30242
Question
A bag of marbles contain only {{color1}} and {{color2}} marbles.
{{image}}
What fraction of the total marbles are {{color3}}?
Worked Solution
|
|
Fraction |
= total marblesitem |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+DU/rpaMge63aDAEsrRi+ogBvcLCMdvdT7ALp0NJiqfR1rKPoSf9HfDHBS0y9LZZaPZpC++xiBAncaans/+Zy+vjIFlE0YOlvVnlpoikYGZeVfkM88q1nNzx7W+V+nV6fEH1VvA4wT0F3nfCfNyj+PH8lGOgfadxciQuk0kR8Lj3PnyTSaCcvp5yaPVVaQs92HXlQswzDskd3pMJM10/vqR4lFWZn9V7KDD/kmLX/ZKrPva5SdF0kKBjVPhFJwB2GWfGVMU1aejrSn9Luogzov2DWFM3rtue9auAqeZ4/yLbkve7CLX5qIM9xV1HMEBuCemQ+LtnbP2LMA3qth/tycdBU2Yh3wt9J11rl9v6mpULXJqiuOsRUWuLa51JBPza7EzS0qomPVYBICe4fKiJIC+QgmqvZNt3oSrhw8ExbzC+r2kbarD5Ihn4PJTRIZh+iCMIi0iHMT7e+2u8A3ezyX48ql6UP5x6JhC9uort+ERylfT4hlnKwi1uKDbo0lCRsfZYKSfNRVoH4WZYZsHlHPLT4UTkoKSj91EOlrIp8HaJBsmpivrk+tqa5Gt3hlZhOX9g+T1E0LGzCw0NFNx6NKm1qi9nXAbSUEXkQ6csSuw9TwJTBoXJ2dRi3IzHjM0xGYTMWFszGXyQsYrnc70ssf+DqPLOZNltBc2CC7DbZ73JfCGy8iNgIWn6OOrRTztNuYELpWRLyXgSZ/ZaGad2O8KGlgHp2H5kap0iYCEb4l6CMQm9+udIeWb9uos9/ByHtyQZFCavVJLSpKBD8E/o5xuW+axUIoQL22aeLeFkHW0d8X3BlRO9P93+Xp3kKFG/iNKQg0U7SAJi5LKm9WwbQQhEtY9dmno0fRBhkz0RErF6W9pd1bv+r+cBDKaXhwNb6LZqcM4jEfqErUpuHOUkv95RXbo61rj+GgZmQQXDlUmedB0a0FYWjRJoMF3yAq5x56b2mEjvl4aULZzhskjV9vyiGp/Np1MkHXbSzDKrOwwtgXWjnP7vYseRHGw4JWTJqhf+dBBWVNir6XaKGnsVzkSpeZw14iHBJkiqX350fieqFLMfFM07u5FXnL7zEzVDt1GTGeOvXhhMPyG8m0SKSC+UJl+yLiFMgyuWXpq4eYjjFK1gOSjtLUxYB+9108f/QNxmwP8d0HpST/diJkXmE1MXzGLlA3BKqXkJUW9422pwFgYGPG8ciOC6PSv02ZNJ/uJjpSH4uIcyLQ/IaPOURgMVEkRjTu7H5d5cmpnOowODMI8PhQkra7wM87zfy70NqFCY0z18Jty6p64CodSw1IeY5hUP6SpwVPLx2K0WZ9i+yjDIRRpMIGDYPQIEaLnHl3AYMzM1+NAhRYnKPc+JYsHrCM51f3YrZoHUFlUQWTj1CCrI0tXx1Dd7wqK7Ri0g1Aeayw24ChUBdVqUDR14sjrCsvcps+Lyax1B1Mrj9MLCAPvW5ppjQ6XalTnOt60aGvM8oYx45hiKNVmpG20MGb3tr241/jmd7gT6aeIGlQ+WBPSd0dP7Ub1zVDtqBdDKf9XHPR/1Q3SrQxTZ4RUOYovIcoOeriq/s+rNQcqrLY1Kn57ihF4bOd/GVAtZHJapqv0JWCyFZSHR2gF1qn+xqU7hQKnamWrO8BwHeq1ex7jegTmnBMAKdXHnu3aeITagJyzeAxBbV0LIL7q9oSzhD3eHXdZUkmY9aUHi8fkJhb8t9Mv/70xdICuDOWYp8BWTE6lMd5fb5/3mH90folss6JC5sdgSn1TcNedXF9kX5QaDtoIhIjmTNuWAJKk0e3I6SoXM1vxO7+OZg5ENfdWX4PnboZichzXrx2Nf3Sk34KVK2oO7UFWrD/mqSpeXg35uBwXmCBbyLPq7eJtcsUjcMryREx9cSqb190tke2ZwlRK0mNqtgqP44+m1wbSBrSF15yAMsGeQawBwtr2taMM2J0r9FaFAOJrcjYuuYt3FfRB/LYE8cOWGWLAUErFoxLLjYbfHSsiaO+GF9X2L5Y1rIGVrkMlTOpRKNPr6pgOIwsQv46m7OZ9/x7s2qXQlUOh0GKaBDlaonqxWCUt34ZiOTbrT9ZU80L5A7mqZe6ffmEsZhwAN+wRjM4jx2a+fC48/P5gXcIrnQ7G9mov/rUEl8SwPUbepP5Fkc4YwVM4/lTVDLWQRxGb+te6bLOTmIvqL0fmMxkjISReOqwu5KcxiT6MASyXRznMB2P8//+wCZNWJut5UZHbrkGV3IArHLV4XWz+4iQRc/cy7PySzs6ZC6J7g817Kf2g6fpkP0TEIdMnNd0DXBRNccaso16jrpZCs24L/F1h+ffcr/AzQ2pdLiTo9KDQZiWMMyHwN8FKbl718Q4oofH0n5L6gY9shexOzWNOs7AQOYcIaz33/+m4J1DrE3o5cPJcfs4mV1oLCfQpn7v7gJ0+M7pYfDiIayepWO15ysJiJ+NHtnIGAZwQUHqVKkFoSekP0753V9Q7hQtmeggUWUnp3yDnGiphvQ7DwH42uwhigVQAxZyW7aERRa2BzYu1wBJg9ikdN/sFtm+kNlPoX6v6ilbOVJbUfSVVQ3zJCkxK/loROtsn09mVZZ4gbwfX1++rWlGGNojZ/oMXDVuwwFqVa4xui65PwM/kguRtkDYA833dAkZphHAYkHGqvlw6C1JL4wGkOWplLsSBartQbdUrEX5tS00e7m/LCd55e/BFwRJdj7u1Nzv8paAZMPHCK11uFguBZBXqP0+Q9OXlgYjWk+q4DaP7C0dIVm62HOw/1OS5HIHEUHnNcklicQWuj53RHyPTulru1JWfuIAuTrkdiYFWfq5oxXL/9oRGBelSbRKzCfo/AXiv2vnEKfcd8d8QLycMfoFLAjb19EDZ1aVKTpuChmQVwFM+AoAm8EqW4V918HfqxGnayvUF4HyTHyaVGc52KaJxEo+s7HMzaY20Zvvmkrv4iu29rP/rvc0PBDzozJgIa5unQQXK8Oa6bYvWBpc+KCNH0FDYtJdUBZTB/ep7HEywKUSwCcSw4XDOh71jMVhVWedtn7xcED9cFMnBus+jEVfb4/zecLY4sze9lS7aVLi/5aVLSRGNrAq/gSSPjt8qhpBKhrQefICHZIrf5tm35Y2zBW5vaH+PHQmnwQY5vv8BpDbW3ksVf0r+ls7Nhc97E1XXqrLq3dJWa6kt+4W64Dt1OxfNSFtROUMhTNArJwrT43dPY1qNqSW6yJtdnlvsutIEFrJY2yfs9EhTR83dhs9/+MBkstNnS7ivM4AYyKEwcipmqYomMe4tzqkAvbkM3yK0R89vjAxXYHV+k82Fc35fvc0iIE0feo68vPRYHrOWgNpli5gvbhKv/rpycpwBVQotp2bWBKZ5NrainVMSsBxRW8yTOl8EdojCD8ZdEzV2A7Au8CXSTgW2K3yuS0RC3JgMXOGvkX1GEsBfaXAx7Y7Fahv6pGbFqOHQpDjEGaYHgZYgsOhJm65fU9OFAjzYJrRj79/Tq3/E2z3I4h4f5grBxjiTubbyybvXM0eMePdEa3r5MC8A45ewTd8GJouL1wIBBHM5sgO/sCocmI4eWJPUR6R3D2e8ObR32oQpxXalCymeMpedBA3HYKjW7djva8B1611wQdTcDnyjskH0tSGbUNB6dJ2eOu/mFcQMSR2sTV6364wFy+j5gS1/WA44gEcfZZDIoO9T19KYIiQoESLPqOK+jy6BVLfhCapQtCplzq1MpqRxZGCd6Qrue1Mf0gv0oc6fcoCX9M2x66PT+l6VVFbESttsWXZS5Jho1P6R8U0OiJLxaA7FAFLGedxr31qXc7O5Wz+tTOOyQGBr+C2qcAmyOG7Tcz7IfxWFLWGNSj9Rr2Ts4DUb6c1SMBZh9BximfU4QBjh/UG68Ylif8aKWrwZihkq8U6/eSlXHfkKSGjC9tyj4W82s+KlrUDovIkFjJXekjro5RBOLhvDNaDN4NEkeTax9oEI6hyWXHAO2SWGF6PwIEVloKuGv8cdGVf+Dc5cyeNtYbbtQmySV6RUF7qQlZrAOEurnYABRAO9jCHPVxwD61zvJ1tXFlXsxekgRlnEY75ClHfM/pOZejCaljZ/mV8sIZAK+XljihHx6rmxIUw8qfjph9xqRTNr+WgAmHXJ2nADpslh6UdP8whOeA3jyx1KoVYKK5LXRIY40DGLR0v5sPSOOGfOJaNNHDDRUYeXbuxZDKCBQW91QxGtnDO/kTQwwe2zYlli69oiFGui32rahSeSd4vjPxxiYOQX9lIWuPbtKiCcBjTASRnFWL47upvGO1KqZY/MQWnTo3zSoxq9zwge6VNPUTqANjsc5hUaIi3T2K5q1mxyBHgMxPiE8/nPM9mpyWp6lECCcOTOK882IvBvjCz/3BWV1pAu2nImpNRAWL3h/4q2v7PC6OtJE/QeGE8Xj94EiZWwrGvxr9QrGz9+JIV1N0ZiuhBYxn0kdH27mdRa9xI4bQXMaIC4m68oPDUArKSoVDnn+WEoVs8OJtIhFy8sxykdREdn6gtzZr6CflyylWfSv8jromQt8Oj0NZOWQZbuy0yyEy8LJCoCjgUaem6tIEB06cRdFQ7aBeyj3UugDTk/fQUY4vkCOWyjC+GDJ+IpzERNRqF2UT0xzBD49qbYNrBc244wTe3XPqj6kN5cmEQDSIPv5bjWsRNVtuNpSRbXhh3E72Jm96XzTIAkZEzQ7b0zBj/FORXYpEAWH5fG3nMw5SWyOL8mdU6tIX7pHZ0W/uzXpdM4jTdn7SZzfx9zIonxYn3gm4kWXQvr7VOc90/vrfVQIDVupwY1D2udUqheG6kq6Wj08emrEf1llTDomH+Pj4gpxYgPUecjbjWutc91HRnj+wxGORN7ANv+VN2RfT6Av5rcnZFVEAt8wmef4i230UCIepPY9/AgGzKrOLa/mWfUYt16xOVigbg+79Avst+zQibM3NzeolHZnXZF93qTydnNLW7jGvp3rijx4HfWoeQr+BXMpFOkl4e8eBmkTDB3ikAMRs+6EPVSXEXVXETE5VkQw3GHY9YqpCTGxjHKZnT+V7/JAb/EewQrZTNI1AGjq1duyji7cfZIFXrNVbSl2/fYny7sDpENFps6WX+aormQzseyqSFi47ZB4UUnjiOSGL3xpqgWOnQL+r9Y+MVB0Y2YPkShfgHsV3+38orYOD4s5LnmKl77Jb4/k0PBkEFW7FuMagcAAJZ4sEiorm2eaO0gRCv0FgVk5alwkK8uvQWCiNd2ex1Z+bXyqxT7wHbpbRRHeLQBy7F+0AUwRJJ1qzDIu6P2UWzXX+hgs8N/sNMeyZs+aHRDWit9aNbWUA9qoPXhGr2z4XrtVBm4OwXz40zWLEH9poHoukDdML8qBGqVakkrA9q0nelKR7fLe7tQaHb/tEr2moVh26IC51pDVKQ2WY/3CUMiT1caPSiMHDVoSCIoRwHuOvJOEbKYdYmjC3O2nZX9rI/Wyq338lQONoM/U0rhx9U/xcRKlJFLwXzzXQIa7EFUdjplgcEclENj8O70nOnRPyQHLl0goj2bbzNQ9phQ7Y5hXYjataDfKRT/hNc4W8QSuFrxRliPN3UN0Mn486P0CT6W+pvUH0/mXRhCPFSw1WNep9j01AK+Mgf0tev0NZ4GrdbOWHWu9d/3qsxNYImUwyNRT9vQFh7mRGnMIkw6Bma6TEm4c/Q/Y6OpHjcdPZ5fFv6cjHgwAw3LFr8hfzoJKgYjHggbKwI6IjNU3flcmN1gnx4TGqGOxsyJ/ROQpFrWZVwm+1ZJXM/zfjmCy0DEajGHw5xAeIK5i3IKW5tSnJP4huMRyyXBPH76WtNwJ5rWstVL4TIBnyQkzHqReQDbuM/oFEV0PyDLbYKA4Y8VsqL8FAKuZj+siMDzuG7GwiruZTbP3dc/+Q4zKIcDBSrYvn4XZm9u+mk/KgqFypwkSiBgOhragJVCYb2EN3EPWEq9bqQdR6OOU6+DxKD9Rtel3885CH+3izg2Ke2RjXdWptKXbX9na/6wKWxUiQqvamX2VcD47XFA79mWxI2ZPVPe7g6QBnl7x34GCmQuaqobD6Fh/E+XZRwX5rVc/SzuBaLN0xIZCyt/NSrTWzWb6hdTm28UqvrFjVyD0qGFBBMjlO/yXR1QtR+/PJsCXxDIqK8YZi2rHhi9ZFa6sLd/aGru9MQMk7BQ6ACwUR3UnEt305selpPPFhQBg7o+RUMkIGqtUzzZqbCYakwHikS20i4fejn8Ey7E/ZsT80FSDbuo9BCK7ipJ/xY6uxcBTjhVQ8yAZ8oUOvJSVZMzYQp0xG8ta1mGFGfTf4do5l7mdSTa2Wxrilnm4DpjuXlu8D71yvOoXkPbMteeGAHsxiEBhwihlQwCGTExBS3Cv4GkSOtgE+wnvmjUoPc3THlL9jUv78/Gme2iysbKyXBopEaQy403eF3wwo7c7fan90FgbTDiBuj+u7NNatQB/BvJPy4uqDkuotSlUQaqUjMpJjq5xeO9iKbbfOUKsRN7GmhxUC7Ss/jNlf8LwX9NCc1nP5YPqbCpukLCwawFG2ml9EPXDO6QRPIYZhhY3UqapsBat/SNbjMJsVYrEZZjtM4+rT/IkORDQh83uqLqTQulM3EAXy9BQcEGcNQcj7VN3NGeb0o7LM3M+nWcv6kkFlVJEJTF9fOMgnPKjkHFff2CTGkweRGNr+BX8Lkb8+Su+Jr+ckeGDCNPUS2vWrXxPhmMgyjFttc5PTGAt2Ocy1ogHDkQLA1/0ClAjdm5aBdH9kdmK5X3+K6TqNwelekzxUOTocMKDECXWLRqZ5cCPah4nGSNQ5dxH7wqqTvbQ2gO9ziuKyM6vzX3x2KwUVuxKi/bMdPNi88IaHg1OYwBAgzyImz2fi8Zl5ox54FrwslbK4treDIML856RYPUMn+nMWLSmbYM7Vojdmifr8miIcYlh5o+KMWBBvd+KOGJ9UDgyyAk9eFN6mJggI9hzse8Mq502xbPqmRMuErxWKf0uiL60QqOWWdG6BlfUsrETqBQWffZLibnK4IzTWlBswU+gsD22SfmutqtIe64QHDLbr+SEtXh1qT7gfGVqZvmozYQQm5fF5Sm8XQchmdUAFDNXXBURl09G5iB4kpFQ3iVyJY+hJlzkGi+58BGsufznbL3F57CEhJmtdzPtRcfDavVz/VP5V2FQfrsjdNUoP9OI8cXngm+bP/ZE8yz0RHPkK6oFklSyedjZePZdMHUS3uLNvtMb3R56DtxWq2cLVsQsQoJY4vzDazmanwsksvXjnRWi/trDrR/vdBFdPiWh2MlwQVbjPmLcUTFkiT+lkpAp0b0H9N8v86zCleqSv7veKPxaOeFC+0afw1v+XdvjFB/9JqJpaOx+qo1ZA2heFKNOqOm5HgzpEqE3zf9THu6zXC/DgdKl/KdvDuIjFQ1wNhrWB8v5xKZjUNEFWUaa2y9L9gvBbvbcsj1fgJze8NZv9ZtizkTKmJBhxgomx45srehT6XmE4f3WEJIs6v47vt8q7V913D2vMbPof523+l9+pqgp/TTC33GNrOWSbKoVr3WtgWQfnPcMKAzNJ84kcfMcFmwxPr1WMf0BFtfCbszVN+9wQzsC3oATdOe+qfggf0tldbVmcuxi9rJvn42glwjL03e7ylVR5c+6P1g8g+4SbH3uShYAlFaBBcV0NjzyJwYCgAo0PXIJDHqid1Rh9urK0lK48BkXVhum7hahu0Yn44sgK9TljsFv+TqBWvn88MBAQcIe3+rSKIkFEZW0Pwkg7Dem4IbEnNnv25RkzRvLZeu3zqiONGOjh/Zp5vOGOdfkPsMGN+KYDYpAUp5A6leJ6o3omVBAIBg7MDEPZ+gO3pb/CgCI7pADIQn/iijZj6hOhUTnIOZDOSB4GhQNgvyDapFnHl9TIaw8TlhNCET8QMASyoK2Ss19apVDSNANtg4JJ40Bk/CHt2R2Cji6jd8m/OqZzokxqEIuHjiqCA8H8CiQ+xXH83EU6D9F2WpGuyXjsY4F//AWDOCBH3sC/qf2lXCNhP1Z7mWhc8G9Vo3dJ8YpxWSXPhbfbHvXXZYwj+9HQryvojPZvACNHgn21g871bRqGkKt0aaeMqgGewlGcDSVcGm3SB3J8E0wAcCdzmzims5EOC32fFYyZizXKZRdph8+lnLILTdBIqrsYar/QHwvFbsX8EGedIZafG9UJRB4z4r5NukTE67rn8Zu3SQRpwMLPwv9foNJDa4cB/7kamPBQ6C60blPrpOxEWXg4FTdLx+xy0JH0DzzhOmDGHxBil6wMPRiAWNEh1OLl6UCIebxWEEKx2GoPmF4P6vKg30Rksm6oBgD8QWmPUPjb8BxS8sRgk4W/rpuz09DC/zNN4f7MPv7iQX0bkPzBW+VdKPqOoTi0eQobsJL//5LzAi8v67z3eFKgGAHu1GTx1odmv//CzVy/8uSWrpfAXZWtDW315ykJTvGUJ8pKeCaea/OKEd9j0FbTdKt+s4b/3R30vR4xepTveCNtQbgqFrDxrpACV3izdS7a2qoqScdwl1ofZgXIFRk7s+/XfZViOiqMWHsu1lAmrxnyG54bfjuy2HDp48HpaS89cZ5R18hsotqhb2bZzoR9+sDQAG2nIn9POgYC7a2JRg0uDh0u1A9FJ6qKeniHYMVFv4QxUE06BOhpECb60qxhTreEh2nN2G927ev+pxTt4HKtp7oyQ4d1Hrp0owkMwyAiMhU1A4TRbh7qXTrvyOHNRsIZVdeDugnHowQB2/VsMwrYrKt2liROHmtEVYicJ6bWph7AOozuLbScXF3/nLwpUBC5QWQNeLLG3BhLj4KVgzcQ/bqiAWZWwCGZVp0ee5QvzX0nofhu3qZearQwlbOp8cvdTXEjXDLUMuJqNdK/1LKket+4zF1/EDm97mrx6/A02TKT2ckcmjEjYNnsld+bvAogbvEtcH29GPzCt3y1PtZSQaPV7341qKaW4ykYDc2vJSSb/A0geJoRSTbml0AyUfHX9hJP3y/waF2DynsMkTgnRn4VUuBxH9P279Szqmo+LI3H3DncdWXOOQMnqEU8tVSRkce22y2YdpzKgAgwv5REzPlZQeINWVyFpweXlT/l4vdTqLhRtT0J63f24Q75d+0FXLF/RW8624aUjbz546VZfb3JuUFDLymIfp9L2/Q7GgH0bdiLDSwKr0ox6cw6fsChn1SqTg5Rb1odMacpPQTAWw9MnNuJyXtF7YikeJ0nKKtBkjbJ12GvnpVCn7rAIdaJa1vB7C7y66Wjrqbv38+9qYpGoXEhYvmkRbvYveRVTfMnaFINpIeBM5eJukYQDthJpwLCJm9ChqB5fwmaKrz4bWr6onSYZdu86rEPi5QequnYaMISOhI7oF0SaiFTvShMnNQ0KUdoe1ZCQIiju0vhNBm7ezsMVXMu2kCNaDpBp1KP79wAljRYOEoLCQoasy8UINY+BLEIDmKutA3abpZ2l2q350CgfcVP8iKpygUe6n0pIlMbZDR4K2HQ7N4zAFa/8/FNpmUxlMiHDRWeHF9kr4i5lln2LALZIenPo1ntuxkPijxjuSecd5/2F+6obXmmo2PHEDUMNQ/BlLgO1KI20EL2T95qnOG4NJfj0Q46zgE+D5MxR+cshIrT+VsNe5as2kSPkalSGXVknGddo4gbNygGH/vPUsg9T2Z2nJd5p32KM94LfIJWAsRpgnwsoS2Py+Ij3nrJ1MVZksUfmBqJc7bYh1IkG2Wjs5nTICbPapY/pcAkLMyHSISqOcDRW4qnXXdPGwo0HScXW4yxK9RJ1cQqXT8fQ6mMeipiqql+ycM0VJ+N5Cp8CjFLz9c74aOB3SdKo+M7EPCvYkq4rbyaWZBxa1rS7RWG2/cNq9eR/FNIXXGtdFA0sp28UxrLOeHI1qRV80DTfBcN9C9CEiBDBOhP+WsBXYUCV+sGgsXSJQqWDJEgmaUEV2sQpPRVbgFw1WzAqmgfrIu/T4QMNXQRwAk6bonRoGrHUKuFw8WQh5gdnCS92Tn5B7V1488MWg9tFdk9PYGD6bBM3ybaojQpvDSo7hD/CwVC0y+DBjAJmItpy/0Ouc553reYWoOYi7Xj9JffqTzCcavMCGkI/8H66k62McH5n7ex1TM941sk1xfv1LVHtCKNUyDav/pkzO6Me0yT2J27LYn5X9za2kXBqsO7+AznrpWbXYoxT+qQHw8S7HpQH+zyslcUau1VcsKnLGAUjFtSRKCEmvG+e90PKbCciC1K9J5F0pjQvBPLk9mDI0SVLT+BGxpvlu1GkQGluFA3Wen0LvpVcbWfsRHgtzduJRSfjNXKCCsgyBX+5SMC7Vy6jdBAB/QvZVcME2eoaFzhRjkvpZ+rL5ZOmn/AWAVGxt0q7TMLoQRTyn+8I+/khYvigkI279eDpp6CbMbP1GDbQOF84AF7z644/EbtuI8xw9VI/RxXsAS+ZriJ246u9y90w0VUEuUSxTedgzyoNgLDiUZzS15rGqWYFNr9e8CR22CmB/JpMMZ7IFwvJJGlKIXSAi3reObGmhIRIoQJzd/X3mX5/f2ECVwUgnX0qdhg6fLKfiUup2ZM0J+A+/cQ7tE62ENOOHN/E8xRJU6uVF6xUm2Pu/vkxYhkQcvnLlj/xFNploFaFi77BYplmgTKQTf7JqlIyPFq+e+9lLpqd1gAkvs0x3r5UxlSZlG+TulN1fM5MvUCHmTu9+MmTr5/ddSMzo4eAqcY7fhSugeRkKe+YeLqO9EYXme5xMviyyOxlGvj61wm0Ww8XE6x6BeRJyu41c7Kelg6UZAPugiAz/OmHshg52M8DzByMTlNamx139pRrEdWn9zSLegcfMN8u4EXJSmE6CnTkfESsrBBJd9LQtlW83TbAamSujg/APzcFNEMUcSgxWNHyoKX4njerosKQ5JRzdCVHDY9TyrDVwOyOrkNkVxLG/NZ2hQVxDv7+oBAtfl3pU6QQBXoLe5VkM/MPkwqBkZcczhh5hBJPV9qHe00DZNB6DCxtEt6Qf4HNIAKlRNfnf7euGqvqwG/EJ3aobG+C4L13C2cNJmgsVJrMOxt5Q/GobQgzWjEy67DWEDJcC4h2MOLXmZgx7yrz/Lo+hMTbtG9w08XyqqTOgfRC/QZbTnz0KkIcahtHMTGLpM/hCy1uhmo58njx0WnGlK6klTFngGOUIwpt0CTs+xdpYK8Tl6NimAYehL3OEFPZDM1Yb+ztQolI3aJZye2u/+Ur/UYE4kXizofcyF124ra9jWmHQ2+0rAjNjaxRcUsbfDeFBl12IXq65ah2D/zpYgQEP6QyKyMVr9M0Qg3an2vKuOAKGVAhiIzf9ActlD+pIcwE04SpX14+N1bZ8hgbo3ncACrUcgSrVftxZuYLrv2gM4bT5VTNV9l8cztTcHjmN9OYB8E8LuMUvJbEvyvpyXLHvfkzFAtH923VGctBimpkdHuVyzQqOaRKcGpcjiC02VCNphkMlP4Cs1cDsZP9cTOT8VZUrwLweTASOrs+ocNW/ifXyfirO7hS8h8Bm36aJIjdcKQVN4zYcewj/Xo8ciTcPAzfAZhWr68TCwqQgD3ZrtDbguly42ZZDphPi9nI+jmcczjHrpaf7OcaLHn3IRTzVT6p2T2+aAhMD23+aIz9aqOfzr9LuvUEbZccQbkKcxjgxE7kcux/MGq+yn6jgSWvVV3hjpKyhJ2uIyjaky7+MgflAIwb5zFkIv956e3zUhBRnKMhQKSKofcozDJGJuUVAJwE2MF/KT6xPapXy40ZO8/w8NCOR/kje8SrLlJP9iQ1gZwEIlXnwifQUhwJ8UfWWFbiXy1W0Xg2Ww4/0V2LW5RQZ8LLYDAVN7A2XYgzKsUM1JOwhPSFwzPYB0D6OXQcsTcF+I2ed7E6ZqJrZmqmMSSO3wjUnGdkJrv7MITj0VdjC8HlsktIbvQ5grp/DhpScegCH63uEiMbujs+iIvhVSup0EnvKNlbIfxB2L+Im7bshgNbyk9bdZWrm9oEKu2GdKuOQEgZ90I4lYKPfuujQ9YS4jGDQdajTO250QS9/3IWfwgSn00/rKRPlnAq1/qszewwVwZI7nqh69oboQ3G7GA42K7OAOk4URjHfQ45nkSblHNy40bnlXbB5wS4/lxzCZJAKSkgg3OhJL6ew6UlYsVxlVEX02qH8Uo8XgqUmHVX2LRaD9Bt+qV/Tuq/uEWoR/LrNi5qhN5lodElpT0oJkd1wR3dz9zka0dH+8m4DoLShU+HOt3jUtwgQnQQXH03C7GvAigJ9/w7pj+bvXGroBm8RIfVcqOVv/V1UNwo7HtbfbwmUWtw1vNf1mK3fAOcObfS0qimSD5yxpC62QRe+DwhAqr/w6VjoZmjfzfZb/45CksBbaFIi2cZEIkxcrFS1iK5KWauqSSDWE17EozzcEi7m2PSn6ogbz0szjdlCekW3NTHuKvsSdgonMNx8sC0GV3s71GBCRJxOCGjWeh/whWml8iJLL8cJ1u/3n3LcfnbbJChrWC7V8vtEiA/S0VELLp68gPHNGkeCgPGVUuduM5kycmuZBsMIZmCEH1jUDkrtxD2B3PGKrRNw2ZAk58NDsBrPDGOuOpVSTkMAZuJy46ak4kuJwC24+p1ylzac/Tv+4b9746GEYM2GAoOjSIfSaC7ZfixisP/EQfa8H6WY3u0HavINKM4MIrCTpDEO1KW2hoXr9R8lsADMrSjvI541xXg4GDu1R4c7YtpLqzDSR4NiNDKOo1kzUnyhPuyAuXB+pL0HFhuIr5k5V0QTcDL4e1o90WSh44c3hO5fhP9s9nwl9PyktpVWuZ0nb/n7tsYOyjUl/RsxLEB3EhoGcuf1sjZTAyKC7xeAQugbxI3nOWu4vjrwRdu2iVWqj2NPzJp2HRjQR6yONZaQ8e2VcB8WW8qcLceU/Bg74WbSAbBOTV3upQUVnZOHB89hKXJ/yhn2AlpmQqX3nC2mqyA8N7D+HJgV4+XfiNgz4j4ccR+V8JNoqCjvItzI3pdsvrdottQpMQXXB/taLKl3UalJcD3l89hj63pmdzB5FA7/6CSSoReK7q6NnjYYxUMBUAK613Sy37gArDgxLCG4pe/ILkVJMdj3Jpbftq5NnxQ7SmRohnQbaPqYhiabtIKJMyPo7bhuXZL0lcKRR6JH2gvD8stxzQ/eumH1Wwo5wLJZNci4Omq+ina3Hr4cpaGFbo7jdOhzoSqMlvpKLjn9YTMybuMCyFPv6L4pcR5ExFJdsvrylbyMWRZG7F084wPcNX37XJwx2puiZ9/XpfCwr7ucdi2A7qC+6HHN8FPVfVIdiIiMTd026iE6ZgWIKOAtbiZebzQ/VchtI3Cl2zJq3NSlbxfvE9H2GlRErQOeYLmltqgEBDlcM3DQrkJmja3NXdz/mZAzjylSYfzhc/VEB3EXzo88qT2uGT/G7AVdoWElVbGjNlWhj9WJc9Z2eY17GbpDpTc5ZPtSovGKTghJ1VvqbKr1PMOyoelszLBOGrj7ZJhmmA4dyOYGEPtNHe5mk9fAN5+dHgAqhnj9eeOVPsCMsn2toLaOqrDr/ARcM3u5Hum3s7/qQEH4eqfY13KnV/z/CeUaFIwe7AfEVncncDnWXMnvMVU4XymKywDj6OwzYs9Ig+fTfSAC0iyEfPhq4yFBPg2U2PfOQmHfDd/G9r6PeUxuPXibr13DSKK/zOow3Rzi0WKFga49RA/YZj53vo8O7UTsuw6FmmT43/fyZISEVECcXCBwcL8D2aZYJQ3Sk3Vkqyqcus9SR4LzHKLwbYgGsK1TNR+Dr18NcHSUgYmLGd4dnKt1iAsqU6QCpPrSHLywIhp9qbHyudYyhddPC6Ib2KLptPIlHFHj98bkyFLH9tY82/zbzrOi/8x6hjr3pgSvFKa9EfO7aKiLQ80Xm6qNak7yKjsAmfdRx3M91u2pbT72xoOXTsJhd23ch9y1SFx3CrYHSlgyhE2vSvAKxTxKvFpQxBCZq/F9bfQjFbI/BL5ruoHK/UADU+D52wZGCEe//aH9t876heMvXcdEnWwGXPiu15kbkj9+0F7bX+O5TEPWcvIrz1CnnTlNiBVMJ4rl+m+DQxd6iK+QO5v7SMN4tzelLJfTg8tgVD2NNl2/kQl6Psl4AnQP+LWoJfzHyjTxInWX+7IGrkkiH5pGvVov7H6kdBbE+Zf3vtKyJZ1DRBz5h/P7L+Lv1LGp97pna8iWQ==
Variant 0
DifficultyLevel
466
Question
A bag of marbles contain only white and blue marbles.
What fraction of the total marbles are blue?
Worked Solution
|
|
Fraction |
= total marblesblue marbles |
|
= 72 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
color1 | |
color2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/02/S003_VAR0.svg 200 indent3 vpad |
color3 | |
item | |
correctAnswer | |
Answers
U2FsdGVkX1/f0XOzoiH4QpVPMk4IFs3x2WSItEKeV/i8+PLPztP9X1M/0C0AWUytqJE3LaGD2BGo9E6CLV6GGg1RyNR2l65RoIHzwH+IZyu/ibhoJhB22IpiYmhFQlrZnjpqronigXq6iAacudZk2pz7++sv0+M8enOre5KxfFrIK0JjMEw+CgPeu3DsMXp50/3FwmlLT9Hwv15qBTmpS0/yHAxOCDMpme5mK/AF11GkMa2C+rWBwiMY5u3x60AZBtqPVZLepaA3pvEs+buJ3fVCAEaS1O6sTNeTv9vBne4cwIJU41uBjiQyffCFX0hqwzbFg0MrUk59XQ0TWP9UMBXs2ae5W6BOloki3W66t5Z7iJq6e0Ax8tiqzZ9DB5zPJdBY5QBou0FNLm7ha1kaxhKH9L6g7RkKdf9v2o3/p8vKNDISEBO15PuSqD6j049thrSXoXBz026ixpfdgnWFodLtJ23LzMgrIhmicOX2ynANPaZ/dhFBPmj3N+8q/+QQY/ig++5hznsoaLKLC+R700DZUz4k1wtAx2uW//QK1IDpu5HiumRKFJ+6YDLLUYncJvFnzZ3Y0GvN/cu9tiq8m/7kWHnr6Ca/wjaTXboDVhfEmjhp92DzKk9smgEH84f9TboUKuYS/CJV/ZQh0H3N10kn0lIw0haLiWwKnwllrSKKgwd9uvs6XtGIYpD7Dh5IKeeW8ul71IiPv1cFwqAfS4jK0Pjziqk2iR614pqAzji0PCpWWlQHUQg+dH+yAWJPlDH9JJAWYrNLDRYWxtnGz89NWx71J99kRYRVn+6PcsD60SaTJ07+8LHBRaA5IuLa9xePT+ruiMwbyFsnJ8fyE9wpfGvJmVMiD65E02WUXJJRhpbvrO/y5DC71tnoXg3pJyZfObp8a5NuuKwbMsLTFawGFhswfg3khm7atJrRekgGeMX4DTl4wtR/fafscNlgSw8CfokLCXp7TK0Ta858U4aSq4UxgNr/KMdxuX62B4GMYkOu67ljivt3+HyhZMtrUm2VYTO7MRm78+SsZrbH/lh+86H7LH8GteNqUt2oHIxoojH7r3MMp9HrZQ4ZXd8H1tFVI11Q6XAP1HSdDJpfpZlDI/A5QvxD7j0fdb7CYn+D157/UKUsA7T5LpkwJ+b4/ahNKiH6Acd+UitkCbCKcSg7G5Uib+LfKNNIfh930/NB1sWEXmx4TZPHL7Y+cwEoLGwNcjqJtRJlBMO5RSbhoc4BucqZMUtt68RltCXLpGuIE2LkWGHFvtWtpN/D11Ydd6QgOXWNXYdbo1ICfc6cCBJlFxMjpWFenfdjvVt1GIjUjPB/OC/qwEnT5BfD+j6KBJCt29hZrZezJZCrIR8l/NfnnxuDniZAjxhZpAQRtBh9qjxlqMVQXxzCs3k25mVCWLaeLAJ9dVO3F4FGVhvdC+YK8QIIRZLXrCkxeDUNV2MxDtgLMQHtM/CaQV0bVs9EwU20XdM/qqdnnlDQ3NWUrZXk9Occu2LQccTm5iFzhLC4Ci+BYkyJDnhervwjfA6asDZ+vr3I8aEJaXRUXD8znMpW6uoJls+/ymMGmAXl7gAuzUcHr/szOQu0GCXcjdiFSJDoDMlHzjn58jk6kXo6dJd5w8lEQSA0Y5AUx1Tg089NiQsbwMWUZ2UCwNuccK0dn5ipAbHZq+XG0U7qJt10eu5Ng1wDdzsU/AtDrtCJMyPycM3i22CTv9wtRlo8g3i0PKwXrBA5PgA+APZhHSUbb3uv5jAp1AQwiaUZNG0KCJTfcnD1DbjZd9jSR/GtQIgpbk/JUwTYaqb/oDUibYqHMEKlqS722z2bAwoxFUHH2bh/wB7PXxIfTEToCcVvWizAbe8bOCpASn5ihAyNdoyGMK3TNZmdDuxbsiun2Uy/SKWQIfIf1KejWOJKN+ZWYIN2QnEVBK/0yqLGvViG0DlhR1szswkVH9N6aQSUD47md5Tec3TimrnTfVCJxEpJjOqxT1p3C2qhL07huHoPpV5fEIklLmIAyVYxUpdo+VDaDvNGRSoOTtw6jkDJfalMmtZpGwRZ2nA8KrDxsxOG+P9/9EMGogVnD0x5+vgj2yToeirXzKumC80GnvMivBsSVCv4kDvoCcCjQkCW2+54qJrvXyXkhJz0qkglaH0dSMtk8lCiFCCLYsuWhzm5/rdQUN6vHAHTEZ0M+fXEqoDAs59qbTE1/F27OBMjGmffRlh8Z6Fse+lcA9w+BfSI3yjVlEJb8+kNDqGmKxFP4JMWRjvK44B3sbpZvkM2HRsvd5+RB51xVei1+zpcKElKP/ad2PhZBAn7/l2mSHQT875i+Ktlk1nHGQDHL1XMhhJZkbv5kE9wGYB+eF2DvrszMS20BGlXE847l2anMjEi/RsgLoaXWXlAPPLbErogYMQgqd0SeVjRBFuainAuC4fonu/uLco3XFMDKdiv96X/F7zoDolbrngneftj8TQaMOiiYmczZ2LAeveLbdO3uZ1gsaLyKn8JH5i3RqZy5IEkYnuhlcfpc3NhZCgw8VRqqeGGXrdpAlaAWi+iKn8+z2JsGxIl8MqFXgXJHVDRYt9Ycq88hn/w3VImtdsgtqbIK+9WeKNdf/CFDW2KUwaoNfsr58FyJGbdENSHMYmQJ02or1bfHAHqS4SrXGTFN/45IEiLHR6/8g13rErW/xZJp5sdswtvQsulNYjC3OU79LTfjDLRYoNf5LqgdJrJG2G20EyUGQuPca+NdANZqCaEekeMGqgHciIjB2JWS7tER3N7i3+cOqxym+bXVg9Ycf7jgZ2cHWKimpkdBXrdTvw+BH5ZUK15df/vMtc5d8SaW0b9m5TKcML+fzfD2hd335E7rI223jEiLTI6E4/FPZ9c7loTmQc6B/LVQmX3iv9ekwUkafExDWZLH/wWyrKOTnkspZyyIXEuVZyiQF/ytUqQQgOTFq/kgbuJ2/5V3P18a5s7Dy5sxYipW5/UQtVMNa0HZVf1baSm7bFG3lDZB3ZWVK1i+yFugontoMuY9d7XiNwrDH4r2lH5VVGTLi5UW52cOzK6fq6gF2UZ0oaV6c7lQuuZ7HfsqkkwpFbdV+y7AzHgvj4QZLYzCkpRS9jzELvlZRWM8/LqcvrbLVLaF+mbTv3BACNv3TNDcqPQWzIZ54ZeetSFnvunjzgaRrG+0DWUbzHjR5xHfcvXKfO9ys9klho3yXl4kKrLa9NdR1AS4oMXb9HgOpHc2pehBKt7UgHsg3mONWRdfzlhtG0ztTRyvo/EToteXeqdB3OXJmgVKd7hjEqOEuEHtRYLN4t9IZ37iFAnOc4YOgINSRgt09q4b62vly15SfMvm2pJTcqSg8tSmjIok0+7DpX3sRHX8Cw7bZePmONMHtOBOui6Z/HIXycW+3MSHmRV5GbMR1iEDlSNSiTig9sdolMqIMAH8j46VhS3AtTiEg+3ZXNtQP8KuJe3QuW2bGk5oiraQRIHyyNDzgfvx/MpNLrB1q3V7MvKJc7cqGW1eJX5UgBWAMoxiJkvwwoZNKT4Y/hI3hVSFxob9P9GttEaP/LnZ5eW+MBPp3Xmh3E2T1KTFHShXxqHuihtJWWtA9fhdah+lZEc7+d2h1oeOnbbQRuNCRTxjzzINMa/qVjSTVkKHpGC1Yvm+xhKmzENue+CBHsdxIjwH0cdLxqvU7/gm917SDHQzkTLXxh+oGhP9CFIocCRp+UdFIpLE5jUbMM9xPmI7nWi/V0ty9TmfnlsVmlVqy3ZxwXriMiKutkTwUthfuCXB2RAwo22Xpiz2LuJKGtdLzBJvoBX1t+eOpZ6Tkj1liz79nl9jbzwzVQ7smIIApmxB7YFoPdObylRu6QHARbZIVHNBwAAh6e0it7Om/WimLwiAxiMI4drX7iKP9Fotx44WgeK9jRkNi42ScM5+whkDjPu+x91j2Qx583LIC2R7MwpWYzyTsBZH7KscyrlGACQ9ixhNwdLdPzL3DN1ObTBBE7Qc5v6hkLquMbQ9Z0PZ0SUYRWoZfb8qUg04diJqd/LuEOCbVWrpIJ8GvejCaVKPEvDarDjlCzXPrggcqxBF8KVHOV/uUlSrLft2YIJUZ7ZsIpLGXE5oggpZ2L2GY6MT0SlrLDC1vDg9D1yC5MqJobZ8zVUKMojsfg2z2qaHn84ci/Rux1fkouAeWq/cOA07460gItOt+097PtanKfE3Q6Y7hCtYUxtZqkuIUfqmfygNDS0DC3Y2j5+UsAU5O7OQRat9nezhpN65vp2lip7ZBWoiLSc6CHeBtl2jr9E3fF9qHjxJQSINcGjDdUqHGaelsVIUncjgYAIVmjEHpXUgypiQRcn4hYoRi0ajTM1oBMiP1vSjUsLIWHeeL48sIybN4WGSTSpO9w3HCwEgA0fawkUylHbkOmU2fQK2vBJw8x8RZTtB45z0A3PNRfULHwT34sn2mV3CARwjSIL7oS3GGFTZOW5luV3ifvI+jR0OD6lR2eTjr0fogZGmsi7CVs3pJP6l1Y1DiTdYTHUYdXi10HbUs7a1NqUeJyklYGLHtdts66b/aFE9mXLXivZ8GE+G2RW6mmjERnU8JeVPRayhRe9lGM1IXRPYZYpJ3vZBK+SDc66hDe4HN7J+sZJRFKhT5RS7VjTkck3brbqEX6DFYZV2nfQbElBKXC+/Xnh4gIdvKAjFzgse6UUfE3nbyUEvvVO40L5+e/ZVyuvSMdfYZWC+hg20guvcBB/TqFkrcT1aNillopvW3w0LzFYReCiJAADIbQfgCwK1SiUoZ6xrGVXAt9wflFHWG0nFyiU4FUWxblNZehy7vddDokIeIA3nm9oZGINCpmpqyhv9VmN1yCxacLtfnWFl7vfbUaqwPWUv6RJwMqWTtA+GhDpWrdlo2uha6XP1NrMQZKPSBYkvaGvAkgJvbUhtVfqQ7/3D3zbQDdMtJCJpTL8IZVhWDOO2SKWahyV/yXA6CG02l9W+0h7fXhT0rN+0rs1iK9AE9pfw1fcAS1qgArYQGM/9QoBImJVBNtm77mis947LZwuNSfmdZ/oNF0XC/GTFk8VJxUAMUPww7eCshInZLsdW/Bvg9RqFU77tc0z5o+d2jSrCzSVJuDUygtvERiyUTbFdJWmmXgMqMRoOZ526f2xq+nsy1tdzY6BLoqaaV0rvQXcUTNZd8C5GxycMh7psz34nyhhPaA5acJlr9AP2eTdM1suJGX7QHfHB2lTH2fFmcA6kxcC1b+JeeqrTvF2xyA7CEH0VxBH1IlOxvoLdXNglbz7NQOI4aTcnV2evo9KsjeNGr0E9gjYsKkAegvjIom1mf65yeVF/julMQLueDV5zMtkLHQjjX7nH7RgKUjVGdAsKEb5CTE2AldHvzGWQYrKOKT/J8oY0PML5s5m7cLappteCnnrqAgCw8s/trT53xWnYVjATOYcbPk5/MEW8H13qNP0lSJ68gygqVfIdd9wP76oHYXG8hDPZsYwKsjbawpV63xgqy6teecY8veVRo6T9QfN5mwYhrBtP6S43g7p783vsNRjuzG/YZ0zXNAfYYnxL+qy5j5i6t8C5OIvdvhrvu7UTWQ/iyF81H3huBL5nej5mrfB0TiIbovulbSZzCBcxzxRs9wdCXXUyAPgq2gr2QVtKwJC1TRTpGwygQobozu7L3g0H1Jvxgc+9vypb6qh8nwh+THUq3BMxoyVLUKfFw9M+I52P3u4bZ8WyE77fAW/mlw441V1YC0WJlWtBDB0Fr9Yq9veCX9CfT2rNnwrC51fyVO6El3kQ5jXsP9bQr8m55N6Ekm342vpwTGQ7C0uc7AzPwUoDFCEW35DQR7GGh0Lc+W2oYqWy38iqFmmC5F6PqjZ5qhL7PdDku6J9knJLdNl+sCQM7o553FA8YahBbB1ib0gbR1PsjTcqkLerI7bybo3pxqJKNmeb4yXWAynwhwA53RnQR7W43lsS6x96WoM3qmpnqiQT/YeeKSqUUJGpI+DqAdk6N7GuVPh3MoL7Uk3Gmnigh8PpFS8LdmWx61LofOIJKPqHuYOIGyeVtFbvZd38VUeLVt9UH3oeiaLeuEBHi4qQNVaHfItE9QSXukLhsjiEsf5V89RUt5BMs88l0czHYEf+pL449l5rqtQnAUJz6nrTaDMB3uicuta0kGC7BbSqPNEey2lV9N7dK3GfLUlLw5raJ8KI3nYIp7P7Tt+9GUIPDPFmnhiINz3nYGY23cB+1ZrYaeN0d2e6M+SeKpLL6lQtEWzF+GQzoD6jnADwYCP6gBDhvSlTqZ/Sx3w6eAcwIqPERFuMMlCAbLZVCNmIt590Ws/wIptFesCyNxbSGTveidP3ya2LwYIdWGW4XxQM1DbHSlJa+WDhfIDjIyD4bEhNjoY/aqv2pAmQnhmLDGRt10dKx8L9sBE1XIW5EgMk1HkBsx2GtdePHjWJG80+hhtnrhKsmjLm8q26R/KyreNI7wWrCqf7PasiVPz22cW41JgdHxum55ufDz6mlfI6QBGr6uKz4EsORnKsIV6Naq9ieCYyx7Qe05FOenLbs0qmy401/Niqu9b//TZn2RkBo+zuELafY9ZgwYb3LcTw+wnRFOXpLbQse7Gc/Vk9dLXMDMNE+8CXGjyIAhJLVTAqEsB+iQ5soaVfvcBPG/PmFvEq3oxMzwRNGLs1VawjosyVZbPLmdMcAY+UtrdXLKsqQmv8tQ+FRQrbBwRfeR5KNX7t48RAlcqQ9ymx9MsBBUqqj2MissHMKOF54eDHqtq3bs77AgBkDKq9f84bHI4Y1l7rlFMsAlJfxwjjRKUCImMgt/ldDL+U8Tumbk08s0ZJrhcIky/ksgdVqdmAotPewSdTYyZ7g9HNPZAtp8LQ2na0TpGuFXCNGoQ9mD6sgDHXFLQ2YXVeSbN+TaGtK7lDRDC/Y7Vzcino1p3B7RKBINoM3kZc/FfIdieXUr/AJEjRPfL59W8j1jrS4oWrUUPHap2QYEKJWVThVtLa3Er1I/3vYPHYFDYkb3rnV/A8mJl/jWvW9AprFDZ2rn7Gng57Qh2onaOuKe5QjbRR59IR20RqutG6Ejsrcuixo6ozsMyvhPAog5MLQ7owlexbvlChOEADV7ohfCemw7EX7oiLdsmrgkiWfyQ/Fh4hEA/kDMtsHEpu80RZcWHPw9IIELJEvgGXbrwhB1Z3G/peEGtEVSGtamC6CXYlDxN6B+9QLJrbP5pBu1RgNrvYQumTMYODsckts4Ibe1RMxR7Yduiz9hi3IKaeXg3XQgBiQTST7pLQEEvhIJ1eUIQdrsWXWjGmQg0bB3KJ4qYL5pcZywc2SsNZkNl+F5oLil/Yx4EdKmLaoNySUV2BkmFoGeJ87wnwo8DJraiuiUdqmiyLwdPvU10JWsXNloW4TT8ZskEepS+6Hix6JS+C6sT8JGd5azKR8X4H3+tlZQ/kyrw8DHLaWdFoCV6p7QcIL0pvp2a+i/wHies0R5dkb4FgeBA4MjHut9dgRjQpzu7evs/RAnPsEfVvyXnBh2AYGBnq5JWdTDnH3srdX9KH5XuBrKHvODQqJMeGgzEt44q2QNPq/6QiftJ5BWWDhXxnHWukRP0MqQV1yiepU9LJf4q1k06FUfo3220R3aNi4HEptLWTQKpfIGtLSbX35NjywyCDQTStoyNsn2/V70HsS8b4YcsGz6yvdQ714mWHciYZxle4Bhd4qWPpuzJU9UpfTOyw7Pbbwx65+9B5oDw722qeuj1zJFCZf0QPieZFllR/ubc8HFCshGqXARoSMVCNMTVXKCadQ5PQ+xR8zq5Ey1NQHdkosJnIY5A70OB7gxIsragjd/NE5xJ09Kd63zcLXz4HRUMIs+QKV9AeG3TpP/rxagIrDluOkfuDaiO6g9mCFUTSoojo8Rrq2stnvfdXt6u0JJlMU96A07TgF+mDerdk8oZGozWPPTgGklyNFUB3+FzJ1UGnrImCNaLZvubdHDvWEInt7wulU+5565lgAe2MF4L16DzfXhq3FwN12PJAw90jWFxkzyrNOB5KrrkFl9LwN9mSli40TrznOackUijDpJ7N3BSArfxY4LU8RXK0aO42ubhjj9T6DdXyxrQrWu49XrqTBHyNMYKJar4ndSwdheLHk9t9rkc0i25NISalvR/6Am4j2ngKOGMK9S6x2qt1eUkYZdg7XhmQAr5f1l6bU56EMD4Pqy+Jgj770WhzQ8cFuIWrdcxpGDNTYJCUadNceL1zYHauaIl46E1ceNwgGdqOOq1A4AweFoo7NpaxRhkyyLKUWt6DN04IFC6U0MRHI3zBiOUpiSIzdKKalyJgiQE5QPiwoVfz0+TQa7zIMad0sNiUdJeZuKRvkItXNosbG2SMPvse1Z5Y9f67azLYUXmgSW7MPKaRJCObhOWPJlHUPLErR/hcvbNQ/JvYwsNgkUbGaHBaCurDIpOTpBeryFMj+HUy1VBJRkngMoIkAS/b+NZ3Uy2x660T/4TTxiGlUsG9oDOZksYlZ4rYeXDDZGzk7kXINR0cl+Rw0WZElj8Iy0KIY4YDlBkH4L6rT4fCAkIsiR9OIluw3EVzuI0giJxZHDX4XSIyOQo/wjNrxFlyUvg3T5w/ASd5znWRIvw79bxasuo7hud/AaqEiqSov/JTGvTv2pp09M9fuhbXSfLzKqp3W+0nTMciMtfc/ojwzSJkD3KJyY2+N+LAcS+sGrY9+y3QieepKNlRoESnyXjspV8uraCkZ98XasAuJHjxLbbH3zDQlc+Pmlhsa91YZytyS5vQM365ODz9lpeEYbHhpGR0EYQi5JWtudd/3rpwP3/1QArpHSMD/nUcSKCyTWS+Ox7sEOqXKtRguJz9ROFH2EB5l8mDyKbLTKkKg2pa+ZSsbXtDfepLzDTNhmNmsv9JgI+luHhe4gdlbZ/KP/K3EsMhUIWmHptkR5OBroTNI/qo1LKZKs0Bdvur4t5R+QST5fKei1fMZKTeQ7o5XTOrG6/dHFYVnz0f540TjK3C419oaETMgr9sGF/76J+PhaTs9UrwC7YNNaQbZP2KTnKjsFGUS6OCfOm8W0RomZyrQMHHFnhFds99CEa9blMyI5EHN1fczBbbbcR3/uqI+CoIhzZpRlgVgAVbxaCwmZFRcuMC9iqQpeH5WN6tsVxJcb2Fi4vuTeol8kzM4JTv8WOuIOZpiaWmQbLLBUl3N8wYCV2jE0YvYHOyPzw8RVDmq2bBfiETKVl6RLK3G12zq6HxMzYcb6++o4RoBvwxGrja/+PSvvbmmzjLLJ5c5WohB453jkbVG4b5LcDpalXe7+TcwS1En5xvWFBsRLXMEQuOJSmv8ptxvni9lUTCuzxG17jqMANe9C78EUp8vGwx6uwgbRaANjRtnS6i9jiA0573e3t844le9FZ3tfVUIygHtxU3jeTMykEGbx3fcKpJphrXvS1J3ccZx4bcjky8bxCLm63a5JxlwSz4xdQWxADgV9RbdmR4vDjkw8LfNUY5T5nmKO76lOx0EFMlFJg+66eiB3bS0atzPj/3Q/+U9AKo/5UN8/Vg90QtWxhe+aBXPmnOmstANTlnCoD2K7raY9YwoXgdToAIb0wHvbmtKY/PLT61a80NMRGtNOelaUYyrOJrsPmnsPWyqCSq5x5/pl/IhICyMBo2AVcdKo1YPbq8ai7nFgPpgZGUpa12Zo70F+swQNJDXh02+7e8+NKqCg0wz7r6dzX7RxwjzQsJ9fHvk0vhdfwQa3TrjqbQZXBECOQUvA4sA9WYmrzLpdm84ZYHZLJUBHTot4p5xNx9A0QQqE984s09KUsPmr5i874nf9PKojI+lRJvZKq5bc4g0rVavtt0S5BPU8J6+al3JO+q0XgWpKtPyAD2PlAU7KfQGjrqrgTTTypzPuLtC9bzIKU6OCYQ4+gAxgcemhGLISFWAzC8jTQOacXyTwOvRv2Nivww2xJvDKIoXy3lz5gs0bXSbYRw2Fx1K5HZex1Prv2++dCUy0s514d8W9q/VfhhJrWjDJTtOKPumlAlpjIHUv0TRrYGQz2zd+9+FGLw7uMK8WQyceNd29bR0DVSxVQiGeuUCtDSWpRzz8pXd3ugUeEoc1Ngt4snitykvSJJo962w9y/2aKxWP1Upjyx416u+xBKJpQDr33u7oE6imBZWRe+X2Avo2dr65+LDjBFVBOZSyDA66EV/kcoKlT4jl8/QLzKF65tSTDcHcROSnAF4nNHin09IPD47R0BuS6p5Kdge7e9PGRdn1M+t94MtgbV1+GB8r9XMRgTur2XFfoeFQD4io/h0mL95PXqKQf1CucVvSOULdlZlz7U0rhsBrA3ziYMM72uI/6K4tMFWSRhTC2kub7BdkbPQlrMZXSB8G0XB1sZSH76oR5JAsrQ04V5stZfakFVWZAE1/wGFilPb0XeG3ymlPqKoIQ/meQTMfWqz0P4isCMC1f+JdG68F0yEMs08GQGvxNd7j/iwJVn74bVRZY2W5G9x5bWdgAVf4qwnbPpWvP4nHKmPWPwGK/Tt0vlFtpwonCapARk1g43CrpGfLJvXycQ8sawaxaVBQvYdFCEVVRWnpleSmpXln4mLEekqTLbnem7MW4+E5uYUjgb7HhaZy7Jrrb94IkFl8b5yUESKqCej/+ARbI8qro1GOIj5WEH5uRUcAUo90tRYtVO5Vx71BG/NV7r/Y4R+o5ywrSiuy70+F4KIEuNAXbycMuEl6tKE59n3e9F5ewAeBcEoOqzEEJxm/vUwJe9UmLw2c+w/ITEuGBbFBcoi0VdJ6XGcX4Wu4V8E1aIzjUosHZXEdsRFqxBc710sG5Od+aor418n9o0h5/kaxWTr5rH5CR/fxGUE7kwY0ftBZIjedaHQh6G9yXsxUlJCnzlIFsWwthLR/0GxS8Fn2V+pV0TxZ376FX5TPuOCKW7VBFnnac/Qu98JobXSjHh1zQkrT4nn67l5yMxVJBOGcbjYRu0SlDOpOIHlVVmp+HZCBdUFvx3gQ5JZkOROkmhUIAFZDa44PUlGJTGNioa92pwNVzrQk3HslxszXcnhlzeWxdyNECE9Qw5c0VXKXwLQ8440Wth9QDTFIZsiD1mFizSN92jXtCXlo0ynnaEwpYqHSGOfntrutIpNI04zJNSQZ+7Zuz6OtfkObTgCOweYwLtRx6TdQWqGdGrXeYvf2aqiWnoOVqGoKvQW0oApzwZhM4PoGgtCWzDpxZhOM/fAI2ms/vbsBFgn7h2x/ml0XPdarC7MoGwLsOuElJnu6vID0YV5LTYOO9TkZU/lwhmlhkiQseMmcDl88Okm5HjpWnEZ1+8D7R/CMr/bYOoOivSEIEjoKAVueUgyqVzCT4PPCc8fBs1KMaZJS7Y7/K2tnkQEg9Odl0mZcYMj4/dwWllC1kBzo6/V/olQKAYT9aUr5mDBlUZw01VW5DfnxC/bOIF3cuHVXgCIHyF52OKo+VNRS2gaJ99Nn+fR2a2V+G4jhEdYeX0HE7IOxQFta4WE7z2mPAh9gv3GtrO8372JrDEwHVcY15WXpgN7jFBvgbPEsC5XDSY2LqBl2SWnjuLqAtXRyTdGl21Nt0MM+NroGHAZQx3UoGuTWx9P9mNITBAlTLHZQgtYaWqdWuiXBlXwbtcSFl60VyJi+Xejyl7oNWbvODMtdDfpsKNQ/Tx6FGGC2QZy7s2jJT1KSA2HQ1ya75S8Sa0/l2pas793zYl+VNY5xTOTyiH2cHs41ru/kEKiVddNKzml908nf08XOUsJgxepiWth97jjo8M/VK8BMfdDA7iDNyX9uYKw6aiSFdy9it6gJ2hbIHlH3VGbz/Nw55lhfhrk4/YRVanDW2cGs/CTLY3vM5E6Uw71ZCdP5yf7reCW3NRRomQs/l06sQBjyo8Yj2M7KkmBgzaNgPBeNKphFyRyGyshoX9FkEIkqfYUAyMM1KtS7FajUYkB1pq5d7g2OvNNNVEaNyPHYXawDyKC0lJJqv2DVCoa/g8ZGtG8435VaZ9J7cBdcf1rlgPOSt4WhfizAHO6n4J/4EPOYijOBYZiwo+4DAbTV/fEok3x/1d71zCRQODONi1VRmieNpRq/w7N4byEpR7Oaz12MfMDVNiOJ0HIWqxmTYJOZp3GH8xnPPEUiMyV7/NGeBbmU/W2OJFq7DVmsXqOp4NqAyxflpTJkVlwAMeS5fBSe1mekAJKBj0F6XtJg5nIrVpX8V+SzeuSWeTuJZXXv9SJ6upm7wieKxKLMkKp5YImMGoXGI7/nxC55yxB4a+1O/hUE/8RbBeEK/NnPSlX1UNd9d1Q3Za/Lsv/sKDwPuBMJrzysNipbLH/Gv6THGV0u0cejPdJjJChTLMCB4kiqKGEq8uqNOVMhV56ARRqFoaJBzbDxuTtEWqDiBXO4jJTqVYHFs44Ss2hAn6tM9CLTRxACnQwm5dQo93EqVtyGyCgpZ336kRkj6TDMKl+2zu8/2G5VOnQ0rI6YauJ6Bb8hNzXBpqIYWPY6NaZntl7sL7Xf1cqBg6cQmXPJ9aJwYiIW17rs11IfEvJ04xhz1C2qhWgaR0Mfbl3tz4WUgwoubP3lCX038k7koGCvFheLpFyxLDnYKVGLVFmGkwZe2rFA72IcR8/zHuonxBJ7c6vOgW0uu6scDtCll5O6js9ipbVy7Ac3G918DUN6yYQRpoKNu3h4ai3cbG7RJADB9ts+6ohkwDh6IwSq1AStAQhV6hzxLmmJvm9Fik8xNpJa4TiBazZ1eU+7kPVgA80nq/FwPoGBnXyTYlDqnnoBU9z/INgl8CVFDQg64YGC20EFx8Vclw+4sJfpsAzGtdtVomlFvgSgLrDrqElyARr7RiNwymzcnt+3lNVALWoPqEAGOgKGnbs0dHiYI3lNtdC0MLxCFJL91c4sdjhZ855b38Ba6LkzYcL9MT4XN84W5EJoosCfdei4VRepemfURUSIZN5lxe7PSNzqTCFlrHarzw2F0OKYIFzzizcn90fsREkhlhPxWCgDAloEQxMIXctVWxuVEzyTy07jrgj/3PVndV1aSKHUZSG+zkr/ETu2PcRE9R6jQV08HAOmQx+9gAfkDB3KexbNkJSx8D9Ju1wVpneCc+Xj8X1+lbH9qwqML5egEppKEgZFcF8uN95iOn59/Q03OxbU0dCDc8L1Zass39P2nzI0i0UDyofEOAH1gF4IiWNGjdaiE49OOtrKfOMbPNDpE0/FQqYGgqgQn6wL2eBUrdxzNMD2dSxJzpMpy5EbaZjm0Di68MixLXpxKFUIfE7ZmqamYCuhzCIzgb9MkbfJCHQDUPtNkXwlYSWmwvtCNwHhc9IxnhYCGlzBOMXbDSHpJjZt1z/rW/qezzoEVFadkM8By9z+moWCPN9iYvFfHEyGylYvas4VtwjuFAPpE17N+j3pAePAY3SYufUhenmB1uCzjdaSFG6+xagATcmBTeJr/Rvb8Qyzvky3KQrb3/H1A8sqM/hqAxY3g9Xm8NR3ij+ImLGPAqF94UKCWDzORGZ97D24ROpgnDP6dSltST3dihoiJeIKYgS3kuP8SE7Jox0xzuiATFkNOhBoqP6s/xKSFd7emxloJkvKS71YwuiaqPC6675Rp21oGskH7STBUDmcsGRX3jhIYTU4DIn+ypEEBzM3Igh11HeiUpmjjXGrsSIYlfUCM7QvkIkrcTABmQd/RS8XVRtcfn9tJkQWgyKBlE1muxJUZSMZxKLhLtTrb4MLlRx6J5bRzAlVatIW+p17X1juwq4Sm2Wv4m0X6ky6C+vn4FFMFs4SIgXjYWbT+fHcXVT7BKa297ktZIZ6RRHcq88sDIwje9lqQvcMy1mTbTSA82f1l0nNjhMnPyCYdcg84P1DNFu04VPSzaPtTezDOZDqL1FTYGpmk86XiPOQKl2mlHgV62t0wo4KFvERz1exPoqKkfv5iEFvs+rBxll1DgKDOsduffLhytZuU2fftx+gKGzYgK5QlefUs1SB8lV/LEAStIsYvTBbaR7ATJ5QPpmd4n0OjJzUBMPKZFo9s8flyBLhfPfDcCku1Idg9J3Z+rADb3GcSAMRNBNtAPP+dLZq/wCKKaj3iLAmvFkUj8i6kNeDdn8826TFlEd/yOS4hU4jCarG9yaSiSUICARPtJp4o78bhHDEaWtjJBtj0tCesPLb3oltFcRNiALsp+NmjvngE9GIPydI=
Variant 1
DifficultyLevel
463
Question
A bag of marbles contain only red and grey marbles.
