50078
U2FsdGVkX1+DTz36G6EwE+bbwlW8B9ToEhw8zJ5P9VPhIjSvqvJC/NnPe7cCS2lKwavNrfWEE9zyFRbVonTNZZ5P9TH1L4+8lEtj+JtKQOf3hSsh2kj2QOgNsVZ7qU0pDoXzB81yIDaNOEBGNdFDhUZGVDpX8pkfwq/sNHE8Oqhqr6aR+kacBc4fZNmrhghNzRwYrvVQv8vIT7Xv3UzYKSU5M5gZdvOav7uxgyfN0A6zwaIdFhNK3GaNxJ9HOtMVvC97y2Peheijyh1K5bs2mRaeXiKeT0Gv4lgnToQv6Zjgrus+c4Lbfk0t6/O0o0XBK2MR8cGZIqb0fMlnlWcmdSB4mnJddvTAWTQB8t/mZTTlgu3bM5rLwOiU31MMAEVHi++H1oi3ojenivliUACKjjqybT6ld14dCoPOQr0HYVg6BMzdYoqyUzlyK6jFAKAqrYKYAvKb7Ml3vzwmF2h57Zki7S7Af3VqdLvB3/X9Rn3vE0zoqGkziqex+QltwRHjcPJCDwCJcBPKIYVI67i8X/J8XFWBWrrpqu/YUzDYdygAgQhA3YuW43nQbD/ypuVhBuqnC4/ys+eswcHXmPzuywDO5ny4dnQ2kH/xou/V1SyPNaHECaHW6FFHclbPJF0JwYZOjZQ4+cQkJLpLgcdPp3L3ymffE/4HXfilZs6xv/GYDAcpMeHK9bFgM6Tr0+KQSZWRPIi+7T56xUVEun8anBvs4hQBYOUmq+5+Wr1Cnx9ExbI3K86U1q48CuQitISYoBliAd1+TLozLvYJOpSw4pLzXM7HaTwa6TvL19Rl0Ap3OH4ZxuUbRiazrmcBSrzvbX25V9ZHkz3n6n8kudFNiLuixqcj13o3Mr6pb/TDPLEbcuPhJwRJQh+ccweyg1hB/t4pCCu7oj8U6ZrHzfXN/arZHckv9F1j/UYejxFV3da/6avw3bksKgFOvTkers12LscA1SJNuhGCZ/9k6PGwE5dEO8131Z1n3nk/CLMWpErPY3tMFKpEUFwgKrWAR4fCPDQZlV6Zedfh1ACt7QY9MkGAB/kv+NOttHxFMrhvTtVKwgcuqBGpY3svT/nPu3UyLeYy2M4IDXlCfKxmPplPJOlLEsghsV0aZIKdmbaZkOG5vXc1biWDjxRdlbGySXr52kH4ZTRfjqkJsDnMo9xKs5RP51rlhGfO61hJtpB4gDgLNcwMgNG2fATIuS6xEKTaeQpwUQh54yUeBo8zP09aQNZ+1n59ay5vtFky2R7uBL7QD0oVZ5bErGL2Syxc9vP7ZPcpJamfPoPDV1ULMHWFbd1icCZiwrSuW5JMFA6D+6y8Z3DwsCNabb6X4xEpEQ09o/nRM0znERVEcVAZl9OAc/+xOeDjAQvPrX1Hg22hoJe8KzDc0lh87ThGdYVD6gYfyhL5TyVpEiLrPB+KmOda0OS9Tml7JtNQoyMDu7OwI5cI9dI40FdBq+3E2C9zRpOlNYjjW+p5gdovWh5W1P+A04Rp+JDfd/w/4UUc8HC14trtqEMMS/zjqZcKK6pwily067Hqpw+T/uwQDCJ72vAEeuSaXngSzbefbKNUKXiORsMjxmhS+D5eFQXJ9bQnZSWyJ9ZeDB3wRPKrpES7PDdZ+ja0GbPDkr4FVb8auRAgVDmqrCNH7e+m/YopSxegDuJqK6z8EUy6fVB83HtIVvTKJjEBTq2Y6rF50zTGeApSk5CzhUnTBty8e3fk3z6jfB9AUxVSFQLZhLMKFSrfVhixNMyNwHfRMrdghFfNOdV71fU517tT3gesRLLUMmGdBXJQ1FUhUcviAporpQqzCWsohj/NI5Im22+ETLZn832b4kSPH+pVk20vxMvr56bBH/SzNB8NXCTseSu57Hbdoo+/vePs/deQMLqavUFwCdUDaykR62mc4vy0TlfAIkplwdviovsnBr+GGMFQwIzQgu7V6piSVJHI7osx4c46mOboKGbNLPIUCvLT2SkG7Wp7lbRMcDVMyKT/OTsHNj2y8YZqxp56GOT4khsTfaTYvIruyNcz1VaVQJ3nB+b8mZH6nb3CUhICqU4vJByGraYSkHPlDurt/thtOl+phNYM9MOfIGhK28k4WgIahzinzY++zPb+9xCInEMhKNN1ZQlwuL8kzv9IoK2Z/9qqvfQ8X2QEZ5faYqReDmdOS0VMAkqvgE52OgOCjFl+Bs0y8f7bG/vYrhx2GHUpF2KVrp25m3+eifcd/Wk+NMaSE8atVTYH/AAhh7BWTf7dWxllTh1qCQri40MPJYNuq26iBo+rE7IYPTWOZVTy3ulCjmKRdz9RNVbte4oYYU5MbTh1Z87fb6YBRaX7aqMkAYnn0jIS99D+EFFwp3k1GdRfc7ZI0FZF7qFN5Xm2aM44VTiQEF3jBezGjvq4MU4tCs9waYQ/rcbA1XHAbhqTsLpiXXyEKeFGwFhmg35e80oRWB/OXhAoZ4p0WaxNexXldpCDztyTN4xa6EDfTwwMNGYvtqTjvG3hhpKK+FO7W5qzctkyvtJiJ6k8rbprx9v4KNw1FHx3hdF2WS6i/hN285SAUb5NPEaEQwnQNJQj4umaWA/Kv9LyHxPL1ubl2I80vczxkqqVSi6/pvYM8/pTxdh3Ucy7zhpNDGbjgVQfgG3KomenhkI3liveNZVtROcFtLSxjBDpNoYcAra+8DqmmKg9AsJfrnD8RFPXu0EeuQYSFPa+u/eXBN8idJ8J6Fjf12RBhvXQ3djrNVtpKcxAD7CS+KpKbQS0swclWAKgJp/tV97u4x3r2C5lhnpbtxzF3Zz2H29pau9VWgo1N3u2u+2H/tpQhYS+wBwA/WpX36ICeDr3lBM95VPCdVnT/Ou6FTutBAgi3bXjq7z1sBZbvKF8OUkGf6Y9Or0WBwsjsz8hw9N2MClU/6i77cINB0Os1oT8NgPXBfcTYVfrGWImza+6SRBHdU914qMl7MqzE6pMoiyTwTvAi6rxhJuJOiKNMhWYZJu+yqhAjcpc+2hxZjy3mckFtKEpJYn1KwG/aqBA90WGe+r6FvcMoGg/njtWF0/pMwN0XeqyZ2lIC1DQWIiCAQWHzkh9x5qBwPJXIRuBx37pp0c0lNHRk4ux5Qtdz3FMvq2ChiAxu9lR5yLuk/Zh18BqJLzM2N1UtIUEoPSk0JrlDNtuGWEBTJHgcdnJsQVFeAT1nbOKTSuGEVZAR6RwP1HEm+6PFgtT3U17AEUu85JADCGSyV9sfvCFfQPEosRdrO6vTJ+e7/EzIkacL3JK4LUmxnT8ygp1pezupOgP0BBaMwPwiRb8vAflsJRhVxlLAUn0YidIDkzR+4FMFsm4TsBAA5MrRrJ5iLB4GCOlD7ocMBsSDqvEYZetej1UDcY0d6FAcUqP7TjWI0n/C/l8FR1QdZgtYLDBbdRKTDiXfHQ74xiyknn73mfa5VeS7ty82Drnln0Aulh85Fb0wpel06QkpCyI9RdNzJRzvU7d2f4TCXvoLk0lKcqGWvHXHZgi19DtmoW3nMKVZh7exj36alKlQfhYJJEE8E6cg+9hdK2Kl0BDCnPH5qr+KkEXkwZTdIvJGSdjLwIfCle/ef/jpzD/xb+eBTTwjt1p9mtOxCPbCWSbdxCFpJr83ds4Ww5saD3z3nb4oZkvOoQJNWaRKtobvDS2W6O8EJKzw/axVc4+CErEOADNLp63n2HjpC8LyHyqRrcHxZUzCgY1EY7suaUzmS8Js7F3zBVs81rmLt3G7V7LXXlKQy6VZggj56agQVjQ1/q6Ai2kQaXj0ag1Web0pcb/UCgGUIP0MC33utgjfnECf0IwjBvabvSx/mYHEWAH+1XyfrmYtG8OpVBMPXfKwpVje+20rvr1zebCuB59JihYEF/zOgwawPq1raVJeHRG0K/0xe1uJNqiIiMvoc0xMQrYgseyR2oNcfIJrvBQ3YiEXVvAEAPJiSSk0YBgbJec5LOODQOPKCVU1nMp02zJhm57rJO+pl4M4PDgPT4PL5fEhLMXsK/spmJP7fK+o4G5KgZYRgyJ1udEhWZccR+iAHhJ//fQtyJInKhowyWmw8+45BmGAUnM5EujNf2FgYGT18nSTrvvVbaeiQzSCuqtaSJZprBi+JrVrTX8ZigW8hLlITFAJ7xKPUF7173S6PHV4WSVYmEKT4UF6fwe/31TOcLEPuPACxdvSjbEdDLnjZB9HMJYZBhzwUI4r0X8p1v2AoYV5dHcQsCYn7CM4V1Uso2wOmFd0d4b0IohlbRR+Zw0QXsICJkxI5GTdBkISu9pN/SYlz21BlqaJJqvXrg0hj/CPtf+g24Uet5p3NWfHShpIbZoVfYVuoaIPDUdriszmY0pvpDgF+Z/A3LG0AHiWmuZp5lULrdDZBL5nzsw8ARQK8DxxBbJlHN3ZqW1lyJhOzf6idi92EXAUHi9q4A39/2vFzZ77vY5ybMmLYV+5JGCtg+W9CXogf+PZACG6bbNHr0zORSzUyDjMl5WiUemo4ahBnoFTVe2Z2tnc+c1t1Okz8vmCAxg2njc60hFeMx9uoQKpJOI8030VGmqoDxSxA01fV/iXtdtOXh/UZ4TZBMmMsydbiQIibeOYYsF1+anKmIQwblbpCOQPk35dxmGYFU0+ZKVS7M1WLrQgsLFhfDfKCA4+MVkr2U6IjfIhec2UoIsMRBJ0GNUQ8J70ItsXCvOitVN4MYETQZ6Y6p7AraF0BLtwW+ibz4ihR9IgDuyrAI+cbz838di8kk4JJT+yq3MRGbcJbo/So1Gb3Auk7XeCk/ytEdaqeu4yi0rvtXaO3Pf2yX+GuNMuocoS1QHvIQEuPYz57nohCvsYSg/v9wLMPShY0k2rcfaJ31e0tAaz5+wzRPNIRv5YE5k/ZIIt6jg12TVX2oLGm0++AjL7/h52J82R6lDVZ28v/FKSTdXh0MPWEzF8NDZilpr66WJ4lR5JlY9
Variant 0
DifficultyLevel
555
Question
There were only 17 students in Grace's class on Wednesday. The other 8 were absent.
