Geometry, NAPX-p110293v02
U2FsdGVkX1/rRS6LR9u7TkimCCyzZAjyd5I428kAD8oezTv2786EDlsHEZoU6mONDRbJ7Jf3GV52C9Vt0KhJRcl4v3yOaQLKKqMlMWj12x6XAxmGWwiZUieunzYnhw6uYtGGTCRTPCF1tNEcib8xC2Ih0IUIVGW/7CBwaSOsGbDMS9lI9fVUcjnsizLtLVuLIo/S6QVxxKavaax9zT+UZVc8oISkB1IQAO1wKiHkPwViLS93oAcmg+C2wWGe8d5wKlv/U9hpQ7V38uyT4GV6fsEHpqpp2gLvSM2sUfC64J3BBZ/AWZVA55XTcdd34n/PkxwRNAm/95o+L4zeRitEj3T+xx4xKWdpoLOyZ9RdZBeKR3T6rJ3hoWKCQTJ1Bs7tZBLqh2llGRcTAli56ZQ//MrN+UmCar2/0dgc//Xh3EilAP+x2lwKOIVOXCdMOVomWfrMp3y+RUN1S6Isg9M/DYYOMlYNPKa8FAw7cC94hoT7wEM6LxrRnQx5ORDiEVrqwakKmCfSE7TsUztIdVYU4kPiUTZctS6zez36Gp/208DWhOOvRB206/0PK6roPUOGu7kG5xTIpMbmtdDNQhodxnD3WGEtO/YGlMEq4JvQfS840GbP27mHuKNVHadQOR4V/6WBf3y1kxQEvCDSXM4z4nPz6EmMGOuz/CmZvUxY2OUtf6uL9NQpva5fd1gmomjZic7gZnukXkdbnjaXWQnYf8Ztt2/runfDznMGEmXktKf73rcJuNT+to1Ii41zcxiaY1IOni2+TQEGYsxoFnX+eu2vILZE/6smEu1T/TyBoPk38k7srZgtIApAQ6r166+wDyZF3U63QGykHpNtUCSnb3IJgabyPJrLdvWlwHdeoI2nPmQq8+jd9gxCSgJnx8idZHguJAepCmppPOAAmzjKekzOJsZ4IJAUg7ddot//2KTExFmmY8kegrpudDBDPENAWY3je3XqYsfTRi0fNXZC1gqM1/h+IZXCOpadRhxXAmQFTW2LXhkUBqrVUJuOaCH0nLA85Vd41/Fr3QeL7p5IRnYWwQGscKdWGc1mKLBpaJEgqQw8t3MoEO41vZzr8zken5BSj07PDG0mELvuf+DbNThBmZ/6rnShnfPb//0dMi9zDqgwUD2fs3rviZ00Tavzq75PUptV71kqKqotJx361yKaXz1xaI3pEhqq1l3etX0FFvRyfOJhHYaduoNpabPm+c9afY9glCyntv5adaxhuJBQpNtT3gOrqa27Iosq8U+MoN1OZG+fXASPTNRNfilstltD7CII8ckONMP8aKS2VWYoV1daqRLwa1KcWGbQPyCg61ctU9qYIEbxlphPZz74boFJsHL+Mb70fpuBswjfa/iiMhGQzSvmDaB8smbqHOX53TwQrMfUMdLVhxqu+Ni7SEmehr+W6AqpPapix2AK/Is3lbd2mSWpsvYO7rcfc+wqHZDju2jRpW4hAo6j1bfimei7VTJXxyDkzz3vUL7oViyhHgivaicBQNEgtPFqoXpBBsBmND/yLAlWexaSqqUNlmVJOQmE0twV6I11OVWenv1ggreZtfZVWqugKz4N9n0JoxN8jIhh++nO4tY0Nrviybz/Va/W/KZzX7Z8XT0p5npqCr0AeJDSovGFtXk3ksE+zYWn6AlErUDwToLxF5VO+/6Oqxe4Pxyno54RFZ9oCbgbRnlGNllKIYeo0nKP7/i20t69P5PYUfYzqhR6657ZcepTC0v/AqxMGwWNJh3XF0l4M3Nc3cq59Q0krc/zHr9ODefbViu3897iq8uh5evwM5jN21mq56Fyv/xMGO67V7k1ffzDQPSRL3KoLp62euNMEdH0i8riXoTTRx+nPAhu10+XzslM9L4QuheLO/Z971uWXKN6pf6Dm8eDj8hI7lSum0EAI9SBlqccoouvxRw/+cwM0hJosNue7XbL9XBSqJ2KdPrxFuTId/M5rMhtDVNYHEDM92sN5ib/PbHXGnq+9wjc1FGAkV66ESX7sywKzPzdQQ2tPbO2/KtUPClySl4xDxbcEQINcBfcvHBXwoyDZIqGGlo3UNk2lXQkKo63HYb3NWnwut8+xWqCn47Qpo86t/j7Z1F49xh5PopLJ6Qp7Mlj3ySRib4EWJ6UeXey0wqbNSUzYfcR/nE90J4xQGL5DSjibx95/ocecnZ2wC1FkGp+URlsK4viy2hBdCZ7t4ga0crkyYG9DehfUJA6o66VYsCipUomtdvJ33HN1hV2Gir+L+ZYNkZtKyzcplAAfJpQcaXjpjXUGxTFxlPuOkaymiQmEPM5bCFLjT/9gUXn6TRK0nXYPkui+Ir5Xubk9wVHLxZvwUHBeXitbVNw0CHLsLPJHRzyDTFHA5990ocJ4jxLJoVwpKqdwfie5Y0yx1Hp2DU0QTLfHVUBMT2vhQI2odTG3nl1SSNaNoYrDosIMtUIQ7I51LsCz1BDheGHAsSFJ6xREGH6XQj6bxeGiLMTOB8iAjKbPKoeZ8P1nikzhnr6rtwYaIHM8zSyHXfbmxhPNId7kusxYBPoFXf82/mYbmuSl25RDUSyr7HXKVSvrb6FpLkLpnmvVlHLZeVz7by5IwfnDBwB1BFusQulI82feMmnpzuQC7pnI3zTPGu/8XTyx5c5/YyHvbWvbs/E/aeUEbuz+etLaTSFPAeUicYQbCijOiW+zweBZ5xyUOXSOfgx7jdG/wvw87CnfEgTCZ7ELHtB7x2q0/uGdU6cWFW47fGKxUZck+nBPU9Z5BBjUcgBwfrHaOEEuvBVJ6o80MTMQGaEf39tmRGczMUrf7TNG1RvbiUBAisz96hQdUUkVdCddrfaRNsyvVOs65vA8VVXnDM5x78uscYOwwhfqwOFQ9FByDGL+WptxZXMuKp+uUaSIKGSbdAcoC/8s5RJ+Y+sAl08s0aJq7IrIKM3/xYZTqEVx4wUlaxPvanD+blHp5GKPh3aLNuSbrCINKuPVejvV+MmlotjI3JdKRLjRGudRcX6AOp6TRJP09KyGOGi3YkxHd5Nwrjbl7DMB8mTzuEmZmcQpqiRr0iEPVQbMCC00ZJXvDe9lRP9+/HrjVQ3+OwnhbmT7UA67KPmAQEdcAn6PiQqdBNOc5ygo9US55qbr4s+zfPfMbm8z6tsT03Z+4Km17xFe0znjKpOY3Vk8KG2f5yYob1T4VV/BYa3cmJS1FFdEI3js8DH9H5XtxgUykT/cj5AfXnmpHd4h2CbxQrupYVWS46EFOEC5mG47iKR61glZBVu1DT3HFXT9mNpbLek0FgsllEEb9yeFktuQkrXMHH7asagTdkaGZTLwdHlovRN/GI2xPDnTBmDuTjkUnTLQ3gAPa0hJOPzMSw8IbXWYdOphzaidrZNYrS5VCf8Qd+TAxhIbUqyLTtlg2383iD18E05e7YVL8w1APa2kfQnRAJPma58nsllh1pgouyPDNy/oPnBsBagTp+vEudsxiIvIy5/SUzlvewnzRgTxPM2+7A4+8b+AEjBka1rRsJtKLAYpBP1mHg3r22VV/Z9xopjYTeuFpKupqwsKav97l7x0dlI6YGQM8zoP22oKuNyf9hd4FyrxN8Oaim5OBdSZsLfRt7yc90bAJvypv2ri6N2P+zPNvJMkXWFqn8aTGwSai5+/3GCGyxLVerAhsMuf+79769/0VsBLidQ7CW1QshgZpbQ9801B3MQqsdEL1x3n20klNSCH9vZ+NGseIaC+MvF0DIeJfKVr92AYWcQL7Fg0T1KgHZKbHiBaJM0YXZYaBV3CZ4SISz56R2wjGEDbkyni2jkmTu8hxDRv0RlRnwzkcM8Pzh8QUsKQgY23RyfNEUnUZZLkbHj5bB9pzqEJKUCKNHylpOpzM/IEUhrud5iCJIOw8fLmiEhgszY9FPetqXpxc1IkkOmCziB0QLVUPAVlircN4F5P2kygwEF7JhdLxTo7cht6BTQIiBNFFaxR9d+HTFkUMVSmO5HE8Ez2TIiEigROutNKKTYVncdimFf4IxesIuXQ15odv2awRXfAzgyne/2yEHunkFzU5OIYAtERQr5dO4E0pbxGeTVW36pURqW1D8g7gG6VwwQlBr/KtYercXz97CB/UCXDbuKc3jPxIZisRZHVWvwvqa3x3NdzRYvWWcJHaBq85/h0MhsqTpw/M+9KgizhwgiicYaf/wEgAi/oBZtdUf5RvK8yx1TxSF1It6W+bSyzFu+WOQNLBcb8Db5ooeriIw7WFqWANMTvV7xi3VbvZIhpGFhMmeDR+le4rGAajv+u1Vj3iz2gRYvDG/9mIvDwExYwKW93HLh3dOcgmXonTIxtOOhU2dFKtOZSv+5PX2KMPeSNYII3zJbCLu6inGatzUy1Q9Erh08Sm1iS7mpNZv57IOuZSN9qNhTnapqwN14LPFvPVReWD0WVfeONM69aAxsS2Ortz9XUwPLoy/cgajL3jQkwd16cLzmLoGuNEI4HzEsSBas1nzlfc0NhNQo7W2ty7DZQCep4gZ+KDziKfZOKH2J/8ZnB+8h7LoP4gmNUEOiewXvb7RM5L2fT4gJ3FdNKFCzQR1Ud9VfhnZCZ9UxU+S/n/JGA5NP4gMfypM/KC3wsHXe0+dcxkE5i1w3VG2tuRfiOYeVWj+BADc84z4f7tIQcxR31i6wLEaYdA5L5B6Qrcts4qWj/UK5YoY9mFvS/5CgbklphUiiah6fWYp+VAzkdhV+1yvXoNj93tQsOexb4QXE9pWLPtCJaKi1f0Lzqjxw1W0QCMDdFW9EaoliQmZNR19na+ISZis8+g/HugZDXfmDfFPH3agG46dBFI1C8BHEzoEuaRpFVfz5fBYg9hbyuz71rU0oVl316pCfEC6l6ovM0yanz2+zEChTFTk+dIRqw5kFL9sPPejY9RMD7K/UqCTtISwlofU6jyxzlKh2N1pzOR6gjL9mgESMgrEMy5TNZQ4UexBugaAatBUxbqzlc5yV3k2iHZmrwmMiTRymzMQpj00sEuvyvLdgD6QSXYWZQeUn0eVsUYCyuGcSVbK6GE7HcVDnvfNBA3EHy614SKmZdW3Q3uIuUIwjYyOagTLiqUKQTcv3FvmBv/85Dbh0BG38o3r6mOaZeoXf7Nay2G1+gjMVY2KWEHAIYVqlE2xwGHJooKat/7OkWPkXjrvTQ/NsPJBq4f9AUE0fUcPZa+gEhqIQASyaLwpmEw1cwOBOlfvx5bQ+xLCuLi3h52KlgRVUzBAgoxeI9tsWaSLd+of4KQo7eA2O63mT61WXxpxp1TdebZf6E41WFqlJ9IgadOiq90xEWsIEoBdg/1/ujaZ6CxvycLy+0mSNeQKvkoxB52nVzGQdshm/LWuFpnNtX3WFh8xz8qpbh1mvkkDfTa53MfHkHbPJ7380SU0pLfkL06Tuj300OeINA/XaAIhwcqnfByFM1nxmHIVzbic8rxip7WtUQaWaF76503Cq0fXswlM2YVB7Yw+MzKdGHRCP1MYmENQNUPwiF/AOg+7xc/PLdEMHwPp1TwPdX67Px/govsi5ynbw73wiLiQ87l2pQXTu0tH7vHE9n/Z5z+YJxfKlKWkHMqNI5PFlIfbowVKG6h2UFkcQX5OGYQpnAAXl4dKa6uWFNlXKL1BbJMgtb9frPSyvA7Zpe8XBtWlyBFJ4jw8SHknZlsujTn1zYpr746yDFezo+ahg1F0OUR64gMLABE8ySUBnEazJJ/QRnmVv//pswXQZIj+Jg4dd+Jvx0vaTvz1KgWFIftu58hPk9gGwS5qpFPXd9fe7f27LAqlSxhiy7r8rSipkJNK9Q94/puR/wZX0PphnVsCe06s3k8HFmGCBAgz66wCJHFvPQvI8d+VsVdYz9X5mCNzYqujtTsP5K2NSIzEGLul006NDXbsCwubb9Jck/TCK5SFcPzyej5c8bfUtVxcYamc3YTLWxIdoM3Fw4qABhh5NUTM6e9/NvcQxgB+fKEU8SwsiXW5USFgqOicUT0V/GfPRAp/fxVaeFRlOMgfr3KrWl6uvuSpuNHLgVivxShZNFBhkyA3GhnEb3mBKNxT0ZwK+OPunJXHbRNDhreVFPC2eB6ktgYHFs2+D4lRcEqu1KJiMam6C+r4AaLEemjIJ1yQaFvA7t1Qjq65VpoyL2wgn2DfSQ5d25+f11rbPNKtTGOyKNlf2PzHuTKoUJclFwLV4/OkF17mxEBtplH0+w3+EgTTUIXpeN/RKAd8WzuI8xBrFBqBwpZiIkPbELeKPDVZZq4wuKD8whFKYo1DUo0n1Pa/UeqBWPet4QeXng8HaqDWVOSDouO2JIEt0CMgTOLbhRYyZi8/+/PxEfFS97/e6rcOOA5/X+PxzMOaJANyjB1+fXSrutAfv3v28kMEpOCVJp0T/fb1Kfxnge1VQPHiAzDn5D4O3E8p3I4ROQ8FiTS8ib0lzT1jWyEUP2jYjKuPGywE2BjXkpc/d1CxyuniQrNNnJijylm9MNPLHRqjYYuZF5pJ21L2WTkgJoGYY3TV3jSKHCXy50u61NgGrftSyyWeQRO7e2UKDvZh9+13DjRJbgtQTdz3umoKQrYprIr6z4ze20LxnZQWQUKIU2a3S23TMeY4FTA+WMNJYkl22JFFHoPORljj2IDvy4EN+Ndxrd+8qfs+VwWyMwpBaX/JGnL16foLRC6M3GdpPlt15ZO1jLrbYzMPN1sdJqtR74qzAa9MUHCEkMM7OeuBj4cvzycF6+YE0n+z3Fb3nQYo