What fraction of the total marbles are red?
Worked Solution
|
|
Fraction |
= total marblesred marbles |
|
= 53 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
color1 | |
color2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/02/S003_VAR1.svg 200 indent3 vpad |
color3 | |
item | |
correctAnswer | |
Answers
U2FsdGVkX1/T4NonPhl040zzFHjuJtykavlRaMDspqBcHpgw0p8cqf04cou6r8drEE2wqFsrZOgWbjsPp4Kg7nN0fbNj4GtkSN39Uh6dZV5zLdfU+/WYM/p4qyQYVxxzbN2Agnu11OtKUdY1gL9jinvt5OQBk1sDnN+Ccs5nh/ITWX4EvPkYu4lQ4SyqmL9gYHUW26pnqNciOnuZwkJTQ41pvZofT/4OkrjH2517x3AiQw369N4J0IWpVL0oDic8Xtci15DL28wFq/jhBnmrUsacxTojd2roNy1w5TvDxCTDNECgR3586yC/VWDZtOzND8x/WaHHKNpCnO5cCgBn8hlhmt/xzPqFdkPZhqF5WUUip/DsAHkuXkcb9vUDQORmLtTx53+RqQ5Tfag1UgbxjUGyVYVOi3LZSM2i5G10CKfb8ZqkvXciazchpp3uDRiWhMJGsoraXftmkFFv/ceJ8N2YiA0BeAzi4M+3io8nk3OzCB6mzryxmnhvXNZAqWf1XmO505Tt2pog8BybgpqCPe5aP2ZbiY3+6uEPxxsnYIMR1jOJwv0SnE/Xbodne7vqRMMHIrKWejO3BxWl/PCBASEXCDukqpa3hCdV85IF49LdAOKzGJx9KHlR+1llc61l/keSjz9yvbxhG37sJSt5k5HQk/ZLHDUe3AF3KJK51Pc3C2ABvVHGR3AIECqPSx2gy5XdyQjDiwFaNvflq9i52VaOg32pdvJvhdfrfGDWimqKPdPu0rd+XVvhlU5lwOHPTRm+I0JFrPbeaPJoba8syA9HJzaA4LJp2qfcRNPG3TCxwqoNn01OwI7vFi8IU4FnQJ5dmQdgSr1Mr5lsq1PP9plveljDu9molqmqXiXAVLAqt4Qmopmwrv906lDamMPGFmnwiK+I1CcqLwLRrkmIP0ZLIbPGwo7XyfBYa3Fx4Yyj0glF+JQBlAoZkjZVBjM9zCofsD75rHWa8oFlIEMF05+3hCFDHLkbogWSBckE2xSzpZzozaHVlXcJC3cuOf4I/zz8DiNC+Op27c52FNzOmLnsHALZf/XxinRW/+sXSiaxc+xrQNVf9Dxvzrj1diJUpd8JByM59jB3LHWcJoFYWpPjKSZJdd7bAD9575HiiAnuxI5tI489pl2Qo7Jp6dv3X8jVxY7gH8pm1q5unid2/5oQdl20+bchZo4T1a/viz0vNVTpJ/puV4o3PxRRX1vg7+Hc0knyOr8/vB1pdZJXaZVrqs18nxIBGGk/2MMgfEu4IrxXJuz13kdOSoaiEsPiahN468GmWYR+QHWRDUBVwyKozJ6Gxn954JLevH/aEi+iTjJXSqhRV5F6fm1n+x6EJUzlZrfC9TllJCorYDy+T1VYrMhSpxPJ5Qn+FghkWX2cetWcXscFurD6O/Ks7CUvWE/3w4k2RQWpWgdWwlkbT6HyS5ng+/fwX/5/Db3sB6C3PUYi7BFNY6kJ7WLYF+IAkVwBOKwtq+3r8lISbiG/hNFx49j6pejloRbWkK6xjXXlUzLeh3pCejfZZ7Sx+60jiMWG6BGXTjgFFvNKejKTETMdMtoM9E9y/nhycoeGoc9JwNUa0UPFSOg9/L1dXlD/PAZAAZyA/OoZE0S6jlyQAU1G7U1CSTcUnJ1ipfylKgsbr7TtT+A8akilhsLX5URRyEVW6pAKqX0itMH8AE4dofZ/oN4yJz4aE45gAfR8l3QchjjW97T37LUjzJAN2FLlIIsGwdH+FcNS3Bar996NF5s8HldmwEenXJ775b0HpdKlnznF9JkbafNWADkjBqhuwZgFJxLfQJsYN/uoSpz1sC+uqy2I01EfMphbRLYspP4UQEqLk4fQfEQbsvjteVQ31BE5RgakOrQspUT6XJWUgKrX2VHjPQUFZj4x9hD4VmIX85EVTFvq2Vs2jfFVZSjy8qgP4A/ZLNKzUBOkZWmwy99f4o1ygQGooBqRjruo9SEDAH4a3kdQ048+AFP2Bve6q8SZanJOV8OWX7BC9FIxAqa0R7CuNo3CP9Ij5Ik1KIAacn0fcxw2snun4FTlfw89ensh21/ToZiTGuo6o52mSA76Lbc7wVyxwvXifLgAw5sD7DbjiXe5X9bhkayQ1G7Y5oFewfCMUr0y9LvU+0DvYr9HsZjZoBjZnp5xf2VTHA+oiI8Z8PctDjgH3XBecULRMS3e04snwHCLkq6zgWJbL9NRRFNzhM+nJzYOGn3I7zIDzhmpzkvXH13fZn/dFXHmWm2cM8/P0H2BZZ14JU3Sa1km3nWVOHbftyvBJrASlzCLeaENJe9XVeZILH3aR4CXjgclAmDh4QhAsGljEB8NYjUx3FWBkybDR2Q8Tqpp82rk/jW24KVQlRFju2hpu3P8CLz+HdTlynB+BeNGgbFDF1IgrkBz6yBZjZjUOGGUoKpBdY+BC3SxnByF4KIi+MHMpvufxg11PjYU6N4Vr8noCbQ0z8dWeuYplHo6aSoVYUlXjMLBKSs6O/fBj9B1nNfqiRjNgB2lrogY+QNXF2oGJluRNFDM8jstE+VjOUqbTGXIt26zjZ4Zisqu6OHSuPrC1TmCPdxsGTgVqy1dfcRniBZFCgeMR58s6fk0clejzPyN+jC22eNXfXMhW9/F3F8uQf1mcZ6u+lUnpG7XDAxsHIBzu2/N90E5QYXDv1toMcLo911XdVTnufprTG12JufhkSJyBZrwybladYRMMVMEU4nutZnp7L1SOwtIt0Cv/8WM3N/bquyXf0cz/QeiG0n9rw4Bo8Br/UgwI80TY8PCQwVyUs7vjmrUjj1lzumeZuGyM6xTJrkMkBr6U2bQIElVPk8fAIQRTpMWoJ79CjZMsT8iwck0IIsksvkqxU5KeLB/I5AOVcGhmmNqyRH8qTnuMhslegM/x5EAy/QSY3qV1l6f7kDkHoz30iT8BYh0TrF5n4OleuBGwaTPy5Bx+WJXO25zNwd1cPTFwM0kdzn6t5w6xytoqN5mbPmOVw3lg4d9Gsc+gNahezZF8d5ty71GAAFuZjEmqqCe1AfOOwyTRcAkGZy/b5aAN+vYER8n/cIaVS5Uq6veFsD0+bEWkfzWrCpLoaMpKgq4dcz1w4NHVs+xJNZ6yKBsq5Z2Ux04+YHZkcpaNgcU98d0XlmPm045GJVWGhXEAs+QyzFCQVkgGpQuagcCVeoE4RIkXzYWaUWqsSwogO6172H8H+BvnzIGGrvjU1GBD7arNFIvHzPQrjld1HPxxtPBg4ZPim0+fv8Yqs5glg+JF6PK4DES37kZOb4Vz/huJjnmGQexVU22mrcZ8GUoLAIcfSgU191UJhZ0G7kBoU0Pygc67QcCnRoskFiI/GmwjAczt9I7YDUbK5es7ZAE+1olHGFh0ogK4f0WPBe+tAC4XvCoSlfigGNObA2AnryLcxKz4+sFKYxlzDO31KG0O6f4JaVSWRgzI1luyju4ct4V752v5m9veVty5LrsssJudaQE8aJWTHOHAXb+wcPbv4p2pA0gfKsvrKRijO4n6t8iquScIWmEAs9wzi7DqRoNTBvBTIg0qtZ2MIQkpXkvcDdnq9tsAorRyV0Xz0SrMVwvSFalLZCxc5+pQMXu1dGTBT7i33kiiyfDxLeF8HWbifhPPP4UF8L+5hvikUJRK5yHHTJ5M6odesJ1zw3BuZ8BJf8hm2mneQAKlkt4tL7XR3YeDb5ChjlKC8bapwGVf8jGdggawViiSEQpuZOl71nUROEzZXIL0r9PGrp8ojK7G6hl8NXmfKrHjrHzfVNtrW5+U2rJH3QIQphUJiWXvg1t4Hxx1YsCWLSmVsUBYmEcq42UJFYeV0bZ6ZBfLDnnWf4MW/7TLCoe6b2fXgsylqNUQLia5oQznlgTAsO+yQ5cwX1p3Vw8wQwN98ZoaI2IXueG8rWYzyiHl7fNpnPCNh+sJkRMWsI3zhUYIplbKmhnEfC+9I98JIJdYdZHxhtt4pKj8zQbOS/8n3fC60kJtjRjW14F8k0XZ00W1CM88eOaA6XGsN8gxNyK6KDzyIkAuThyKvitgsml3xdHvsCH/qNF5c/3TVpK9KxHJIWbNGw/8sn1CM1snoTk9cg4eDW36Q1EvoB2bSfftZa1cqSeAMvdyqhe+SquxknibY44C9qSJavS1OEsTzkcasWnF4TWjxQx6o/LMhcpcd70N9zDB9l5mfsKx75WnnUsPNDTrh15Z8A2TR7mMhCYf8YqV9T4j4h6fzAdEuu1AKwwSmaFv/h1bcUM+EY8Rf7OPnKXtq9VctSufWxi8xnSbutl5Xg2t7ut+JaVFLuK5rxzSl3ew72Oivk5xEPD6lkmaGgDU9wlbcrHsZ0BIlmQFS8999DDWvE6DYNoisWJNweGxEuzR3tHP+KxmeSDz5nu89Rirp9//rAowbg54xq3vxObhgr73Sk6lKBpCre9oclj/nREvn/KJmNXXngqKq8d0Y0zDDuZy7ZvACNlXjbA+KP29VEjOZiliMj4H+8M+XHy/rxeT+sIN91wh/tvKvroh9LbiDmqKcG0Q30YchRtRaGM0TbcPxbB7fW3irjmK3P2HY0IgS6xUFZHAAmJVumrEJeknFoGH7oxzPQWKTg3h4pi4sLI+JL9Oc4JDOzqTnIC3haDdrCHa9hLx39/KQqQLOGbWhypgyTHqqN8MBv+FiPfj5TS+W7s4C20LpImcYSMXAwSq80jE+HkeNcroxxeCoqVZx2/n18qG5+LUIlstevy5lOjiWaGWjJVgw5vhH/PvcDf0Tfz86neTEJBhEci3aHAiZ0AV2sXmtoW9+W/b4P6pttdEihC3y3X76u1giZfpkPWaDlb1u9msC6MgXaJBE+1HgxViQqqjfEbyZP4shb06FJn8ZV2F6anKSFJmZWS30/a+mmpuuNfC1Cw+dA4JQkU5at1d1VwrPnITYWqk87VuHnHOmiaZ+eaKo1HcE5DdILiG1C2+sZusWomUFsnUKVysbDl2nCJrJNYz8DqLk6tzWgxIG51UdbpNDMkroaVZ7gdZy6cpHJm0GZQxxDC9mPtXZtmmZt5tw4XVzHrV97HX8nh6RnuYf2FWpBupzP8Xb8/Q1sjzCrxPn68fOC8S7BDkAMNydW1OhowdvcTXHRlD96tkT+UqwNfy7W/OXicXr8w2a/qBH1LEyJiCgmFpWsTmzjefT7Rsp+awrxTfmLiZmtnnFJ+jgmZGmZLS3KXM51Qle0EbtquxPcuDAsqIpf66IYdJKRKzbsxUpqUhtqHdP5mHRhEDakRroomgPzKLUYPNcruc7BI/m5kICAkKXb4sEkmELeSWsFB4grKmNmB1W46fy/Jtl2vTM9AoH6WkEW1paPxrcTdHt0j8J4Q6AfYAJl3FVFZU/JELmVZOAxpP0N4zC5UJJpcivHwuvFg7JMvbUmQIeT+SalbNL1MxRq+8bPhbMVOqck1JuxQCuqeqPnW3ho1oDvWOKYyfC9jnYaFBsNisxcqn+A8MSCkwW+ni1mpWBWJEjDSrYUQdqNjQPs9T8ncahoH7PlAcn9gmJJHRt7riaw3dfIClX6Fj0ixaOiFO5LKzby1aP1KIbULHByQ0K9jE2pGxEOmkVHOY3O3y/PF0xFMv8J7QxSE74egIL5rKV0oUGuSS5gcg92wk0UPEQl1RUZdyMnxPaXknY8GjI3CRQB53r9cD9iutCLwa1mnVAdkRpBEXjG5jHcIceam/W59p9xoL/yggXgLH2naPIlNVW33EHcGySnu0eZr6Ikj2H72WdMqVmpqg/6s5QfJ5DZhLmwUsqgpeHsJ+FW8zl/9cRcmXtzs5kt5DMlea+o+gV16c9ON/f6C63n0u5tk+TCGRyc6aVYLEt/cVJX25fSi0yq3rqiouKe1CYqpMg+U5ZLqDdDtTwp94cxe1Dmz44fLHo510zm0lZC/DxUHZNd8RAPU0nVNVs5Jlql2Dq76ehGWnP+rgLzVowuwm3JcHymJ8spwYL+rd8DVnx9OdaJoHfZhaX6eiXrsPQqOR6GbXkBVqjEhf6HW7i6vg1Wd68FHMtyXhZ7ETbVlRumwr/zd3GKUTz+7e2rmimhWJo1KYwWJEqXNkdtQMWMMgR+TgBClz53IIpX4l9BLXgCIIEA5F3BqErLsfYNNs19XyDfJzGkOPyNiezMJSJ6W3fVbitKGp+rOk+qGPKldo1hvccjwuLy4mKI8xP+TBU4+DmxyrCUF/w4Wfzb6wVz+r7TF4uhUWCwd3uHgOi5XKSAa+TQtJThW0YUto7gMUZwXY3vH9BqE9isLJmcUQXitWiaF9Cch70qo+WJKYbWyB3YJaWAQk7AJZW2tVD8D8eHZKk7Ex5WKh12oFalawBGGQv4LBVZ2SCvM4xdKndnPXCJsGKUw4HPhVt2zaPL3f4nHiD8vsNFoF2Ia1JECtwoMbLgBC1UUnjh0O3+RJyjdl+C3T7fwDcuqltW1kxMk56R1nmslTYAj5n1pnyhXWHX7tjxh5AC40UC0vLx5cNkwc0WhmeFSc+Ux+72fwCvgpmeoCAPqMRey1gvmQZtMDPfV40R5QrV1qs57E2gy7BIfzZmme5sgQcWhwoJHkem8YvSPImNSxZ/Mb22IlN0Y1tVAtTIuWPmEVl/Kj6cJIO05wQA9pL+HLkHXOWjfqxrpYIN8n6/rqf1h4BZSNBHvXs8niioxZD/q65oR6nxdcQ9eaxXNLMm0UCodH+RomIkWYZv7gquLKTIfqza/F/FU5nteUanUWt23EVaMBpjSmV7tAUZnixjVDHbvsvAiq0EgTb9IfoDaSoHXCxfIt6/nT9tvG2+4yLzM8/vXg9K7+M7t5DUff1puLJsOsssg8SSYrzmdu4Y1mIa5OjNtPb+wH2UYM+khMeIfo3VpMrCTP4vtjzE2VDl5zf6weK55zdL1Ppqe/Vkin6PWUsmHURPDi/h54LnVtGvVcyzbOFzVBD8n3Eg+qRu8RWDBcY4xsZ4kKWZxAz0lh