What percentage of Grace's class was absent?
Worked Solution
|
|
Total in class |
= 17 + 8 |
|
= 25 |
∴ Percentage absent
|
= 258 x 100 |
= 32% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There were only 17 students in Grace's class on Wednesday. The other 8 were absent.
What percentage of Grace's class was absent?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total in class}$ | = 17 + 8 |
| | = 25 |
$\therefore$ Percentage absent
>>| |
|--------------------------- |
|= $\dfrac{8}{25}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+9rlodk66IUutIxKCqt2CSJXe1X52hmvYYpC5UgNJu2mDNAu+GjG2IX+XQEH+6So+Qxh1Ymm4P/IIKBJXIQJv+1J+IOwXDB9qxJNj9pdacRC2WZS8+1aAI4qzz9VJEfN/97zrdaZaTSanHmLZ2qa4ZfKWyvuktlxYvOcRbD5ohriKmyudQJ10bXlXYFYBNWh5WpeAyb19xB6SHasI4eq1YwJ/ejTjuXVerXttXzW0+2/nHqWCEjvxjhYLWcWZ1pQ9XthZCGwgEl3tTF55UxjElhvHZw86v614UKLMbwa6UFPYYpSxdWK4whgX/KCVzchNJ77gYYlkJCnPmlTc2pbhQOYng3l2BxRj9eEBN0JMrWFxW76+5WdeJqL7JU4cRMdiIHZYvGCS+f8c4U6v93e4L9sPLxUq+10ODGPSYJJTRq1FuusRyi16b0VAfWYAWNmdrJj3nee+hS4FT/C3intk/4hpsKp13B622O/e4V2BsI4A7h0Cwrc67ywa3AXQ7XY7JmufkimsCcgpa9FHUki0xHD8RgVHfng6hoiFiQnDxKaWojNLt/sVUjFpUGM9L1ESE0Vvhhvi/O8K6EwHleln/RdjKD+z8UVhZ/Y/0IuYKJ6FQDYbo/Uwx+PdOu86l3j2luw+oU+kpBbq3d0UuK0NpbHWDARH0dU9O17RLp8qJzfh5dJ2keFHSHYE1hyXxgvYdXCJvfJ42D592ZVCAzqO1VaIW1p+uYTYhX1l2tPwZv8irNxdeOy8O/P56Y3wScaZFoLGuJwD0Dqd0E7OMh/iQsp3IzaMTAtP7BoParjN4ndND5N3ui+lxABXrir3WdNuTRqZPKyAko1kEVFT6p02yRI6cjLl/WBJrJGnVVbmJqSovA0X7a4lUZXDjrGnAlvA2yZ0eQmUSqEck3QDNs+D459p46KZSN/nlnNJZ23hweQtQBCBr/3k0jo9F/2bc4O8ltL/P+v53IQ8Fh4EZhJAtHQFnewPCb937CXvfp0swPyVBfUfmEU2BOfwvtA64ciC4fU45TNha3GanyjAGlYHz11o8aGsGZBr8W2tF4C03xGC2iTtQP++lYfaY0oyJifAaZCYj4xrbAhcIdBrLS3mu6a2dc76YADIK2QZxcoTeBDlprxTvrKWgnMVfPzJTjVhHc5DXMmRRfmFxGz2V6KquOXr0C0M038SKIPrxN58Thuvf+ysCeITAofxK5lHMXLNpkwvg7EuWMqEKk4ODxB7xK+2Y+Hp1wuuR0ZUXanShovIopwJuh31cKJZwyNZg2EdbiaEs1zZ0ye72bVcWNqr3qPB2zil2s7ft8DE/0HvmhUN70X0yejhrSnQKlXBvZ3LIIQhYwTK0fcJEMDwZO2g4tron2pYg/T9oywX/1Et5aLFIGW8uonQ+pMJwUPo8BPaBUZCpJoClGtkoRgLpp2SIyHODn5v5x893m6stILAxhvKh0Dqm5uPxJpviWNYad1m2XbQgdTEWfZeCkM+K8lWDAcYmvzMsm6dhsx8HJU2X1dT287Hx4nGDcDQCNE5zxVDKz1VDDo1EVBey7qho7BEIg2aVHfqHVcqeF+secLtJwFI1RlUM4Lt5yfLt2xLtKK1eM9cIcxm+3ZPoDct0UN8UP6zCIeLyMk5sYkzhYoBzRXbt+7Kb5v/RfW2SIbrcXzrdso7WOQ/OF6EfJAk88+82byz+1nh6zo2ZdxX4PpdwGqToqRIZ6L7octu42cCt8IPPz6J/g+6nCzmgNu8avYsCZ/UDAUGvCGMaT8pL+9zWImFzwqTwlKrmaNad0pb4PbS3MKtEdUyfpX+BS0zafxHloGlh4MS+L8Qg2gBBk19Lu9zaDUEtier9XqMHQIhgQrXLfMHFg3YzLMBh+gP1tGOdYo6f/DWjZVZZByj2tVDYVAGGIC7B2iC2sIO9+Xz/xD7tAJJbdqSsE9OBb/E6MvljVHzTETxOsysWG5esBOPNAF2i9ephUPk27GgBqp9hI4N6YDrm6Nv2PJICPSuXYVXqQN/zZ9rrBfhnxuWbZF40N0uLl37hgVsUs7aun83hbsbNBnIBAFdgZsprDrY4f5T/ZxUC63hqWCmxuwTOyKFODf9GTUh+tBTBI2MXsupP2iQ2zejngpnftPF3LEMmtCFumcJlgQojM7NPvdoK94LPwEEYeK4QDEYJpcpTZb1jqZfhWEiuoWL2wtDpLyBkjjFmjpkmJ2759gF9VN3zCqifqig4O13ZOpdA8TOCtShNyMF7qfdPXorPyZoB1p3rGpABMRWJicnUR0VdULZXWAEh4U7loRKZFNVscIoY6VgEdTrw5QAd+wiIoV6KruiMxcd7rjwcw0tb/9LlrlshPAlOd6cid+a2eajUFnNRkEmOo4oBR68hEpxuAkv38nsAHcCaQc02WqHP+poLOYGbD1MibrRMFrNj5jxbM/LVWIfKAwpRHu3zYV6BUygV1zMIdZyqCxlG6wT/2Q6VX7u0E6Qs9k6LMy4gP0t6YUGO57qNNB+nYot/JrDfOhHBQJo+TDYug7zXbfk8Iu+W8Ik/N+tiHnJKQloMv9G+0qhqZ+FIbp99Ml5M7TpSBpuL+4J3wYoVzGNdY32d4Ya3BO1O/D5cMwBDxNPlJWCZiYFKJfmkpCIlcLWXmn66MrLX0mOk12JI2m2kypMCqp2vi+VJoVE4YbjoGZhzyqryXplxmFUyvXFGyd8/IiUAQ7WQ6NteaHysFQu8yEeOeab/nNns/kt/jPA6dsobwBliuaQtcb5lJm2VLC31n9JAmZv0aYglrdMUFRUTzUzRsbn03J0jgtuDPvhxDNf6efsKJgDbSKuF7E3SxEoOh0tv3SKxhXgIsFgIkXqwm3pKfj1P1fe0ScK4X5MRtuk8X+XoE9UuwX6rxZl/BYPgHnKqimf0eKkbyUJtxP85Mt7i+d66kFo5fZiVMg567x0pBNkVzyst5bg8k3LpZy054hdsWuMD7CLQLY55PPWqb7mN+nsPUSl7doxmHgHpEIosvleBRyu2WVJ/2TBEQwE1kiROHgP6roWzYVCPQcaiPXN2JoXgBwEvKOji9RU8ODYRmhESSa9ugxdyG6Tovl+h9WHK/e3k7L1sfhFt5b7ImokE1ILiXtjWu8ge9lUIPi1okB5CgtSTBhzGwAlFoio9XlUh8nk6vRpabdCt0I0Z4LyyXZjFKUtidzEamz7WDCKxkuqRi19LWHCshxvcleYAg5R+GDpUM6xFDq/TeroiFnbNkCj1ltIidZSJ+9l/ReOU7s+wxGNVz02TMF3OGFNu2+AcpQEcSGIbCzK++fH5Fg4+2t0Evci6hoQDXVt0KLNMqPbTeN+R2HIiZ/pW/L6