6POe58Eg0Rd0UHfB/b15ZijLJ61f2ZPnSpk8C4Xe4VXZLV4JmFe96zsvxepd0V6T0F0/oMOvyBqjPftanQgWWVgSW9SofxkbS0Tn0HYhgyEs1FyByMW2HkxwI1wqQHB8Ap09Us97NHozDqxUhBl1l++dA3QNVgGwYbB22Y68q0qlP+SrpQ3S6zEKt5M+Fu51Y++8iBROEKe6V/52m4tbtDwI05tbDQ14NJHHJPeShZbfYm5ci3jG+TpVsZneZWY12YUIg8/uWmHqKRyhiLttPCZdzIZY9c1tqjRWgwBIrG1twXULKDpbycsTVFKHsjm6a4mroEn12lgR7jADENHYPMQnkjuBABe185sRUVE3OpWLeUgTop0e2XkbLO52y7jvtZJWf4f4m8yOpDIDE9b0i3/UBeAWHT5vw4x5Gn5r9RtkmdK6dChVm7pDsuiLGn0fMAbXdMZsHu5hXrh0pcCnKmCNzlAY+Ypj6uN1LYg06h1FN+zZ7s9Wt3W0Ahmi130l+K4noaqL1zFuixYYoDwQ+FrExSDAE6Ns/SrP7syyw+qE6PHIR1csczFLidbU7lFwv74o/EVpVQB/ssfUuzj/QxvX2insHi1TYZkl2khvLrP1bczau8UtMyOI4AOqhuOw4xI9bCRKsEgCzChZ45g/wCuKg0BNF3iKaQ6LhtV3lmjtNiye8cDas3kw5zHZEJsbamsGX28gzi8e9Hc6vydJVhBR1cVfKjXy4FtlUE9FT5wxLMK9r4C2vEqkfJaTJ0nsCKgiVQCIyT+z6RsOLkwybilUBH2WyLwfEy3+kY0Y0apq4+BxEXaaGvmSrJRoNBiQaMXqSqk+VjEnkQUMcLt80nkZU/NU7D3yk0wUOlK0EJxIPQ2HPiro1yRf+ECDQyhOIsX6jIuYZgkAnp7CEIO+eWAg+KQLaWM8EfOFAOERFdiEFp/WCujUuy7GRWYLNz+Jcu2er6eHzoDuoDtqZdnrk5o6A9pwJ7/sVja1sMkkYvjVsG/RYFSBfM9CQXIt4gksGl7awVC7jDpf5yTQ4sZIUCgalAXR9Xy5vjegsyid72VuqFYu6ZKlwau0JhcqFL52/R4fHCc1h8tIe+gzazYSGdBEbU5mkpBeU537p18hhasH9sRehV+aulL7wRVq+aqx05sOxyOueKe9boCejvBq/QyZRuYK5UB3GE2IkDsVQ2BAHX71ojBBHxMRAIzAT/FQbEmxRRxM+lcdr9ATlD/V8X8m6TuCRsZ/sSTjE5RqKO7Hf8eyLFohXQVHtUnsPn0Ax7gQ6KrteSuYziWfS1ivtYMREUPBRM2Vt0E5ZSy57Fxa3UGyFJdN4astftzo/9BPwGhGZOCv7b+yHuJDNYTFKGz+jv4bZAolWSEq/mX2VsTW2AqaL6jd6ZjRHuwn8a8lCv8Hy33tMX9C4uwd4+0ibmRt5v+VsnfYwooW6IF8HlgCoWRB085uw0GfyrTy2Sxwt/tVK+ElPMqoDV+V4wpEN1Rq7ZD06xQ==
Variant 0
DifficultyLevel
623
Question
A quadrilateral FGHI is moved to a new position labelled LMJK.
Which of these processes resulted in the new position of the quadrilateral?
