30070
Question
{{name}} works at a {{market}} market. A customer purchases the following:
- {{mass1}} grams of {{veg1}} at ${{cost1}} a kilogram.
- {{mass2}} grams of {{veg2}} at ${{cost2}} a kilogram.
- {{mass3}} grams of {{veg3}} at ${{cost3}} a kilogram.
The customer pays with a ${{note}} note. What is the correct change {{name}} must give the customer?
Worked Solution
|
|
{{kg1}} × {{cost1}} |
= {{total1}} |
{{kg2}} × {{cost2}} |
= {{total2}} |
{{kg3}} × {{cost3}} |
= {{total3}} |
|
|
∴ Change |
= {{note}} − ({{total1}} + {{total2}} + {{total3}}) |
|
= {{correctAnswer}} |
U2FsdGVkX195RHCP+HbB8egE1J7gHvirdOsrToxvc6SWaYFCiEK0Bl3PheP/gc5o/A/99TfohnQEZgT63Ifi6Qlkurw4Hqu783ADCzVUvw5prGr2mUegE4kr5L8l9H/S4zItTCxjKzNDfkLb1dJqq0EwuAv9Akkyy54iNJZIKGkCFVHjobEtorsgUReiVum5rgvlYGoRtUNrYpoWVGFvfRriMmJTYWw13auW+qYU8EfK7w599mqxnSqeBJCUp/cMpJimmMU8S3/F55/1x8pr3sKN5YNYs0+TGZ35WVyj70W7VIAK+ICpIgFLemuKmDWhyLc9vKvMfcaJHFbvZvuySYNgKHhR8Nr1gvVHwvwJ/mQPJMRuxUdkjLN9SQYOtx0nxMuRgfetd9WypPMeaqq2C1JRK0K/EdFYPjTXkMPndz6W3DYwFMjYalSPWHVIJgnWm7LOeql3SnFsC0nwgQAW5+ojLvTSR091Lidm5sg50ZQwGAHfmWkeoQeOid2HUTqQbIaYBz5UZF4QK23yBCEmIDn1knIRM/p0sHR/P2nKHB+xnKX8syTn2ZyPIJEmSw9HGQ+Gyuz52Uk6TJ6DB9oO7r6YdgefNEo8Iq2vDVcDtNebiKyTlhn8IvBSwKtOwlbamqbankZaKXA0g3wQSomu9cggkdedM+hT2miJRpwyRjqVHpz7BF9cSM+U9h2FJ/VY7e0/ZHHGsU/hRtL/RwgyejkK2CS3pfaKMC6rZOt8vFIy7BxlXddtnCzTw4s/6FFxDVqFOFPkpgYsZhQzRyWQf0jUjGFFIy2Bd5TadR5dHYCK3XKg7ToF4fYM7PLn/lTOuMxsQAFxE914bp9BxA9U6L0Clnom86uno98TjNgeQYGZoqICydGNzLoNS6UFKfm8mZvyYjqIxMHzcztthGIJPrOGLVnlzbkXZgyHKwOSrYU2ImGCzo+DlYpgJNBWjnf15EjtyrUIufhu9FDL7dpn7oh99fd0hpLClG/f0ekvKtIQNK6SWwtdYFW3AiOizXVXwjzEMuXSQAB8eKIlh3I9BIKMwkVl0Rhrs9pZmwZ2B37zGBMSxo1LENPvSwqTE938iHey/Xg5WRrvXpRKXnvMYU8bR+v8LUP8vCi2/pmeseIc1XCffhkyfD3kzEa8YoAkGa56cj1bcglnLhFCPT/hs/GoujhOoRGTS3nSY30Ug1goaJr4eEk4pccbsupw1tjm0R1+zbYCfQg36Xh6Vi6fpuULsj7qw6LxBgkz8jjB1nTHufuz6FfwHqtSmFw0P71Stt/QbmlUUp70aXJmTSfwAKs3H4zMsT8pSCnyRF39E71blrTw6jjXvARublmvdLb9nyQUtx77BBkJXBH8gXAWmkYE+ZlSPQ6XW0t3eOMmaTpoom2wiIFL3YukFW7a3x6NE0yzSBqEAo/cSoPHXTUn2bmAmny5iggukyNYY3O3fE/I6FMshuGZXkuNS9h1ThC+3h1p/fZtcZE9ZeuMCHWbQlGsqerm7A5crh/CrZpeRZvSUAoQ1OLkAOXlfaoYnwcefQkfupr/W3ZemnpxL5gcjGNZvcb47dlbGAuEBlw+wf5byav97UafBwfX8F6cT2QEHRmZhVeecZAIQua1lxND8gEqOXY1C2q1lYsPa40CNukgCK5jqZs4MEMj6rvkZffXq3VWNb36U2JjW3sL1RvZTEkJmNsHeCnVFfdGmB9s5G8S2IxtKpf7qe7MFp3Igiyv/8OorOD3mggM+XUE4XcPXpKVFKjRdh4bSV1I9ZP3WoYzfCG5dy1ttVVi7EeVVx7NmSzLxdlmFaSEFIFfnvfMA3fniiAjHnvwBnAspUCe1Z0d6ms6XFQjsLqQsGEZpOtKrg8s1HOoVHuymuVg1mQzn1aczTBTDC+Vwp9BO9vKOAnS/i6kI9WPlVweKAkCTCzRSKKtuRewOcS/f/Usdn/kx5cB/y/u/cIpRbIWBYL6dn4gx5C83qRJSfE1zAoxEyqgmZznJJ9hrZJ6sNUs8oy0ORfpuUbh76mSeHsyDcZ3bbAT1UVTAmjqQ9mLnYZf+1yp93LrFHB+FC0+1JbzclEWaJfzFtPVwWQeXU/3SggQ8Hc3YGWiDArwIstS0DHQ8bql2PzkDWAxzzn1AFZVj7zN3lAnu4AQ+vb9UF9rdUQRZl4wOsEdNqSkJZwsiFXMHBOEmql9qh0uTQIrBf5D4FBlMgbqJ1muNyoyoAUUU1uyzjzPdL76PtV9WCoBWjL71xBsZYbO9/oci1kxIcBhbuT7Cea//7qF3aMncfVc6G5THaWbrko9qnTOwtM9U/vgqnd6WRZ6pBefWyR/Vx1n3ssEdYcf8RvqHAm47b7Rf7kZtouJh3QYdv9h0X4BvT+cc9CCy6WFxSwxsiiIthfECaNr5+PGYdwnRgtv5ryvzQJoq1dbqAZcSbHgHfpsFQw7hHbNCOsGmOl9EuS6VTglKYyAeaAIVBWiG/28NAXky7mUStbSoKZQWaSFolvs92bCIaIR9z5iBpTEMguhClXcNuCjcitrirJDT+fEQm3PcpI/swJOCbEKiRg9G0G/DsA6ZjBXdslCZVb+MLwk7a/o4IRZ7Lo7ozm/DtfxMuSvE9eLv/yRxV4hZ1+4eIEVUBvDTnFBMJao5LAbCtv8FlzsF3YYyG/mh+zFFr3L7JJfxc32p6J11O+q9znbJR9FyBVK2aJiXAPq0LDB9mQOnQdv4zy/2EPaJ85ur0u19Hhihcly87n7BLcgxEUf1sE+M5SQgOC1lKzDxEVDaMbZk1MlNnlRtz0z77lnCzAw/Y7c2YbaF49HUcfN6egixfmFWEQep2UyVe+/9eCoTSI/tSoMT+7a/1w6q27XEFYyqEc48CvMSxkVWS2qSx+2AYYNbja/lTpxo62OOmFxizYr58R0P9K36m8fhix5HZZ/vtQzb63ku6uaIpC3wBRujzgsAWfN8OZXQwDQMb6oMW+lVTzQ3aqZTf1LEm9uUdGiNMS/ezqONlUHvBsEPrQRW5WcFmzY9rOZEeTzVpAjHSUesP5y6+GbmbK0ncXydutJkBjCksj/a6xD9AyMUtkmaoyThz1YDy4ZUf99CsNzpB+JlIApf4OtNmbmkoBScDxCXcaM99MZsw1rfmLg7YYN7x36LzGssqopif6T6XqKpSjHIfr+HnZ/un0mOojWMezI4oAoyA13yAGkkwBSYUtV5HUVPGRsNVGMBzSPtgHJz7zzp7FICl2XltLfiaPn+095VC0p1PRWRfoucG/CYgM+oRhh4BdEYJIUelWp/rpGobMu2wnUyZHmaZmsVa7hB9IcAEzjfRKmiRK4h8VtlVfjKy/mcz4oihLwOR8izXqATDdTu8CgK/At7lUIcgQzjNXjSEIVPeWxqhszk2TPJG6jifJ0vp35w70Uw7kt2/pJh2NGPMhmNn58Uxm94YjJxC/TTfYcjZJDrHtmunwzTB1Yvbg90/5kLDb1fC9TvY5Ojv0uVjftvHE19b5cJR4wcbbwIzJreploU/Fu9J7ShXiH1wlWv00w/ylPCnx0EuCKXyOhAkhmiPGuzKEy1mYE7N7Qa1rKTZ4olMuLte/mk2bxGf6dr3InASHOAMU3y+gQYn0NtEhJk4PkBPFIZVRQAKX6TEy/ipDzKOW+VjGTPbU2MFFcn9VX6qltdBQopiDQhI7882/PBlsTMeCaDUtxhe+Q3g5Y/FyIDL/zQMFIAOt7tYnkTNolg0s9wlYJfxYOv/dduMCicXw4hPA+cNS9v1cp4o456qt9VeC+71/onQVOxsQP+Muitu3wmZp3Gx0SiRvCNa+JxG1O34BnH/PNhyApsOpZEmRYI2Gz64EJuHTi4waQzxryTN19p55XUqDWHPfFgJ/nCKKBRRodpacbiovvaBm+qPHXzMmeVRXMw8kA4gP97eMiL27Xf0mpzx98pSseD0fYndblRDOdTEXra6YGW9aapqPrYStdBu+o4amjZBlgzrc6Zot1pfPg0K7ogo+zPRD0Si+rpqVdLI8SmSvB08kSPZ42rbTo5UNcWLOBU/QGt1foyDFqtU0VnT0qQrpyezzjYj3v8biXWVzAacfKCGU8P4pUsva/7buAYdLzmiNcNr5i9dBLQuRKQpzahxsdt5HW5aROrN6Hm3SxIQ3kkuUs8QUYP1D0U4Wz/PKR6e8ev0jgDD8OBKuPUr5V9EgF0qR1Y9LxLBoYIaJIyMe1T2piftVwjzfJ/Vp6/FsMXx0Kf+CnnHxWMAHNsR+9RCpn4hfB5FEtE2k1nPL9LQifIRsSmco7Xxr2JzyUcPaqIpPr8MyCTbdR3/sXmYLEBc/fFxC4bnfnYn7XQ8kkWXKzzzbSTubf+qeGa+35jAUPN/eo2cnAQkd44CCG3oY4DJktgzxHKyNydV3fq2uERt64EDzRWyQ6MeERs2Jlc687MBWfJpra1A45KOpm3pyiPqVZq3Iy7tGiz+EF5XGB6T7XCJ9kZ2r/M+O9tyk+ZZy8XNhWb9HrV3umn8ZZYWFlnVI1n95c9XtNpCMYqUxTJ2Eb1VW5jEghpvUtkYN6itJzktlZyQI28W9c0ejiA3+yTEO+LR2aTl7UJoqniJu6+wuziNiRO1Cm0yxQ/SI2Yd/igu3I/5qv7omf0N7t9noUzDGTUWX0YrvbgRPxej4b1Xkcw1wXdcp+eqytRibTl6ESUJpijxSIcHPmSwiSYIzSGgVUqre0sZuBrRnvuUbe4EGhL8oYINCUgrku3Gi/rVjEknA2Z+m/sUvahgAjaJR38nfn59C6qWa2/aLErr0GOn3RwdVC8kmcosvPngvSiK7D2fDczskJndfzj05FFanMZQiOj8yk8uZ9C5GiQ8d3Oj6Emzvs2JUUtFn+vfv+f0loWh4sLX4pPop8VwRlnirpy52VfFJes1Wb4QD4KFhYeCNWaWsXkElyYBj9ydUKkFi4XWWBH+XKcFQ08PseqjjLhRtNgASkUHUorzNNKdllupZWKUvfcdOQ0q37exFLNxteUhfUYVrnvTf7rsIujybJkn0+UDcvGpjVHp7K4IKI2RGEUwNgsUGRImOYG3s8mz4q+B0m2iDbtvQBhXOWIK7fqSQWzWRfgEfC2l4sMHK5ZHlZ21qboJRSmX8smMKqYyKLxzukAlDlQz40bo8xrw1WSTpJ/k571rNmWM2GO1IAvLg5E+5k2F1Id87t0ltIgOdVmc+Ws5QSOL6LwK3wGv3zidFho+iOrp1rdHVhF1UCZNoI5lWgbXVK51QnJp+lpF0ChJ5Eg96BVU0Cn5ZQnpcBN72kDbgeHMTrtvFqn7uFJhD4mDkSqP719vqjGOk3N3QpJ4mlNPNDtKdHKl/7TcCzxDB6eE8q9H8bOqZ8dNDw4DGVQnbp5c8PQRnEMsaGjZAVKSBOj6FNW7psgDAG2vCPyQ/RyGitlKVRHXNLQnoikJlHH0WZ1fEJzl2lJO0hfOqKo5O6Li96Xcfu1CYTvuHMubBF2WXNkn2gAKH3VBBQhnPMezB1kqm7/s5zgTDVnftYA5E29McXzMSSNX/fA7/5bDnphPmIGoVyMZ/YR6w0IGowMh171Icnu0842SrYed9EdKOQ5fHorrfvPmUmD0xW0PsYCOW64DCQ5w==
Variant 0
DifficultyLevel
579
Question
Con works at a Fruit and Vegetable market. A customer purchases the following:
- 250 grams of grapes at $7 a kilogram.
- 300 grams of beans at $8 a kilogram.
- 750 grams of onions at $3 a kilogram.
The customer pays with a $20 note. What is the correct change Con must give the customer?
Worked Solution
|
|
0.25 × 7 |
= 1.75 |
0.3 × 8 |
= 2.40 |
0.75 × 3 |
= 2.25 |
|
|
∴ Change |
= 20 − (1.75 + 2.40 + 2.25) |
|
= $13.60 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
market | |
mass1 | |
veg1 | |
cost1 | |
mass2 | |
veg2 | |
cost2 | |
mass3 | |
veg3 | |
cost3 | |
note | |
kg1 | |
kg2 | |
kg3 | |
total1 | |
total2 | |
total3 | |
correctAnswer | |
Answers
U2FsdGVkX18u5dHUX/3uNv7UMyBizN0mnCbZP6V0qLBdabOF54wUJtCnExPVwKmddD+blph2a4FFosTzSrKLZXS4KB9OqJkc4PBU1fAvhXzUqkTb+7Hj/sTCoNNSpNt5eJqLpDg4eOlYavAV0ruk1GJXoobYMrlhIER+Kjl6O1JMH0RBzajEep2m3WE2vxHbsnXblPgcV0+jhf4q7Zb651Ypefyr08aNLfDdt5z2vxJ9rgSbBuaw17isbkEosJZ471ei4XTjkHxXGC8fkVw5bcvnJSmc3zVNxs+0xWaNgWFtye+rTBTg57WInCoMhOZGXc81WHh6RP0tXkX+ydOYupa5TQzAKyZxlH1GeFA/++Q6S3qfmJlrvBx8059DpdvlsGHkWoQJtcfYLxg0aFRVQuPbcJR2bDVClJkKYEXPX+f3DqfJ6Ks+SsvUwC5f/qFGNomXc4x0XJ5cn1793OAnli7XNcTwm1z7v1WWu1Y85p4Q5v9JACX53r+0iH4LdWdQ9Os+WWVUxrA+qf7ggDlzJAgIISNl1QmUZiBG5L+a2QNtrclk2ouIjDHl0SzizTM9lVgwfvNuWddCli7nk26iV5Dw+RTPSQO6hIvKfMGalBDo3nl4vkjZVNZ5MKIUZIUk6YHYhfIDpIa3FfrOpyc3/jzQNl/jZ2fDYyRWqOpiKx6zwUQY9+FCjqOGupxJWDin8qeItUdne+FvZ5LFPD9in1t87PN99sTr4zBmG7DaH1cYy69GPeMWFj3by1hW3Y6R6yDkx3EHJmj8aMG9R5/g/Rc/evcmSS5xsQxoLh/xIem7wwYztEAO9/ITFeuPnYV8hcb0pGnDhslyGQrpfD47NE1wZ+JRmXjFxemGrvRHrKVqOm+85yTFetCOck/rCN4I00UAO6YTLn1mBK9pIgkn5tKW6wq5Vlx6DgngTnHlWvUIgBlv5P071Ua8VWJWlnFPpzQ59GSJsEVxvaj0RsDnHfmUdTeGiNvUvZzlC8kP3VzGwpw7Fu7hlnfx5nZ3EMIw9EC+nA/cuBHwKNzRYBzw3h1vjXQYmVNujDPJyjv/eEtwYfO2swy1Y7ffroWQMql25uYMYVyN3IRtxaZTzvFoKM9ZwKm5LHNaEOaLm2y3jKbqxEFA5btA5n8ITDn1E/54wlVFaBjo5JRCW0zpYTMfcvz2b0mmO6hzNwosHxdMcas73JrOHztrsqv2jMviB2N6rGUkRxDcLx1G8HKgwYkLF/TAKPgNvjzzwiKEqqeBDBgFv8IndQYxnUynBKIeB5490F4+z128XWvI23ZC/voTXXqrTvsLDeU9Yd4ocf2aPhJ6C7MwxzS/eKkFPCJqvZ8kYnJ8OSuYqQwVSF4E+cFRMvMO5OU0wpqLhKQCnY4oDGzUv4fk0OskKnirloGhxysUdstytuCzwtcresZtVN4Wfq9+ew7sWJd2qnRLRfhVWFs65ZNCAo0NJzCeSRNFXVp7g29UyAFfK8/t9Fuw5bIBQk4Eka6pKM39J3/gjVokMjSaJw175N1TRlZVfrPM7XsNKf4s6edjPYHeoU5XEDvRdAW2fSvV1bfgitbXVCclMQ87tI+m4WOPrO9Q0/CJxQvBfQEozpdUP4GMEmQIg06qDddSVW3THiJlTcG9I1fZDatoAJSR96gEOOL8v03TeNcmbnmcG/Cl5fNZZ91e7SX6jqe6XVNom80Hb3yW0uyCuYSnrdcL+7JEbN5I9BGMbArveAsvVRrjplLJfWsJ7Xxb6884FCNVt5vmQZcz2X9gAmW6X9mi83OczqCBCaJSQVLb4YTXT8bZ08N7WHJ7XiZRy9Ll7E6GVCob8uJRka+EfLZ0I+S1PasMJtF+zF493gM9NVZyJfEb4eldUWzUie1T0pX22667Qnyc84jC5b9q8a5wTAogbntiL9VAb9HT16Wy6DZkP04cJzGSqVbEWXaUe2RqvQrx/lbUG4zfjvGQDz+NJwRTc/myAEAgoThNuCN8ZHbNCl/7TXo7rCZsUHC+QNn04mxXesUES2UwCsequPaWsh55sk+5KSnsM6f43Mte+d5SKTx8VeVYUllPmdRioYyGdhS+qoEZVR/jaZu2JunyNv9G2jKHNsMouM/2s2lnIwDnWHMKLZTd0P13ThRD7GYb8W0+te9RkrUHjRlZC77p9wkhcQjLnukP/rKZum0DSDmd4woNL7UH/ZPMkiN1+8shBi//rVVn69njbR6r2dMCAnhMl4SMyfCwgOAVELmE4pF4fYZO0IjLWVPFzl0hcCvhE62pfGjwIXVbj3vlR+nyzPVuxuDk2Cuqo024JfHmjqXpo/3faRF6ssbSHltpPuO/8f4TiKj3RUz1x2r85WP+J4DYh6R9KY7BJvgIkVOA8pTjggVU5ftfcbyS/3bkKJdt0C3iQeBg6PoW4o0Zv3u+cqdwbWjStOmFlnFUPiZRzvc3y3FNAETJ0KCgI8zfe2j/QQk3UFyAmHodXlJ+YmE9ZHXUsPQOr0zeHPKHjj0SP8PpJf321HDguOyQzzcnNAfIiC6Wboingvn7Br8zgrI0ufHQR9RsIIzJoZfQ7eKpYg4oHsQJNzuN4guwitMVYlLJcXO4n/6KX/pGWf+n7tcDkAnRgk3vjLsONSe536EzCFHnLhsD6lbViHpKK2FPAKfSapCfra8eu+2DGjmeSoWHUoSpSa4az1qntbA98N96IIz5FQCvQVeuUeaZJsYF6F+EWUNX9o+jJ/j0bVM9nJLes2HUQtQmfszyCMp/ZifvDFr3zS5X5Apc32P5jxoxX4VRJ5FQllVNcxEcU3w1CQzKSmG3MgRJ/ieO6C8d9ibkRMb06Ogp7yAxNoDrgYcx3qjGd3onjAMS1jc1ABrXHyGCnKagcC4ON8wkD464I00BZYtNtJuU0Yh+bjSoxGcq4rLUHJCvVUvnQ6FpMo4vVxbunmRWcrHaw+HalggFo3D17fUkXYMRb3y0h/+74sEV+kc5tFn6hyxsMd43rj8ZTqXTs6UddMzXr4N7GRnhCtRHIpcRsnvwco0Yg/45cOEvDvIU8LNGG4gArS8PHYEx01jToepWP0L4LFxn3Lu+Eyadn9MRlJEfKHsnAgDql+GmAH88Toha985PvmI/AoNBwYzQsP9sMgG+bBbnr+2AuoY0lfrJLGKwN359H4PdyLSbnEhFmvpQdQck/SYTVtSqLI5p3NRB8Kuz/si6UHEwOWUMFf7j1WE0Fv7IBnlhbRLVm5epPGAnRbO5iProi6P3qc0G4tuqmzdObC+HOL7pCNOfjln4bp23J5I1EG3ovwBpKkC5g7x294AcA/6EUyKRd+l5K1E1DjOyB0zItbOZBPQzlPSxip+EO2v/Ejvo5JavzMuD/dGqA+AkxSKVf0AoTr3jahXboK98zG7crqpBXNjWz34eEQNfUy2miDCSxuJdLn+8l1UwFB8xJ+LpsfttP/Ql9yp1wTH2EgzZQBIzmEjsyZ1RpLyUuL3F+4wxf7lwdXmfodQYzYO6/7DQkRX7NLqns3N+QyPkV8QgnSg+3qOnYFdAQ7DTVvQVz/cQpmrGvshumetJwvYTvD7JSiJJ90utkKwJY1t7nI2xl/OhwIVtBrpk73pNV1zYDC6emtag1NYz25w7+qbgbLM1qkrXdeVLSpVcoFylflbdGCRHNbyG8NdRvy84VrBUDUTh+N5ZUBBJMBIvp60XbgcYEDQdspWOOB8hdKASCNG4ThywyvK3T/4hX3+n2XhPzhjmTk/OobkDaZ//4Yr5UNOKB+OfB5LxYUTLKD0BFRwqmKFGmkAz3t/R4C30Z8CrYuinfmY4gLre6Q0qjzl3zwvUXqls1JfNBsXqZlry+jjwKO9jldbYXEnTO9J0ECy4abfxaPgcYix60oCb95jeAzC6OqnA9eNG3CUOpRVW91wZk8nbJCCIHiuCMCl5QSSpU2U5whVw6zp2DlNHbRFGQzsS05ptpVKe6Ogv7OSpgh+NHuOk2NzH6OdokDmk9iXtejamYM6B2hGQmRQQ1A/jzWN0VZs9AbTwRjialEHclr/Pg0HSxZ49xL5EmP21Fr9MCWg+hLHXfj02buHhkrI5MA8s1ot/tFffWwPXZ1rb/dsBgqLflLPYPPELYA647vHSmVhQQyh09CsBtvKtSaAuaRDR2ae1I+fp4vCEjbf6hUo9o351BxTGdh5EZizWuipZRYErnr516XH2a7x77+oSqDT8xUrRJ5W8ymd7wgWH28PjiP7S5AyVAuialpcFvCbz3Df5fHRxEX+Y6izmUpUySzg3rx3fFZTo/A+ul+BuIjq9+YFdMFtCduVracCv8pdnes1SW1dsDJyO0zXy6n7nGsiUcU7dLlodl/2BWVo82lZkX4i1P/pGVHYB1rdtlzpWKWM4LzzPbgkIZ0mPdP04/fSiAc5p1+pjAsqBHUKAuVriIyFau2rCa4qvzA/H7s7i+6+1lVnIdFMV2DxRQXhTDqUYN7+Zsekm63l2gZON8DcMITBBR/mkX21RGF5Hos7yaARGQ/xqnGzyVXwN+KttWXMR4ddKAoe+H1p2sXn9IMlCxbCZAcAJS3f01S1ABvtw/ByCIUDCKctv7NuqezAE6x3U3tGZBqyUmveFrna3u1sYNS8S4F+OgVKsY2J5kGPdFbzB9UNYjGJDHeRMSWqUbIbfZuMS56dGjr15waFphslHqxF8aebu8WSDHwJqNd1fqMv2fPu99qEjnaUwe7Dj2IiVb2ksRKkU96CyzpAvCKSTJzPjfPeToWrx2yzOujYQ4XJQCrpi4jr1LwW3siFA8OpfWKbCrvkkiXO0BPf5lOLE/1hOTr06jIG2hHJIf1iohbR9p1O3lJHuLokgIhXhpxYey0kCwjJbmE+HBsUDy4OI1v07aQ/mWSmeXVchP+0MDnUrh8XwNBg6hDkWUEaQoHE0dlPv+jIRCCNgpS2DVoeOWj2GteFPitzW+4j6DuNCUf5cOZWH0NtRCFpbqWr0LDMETTt+0p6TFjcEqSo1445ew02MwvsAX0h03EfthWiZac7G4Oq/gjwk3+TQqqDf5C/0s1YuptQZ1mkBbx18p3h6LdOXUb7cRvQXwM8xph4ygblmUFlLeJs4XtIvcxhzIOF0hygaMGs3Lf/rYin3mMAdGbsiAMRDMitGzb2mI7eCH58xN9jlF57OZBjVafH0PXKc8kOHIDpdS9m2FxFd9atJaiT3LXdkYguCq09+Xl4u3NFhwO4WY77hvSqQVLb8Ak35oN/9TUo3OOgw9IEnHB/E+eXJBL+e46BalRn7JT3JuU91ifzEQ8Hj8HCBryfqgAyWl7evLHC7agx0WzNNyeDARf1GE2kN01uDSAntXKi2h7bw0syQga6e+mH2FgVWc2PA2C/kzIhqCA35/LqjhDBMxf+dQN0lwz+wXsP8CvYq2UTqjd7eoiXBFIizvc2WBK0nxBKp5BFAVTSXW4Rb1pgi0XlhZMNJOkKElMQ2GW0KloAqMK/I4zIC+yUFCBOH59Wqd/nWo11vahgnichl7807VeSCo4Nk+s9EFhIFTKEOzfbNETpjL8LXZ6VrmUhaNjJa+8k5zTjKKjOtRvMaWY4tIlGRgIaJvnTxmsK4PIiGqcOYrtsHsg==
Variant 1
DifficultyLevel
579
Question
Alf works at a Farmers market. A customer purchases the following:
- 400 grams of lemons at $6 a kilogram.