hiPVjQdwSob1veUTNtfU1vDKnkBJIM7bkZvQtmypa6npUaQyiTltyxeH+jYD3qc6qzWWUgQRpMAibRYaRvaIFCEgDqI55x6dKBfpfAvjGmVPu8VPTwxPPBfxlsY5NrBBy6iysp6Qf8fXLACr5yA2dZqRtwp2vuFxbGPY1byRGZOZz8riUhQx2ydBxERM+4A18wEsilLN8Ilni9hdWgGnYwP/ZcgsX3fXA/DpQ4D9CSTQHT21IAz6IhOpPVkusMoCU/SXrVJrXEodGhWSnWoobm6DfsPxk+7clIglebyBZ4Kitgkg7unDtgySsckukBIhqu1J9i4Tg62Js1VSgSBtF7V+vgsj5OYx3Blk69KUeQh2uMj+nHbht5bNE08ZcZgIyHB0+NN0PhHwGtyU49oqEpmn5k+la9lIFN1ddng/6liHZYDp61V+nsCD37ieNAKL9M+bbvjX5fb/3jo+R2KEA916F75bgGKi8XtoAzel1q0Dr3OIfyI5aTBoJZGTMfNRrHiw/w9pNRhUJFrzBdKRr0NPNIvb+HPD5jvS6sY4qZUSxElssKWEWqMMUJPXNRKUj/9bjrI0KgCVAM4mhsgpEkrjjyAiAbyzGGsE+m+YwShZeT2GUKgIXNjvGkpBgkq4hS9qct1RomDR9qaxIChCaP6Wub0SZX7fxLT1m92NzG4jcbdTTvm946prysyW3TJbg6GSv0i+ihDUnhurjIEAE10tZy+FlNAHgUvCZENLR0bmw4F32xpjPttEsO226b3pA+6Jp5Uz2ch+azPX2rF8fqCfo/6BgUZ8GQRtNtItjA+RyjTrqh71QPW0bSc++G6HD7ZfJOoNq9qfAVW7F8wWV9EIJLtSVtgmWmX6GTa+smFyt3eP/N07bACTsvePFJSe1uFc5eMk+I6JtHV54HnQBQ1qy+nhnZDgtmyLDuXnPsV8S1An7zDslcJfuQW9MWqKFjv3/IXMgNm9D4b9Pc/Bj3FHYkmUcqzYmNgagK2ousZHN9PWu+4Mro7qvITuf0ZusShV57EKBL5VvDJ26//X9QcCN9c8MBxN4rqGGF/47YCOzCRSwCDs7pydQr5ePHTHM5ryJkEm+FGI83g1R6oUTzpunljB4dYfAIMdMA5CMxPqpYuJebinYkwS33h+O+Xzx1/aqJ2aSvyJnCNGbMnAPTaF26+/+qbpGZFlw42PQn1eWTG7OjnhE3gyQG+XhAwGn4gg2OZD7Qrwk41z5yrD/7zhaNJFupsuXelKnJi0YN+5+eA4XEu9Iyf/STrY5B6B6/5xp+1/X9viHMx6i3l6xoID0ngEwAfEepwSGf3cqBJSDttpPnoyIm0WfJvZmluaATdRlpuATqtH4t5htRPQxng1/IpM5gLq60SqlA/wdr5xIDfMnp2NC645munPqGNwXJMNXVIQlABEiaBZQWojxA4MWMg7liIDz+UVdnUXsn5pzeMvgBfaEP98xEBhZChlbQbJIc7627fKSheaNkHA7V9iIEN6wLaGZq6dPKCmQgSGmDWwWsI5t8CJdzXx2jtS3UwokYhbBOyu097gUti2Eu0gsls9ZHG6HIOKDTDECy77i7xnv6twEJX/xh3Vb8yfn90k/ezPf98oCHE6oXu0N+4fcfkqquuvKqyHIEPlbtO1HjFmoCI5cjco89GKdlEFqUBNcGxS+jCTA3ylCL8YFGEh3Is4=
Variant 1
DifficultyLevel
551
Question
There were only 90 Year 9 students at school on Monday. The other 60 were absent.
What percentage of Year 9 was absent?
Worked Solution
|
|
Total in year |
= 90 + 60 |
|
= 150 |
∴ Percentage absent
|
= 15060 x 100 |
= 40% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There were only 90 Year 9 students at school on Monday. The other 60 were absent.
What percentage of Year 9 was absent?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total in year}$ | = 90 + 60 |
| | = 150 |
$\therefore$ Percentage absent
>>| |
|--------------------------- |
|= $\dfrac{60}{150}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18/EeAykf7t1pPtujxSPV3W6R/8m6Yflp63xv1O4D8mFm2h2GYMr1v2qUJPpNMmxMZ7fJYMS+yM3EgudHGfc2OpqVEoQGCB7Ba7mjsT4186kjy0R+7nNQAqTUBjBJ4iUl31GI0q5ZiZpmEZSP2InoVHoQ4AdwWYBRKlroYUu5C0pDk1hIWyefeHa1gB4TKvGzHQ5CQxYnpS0XJE0PYlg3tLalwLfmcVPzF2LZTufEozZcyOLRqRHQnV7MSDSXBMJIhI4LIcjoVP5buF0umbop115eRSowhSl/r3FQMoNXUD57888sImIv4jIaWS+B2P9/eTmwnK70h4TXSSjHyy6kZVuzpvrL8I3mrOMHY8xxoX9i6HTgXwiGYEjpJDCdAx2nylqbC7rSvF+B3m7EUukheKW4YBP5e1IdlufdR6L9Fek1n2CvJWoLBa5IzAl6qHEJUZHXW6EmdXDrb/mJrjUAhAZQaTTQ58YaJONtnay6TD6raIng0sK1Ath011GGEzZaZZpIZu7K8IS3KrG9ZqG+fhZUDPga83oXXD0AaCaAUK5geBccm6ikRc2o7+Xo2NZJUookBAQx/m0TZdxYKfrDw2F++PypYGSvdDb7Zh+E2mOSXMHSCL7f7qnH+d7rwX2ZFUDDHEbb9CkQwzSzwwyJ0L9i1TbFpBC9HAxLw8SRckA5eyXUWxt60ATyDvOrL+K1m1XGm8UnREMFwqHJ9aVystBgVnFFc7MNwMs9H07fGTTyHHGpfODuK2O0Ut736RGX0gi+8ay69Uqw7oK4hwD57zLuawT5NZH3Oxpl0uxk4cfdx+pGyri005mU9iGt+wK0AZ6UvVY7I5peDW686gtKOB+ri1yfwzWif0ceFZ7z45gVLcs6xxQUgETMh1vUsIXDboGev9VrzZrqvnbGW/t5BDqHFUzWT+y9Z+SYu1ogAGlLN/+fz1iIkHxXN4/ykYEjrtmZs3nznaMpERB0edSGLNuv+tPyB79DobEaLplKgnqwMT1Jw65iamkLPVkBUmhoIbn4HSnsNTGWgFqkNY0QnSp9NCr/xlsnjqUnrtq13Ytugcl449QJvYlRpXUroZkWbGE6K+YE/8uMhaPZ4DY4PiZuzKCoH5Wkn8urWMCLQsRKMEQ/P7kbeT4t0VNTfawaMVuJ6GOGEwJ77mGB1YkkuAHx3ahfSGl8jbAeJo3udjY9TRwxVOHKfmuc1bCzf2jeUWJ79OSC5bpzQVHWd9x1pokKElOlXBEF1AKoIwstI3y9J2sB38u2Q9czqRxGHTKN3vUJpuincfJVGZgM4fj586m5lmEiymi19B0KYYamY6RpfNl6cKBR0+FSqPZ+S4I0b/cspBrnPxkubn0B5gogL3P4cmNSZZ/Ithhydwf2Zsd6tZrLDUkysiWE8QBI5PY+o73OqcEE+/UORWWZjphLN1O6HKEwYJ2UAzmjbQtiiQeGVRWg9mD4kao2aRmdTuCMu/jeed9QNetLqlcreRxMc9AhhT8N+U1FvKYMBfMp9qaWwWSwWARN/wxTDHLhIkiOBIb3sLOu5SPkP3HDVfB9pKfC+NPCMTBgPNDV8pjjDphfGXMSfPtV6cOkorSlK/Yy5NrzG1OFJq+fcxTBmQlfxEacthgPfHo9YXS5mUxq8Pzm3uKevKWThyfcLhMHzp+a7TN3mHLYDj/njpOMkdmEBF4ebHqVJ9h1HA860Jk7v2AV0Y9TyTtTzdvcBe2L+vUdrPdnrXP51nq2CElf9pJFm46qjkIbcxrRpp5E3NIagJqOebtaPPYHBchEmIuICTHJL+MY58YSkruF1KIPxD8c6Vs5KiSSW38C7gOrqoQ81PpC6Vkypmjd6kN6NlPKrO/8fyJP59I15XhJcrWYPsRGpBly7IKOgBmUf34z/KM07Apizrzcd0iqhncrxgdZ5NGROqRZd2YxOaANvg0JOd3qrY9SaE4wrfmyVOM21XbbcSGnckXVwYAC65opPeDyB+Zddi1voE3zJGFULLnG804pd3oCP/SopmT6FQv2M9meBtQ8/xav4sOHJTsm3n/tRuVxsbJTbjVdyRm9lJTfxr9G9mFxzH4ZC88xhxfJISoPx9YEQ8GbEAiAd/Mg1ke1oN/7VBz6RKvdu+eMVEtC1/pO7zO4WoTd55MBpspXU9RFhTXDakAjyhRUV/SldIGK0DvKZl9uQrGDk/goHCJCtIj3CALB7NKovZzzN5Culj9XkJ8hKKAS9rYMqI0BA5ne7g3CGCMfxwA0HaD+KwSDssB/CDJTeAnnoVr+W64svUNwKjd+x6uE603vyykSemgtLCBwIu9L1rwsJ9UY6GKc1KX0zmjbPW15egOhNXhD924dChWbBYqGdT5gADdZrU8ZGAvl5eTrC0ouqY19edTnne2NGWBrA6grzU1vwERUwOoR2R7Sln8Ags/NBO+5whcKynhz2dv/XibyvhjmU8FFloAx++oeU+0ipKe4uZQbEfBk6smLvFh3eA6ouZO21UG7u0WMWIc12wP5XPNDwXOaFsGHG1yVHNySGlXySCJjCDtnxELX6oiW5G93ATX/YX+fcZ9KXQaZAS89GAmH/7GqWG6mGiGqmuyfIPWXD/KAN6nhLCBJ/kVeNcDebmLpd/tTd+EjdUo2LMKVf+1Ay6x6VJ/nyyQubl+owcyf0YEI6V3lpzySScc14sQr2MXLM5qv5TpRaI9hxlSJwMwUEEbYWiMcB18kHAZWzqv6JyJ5MZ0I6k3XYjEa9WKD8IawAomOKtvpriFosbqk0qPYZ05AM4YZtX1uE1NdyxqRkEy5ZSTWmmT0B9Shge9A3lgnr9Epg3i8HChgYZ0IbKQRbuvloA7GY12Owbsh7lPe3zwAbs6+T2EFE/7DtsXy2nOxSTB9qsgHUpjmZ4FlpIq+6FkaaPRxp+CBHGgoJvuuE+t76qx5joW787UKYxKKUUEJcpaiyXWSWz1Tqwi4QXBJ2XPAzkL3TCr6AjZhxEOn9SSbhoR3jt6oSohU/qDU/7SzgluoLfSAgAbll436LVOPOfAb8Wx3Z1HhJ45Gfh83USeRwqK6nOSvDzNqVqwfJWZpyJG6eI731nt0sBrF7uOlfGUu4GmDhTW+fYfWTdXYfhpdAr5L0AnmMXcdBg0b3CxO+tJAWP/ucT+5QHPgSDd0nGLrZ8C8a7lCE97jpUea/HtvAkKRb53wZDRwjBW6MGralbDcP/jBm53o2FSWhlzkJwGTX1iicMEZA2dCDN/C/vpfKG3MI/ghszB0dA2KdnJjc95diVTjdf+UN+hZv1p8vVGmBtxCfvVs5iYUD6vbX1Kg1VS+nsz9qFDXcj2PTxPNeU5/FiC0aKNmdSOvMkVGWI7YuoGMCoqeYMWjL1fNcghScpBjzFxUY7XeU0jU0i/do0RTtwV+5OdYAGkupoLe1iGxDqVds+Da38hNaAAurlo+IEnU3NirXSTXZ6p9GR0cy/uMsMFqE9uvbLL47fnz4ETZdNuENYk3gA108oxLYA0rk9ze036Q1slaIHwuSZ9iA9vCtLKHkSoErE7+8u0IAl9+O68LVQd9LX6P0ttpk6JqDEKEYz7jArgJB9PBdNOqaTeEqAdA2GJeOv2QhtkAU7K5zSNv1JI256jll9P6mOhHmas6LlXIPs6jnTWSdSzduQVqglsrBzEc4T4AVQRR5LGWZI3qR4USZDGCLekkryJ9dMTP5iy9Q34VNruoMadJ1eUzzEBu3g0H6ZtX4V9kAOFmaUQx/9VT/YL5nAF1mCntbsDqJha6+XD+pW9pxgJNSH7wdvRCE8CjQm6dUR2gTeqqQTCpl+qwOSn/vOnsGmhzgSeM79yDri2bCtAqbP5Tl/C8KCTPl8S9VbBrit6cnZ1OftbuQWsZDTZyXBysoQwty+Mwon5WzET6kFOgheKChrm/hgnzKw78aMINeCU1Yic9n5i+GgGgqnPvSrD8y0vuKxobDwFMVkLCmCcscL0dFzIDHcJ5M8bH5F0Ny3LKOzM7B/HlhcRG2AozmjtJdD71IVjtF7CP1m5C9ko5oeh5V8yuzKXHyXadQ3KB2XPS7t+NEfVXcYP2kPNcDxJA8nXAU0YlULmBD6Q8CEllgvl0UfS5Oc7mTX0Is1yvqZLGn1gjKE4mOzrTUAljFGKo3GMmNFpS3nqLj7s/H4k/x4g9L672S881Yv63pgpi4f5NDHr1JHqYMrbZ8j3x6rkU7elxXmAmii/SXonpEVRamDsFZS0Gy0vQSkPVzVFzNIKyH2wDS5yFoHxrAwYKaoPBVIryA/JYRwzp2ZjrGNRkJjXq1/IfrvxQbm4u++aHu5fqFKog6F1cCLuk+KijtTVX6w/mEPaNgyrYoMJkQGxC/GZE//KKpHxk9Kb4g5sUM/g+OmvA+sgvrfaamKo+rPx4MupbzdHBNTRjFLysvdzuWoONpH1UJGDSR+4MKblUgE4qGQ8P+EkVW+xXVSALkuO8L9MLM4YCK68/mYi2xkGdlEYTvef6nq7QlUxInV6AsXs5May4xcgBBp9mnkyWHmBrQUVBdoF3625kPJHfGf+CXDmuRbkJIVXyNf4SaPPknTfNwMMGw2Q2IcNFLB0PycykWCEjC0U1qRkNi7VBvoLzEVwk2VyXuEONfLNewjHmRdmQR0imaRk5DqjI7SUfncToY8Fr9Kr6+td/we4hWq6/VhkAE9H5eYbhO9Hb/DldGCI2xCrRXuTgPdjpRM8NbKs05B94J6UBVkNEoRGRLUZe0ie2DgtyELxLVk/fmlR4McGf/OtgszQRq1T6Su7u2GMBqPLiDnONKZzFmiPsH0+SNU2feUg07ogBKq+RHiYa+zq9s8+GA32H+1zAk63co9C+RqRsZIiHir7AqANIPSfEv1D+mwF8+bSR8H6bwWoWsTbTqt6rj3bgHIOvvdjh5yFmriEbIJpnFMtGoas6VFnolr8VSo3wHdIAURuPxS6AK70da6BLjQ6grrpG6+BPuWojbyRxZC9vOYithgV/EGGZ5EfgiHvovxGxNVcdAGwI5UajddpvWxEvNjsamhhrBSNNo=
Variant 2
DifficultyLevel
553
Question
There were 80 people seated on the train. The other 120 seats were empty.
What percentage of the seats were empty?
Worked Solution
|
|
Total seats |
= 80 + 120 |
|
= 200 |
∴ Percentage of empty seats
|
= 200120 x 100 |
= 60% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There were 80 people seated on the train. The other 120 seats were empty.