7jDcTolf6RHPiSVIFZqU96whKN2nHh79+72VHzlAIEl9nuRCWhd/mQofsWtw4xts52NlLWuLAP7B1qmR9GND9pm3YXeV59dIesWvqMH1Hm0Pu/8cgClJafZeOsMYGAGwuAKDo4qyqPoTWbXbylksi0r281bFaFs48cCuviJKy5e2u3WTbWghn2uVmAUWl8NvLp7dhvSYqpWE44k8j/XpbTRZ9Deh1tIKFBA9zuBdhQMHRE91TpHQ3S5IIAPUksZYqH+FahBZkiuaYsPJLT+sSZzFNmxLhl5MSz+3eyVebKPdD9OrJrUsrs3Bqpku++5Y2XTGCHomGxhpVaxPt7LDB3FAZo6ZZ8kfuv51hbqCRARp8hCRXcVElUQXAkvwgJwRpHphczjzA2Gb9usT8vgid1pR1aPKDfnNcdlxbIZGBhv9khu1Y8PmDkGyYXRvT72jfKLJOpghHi5VkRthrRMlsgwUBBEMjS8aLMMuCsbv4hqCMTiiVafbfYQmQxFffckwOhUzfXqO7h6TmWx9H8/8qoyJLqZ6OjVYSPY0HJs35uqsZaBsb9rV/M6pcOyl7vfmvJ8ztwJHNTC1tfTdnP1oTQPwJGLM1N+bfIOUbAD1MYrr2c41Z49brkmlWR5UhbPcrY13FUFBvTKQIf4x6aVGrezcmFYM0QoJgo831XQq4yiDdD5CdZ+RBY3pXCEsS+vLGRR8gR2Wg3IvUC2tEm1MfP/Ui1IBgnjqVayYNhBTiY2xcIEkfWzwQDaX1nDRsTXr4j6YmRb90jgRTH2TnxpUzQRAvo8MPLk6WrYe+svT5wkltj1Ap2rrZ06QZRjwJvz7J19RvDFOqHzbUFbmWuvPNzWArqJ5eKxgm1dPPqlUwvINrdhsCTKPpPS7QOVDvzvqMdMAzblCBwR+6AKagbPJ2XO5JbAfEgHMqBEm5Zmbqr/T3XSGjv4lmkWeqWawfqfo20nzpb1+F9nJmpH6o+1Pf2l52VOZoUpG2MuZQFXh65BRF7sIyD+Y5aBzpSopA9h0LTSWEk4MJhopCs3ZhD7UhXX+LarASlM8cb51yIrnPyCltExL+Lo/m5uwTzG8cHcwDhRtunlEzV0lxrT8ZWQ2x+h5X9eFQtQB0sTWcrmmaixE+JU123jBogu7C0Rv8/y08o2A1iKC/j30sEbnq7N+MkF3/f2uC8/ci8/5t5zT+FkpJNtEUNdFXYKv3YNYTWsKjyYChP0Yz+BWotLpg+zrT+sUNgM6vvFub6GNeHBY4mMvbDZRAd6Vb4fkB+pHuabIOjN3P4MLRrtUdOY/oAhxkHvDg3cegu4F9Ur+zgLtzFCKH6+brX/0oPuwwO8XTIubDExfMBDed3JD9lqG/58+GC6Gb1pqbFo9nO2HWkfugrQ9GpX/8CwqH05CPO+VH4WCYp19mOo7eDxyiaMGaV0ECabEKhZVRJj9tMCVeFGFAOLOX9xeKQ4A0JueBHhWzkVKoYC5Q5TMzNeOj3o8UNp+j+2lc3/wdW3FMNDpH8nsW86ofZMdjyoziOCM3pQ58Tfwondm/YPpHmLyBEQdSYYY1+15dQ/uvCf5QNhXNYFdJQb1GoofIbb5g3zvcinjJosyPrwNBSgTC5Sm4BdVllFCkUhZgj8ePzjYgVS81x4LpFatj3qlfCDqP9a7+KJs4Wyb9Lbmz1YC/91NUcdvFE+ZgmzNaU5RLV3tAmU6oV5WmAZi3TiVVv8blFjQuplN6NXFd/KOHlPnFi27NeSgxURNCmLzxJ6SijXPWL7YTxAuQQ2eNQ0v/IIiGGfs/vlJujwXzo7+mK6MgV51AOyDW5obkcw9HHdUFxW36/Dm7aTXSA6maJuuQMi+GrK5DK2CvX/E2IOTKLXiMI0jBlUgUbK2ret41r8OdGxWmE84hNu4B/9bwDrBJVbqaC/JXDr3S787kEjUansvmZNGMiVpqsjekYZL4SCVass8hHTfXzXpfmx9o2R+bruMmGLBR9YEeyxDjpmwZyPjZ/IhOzpzQwAfQOzA6IZfteruamoMuJgTJPxTOU0leqrUh4HjCSj/kSGCvZw4LZo4japbglM+tjRIyxFiDkO6WwoqNjs6NwjQfcGRLrIxMFpGlBTgIBo9YyB4zZmg23lP6HlbJftNzmiT2inB9fWbaSLQeFoDVZhH8Qwg4gmQ8/ZlBimOPTS+HWBN3veRkz0m/Z+7TYp069MN4Njb/MdeEHE6afpve6/apRcHWk6b1H+HSv0QGjuajgOXdl3kWKg2m18krtzfBYIfj4jKc0Uv0RifXlFTW1sAZFYf2L1Kxpv7crSnzN9mzi7RMvu80tlTVAuTkczRH82GGv6lMRcHe+6bTDDFuqevAs7eGT6jpOHo4BdK3Tw6IMZ2mbPCU6P5EYx/7JsOyxl9ooHALwY17xt4zYG7903JpE0OHeS3iNNevwubtWZosjmCk7pyIq8s6NoKrj1sgCpt2b8Ii73FpIzSjsQcjY7DAvIcxmAPkjkpwZy0BcSe7qDi3JQBV/Ing0HB5mRKMHbYshjCxm30184hUckmOkKGbwJB7PgRBlFjThsr+nKSZsvuUD1xzCJFVnnCjylFqnn6vvzC+ilsnLbkKLv5dwA0aD3BjR5E09XiAvuw5Rd4u3u44WhmFvWeyqCH8b1xg2IBm4O6NVKgbG/0Wi5AxsMOHcQ736W0B+bQAooe0xR7T5F1pPBB3AImdh5Lfwqt4E8MVEF4AX3/0eGANdQ8AQsjyHv4FoYrFq0mzCGDFdAu3uT5I33TSfaQ9eInEurpxT59xxHoLGt+ie0+J9OYfMsD8a7jcLyNmJrLpcicfK4zQmgAtm/RRAMmkpP6PnEohyaATPbzAWqtLaY/Eq1h83H0ybh3rTSiFtdOS9i+tqy+WGS/QcFmLzxodHvsLxaHh12P5hZySdSLzUretSaNz3G0QNoC1a+DlXqR73lPw2pM3ryRhoMAYQdD+VVhNBl9qS8znp93tUEPo6i2FN8yWMQBEZ/9TXHVl6zvumOWGYgL8Qasj6AhvXXfuRZ5XK82gTeCQZLCTCBDPyfMEiiHPrywfem0K9my0lCI3Zv7m1UoEO9IUQoavxDm+CV1igWK5OZ/Y5s8ncaW62InEPJl9K9naMqnQNKxGd/QkotGETbRrckMAdxQxB7c9+UfmlDKIIJ48cQdes4nGLy6ds+IaqJ/a/db9KRz5J3ORQSeZnjh83pQN92xM73/NZFB+vrqSyqfDiOH6JbxnlCeFz/FB8Xr/Jn+E5istznTbQ4Lrl182MA2dBMIW+iSZ1GgtcDhf+7iYnDAhnK0sSeLm18x05fvevdCylLnmVH5a1KVk+raspZPT8borQ0cvXI+Hd+zVuuE6ZRvCDyh21rxiHW97j1d681aodkUTaYeamgqbEW1rOujFzJTD3P0xDTUMVKUk4yKd8qtlnErI6kzaApqkFE+vs70X6Jiz/8IWeYMCaMf01rMdEBCUdYwEL+JDiIVQzd5r7c85CgRBuvrfvVAG5P+vi3QHHeBYyh5IThmzIs6A9Bq6jIMXklpRX0h++y7/JJMs/9KYz0dUw8S6HkwU6XnF157/iXsY1VwPZXTrdsNL7vGtZ3CRhMXdekZM99TKrsqu+81V5qjZKo1MlqVZc50xb3s9Hml1j9pOmzfILAfA0sxr83auXL2mHYImecN0FoSzRJHjuUHUtNad5xat39l0dLhmAs1qnPTBzZ+rrPXfv0yGzvDenaJxpcn7cchnO6daKQORk0kIhieUf7gUbZjFgGWutau66HdYT67e5rV4oZDaVa+Q3cnlqw4PNCWVPdBy22WEJjxU0LjnOVlUI2MUkTck/YIkSDc0/Ts9C+uWRrvnZwxnl6anTlkPasExOSFz+/MxjNjQpb+nBVozWtutbPVA7Wx3W92GMP2bP3K3cdADzNxcZFz25ymu4e/n9yfz3Ylukhsbtbfhi+Md+qtnNroVlVpBOwwiXSnp1ljNs0BXuVDxlA9bgwOQ2yekBCnIu7FFxwvnXLgAYmHtECfgd90kqMIRbiFWGi8j2pVDAST/jwXneHvDHXSEChOp3cP2GtzQuPpP9326nQN8TGPopXCsmWckEyb3T+PpWoeguca67Z1Ut+mH3iSl1quDROcF6xx7Xs0q+tDOixwZMBCgqX1ev6rcd8urdlIT187o6cvAax664aqsoVkwV8CCxm7HaqIMJyWNSPVLV7RVJXASgUdX7lmPhTuId6iJawMcra6n6vuNjp74KreqhZR9izCCPPJUKw52TEzcCk+wvVBdbt/cM5OKOpcgHxmrRwGDJXNa40G0DYCU4sAhF6BidqknmgLgdTH3/LGGtK9vylE9pFToH0WKfCDl8JJ3c8CmWdM+vI2z+K+gbEplFQ0qLo9Z9gBVvCZ171zijCY3lihf/ZDEYVI9r/6l8iXjYNCjyzZEh/8P/CHNJQXwb3oHvxVxSqzpN0ZYHFk8XVcr/GrX7i78nQfTYaOowLDv639+pqrbU5e3tk4hBCfEWdFXclpr9YtdAHQsWQzanuHRBfPSGxiNedUVfo9oEXR4nyvWY+LdgA9mM/XtLSNBeX7c9z1n5tA+TlljjsFZ+qBuQPLPus0uKxgopJHTUnkuyS8HKcAKQSl3z/QNkT6TB4qyJHOeLtSE5MZi7e9AyGLUkmzgzwqRxmxCzK7Ne+65Ub6U1IRDdZLHLbvsqhh4aGZDXUpZzwSCTbgG3zKEgD4TCUWxBXtlX3Nr1d66VRsTzMV4pmU+fDcO8KZAvEClVoqxt0iR4qO3lTv8CDhOgZ9Mj4sdwN2Hm4nspW9aZ/yaT+5l4lYzD55RQtizJk4BdncZQDJTHCZW5IJtTUjBwhXeNBT7XRyAcp6/7y3PoCA1CdIl2tD3ptwZC9p8gkkmeD1uVg26+gLcsweOtNlvGh05ru/EZQf1/AbJv5idR8P6AoBr66SK0ve2pBqoskdy+d6M82hIlqIwsfUKrI7U2Ad31Z8FxB+3ch/Cm/in9zs0EtHlW5PdSp3AL3IfRbJ3uadulTxlV4iSwzETmQraMUqPKxe9KHEzLIDtP9sPDa8D5i8r1+8WcojeYoKZ5FgUJ/Mn6QBhQaelS00opafq0bzIV5X13LwWxjbmwMauy39p823ftoYK5mBMn/OufZg53EEx/7qL/3+jTs+9Rndj4yEJ+peqlDrlxCnNo6pGLqtaDWPir8Pk/V0oggsiOJspvj2VJvRZ4ZHEcdkHwAPO/PRJ2woSP/9nvmE6Q3frnWIZ6xHY8zHxzBfbdgIE7aSkxvCw2bvEe5FQoYieKOarWoSNmlt/RjuTfcrvqkYUf/yAV23v7lPatiCoTYO5eY9wZ0LoJWVFR0hqu05jR2hD5SdtVPIiY7a38mLPaIPAZlqCIOm3rinSTH6KZU+K79oVBXwLYwv0wocZsIAtC7XLq03hvUpyUt38wEHLw9HT+Z2RhJgDfck2QRVoGpCu8AQwwlF8iESNTGNo21CQwxLjpS/dCjoDTAGNq2m2DTNf6czatrzPjKxMOiGmU3SBNgnha535twIBFZO6KdFZ6o307qkv64W31to/WLNipuhh62cbeHYJX7E5aI3dLhe7he5oMHiDEFDX/pK1+Kf167pXLjyFCkx2qCNXWhscotuLWnDmcj+QFBhuVQh4E49l0zlTbcCGj9GOlJcONVtXPooX4COhGVt3e8GhH2cKP6kUaGRTJsi7Q4qwZbGSweVIvzKFz5WynIWng6mj+7unMmHnVKFr8g8d4HYpkJqgh7XZHjANfZsA5g5tiAEc5xgAU8EitVabVCfsQgRToQ9yITRhtcLI5pJ+k0tNqv2V+U8z1xC8inz9yFS0AcIQGCtIWXyP/M0sjlEgqScxTM6mez3vAAg4yB2/9WdckUyTTTcIt9QFhR6SdIf/rgyhi0gGKidqYOvRs3Q8GzuHXEc4cq999LZ7+evbIAY3YgvfhIx5IQmZ7hsHXpPdH9xoe5N52G2TZo+xNFHo95Q0eOdPb3xZp0rxfV3cc2jfObQu2LA/tHFb93zz2e5gvRsiybGRbi25I8Lx1cLpiTlybT2la5ClS7PGu7L2iOy66lWQlNOqcLIfaJXeinXcaBZzEr518ryPvTixmyq2svNrgy6wW1r6fPwuvrgerfLHdUiHk59woZyzJXe/f7MRFn9+TzOlfAP/20/tStDWP+ppFlLRrZq3Z+7B0x8F8v4LFZGfx1xTHuUIJ8uhvV65qWVwtrv9jKJxl4ZrXJTkUExClLvXl+IEpJq3XkLlyGSySYXVeJHXWfKSLkJv1MvUAMwCSM0axL3EiXNV9MZflBnjRMuZV492fKC4RMsP3V8yBCYAKy+MwD1eKPilddLEzRNEgrXwxFV1AiEfawAJ492q+WGMRc3vHluqramq+N45YZYL8ky4cqxE/spWDMLKzMmHpCxC29b3HdmF4WguPJ1GuNA/vYhhpKSuVhfuInNc1b8yFOeJ9o1vv1oVfP6LzKUN9vK5dxDcaFUFWguJM5E1uhUwty9riviFk0671eaqCE65SAEzR4a7IDNao5AICKWTD1df+NW+/DZC3EHXtYLX/bGprGQvm4zvtMg4vHzqE/6fOzNf05fkV8xm2SpHVqhFmAL1pTdCwwR7vd/q7lfWuh9B1QNGwMw4/JnFebgqeP12KFLwOMwHUtvwQ8yVdRRKTH40xVpK1QYObGgA/96t8gwXWeEEaFXYpJ4E55zkcEGOS79+vusYhXBhpfZM75DrHgq4IDA7YfGSX+L0RsDHsdCqYFpBgTrsIYi58ibUapwqPMz5wXZ1i4yzMMBF+t57IsAhDBHLm/gTQX7Je/XesjM7n3rxHddWKrADwvknlufigsycOAiBXvUu9y0qfmhWfNfvg4AjsuyOTPDyFkscITwz6pDMmeqq8kWf+FIUIkd4FZvuoVEXp/dB5MRODuO8wchuKCsukAp0kDVC+eHaNbZQn3cBy+6q88Km2YNOwEyJ0HYfW8H4mxeTSMEEsNM0ES7OboVLfcdhpbYESWZ2CnHoRbePBUQ3My6RblMEe1q+EPaHwtBojUFqie+BqXX7vsrBW2U0/1Oh4eeoIU9dsfG7x7R+c8KGYsdlxh7EQAl6400pSiE1dr3JtID6v9T0+4U0OEi4I=
Variant 2
DifficultyLevel
466
Question
A bag of marbles contain only green and grey marbles.
What fraction of the total marbles are green?