- 500 grams of kiwi fruit at $9 a kilogram.
- 250 grams of tomatoes at $8 a kilogram.
The customer pays with a $50 note. What is the correct change Alf must give the customer?
Worked Solution
|
|
0.4 × 6 |
= 2.40 |
0.5 × 9 |
= 4.50 |
0.25 × 8 |
= 2.00 |
|
|
∴ Change |
= 50 − (2.40 + 4.50 + 2.00) |
|
= $41.10 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
market | |
mass1 | |
veg1 | |
cost1 | |
mass2 | |
veg2 | |
cost2 | |
mass3 | |
veg3 | |
cost3 | |
note | |
kg1 | |
kg2 | |
kg3 | |
total1 | |
total2 | |
total3 | |
correctAnswer | |
Answers
U2FsdGVkX1/wIbKHPEtp5SWZawDa41D5GPcrpimDVL5XAx6kFDmbSAPqB1kEqLrWYAyYxzIUD+ois6NbbV0htXF7DxY3oQZnI6KEQV0JpgbQEwMci8mNnh2RAt4ircjiN+rY8m0TOHxFaAiV+JYA7NQV7nlrKQJCc+nGgTAbM1IsneQwBarqEXLH3BrRsQxH5rpziEenQndN6BDQGQ2B3joJ79M3Btys2ESxNoeCAxLXmfikTGcm/bfBvKqYeoEAwJH2MyoiwcmAqa2PLyOXBFHLt3fOnOmWIZ7mH9s6xoseKzdVHSooHegH/CdQ+ywMxFUBZLU1dnC4EDkVTjJILJ237Y8yAfOLiYrAPHBvguyMKvQStqpKBByPU+5613Z0qSRhqCMpVd1i0lZDl3RZTjXBEGitZKPBJoD56UJU9UuTgOkdzlhyP1XzhBro4bkku7rwDl8ygtMrUvv+Cq8xNRv/Lt4U6UmAiZYQSz86wv6tgk3Unnf/Et+Zhe2tjGH0Xgi1PIX2FuqkWCrB+W6LWH+cmUXDRzRAeqB+AlS3aqznw020HBuQYp9kltZipsU5ZGcSlVHYRF5/ImoIBYIH6O92KNTxCXr/Prf7hU7hG05shfbd1EGa3KZwmkGRiWieUKouXTmqMbcnGxalf5ezJ5+8Ltj4pp19m+mD3vE+ZxxApKA3D0IqvxeocWmnUOO+E+9tiqPzQOzirlRz3fCLQMB7TKAOwrSs0JrWH92lnzCTFr33XyftXtG96G50Zu8lYHaPCaMf7j+0t3sdSmJ1BSHwkhgkdMog8shwvjIZV7E8PVK2S2rcY1rc2Rocjlg16zxN3ctKNGLAWjy6fpFZdc7+1ixbvVLJGN+1CdVdJjOLkTzm6vJkrUGdZrRDl8V2WMgLRkWkKj2nO/3Q7Xhd6uqHuJNEcsHFtuo2iJ0X2yKsf30vMwNmHUqAya8mQTWAql51IT7jGGzrUe8v8J71q6chPtA+sqV76mpSGfpT7Ky0qIRVQS8NLM2bg7RJUyI16/PJdZzzwhNUYN9ADBjM+c2l5u8MKEG+StT5ik35XWfsGhc+9U3pxJLQXoYCKoqvlfqO2M9JHuukYON2cDnEh3Rb0Vr8Z9aaSR1vA9Wk2HNMwMm+1JQ6lxcd8CX1L2hzSvfbDeGVhgW4gHdXGdnD+Vs0bDjZS9E88kXxJdYowyGB1UW9g/C98pFjSlmKetiZYf0ehJQrVF2k1HmtkAE/4Z8rLi3wbF/BRRekLdpukvYSYGiHzNDBwpLCRIr3YNrVNDLc1s0mYKG/DZJ4m92DgsI1C6TYKy9LXg9DbXE8gMVNKHfiEWpU8J29gVfJKqF3wQu7Fw0i1hjQWEDQI3ZGGpRCLL/+InETDemVQV+WLVj/fsw00HAip3YL2crHTWRD/2BqXwcPMBgEBFMDHGYlVpqwLULZxwHnScWuJxT0hcMCtWcBpLn7bq2hKQZ6h7hnhlyQlNOXky4eXpjy3fDOMqQ5NpwWZq9vl/DZoymatzHmTMUVPAHnt99DsX/Z/OO8tBY2GXCdh+fgIcXKJ7NQwSDm7h4no7jefq36leqabpn3lH22wsXYhJeVVp3TlAHbecYs1qAdWMa8poBOe2aIy3ZRt/6qggDGNmnxyE9Mvmg0foD9NIB8UVCxLvJPHsj7pyiqQp0wZD5xMNwuGspHJsCq0khRG2fDh6OVX6gGKxjK9IZ/LyB6gzWFh0IaQ2JPSBy/k6f07JnbQWwxHa1BiFS18SnajUIw/u5uPlzrsFvDUBFGd4yI88HrMS8Ry4lMr4xHWHsQF7fmjIdSCfJWpk4xHmqj4RaFI/4dftVHRb91lcJdxHPkpWC8GhS861EuFgWmcliUdK1abfthpU9IilnsXUw1l3r05LkDfyitaLpwmF5SoBiUhJqA51pjjayzwDxJe+9Z0ffxw+gBPsU5RNSUjoitJw8cVmcpcKvhQhiYT3SxETOQvRYr/MaYecOdU3YFHfzVC/JPq2oBN6nIffCtkcbgGQQCPfmhQmF0INQrxodShw506wr+lAovOliXRFTpIde0f3dqNE1TO8uC8m9l6cKlcbPqvmM/35FVQWQpMNWIWfJ+netGvuG9axMH4P9qS1uSpYka2YsgwdfmEP2RgDjPEhWNAJN47gAldw3nbeN1cicxC22zuPmfMh68GeaWmmGq/abRbxqVLDEl3yk9DghijYkd4XawqR2j59sPpsxlALpaWojowSdVxWVEQ1omU2GH2lI3Ua2WqEk+MseSBLt2pNYhUnf+vHTOcM/bASqzoHBOrGYDdaGchP/gMtTkQAnPX6dFgrc+vtaNcYC8fd7hhZhLtMvnUsKQj9GTJVkDXNiDN6ZwSygg5C6Ql4j378/1VQuJQ4UBu4bRma0ApZXGoBEZmPuSwhcDFfmwoCjjFSmNjUTgtmmgBfI+C7iAQss5p2klmL+2UtOwz7+4viMXKZEQTOPcrZls0CnXoXO6mK97FLdyJfLkDq385KfnnhiHWY14wLt9bRqeDhz7dKMppHHGDwL0rjof8+Q9ytqfgu2u5LiytEs7MpDEP5QXnSBfDI1SX8Uy1xmrPPZZgJikPV3kJG2XResZixCUUa5Xt/vgTD1K9HiKE3gvldb20lgV6ZdwkO1d5m4HgDLYiyaE1jRIgHqEa+TuSx1fiynvzOvcdLtwnw7pnUVWdJTtClNx8R5HBc92rHd3zvsUk0VxwMsOAYM+45AQOSK2TBNBWhrRVxlIFRCi3q0jagGW49yc4LmHSgyXDoeCj1ydem3FagPL4Jtnzb5VHJcSvIjt6J75Y3g1lBXP0A66oCW3QNE9Va7vxJbYgS8+t+JlPa1UaNJZ53w622mg8/+111CsQzqcZBQ6nH/W6TstwViIFlvMHpadPNW3zik+wMLbmLGsUPPWO8od1nXHYx+H/7/XqpAUIR+5DFNRHI/KaXHSKosFfSBKaMH6JhG5IYwRpN4sbTj11SADb8d1XV4/gZWazEjxsevpCgXqqpGg9dspD2hSOBZAsardZgMjVnVYUpDD4WKtOwHIRO9Q/44oD7m+7I9s4Om6v01Jf7Dc+/48vsUuZA0F6iOtXc/Yls2kc79ZMF1h1lUPQB46ih4s67O16GBIX3QmhhiBx+fRdDhfKJW9dcVegPgC5A+eP9kq0fYia+/xHWYsxMLq8/w6ZaGzqtSqIEfdx2KwAnrmSSUBCFR/u8SzLtUG95C32ZUMHv73/9986mzJJxh4yBdIzljjkP5fasTEOxNjC/WkAeOJMqUiTOIu3NregNl1Ttu/G2JA735OEkesoWHWi5s/sjMFoDhOO8A/qwqjCPfSdWdzow/lNSv3EWD0ILicI7ai5i+woPTriGPftoUlOyjKSVUTXXSxQs7YGWSe5CGGsHDO3PWxEy8XZe65vUEmXE67TxxzGxOBz1VtW1RAVUJTIJgC3bXByoSdUY1ofLLS1RxfQllJdIMxmWwZjnxuXlJoJfWZdYwaFCTERaehhZgAQHuq5z7kbLGVKc2u6Z2DQEEsn2BzYDxUOVQybuaGaP3BdP4RpmepRTDBBQIs6pf2OKzza4NvXGX227n4lLGe5l6RQahnuyziE/if1cY1mUzlY7SB7AVT4DLbmn93j5jx/T/2dabfA1QPrpn8jc61NTEohTzyeXq768ninn5nCcMUNBiNazdu11uIsNOHTTflXcSuNmCkZEI3gueSdKZfsqgjCgKLJybl/8v15PxYy3eWltmq1BItnPu5L+SeMVyqlWE3JPmOyTVAfgxM7RKFJeo3ChvoUFUqJ19A28v8VLwtaaK7rkn/Fapya9FlAcpDT7K4Wk6JKQDbvA4W07l78leG4MqhsbNj4Yl62j6z9ksHLZoT7dQT+yHjRzQeB/KlCMWl4JYLvklgefQ9F29TE/J9z/YrPtJdiBJ03pTK1kl3Cj6q4lt1sAtVGLOrI3wGlM5gMzmrmC8xhruiXg/717Jn0qOtN0Tcc4Dfg4Qcgq0Lww5537ebifqwf4bEjlAHOFL7yar45QCaz+zMwzgoDcXjb6YyfSjufYwRjPyxWAvy18/nD++qYKUZN7ylCZT/Uf7Fj6HtZQgvrulxEQ9aWABYDQa2xn7JyYenQerkvdpLZYTgA4/zP+7gPPBPJdvReynT7YrGgiVG0alh3KK7VrKywxDS35Kaig2qu1F6bH6q/T0OSj+HcXQdKpM7uxr8YFK7pKaWThKjH2/7FqSliqPtHaLlkJx3ZGQ9WkS7a9e+o1T0rDSLmWV5F/rLAuH48wjTblLbMqK6ahNI8O5Vb/IH4Pst9HfFhwJ0WftNHGrW+UckR/9nA7RWYoieSHQVchJ8kHX2YbwlssmfPlq80zobSu0w8AT1HJtLub3EpR06mMy3p2h8RNUwk8Ttdm7GsmIVzv4w1YmCguCJ/4XrgsVPvHrC6wxeggwl5PYcHqNs9UgaJ3EEmt30nRCT9JFcJyFJVmGH2jbAIzMT0SGd1dn7bYvDudvE+DYC75f/OW71CWKjCqH04MTmMYuUjldc4JJhyanMo1lMQ6mndGsqf34Pab5vyTkP6RohijL6csP689ZMsJ1veaTcSbIAHNfIRQBt02bF1z+dqW2tmjrNNXl+zqqpZHsvg38cs1r8OtHO42ctq030XsHDJY8cZ0bVLGXGNXCwPJY/Tcd0RMWw7/B+IOukP//0Jf7lEQgk5zALzt6eKLnXcsDok8Swzz3/JXNP37lckjU4BEUIjj7yuduQMeIqMrzC2/+Ye7Pvbq513+Oyb+dwRJ0vh0NM7LO+d5pFHpEWha5dHVL0ADYiT+lDU5uxvYmhmfo6QYRM/g6kFUfFHBbiBlX1jc8aQvFomMwQ8Q4rr+ICDpfWrSwAEEUj1Zw7X6SIg1p6ucUUze4C7Lir+ve4vZ6JRV6+l3vrwRPTe95ePyAi0OfO+BwbPZtHAbOyxR3hPjJMKpDeenKl4JskwIdD8/8/IGIhJ5Xxxp10ws3UB24c1XE3/ExIgpoxHRU7Z6jdzhjgzAgWBdCK6x+uvinl9O22MSyESQ2Ud3UkskH7YDqYKkQhAfvJfbzuc3sO6YG9Sgw93lhvp7Duq9rw8wmiTJGNSWlmhEc6jK63z6Se4HchjPbBWrEBOITUwbAEdgUx7+JarEiqYkfYTNoEl6hRhWyVhaOeYXM4mOw6tG68k9A1YwuH+Ugr8L2TWxzEPP98Ba/avV+zCMkBZnn4JP9HCj4JvFeiITfsuwILiDIVgUa/QBg6Ofcs1i/bpVku/a21ZOKxWhAFxJ1UQk/o2ggjq9qyk9QTMUl3RsygzW7fhQ0oYsEodBzRbJWTO+JpGvqYfXE3E6mFjefW1LMX72L3S0z0V3UZqZ4af/0v/In5PxlvH35EvneMNMafiQ5LUksO/8kFva48AoUDlLoJfZ/J7gOkSQ5PVQvuuKuEMY7qrpVaiqCkS0+UJ0dm1TrfszV5va2c4QxoSwcYjPEJvE72p22rTo7wQKIjuBf6d90Bh4lMd6e3RLmac9VjNZB8JFtM8GXUzrOLAb/FsIAM+blXZbi2LMvuM/vmQ4ZvqBO2b605CSrZSFUi9sP+saajJXKbKhIBRlEW3w==
Variant 2
DifficultyLevel
578
Question
Mimi works at a Fresh Produce market. A customer purchases the following:
- 600 grams of potatoes at $5 a kilogram.
- 250 grams of apples at $7 a kilogram.
- 300 grams of grapes at $6 a kilogram.
The customer pays with a $20 note. What is the correct change Mimi must give the customer?
Worked Solution
|
|
0.6 × 5 |
= 3.00 |
0.25 × 7 |
= 1.75 |
0.3 × 6 |
= 1.80 |
|
|
∴ Change |
= 20 − (3.00 + 1.75 + 1.80) |
|
= $13.45 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
market | |
mass1 | |
veg1 | |
cost1 | |
mass2 | |
veg2 | |
cost2 | |
mass3 | |
veg3 | |
cost3 | |
note | |
kg1 | |
kg2 | |
kg3 | |
total1 | |
total2 | |
total3 | |
correctAnswer | |
Answers
U2FsdGVkX1+b9uC+AS5+jAdy50s5hbyjgw0ktAFiPPyFI/cYMx4qgj41JigX5jxlEaQZ9dhLnqAhfVXcm1iP1Ve6osulbgMU070HItjAzOcRF/p3ddDKWxl732YHTpPx4IAabVmYzBdB0hzG9VK69Z/LntdK8wMVlp41KYL1ehYbjoYpQmOwLTr0ze39j9kq+SxKXy5hhBjKMp5Q9/PESItu/yRZpH0qbMPuJymlQk9ETvTL3wlrkf6gpSb2Ck1R4R1kCzz3IOAOeTIIgRWB9413dM1+UEUyegw6Nch6zQPQUmTch0cuQqR0bvdEyecsLoQGGy2BweaiIeeI/HBGp81fK+dp3YmbWdRmKYuUDBdR9/XpywW+rNJ7EtnP43xGjrVtQDoNz0Pf8WvrV3XZ1TtO0EQQ9DJuY2HiKpTl5ZJ8yHOtAekG5Au/nw67cot+hvCUydSpaMEqCg//VI8IYb9Y6gYrwm3mDHtFs67qpTls+NBRg4KCk/iBQjfsxRREaclGKUzpfupvxfqaTGxVAghmRc0fF3akGXchp/uX9NjTqHovlPOuVgHYbiX5YioX/7WGUpMNgwDBh7gpLGE46hxa8v23OtS+Z1W3M3efqalXynHZ8p2KlHOmV/n08sOP+QABMw24VHX9x3TYx35/lCB/F6O6Pz25poqy9WcIa8iMxxa73aCo5sON7vQXRtzTx3MUyuZ4+HwNuTr1MRQ2WDF1UNKpJwFrWGSKMzSLX8EJl4IaVXjLftn5sKt/a1d/iqFKtfQqO2VXxdrYFv0A+G7oD93NXWTNZzAkdimND9H3UICR5UYLnnDyW7c/JaDzm3GwlDXn3ym9vwKT63Oh4fX4lMQgGfE0xcs76M/ZRTZQDeHfqt0kwoJAqNZiM8GLeXTthPu5qPG1LEyaEfYjThJM5O+pAuZt9c+CgIMVU9wuAA1BVjqMPEty7tbj8nqlXN3YI1n7qIiDyS+ACMS2OgXDUpyJ13g2Snz+chGkQpGhG3AqTwHDZKWda7LWtILiI4f36RSXk6NodBFJaOVLzz1HjIKY4E8sHiaFhbe/oL9dKHEozy5Fvt2HQPTtIV1egjzJxP1h8TCflQiyCwBvywXRVpTGE9J+IIwbhxw/C4YB9cIrZhrHtkVBmFlhJmtQ+p/KHDjPM4LNFZekooTVhWAoGOMaR4qbnMI3tZzyul7dvLhHzKrP16L5Js5luNxxhBw0vfOqe5faAKotedYkVEWZGJ0MQ5WD/qZLxdFcc1lVUxwtceaNlh6l/unxZbRSl7hvvt2hTkmIquKta0lA6UCKEWFtnbJGixAWRwBgM0r4pUxFR70ngJkFzX8XagD133l6fc3N+jNS64fkZpKLnO9Joo8v2PJc6KHXBFBtAUABfdQOPelnUFpg4EFqX0J/fhx6K2G1V7xUnUUo7mjpNWT+1zA40GftdRnLYMZYpZhPzj0C2NCMXDvy8pucU9wTYlU3Ur6ORthR8TxWNUblgRX9wuEYBuOAIUygjHvjU0za5VS04GjZXBEhvaa6taDs9Aow/pqA6dMrA65e60x9mOLyOzi1UGeoWkYr+mNo+98ZlmT9OgghSDkfAJQt6lfDrLdnM+dDWicqK5inPxtNBjZ43z0AONvv1pwNKN4SLrDHNYm/PRu9B1Ujml9GJAEwRSBTEiqGK5sW3SwBaKNxMwL3ayPQqkY41DOWJKhSRQUD7dgYtn/0ezcG2vp8azEDYwe6t/oWF//+H4U3fEJf8/8jgwNSX6PU2h5DLdUpJvVeIfp06bdWZ+2lbErdvcMUNXQkCB8vA2/qQvSCCnyhH0vknWfiFiDJLpwirahcunAQ1qJ9vYN2yXFAzR/n8Huh1SANmLh+CtOsxG4yVoyKAeJdNdTd0lVvgEzvZBVkPBi4EWgL36xjdMXRPVIcHs7vVsDWc/24wpNG+pYusAtvy5ysDXIgXTYwgHSw6BEs8+mvdU5TtJixohgQIrpke2veuXsiI3UvXLhJnxGJp70W7oz0K5YOPCtEZhlG3fMgVDngL1I6Uy1GLmKVPS56mzMe3LxMZmD8j+jznwr3G7VC/O5sBWG8qoc+xNctKRVim2ohlnZWkiDYike0CbRsI1FZxgMjO1TX9OuQoBbcrIQPx45KXr4ccpqznf/8x7xNIrgWlHTV02wkokLBTAdBTYgT2ql5+Xx9ZoTv3Ts354vJK9suPkv1J8A+msWdb/ag0Wq3KvLc8xDabN/hx4MvGFueUiQABhQss69zjdcS5yevOHwawzL62LQf6u0QBLrvSTQR7Aye8Drjpf3f2DWrfODApfFUVr4iqxZ+104+wIwqx1Rg0zaUzNBCxwm2FPOg1hWsddAs+qPB8gG8I7p3G5xk9X9+oDbpkn1vljo+wZ/84aXYJZYY8jHPkOfV+5dk5CFawUgPCf/ZDV9jpuP1Hc2qlcDIe9mWm5F3wRoSHjaqfLRuJYS25Bybok43myAgDBxrElQDGboKrxLHMVS5PIgX6JgZ/h/frBQmoA/1DV+kz6sQUVpqvZxhEheBE6LBXJeUpKjHYcpjAjiAmacCJUyovuQS61+vwZLwm9ZsdvOybXxxWDvHKuET9N0CQpMVTVu9HE/Y4fBCfiM2i3fgoK+nRPsPt0yOm448ZlFhMu45xdIWW9OBhXGA0sZWdmpg8Nlm7IK9Ofi1vKe9YHYnepdo4pfOM80KZZw7qGDvUqW5ojOrgca6x78LPcwWTixESkKon2W55oNyl1Nsxy/9+VSNivog1gKx09h7aA1A7tF7lZXZT14Ajq7Ff6snGfdpfp8mURG/FgTF/jbJQwfVMQ+l/LYgDJAwKiqfw07hlBlmrMYGOa+OBYAdhbTxYxb+J20FBv+kTp4z0QvUsNnuda+4sHxwOOqUdtEZomkIgeGIHJuf6W4L+KcAd70HfZB60BCM6Tp9fKN29e9UqDZJ0GRUb+wLYmESiOQUc4OeRyHLIifbf22okC3s+ilUH1hYwtveOu3B7o5R9KVZYO7sOEfc7EjM8nThWxieC6KEDXCnWH/XnuC/S4jwxP8QubnlRZ8cLCxn2+m6xYj4mqnEm/inET4SbWqduPfEivxgco3mc1f1dWkIVMdauryADYcvuhyeT7DrqcAnrq/96nVbBVJPnzpCtWFTgsi5OIG2JvylwrRR/7rE/nC9Ed3PN3F5KVtM73R9qg0EPsAoOLCMMNXOcsiZj/FKMTNEDZxzEf0w/krxEDpwazbI07fGqiAt6O4GjYyEDDLoo/8sxKHowJn04LGzX1eMjIJ6nXUVX5X1LBemkSBVQbrHY7LAZSKFqmpL2prvaEo0IWJuV+SXqeiptI08oNi1KDwVen4FffGzTMJFNmTkN2GKe7L93fP6MFF/Chr07Q8DzlyWFNLbVnRy/z9fSIymnimYKqRk5srK8inPAyKjB66kRJSk57zOJ7szDisXotZMcPon9lI8eVgnwkSADiWtwJ+kPCwUEj+v6JOzj7Fthi3PsmvZyKpSr6Yyf5XqnmN3rHwuBZblSBxy3l0vsAUWoKmJ7cqr8bBmIGIwPUNIPh5alo+KA1/JXRbf77sgQKYlYpKcMcORsFC6diQq8DnpeKQ4TGt3pXHeDkvt1HJfDD214YX9Xoocft6bL6F5ZQnOOQRRVkUm3IWYReOT2PFIhFToNFQJIB9B6gJOxgXZ4LOzoiqhGEKEnBwOdehiMv+Ki+BGnXUyoHeifzn0lbvzO3MbVakJQPmYyif/1yPLznl9NQQK25CC5K42dqXJ4OrKgKVdGKIs9DSTg4FOso9i7TS0REaj4wavAs0k/0TFCWle7n/5lyh0I/XchR41zpS6VFrUQF/bZKvKNLt3edNpJLNo091CNsaWLERVnG1e3RhElw82hHVHpAPujO/nW/HTrMJHvn9B57RILgQE3w+BHf3Us1qXKHkx1u7ny0pui5H8hJPGGrrDU7xDEGsuWdw+zNFHedQYhu6PwmPZtLz7+ezEbLdYXK+GFOQqiJ3cFsZwTjUipa0r1OwEtGh0vKFh5YfnQagibfaJiOsPynGu+jD63R5woUzSMDuKYoM4MtzyGzIwmR3Osolq5aXKBuy/WWTuMRUuevxwFvOTrX3hfZYKdaR8el9/vUTgqGyxTamOgVLZjLRh1ZXcNqvIfZzB5JAXDYjC285SKVV7EBms55SebVPCpWocE+uhCWw/IgPLi9uh9OBqxBhMm2s1ZBdMXhm4PJCKRwJqD0alVHXoQ3DLJtnzuIDQAXuofWLenvddb9NcncFENr2gyJOV6lGy5JO4coPICZsiVXY/scfATIZ5Rq+IwTYgmo8Tlh7LLI8vpcOpyS5ptenja4Jqq4Zzts//IiEhszuJURAafPGyorFChAtWuKNtIFjHDUvimr6llYLWU83jRjIiXp7xt+enbLcNBwMyjIKqdb9/Kxq+PFAsZBH46X9/V52jphNxNOIwrDHyEOZXFt4cugV0sZmvJniVCk/Q/HbO9KVYZvif2crY/oZ6c+bmvqXehT120ohBLQ9t2/qK/cbGiGiRFmmB+opQ9FsvPevOmF0IrNPEBP15Lf90kJWdL98k63Nip23H8H91TF/Gafm6aQZsI6ICPOwhpr9o8w50CKI44rgLcesbFD+M1yWxPmlRi+BXi726Pbk6tKFoBt9FITW4H4POJiJvtoGvsHgrots1FGLO3wBJkhSegglmf1gUzl6FKOZD6TBFkl26w4QTVW9KuxO3mrmfNF3JmM0IfpNNIx6uDXa289tVX+hk3Vhr3XFyOjYJaIZ7muVEyCepkBljizBRCPHZwGLHENU/njhlZ1rfftOIy8E34X7+58cCLgfZNXoKcqMGO/EwF9O3Lbg5iufEw1h14OIjwkTsD/9hYcVPl2pX09InzTN4r0KCV97pPGVYSA/AR0cn73omkDuZRlKsr0srE0YeDhbUc9GQH8HFI/rgPUpK0uaUSu3VaoXtqK483+R/0KqEqaAYb/pxk7+w3x+y3LZ8Xe9MwRiSPTsacAvJlnO53sb7JB+MHWj0fMHx6REqqCEh5MQ3ttSii+1OIJdg3P3SD3Qva/Vt9OqQyqCYSQuAx2JwVpUNR8gp1svPvt4C7UC+eey/mjSDrQZAl3+jh3GBkTTeeL5Pgo7cJlyQ/Sqf4AiMcRhJo+5yMoxCWWr9AtW6ck2ZoU8sEb5RYwnayvN3VeZUv2Flxu3MUYYeP5RUIxHIIfh7Sm5vh7sT5RNzOrHlhZpNk59yNvQiGICBjZiaMKByF4Wxltv8sPrrH0m3pz8SymWE/KuyuH5yRB+zbA40VZlD8hzmozsrAihN5dU00zAJh0T7KVhambGJJm30bTlf9Qpl7mj5QXFyqe4/dT+PNmWL3p4iz5hKCu7XxX5eMWskXa+hI/wa6WNbIAC5oPPaFqJ6PN3+4MHTlX3cHH9/0I3lXOm2Mm8RLPnaWQpI66SAXj1UZpLMB0phQRh4+M7pb2YKPFhwcNGErk2gToM5ybVoEwEN1u85OBcoJ3Vq5AmtES6OdVMlxw4+LWoHNB5uF6VpfhFGfw7hemppFv1++u2kNodkhaVRlGqMS08arWLc97ptu0MxYA8fAHSyUp7lrQ==
Variant 3
DifficultyLevel
580
Question
Chloe works at a Fruit market. A customer purchases the following:
- 300 grams of passion fruit at $8 a kilogram.
- 750 grams of watermelon at $7 a kilogram.
- 500 grams of tomatoes at $5 a kilogram.
The customer pays with a $50 note. What is the correct change Chloe must give the customer?
Worked Solution
|
|
0.3 × 8 |
= 2.40 |
0.75 × 7 |
= 5.25 |
0.5 × 5 |
= 2.50 |
|
|
∴ Change |
= 50 − (2.40 + 5.25 + 2.50) |
|
= $39.85 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
market | |
mass1 | |
veg1 | |
cost1 | |
mass2 | |
veg2 | |
cost2 | |
mass3 | |
veg3 | |
cost3 | |
note | |
kg1 | |
kg2 | |
kg3 | |
total1 | |
total2 | |
total3 | |
correctAnswer | |
Answers
U2FsdGVkX19Qq9c3KpB0uOXY+dS+72iGaOSRtCuRblfn4FTuxKKc08f3AQy0QnA8+RDowiNyWSLtpT0Cdc9PhuzqoC6XcLvIyKULpJSPzZjYbecR9/hcahClg1+FYcUcjMeDEvcZYQkmzPGea+Px7I7vGiuVWXbXTcnfnD9axDRzzgno7g8upsBp3pOKuXfldZqp0VJdsGBOmolyn/DTjB6siVogLS9WeQTwcRWC113c/z40cWpavJRyt6bN1INRgKc9g8Ia1CHYfprVNiF1cxpFnfkeJV+Jp5oymk1rrVfYR/tUderTk6VosZX3ztmhcRtzdpYZ6+wG2KRBYApUq6fGZGYAz37OYsaUJEooMwffv82xLnC2SPjoWrBfIaj/9w+4QelA0o61Dl8jjEF6Yd+yoWK9nPMwGB+Jbluf4tQ9Wm0okHgmBVQVxn2LnAEHksK/EEjfrPwtP6Kg7bdFR9iAPs1F0IjxxiI9D0mjsH2OwXqBIggLUQ594I33VC+DzCpo4KBHM0+nWaGPkL9CiI61oDj79ks3yKMFsJgQ/GUj6bmMdITv4QQ0aqrxng9JHn+9lTyVad4lRthxknnK25WizqP0s/IfXE2QHFw99K/ihTgMjlGZzCcFcnl+mTOR31OOViOg/PcJoW+O9QZdViQKpbV/uIRSte6Yz4TKcFRX/MJ6ng8nDonRaes5gMXLgTtdfzFaxrwiXhR48zxk7fAa/DW10MwgSSMiFrcr8dOnUEPPDFdHjxkrQplJncxh2xoirIbwIUNwpEDJKa1E0yYV6nO53M/ua6/xjQy2Mr5nlO3a9coeZIQxZLKmm89OqMErjCVWxgwXqMaMMSErTe+hGoCLjHoTIANDpQqHqAsN/BsF5B6edGcnmSWBN4m4iWnAGIiKeu+WtkxdfbzHRgjnub6Bl+HJlitzxj9UrxJqg22uM1eqCiPvbgqDxA4PTKJdRIe8XI5gL0sEHOw6ynTIgpYYLtUpaBnZUZjWDJkiuJtmANwfuJ9yQYdo6OSCqkjEamekLjD2Sosd7HvNgQWSiydleuG/s+bcxayUhO+fAhdposJknKx23R9k910/AeoLfNiBx80BCUDiGi1mfK35jRkB4tnkxJiB9REJG4ELJ96+YbxtxyxWROAF8zDXi9cIZ/U/Cm4+xHh/1KszZOkFOH6cRkLQozmvbYKnCC199b1ZC3vcAGX+TBLzviqcrs2/xQrFgXTGQT86ecMuKkJe4efeXMTMZKDoxE8ZDKLT+c4qnB8bPowr+mmV0PelCMjdIXj6AZYxKttdjxgtbt7+Sap3fGc9VzZ5yt1sZ6N4bNskkVF0ZfTZzIVi5683aQz/+njtJkkKODllBxNznZRq0Ha0ir71bPrY6oT8x0HewdD1ihlxuZpoqAphUiTFpVMGUKz81u1JRTcYDG2B4Yo685S90M82f2aCCMggx5fkXS+aeNu9UyQVJNndctSuobWB78cngx+uhuvO3X/mMuxPjs/6pqE9bF8tD0e8P6fssWwaYVwIXtroPWqeiIkmdo9eezibquG1lg82yfT+k0u7fYRBmn0lN5LrNSYeGAJumP3nTA08wxc8GNMdBcG0+RF3iT8+Crbi4odLC/iz9cqH/YRQtu5GsYVLv4ScKA8AZLgvte1rQISM5g/DoTzIxyzmE1ilKo8SvLY+t+d1+VQf4i/zwt8ZlY0ipStfEBrft+j6YEurlzAuldqFWWVZeGB6PhyRVP7xAMNuShrPOGjtanW+ErJLRg23E3Z8tepCYDANqEFcAA4TF4HCCMJTFnsDJX3jHxpPC3BTflzZC3MddDxQDVURyqgzXILHd78Y+H1XUQWcf1E15UzSHKWRFK8sp84xdAkaU76qrFrNAzHITnq/59U707iZEDU/aZ8MlAHhl5i384sITxAQiDB14r+hxNoO5fsjYAxVi2P9qewnbXPSDAwiyUYugpmclwPF26vX84+F0jLiJGtLaoY3WM/xo1bdIn6Hga3iKV27BjrW37RpYWeJ/Fh1w3Vi+BxptSUpqsGzedSi1ayeMfK0oDUTWJOAW8W4hSjgNcq9LYQDUTQn8SyzZs7ZnQvMg0cUIrUkKHScjcEYOvaPlJHKlfrqk1tEkLfBxEZ0znTNgU0UBzUD79UTs+FDNPRPmlbyhUagfyFKk4a0Bc2SOI7OC2du200kXonIABBWy2FBjdkx0iihuySrEB5GtM5VmoG321ZLR9vUH+jlePpk0kOiC8yhLDa7yb2HPf574kCRK7lC+9rBmK7glIDp2D6XwLxMnbmXUjwlH4YHhsGxtP2Z6UWvrvBpeDj65WWTkz1Pkj3GJatcS63XloqcOp/9+ocrw7e652C4OqAU9CQkiCCnivaqhsXeZctySYNRP51uQuRcZHZTBK+59yUG+sNdrIP8bUdtscsyGks2qgjTYQ26MErRTV8pwAxsgexZlLiJxLLNVjKHSd8ulFW9eYXIEiMHPRculk5k6rB/A4+GEs2+mmEIEzW24rZcxAA8AQGNuEWfv1+iUjFKpTyjsQ7o34iOMlPbo14IEglacd7AyF6So7mbzyciFexrlVakecILoQQFWycrJX0LDg/MnR8qAvMGtvsb5Ow0GQnBNjFtbMvZRPHU//UB5SwTmf/VQUynYGu17mbn29eL6HpeMDAtfKB+L7efmRKu8sTBDQ6iiYoT56ZOXgmxd1SQpgjB8Z+TfTuVn6+ZnUzMwdIGIygyYbIHnB+byajCYeNcux5aqGrj4wgaPDT8E2dMphjpyRvEnNvMWRVsa+gtIJ784AUwA/JSqPFeD3lSzEz54y2bDiaWC4XDs+a0IdBtS/QPUjTRUzP0GSGtn6it/I4SsvNe9cqIlLqI0YG3LTiIlC5+6XAU7CdHoVq/ithoV+Zl7v77MahXKd9CpNmWSttIiTWkUv40C4dQUKpxD+3UOzHrPUumUbp7IeeC1Er1cKKnSC8ua/mEcZ/lzH/W26M3Q5HjVzT0I3dvwLck2mjzyy+JWRaeXaOE4LqDkrSQ61OHS4wTmwZzyY0GXUkstaJ17f3yP8FNj6lCWU37Uf+lu6PrMrR/gNb+NFn/N5tUOeEfOIGxOR41ocalXgYABrHJq/sLX/q/CLVJ+4oBLlbDnSc+VL+MfNHLbxe9WGMpUpWNps2INdrEQvHWNO/IS+L9Xlkl6uLpzoJhZ5Tz/gAlY+z+EKGGguMMXK0qREzewqiwFmw1HKeP8Cq8ga3VpY447diH2x1ulkrYo7D5LZjf+dpqp5/bddAWfsTZvQ68GqzVyAG2UtoeMsVTYO3XMVideYPqmYD/UxUD+xVr1R+NoK2CsCqNMzS4J44o98Wns68jip2zBkslYfdYar4V6lBLk9dDQFjbTA0JI7j4kodvYpaOZ8CqKNcpidIg4kOre+H5T6KTF7xOnVymZZpQL+PkQsbqLsPrqVFMoDcsgsQhIRTNilyxpx/rkr3hhk+iTkTZdAk4vahy9sqCliCGP9qO6u42w1x8RayD9Fsiy8xvnZ4App4OYGntDRuzZJiT8124q2uHLFLGJJUAutBKEsEYFI3K7lify+UomKgohDrTRKQW3O0ZgpgITTqDrdVx/M4+HOPcwFbiCTTNfRwP1ZrYpwwvRs7SwM9T4T2x6gZJNBOR4Of6/cCJXr07qfXbtT5ZJPWg/wrhj4gj8erx/bR1jNl3GJ8z1Mfl1pptzzLEl2AGqeoEHPexwx9ZpGgNTYMqlOMFlOGmuBa5s/ZDa1lbRB7Y/3pjLCk0FwQr5o1wQYs4hDsphOVc8Bsn47cgLfP2T0f5I6A5C9tE92w9jycAMmPyb7E5fAaLQgws+AmMv4JG8iQvfrZ3uAEpe0QwbhvjOtdvYNEwvQ+ca6T0YyGMVryQ1asfoRUqDEJvYIoBWsbTO7Ng3zv3pwH+imPDMKu3XWKItMwBAKu4siPglCcyzUYaXc8UQnQtIMMZMGSOyEtJ/48DVnF8NIg3S7sznV1ppxXk3owUHsZEdJgsW7LPQU+r/1/i8EX8pkO9hU3qHQkeV9S9tANj8wd9bAn7OeliD/yWnUviwTnSOsglH2kw3xLlXnjas4v77RVFMWTVGhe9Y2oY0hvZHCjsywFI5vLAL5N8QFiAA04AQlQ0uox2n8+nfkvYiaYAGufo7vmzHSr98/FfjONSB9K2LUb/UmUh/JO4lmVMMVLJaxFbTeRlxRQFn8aY4h+JxeZGpI+BJnoxxMlaJKN63xRYGKO/WfQH6/yODyZvInVmyUIDyfviV/0MGjd8VIMxZfaOjtFuyPw3SoOkdVBW8NR6K+uh+SSgI6y8+zNV/QynV44wwwLgMd7Adg+l1FBpILCjJAPB+Tu+6BqRlSgQFS8IWRz4jbQ4W8h0IBqIOJc5Gyjnf+MZrilfVVMbdNzjhBRL4o1B3Xj5dXmmDPyqm9JYZUBgkXq3Si/mR+m0qFKSb07S5X+wVjnGGiK7CifdCAZ8DH3yRTZShGK8p0/daawcQRsAdGgQLxSYJq6ekZf3r6zdb2aiV1goSUckb/i/TeCtoGqzTKeVih6QeE5oGogq3pmenINcCK7/TyZvYbl2MfRo70QJHreeptpsN6Mq2B0wHkg/jr9cpYQjkUpiEFmIOCUXam6MOKQSYY/5im8xEh20eajFP+ULFObDhH3OUCoNfos5UpPuEcrJ0pFKAZexCZHQy+VgGPniB0kAH35bu9f5vNyq24iNd1CViPLQFEEAL6a/sWmnu8kUvT3MMHAy0xWZKY44+KlwpBS2lPo4a5edgjsVeqURufSXNHy/BHtXCj9l+/0T3tPJUHw7rI3atCPwWBVH4eR7N17oVTXTDCjz3fMoLO7zeQIT439osBk5+fgqvcjDvt4Lf5/TcEhQQ7H9YxMXnee4nI1oIj3qvHqHAPV7E0OlOALyps4S2Bk77VUY+be9rpx/DPkQhucXuyqNfsK08eGhDKJKP/K41R/GLbyI+eb43Sg46CpbvD21gpBhQSezrnidNRb98DDPTeufikGfSQHEs55JiFjtIwMOEgmxw1esMX7q9CXh6SrFdPVdwXMXM37A81Gte1UltGX/Yh1flT8NooVwGik3YLKkbV2yd2VoDl8b+E+8wSeOQ/qtVJG6+1UESr5zqVOHCRCPXg8RBZ/FgnqguPOFWOy81b9F6cmKm4IhRtFi1gfMYp2zkpln+3oAGWhocRTP7pl/Z7yb185W4vzbj33Dy5DAfF/16AFnweqXS/4AB79jnjah1TxalcTCHSmAvMAjS/RnGGjdizW3OkYua58y69uOLuNA12wW1ou/xh8y7ELURsF6/Atv15gvsTT7E+2fM7H5e2G1Puqa7f/VpKdPFj1vM9kEcZjjercitdaEtky9Ux2INXpxtWdXPdcwUnyW0ITNC9WJMvuxHYRPV/5Q7rlUPBY3lm20IQLl6jU45Zd5lX0Le25OGYVU5Fpv5DBfvyIrs4XfFKCq50jYKBPBBTUSyrC3KZsbfrO33uZdW83ipXpFwlRktTgZ5/rF+NcjRrlo1CbfJ9OdM/r+K5mGH7asH/1kCHJ7Tfmx51sH51hsAujCmbBj3+0UJwZKcIEs9Wzt/QVNiWDW2A==
Variant 4
DifficultyLevel
581
Question
Willy works at a Fruit market. A customer purchases the following:
- 250 grams of limes at $9 a kilogram.
- 400 grams of watermelon at $5 a kilogram.
- 600 grams of grapes at $7 a kilogram.
The customer pays with a $50 note. What is the correct change Willy must give the customer?
Worked Solution
|
|
0.25 × 9 |
= 2.25 |
0.4 × 5 |
= 2.00 |
0.6 × 7 |
= 4.20 |
|
|
∴ Change |
= 50 − (2.25 + 2.00 + 4.20) |
|
= $41.55 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
market | |
mass1 | |
veg1 | |
cost1 | |
mass2 | |
veg2 | |
cost2 | |
mass3 | |
veg3 | |
cost3 | |
note | |
kg1 | |
kg2 | |
kg3 | |
total1 | |
total2 | |
total3 | |
correctAnswer | |
Answers