What percentage of the seats were empty?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total seats}$ | = 80 + 120 |
| | = 200 |
$\therefore$ Percentage of empty seats
>>| |
|--------------------------- |
|= $\dfrac{120}{200}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+14JcC4Kq+yfUVrjsD9uUPVRNzLrB5qWukCyS/x/iDHjDbtqxDdId+ilFhWK0G0YQqi14gwpWm/h13G0gXH9PjHVZ/qQs4PiroahCQ9pMJkuC5eSNRJCOeqV/XC8eXGv4b61P2YPyME3CKnUveFaU+nB+JOc+foLwvHYYRYuZKCJI2rsg596B91esgcpSBjFCpRrg12MW9GvMx0O+TiciowKB1D5WdEsjHByoMclyDYfTc64NdU3wgDTjTlHrmKsZLBXgXx7uvsOZgb+IsGqsElJGBRKxEXpeL7UhPPJhGvKo6ikXxBwXwB/BxEpXOR1inVMNWliDX+PQXa/Xvx2ygLKE7zhBJBl5ZcS1olfsrr33P7SuBdnhKxTJyMlMF0B+qGGhCZEAKEp9F69CXbD3dN0yxoo92d7LyyUGcPPabeNcLeSDX2Cjh4kj9qauooargp8TlPa98D21Sz8iwzICsn2/K5W6qZYnr7meBxsmE/XroGNPCwHD+dtjbrvNnPOuotVJqpoRtOqKWaszVTT3eIBLHRHNun7wCTPsnoid1KKg89MV5987UzfB10BMB5KCP2pxhLglF2Rp7dGvQ4izQL5syq9yk+ljs1g2PRE/jQfqPzxobM7qAIu5ooY67wpXsv0ZMZrqjgUD2tEczUjySZkwcXmXV0K9tvCCSteSYztwFNh22DgW1fkzgZWz8CZVgu5nc0MDefXIoOWvfCGpEjvN+hOx3UinxAwu3+eudf2nK4CFGZAbgTPvOraaXSNc56WbqflH9rN65cTTf4m2ezqlcchgzqyyyra4KEtB7z8fALkTaYeMAdYPts0oRUId4ZECr0C3QhqqfOXnm3PL9EUVPpAFV6oZ6iSpGWCvPrrQ1FE/qb7DXEV/JjKjf1yQNo6oPvSPK7+rSyVCkxdcjyZZtnW587OUjk9mp+Yfiv2AzjEhQKI6oZUkwLXZh9MnlXgcMDjmD52QdaBON+PmG0OAQd2mpxq2MgaTaam9q0ZRiF+ID44AzKKG3RibO5tM0cKyr8UBzX37qpsXllyC1dJKbcl7kOlPzvYcF45rFoBpZTN17y6vmHCwqktrPq0Fj5inFZb3166jxzxSFmqr3BalVH9a8EuOMiW3AiS6HVQVYNZtknMxxDcx7T5HzN+c81At/tHZiDDd+kUFFSjzwpiO3CI8fbmCYwJmQIYoKvoVv7VYcsmvR4WdIPbYBEgSTF5HUWwGSeMCjdNPBjvboRDa0hMElgimHin0inIE0vUJQTthlr4ERZs/Its511+4nAxKztor5+8JDM/TDtlNWAc+eMjjkCotSEls7k9s4Qb41j6xFT2hmS8NUscAESSrnuIGgK/SZrAab/2OXyHS8PIU3QbcesEiQtZyY7HtTIhT4UBXdK5yNQY+CtovcGzFkVvxoMQlUB1qtuxEAZzJHEZKC3AjbFmRs8l0o5/QoVvXFmdgDLpkG012U9GL3/tDdgH/vAY8yMtpHozUpxZs6Z9lMYmcubr6ar9MMcaNddBojE9+CQcpTYh9HJ34+V5Nmo1qywHhlMcCmvx8CJ0aEyKbl/AJ5kezkfcuJgWFQbt7I4UQ+YbW3zgfakilBulNZNw2woHvndNShT+VohyFVLVRNW2kZ1XmXeTa1UEybwd9P2AdOp0FqxrVJbDG5e/chrYi1eZxarSz74dAyEZI0y8eG1RzucU80fVa6cXG3R2OJ/Edx4YGumdaehsXYe1ygzFD3vZzv+/TpUAibwJOSNxg+Ik8PI5/EN2dAGD1KwK48gel26JmZ6Fd49EWLMzyng5FNqmOzEvigiF3teKJy3kODMs1SFRqmQavYS6xnXi5DwM+kXeKAZvgTwDgmO9y42oP/XOf0IAdR/xrTOGQSa5duiD08r1ELsG6/oLJma1bZXQwubYgirSU8t6d7457C1WmElkkwCTtptN/s3w8ANIUazjyoqIq118rjgVBrNvAGc6bkXx2dzNO1N5jQBkHyS5JJWEk6ZOxM6sOWzpwxt5vDz8/fAhSIxxVUMGujPi8H5JEV0m4KM4b3qupI6ii3mNwcMyJqbxs1WW7TuOI83Y9BrAVksJ+oYMCvfAgxzHaAuepnMJZi5nr4IBMD6xwKih6qR93Ibl4mFqTlqwRYXOE2sFJ5dReGWvPnXl4ZDxqh/GDv+aQ1ICwdRW3AcgoP7Vy1Mks8EuGH0TvLcTJHpf1FjwQyO/Fkb7rniQ9ytKmt/njCQzfjcA4JSJROCJkRPdXVXWlU/d5IoKSeb/eApT6zMzPs614lFJjTVRq38EkeSpdQL/BVgIb25kZSgFRWwGAdYp90JgoZx3gHDyG4a0CswwtYRSq1y+TuZRJ7BPIBRVveGCuxljw4TZGd4tEeiRlXKw7GoX0fS6LblcAIPdFIsQ3pZg3qLUJZQR80botjjqg/+5GjlBlLDBPnQQE2a0fOtwcFW7NipK3eqQyk95BMtxZLVjp6NyNFs8XV/GPqyhfsFFdc5DaEkPCAPcNxmB1xkYEI+9hJ/Vcsj3YO/4I5BD3v1tO7K7Eah+HBKf8q/RbDQamsmCgqIPKPWjbGt7LrBtawcpClFCWePFB9lFoAnKd9q+LKKuWaJHKAf83BTJfeHwnbEU8tkmgUbCVnkeJ+fUTZXzRiwlbXvDbQN70/PbqQDu9POjKOK7B6RRKkZT0kkk9yj8gbfC4milCoGC149icOGj1X/ep404fmyCSh36/loI4/4jYlmcLDVN/rmlAlHe2MDbnvB+6iVAEJ1nT6xoLjh+we7CusGZykn4+LdkAOYJZnjw2yBvEMLOfgxYbB+RZO3kAOJl+ubLi9pZkyrYyzZ74kf2gUmz5ADaULkOAjLZFANCfOo6mVF3jHhItxXnOuadfemiCLPkOhlCTMAHOPjSgRFL9fqNEk8SRfKMmK5eVy4YIjtA6pzl36nArZO6A6LnTtqOZm2k0ZEwm9o5s5LZ2ecdn2Gmnw5K0IR6BT1ps0A/uDqvp7HAVqY+l+GS+aAeYGAy/bFgNTn7Opze1uqQXp1kOmzRRb9I9twydZV/ODvCs9sCABuFzE9GQeyQhz10UhoKm9IQDBuMz2yOMOI+Z1DFSpZ61eo40TVSieWwTMXb7C7a0KECPgHa2hhXpYFKIerg0/ZVbBOPdypmrO2vayOD/W51w2TTSNIUWom9rxiSzFw1cKENXwHXuw/qF1yUxmmbPYDU2oBW33EORpxO6zDD5HsbR003AgVTjje7vKcZieZrIyjx0IXRRAZqQyAjp0/RRO1EsCUQGDRqmU1ZRDCd5I/SJiU361K3sk+DwJYVZefZDeAb9cxNQjUtwskVPjex4KfpSogNOdnviJuW5cdQAvSkOaoN6hnYiV0kQmUo+Ie8lrq4celP21jRx1p9eTgpc4l5n/t9V/l6xgV9Bb3kl9SmyoE59TnHnMv7MTydqpNZGFdSwWT0hJDTf6DcYW25i9znrPjeIs5wjqnRIc4BRxu+UgciDNzxBs6ECc8wzdHidC23L0R6kghrXXGZmx50+qjPuxgwB8wshz06duVilxBOfFUlxKZHIlf14DRgobzntNRItXsohEFK2yNvHY6lFRLXkZOElIFjVpTDht1EXgw8peQQcCmODx78uCJSWxO6Umt1OKlfx4WsOMexxi8lJHnotW2bGosvRPgdhznSbrU2ZXrFwdfuxvMw8WcLAPD0ymMk9YvJc/8mjZrAF4TZcwT1RATWoUStYTxAnxqDFYiK3e9I9o2UT1ODoMAfOi7AwnW707c8l6HsLvLlPtrcH/6tWCTjQc2MP5fWEGbnw/qK4ySDiR7vYJRO4PrffoJ8UDfoMXfyaX5DcOo7kFtLDUJrBmbNUvrkPb8QwsDx9xlunXRUeEZd3K67dn9LddwvabnhOGXh1ChWJndtTi7OAGE9X8pt4fASOG329iBuv5QSbLFS5Cm6Rkkl/9YVq4wNHJcygUh7lg46zD7CDVWVVTGfnh9zyrfJK37YEnjRIatR5TDi9zgOaX6eYZFNHXUCYESy/PDvw5bynnOCunBkyCwkURyYUTWwdPoIxHnPVZiwn86kmIqAHNmriCQtpeKrBXn3cMOBa2ikPp5Pn/5GcIQ5YYYpDA/V0hhtHU2g7EFqGYPovsFHN3TxnCLDnE6nkBQ+yGeKdiESegR1H/r1BiBatZ6rGeNtemrGuew7nNFXr+F3UahBFyZqpRvE1KkUXZbubt8en0iVJXAJ1ZvaMBrBr07s+Oi7ZdaTYAxg9g3qHNzcFMCo476N9E9sTQ3T3/NHiHNSCpRE5mwHgQkqYK/9k/4NF7PNeAyNWHzn84CoD5GS4kV+gz6dMd/mp1nW7CPBO158/O8KxXwTm8IxLyBOedgFsSrDjnuJ9Ugd3BfwhiMKqYaakzq4GCbTWE0nGQv9q3VFP7pyQ6tz704zMNyWRurFRf7JAxaXbU9zNu3Q9O6zm2MFDhIT8x0DXW0qA536TwfooqC2EF+BOpwKkNOCghCxEgkiGvpGiTSkWIhEm/D0LzHg6w/3TqadQ64ubSmDPa1hp2rpV49TSKzrnCJSZiBGBBNH7LXv94EV3sJRKukSHu9x8DT2pDyFNKFja0miDgU668x3zJNJmtox9G5V42duB5kun1ZvhcuoSr0GBCBQGZICXxbPHANWO4k5B7j6AYUqmrSO/ME3aCTvjkpJOLe5MeFdoGNyhFvtvMWAuwxdfzphgXLkR9NY7lTSzhif6Qh+7k+8CDCL4A/2v7lSB/UdS5rx++UaYBi4sfgtOutshODAHsOm5hL0taRHZ+fDlHrQhwDpmPv344HY7ZjpGAFLwrp3AsEo6DB+V7fQGouE9DMN8kPrh6qdUt6+xy2xS699EHl4fue3Rv7nssuO6DAbhKt2G7bzSLlxTJ+PqAGc3RZu1UtqH19CCE2BRmmX66UGnh+BME95QrwerheZh5IIej3UUef9pIzyBX5OHbHuTYI7Wv9A8s+8PtL6x+balECXit5HCSeJG7dhFJD4wwNFZDewLKYkl1Und1Rm5778Fw9hYDWeoY8L2wvZOVcLKA4KidTQMhLLCIji6u1VpTjP4316dBoRmTlreQNUPks/TqDDP90y/5w7jlfd/4rM7vd4WVvjEocozR4tT12lFDVgZu9wIDMattcaNJNhIdLAYAtGPEXrk=
Variant 3
DifficultyLevel
552
Question
A charity barbeque provided sausage sandwiches with or without sauce.
