Question
Ryan and Oliver breed hamsters.
Each counts the number they have and Ryan has 2 times as many as Oliver plus another 7.
Let h be the number of hamsters Oliver has.
Which expression represents the number of hamsters Ryan has?
Worked Solution
U2FsdGVkX18R/4wjAMOrDUqyUWvnOPfm8VOBHP6O4pk9sH42LOcs0C159ylIWlNrXoSrHkP9ywXgthiPSt1oSLbImE/zg0Z/NxZz+Tec8Cgu66DjvCc7vwEiMXL1bXA7z4B+xcdIgnrzj3S0VyLZqg6jKYUMIyE4RNfWF0AAzwOfFns95pt8504xpgVaY8th6XVUU+bapiQLr+2nuBK+A2FstDUeTRZV1brW6hYw/Z+1HzCrtSO/3vUpnS6yPz1I/48ePxAyl5lNArLdDpl5BpaolEaKkQf5S3PrftkVc65UMtyfmgZjoUPAT85kDmbNnwrlYTKQwLQHrt6LSOSUTdeMYIqVXMJv2kYhCBjt9xPg0dXLF/QsQRvkuueYpILyLpepM/Cyql12el6TWxznGep2EgC3PJy3VFJL9nj+5wE/LQ5URUbiqaBvnzkJwIHySGqLX157AfLRsotfmYiW/P/9kA+yWDgfbT3YSkxMs2lIzQTAabavrDZ8gZdGL5aeRLqtdF3ZeIwP1QL5iYgJbow+9ugX4keHo+dTpzz57VW3wSgyo4GN+b31f5m7LizeangSX1Qyuf4pqBgXCJ21s/nCm1JnKRXQHxHmCpg4N3t0/ezgIrlwK6ORP2+Gto2h8HXgYgQYxs5OEgUDWrEowJSJwvyvNdofywG2O8AGuz071vlysG3boTQNoxliqCpFspMJKNRwTxfAt1hd3yT9pEmc72UisUveA/WFtLI48Z+zD86TyB/TycvOkeS8h/sGMx/6/uRSk2qBsW2M3BOPccetZ9j7w6sgT+t41k0kGOwmZtQj+w46JqyhwCJNfDieAgDCLtzSlriJ8BvAS9fq44y7VSJpsxLScwqHg43nGHtGjBK6Iuwt4yyINWecYSdEW4cdFNVwCneZ91H1WQVYw2sZLpdsDCQloHeoYk0n0PZnAyQg11wly2UEllU3r5Bvh+6B+QesD3tKeG8imZ5fyiVBl9ybVnrBHPzACK759VX4eYIjDC+B5U+zkcKzRFHawfNABt8wVaKCP4esOSxKMX3O8BtEQjBry/mH7nY/aMUfZYOacpRZHDPcqcnBRjphJ5Sarg/cuQA61nPDEpYm6z4PT1xqn7wdkwMX9ZdlgXXgl1GNYydPaVk0Ys/p69k7CQbwxCXcwCKstzLqUFFS+QDhA4FwdpGpY76bBtYnJsIC3REj7eN07iu27hV3cC1WLjThhS5MC8jf78307G7cjUmG05h8xzh3t/J74ddGRc3xp9ujRH+NDkMbie9x311fzXMXa78OGaA+5CrdLuvw7wkMYQPNQgvcp5hi6bvUVfpPp5oXgaY8ZYY8BA+W+MhfpzISyk0I2Ao1GI0ywzaT2G/wgi5Yt10MOuIaiwEXFkveHDvKUWErkJ7lOxfduxflWRYTm1/edpjoKIWZFsZGME2DxrEZjrh75qQhPC4odDiYaMEoZriJ7mMyoVUL/qDh2CianYlVihf5vEBIfRKgfQmLZaw+nYpLREKSwxvOTzxitPxM2sc++TcBouIvHlcsmNcX8PR86VKvHwidKOPLHGMB6IlO2LoXygAa5iCQuUyliKk5QzRdBqG9W3MClXgxIJrPsnVn66gDdFcH67w28No8C+wfsy+Ll7raxaMNGGeIVoekc8N6XTAF+cY0gbi3JI1ychlRzCWPtcVDg8sjF1yYoxha82E+60rabmE3yNgOU9J1fA35PEPGHaY99i1WmmtT6ea7r1Qyw6OIVjpjLw7vv8v4Monu6L91rEMvjJJdNzC+CwhdO9wZ1+1j1Jvxt3OMGvGn8I+mil0Or28WpTMT+LqmkXxbi6hSYYFxbfuR43I9btgL9tLQ0cMr1XD3Wcy6yerongSJxdufNggN/28BARkYaRhnrr8+2zrFlt+9YZb5MV9pSpVlUVd3wpaWLRwiMELSur9Cz2mUvoEp7305acgll0MHH0Yaz3tvtS35lAUJwkfkHBXKToSmXD1fxzuKsmjQko47px3wc7P6PJk6HAqIhLPQpnmCc0RHqZxYERxG7OWKYOPzXucPq3TctJDyyANGiK5ls8fXEPHFb5hRWtQI32hhGKkuRA87smllbXatwRI5n7xvMs00OF1KF004CVGg/6wC/c9vxfpzHTnppOP2AHEexxhYs+0YYPDsmGdV+lgxhB3XDG6ClW3tAYXT7p4Meq/AVlJVqVcpLZ5mNFAsFkYjl3NHWTap1CQkW00Yv/mhkj08JYIc++0fKNbESUqInpZNu6qd5w6jxN3EQRB1QHyz+jewwfCm0Es1LdnemZLnY7HNGFcc2rc424hwCOlUU6Dgy7UlMIbcSe5gl2/93mTuXJKNHDIqcmqtNBuIPaQHgKcJrwgD+Uz24IZnumtMI/lorQdVTSunMuG4gPxzJjbspA8amChMBzC41ogRmwmVJiyIb8a9CyUbfXCEBiiguP1o9aq1nA9RIwsbbz3jL//b418IFSW2tVicix4CAlMx6vQx11bvFb7vxVHgzQlHyLy0WBh/DToh5f4YK7rNxibr0cKrZ4+MV6eQfw8JxGTrDhhWhiyXFAjtBZdG4q6x09p8ORxdDzOCOQjCTEVbBUeVjT3b5o1PonsND046p4lDBd6eSwlPaCQ0wRO7W92KOVH8GubBzihsWRM88m/N7EGNHKQjKfPFwQ1gCmnYma2o51OCuOCkCVNQHRmbHwyvuaYaQyUPPEZETr4aw83sv27KJ2tc75MQVI8x1xjWnYPB4rUPGso6FVEkvsv6cRDcXmxmO5mvmKrZfXfZIxrWbR64Tz4e5PZe8TFVhwc6iLt38fMKOGDUgt4PHUmXNiWgQbPbsHffTbAb7pB9B/d+NxPspvUKoPT29pb4EC1wOD5shTi/osP/zFhcax0wFb9vHGELLHFG4+Pzr59JH4/8Rp7dB5WzmtL9VXmrGIoBHXHcDPjBB8gPLd64N6IeemQBhmN6sfKZibPaLAyXxGe7855qNvKTf32HHzMSDsU4n8phRKB1FygPdhKA0Yh7fP8/HEfKncIf+reyn/77uC/cIzcIultjsH7Ce2a9sWVbtEZVgfk89FgZpNhtD8WnX1M8YBAlJhfwIKSk64hXxe655v1oFSlVllFaZvlBIFjupk6ohi/g5ps2zGr4H83BnltFPNjR4wAysHi0vTyuMxz8PFbG35dv0povD6JCAKn2kgNnSyiTFA3N1G2HyvDP2Z4tWMy+jVHX4GcvdiicGUhMMc65q5etxX/Pn6pgIfB91EPgK9X16USiXKmXTcrNBEYLFY5oxfx8MZEA+HlNA8/cbRAm5s7SQFqAeVhcpym8sOfWHjgnP38MmDAzcsnKQzoaKWa3DAiCNq4fLdH4DuN4Ju8NfzGxzUdCmmpUtpH53kFSQIujqcLBZmC8K870K+KaWCfhtDdAAifId0QFGk+vOhVLnlvEH2NCJc6zFGM4UCVLcuhoeuSJoBcUA80iZAjK4R+nnOQouxDypw/hlkVrbfB/ok+67LOf6TuSmKDJ1FfSYcpaY1qD7HKhGb3fw0aaR65pccFc2CXHDgNSiOWPwOcTSK30Jog+KIwlN+xMV0DeEKHG/ztNO70drTZ/lCCTPtWgQjs1ndJq56CmKIIP0Bys4gBEfOGPzuImBgHohWWB3FUrl+MOdldn3XYjk0+6wqe8xkKFAxSZ+qL6t+JPUElavueqdiT943fi9oAcXEs35wGTKdnIOOIBMxkWBGW3qHLzgBbvFJwugSHfAT3zswMS5uP/4ig/cvUHucfX+u9gcPJ5vu5obfqktuO0Yrvn1Jlh8sZRTSrUz+NHG6Qb5A1alsdT0W0h7GrZ/HSGoOasawO2GemYzwFYBkaA/ukTZunN8Cm25e19OjnZFFGmPxHRRofoZA70jtInRduuTOB/bgPmCCqjs2/DhaQvlmsluZaeRSwMVofCWjmBMFtSM+ULjLwnkKVANLdroJQRnDZnOHAuYqPnu+0WzrXmpaTJTTN/ZjsgvW8gmSpWCC1QxaSqe7eLGv0kX8x1ZK7VBvQQNC0S2DMQbR+5CXsXSGN17FKOMpJL+VvAbD/JZ0AtWkGBv5Uvc/ojq8UxCfJJEsjURlMNmHWa8TEIOiEamESrGiD55Ux3w2/4/jtVxibnY3UQPgjAFm/df48V4L/NPJkDSQeGCKUuJSLPiiLCgYnaTF3F7t2IGP1CWTvhfl0/OY0Jyuevk8iPoH4ge5pt7INV6239MTARaY7203NZdPyH4tmQO3gdZx+d07SCqe9o4vF+uk4aDL4LHFYwoPWyTMkQH+mfI8M6t47+nQJSycaBhcrYsqLv+nhvKs6XMlvP8B5N/9d74OkdVFQ7oXrfKZ6zshpOmD0DbWcgWHtpqVEqyR1u7VAXzw5+4LMUkUK+GQ387srXUhZmK4cDrjiYB0fkQGY44qyEhsNopKJbxCfMFbLHq4IQv3Mi3PW8O5QHdiFDt/ZBFNfv2KcjfDPXlC4BpIoPW61vrmmtXeQWDBEqhyANQaA7KzkqoJk5gSazu57UEuab1iraZVmEH9LpzB1Srdk9mnbqiAOCkYnNkVTj+0SZY8VAxp/O7t/VXsYEFA2iQoDoONENCiiAtkqaoruMqPmYg+3C3ryVkVOZFSeeLbA7JKlIKaoPVjhWc5kUjCY4f+givdw0U1UAFWkom2s0V1gF3UOWgzrCQUlR8agC3GxQs5qHn/SSov3tZp+5PzyO6yw3CEpvaZwdFea7xrqlCmvH1my+XdLyv8aFkUB83zl28lxk0EfrEZLq6sqCzM39AgfPm8xTt0Z7KnD4kvRjDjhci7p651Sd0ptsrkGLo1aAePpWUODAVGiRvsIAdWqcj7WIZUemUJcTd+jAfFhlASR93c4WdARQv5Sr3NEMVENGyA/GYoj2xtQGNsdUtgJUVEOciU3oaEpRaPKoTlGn8+G2phZLT6dt6Qo10j45kossT5ICpUo+2FP+WkEYY364G2DJnVnNgVZtl/eEu3U3vu8ewS12402zNI6a4FoBz3QN4ETVTk+HhZXmE8l0LYUKhKUKGEMa+Ur8iYN535LxlF84Sv0Ricyb8IrBGmM6qDPg1of01a5hSSLsg0Bn2TM9ClmPheZAELt+f3atBcQ70Z9SJ25k/INYiR3mHroWkxGeSIC9pLdRzaAFHLgnjvuAMvDUxwRdPPbVe7KLibqPU3JMyEQ1qVmpWA9qXBbEvqHgr0lPJRCXOBy7b9iij6+auV5PcXiXHq+FUjMjnkJMciIap72fSlmtZtiBCOb37Kq/w08O4YG57K3JuU/3Ma0SbEMbrfwaKccBEDNwweMfzhyd031eL+z+z6kpOtUFVDF0zFD7pTzdszlZxmcq5pe9l8omdv9crpwY1csq0flog4J9fvrGPDjhzyw+CNlsWcZOkZo2AqjgyBcN4xsZp2AQbvZCRhBMlSnNrmXsZ2TWevO5ugEsDvqCENjIJrH9Aiynvv8LiLeCWTDsR6SBThLsRGuvLkJSYTZeEFnDqeSSz6zWiBKEgWACKO07B40pFEr5MMdLHpMV6ZfFEdj20GBi9WJfxQ2F7LIwlqwZz0mLYM8Lm7mHCacCArATlMptytYPraYT4P1dEwDDDaHPa2m2cMAfjmEwG9C5HEQLXp/6L8Ch97vH6HjpjuX7wMubbk0rQyzHTYdnnHoxVdEiyohyfrAasmqrguV7ypgkP1KLi3lfs2pctlIV5vqsZAe8d5qQIMpJzSiEk75Bn2s+WajfAn5D0DNhoqlgf+EggZfv/zy3x2JWgMBlV3a776R2WPV77IzWk1sjrfqUK/JfcHW4rlsYbDIT4g00oz6feErgwD6vqynqhMbYICVlq19us0VvaHj1R4i/uAQbZMdMbHg8v6Bm5XENpIwDwrjXBLEWwyJI4fIq3Rim7KkkF7pi48fu4j3lP2pRq5tLAEX4Hn09vJAYAavS44SCDt3f0Yl2LNQ97zyZqnIXuzF1smYkF8nNhhUJBUBqcA61dt4X3QIDmLe9NQklZi0VV1S39AEKD5qk1IsbAhutAa032KpmIbS6qM1/YlIM2GlM2MiXeKs1SQmyb0Xev3dt4MC83ZnoqnSERJlds7locBJkKa7BzzthCNvLnhYVENuZ/w87nOHhIJ1GkPVZ9uz0rsFfKMnk5hMIa+9yZCqMnfWv85YkgmpzT/KbM3LkR1d2t6S2YAqGFpitG71+7X4y3rwpDB8/KAQ/TINMZZ0wdaGCIseqLJnhYH0yFedYGqQ1d4Lz8VZc96cDzQYit+zSSe1cmb6jQECM3XNFPIlhVVoHqVueHr29vmC+n5+x6OTGYEXncPFcX17FSFyPhmWjN9SA9QCbIfun0Key5YxFCrc+wNXe2p38JsmU5C9u4pVr4S06eOF+vs9I4Z/M1J4XEDKxa9PGm9fyRKwRAnUO8mTOtNTuy7eNXck2EL7LBN36Ty0KmjyU7HN90IhCJZuCJu2vPZeAs2JD1J2PmrGLqIZuvcB7MrdwLQwDnnRH6DXpmNqqjvPdgh3S/jdhHZ8kUgwNydk8uhDk0y2fT4bJl1UM2uvJz8ayK7EyDWsTOUvdJBxd4IHWFwDXDK/AYFDH2oXZylms+bqcSGDkBlehAsiO+6thZsUQXbtT9qgy5HLqQXmLrrN0bCj0bp0Wzn8uxMmdkBK/4whnxt7gOE0opD6TVTl7yUIMahRnLtOojR2jjqQqwDcF3j8J8a3cuWKTUo08RpiieSFnulf1so92GSnn5e1b/ySVA+JAgtKDO+4CT/iKR5SpwnsZlkpEygQx2jCGtE9jv1ZzaV7Ug2lt5kEObm39NW0ZEzYnElOwkpEOMfGSiIeaFx4+nUauRr3H2Eb/1+B/ENwun+Gw+WAOruCDt7KXCUB+RxJIu+Q9IVI2F0XGFwH/N7vGAIe3gsfsp2wG5vDczCJB5GHEB2d0lsDm+WtXHf0NEphRIGfVo2Jd38CQslTmmF2o0+sJcBFiWbk+uNhF0fkBKiCz8Vp9H3UH64wb15A26qmLtDUNrsXcv/Q2S1fAr9Nf9Vcg/5+v9nF4re4SSHv0yKCnjVq+/ievjXa0/iEKsWQVSBmyUYjF8+ETDIEHINkVncdKuVH1X41MESTcdTAZlcVfx7q1Uu6lIsxe0DAkpoX0bOn7WQUGeeCtNo4+kbE1HeQkoEHmCnJeBLShPqg5AlpYA/trZCZ8CA8KxyeX/a8HcorIBAmjhlfYNgZCCACcB2puuyc41ljIbgPVEz7TFp7HfQEZz+lnUYHHVmSBOb0ymGCKcNeiWxzl/BcA9F2lbOJyvhqkH07UufvCgldRz9w0sf5KMXsCeBxY9DnyKajFd37d6HUOC5u7/HKKTqxJLgIJ6sZ58gu2AjrgCsL9NWJkEUE8+PaB8K/ZIIDI/JyG8koA5YhWjn8i1HxsHJEhu+Tx1LvrUEAUcT4A/UEB4D+1vOH40rAHcOICjcrpd+3sPmqk3zZjEdnN/W9sjXixF7w3OrIgPa35hEnRpU4kLTdfYbK4IrHZ60Y3Fw5u6GsjPc8Mw5ttqYFPReNZNsFbRvYLBVNdfy6SfCT4N61vCVmTi91ah0yIGSpSN8qqkPW1Q10wDgO1sjJSbLhSU9HP7GJyknOImTBJPnleHw0pEsQX7bGDomp4ZbjMo+9FvLxrKURP0keUyiZFwJtQQX353rAOjnq00otwGX8UHCiaVI9b1I/INP+Ptyph2RXkyyOrX6WfdOOJ4QJYEmo+x+sovcnfk1I02QVG/1BpFdmwVS2dO0hmfwlP31RdeyRuhRzBZsH25eDawqDu+nuG8iGuWFPWyAgP2Z26Q7MLr7gGpIjlUBPD3Hldi9jTzmrl8oDoq65YyW3xN6np3kl6TDUpGFlfuWEXE5bo7EvcwdRDbj/37jTVfjOGqBsS/WY1lzEDEUSLi0AAN/fpDWKoczQnXkJuwafcXDOoGJH6Cds7k8IGQZPXEPwUgzGHTUNiZQA9juJQFaM3s5QclcHoO+iXOyXUyHBtxpcMHqicv3bj8oMcTSTkiHg/GUEedqlyeRYe2ZQvPa8J0dRSXoxkB2phojNtvxVnJEKbrvhcSJPxNAgsiV10LGhwVk5YH8c9TCYqO8JBMNzxGiZh7D0yx3XRyf+nYMWTRi+RAbC90+KzhTcLxJb1AMNPClVuS46dLkpiJ8zyVPeDq73MVheI9QyEscbLnRjb+D6+7bMY/WU1LLstWGGTom/8pF037zyYbVRxPRLHHbw6U+YX6jZdiVekQyyhuU9ziDiA/AW7a9RZPtms52aTazUFGCTZIFcp9e6za2CDD57/4KaBX7HuvAOYhHQ4kSKR5Avjs3lO2otVZufxbvvj23cIIwpnkyiJOJemV9Vr/3wiHcvu8TCYOqBPAgLzBmTpTVXZZdHFwHdyCZh6oIlUytpDP45DFtRIBOaN0CCem27l8IT4qjlc9GyXRRpVKhCi7BCyrD67PKPGFPZ5Iyk7pk3pP0iMB+X+uC2j9b6g4Q==
Variant 0
DifficultyLevel
539
Question
Ryan and Oliver breed hamsters.
Each counts the number they have and Ryan has 2 times as many as Oliver plus another 7.
Let h be the number of hamsters Oliver has.
Which expression represents the number of hamsters Ryan has?
Worked Solution
|
= (2×h) + 7 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $(2 \times \large h$) + 7 |
Answers
Is Correct? | Answer |
x | 7 − (h ÷ 2) |
x | (h ÷ 2) × 7 |
x | 2+(7×h) |
✓ | (2×h) + 7 |