Worked Solution
|
|
Fraction |
= total marblesgreen marbles |
|
= 62 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
color1 | |
color2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/02/S003_VAR2.svg 200 indent3 vpad |
color3 | |
item | |
correctAnswer | |
Answers
U2FsdGVkX191fCrEKG2n6I74mT+QMfEIjhNXEKXxK5S8KeFJL7Pm5e2OyiHflLxGuQX8GfFgAzPLAAjv01YNDo7od+9aXZ1cDDGeTEVgqpoycrW2z2klXHRL88urftFzlhXWlu8yUpaaHcXp7cf2MbeK8+wMvJxpwLcs9EeQIGVl+AUVavVFU3RfeOO1RjYi7mew5FyNVyF2XqV+FUGmBHf29PwcWdk1rawwhR5JAzdKdfINU/zMCRQDiY8E2zdEx1x8S75cm38Nrfgum/EiutmsDCpwlBHGAqT7X0eLHspDrQQqMT/W/sq5rYGlCfP/jlocgXdiLDkD1yvTKX6iHVkA/kFN2+3hdwypJY7E3gctV2PfUZ0eOVxkc5wwSZD5A81swowUOg1m6WqgQu5UEUpQbUEomPgtDihL5KYjOjSfgjuSseoUnLFRklhuLxzthVAdNNVxKLfjS+T6PHFVfB4LC6iYfrHNVLvoqxqNoT3dUQtXky1EPSbdPGdV9BLN/K+v4SMHpEeMmiI9zQ4zTWSo6GHJj6VOoEcDcsX2Atr1XN/kV4F/2/z2ZCUYGVO2kzqmdNYOO1ANdBzR0udn7rpL+zRzjuZEiJ/Vg1x8qhz7OEILh9bGp0wzXwO3VwG0qMJ/PBQTdoZ30bCS0Bi6x1ogwRAwVkLSUuOuvt8YbWkoMGezvDyerg6cTpDFpJ9t6QXeRjN5aWJxsEwOabxg2DLyijA/KX0uS7LgU/Ny9lTdNAjVJ38thH3QTWM40WF6SxXmiXWHsR9j+f7SpTq3EfMKj8k4gc0VsUOZ/U3/oCwJ2tBdP92QKho8TZY3yuDhsC6Dh4Y/kq2uCzyvzRX7mp6DVxbasO5ZIxEJKRtfMG1DryvrcQHga3DynmIiBV8885vyssoCxZ4BhkIHweO3vSnOeG5wD6K44Ya0932esBsHTtA3FuTKSUGD08Co4+5O1r7aLVBz33eAKelh7wBzxuep/EUtpq5eCeg6JneWByNw1HrE8QvOMA7kT/rg49OmPO830E8vIrbv+tQAcTVk6dDTh8MkIIRzrF4VxljH3Er9Vm02t7QZlJ8g+xaJrj/IVjJyJ2awKEXxGtjXUobDmXba+rjoo1LrmLOOyJOGTnqyIuGCJXbZmC2Cq7CL2cxzz3W936ZA4hyQB1qkJ+qSIZ6hOJsDljua1laL61GitAN4yj92Gpoc78itPPwRkn2ATYqHfYltTMz9YiLPShd0ALwuucYTs1l8TMJLrMrUY1zDmhJkaIxuUHi949v3lnO0waDVL7KVgR9A3eeU5LE7JIgLY8Qo0woCTVqDTL4ws46lkZ4iBnXnn/aB8MGnQnIysGqC6Dp9ZSWHjW0ACboMv2bc/Wt/G0erhe+Ei7+KmcIPNYA5ICZmUbdxjq40oLJCGLFa1lhb+yNmRGOOhkJTf4CJchhCqQF0A8jSEf7bg9jvRJG4dNLNudbeudT7yKELYl4KectPs6blkyPAwGwKAJly9m635RMFn0PXpX20GpsFWmlulqfLuInydz2LCuD+jHq1L5H1BJJXFoixy8e+vu0xd13WSwS1Rv7T5WGvVjkSGGUnM0FfqxervxjevQWf+IqUHpFn7XabpC7TuOXE0Z+fF8Kzv/75L/mNROn7L6RF26QbiCAgIRgQAGe1+g76UDJ1nRJ/iucYjB7fz4KRZ3HgCInlrqjRsa5n+ZGoadnrO9tHl4UlGq2LBQlQrI7flCWHbnrwNa0Ba5bxzeItgT9GkiblRIk20zGMn1OLWGQtrGc0RbEg5mxowZMdXcaZAYCCSszTPWYLblkIptUygjLsoJujMhuCn6odJe4YFQePD49cfk5qcb+P3fzM0asrRKIzeK1Nx667ZT8iEOvluYpKhpV/qK1zPAoF6p5IuEkcj0fA36CPAO8JXtU+UN5/AfObW9nq1jzLJ/bFngFCiVoRaQLa0nZpZWDlLMN0N0iBhKYq8/z1EE2cEtQRFO6zGXWXVfoygAHb0iH4CmWPiRalMkfxwsa3ri1yXv0nkUgSzipoGiZPzQpLTLwfHOlEl7WDnFH5LF/bZCChvyHnoUUckivLCSrgTjzy2B1zJNbCZLqXuCwaJyM1F6q9YYxJuSozN8fPpfglCk2tVB0eiLvQLYSKWr5yWOLP1+PQbDycfRsMSwy6/+NzZIwOe0XAXsPhjpIao7D24kSWvG2UglWIhkrhl+TxxF45yco+RttY7WWwXisdM6HenLDbMg6lWHBt748bZAPyLa/5bCMVuHdwGu7b1ON8OXs0TjphXk5EJWclooTGc8C39xZHOEc1knnG5xLlfX+vciIJltSUDdPB+5IBnzrdtxBx1q1uuYUQpzPoxa5sqOP342KQ1/UztFvSUL/G0keuRm7ERnz8wZqHKBOAtRTWcmi4lNaFYRRchhIjrwG29xofzcLYrg+fOBMxPY83xSJvM2MG2SVdzLXNWN4ztvUGSQlbIduiUiLDpEA7vzZL9p958E0xQ++W6Ja2jAxG6ORTxOKIVjSAIWQIo8KX+ipyAK1VxIAyP/b4veTmxKsl4zs2uhlv714QkA7jCwhZlSFd+00WBOOWqrlDqGslIJX1i+Gkp+YizzkVCvHESVmUErWqLdcTladjKEQRxT7fhT71dEFOjZm6IS8j0QdzrGXm/2fKR0xJ74sY1mWaLjobUP6Hn/lhqxjuKUyJDSw+1lTmVVNDCoGtREcyAXw+fzQjelkqJgLCw0GB6DuRO0yVdEZ2OszPMZPKfao7b5rkhE42huhBShjC4MzCmecG/hyXZCv6v0iDxYBlU4Nj8Q98so+tFW47bBj346ucSl8tUAJJKDatgJkbdiURf4MERESI9bWcSwAVvX9KV3R/srvPuOp0UBQUSElPQOY7fUvJgzUQJWsHvH8mThaaXyJHP0DGzjcC6Aj4AIhl+QNOSmaU8vA66D1FKMPu2zfk+8MKFoq94Tixe/WNW2tbdl23UPrYsB5kiUi3yGoSTvyt5RiHYp9hQxC0tJuIzT9f014f/Rctbj+jM8I/6TD+Dd8gKeZ5I87Hl54oXoe8GDOOCz5TZBQ93hOLH0+flL+8UATeQLd3yLKII+nOGqQJbrNijviZ0xevNHbWlBuiSK/WawUjdwidDRg4iMbwDyfBwyFIB60gRyZ5rWjL2Pw2pmmJ14pnhoc4KdXw3N/r6/8jOPJ5cAOEYvQZQA2dU0DY4rcK9/y2wG1bmNLhoFB8hBMUO4567XVHTuvrtnTaoLSgO+0jeYUaaLR3F2RFlWJoBJuHuBzuTumOZ9WYd3ydFbKS+jVMf8DLkA51MvDNVgpGO6rGo6nrMt8kPL6Pyq5BENraNGSURvD3mKeHb8+WdhgiXPsn4/8Dk922/fVg+e5iMmJ75MSYIERsOv0OxRWr8HZiaRT6QGasfB4KMmS3rVDmljsMQcX5r+PDF3RjE8J8g97B1ilKELnM5CXEWWBbHtP7zK2hGu9gQxxvWWvo1zvP/LsHcPx8fkKlmn7VhwdURQbLYJdBAMLEcJGTOrAMT2ZtGo+sr63suTzZHjabUQXZ1WM6LlqYJLqkaHXjFSFWdLmFQkqeU+d26n2uPvqTqh18JLPZ0m/xSA2RdrAkMERBD7ZaT4u8L7UnbntMJP5wU7HB0D4zZgBg3m8/BltzTOjnXUdT4jjqL112euGw+dNbp+CY0mQ51z2GHfwx7YJQjBNGTyTsNQ3xPxPL/Pf3U90a9hhHCW9QJYNPvGYldaa7mLuR0tI7amAYS4O4e+1lvNxaVLdnFI3FoF/vKSNDOhY1euqyYMaraF0AluaDoIkG+EKLIy9kP4twg/okoA9z23DPnSNV/JDX9c7DWNjjzX3kS2HTgGrvm6/1+u4uST+jiAvGQ9/NTYmVcbpJawFfICKq3W3BZ41b1Poc8b24ZcVks1dUSOes03YckeV+rYD8KLuAVjCkOG/q2Zv8+rkTzUSjjFYlCJkoqpEzl4bVGwFwqzp7vVoaqR4JCYvzlqrJLXFC5XDgSrkPq0F2jVCKVLPrFPS5VBIc+5ZI6lHvfRwZHBHCWswSsDqBcFPr1dBopbGU95EfeWy5AM7WpBKUd7PJ4gmV99kOxLN4L9jdLUH0VLUqk7zT8NNb9IwCw6PVoXqAh01FOwW6KyoQYph2aGmYaGs/DxIC96+RnGOTAx9A21pd2EfZvNQphUxqTsQRdQJ4L2SvqoEhTDqZrTfGUNwhnwfIIOTRdk6V4Sg5BHOKtKjpUj1C+evtG+omWcywsNLlWTVLIgy7+dn0MKVm37odfM+EeeymDA0hEbAA0uudL7gHAo4DD2Y9jqXz/5sLg9zxllKloYXraslluFsCOE2l3AI0coe74hRoKMDzCYHOjk+L/xqNEjvhuFcDHOZS77GMiaqT5onOw30oy7f/Jc+Sum0PNjZ075Nvd8rG7kNAarzG/PytxjnSVp1CnGcJYReS+rkIZkS2N2YJWRPSZitf4rc/9rb+FxVUELlnm4kr1tHBmsXVkqeiIu727Rlzxa+dYA8IdstTfaw+Xwtid/n6ua7FPja2IF7DH2PvpdW+/UIiqHEOx2cnJrUm8xIijlQ/IzshBeD3KBT/fsa+6igEMQ2J8esnkSH97jvoivVzayWyLmpglg9dfmNIG37lFh6h58pN7zNsinY6lumPR/IkePg7DImLirkrfYke7DgnXbXWBecEf5HUjNaH/eiu+QWqaswjj0DU099ITxrWMBChUrSd7c76jYJ2kD0ODiWGfqoiF7jFpYplYdKk5toY7699GrvgwY3G0xrXSP/10VPtwyR8QVoMEibhNND8SR+A15yH8nJw9jq3yjuShLx5ab+2V0tCSJJRzTcdIdcnF1v6OJgSEdZZ7O0XY1PwtcalYMDmHLNKNLI0jh0n7fuvYGiz1dqWVM9p09KO+Kfl/2CD/36NXRpMqwIrYKcXObTu+ANjjYNkUrGtx5dPCig4M/0yBruoXhD2heSyuU6loGWXlYlCdznXEIgNzF4NSjaG7hG4Xmd0ZF3D060CaCFPCnPjJaPANjy25+QMIUSfecmbkcePDVwL5TJUsrxN4CTLPRjm0Jc8gg44JUPb7+UrONnrmaZDl76N0+Ryi7gzvE1hcYOiexEO6Pp3ql3/J4cUVmE1qVdc/cEX3tfnmvVpwjmtbbwA5EoO0xe6UP/ytprCx33JYWyRjKnbfp/FNpAnBvJb6pUATSz4WQ+BDoSQslg1UGooUIglOPF7hi/DT8GfTRQ24LVs5A40QwKi88ZAt5lIqzy4dCxyQeo6edmoz9MlUHj0sHk05XVRptByhzZqdIr/R5zr+Gf7tTEmvtQcOlo7jSXk1PF4ws/O4ng+Cj7QPXrPBWADGKCjaeJHUpCAqXQ72wDELY3TfiKpbo6J0Ux8+BxKB9uJsZmcwvXJgnq7i2P2dY/sk0ydUiUQR1+W+uYSzruH8Cqe0+P3vN7gpsmsa+pt4ApF2V8li831K9gOy+Xd0D8r6JcaBHa6W9BfjDfraWSUupDSGMKnzTDDL8TVyw14p48i/+mlYeySgWsv9kSxpmp0RPGr0LTIRiNN00pH1FjNAJAC3mMJGeCtKXqlDxbLy26OnfuK7iigEQR+aDZUBaafwH9mBdW+Eb0+6U3NX0rA1kr9YJCjCJzY42NsFvtRXnOe0OHjDiLo8Jz9K6FlovXBxoCqpsfYtQDwDSI4IbR5nqOmi+mcQtoziOX3QlO+lJxSTWpQ9TH9dwl9702+0xnlkrGyzXHm/R/TKvP5q4qC60594Q0OyG5yT6Hoz88iwC1Kda+Gi27n5q8onchF+XdFp5cfUfcnyjfgNm0RlwCHWhwTGnC8QPphF7YkFzxSK9IkCfVEt7H6KetloR4GezA+hlZUuv17IL5HKXPuMuQmkNVHqEUYwtaZORqPjGfpahaZSAbsBuhm4787iKop/V0wEQoh9zILLtexNAAg4MBLsuc1O04mIB8oWi6jG+5jobIHVTRT7DKhOtojWkOXafa1CzfvZimYQkQc7t+Z7LQoJme6ZPCBEGM/R2+fqj1othh4oWuL2Dn0Iku/qF1ELirPJJ5xEXWR0xtdcIo1d111p7mFxdhlV74JcFS6RMLyEyrkKgY1oAZ9jUvy8rLPMzi75iTQ64KM3onrpE70xAZEphJGC46uV9DnaVDL/zC6Dbi2BIKFnBmXrPhDBEXTtTxZhS9XvbaJmW+oql249qplCuzsQMtsW2BMZD0fx0Fzd7kcQk9u7irpFuFKcTtEinI8ppLDsmetriYB+Hdn6mKElGUMs7gIGiqLUuZU8P3G3z+6ZXIf9CFzwknv8qXXeBzq3Kel9n/dLatxVMkLJOEhnW5iGXMKeiMLfjZaP5EzoFo540jq2kxWSkMvtn5VX1+kprsavhSHXL6+FgDexMPWvTmR/cCh4MgVZBmPKdfjpe/ZoGEt9wuIfxK/oM6x5MP8aSpZJsmBUNfGkcO7Il6pnWuBVd9l46pzmrHqdz2lZjvXAqcmJzBEq5PnNI6FprwYGgMOC2ve+eRMhppCnPLrCoMglL6cpLbWFeiCMtTiNxnDpCklOphNWyCFyFCP+R4Wica2Nl4NTAPOG82hla545G9Xjxt3MleHBx/2XSidtGPizDrOjGRQLILdr3O1pWs6lwshTSTN2Vosw0ilclHAB9P6ggvCQwR0T34sGUGbhqF/jW5oWhY5EPxdwLDRTaf01I4RLtwLu+UU7FZ//zagD0/WlJYcNv1ZQ3/91DUGnec+P5cFcsGRKRqOgIpOFX+2KhhOZ2eIlQaRHL/Bxkpew08zPaGcGVq/UIHIQFCCiKNbFao+06+OVIVd3uAzWHQ1b0PBR+VAQf45KeYyuE156eRpi4TDYnMrGaORmoZwodO1NLk0u9bjxvyyFBc3dScrhKjtIB53nFIA20CkJMsivR/IhEpmlyHDPt+FVmmwrB5pp3tCBUTJGP38vO3CBPHYaJgiBYLQkcSWHWWlswdNZJsNTWI4EcHEw537UOH/aOVdy5FonutyzvwfpRyBDNpYfVLIUYlbLw1TSoADHE+w99QzC+Yz5jFDdZiPZdAKL6xan6mpELG70RhajnihtHvu1F+orDVKNAeMd/DGXpDya6CcoYwLJt4vCeR0sIVvfg/DfGoq2wwRgmCRIUSlf+N3GZPFDdatEV7Xoftl1jP8wfCu9wg45VfqHv3rMtuyIByPvFDCOmW3BOGwAtlLiU6NkilvgQZPIHm7Ew9eaKUwrz4d7pdpxtULwwOMn/QIioCzVLvMPBv/1mtMHX+ImMHKYrDoUeQy4P/g6NL9pti2tT2zWB9YBoYkHYmPvjwwdfBBM+taK1BDUj9tay3S+sVOZZT9F/1iDd+wIAHOYqVZolvGECNLanCxFyuTNIL7pytARdCPi4wSY75F2nTQW+o57Yh/VqblWyRF5Mlgx+ncTAqrr1ujWmiETjJoT7XZIHqw+pR/sJkEV+vDedmk+oSdJFVH1drs1B5oirxa9Q2KfR0KCbt5hqJUccPjkMT357v+LiIJRGe8f3iUqPImNXEfBJprRsMXXrpN6NCjSaUlIcM6oMlJi1OIPDHxzBjV/tiz+Axqk3JR9cRmXcWFL6lIl+qhuSG+t3bcIOpjztp7/ZrYmaWRyI8P/7p7h2aF4CUFBVLTWOPjft5G59qvBjZnzQu/Z09JzcprGaLBnZDEAZ4m77cUHlJM86y3mXJ34BQp5cmtY5V7FGDKvDWbMiHO49jQD1rMK3slMm7FSbSHxdWk7jDoWfzyDem6UsrqjSU1qQ2kry7eRGxyWIWbZTzZyGNL+t6hqqAipaaC8QyHwmMBsaoz7GOI5IoTyuqOzNJKhNCRH1oUfBvZTiu4PYIeAlS2QzdPumLRpBIVhZEU+D3P17I44W0XrJWxba0fdsA27jMaGdeZZrZjJB98v4UI4rkufhQFu7s843tjYxFzVZLKT5dBniDeC2lZxyMS8Kh5A1i/rrjfrs6NDmM3RjKwRf92pQZZ2dCLioortxf2BXoT5AOr5iFFnEUMKxO13hzfbbyJa6KaPQGd3d0LqrNkubvdyoS4GnuzJRABLuB12b3vx1Z6fR17k0qPndMwRkYsAYROv2EAwnNCt47jWLKICCB/L8hT5FBDxvG+7D4q2UK/g6rgSqqSKnkmh+lOwbXE67iLvsD4khJgGBd/m3X/DF8u0YH1r9nUPFHSLoVlQQ8xBuAHdzicRnlWFzhLzlETr8QMrWoj1oxbDJ5aFn/QWAPKerhvagliNHhjqOeT3N+xBBc8kfBXfT31kigiQAeMQMLyuQIn+GfOjEcYg3DUqDp9Gv8f3aFGaERaSj6eEZnCnjV3+8Q3N1fg/0CoQ8C72BfokQGCclS6rqO8ipm/AXSN3is/0kY3qxfSzRpLVJjdnWXycecrwEbMKZ15y+HZ28X7ZM3gBkMfIteTbOXCmaE9gajSk/Bp2vQU+TztaR7yBXiDBPXjSAB8fQVI3RJ/Rahf1c7IScx1a8BEyEkbFcdT4e2DRok1/cXHFG79GU5ER4TE7Y3aA/Fts4Xi0wKGemamPXtQ/lxHy08Poi0f7vSWlS2bxhpS8stCAHE3ZZmV3UwdKjnq8PQyKxNnCaqUE1YrQBMPMgFMWlQbOAudENvZsZK7uAlRNK0tUZkga9KyUC5tnCrmXzDhnvJmD367PoiFXQzGRips+5T/STAk4j/jgCDu1S56NC1EhtjvTcZ8pCuUReJRT0yxkb6brz2Ev94IYZK2fmzUsoLeWS5AaZ3CpMk0DmRP7APCYRU/NNwSIPd0tHLct3uScYZiogz8k7e4dEuFnDm062+G5DrSFkWzKIw8QR1TPATJ1N2SXugaV7fN/vjck5sX00N0ukU6xtKHqBSibbM0xcJfMTp5ZeO/JCGxgl7qkkhouhmpNcAsRN+EHbYiwUYA5b7Ruz9SxQKd2dsKrPuen3z+867WHuLC2GEaEyHYJsso1A2WczUeri5XNbZ48EjgakPHKkepID7Je+chYAvysJ3xY7bRoFpF142r6asDcxDV2UlSJkrRX+qKctgo88l1drwWlo+4IBK9Q61qUD5doIn9Uktt+wrEP4f0L4TKbUzqVYPF7gwn+taLcxJx0M96HJ1MFB88B8v1EhT9kq38P73ZYtjvWOKIb7acwHLs0XYT1ydy6TwbYH6qm1n8h+ezAWqyBXjHE868hhbv4FtWx2O2BsVOSRdzzJjCfjVFiBS1reDOkNXGpSn2DOE3bs83KOQwiHKUg0xDvv4KOv8KB7XRqTPFopktz37rTvcNt/vyyF55KU5ztj3NQTxeYmjFbcnqNO4hE+isoNXmFPSopjHuQ9Oft04KqrL3JU9z/r+NJiKQEfMYDl5Mz8xqhLc5Q+UdxaWaF9+fNermq4Rj9iBzSyoKZ8lxPLREyDlb6JXuvz2qBtMr7Z5VKKRRhN5Cd+7ubqF5KSidU1W10igF0rmBvvzHLCovKD54EcGvLNwEALG6A3FTYDSwo/KZXlEsq23fnzOhX09ojexBbuDfBlVZHqTmz7M5TkEaiINgjMUClbD+JBbd8RwJTS1Dviq67jXdv4yBxRcW9Svagp11dpIoHyiGAw1rhwDErODTBh6cyLWSo0m3D76RUhMHXH+udCwBk2ZC4S16eCnX4J2dhUyDbCkiOf0BgcKHSb0gTBUm7WtyA4oz+byrJE1Cb75jCaRh2FhyB1pgGF7FB2boZN/LQpQXbZF6WA37Kbr1PJsHbXJ6LGJLD7riGgxmeEctbauIORZX3VWI2Yp0YGGuo/BLZD5s+a7zI7cmlw8N9G94ijsLfPNbx/gEj2vpvBwQQv7SKLVrCMxAW9mx+Pc+PaWaSS4+6jKJgQLmiAY1Aifgygq/Tm51uW4ud6bk3dyZBkLtT+f01nF2UceBsUwezWx044xygWS4vDd4/EEXEEbE/m7Aw0LoH+T09Fupu/BXwcfyrIhmVuUI2i8+f3UbeGMj2ldAsbXdxLZ37GPO/pm3xEWZTXE4B7jTPPTzeVICosc4SlWvpsVhdhbpFjer5hmPolcdruepJDA6cd2j6rpiuPjmNnRzcR54f6K+kixIVCBaQVdGQl235h7UwSpXUvHzgrVbUVuqLYS/uJHBPg189mXPGRmWKy8cF8/Jz0G35u4okOfv2X/tWHs14RGHC4FKFfOfunFTF7sRfslNQV1IWR9K0E8UgNDnlzBa8lV74C3B70va2GDOuCZQklwxloRYKUTER38gHACdeq2lSUFDdPQqqyWiBjr75FXhyV9oP+b3j/vdQQO2d19/Di3Lr6ArOLyEZEvdT2+PS0SCULoZytcg2vObbdT2MD44OvWqIVykLoBBXj41fDUkS4JkzGf/GaV6KUr1PMZsHfOBiR5Cu4eYVIn5Z8amXaJgKu3O0XSfBrxWJ4NJDziQ9KD35HYADiJDa0Ci/arSZN3ebrffWk0aUw2M1E9M4b6Z7BIFNOyoBb6fnsmWUaMZCzXa8omMDeUSt7uc3RTIXVRtDLWV8jHasHucMXvb3klR5zxcfMck+1bqUKRE65IwslPYaCwyi4xm00BydqYAwqgKzzg+H28H4cpuDxPe6zd+ahXkF60XEDzRTjS5oDLVbZgBgeTEEHxWmF7W/6blZFmjjmXSa0FjRiNiu4gg4+s9Ip+iQALhGZ2vj45zI1z0w+j9ZOmxhra/02FE5HSloGNHHzNULit/jyQuSPPbAgIfIU3ujhD9KAjot6gDb2NfpJe7Yx+/Pl8opnkeDJOy0EC6riFDIQNLbUU9Rk89sBHfjNVPiflBf6UVLFHanfyYBfaDys02RDm6h1ekyWqU9QzcAX3koV3IHpl0KRoo7xePbjFZtVHUj0J9bbtIuNn8Ze+U3bqdAKPfNKJiS1CkbMxZUJJkvSIM85adLQuAZAVdl3nHno+465lUOD2SYIz6aPFlpUp4ItkRaiVh831DcwgruJ49G0j+jnC10Qs6y+xK6liScvw3BrlJO4KirIU7608mFwQVUkjiSXhmnt1sopK044dG3ZnnM8g+zgf8qRXSf8l0QzQ2h8+AcQmEZMl3Rm64RKI9bjls2ooIolmuvboyMkIWx4MJ5VqqkS/5iHYfNJs4a4vRJxDEkUEsd49YCaRN07HfapbO+8ItcfRhbo/JpXvHyJWGp/n6LvwWVBPSBgJrz42IcrkGQRAuFnFKxRh++srazBDW54N7mFKPOeLdOMUqTQsF/oG9Rl0CfmDx30UH/i55PyF+sgMo+qVtErEEGWmnhB0tG2+tUYfpjxvrXh9Wy6BIx87tYx8JnQuFMmkDDIvK72/n3dkexaybU6bA7JgbyAAi1TzWRnuKlkQa/M/g0jPJ3cN9Ur1eJ4gHeyFF/1T36j9wO7zCyeHiTlIsBbZhvkD9+pq3LKPU+VO73wOpUFgthA3/yrc/yyXTa89VeKOFKz3rwi0xP73L0ZbzjHs7fJs0IzbLuBLea2vejaw3tPezucyKBSHILJEYQG/rMpmq1yiwAwqtL7UeNz7X+40P/uDNpcUnTEHWaPbYCMjK1lQiqkPIWrqKjIunVRzPQuN9vVUWhhLspIeQaQYkFlzgY1NEw3n9/tMYKpZsDYFaQM+YPD+mBfXxrvIwxSwItLezvP8eY447rFtiUsLgYH6L6KG5tGZbqyl9FiIjZz1LVsbOCsfhuUQF5G+s+NQjXe39cFc/0pASLtIQITl8gmYGEx0nb5x8MLxSYVzUUPql3x5hy+Px0eGpmZhZJ3ieCdd8Fgw9tzAcr1RVwfjXr1us20GGcVYNqXYaPw94697JDkZevUxIO5MGQVTvcwWBtYjRyokcxhPXwUB+tUd/3P21wnudN0eiwPlbHq4KlhfJWr4oV6DVbwoBFZCRFTp17X8+C0JIYFwnKqJ8DnLiSXlNVYd+ZpOH9lE9B+o+crG0R+M/7NPxGYcu2e0bf/RlLToZkFMMIH0+aEMRG8U/BDl+p8semN4VJOdc6Jp721hobKdFnXX/77HT6uzf7tHZNMIJUSS4nitGHQviRyeRFdyrA6OloKJs11s+SY+Xx5P8CoIrCKkiBc/qejrHd71uXaYI5ITpGYWQY1c6Dp/yOHj55+XLyY4vDjl5sm5ITIziZjT/zjyTXFq7mgaGhFohWYYYMvFJTZrtuhMNbU/4iDnq049ZKG9r8b+5qqMX0YF8/xFiJaDTFkpqp9EnmR0/2FX/urnl1MfKxIroj77bUMF8ID1L0G1aNXCjd56XI6gIvudhPWBycuG8VzsLmtyunHwIkFYvB25U8O7lFtp+Wk6XGoVQ9qqiIXauC/u5PhROqd2ADKyZQpN91zscmABfCZlXW3RB65T3i3xMc4b5sDwwm7HvX/H7OEanAsFW23C3yhw+qFxyytfPcjmzs/Bl/XBt6SrvCdHz5Neb2FeXlLbALVSgInkCMWBcc6UrfGC+bjMGezAh99/PCANCCzmpcWJMQqNoqaa01ry+/fZ3GlrCTDoN25esz2wYlqi17G623de8kfmUdamnIjeODgvM/QjS7WNRaj5LA9rrSvnQBoQUbJQmo7d4CLBhwvnPInTgx0rvl3MYfkp+LbzrBdeAeGk9IAq3+6xWxFsjZKiTYea9xObEnWgnCj1ma72/cwbc4s+jJTY4txOBl6E/7gupe5uogAKESBNEkX8Cy3GGAkvDpMAK2vore+dkbXCHajYxE9neQpw769MQdC2VtEcQG2xePttrA6ZbRYrEJQbXjWuUTqZErcfwkwBIY8Dhy+biu0RHllxh3r5CmGdRrFnthmQf0Q8dr+g0iXFmhjnZKppUBCON3EZlvTZGoiPU6lu4G7JXaq3vcxdT9kIOQVBSaZ4BNyqnLKZHMqS9k6SfxMTyYrYDgbJsK/cfyCSke4DmSWPpG2uEwhDrgSEmynaoyqwvzCe40eL/vXZHigvBkv7gtVFGxwAUReoGmlO21n9V10GJ9/DbiNgQ9eSQqeGZMKWthZwQ0Yj5gRD2b5u+VAzxmMpufEAICRq0jHOJv49pomA2cd7VMNXjZDdyOblvg4oBLKIZxpidk3oJ8IBsZPIb2YLZvt4RTSq7Zcjd4914REC3HCjZUhgMXoyufMjgFfSNbUv0On8+V4yjeBhngUpS8SOH6TJSv8DT4it+X7bp54OpeZexqa+KjGBX5Sr30Kih0uKw5UVpBh8UxqIE9kt9iV+bjqlTK0ZgIEkAnGvxdxCWAxE5QNQD6yLDvVHNrPa9xRAorhljhSjCdOAnq5AF1rQQGQWzBuJEL6v+ufUINmCHRt0fAjgcKn5ZMTfJfh3yjo8XYwa6f/UNY38Y/DH6ST0OXKSJwNtE0VDWBrSZhHObzNdavt/4cWz/85tAflnbHNguXwHUBxz7HcWod1/zAs6dvTgit6ONXPAT9DKfgbzd58WpsKG645o9SOo797UxFNcJJ7ZWeSoUwL614iEzfiO04QcKk1IQXiF8S3wp2UYZG+KYGmN/0daKORpB0KObGpwNQeuzVKf/BCyNHqFLoVVBZ5WSLQI35oID/4gjJabU8Tm27ex3pwRdv1pytT99IohHh0GipTvWKyico6yuCDFPynpgxukBZyLeG0l3hi/EsVEsnRCVjT7qWyOlMbIykIXB+1sst3/9L4i+aUWPt65WmrTX45oQ9VJtAfUsGh4mY5/GwslIWpoxg4Babd014Lp8o0OloQaXxMGNnuKofm7E1PwB7SIlmFPSH/xXn2cb2D4fRms526ahzgVCN/nhciEFSE051PoBMETWFZSZ+Uri32LdvewQIRjPm66L81GqzYmpOLTiHzUQtkV+Rqf8arwdXuXrvX43GfduNLPdfBXVpHXgN59MlJWlwT3fMTlOpRQ9VlhUtdzMu0C0O/HW6eCV0+44FLAaDDeDhO9SkZ2SfwD0FFVfuEpBKBTnMy1Fmdhn+pjdFsVsjSuZhkDiZ3ypGrJxGKtufFSPMd4LJTmsYd34TXvHkuiumwKDuhPG17uBV6f2gDzDe5VuYlt3WSuStA01+8SQPaoFMN4exie/oIHJAKmt+7taFL4SAdh3yM8BpLH7L5XF64ilx3XCS8H45mNDF/IQ98Xw/SZW7SRgKt53DIbbkF/wETmzLIwjnflUxjYYGjq9FpZN3XWaFNF9hVWtXYAQZS/BaPz0qsh+tsWjsTI6ZEbSSGHtafIio6tfiteWQhQcLiHlOmkkUa8Vcw==
Variant 3
DifficultyLevel
467
Question
A bag of marbles contain only grey and orange marbles.
What fraction of the total marbles are orange?
Worked Solution
|
|
Fraction |
= total marblesorange marbles |
|
= 73 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
color1 | |
color2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/02/S003_VAR3.svg 200 indent3 vpad |
color3 | |
item | |
correctAnswer | |
Answers
U2FsdGVkX19lIxieVHMNH2C3VRUvHUjS8U5VK1ql4DLZG6p/meJ3Nhc6tSffcsPWNBJuyMKZe3oMbX43cEkR94GtDbHawD3GFv62R3VzYDONzi1ykZHzABERcVgqkVtaEwhZRquG66daLn/85uhq5KXoc0Y5/uV6ATqcs10ZgmhGa3Hb+0cx1RgCnFJSAKTc3i8bZchBZmYrb/N9pSg5efP3PS1a/0VYLwPZw4UI0J8nzst+dQdj4ZDE7ElbsPhgqQIwNCq+HTAEqykurNlQ0XHJCrSbU6ZpV7lLjsFi9aWeQtm2wsRdkUVRmY8TWXoCoZeDc6qjkfkYFnRtHcon73lQfM/aYfUveVh0rnkDuLsT5GACuqG3OeaKYMNWA7Q/PVBkEgy5bnf8AaOHQTCdukaVNrAYQwu0uTFvXKRxhrrpN+n2KfOsOrb7L+XA+5QHhuyFi2i5XsOs96yMokAhV+BWsz9DlKXY/aVzir3bEaDZAlZZOwDMSdFQAyZ5js/Ee1U5lGrZ1BDZDJdIZFEl18S/s1Obo89to6qHLCW2KZQDBEQDJkf8yH1uCo21bu+2+fg5v3AMQT2zAvoxj8TrTD7jJTj8tF5PdZ9AlrnOlBXt5GeK9DQx/jkUWr9ZWD43S35tkj/IBEhrMyE/S5o5ZJRjpuzO+lVm7cbmj9chCa6y1ojmOA4cfytlhxJ+25TmKjMZhH7l8C3hC9e+Gi0d5P4QK37+MVeMlc/XqIKXUy0zcYSoQdKjh/InGQqgwN0EmehEwg6GRTB/BjHiHEcKt25j1kIMR+BMBE0eLiFAiH929iAEAGQlgdc++tQax/ELLmeVHq/muo1BeIhsnhJs+4tItLt7jRpM52tkEGmv/cKmWcrnp1VaTEXuisCBUHm0KEkyhcFIj3BTe0kgNahHcJaWM54nAeJGQG2B5UxTrkLBFCjh6n02bOzFo3SzX7H25N68z32CBjzVgq4qoHl+uiHXbkx7kS7Lim20SgSSU8QK+z0pjwmoxLVOYYJ69lYjn/ETp7JFnpySqS/053qqAKJl5stG+GVSt19thzsrMYZWUbBz2vtMMv5E7L73nojaYeLKSQyRl0jfobDvWbmQGFla+QMEsZqFMZEzcmotBAZmQrGfSxcdN/SAq3pIsPeEHHXAVuuuyHzDV+t6nMXKSyeq76XoNHqIS/uYMUQEOctwpG721APsXKFtnja58VWsI/262ZPSnEaZoANHB/bZp2L+HjFp6FOq5/wxn5irlA6xIOw0QwQdCYaahumBVv/KDIbhlk7utyszuq3QkT/loKZc1LM8LFqk26RbsSUEKOq03QFiHm0dmMlRVa6hRwFFSImJ0RE+GlpfSAbYfgSFY29bIgJIq38CJfTBTeL0K+v351WrPUrtz7Mp/cvY0jzLzEKrS2rNnRua6Th/fA0p/zgJ4ILyHADKbVtX/OwTmQSnMopA/5UpAYe2mbzAvoHPSNd+dFHUQW0j8TwpUVJUVLYSukmQWw+SRTaRSh+fsmOr0vSoWN3bRIXXnP1VIpkGx8q5v2ixUdRIq53IwwDGf9+gHjMfDH0w2/R9f/+7OLkZOrgEiGS8dENA+3w8W3ok/kM9DaGisVfz0ZFpv/s+iq0cgNKPOOAwfyXXGLxhlryQOlWMgXkpcsAOaz4CC74WzySLVMzxOa0T/Y8zIdlwxtFpVWqqwYozizXn9loYGUC8GvrqqUx7MOkWOc+0GS+G1tg6Z0BKY4upmiHNkUgliqF18Gbqt80iB2LCFjXOPAkqU+tQnBsjw/mj7Rr8EhE22aL7Qbs5vPjGorhIjtFZ6VZponx1IWyPXiXZNf1vDgDTsXRlGQmsNx6ZYIV7CNfkZPhMsD3DId0q3oGZlxH/+siDZA5XVnfPT5VhoaiYE9wBlOdAwvON17GPm49Xr9i7hdd0y5+dSaoPsfYGumYMG38TjbdCmOgVeC9LXgmXITIgj7R1/p44fgZf3725sljRZVqgtcJHdNmxzOh+bu3QRQMNppGKiZ/2yWemCPNnIpTa8H1yNaFMNtBno2orJqFeCzuvSsjQQ8IPlNDYD87jP1eYcRRiTQyDpODdpfrYYv6QE0gYqg69nIbNxFdqoZBrJtaU6Yjl5e+oIa3IMJek/S/yzq5WvZJZgZL//wUMvr8eAsoFePHkodSl4/ARHY2SCLKtIxbdLpG0dlIw7Ywjea5lA4rT9jVoEyUjDEGIAHIaqVtKS4MK4+BGkDKGFsg+g9fubTqdQp4sP8G8WHV+v/u2vkQVA8oy95y3zJ3AMX1VLt1pHe+T2hdXnt0fTiEF4lLkiEFkfuFtHNNw5dUVQPFKBmV8J3sDKocaNocMXB5FI9iEUKq88Qlwn+DaD3qL+ahJ0eJk3Bjd3GWcFJLajCHjks0PF9WUM3wMiPQiehLP8XaaNA0N/Bvotvb00ku0KHAvK9Xb+2F00RQjUnLnxxvcKCXr7LpCVRHfesuyoLqltFNFmpbPeEd5OATtEdXBAzBO3/EQqLV0nwGNXo5mZpyR18AnIxykFsQLYRo5OyAAOh+WdGGbGW4wh6Mr+URO+uN7q30nhFqloUjvBzvby8RWO11KhFknRJWNviHW+HeldWI5UEDBY10ryuG0s9uWmU1rhBppdFAtlzSwL04F0eQ9evGfwviPoOYSevu0ebv+Q8tqv02C6YgHG4Syc+QvI2kKxV2uo9XwpXxQ7x61UycCgg3xfucC0w2CFWxwbcxocfC2uImvGRuunxqyPexM3Id1zsij1CuaCaBq9h90yzeG1pbDqe+g0IkH14KXZi6uokS4P6LcBKnUN5M/SVnn++mbRcyXpRpo+JzXqtK3sSTWI5dJcHLSqDllLcXnx+a1T9gZDtuJ0zX1AfxTqDpPzrmPNpFTQf+hGND8vUblYBXX2SnW/qbb5wRq5vtAycnzmGN9Gg5nLofnL3/OFD2bVpR3KG2leEC/0YmmW3gy7nmJiDm293RcM6RiMSfCRcsz+UOvpUV82AJCyKIG+ENnnfzYebyYCgX+3Nv1qtxHMBJvmqoFaYHOKT9d7MhHMIohwGyCJcZADcqgmGKkyqrMR0AGBkZA0RHiI7rI6Oj02ZqsmqHOyeWlMWEMdQQKE5mc4RjIQTU6WX0lGUhCK6wlkQswUwsTAQK8eDKxsTdg/msos5PZ5GokPwW/bIHW9GOugLtLq5uRXrFh61lB/mS2ZgUN5E4upq7Jz0kbveht9kj8KElUihgPLUs6doQpRJ+jN4IP7o6Zg4F8HIeHlOVILCVTniPSbeQ7145OlFZzUgfsmxtNs1HaHOrrev8C93aQT4/PA5wTv+l1i4hCrcENO6032eLbv5C2S0SfrCeLVzPA394L8X1U5SiHGorFcfmwUIWyW3FSc2HccLZXil/sfbY0MV0Wf4SnDdKoFlue7CyNYDuLdOMZjBybounq+yEztxR7M9dnlgAB1ej0NDx4UsFom+dhVyOYtk2kUeX40mhZHoT3SBRgn6YLJfOplo+ri/92jK07OpFjKKUOtjieWk0etWfnIjAjmP4VbEyhJXp3pBQwXWDenSRDh2WOESPF1sISB6X4jgf2BQZmCIk5gERAvqaLvs9FNPwbBywNV++hyxoLb6BQpbvWG0I15kOw7vYwCpBVvM6aPWxdxytlQSV2FvJtnKm2yllKdqQbYt9iVa6iCmJCclc442tfwqE03jQmc1OUattxdl27S7AvVrRCF5Q7cLC2fUCuoWUpKdQNX0AVNibHMOqjDkQrDAVz4iyvKPK86TId21dUK7yeWbZoVRpeGrzfmyuyJBUlVVg0DOgT3EWkHn/WuIT9DYQ5ftyQDLnuYggqwKmlp9Zrgnkf4cqq4i2DZ8KF+j19RS5muTi7VlhePx691kYH/TxRXWlLM66h4kJ9D3oz9yGRaZusua9Wt/6ayeZ2vR2+3Vc7H8qwmzZ/AmzIro85Dfwr3wfC1bww0tOi9yishMYcw0VS8pD6wfQZ09sN9jVz1SdmdcL+PQ2l1zyM7Mi2IM0oBsYBUTTPjMtB3O4ta4e+F/BXeHP+76mgfcNclPgAfnTWZTktknVrXebBr1iqB3qiAekygKaXiSrbq8bTfVmalAGdfyfmgaWWJtbeFhDEFITwH/1P3cnbUKh7N2GDmxyvDFRVOMuQj0/le6b8quHHXk/0rYL2VK1a6/Ujpc+Hfo22ZnBxEU9yc3QzjA8Wju8bfeziSA89nlw1EZkhRr6I2Yq+lDK/H6HG1AjCDmsm5fBfBNJzRuHqzSu6GDRepJsPMbpSGLSTvnUcOFIrDQbIGzxT/QOyXpp8d2NSKzPGQZVVXhIMTtURp/7erQwyeaU7F1ZLVybA66fRxr8A4u7YFJ3ENgQI34uWAeOLL9nN3jKb4ey3yoYlY4sFOcmZdJhbh6RK0N1L56W4ZGkT6N5+gN35r4fvmNIwmgcHVU+OrnayG/FdjXm40DzwT9ZLcnqyAeqTmOaT4RmXwgTqp8kEgzC7gMAtGDfmiotGSmmc7EtnYPyY8arwdsfGzchZYSLOA85rkdTG4z6/PNcXptOnV8VOg4gT8lvlJ1MmpdioxwGhuecVZ/Aub2N06qF5+sUz1gfZvpFcyJWGjR7rdgjCpxaZ9u//hxK05BwxJ/lN+bZ5o5qZlbYZ3Uo/zAPwiaT7R4INRXAPLlcP3qnFJHQAH8AjqsuJC0HLl47ImqLx0dGPd2F0wwnH029d95/eh5FZc9R1W3HFey+Wh2jLDeSGsIuUqPK5Vsn8jVi82vbgbi5IfVjxIcDdNGNxiIuuKctBZabd/eAA6tKA/iKHzKF6oSQvV2HlQdyWiolGsgdLobgvY+gB3R4hjlx2jTcYSue+AWb2PDJiUTgPYxmK6HYUYGA0Zssl+TYbmEoMlvm4149SyZO/0SK1Cj8UNZBOIkqR+VBDQbEW7xHg//i6GIznEPmuNGyCUs0umPh9uUvVZPkP5CJYBKDHPxYIMsxdxn6EzPoMIfjm3q5dJpl/04ryTzcv71r/tus/OMYPtfw6JMxjFhJvs1yRCGzYsKI7XM7iMKBJ9MotbqTVlUaYApaC/R39rFWC+O5a/hWsl0q0r91oQgdbjqV3YCs3JvgHHhlwRSDa0yIFgJTSB2bBV/fSb8K+uryMVgg4gle2RYtXad9bnlcVK8ZHQhuRa2QWU685FkN1UkOVL8kN74RjSLrkv3EkUWjTrVz+nwbaZ1jp872Zs9Euxhn77LsjBqeS3v2WfYAk6O5/Gy64wnw/izTmSHGah3PGSFRpcCYQJ6a7F1+pX9H8bAJ/p9otiAKoy8/8UpS1bvlMhr1jxnimlGjezzbSk+88Mhw1anQwmFQPtDkr3IjfaXUOSN/hydTb8k/U3VcippCMcLiZNQkQTZ7jQ/YCm/x6HXe8x5uloXewJXF/CQO3MAOXyI2RzT/FDPAM+y+dwykaEWDDfCrDGwU/vUb982moZHWYf6Krds4RhP0+CrTVweDQC5fTRVRP5zIP53ZrvevhRpTG+Eg1PT9Xa00qz+s8YIKLwCkvLJvfHSRz9bl3MIwAvDJRwcx57XRDsuTTCzOZkHAeF+K3I53YcrieBdDHVntLq0Q4vAZN73FUGDNUxTIcBlnAwxYyg6nuLqSbURnCIx3Qx4eUxZfc5FV7Tc0RNf2Bk4gfEM3A3jGLvfTpZBlr4HfWeiAjQw6qP3px1nv/eohOWB8jfxyUi+rIlxiVEITQ7jSRma650DrzTwpmSHMXPnZvlJJHvkseij8+AOkMPeDSs+BifZsd6k2NcrN/IyMuPL4mNbQ0dEMv1d3HAHMDEOFz+vaxxbaiiba6agl8gXxdwgcCA1c7kKR4j+Za4+FRTlZD96JLw+ZcLHPVM4KpvlU945cmVjE02Ojc4pBHFEbBOGdSI6rfmZxWyiipJJycLIIQUH8vZr+Tb/CIGFRNh3AwQqvhmdULls2tRRzxSPZv+qthTMQFz+T9FO3GYbUVhtzhLt1iDr1I3VZVX4ikeuh0X9ei8X5t8msGhBblCGooCKLJef2kgYVPcoCDAqouMTNjecj91NTP6jOAh8uuM0nuKQClC3pm3q8S51zt4mB2tHiPRSakSqV9UbTvZxm5M0Tteh60VijfivYZG+lvxiAXUfXMhkfXahoa3eJ9rXo34DeHeAQPQxK2UxBMjFWPDdDQOZRO0f7SuhuApGNgbRQq5nXpONQMxQSXS6ca9cipPveWQxhZ8IyeCcXbISc8FbF4l5rvPF6HSkEequM23tXFAKBg2/bk9P8qQB3+GT1sp6Zty5wRccHvCl967CjMNqysX9ddAMPe01aschxNoPn4OBrks1AG04/OhBuQroSCd3NyTptT3mjHR7+3/GNzBPAMfajFK0zQQRQoUPSXL1zqb+DRCMBvFxnc/+PU/VUUnP2iHTLlAZPd4PYDsq+Y6tGYmThL+jsGcGzr7BjgOGrvkDCqqP03VF9k4ZgK3wJl0c5RnvYl/9uYedbtDS7/n8TOnMZ7/OQ7m83xn4geL5quHH2NDtTReLLAga3vJ3DoRFJPrwqf+w5sirlJOb0RXgXlq30FXsVQS4mbTu9MTwDDnHzd+VLsi4sLnI0Y8Byk/f6SPp7EKH791I0sp/6CoivRH/nHrc5kTi9OiC/dPcspuWm+JUsAXARM3dB15B3I0G6Od0bfIwOLcMGXpIdwsfwIzMfG8/KeX/ac63ZXDcuAyQ4Sxvi7ChwaftGOG7Ju512RNku8w7+kO/Wc0Qa2HiGF+tqAs9LMHLk+3d9q+yRTXXqaH1HCEPxNMDB/geOiOJh/GGJOmG3P627owtgiSx3Hyykyuvr1sbbAVoeeg2RPBlM/7vqo7UbOd/8miBVmI9Wdo0t7VyPT1H/58vcL2WU9IH6GGsshxC6bgQyho4AlcuenUpLcUd2n7ZpOjXF+U8o5Lw4PBTeRbJ2/T+rWq3dmg6Xp2wG14pL8csnD9X0Gcg1z+ztr/QLd6EdPTgC2cpAL9vu/1HmpkSRn17Ccqqvol+ecPXJA6D75qOJXkFWfuUWee5l4fAcHy2c0hVccayVNKBo0QNJ+cHaPERYfqnrXz85tB9r4IiK9L83zVeoV1X/t0RD60rsoO49ovg6aVSVDTLu2bJuWdNocdmxatE9dWmOyZm1F1T826O6G+FiW+DEJ5StqgPlv0XfK+8Kw49S/ZmM5ENWRwehpFxQoSpWOpeLWwOgNAa8vOuEnCB9NguLc9aZF0eikBG1gZueTCUZ9w3dKbkqfZ4s37R5PirnqWiDTMjYKxAL+AUn0CjDJjd5Hip8waRIUX/z/Fi9nn6guItXVGtsOxaNMwjKyIZ/qd5OP5VnQ0Pki+cYT814WdOkf3+tB0TDHQFtz58F3E+YK+uCXBO2p9CHFYrvytXFELpLQiX6MAi8PuOlO2S6Qa9f5w6LEoABXD3flP1TDsEsqNczpDykyE8KzIcxtSGH1Cy3q0mk6PD99CHa5to9RGBAOD+GSNn39JzVFM2xl/92KhczPBphYV7D9q2I9tcsK0VIdTYPeuHfvgi4xBrlC5ForMSYEeyYwPfmdnwYn/QlB6q0oXpb+ylCNHPeEBc98GwlVKyra8+dPmTLmw40ch7dJ2c1Q6YM/Odc8qQEhyc9vUFc/OF6WRDvQAI9bLdDQRIlK5KmurBB0nC7gziwqB6vJq4Q7OYegEG6YvC455PJ8TmIZc64uGpbRCYnC07J/PPvzqwaqzGt7AwdlIQoWHC+t/bnp8IBT26Qpnia0DXgeFmICuoM/kPtpX9nryMQ7+STFiYtGNv3g2fevENyQQCXmAfrNoBpdd+cJ+OJ/1wq9GAw5EAawrchV5mEUr752TS6FJS45he3//v7jCubZuKD+01EzgklSKdHdYo4GbESgbuh9lDXCfY+xsIsYMpBYBnoZQX216tRjm7gw/l+c0kOSC/IwGpVsrYVpoXxhYmbiQcPKRThbhjd9hYJQlmTT9OMQ/MQVJoYXz82gpxCqMZEob7bNNwDio5eJ6kjDKaRxZ1H6tUT18dXvs5xoNJnMxx03lFE1d4/c1LeifeMRQMyOVlnm3VOAC3eFmS/tnAesMRZ4jb1btXs/Es+BBRqk5l2XoBXWfSra+xjgrAfxJZgzQIh0dFj6rgjlXRA5FOMOO9IQoKOUBrwxIfdVwgdcYpOedUiy6zEGQbNYuhBdh5BGbICHwA13LtdQGD388WBXVVau1F3T9GwCKsQUCI7POEy3sb214R2MYCddUfu8QNmYV0yyVtelGtPUkzB/6P/5S9p7dqvnCWy2OQ2OdscgcAoWgmrDzAz8q8uaSUcfdW2/i4z4lPsHTRY2rtmAftzKAMnMjbWL8MforBKUSYkNu7Ac0dTzMBLNncUvz3Navk5NwqLktA0B/4YWaYnbOSiCddoood3CnlMLNl/O5bV0Z6Ql9tXDmlLqrxxeE3moi6N89+spktjNqGwnNy0bnnFnfqaRbcDPkverdIucpzqt/gtOvQQcgCSgVPgc932w+vyZY/2FKQSWAoXk8zbsIwNs0EfFNNM4Q3Ap7sV6VYwfJJGaDXp3ymrOL55ZrPQ1q2Nz8+04vI/9noZhl/BEr2+8FbpbU5934v/wZuwFhgTh1CpxbG8wQdfbzK1qqjLnHtYtznKQ2d0CUzi3HMMvMrz0iyQh8EJanWDgRZV43hdGPYTmCpL9MfDsBTBs6vluUrbM30BRpJzYRQtLmZPGnsX3TDvIUleAWnRMmQgV0D+bei9fgDha8cibVMOdqrnd6mHoRgoD4qAf5v6nL9uMq9M0bpA3H5YZRHV1+BulQ6HC3V9xcdBaMMeOW81l/NqB0+sbvjK9xfge258xrGwkxJbOgNB1DNIwTG5UBvbyqoOx2Mu9AFVNLW0qyIpEGeVdKgq3/LyXRn3KL/05THVnB2ReEw7p+BjAPvDhFpxLxKk3b+i5ZIPOcwsyCg6o3Njhq23A3aM7SoBOEdUjWeKGa5BT+g200D6YQCpA66NTcjPC6dpsQt/pUfdVWTXJFPVYHXeuvuwaPFtxeTau0lWMExo0DoCmVIpgqwCRuvewjEIrFdSi7gEH04IzrIXX4QmIldFE5bFG9N30xhNFsB7RfPxH3nqdSZpofBU6KBs/1aoCfR2v1PifpDU4qHFvflbl3unlKVBc0+095jP+qC5iB3VXOS2Nme+ragoh/r/rJ/ixB1iuAJa8/B0nlzOJUOG86ZMwQ1av/LnPvvo1n0S3ZC887bqB9GzVgIFHVGfGn8C8qKsNvHIxLIcjXvPCet0QjVsgHRZItGGttSqWgNKjDVsvBUK+UTwDZVHkQKzgehFSQTTdMd68meImpjk145v7HyTO9rZ44ECJSf2/+dJtERJVmqLcC9qLcB2QmElNJqK0Bkl6YLN3IIteTPmeDVN0gseYLQaNKbzwfY0/IYjAE2zxMawu1BKJejS4mvCjcRD6gP52auOFAJc0yCkQqwcCRRKJd7qYpxyPkP+tItZq7Ls9jx8F4Wmsitlt3U5vYmgKEdabqBJbN0b16AluhDcpYEVtW8Vgp09Yy0FcFdxI3ZnxHC7sWujrVQEYM8NwxSm1EK33+lJP52HTLntiA6qlYKZj7797n/bfWVf5wvDdQew4StlSUmo1XtQpialIf23nzdYp6TYe3fJcFJIrnTb/uyvlhxvxixrrWrKjRyK2stV+IQ4VUFLYjmff4l3sRf2jkVtfLG0Xr8kZLPCfC3vz9DA2xtCHcosYyDyyONNNMJM3Mg7BApeonyAcu/Kq82awqJUiAkBPnvcfpl26DnwdonsWk0Lw/6MZbmmrJZ8lqcSuDBJnmmFe6iiZwRJr7mS1kSlt0Cd84ZwFVBlph/Z3j9f38LDZ6E1XKD3E9P1g+r5be6DqrIGiNTsjDistEWYCPGfHidYs5+IXPrqtdxk54Hs6W1qmEy/kKqIN2CvtfmOYGV/PFSmRhTapWIN85Hj4+fzbBaVkzsK4u+nv1sAl0EMGcjTD3RczpSL8xXaAI44b8i7smGPpCHhQUKGTqG3XLYs5tgkwXz3mf1QL6zgGTgZBPdvpgIon+63dIf4IarCkCSbBhNNwMIZ3g+zM5ewDCMX//vBxuAhssTGAQrPZaizBaMcCy1owM/LQu12XsFqnrLZd80dRPAaY7Z6yeDK67wrBeyIEIY77MtHId5E4+LRQj0n5Q00QYm3YXwfrn6GVb2SIIQG4WTSF1OqQBP6vqt8Ch5bcIFlkYqd1JURiCpcgJcS27GfN8v3NLBaXMLDup+DCxtQmDoIwlV1lhmF6ZDPYj0dnvZDWFNW5ZHNlm3czf90x4RumC/FEG+8nW3x1jcXiqtQYF+gX29oqLlAYuHnxSZz/+j1GJbPmeA0vGH4Ht+8P4blDfL/75ssJHONENQROj2GU9Wuh1NjQjrbSxMZsQzyn5VZjYkFVjtXy+PiJxRW/zL+AO97sYjGLlQl6W38VUYFlKTInVtD/d8jaVVxHDcRQl4L5JIbVjcggrnOH3Jj0tQXf1Xismx/j7CYELWH3Ezm6FGuQgcDXmOrVCtcG1h+N31QpA+lv+/EnJkF8v0gDn3+xUXzF2yRSoRddhmLgzzdSWmrj7bePTDBqyWCmbtgArjbfH7EYP7PixXf4GRF0uO/kZt2diesB1iibstXDAzCwK3EE7oVbxlF+4vS0lXzW4i3bb/QdDdFz5v12vtuIGlOpweD1bebaS+TvTLR8t0xpA/Ql9562/g296P4T7CYAqwsQmXRDubJ6VGyXSNsRcgCMYmRccQyn9sF/esYBzNmRVbHY8P6rRvIHyYwgSFG2GVfDBThKsls5rGz84KOFDLpF8yBCr2aE1fOc/3GA5QPH/oGH0hPYo/T/RohCXkqbVF7ld++vhSZ+cAC+sOPF9vwYpFz5/vcfmNKc0GLQjCkIFsZ91xV39mxFKn1m6lSsXpe8L78fpAIdjb/A0/iNqeG6q3yKSzyuwHRmqT+tjOT48Mksjkg0wIlBa9Llu6iJI+WnlYL5OmT7VS6saQcb+TvJMaBykFb8xl2l00VdFBBKooBwXVGI0zLYCCfodTFV/MzE5QpaElB6vNMuQ1XqVoKfDkzUGrZS6BRV+th0ZVL9Gijq89p19wYweorytEXSZW7fOFmwVruZQIrbYRUbWfC9+SMz2siQeRMeTEyEgnZlovXnGEGrwCG45/XnlwzaDXCblP1c4Ava/rMsS8BqWGpXvr3lF3mBFA3goT+t48lvLRtTd62HKj8y1T2y+NCZ9AC4L9B+GgeI3mmMmGV9/BePnpgDoqtO3gtz3XkNOF2kAr0Q/8JHhhdpiFhRhwLzV0kCGlTFV8HyGlTa5KKPKqk/XcCk2yjSJVAKFm7HR5YDHtNezpSg+eyXjmLFWeU7Hs3oaWcH2SuogT2Tn0C10cUKYDXQYqJlj4h5YNPdwR1pyWNwPnAAjs5JAfowa29kQLf9amFDd7SgVqnigibljnZzYrmFyGWJLKg4sfFLtBRQaG377ypPzwzcBL62Z+Jm4lxbMqLsH7DR/MPniVeHahcwZEcQG48F5yAI5ew7bG6qOPblNHMPAeyCsCVL2XHzuncxbgqQ+rKwZ9vNkxaSZfkiqXOCRkc8lUS/jkelGl27kwV19+sj/vMao8kStyEn+5nP44ULT+uVrsneW//iJignEQKR1thqUCGnlzpkz7ctBXMOwLj1X816uRM19VQw4vSfTh1DMxkt22FcqrJrZp6DbSUo+35i2W4bPgU75STkna/qmoHyD7zmpOjVsF3ixmvNg8WrpJ034SyWl1aDmyvz5dbe38ySl5xTg3A/zyIpHoicXCw9IkBa5DNOHgyFHlEx0ccNmCUV02T8QXd70LzCRxg/H1B1k8OArHSUO4V37n4EFqTSUjTsWR0KBa8vr6ImN9NEf91FQPtjQlK//YtMKS1079AD2vXUk8mKQYSyRXhrs0GmhXtMqg4Ns9X+g+k8Yn0in4CxErMLwROkWyOhQsn8JY0IMMCagxGagGDWCmkr6eGvZqmMPVY5gETBkO2bnSwhnZiISrfLWHAJbL2rMUKnuTPEYVgIILLOw86GJYEr86FciYWFwjQ2EHdhMCAyOMQULy9o7FFE3pv4SDZ8RW5jSICIJdRdjUcpGM3VUPxkbvjcqFrEanMyDgnmotYLyJrp0JfCEtTglkNfpywJMwEBkSXbnBiOkUupB3fJNaKEwYhXzA4eJcHSKok7LXcQxyHTj1oIuOH09daoXSvThbJFrS5Uewx3fq/UGdDO/72cRCtQMHIvZdZu/rwAu0XnCe4wVpr7uIo9CkzmLAAMR66kHE2P6w1lpOMF+KgeiDFhLY4q59/zXP+amgtpd7f+iZAH4agEFRkcJczpt4me3VhsDipCXibYUATXoLpcINWbOwKc1lqPBfdlUc0/1/M1AUTd6TOXbUfdkdZL/CTUN6LRqViq+4Bcx2hYAc6tm3BMda4HlsQgzBdoj2CpHdQRkReLUEXAJS1m5dseTARwzueGvvSRm5zSQbcL1qwgu9H3nXQIEMIW25iEhxOgoZqGa6wxJ/zLF2QMc9iuR3HsdqP5YKtjf8igHdFe+kxwTjRHgH0NmYG/aE2Lt5heJ5YF2jq0D2H8e8EOMlO7SFKK9R5xzUT/b9KBuSsBtqkM+6den3rklwSViPSkycKrih1KNS5DH9QVBwhiS0xbG78RI+YTCijZrRoojLokjlOVOCjYKgM7FdZzCGylbmYpuaCO7PFhLBOju1zPLiV0YfyUiXhJqmC/3zUweiZ3+uS+QLolBLFyJc249UPrCymOfyBpLehmoWR5hyl8m/y38cvKl1COascEaAm/TzcBuaFZzh694s6/JqVJHYMeGRA2hDQJeuIYiPD7PZBUvUnMHleVAUBd55R9VcdE8PAffB9L9DAXyRtOdw8sK5VGSDklnFLip1qv6JgNwH6H24VuoUjulP8FWbCi4YcJWvZat4MNKn5DdoIWrZjJjpBgcyvK36ihplVK+Od0tSD+A9xwCE/TES+nRkxva9YhNIFDtEqvLS+F0k7DTwTQQnnvGiHGBBfE08E8e+tYjB2BL2fn3/lRwEGN+KejpGKRhee6B8bZAJ4dbdkJ2QfTzlvdnAueOpP5IdtDjgKc31TvTXe+Xz/V9UJV66lqwVATM1V+hFwYhQRUQ9m3q1bTpFHT8J1+lC7O30gVscYd3IUC8E41RHVqmRoRIYHNF6mFbWheyjP0p9XBuB2W8YVr8xv8nBCeMz7+eZyIpFBAp2owsD0Qii1pL3Dys53HkgvUutIifR4rNUgDlJdHTSNXUvICphNOzG3qHGk4ivu+08skIecb5fJEjAkdKFRRXVhURrU820m0CRq4NdQY2n5kn685bUHzbk38ir47oDmxH9Lvq8K/siCJnHpq7HH5s7eXqElALpcVCWp+TH0LaPwtvDrAkIMmsIrKLqcpr6mF+Qywsd6fVemLVli2U6VixnZV3owUvN6KMcoV5szKvApXMKeovBVqZFcNm/7WMktOt530rKtdd73Fo3p59JBJ7v8eMAOcOTaBQr1yW5ZGXvLWrBolglVkVypIDR/vrxXY3+n7KT64Q9pAMrquraozJ3Ouzq0kj/uOQFI3zgxpNqjVtkDzdsTyouUFoRVqJrUXDMgcsi5ExBS3rm52uA37HG1TFQuiXnbXE+CGyz6zSqLKlbfS3s0KEbSGIHvIKdrAaRE1IseQnwSRe/ti4LUl4fHOp4GhrIhHSV9wZQ+dN3ZUdBLa5MJWBGFELgzy9xjtFznbhrT4obiTLdnPbkMaBe+Ih1UwOtzCGepoGiZinwOdMOxRwXId6UzmUPPO5ho9OzHlk5onayakxX6sosPSFTbZvNrnmEpLAMz5kmOdGxQHsjX/xJpDZ7Tq8cN7ObOJOpSxsIxsp2CqDBDGfDsNYyDx6zg/flGXVOrmhU0bsIxrdX/kLlvgfbR89tKL+If3MZms+2tLp4y7Aam+e+N8FQL0h+EP2QejFKaeKPbbS6miERfar+eEwwyEZMo/AIFqXZxdmvzIHcpYMdFihdMbkLyYenO2u7oc0EDC2H2cIPXfWdMFVF0Wy/fLFrBXCsFRtQoIywr8q3YV3woHRZOzjL2SQUOQHjMlgKFnYjOGmLWXCv8XPhrOxrWVxYt1zSGgtr1f2WH0R1VBABJt13HM7/c/XBfK
Variant 4
DifficultyLevel
468
Question
A bag of marbles contain only red and green marbles.
What fraction of the total marbles are green?
Worked Solution
|
|
Fraction |
= total marblesgreen marbles |
|
= 82 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
color1 | |
color2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/02/S003_VAR4.svg 200 indent3 vpad |
color3 | |
item | |
correctAnswer | |
Answers