45 of the sandwiches were sold with sauce and the other 75 had no sauce.
What percentage of the sausage sandwiches were sold with no sauce?
Worked Solution
|
|
Total sandwiches |
= 45 + 75 |
|
= 120 |
∴ Percentage with no sauce
|
= 12075 x 100 |
= 62.5% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A charity barbeque provided sausage sandwiches with or without sauce.
45 of the sandwiches were sold with sauce and the other 75 had no sauce.
What percentage of the sausage sandwiches were sold with no sauce?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total sandwiches}$ | = 45 + 75 |
| | = 120 |
$\therefore$ Percentage with no sauce
>>| |
|--------------------------- |
|= $\dfrac{75}{120}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+ngJPcmJpI4vhz3moW59dH4MT81tTYNCQ18XYv8HE+msy5y6ULENxpeZYKVtSy+EhqjEDr5TrHwPMwb8YLV0QBkv1FxKmS5BQs9ZfKgV7e1PeKiODYwuPVsFejboqPj5TgHHn6y2erZawFdNjheZUDyiXco2rmltKRJbvpi7CWOFqFf7NTEjEPelpP7LkRaXudxAKMc1ZCpOR0HIQ1zGodJ2GJOiao5+yeDltyzTu7J5/4XY18kf39NTJopIOJcW4CWCmj0Tb0fW7oitYRcbrutTPeDi0riMNwa+8XMyigXXvzDshoN8LEUv5cjJQpJg0eU+NT19GxXC+orsxeVRujhw5/2VA/sbqkyofkFzGrFQs0TFGz1HPOTK1xPgKhcwVV2+rr1poYtlvVhCAHHQDJ7wLDX2cd7TapnLhg1tTyRgRo1d5ZoDD6mf5wY7KmlJmzgRZpU/awL7MwVuP/uGFehQPWsOQ9UzF+Y7ttyJ8JtnNgcKxJvPbNH/fox9XW7zix5laNU5MOMCJWOcjI/0zPf8ej1sqWwmxI2oXXKTutg9ZDo40bmG+IzVh+KN/PnhMo3Keg/6Es+nKGspJLUQXHeG2poA849Jj3dm27wZJFXF+0HKWT5yX5pH9vxKIHfWceBnbVmQuHK2vqoRFNoAWqb3ruuh8DKvYKBicOlxD9wY2c/F/EQrBJpra/vfVuMLRImNFWoxtfdWsWFNx0AZ2iJ37hLZfXoSQ4LiObGK2EXm8DYjtA1aT3Di/Ri28tT1Sf5ENBh+R7W5aqQlF51KCq1Aap0L7FtuT/nskXuIfrmDRph0NdX/bTyfBw5aWyNNGVd9Wh9nJFBu22KlYYnIJLcUBHWvfRA1VaIN8K7k5E9jx19F2jkWy4cMDz3HzbeAcqkWGyWrEjiSeI9v8hGpSLXBLOcvaK08mGWW5tyQwxUD2HMEuSbjBFjAQQadiTKAcyIQ2iUlUi4B3oRJdWK6E2ylvp5uq2rNlFR7A/D9x1Gn5ZC+QEfGhVdrERkThoku3ADN+FnVx6QOKYnHnRGycD4sZvXh9sSsLo2sFNGQJ0jeh8BeOwPoBS1HJ+Bmf4Fb0ghM7Pyc/g9cBKYmg/pQh3LstBFE0EIEUJMSI7qCihTBl16Xi3yy1aBFA/OcGxMaV5IxhTq0XpYzv7CsHYynrYj17W2BsN5fQ90OttQW0gDKyilGvIij6TRz6PkyreYtV17zjtj27E0YrwA+SSzfXQzKOWtfo3eIYqhNvO8xwShg9nXjJGuZ7gPhlJNq5ndtGvgI48WQArANRv9GSuvCNTT7qv6JjZztNVUtxajEkzUsRhmh/z+cRLUwxN981h2bUjgm4Zw171P84c4WIb/sI4bVw/Rf5xpZ3PbzF/w/n7kRa8r/J6IKiENQW9rWdoY//2/Hf8nfgLfFWFmbqEyQGl4Ad8Mjb9AsxJwvJa95lIb/FRgkrLA6brSoF01rgChLSL5Y26h1AWTy8RD+u5bha/U+8zh7X5Gt2ksElhgM7nWUS9rexN3JKdrtkcFAo2xcBHXvGCnOhakBo+DFSflhQADAli5GSI2S9PbzAHdFlKaR4z0gcofq/V9b7oNQ0kdG472l5VACNaNRecQ7xPQGTAPAbFHaOVOZGrmqR7LrFqWR7cinWf/nhV60etOKxVfn/eet0kF3VF/gTFjssuo5DeGU6Oxp0rWFQuWZB6+zJdYGaIwmeHnb+5TFLTaKL+LaMKjrgjBht1r4zFZQFEp+26FQ/tJUO0Z7JlY5lHznu+FscqM9t23MGL0S7wBid4urZVmtKLBHz+BklckaAV2Ot23r2/WEiyArnZGAKRtr1NUgwecOeFT1P/Oo5Ffb2UdZaRf28nYmH6GMJIHcNzT6QO6r6y7Xo8fdwvkW3ywpag8g4Gyck4NldjilLEgmbH7sK90+IVrmQO4K2EOt/gWX/oy/2zVTQAO/6WA6eTtpNpGYCbPMV3M3PFs5ydMsQSip+yFVccSVQlD0dZPTuTzPyGk2697bw2ywxsvOvUYY4Mw2SS1Z8mSMWwpNJfDi0/ldN3B7C1THWJxG8/EOvJlb2gL7QpobE/i7U7qub5tv8A86QG/NFwZO/seb+QggArz/ykC7nvDlOd2jAhiY5y/JNazftktip15uIDgx3iNfzPhc/Glvj34T70CI2fj7wR2aMyCrtWFfkvDpEXil+p6JgGMmGoLgmVLpJMrFq4f1YzEQgv5kohPm+6L70S4qwZ/yzjDZhwn4t+7WuuCac7LOHn+JzuaoPMqEhFUBuTsyaHWG9/CaN0+BPoSvXhP0bXurC5UAjc6LOPlvBT0MsFdJWRoMZlOQGz8o9if9dMK//ApVPNzX0GYtHYDMWJkOwwb+zXsYkgt0s4iGlrXh99W69vch6VpHNnenHKDGdagDfNe2oe/EffcNiR+qQOa0Ex8UURHLL8PesOyXrOZxm1VfMIxxWBKfS6JsWiPUGkUg3TSbYybuTP8J19POfMgpy7a51rferCrd5OV9A4//kupNSIPy7W7Y+gWvqCFVGczXOCzRvealzAy6RFGG7Z9QOTdUQk8j8IvFWhwVWTTREmW0OPVRUHAigruv7ApzZM2v/SUac1kwkUPmplTCRQDog0Xi9ZjxpjvjY92EfRJgBCY1k7F+ymG/jfIcgF7/LaifEEEHBq1ea6NqFW39doUWN5VqLVTXTJMpvLzKnCWbczRm0TBQLOBqz0HjJe5JiVL48gywsRMElnRtbeQrhmjjhUQRZos/YKrz4kb6QLHp7Oun1SfMMU2+SZ/uKf+Bzk/gtjuZ6WzZnnOiAsAmAeGoN6LKYiZlOu7biDMcGVkSvkSAAcU3FBXBZ0+koBtw1RXJzZ47NbL6EBHP7C8SQRiGl5YqtgRlbdB4FDQqWIp6F5EwiBCJwowV6/ox8efsGtcgUlYnJ6dwtTpqm5K8HS7r5AZd2Y2O0ra/0DmSPBESJmKhijI4/SQEzgZ4qrx3kBNwDWj5J96SBgR7AMr3QjslgMfbH2kY4Swtuw60px9RTK66c+m+Q7qNJKa57CFMcMWHs4TAAf56ZqjGvL+0vrljzuW/ABjdSJyLRYbnes5KX1KNNCAFnXCc8sczB/c4HIV93vZD57mKi+Pjb3scznMdtT9uccAh28XhxN38Rpz6Tm8VESVt2Pg45HdmuSVokK3IIWlPGNqB9Ds1saFtEfxaKs7T66cCAO/yCWTGf3JoM4YgiLyURi6DRBIiyYwcNwHBj00nnNApAkFN+KGipGEVWMMcysK0ylWBdEEgWdb3bIneSMov8pwIkXMMzXK5tXy1lrUX/KXq+1d0RzLlPoRxJ6tOMxzumteXV262uHF7Hi3FvM3ym6Du1Oyyq55/EfPI/UC2jidlcGD5ZGyDGJN3kNV17ld/+yu1CPJVWiYEyPRLBZQbnp6MxgLeqalPQmTkcBaJltKNqCN7B3j9dp5L3xgChuMuwK2dduI7BcYARoNaFwO6skJkUn+ludaOEW6d9zgcr5QFOsSGuG/nKqoaQglNX8ZAnhwmNoLTAd9G7bLWsmUVRkkkyEeBaQVyN4xXDJy9TE2ouLi5bo+MsXsfWbiNm7YxhECRr3l04+Fcx3YOeNf6P4voWGpx62Z59jDo2XSJ6zktpB1UQU9rSCvc5D9F+1Yan6nsu71iuZFB2dh+xuisyE3OPCs0z5v/sy/0ZbvnrBgZ2x5ObRisFSirryI0x5apju0/I667RHapsqetSmbQJWTG19MXzn5HELeEuOlr/q+hprrnxDLZrGLbesJI/0Dw0JQ1eZgo/cueMJ049UT2tUH0p1vY4EYoC+Q6zz1T9/XWhoeDDTX2wXa/PaDFjbJJXPY6rYIMgbmmTYRtrk+vnIZ1rshMGyi512yBFzlRekSQ6n2caNq0JP+LAR2ACnM9i2OvZlI1eM7LVrYvQtsMlNvFvhltHo4ODDGlN8JT4zpeCckQr+GLI6caXJeIm+FeQBzYK5L46bZAGFX8PY+UqFLjMXw+JAIC2mI6Twl5BUml5fTuHCI8Ai4JvQ8JKeXyj6gsKko9aW+AHQIeq0e5LaRsYY0VyZlXwZ3fr06TSX8/+3qMkfPb471lizriJkV9MuhYxgJAoV8GszGbBxDdVyW/q8PbCekla7YuPh3Z6biok7AZR9xUr92gnq+xCDvI6KOxBO/snjs3Tg3sgxF3JSlyGX3+xyUP44YvJYRDdJubiQWT2pJnfAeA/40JQi7kR5eVU7AU/7DTrFONRAz3Q7vCk13BPxpKdi+OslGz0SZYvEuetIbzgiMSzDQ1/iW4il0H1xzEuErG5nP5WBGuRO613FJKMnW8BJNJre8D8AsAdXoDU0bcFMtcr/WZmI9RbnhseZT/e1fLBKv8eW/Hg2rwj8l0gPdigqDFqSSKqZpq8HlMGYhUfob5jbwy0iH+g9+PcZuGi1fwB0dCOI8ZaN42HqT90hwPy6eoH8oR/fYQEA331/u5mdhH7E+BFaiVlFJosIyy+0Z05JXyKFmRBjTLIZCUNLxQSOMorxKTOd6SQddlaTC7yXrvgPyOrcHK0Li2FW4YmNzhhMxis/t84cnyOJTWWCaPqsCq3JwT/MOE9mO6wWBVgo3guExF9MfgdlkC8eDVi4TZp1zAkW8uSb/RJwN09Q4caGjgqjNRv0QsuyUcoMoW8sMoGk111DpbpZP1T2rkUD4ITHBiVUAAGmvCev5fFMA1HOk3xmOTOC4MbR5G18eOvtMhYIZAs9WlbTZpNyMiQbJFO30+otD4R4tbpTJaq7H7dqi7E+KS3NryvE4Zq7AtLZX9bmdII+C+xRA35jetumP/FjNyn6RH2FJXmpDsPEKDf4m7Mq8/dwMqTM9/oVL2DCocT2csySzqLrfVK82m0w1D+uJTW6E7Gs91mnPiZlBJw4JjHb7Scfaz9YbQOkAMGlYixGWEuorjJ3k07hwYZ1oLDDGH1SjTN/FIrAg/mwYr/EoDeqkXCokrYPUyDf81ZRWg7HpP5fDbe+jv6IwfKJ9DaJDt1bFcohpjbnwG/7IJq5+clmlXT4UHyjxhstkhv+OGgx3X36eJmsA/Ig5LD56cYbmrR6m2Wy2XYBC/KPrjf5y2vIDPFJiiA2YoJRwMNzl+2Ylt+9TpWPrI+aOd/m/0CSXd9weIDpoAoWt8HrGwrDSsuICPzWomL5yJiW8aJUvR4CST9net06rhPvh1/5yrXWEsXObVTf5MyB8Q3+iQUs28fWrfSn6avBo9DBBRFwGBZVGlCsSZwF2GAz3yY+x8HkVtS9M90bcGfjr0Y=
Variant 4
DifficultyLevel
551
Question
Blinky was taking two days to drive to his holiday destination.
On the first day he travelled 900 kilometres and on the second day he travelled the remaining 300 kilometres.
What percentage of the trip did he travel on the second day?
Worked Solution
|
|
Total kilometres |
= 900 + 300 |
|
= 1200 |
∴ Percentage travelled on second day
|
= 1200300 x 100 |
= 25% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blinky was taking two days to drive to his holiday destination.
On the first day he travelled 900 kilometres and on the second day he travelled the remaining 300 kilometres.
What percentage of the trip did he travel on the second day?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total kilometres}$ | = 900 + 300 |
| | = 1200 |
$\therefore$ Percentage travelled on second day
>>| |
|--------------------------- |
|= $\dfrac{300}{1200}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/XDECzGnIp6vHfbEpee6KhDITrU0hzq8wqkVUE4bvdXA4oDBweDloNfDz5+rFJGIwT/2+Z2fGm26Dekggv/7XQtbXlmsxdh+khKIkSSAmj1Jn1vn4KvZrQmrJNqwcFpu54KY3u5PxJMk6/W/vfWmI3bxTt5gLJpzNvkexqK+9TovJvRj2a0PbDunUUHpw2Q7qA9pQUh26dIX5km6dndAAXDS0LVpayJr5O5FXIacAHUSmM0AZmBPaXLJlKnI3k3685Hbh1E9zVaDf97clsCTT/mYyYOC8tgctK8AnEiBN9DWcqBwsdBLVKKUk/oMrCf0BdDki5f2nhPmwylUoKfn/iNj9yB+O90hZf4+AKfSsLFEmsjrINLkYfjTziS58M58+fOyvvGPqBZIcBvTeaNc+05IBhgJ71obFj87sUSZuf47k+7ph47sVo991HtitHZueelhGgFj0Wx+9LOP3wjIC69et9S/hUIkd4rgWskbb6Xg+fwJHE79X1cGiBQ6w6oTZzSspUY0uBrZ9TIU43irw5C5htTIt7xgtptXzuIaP4j/5uFJWQRX4j2v1cVNIWptolO5Et2zUbS9FKO3tV0qLrkIOSRQbtpM12/Xz3DhwU0pPVVNfUr3ElcitwQj6hydcaaHpcI+cOMKIytNmc5um5n7Ewgbdp5uxrsnazLqhFFiqWsPeNrXvgvqOTir3MFp7xOA+IyoxDHSQ8UeV0aKXZ6CUemSxOATAbQx/LG8ADcysl6LBAIag7kdHOjwyOtbtgeyBkdrHro3yJVOZrQm7FgDLNXCj2wOYRYrmwe7J8eHcS3+BQETyXwY/FWdCp8g/u6PDa6VUqfdgvv1wbwKGHbxGCH9GYZb520blYqAgH4aZiE0wjORFvQtqVEcLLAXTddEbYzT78z5MMz60sEe7CbQ0ZDuuaKMatZjwfbFzteriSd9V1UUu9PrbTNbKC5zRFz4wY1+gjqCS2jl3t/uqnabqYGdQti71vMBTcpWiatVUJQZDC9QHLcT57eTpf1fNGmAH3EcFgqU0WTA67oQ+8KQ82/wV/eUC8HgrPmodravR4GMW8BVynfK8ZoWzuqRIL13bJLLwKLLrnyHbRn7wjQJmxEy4qPpcq1QR71YkUpftfsHqpjQG3w99WwZt0+rciMHsza21S6fq/TrqiPPdyrG2kAtaMIebGqzysFOGzZuBgLowPoggA/yj1J65FnV+p91p8HsWZ0cM61Ht2413NH5l86SikVUp5kDua5Zl7Koa6AV++HvqStYJE0LR3qUz05ggrgtj1AiorS9xcXZoPPCOrq47FnZuVwsHvXh8O7Vuvi30dqjHFTKqN+poys2wSJ4Ug9WPqF2+7OpcwLUv7/HQQlQEaEyPTnBJJLoFlzcC3FmBNvqwM46K3hBV81hJFImzRLv4CzWd8dgG5BbLpB9QDVyHJzofKrfQ10Bn6lH2kEGYpRA6pcXltoQyP603S1fXxJV7ZL7phH8m6KvZaiutV9za1YnP1tp5jnLiMZUUiupTMBTh0CdLHTM3a5twe8xjWsMc+Cm162D97enihTgqeHURqWbvIJSHr3HqRlbiK1a3sZ0eh5T4AbeXdukrZKyonsu3TFGNHDBDCUTt87FVNrnr5ufnQP42KgUIi3xZbudwpS2276oFuftFWEk81Z1HiUegCCYjL09JNMafFUA2tI0Xs+Z6dI39Kwd9bQCd6MM0a4Rhs+8JdmVvqXp9iFCG4uvCUYK5glHJQ0H8V5OkN2U+QQ3VE65zguioMORvyTVsbwyNj97BBwjA9VXoQZvBU0yhjT1gSMPmG4fDjvc7ZiTsozzNYgnhwXGt/94gPObw7hQUt2gMVrA6a90IIAs/3yKmguHFrLhJjCQ7Q1WbScPKbcD2IgpxpQzW+EqStADGWxrlpZGx5v3wRm8mPKCK/J22Bw6kXnyzElU+5xwXjMHkdNoPYQOyhheH+KOlqIxsbSzXQZc2zzf2dHfmHdwFsk0FsSD4Eg7Ysvloi0F1pQvN3EPT/2ZCkVuByeW65SypVHekyy76lsK33Ko2v1rVky+qI0Fg6gaSTF2aXQrtqaohwLLpwIAY06VMpt7coqy3MnN1DkYr6n/BoBqV8G7IjnGH3s26f+EtTe5Ukr7rKNXfT6zgbK5qUPtdybgmG4jY244tZjZTwvYKu3vPzbWdQ+ajr1ZZRH8SJ+2G4e6lHEil+QD9llbma6GBa5ZkQZjXYDgKo6DpwZ68snmF2Q6TiSC6LGuCEv8ABaT2fYvAXExu8uXxS6iDSAGI47YC8scrTDlDDZKZ5xIQVTM/nHCJ1IHcrdODylSEMZrVzJyecXD2bP1Kkev5VB9zBsK+Vp6u7qWY5Y1fTNBGcKBPmMAVTBEkM6rGizyuR/P9mpXPYLoWSHzlHEoi87GB8EXcRat+KnLbJO78Ta5KZUVjNW00RW9jBXKbDpnz7SG83WRbG+4LnDGhjsxajcnLFDMw0zxCB8553G6eMzhIsI7AvbJ7iikHomWQAkRtY3C8Pz2xwT2POcVRqcIiAwD+QVtlqJKcdA21E2JLqzDUcC3f3Dqjsi15Yf4PfI+vWqSDWBTzQECf3M/FcPun3vMef6tKDlXYhtQnkF+XedPFmlkuvzJgI1LaJeCrD7LUmvnmgCIFru3AfYxYp6u4FoFvKNYfiVcOUxZHHvNAtW6yK5Vr9b7zBpSNP3qK0/SzpcOMhJzlXOV0UvzPBm5RL6w3uByJaKEV4Flf3whxpcXwrXpTMkARvGGkm2e1SClh3GxJtn/mL9kRyqvXMIaMnnOUiqXLBphZMd95a1KPPO+6xAonlxZYENX8RB68BRWYW9BsD6rc2Rw+w+LYA0jx6M8aFNCZt/O9fCRTkghxtVTE2zG9hRS2E2DnzHK2XxYVNmbhIk5zLTkmzo/M8MH9ZoWH8PfQm163bcgDeICUWbP6PSQGVKzIlkBXLxejrRvD4wwhMoIn4stkQbhso0cvcnyQihKfa+rfKAv6SY8zy08DihFy59fNHtWHEV5Q/YX4eSJX6cJuP9oSegREdViuzLCEMGRo9zEc0Q96pC9mPjBse1EPMnj9GflzhcmkE0OKK/2TYMzTCMXZHm4UlqoQvkbPqBhQZM3fC/xnDHyiNNPfyIlOEPrp7ShqoaNF9YVyXfWAzcOMsfljVlZP3NLVQitXHEYv1E6+Ej5QbdDzwusfqjhcGNBD5H0qzi/2YfPNM1vtb5WFHEgg7cTl1d/t36VkXW9qaPTsNIDnTNpwL2KH+OUrObtKpFG3q4UxUVp679GbuJszaCNZa18pZ11XAwcYpxwQdEszyzftAX8NEdqD89iyE9TEmFTLu81j4KPhTrljyLt5cTUpgzJytPamEh6qckmgNrDfBiFt5PRlBgfEm9LKhWucEk7hWnnlbOUpBYPMaByImW8rmoELyNzQ+v2hBlPnteTtNku4ti6ii7MsescvvJHRyptQL48BvNrFXyCkVDbAIfc87EglJh5BVUp30LMVf4pnSK3j0SCnN/NqLg2Fbqnfo2b5u6J2ehdEIuEps0XqFDervOArCHgdsVVWsI1+Vg8Wp8GB2sA8eVB0uoK0m8eRWM5r26tYgWkD6heiBxeoc7t/DT0ND4hLe8M9RZGVHPvrak6SStSbF/fiOM18jbsvDmsbZr/2IqYrqYp1xiDqHJBGiwwZzAevlgx9BjMIJZR4kPHELP6EhMkI/BNjHShmiD65vodlxHqkbyabK1TerpJTw9K4FlvhoBWyO2h/B1cUfeb9dlBKftDZkjOmUdM+64bokp2B+bss9a7O13duE6b02vgmM2pFwfgSsYHf9FrtW9ZPWSumqDW4fa0QHVJitrhnXrs5MiGQacl7NrQnthKJI1tKWfamO83bZLi/eIO5zQz+Elzg8/BLZxVzKHpTpFEA5xx1i641JOQN/lPWni/L9UdTOewcVjckx42O3Tv5FW6FvaB9tL1MhSytQHQrHNmpxd3lLvWpmWI5b5hsBmNAFUWQYxUb1Bc6irMEnyTZbyvSP7NhwUbQ+nVme8PlIug1v2CrUW9ESWZ685ROx7aUMq3hG1zsVy+16csLNIGjGuofU0Ri9ZGiIG42ppxy04JwwXOd3tf33HNelN2EhvZni5rvpJMDtLhOXN8rEBU93+gYSb/LzNQcdeZIVFhVF7ILF1PuH3094aW2qmfz3Clr8++Xzmg3My+MEWrfUjTwHHlcNtk66/m17xsQRmPTiUE05y4oUnqK21gYT+RpCXa8bEo2Hlbt7U/KngllLhvISLhTVjGK3uTjfZ5nGEx5pBhigN9OmWAr483WiM2N0S5IYeoK+wTvmcXrw7veDV3PYIhmBeRFWHQ0wdq71BUx7y7+gr+ZZine+GJ9Z3rrS0UxC8OF+qiiE7zENYvCIqixbcIL5qqfhesTwV3wG218XIz9zyU2GBoy30aYCkO5xSWu8C6hN6xJyiIPYAa3SIBol3+HFa6edEsl3sdKi8bm2VPOS7tEJy2bgrcZVEnLKcPGGhJQattBNjFvqb98xbvHU0LW6K8kz3unKnnhboUNoQIItgi70oMJucQkr6R+f9++sKZwrwlHmfMclou7y3jkUA9Zgopb4ZdlqwVlD8G+gTpAb4NTIqzLKj36mSaLIS0u2W97PlFqNSci4u1wNMzmLB0HlsV7M/mBW7gpwGve7ziL3FpBMfBlerx8OiKkfPcMvFn0/yAz7gfsLObhriFpIcaOFaUOaOrdBV3lQJyvuTUsYd8w9UqwsZcrM17DBsMgec+LwWHZpem9W+YemcGRbC+/CGSnhhAmeHmWWMCFxuHu8BrpvtN51QC7eY9hxvolOpryHUCdSm5Z8EmJ07zAzDqyah50xGFxY2B5vot+KFU3U4q3RlOLc476etZocbsxpT+hPH6BzmGpUMzeT7+i3VIUYxX6W/LJgN3+qgm0Lsd0rTEqWcbCm52B4GxDnDAPFvEOwgxQR+x+kPpg0BvpnXrFtAG+j7iJUVJ0Uk0W8G7O7c7NKUWar2sxMtvZG49wUVxgyxv8k7mjvN+54j9CXuRROf7vhIHl6gwlYnIMDmG0apA==
Variant 5
DifficultyLevel
563
Question
Bruce was collecting cans and bottles for recycling.
He collected 144 cans and 56 bottles.
What percentage of the recycling was bottles?
Worked Solution
|
|
Total recycling |
= 144 + 56 |
|
= 200 |
∴ Percentage of bottles
|
= 20056 x 100 |
= 28% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bruce was collecting cans and bottles for recycling.
He collected 144 cans and 56 bottles.
What percentage of the recycling was bottles?
|
workedSolution |
| | |
| --------------------------- | ------------- |
| $\text{Total recycling}$ | = 144 + 56 |
| | = 200 |
$\therefore$ Percentage of bottles
>>| |
|--------------------------- |
|= $\dfrac{56}{200}$ x 100 |
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers