/F0sbym/g4zoGis6HBIxaAHa508Sn+5Z2Vbl/v9cEzH8oG6c7J+LFaSllWMBnqr2VDNfmJ3CUR8RlOXrFEl2p6RD8n4iwb8aBIT6a39vHPk9OhVAGLMq0omotETxloQ6TBxjQNesl/W4C9ojPLmC9cN6QuLOzpaUzj5oUtVx2on57Rj2xgorJI82+2jyoKCcU1O52Z9qa0k1uMDv8Sp2yn1FWprZQi6zPyOaPwvKf5msR1Nzn0Nkb/EZCD+ylljMgztW4SSKtBejsUsOlZCq+aTopghDdNw3WXZfBsN8hfCW36l2x15Nxx7i0ZrJSAlUWzNpuv4a5liAvozCve1xEVL0cjz6a8nBWRZFeVWTFRWrIbyBl2yQKB3qUxi2+39+iJOKRNvldTKJo3nVA2k0/hKfBwDWiQgCwLtDaqim7L6OUTkrIKwZgjpT3hRyxujBOumvz8K1VfBljpkMwboc/28XZUJNLZ8piQHHj1U/xyuPKIo994vS5cw5crNO5bbkW7Oghz3sIwyIhyyJP2fAVY691JwoABi/k6b5RPDrvzo/Qg7dHOPrirdPBtlwLv/kElT9FE4J14LoEHX99oRzPfbPC/TO90Ppy2skzWfuGRrvE0BVLQafCQ/V/q53hTIy6yKAsJL8uONCuEi5xOwXB026IeuJ/fTKpj2O3m8rvnnVKmLYgbycaPBKy/D0cbHSnnJJTiaNnb4rwTcwPP+Bv3mDF2V5fPvpP/44DSfZKnNFx79DezWfR7dEt47vFt9MYZHccXipZ4CDljYoLw4DLfngAzxljv1NcilBs4Yr//1pL7xoiUO7X8now4lJ4S3l0u5z2cGf0v5ewecVuQcy2Ic62az4xjAEY1nlI/MLyw1O2pYcEYmy7QzYu+q46wNPtyql62O4/iXxNQuXmDAylfemTPa10VlmNg2ZE6/h3kEdROyTdH8mO+UfItHtkPphE/8HHYF5m/X7tuoVDXh9413JEotcVwM1fy1pK4zHk0gCEM/BgFReIV2TX6FtrDu3Vnlzi2S39M0kRb4jjN/Xic4CyKTwb1lMClOKYShzJBr6KDEt+3RMBvKfKwuW5jYXH2adJdLUg0K3uoq/z2AgokQnbs+BKFLo58Pcw/zVUrZEF37s62JwtFCnuuuUVusQGKQ2pOX8IpLwKi0+jTqrnCIXgMQwA0hHDW/0dy4xwYK0fF7jhcMxZROfvXocx+RaE1gt/vlF/1SbhPEUcJ70WVjgLbj/o88zLWEX0stRjK9iXlhd3ll1oxAnWrfLNO4M9dxUmLLDVTdxXB67Wt3Nikp24INwaaog9IJ+uMkFWXvjKPUuyO/rda8zNQeCIcCwEceVmPKtx6UvAADg4VFd9/kDGz1/3H/SxhzU0RcGfhD5x+i/595yEGWOnzIHSehJ6+AXySD6Ujh6pf+EcRr5spiyimVXFk5hAsePtDFUqUhKR80faRWDZaEyAo0Zb3awI6Z0HOyrEj23byt44cPMGmvZ8vz2Swi9nbge8pmu2HvM2qin2JAREqWDqsWn3tnCjyTDnASompO/VAeuwMkEI7vrzHAQuHjpvo+yJx+RznvqC6VEFI+7NDxjcyieESr9jO4sHGDYWwIaY/ecqjiLEQberIuwhIkMFH3PfOfrSGxer112Fm8TVpaww4qUXHm+9tH9By+xrEB1QuU3AcoejbyMKOs8pBmAI5C10Ae5v+Au6dx67BTkrbdZs0vOYfFSnV0Xs0D5FahnV3NccXzPJZDWOGBQmTN8wop76tHjEGhuZu0l5dPLPi9qIrwLipkajWNh/0JFmo/ZBM1RgltJCfNgXmv1GprkqSbcmTUQZ9VUPI23RRf3XkIx669QZcOWL47AN/xPG/Er+QujB8mNVE6uA6aHY/rIfRbSyuAL2NkJLCigbOeL5A7/vEjVNR+p/SD8xoS3Hq6nuRoVfFIfalBMdKFcaDL6nnbtU4h7RMue6cHXb88HOeW+swUOy0YII8L5DqK4lPWWNKYHZXkjWCIeix3kJikvCbKCW6Xl01MmalpOfSo35KhSRi2/Xwb//TPcEK/N4gQXmt9WKJRxXaFCG0WqSKH7esxL+RbbAoYpPO8M6Uh5GZ3dD8AjydmbQI9KJw5X/L8xXsb1axf+9QnVtIBdrh4+vcXNqFMx1wHj/Bnd/1HdnnfDJ7LXueh8GTTt/V35XmJfXWj0Hp1rVWvFcc2fyXeKorj+9IRRLdJSsTu0XENhrPpB/Xl+gcnX5+BMg1jQwUQJYOFMBVl4uYVmYmKHiAWE2GKxp8MsB5TPxiFJKM+EEn09+gKJbuIl30frlllm8wxZ9uFJUHfq2HsZhHvmeSx8yL5xy9p86Y8SFKk0mJsqvFIxMEvl0W9WT1+m4djX5RdGm8H6NC0RxwZR7NUd/tJgoovGYIDB8LFnieBuhCx0eLPMFzexSrR56cVEHqFkEnCoLRzCOE4T7YWDfpdJswiYkIIDjv/SI+o5FPZNCfqNF/Rcw/kjTaH6IKMXijgGVqJIYtOHN5cdx2rJP6fSZgRGZDA1nwm6M6qJALCeMd9op5MG4x1SBgooH9ZRIJNbpYy2HcqvjilxOP6sz51RoqZBMdgk5K9aVtSAA8UJ8evPDP58/3mBsSQqQSkehhZbxWdlLdMzGy8Az5REV3fmd1ozAs9wilJcIysGcO7OFo1Dj4G8i6TGOEYVycNW5xqDm7C1ZPOyrhWE/hl5u64TK2wPtl0+MkUyyehUq/28jwoOGXP6RJxdO/Fy9DL2XKFOkZl1KWj0L0bHcdam0AyfajYCIwMYaptmcA33iQEV7ufnB/AU4lAbPlV10ad9ubBty8ZbUdnTOX6KMTlg7NAevQI995sSAX8WI2bkZfHJb/QPRkCtnyV26lJ9/hbPeYXtmKvWJZiHsAapXSTlaOB1snLeY/lROAMQ+3ea6A0McqdZL28/bCTAG6AK9T+UlDyFWLsos776q3z5sUgy/dgsH1vRcqZOMrlnPJLRP9A185y4O4eKTRV/3FRsr2VSSzIGZuo4xFqfUgNHVVNdLAxhNisEa39pmoB/6MXHZdAk0Vv5UKZh+UERXejov4vYldqlQGRInHPtYtf9rhj2vx649pzxfmL1jP9ZbId2IBG2TzayHCKpkWfaE1gtGCV0rZyUg1odZ9oEVUGBKHn0QzWige78dl9MYGXFtJ9l/yZYIm3DP85zk0nxVzdge7Yj0hx8Rcb5Z0iy5LooUZVxUFtcU2EhU1QAc3zy11B48y6ZoMtc+Sd/M7rVKr3vB1R9m/iJZ25v+oJvch5GsFveaF1OGxbg=
Variant 0
DifficultyLevel
659
Question
Which expression is equivalent to 6x2 − 18x + 24?
Worked Solution
6x2 − 18x + 24
= 6(x2 − 3x + 4)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $6(\large x$$^2\ −\ 3\large x$ + 4) |
Answers
Is Correct? | Answer |
x | 6(x2 − 18x + 24) |
x | x(6x − 18 + 24) |
✓ | 6(x2 − 3x + 4) |
x | 6x(x − 3 + 4) |