Geometry, NAPX-p110293v02
U2FsdGVkX1/rRS6LR9u7TkimCCyzZAjyd5I428kAD8oezTv2786EDlsHEZoU6mONDRbJ7Jf3GV52C9Vt0KhJRcl4v3yOaQLKKqMlMWj12x6XAxmGWwiZUieunzYnhw6uYtGGTCRTPCF1tNEcib8xC2Ih0IUIVGW/7CBwaSOsGbDMS9lI9fVUcjnsizLtLVuLIo/S6QVxxKavaax9zT+UZVc8oISkB1IQAO1wKiHkPwViLS93oAcmg+C2wWGe8d5wKlv/U9hpQ7V38uyT4GV6fsEHpqpp2gLvSM2sUfC64J3BBZ/AWZVA55XTcdd34n/PkxwRNAm/95o+L4zeRitEj3T+xx4xKWdpoLOyZ9RdZBeKR3T6rJ3hoWKCQTJ1Bs7tZBLqh2llGRcTAli56ZQ//MrN+UmCar2/0dgc//Xh3EilAP+x2lwKOIVOXCdMOVomWfrMp3y+RUN1S6Isg9M/DYYOMlYNPKa8FAw7cC94hoT7wEM6LxrRnQx5ORDiEVrqwakKmCfSE7TsUztIdVYU4kPiUTZctS6zez36Gp/208DWhOOvRB206/0PK6roPUOGu7kG5xTIpMbmtdDNQhodxnD3WGEtO/YGlMEq4JvQfS840GbP27mHuKNVHadQOR4V/6WBf3y1kxQEvCDSXM4z4nPz6EmMGOuz/CmZvUxY2OUtf6uL9NQpva5fd1gmomjZic7gZnukXkdbnjaXWQnYf8Ztt2/runfDznMGEmXktKf73rcJuNT+to1Ii41zcxiaY1IOni2+TQEGYsxoFnX+eu2vILZE/6smEu1T/TyBoPk38k7srZgtIApAQ6r166+wDyZF3U63QGykHpNtUCSnb3IJgabyPJrLdvWlwHdeoI2nPmQq8+jd9gxCSgJnx8idZHguJAepCmppPOAAmzjKekzOJsZ4IJAUg7ddot//2KTExFmmY8kegrpudDBDPENAWY3je3XqYsfTRi0fNXZC1gqM1/h+IZXCOpadRhxXAmQFTW2LXhkUBqrVUJuOaCH0nLA85Vd41/Fr3QeL7p5IRnYWwQGscKdWGc1mKLBpaJEgqQw8t3MoEO41vZzr8zken5BSj07PDG0mELvuf+DbNThBmZ/6rnShnfPb//0dMi9zDqgwUD2fs3rviZ00Tavzq75PUptV71kqKqotJx361yKaXz1xaI3pEhqq1l3etX0FFvRyfOJhHYaduoNpabPm+c9afY9glCyntv5adaxhuJBQpNtT3gOrqa27Iosq8U+MoN1OZG+fXASPTNRNfilstltD7CII8ckONMP8aKS2VWYoV1daqRLwa1KcWGbQPyCg61ctU9qYIEbxlphPZz74boFJsHL+Mb70fpuBswjfa/iiMhGQzSvmDaB8smbqHOX53TwQrMfUMdLVhxqu+Ni7SEmehr+W6AqpPapix2AK/Is3lbd2mSWpsvYO7rcfc+wqHZDju2jRpW4hAo6j1bfimei7VTJXxyDkzz3vUL7oViyhHgivaicBQNEgtPFqoXpBBsBmND/yLAlWexaSqqUNlmVJOQmE0twV6I11OVWenv1ggreZtfZVWqugKz4N9n0JoxN8jIhh++nO4tY0Nrviybz/Va/W/KZzX7Z8XT0p5npqCr0AeJDSovGFtXk3ksE+zYWn6AlErUDwToLxF5VO+/6Oqxe4Pxyno54RFZ9oCbgbRnlGNllKIYeo0nKP7/i20t69P5PYUfYzqhR6657ZcepTC0v/AqxMGwWNJh3XF0l4M3Nc3cq59Q0krc/zHr9ODefbViu3897iq8uh5evwM5jN21mq56Fyv/xMGO67V7k1ffzDQPSRL3KoLp62euNMEdH0i8riXoTTRx+nPAhu10+XzslM9L4QuheLO/Z971uWXKN6pf6Dm8eDj8hI7lSum0EAI9SBlqccoouvxRw/+cwM0hJosNue7XbL9XBSqJ2KdPrxFuTId/M5rMhtDVNYHEDM92sN5ib/PbHXGnq+9wjc1FGAkV66ESX7sywKzPzdQQ2tPbO2/KtUPClySl4xDxbcEQINcBfcvHBXwoyDZIqGGlo3UNk2lXQkKo63HYb3NWnwut8+xWqCn47Qpo86t/j7Z1F49xh5PopLJ6Qp7Mlj3ySRib4EWJ6UeXey0wqbNSUzYfcR/nE90J4xQGL5DSjibx95/ocecnZ2wC1FkGp+URlsK4viy2hBdCZ7t4ga0crkyYG9DehfUJA6o66VYsCipUomtdvJ33HN1hV2Gir+L+ZYNkZtKyzcplAAfJpQcaXjpjXUGxTFxlPuOkaymiQmEPM5bCFLjT/9gUXn6TRK0nXYPkui+Ir5Xubk9wVHLxZvwUHBeXitbVNw0CHLsLPJHRzyDTFHA5990ocJ4jxLJoVwpKqdwfie5Y0yx1Hp2DU0QTLfHVUBMT2vhQI2odTG3nl1SSNaNoYrDosIMtUIQ7I51LsCz1BDheGHAsSFJ6xREGH6XQj6bxeGiLMTOB8iAjKbPKoeZ8P1nikzhnr6rtwYaIHM8zSyHXfbmxhPNId7kusxYBPoFXf82/mYbmuSl25RDUSyr7HXKVSvrb6FpLkLpnmvVlHLZeVz7by5IwfnDBwB1BFusQulI82feMmnpzuQC7pnI3zTPGu/8XTyx5c5/YyHvbWvbs/E/aeUEbuz+etLaTSFPAeUicYQbCijOiW+zweBZ5xyUOXSOfgx7jdG/wvw87CnfEgTCZ7ELHtB7x2q0/uGdU6cWFW47fGKxUZck+nBPU9Z5BBjUcgBwfrHaOEEuvBVJ6o80MTMQGaEf39tmRGczMUrf7TNG1RvbiUBAisz96hQdUUkVdCddrfaRNsyvVOs65vA8VVXnDM5x78uscYOwwhfqwOFQ9FByDGL+WptxZXMuKp+uUaSIKGSbdAcoC/8s5RJ+Y+sAl08s0aJq7IrIKM3/xYZTqEVx4wUlaxPvanD+blHp5GKPh3aLNuSbrCINKuPVejvV+MmlotjI3JdKRLjRGudRcX6AOp6TRJP09KyGOGi3YkxHd5Nwrjbl7DMB8mTzuEmZmcQpqiRr0iEPVQbMCC00ZJXvDe9lRP9+/HrjVQ3+OwnhbmT7UA67KPmAQEdcAn6PiQqdBNOc5ygo9US55qbr4s+zfPfMbm8z6tsT03Z+4Km17xFe0znjKpOY3Vk8KG2f5yYob1T4VV/BYa3cmJS1FFdEI3js8DH9H5XtxgUykT/cj5AfXnmpHd4h2CbxQrupYVWS46EFOEC5mG47iKR61glZBVu1DT3HFXT9mNpbLek0FgsllEEb9yeFktuQkrXMHH7asagTdkaGZTLwdHlovRN/GI2xPDnTBmDuTjkUnTLQ3gAPa0hJOPzMSw8IbXWYdOphzaidrZNYrS5VCf8Qd+TAxhIbUqyLTtlg2383iD18E05e7YVL8w1APa2kfQnRAJPma58nsllh1pgouyPDNy/oPnBsBagTp+vEudsxiIvIy5/SUzlvewnzRgTxPM2+7A4+8b+AEjBka1rRsJtKLAYpBP1mHg3r22VV/Z9xopjYTeuFpKupqwsKav97l7x0dlI6YGQM8zoP22oKuNyf9hd4FyrxN8Oaim5OBdSZsLfRt7yc90bAJvypv2ri6N2P+zPNvJMkXWFqn8aTGwSai5+/3GCGyxLVerAhsMuf+79769/0VsBLidQ7CW1QshgZpbQ9801B3MQqsdEL1x3n20klNSCH9vZ+NGseIaC+MvF0DIeJfKVr92AYWcQL7Fg0T1KgHZKbHiBaJM0YXZYaBV3CZ4SISz56R2wjGEDbkyni2jkmTu8hxDRv0RlRnwzkcM8Pzh8QUsKQgY23RyfNEUnUZZLkbHj5bB9pzqEJKUCKNHylpOpzM/IEUhrud5iCJIOw8fLmiEhgszY9FPetqXpxc1IkkOmCziB0QLVUPAVlircN4F5P2kygwEF7JhdLxTo7cht6BTQIiBNFFaxR9d+HTFkUMVSmO5HE8Ez2TIiEigROutNKKTYVncdimFf4IxesIuXQ15odv2awRXfAzgyne/2yEHunkFzU5OIYAtERQr5dO4E0pbxGeTVW36pURqW1D8g7gG6VwwQlBr/KtYercXz97CB/UCXDbuKc3jPxIZisRZHVWvwvqa3x3NdzRYvWWcJHaBq85/h0MhsqTpw/M+9KgizhwgiicYaf/wEgAi/oBZtdUf5RvK8yx1TxSF1It6W+bSyzFu+WOQNLBcb8Db5ooeriIw7WFqWANMTvV7xi3VbvZIhpGFhMmeDR+le4rGAajv+u1Vj3iz2gRYvDG/9mIvDwExYwKW93HLh3dOcgmXonTIxtOOhU2dFKtOZSv+5PX2KMPeSNYII3zJbCLu6inGatzUy1Q9Erh08Sm1iS7mpNZv57IOuZSN9qNhTnapqwN14LPFvPVReWD0WVfeONM69aAxsS2Ortz9XUwPLoy/cgajL3jQkwd16cLzmLoGuNEI4HzEsSBas1nzlfc0NhNQo7W2ty7DZQCep4gZ+KDziKfZOKH2J/8ZnB+8h7LoP4gmNUEOiewXvb7RM5L2fT4gJ3FdNKFCzQR1Ud9VfhnZCZ9UxU+S/n/JGA5NP4gMfypM/KC3wsHXe0+dcxkE5i1w3VG2tuRfiOYeVWj+BADc84z4f7tIQcxR31i6wLEaYdA5L5B6Qrcts4qWj/UK5YoY9mFvS/5CgbklphUiiah6fWYp+VAzkdhV+1yvXoNj93tQsOexb4QXE9pWLPtCJaKi1f0Lzqjxw1W0QCMDdFW9EaoliQmZNR19na+ISZis8+g/HugZDXfmDfFPH3agG46dBFI1C8BHEzoEuaRpFVfz5fBYg9hbyuz71rU0oVl316pCfEC6l6ovM0yanz2+zEChTFTk+dIRqw5kFL9sPPejY9RMD7K/UqCTtISwlofU6jyxzlKh2N1pzOR6gjL9mgESMgrEMy5TNZQ4UexBugaAatBUxbqzlc5yV3k2iHZmrwmMiTRymzMQpj00sEuvyvLdgD6QSXYWZQeUn0eVsUYCyuGcSVbK6GE7HcVDnvfNBA3EHy614SKmZdW3Q3uIuUIwjYyOagTLiqUKQTcv3FvmBv/85Dbh0BG38o3r6mOaZeoXf7Nay2G1+gjMVY2KWEHAIYVqlE2xwGHJooKat/7OkWPkXjrvTQ/NsPJBq4f9AUE0fUcPZa+gEhqIQASyaLwpmEw1cwOBOlfvx5bQ+xLCuLi3h52KlgRVUzBAgoxeI9tsWaSLd+of4KQo7eA2O63mT61WXxpxp1TdebZf6E41WFqlJ9IgadOiq90xEWsIEoBdg/1/ujaZ6CxvycLy+0mSNeQKvkoxB52nVzGQdshm/LWuFpnNtX3WFh8xz8qpbh1mvkkDfTa53MfHkHbPJ7380SU0pLfkL06Tuj300OeINA/XaAIhwcqnfByFM1nxmHIVzbic8rxip7WtUQaWaF76503Cq0fXswlM2YVB7Yw+MzKdGHRCP1MYmENQNUPwiF/AOg+7xc/PLdEMHwPp1TwPdX67Px/govsi5ynbw73wiLiQ87l2pQXTu0tH7vHE9n/Z5z+YJxfKlKWkHMqNI5PFlIfbowVKG6h2UFkcQX5OGYQpnAAXl4dKa6uWFNlXKL1BbJMgtb9frPSyvA7Zpe8XBtWlyBFJ4jw8SHknZlsujTn1zYpr746yDFezo+ahg1F0OUR64gMLABE8ySUBnEazJJ/QRnmVv//pswXQZIj+Jg4dd+Jvx0vaTvz1KgWFIftu58hPk9gGwS5qpFPXd9fe7f27LAqlSxhiy7r8rSipkJNK9Q94/puR/wZX0PphnVsCe06s3k8HFmGCBAgz66wCJHFvPQvI8d+VsVdYz9X5mCNzYqujtTsP5K2NSIzEGLul006NDXbsCwubb9Jck/TCK5SFcPzyej5c8bfUtVxcYamc3YTLWxIdoM3Fw4qABhh5NUTM6e9/NvcQxgB+fKEU8SwsiXW5USFgqOicUT0V/GfPRAp/fxVaeFRlOMgfr3KrWl6uvuSpuNHLgVivxShZNFBhkyA3GhnEb3mBKNxT0ZwK+OPunJXHbRNDhreVFPC2eB6ktgYHFs2+D4lRcEqu1KJiMam6C+r4AaLEemjIJ1yQaFvA7t1Qjq65VpoyL2wgn2DfSQ5d25+f11rbPNKtTGOyKNlf2PzHuTKoUJclFwLV4/OkF17mxEBtplH0+w3+EgTTUIXpeN/RKAd8WzuI8xBrFBqBwpZiIkPbELeKPDVZZq4wuKD8whFKYo1DUo0n1Pa/UeqBWPet4QeXng8HaqDWVOSDouO2JIEt0CMgTOLbhRYyZi8/+/PxEfFS97/e6rcOOA5/X+PxzMOaJANyjB1+fXSrutAfv3v28kMEpOCVJp0T/fb1Kfxnge1VQPHiAzDn5D4O3E8p3I4ROQ8FiTS8ib0lzT1jWyEUP2jYjKuPGywE2BjXkpc/d1CxyuniQrNNnJijylm9MNPLHRqjYYuZF5pJ21L2WTkgJoGYY3TV3jSKHCXy50u61NgGrftSyyWeQRO7e2UKDvZh9+13DjRJbgtQTdz3umoKQrYprIr6z4ze20LxnZQWQUKIU2a3S23TMeY4FTA+WMNJYkl22JFFHoPORljj2IDvy4EN+Ndxrd+8qfs+VwWyMwpBaX/JGnL16foLRC6M3GdpPlt15ZO1jLrbYzMPN1sdJqtR74qzAa9MUHCEkMM7OeuBj4cvzycF6+YE0n+z3Fb3nQYo6POe58Eg0Rd0UHfB/b15ZijLJ61f2ZPnSpk8C4Xe4VXZLV4JmFe96zsvxepd0V6T0F0/oMOvyBqjPftanQgWWVgSW9SofxkbS0Tn0HYhgyEs1FyByMW2HkxwI1wqQHB8Ap09Us97NHozDqxUhBl1l++dA3QNVgGwYbB22Y68q0qlP+SrpQ3S6zEKt5M+Fu51Y++8iBROEKe6V/52m4tbtDwI05tbDQ14NJHHJPeShZbfYm5ci3jG+TpVsZneZWY12YUIg8/uWmHqKRyhiLttPCZdzIZY9c1tqjRWgwBIrG1twXULKDpbycsTVFKHsjm6a4mroEn12lgR7jADENHYPMQnkjuBABe185sRUVE3OpWLeUgTop0e2XkbLO52y7jvtZJWf4f4m8yOpDIDE9b0i3/UBeAWHT5vw4x5Gn5r9RtkmdK6dChVm7pDsuiLGn0fMAbXdMZsHu5hXrh0pcCnKmCNzlAY+Ypj6uN1LYg06h1FN+zZ7s9Wt3W0Ahmi130l+K4noaqL1zFuixYYoDwQ+FrExSDAE6Ns/SrP7syyw+qE6PHIR1csczFLidbU7lFwv74o/EVpVQB/ssfUuzj/QxvX2insHi1TYZkl2khvLrP1bczau8UtMyOI4AOqhuOw4xI9bCRKsEgCzChZ45g/wCuKg0BNF3iKaQ6LhtV3lmjtNiye8cDas3kw5zHZEJsbamsGX28gzi8e9Hc6vydJVhBR1cVfKjXy4FtlUE9FT5wxLMK9r4C2vEqkfJaTJ0nsCKgiVQCIyT+z6RsOLkwybilUBH2WyLwfEy3+kY0Y0apq4+BxEXaaGvmSrJRoNBiQaMXqSqk+VjEnkQUMcLt80nkZU/NU7D3yk0wUOlK0EJxIPQ2HPiro1yRf+ECDQyhOIsX6jIuYZgkAnp7CEIO+eWAg+KQLaWM8EfOFAOERFdiEFp/WCujUuy7GRWYLNz+Jcu2er6eHzoDuoDtqZdnrk5o6A9pwJ7/sVja1sMkkYvjVsG/RYFSBfM9CQXIt4gksGl7awVC7jDpf5yTQ4sZIUCgalAXR9Xy5vjegsyid72VuqFYu6ZKlwau0JhcqFL52/R4fHCc1h8tIe+gzazYSGdBEbU5mkpBeU537p18hhasH9sRehV+aulL7wRVq+aqx05sOxyOueKe9boCejvBq/QyZRuYK5UB3GE2IkDsVQ2BAHX71ojBBHxMRAIzAT/FQbEmxRRxM+lcdr9ATlD/V8X8m6TuCRsZ/sSTjE5RqKO7Hf8eyLFohXQVHtUnsPn0Ax7gQ6KrteSuYziWfS1ivtYMREUPBRM2Vt0E5ZSy57Fxa3UGyFJdN4astftzo/9BPwGhGZOCv7b+yHuJDNYTFKGz+jv4bZAolWSEq/mX2VsTW2AqaL6jd6ZjRHuwn8a8lCv8Hy33tMX9C4uwd4+0ibmRt5v+VsnfYwooW6IF8HlgCoWRB085uw0GfyrTy2Sxwt/tVK+ElPMqoDV+V4wpEN1Rq7ZD06xQ==
Variant 0
DifficultyLevel
623
Question
A quadrilateral FGHI is moved to a new position labelled LMJK.
Which of these processes resulted in the new position of the quadrilateral?
Worked Solution
Reflection in the x-axis
FGHI→F′G′H′I′
Translate the triangle 9 units to the left
F′G′H′I′→KJML
Question Type
Multiple Choice (One Answer)
Variables
| Variable name | Variable value |
| question | A quadrilateral FGHI is moved to a new position labelled LMJK.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_70.svg 340 indent vpad
Which of these processes resulted in the new position of the quadrilateral? |
| workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_70-sol.svg 340 indent vpad
Reflection in the $x$-axis
$FGHI → F\prime G\prime H\prime I\prime$
Translate the triangle 9 units to the left
$F\prime G\prime H\prime I\prime → KJML$ |
| correctAnswer | Reflect quadrilateral FGHI in the $\large x$-axis and then translate 9 units to the left. |
Answers
| Is Correct? | Answer |
| x | Rotate quadrilateral FGHI 180° counter-clockwise about the origin. |
| x | Reflect quadrilateral in the y-axis and then translate 8 units downward. |
| x | Rotate quadrilateral FGHI 90° clockwise about the origin. |
| ✓ | Reflect quadrilateral FGHI in the x-axis and then translate 9 units to the left. |
U2FsdGVkX1+z9EHZWmtqoV4EbjzBXIGGgnB2UGz55Kwd300fTbTWcK1bl7RUmfOF4ibVk3XHsXGFKWX41/YDKZflViayFYB8KQyonaYlf5KGnWoe+K71oyZ5EwYC+J6jcCjLUogmLU3YvK6kueND7dSDYAP4q0WC6VdJTohmRe9IfWM2/BBeJH4+zWv/xCioxqnOgoxO5s0dRgYepYY1Q9LJ8GNcwQe3zR7pRZ1e47mJb6jSd2bjdY3InVNiOLKtsWK0FeTIB9mejDrJP5QMRR2z43RlYs0t1xgRnNLHRV9SZUpsSNXHOZRCnUxYdD5GwolQ/RxU58jkfsWXKdzkrTe7HqJp2+0/GQmYcYQV2JojAGZFRLso0lA37nw7mJB7cfDJ6uenG82HKVsDOyM7rnxVwoLE4EpETS2oSmrkM+0bPFzgG7OG7ZfWwIDdDMAMV86yDzdL0nO+7Ezi3NSldhTgYVyMUutgZAOMuVJ151qb677PbT/ukoB36xGMIE3mtQiciYjkTP+tT2pTLZwRozhQ7x1rHJVt2GUjbu2lNzc6VwfREa92N49IQ0knoc/IlPK9x4+I/4uNZyhY3n6OfAajHKy3hW6QVaJDcAtONfm0eRqPmGSZpNHypPCCsEaAD9DEwDxoj9kJft11htq6i1/P3rcTwG6bbNlRFomZMJ8/2fAo4wLy4vEXZUdyBrt5L/V4RGRBIAgvIzkOsQ5jkAV0EYVIUtaQcht/5mT1vm7HT7ffhtbq7W9mbAV7NzLor+LOs07Qre+CbIc9red7IOJamEWlr0jyXvjh6583xq22DpKes13P7VqPujqa1HagroeHH/Q3HSWfj5JguSxD+cuVvcg7tS+vhuyc+q9ce959klM6iTebdNKoITXkZhMQGLU1F3BmXQGi+rn4v/GvKgcTB89t111wQ28B/a1g1Ow+9771Ki9cnlL08o6oscbRY8MpFRtOdrEhHF7y9TYPnL+S3SFiUNqdazxXiHwjT8hF/vFpQX+0m+NET4eDOuSx5o1De+AY+3MLlsNGo+5QvPpOr+i/tZcjuhHlSqfK3VXWXpbygCn5z9VIGqTwchVLqnC+hcghwOzNW8NOFKkhcIdTK3K2h7BPaWuOzrxV05HzeNjhL/7gCx1fcFOTYhi4xa4rGMBExUcUJIXJzyU9Q9HvFCDZXBboGLismK6vQPm429KW/Eg1fw78wi/J90W5g77qQemBMF9k1J2Brnmy2kfin8bOy88xewXnCRUoHWP0XIfz9d7pBggwAtVe6SYleBFoMkVHPs7FAngzVMAaxCWiqRAqplJz6fufPA+wx33OkcRvSZkAk7+IYdsm96gMUMxzfD70HvfLt7J/dhOSqJTeFSqWPY8/fkfHMlUxXuEbWlJdb3rnaFzZUUio3i6NbZNr38V7iW82VOdlgwbnXmVpZXKn/gBXA7JSjqwHFD/rgBDjMBll1qCB4vZ6njbfF3XLn4LHMgW9OEhye1ygeBiPoGBBDV4UY+2Qpf14+z+YICxOIRKUVvm0xobXq+vS7DsELo8fy7evv2DFHmkg5s8hvgaNiNLJOWmIcARgpeuVW4xYW2t9+UDscp57l+QWQ9FvDK3hgtVTHlqhD2k3EuIeKG9b7WrqT0Ms6Y8Zu9uJF90iTmjBiBG0DTRg/2erDVppwLr19y9b7GKC/aWkxOo+CJRGtVdfk7BmDTOMjmrsHiRU/NgOcAIsFBg4Jlntd4YKYFfP3KzISq0QX+y8msNSUnxNeGceujMLVbLBZFfOfrm9PS5gdpmdkKeTDMRLGwBwzAHYRBu/nydaswdPMAqW6poTGtjhjWWzUnNVGdrMGoNFUk+vYrSJp2mfNpS+fqT4UAC2OPKNqLYfYGo7sD+Y9Llu8LSSa1B/OfAV5J3jkzR4ZqhtR9CyzCw8l5sQctJ7G0Bn45BPYrO5JBNlBr5KhZVAuObgbQ5wqBxutNMhBs0pRVrHjmE1WdvDPQidOh4ZJtrhef86wOTOOGAUH2g2ZiwMQ7aXYH1+Q4ey3u+N21Z3rxZq1SvNicbi6aIwzwz5nVu3sE8mTIqSJB6XJUO7yRqdX82WgGJsKmx+7XOaX8fpfAJvNs5Ux0k4T5wvtorPKBHbiHOwEetMcOxETdC6WJdA3TAtj0iPvqQUQKdXqg5YMbqwVxard8wkQI9cKurjYy/Yg7Zv/7E4mkZV+1uLiXtIjLTz80rVQfyqaWYk6JfPZMfzRxMwBPRS/AglzDffi0SKenSPior3CMI86jjodPek9nyd7TIvVk5bksZ5BaaLaciKr1CQj0xZpcNvjgp3zBjCJCc+JOL9AWLjGzl9apbNoYmq8mlCVyXgAbXfXVEPOH8sniYcmQjgaV3ybgWJ8dLW7QDwnBClY0omVNFBSjcg+vAaWk8njEwkPvtMCABsdDHw6aMFG1SkMsDH/W/LQJqFTmicJvoXATqW3yc5clKfIIitHFAk4JSY6RnZPuatanLXPaFfcwIy80rX06xLCKztvv/Sx6qvE6QC8XrVsgR0u/cWFSJf/3w+uCn1ChCKdCdFBlZG8GCHktjubNdvdU12cSXEZ7BWG/rabcn6SjOzxzw+GmPx5aH2A27nxhf4c4ptEk8T4hkoXuf/aJoGE5KkgcxTE/LuNVC+5S9CBnot0hpJX9WXo9rPAAWTplnGPAdag9s62WmCvVMLq9xIma2AUZ6wOXKFJQEaZ9jPpOKDzV8nbGg82+S6YpLW/VnUtQqdlmMfJsopCFz3vDBKPa568GBC/aZRFMkH1uQ2hRIUr9hCyiHZP4m668FFGsvMpJLb7ad0OAJorijjpZiMRV8XasxVmcgjrddRaSN80WPW/PPqW5dEcDH8MrpeOvKS1qpyUUPed/QnzSnyvPGyyY/i44TDgEmNcJBimnIGltZ93SUguEReDx+opSoxWAS0WI3MYEuK5OqR+59ZCmhQPf99H4reociZlguPsuh/wtxFwvEXlocd9VSST26hNVtY7AiSm8u3ke/Ov4pCw0VX1K3uxHvVSQ1JEeUZAr6/s8Nd1Z3MZKMkTuo25lf0M5CKGE+3U9OOnULpRDRsZrOpq1VTeHrhdxMeDa2gKED+eGNBd2F6dWMwcNhwJwB4x4D8RfjCO4rjXj57JhWM2INshEAF2xVmm2cwREoXZBJdVLtDGwAe+lIPh4SVVrh7a9j52ibzNfAGIRZgBfuAihBVh9zHN1zAUWzLaY4SaCby4vR0srLbjSyNwxZNgo5GbgN0btV71ozV/pGVddsOa3lQbBxD2Ec0GNQamwSX14slUnhMEv3fK+rCMHmLkbsD86fKkqDLa+VIPVOoPlorZ+7uuD02rdwEuOGMrVLtoyoFlYRh+OvKc8PaGnpxOBdfcaeMwwgzVN0XanmKErAsZlZjTMHhR5UVHy7AL8SsPu7YgDxNggynVrMLJ894/LGcuUSb4Ro++XKQhMqRv3CH5ZyXeABJ7q9L2vsQ4Kcf9Y1JJr46WSCiMs/EcRvQ50jDl0oVt9gv7gYbCgKek36B+E6AFcVIouw9HFCvsJwGFcLn7eqW0PYuygZYkzAZwXed/vInm8Q87SA3vl3dNTdUAeAwKwG96fVKX6NLZz6dqvw0QoS807Y3Ha6tFByPuPZehc2rqTfkgVka6U8S7SdjV7YW4TPMBfc8xgw0DSKHW71WVUvPTewLKMdFtAnR6NPOcR7MyljIE+EM9ETli/7udFBz0pcMd2CFN77yvZ85BvF4owRSOsQADtl1gWbuv9lgCqqoUqW4yMRrLI7vNDD2cBrhMbz7iWxVuZKKqjhS5ynaqnrIdW/UNvP5SFs46Ajph52wPZ8jXsmry3TqaJLnsXQlpsTGAWHhGLv/7bjddhsHpwURkjMUxCkg1aFXMBiJxQUO+LH2lLT397igdwoDsr6+3rJWQD+8r+jZ/s4G2jpol2v5ejAhr2fCCaM32kEm6bUZ0uXHL6fFH07nj9faKRC/9jxaULsA3dNB6NmCQuwO7HQydHtYcTpqNMB0iAtfvQUZOoIzBs0pGE82pDAdIOmKUolpASiJDWpSy6TsFbmWoZuZj4XFh1roQM5MfgujpEr5hsW5zVO91be5uXmMd6MTtE4xUpr3ZaY3k0AbK+EyNexZ15/TL9DAl5kUD9xg20J4IHSNUIS/JMH+vV463OdEWPwCNCDS2xpCHwxBr3FmUbhukrPlPALrECS+XZfVf0xBc493v8vP+B4MKtvIjUE1oHZBvzt0S5pnOarq+KfwhBSnfWnr2nOsjtukGwJbjNrIGrS0IXMYOJlPq+7Pt0gb++4upldNMLeAM1N60+BzrXNTSEWg6w8RbtAtyp+XcyTJE7s29V7kCDekAE7L+AEzHj7uaEO6FkxYs8Rukeh+D5E3xOgzSv1lowU/oe28dchxCE/cwCzZqpm3izlDnX6MGT3t1fRDtZ50Gp4DsgYNQH/CLMEteiP3uv2cXK6Di6N9r274fzfB5ldCAB5JLy+0zRP9uqzorNOIrIeXvDNKcHeluqLfe40kTujOXx65nzww6f6Nv6XGV6hQ9KdT7QaiStJ036seNCoYcjS7OgJZdivQKfoHLjszz8M/Yh2QPoE7Ms4XkgeZ0MmZPJebHt2oGS6Vo+A4wYbdanJS2VoALO+WZ/9pAgUNxC2j7bvC2cwCngZIQJTP/JbN7ZhQK9VvKwt5AkBtPJqyMIOPSylZHjE47h88uJD86DUsPPABPqT7CiU5CyzbOQAseO/1JOrWuVVd1kMLc9wLKH2pgwjoiRz3R2S/3a1zZjbx2A/3P8d9ZPwH5pgAZIZ9uTYS9uL9tMPLT99/MuzzTbdhsxrfrldFcNspfMSV+3jti9BXqZ5PeI0ULPYHWUBX0yytXG+I51lH1pnA7+MOxJygSU+jcqg4J0zvKsy90T54HJRDcjg0lf4LbGAT7mCdyK91OesdOx/DrQg3MCzjew4xy2j8hbNYk+Uhp/8Vwo3MTgMaDfJ+Ho2o5W3RB/vbjbXo5j1IH80kzumzKm0IaLhHRoq6ENSGK/W/dW+0bOAHT3Q7KZxQNYVAhKv2wkjGaFmEjCrC8cX51BbvCbonGyytI4n1AxRxEtQ9aHmxu93FT9ArWCvWBfD4LKpB5CFL8oUn5wKjT0KQkQLD9PLerdIW1T25Lqo8Erocyx5GyPIlhsRtF5Sswn6DylXvWavZSpVwK9uQZaPFzpvr9YNG7haUoCybr5cZQJvxHrJC7vU+ktKCg1FrWizL6k5BMNCG7qRX9yWOO5wptMw52oXfCTfONjZMv3O/yIYBcGeZtYWUcQsLTaSET5rSuGfxrQ49IdeLyOpwsiNbcu5XO92/JOoy72c6n7HBeEI8HPYNV3VCyOAtex5ZgBCbr7qiBWI5mJmuonrvM7qtFJ13qngk1uqL8C7J/7+itFamoGg7b8xu+Fe7bQBEX6m+eYWr1NrqGYGgmu7LKyBm/XzdmRIylxskzmqbAdY1FAgF9tP65pcBYgxQ9JJu2VcWGz7RXdmZVPcwy2bxubwbPV9ihZpjHYUR+2sjYiGEysaI8vSZNu41kaC92F1J7XIUNUvJpjd+iyJBSglYDwJgfF5IYOi4ubhz/LVRQfjJIqu0xH6HkqqiryrCicMMQAZvLPeOEJuyw51Ip9tOeHG0Jqsox9QguKu53rDkEfOJaJUb5YE4VI2DVK1gGCEw5jXq/d2zQVlkSExorXQK1MnkKgMH3trTyON3ZVIk05q5lK8zXZx/BUeWdGwkmEqOGWNc2pZDyk/UpIooTh3g2rMyC1M+qWZ8P7sKaA/8Phz34TyhqqZ9oaPy/P+rRph+K9vcVt4fe+OWXrVVChQJtAZoXpA3x3hsFvjTRx5KKxkJm+sco9KjQyHn2k9rXH/riLcPrOvsganE4R59umGyigMxvTi4IMk/11G5ivDPOgesHioZ2lAx9XT404rZ7HHmOroM3nyCcxtd37mK0q0uzho/BYYycBeXNZ3NA3QzsYASA5G3orVaWnQ3vKE2PxjaWkywdEZNbYUnUizlLQAXTYF43lwpftXCUvOhvFxic3ZEEK/KoAo3ofG8KVKQOKlMpXDfPiUHgsRPXdETPYu/DwbubmnzJEJq6Zqs+jDpgTXXp6/ufntOgQoiyv4HmH95IDacTTXgxbEDDgUnoVM/iB2/F1uNzgKhs8VKKr/l0QvjvaFYkVrrYLvh4CVFat2IAQvD5RPZ0QiIMRPhF+kRV2GMUVsM3p/a9b67ZVha9A6laNC532CmWArmFYLii9a54zrJ1C1DcKOwz9YRWxskFP6c3ZArxx6TLH9tH+Y0DH+ePZxL0NuJF4zNEXh916n98Dye5z71FATOR0T/CwF6NcIfLROkJ58U1WGHDP2EFR+mHyMi3yXSZam1LQ3n+Bqbv2eypmelbP3wcM+sw04TTB6IkXsYj7OIyc9v2gEn9Rq7Zo7YkeiUa3LztP5STvdiTKmzeMK4bWDCEi6AMX2gwJdxEqjfwB2Qr0Pb41xyro6UbsHsTpT7Y+lM59c57sTwEuePJPzk3Vav6SZoXvr5/shINlv9u7ye5PpLEmeqj/Bv12BrAsfuEbh7tKkVgEqs1MBR+VpbumLS3+by7hF47D0YnDnFY0IJ6Df/8KldZzy5YeJSVts5F6Y6bRPpQeHd5yOHq0UFNvpiIAnExvp51mUzE5sV9eYjp062CQi3kVszfDCTJEn3QfYo7IYZAlHYxT8FEoELF2s7gLiEv0kc+rZL06kS99RBbyFjF4daI0ze5YXZiBhlQq1p3y4eu99wA87RESJwhohQ8R0GzPB6Wxgcmn2iV5woPiPYoLa/9F6Hq8zaShfgF3jTS2s/qC6oCKM4KOhGvQ0pZI08QKfHHO+LXyvt1zBc/w+jrttszKK3HFVNRcSHyJ/QSgADC+xNgeF/3lEbnZH26YGENJIH2FeruLe4JNZCYLKwClVpbRiLW4jZ1h9cv05bDFqQ0iYdbGhDawXRnYxgK7G9p8oAfH8e/LRF0EdxxVdZDneX6J2DPoQJhf3Z92ApRMZBJmWaddiHWtBN4qBtDkwa7Ahe2E/U8KIBsMpJ4eWG+iS1yMGDaUGqeRwCje2L60vERLVhp/+uGQ6V3sCGj5G1JKGvG8pnlaioTwPIVc9TeZk9LPswh0IBAVW6OE3sqaHFDgUz3Vd/gLBP1jOwo3Z1YBcPpUzFnagF3NL+I27LMIcTQTy9BcfCRp2Cm3lCRb5lwXQ4ORiJfydrfNoM1TWhOHkBpBcinFCinW3hcbKPs/TPKHGWNB0IZCo727fe2ChADBcV5fyFIaziwN41zT1cHlsvJkZgg4FqsXZYgTFot4hjQK2xSAQsuF/S3W+6miBl5Gjx56U2ZbpfU6QrV9VKOw/9yvkCaN4MO0Hk0qGrX26nAJmwNH8WUCqu1HegSVV8Xd+2KDO1c2OjLpTPTJ1DyFd/T+PFiVa9jxrM8MZbSHbO7wTkQG/106+LKFJxFziDLbmgNqA9GGFVMUeLkmhZxssxxT+Ek6xwe/T+vfeZlYjFZP6sfjV71nMyig8T65dcodGreMTDd9+Pfb96fRoyAHCAGqiTao9uX+2OplFoJe47LDucRU7WjQPtyHSkAv61RRqoGixh+0nBAd8sylph
Variant 1
DifficultyLevel
623
Question
The triangle ABC is moved to the new position labelled XYZ.
Which of these processes resulted in the new position of the triangle?
Worked Solution
Reflection in the y-axis:
ABC→A′B′C′
Translate the triangle 5 units downward:
A′B′C′→XYZ
Question Type
Multiple Choice (One Answer)
Variables
| Variable name | Variable value |
| question | The triangle ABC is moved to the new position labelled XYZ.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_69.svg 350 indent vpad
Which of these processes resulted in the new position of the triangle? |
| workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_69-sol.svg 350 indent vpad
Reflection in the $y$-axis:
$ABC → A\prime B\prime C\prime$
Translate the triangle 5 units downward:
$A\prime B\prime C\prime → XYZ$ |
| correctAnswer | Reflect triangle ABC in the $\large y$-axis and then translate 5 units downward |
Answers
| Is Correct? | Answer |
| x | Rotate triangle ABC 180° counter-clockwise about the origin. |
| ✓ | Reflect triangle ABC in the y-axis and then translate 5 units downward |
| x | Reflect triangle ABC in the x-axis and then translate 9 units to the right |
| x | Rotate triangle ABC 270° clockwise about the origin. |