Worked Solution
Reflection in the x-axis
FGHI→F′G′H′I′
Translate the triangle 9 units to the left
F′G′H′I′→KJML
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A quadrilateral FGHI is moved to a new position labelled LMJK.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_70.svg 340 indent vpad
Which of these processes resulted in the new position of the quadrilateral? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_70-sol.svg 340 indent vpad
Reflection in the $x$-axis
$FGHI → F\prime G\prime H\prime I\prime$
Translate the triangle 9 units to the left
$F\prime G\prime H\prime I\prime → KJML$ |
correctAnswer | Reflect quadrilateral FGHI in the $\large x$-axis and then translate 9 units to the left. |
Answers
Is Correct? | Answer |
x | Rotate quadrilateral FGHI 180° counter-clockwise about the origin. |
x | Reflect quadrilateral in the y-axis and then translate 8 units downward. |
x | Rotate quadrilateral FGHI 90° clockwise about the origin. |
✓ | Reflect quadrilateral FGHI in the x-axis and then translate 9 units to the left. |
U2FsdGVkX1+z9EHZWmtqoV4EbjzBXIGGgnB2UGz55Kwd300fTbTWcK1bl7RUmfOF4ibVk3XHsXGFKWX41/YDKZflViayFYB8KQyonaYlf5KGnWoe+K71oyZ5EwYC+J6jcCjLUogmLU3YvK6kueND7dSDYAP4q0WC6VdJTohmRe9IfWM2/BBeJH4+zWv/xCioxqnOgoxO5s0dRgYepYY1Q9LJ8GNcwQe3zR7pRZ1e47mJb6jSd2bjdY3InVNiOLKtsWK0FeTIB9mejDrJP5QMRR2z43RlYs0t1xgRnNLHRV9SZUpsSNXHOZRCnUxYdD5GwolQ/RxU58jkfsWXKdzkrTe7HqJp2+0/GQmYcYQV2JojAGZFRLso0lA37nw7mJB7cfDJ6uenG82HKVsDOyM7rnxVwoLE4EpETS2oSmrkM+0bPFzgG7OG7ZfWwIDdDMAMV86yDzdL0nO+7Ezi3NSldhTgYVyMUutgZAOMuVJ151qb677PbT/ukoB36xGMIE3mtQiciYjkTP+tT2pTLZwRozhQ7x1rHJVt2GUjbu2lNzc6VwfREa92N49IQ0knoc/IlPK9x4+I/4uNZyhY3n6OfAajHKy3hW6QVaJDcAtONfm0eRqPmGSZpNHypPCCsEaAD9DEwDxoj9kJft11htq6i1/P3rcTwG6bbNlRFomZMJ8/2fAo4wLy4vEXZUdyBrt5L/V4RGRBIAgvIzkOsQ5jkAV0EYVIUtaQcht/5mT1vm7HT7ffhtbq7W9mbAV7NzLor+LOs07Qre+CbIc9red7IOJamEWlr0jyXvjh6583xq22DpKes13P7VqPujqa1HagroeHH/Q3HSWfj5JguSxD+cuVvcg7tS+vhuyc+q9ce959klM6iTebdNKoITXkZhMQGLU1F3BmXQGi+rn4v/GvKgcTB89t111wQ28B/a1g1Ow+9771Ki9cnlL08o6oscbRY8MpFRtOdrEhHF7y9TYPnL+S3SFiUNqdazxXiHwjT8hF/vFpQX+0m+NET4eDOuSx5o1De+AY+3MLlsNGo+5QvPpOr+i/tZcjuhHlSqfK3VXWXpbygCn5z9VIGqTwchVLqnC+hcghwOzNW8NOFKkhcIdTK3K2h7BPaWuOzrxV05HzeNjhL/7gCx1fcFOTYhi4xa4rGMBExUcUJIXJzyU9Q9HvFCDZXBboGLismK6vQPm429KW/Eg1fw78wi/J90W5g77qQemBMF9k1J2Brnmy2kfin8bOy88xewXnCRUoHWP0XIfz9d7pBggwAtVe6SYleBFoMkVHPs7FAngzVMAaxCWiqRAqplJz6fufPA+wx33OkcRvSZkAk7+IYdsm96gMUMxzfD70HvfLt7J/dhOSqJTeFSqWPY8/fkfHMlUxXuEbWlJdb3rnaFzZUUio3i6NbZNr38V7iW82VOdlgwbnXmVpZXKn/gBXA7JSjqwHFD/rgBDjMBll1qCB4vZ6njbfF3XLn4LHMgW9OEhye1ygeBiPoGBBDV4UY+2Qpf14+z+YICxOIRKUVvm0xobXq+vS7DsELo8fy7evv2DFHmkg5s8hvgaNiNLJOWmIcARgpeuVW4xYW2t9+UDscp57l+QWQ9FvDK3hgtVTHlqhD2k3EuIeKG9b7WrqT0Ms6Y8Zu9uJF90iTmjBiBG0DTRg/2erDVppwLr19y9b7GKC/aWkxOo+CJRGtVdfk7BmDTOMjmrsHiRU/NgOcAIsFBg4Jlntd4YKYFfP3KzISq0QX+y8msNSUnxNeGceujMLVbLBZFfOfrm9PS5gdpmdkKeTDMRLGwBwzAHYRBu/nydaswdPMAqW6poTGtjhjWWzUnNVGdrMGoNFUk+vYrSJp2mfNpS+fqT4UAC2OPKNqLYfYGo7sD+Y9Llu8LSSa1B/OfAV5J3jkzR4ZqhtR9CyzCw8l5sQctJ7G0Bn45BPYrO5JBNlBr5KhZVAuObgbQ5wqBxutNMhBs0pRVrHjmE1WdvDPQidOh4ZJtrhef86wOTOOGAUH2g2ZiwMQ7aXYH1+Q4ey3u+N21Z3rxZq1SvNicbi6aIwzwz5nVu3sE8mTIqSJB6XJUO7yRqdX82WgGJsKmx+7XOaX8fpfAJvNs5Ux0k4T5wvtorPKBHbiHOwEetMcOxETdC6WJdA3TAtj0iPvqQUQKdXqg5YMbqwVxard8wkQI9cKurjYy/Yg7Zv/7E4mkZV+1uLiXtIjLTz80rVQfyqaWYk6JfPZMfzRxMwBPRS/AglzDffi0SKenSPior3CMI86jjodPek9nyd7TIvVk5bksZ5BaaLaciKr1CQj0xZpcNvjgp3zBjCJCc+JOL9AWLjGzl9apbNoYmq8mlCVyXgAbXfXVEPOH8sniYcmQjgaV3ybgWJ8dLW7QDwnBClY0omVNFBSjcg+vAaWk8njEwkPvtMCABsdDHw6aMFG1SkMsDH/W/LQJqFTmicJvoXATqW3yc5clKfIIitHFAk4JSY6RnZPuatanLXPaFfcwIy80rX06xLCKztvv/Sx6qvE6QC8XrVsgR0u/cWFSJf/3w+uCn1ChCKdCdFBlZG8GCHktjubNdvdU12cSXEZ7BWG/rabcn6SjOzxzw+GmPx5aH2A27nxhf4c4ptEk8T4hkoXuf/aJoGE5KkgcxTE/LuNVC+5S9CBnot0hpJX9WXo9rPAAWTplnGPAdag9s62WmCvVMLq9xIma2AUZ6wOXKFJQEaZ9jPpOKDzV8nbGg82+S6YpLW/VnUtQqdlmMfJsopCFz3vDBKPa568GBC/aZRFMkH1uQ2hRIUr9hCyiHZP4m668FFGsvMpJLb7ad0OAJorijjpZiMRV8XasxVmcgjrddRaSN80WPW/PPqW5dEcDH8MrpeOvKS1qpyUUPed/QnzSnyvPGyyY/i44TDgEmNcJBimnIGltZ93SUguEReDx+opSoxWAS0WI3MYEuK5OqR+59ZCmhQPf99H4reociZlguPsuh/wtxFwvEXlocd9VSST26hNVtY7AiSm8u3ke/Ov4pCw0VX1K3uxHvVSQ1JEeUZAr6/s8Nd1Z3MZKMkTuo25lf0M5CKGE+3U9OOnULpRDRsZrOpq1VTeHrhdxMeDa2gKED+eGNBd2F6dWMwcNhwJwB4x4D8RfjCO4rjXj57JhWM2INshEAF2xVmm2cwREoXZBJdVLtDGwAe+lIPh4SVVrh7a9j52ibzNfAGIRZgBfuAihBVh9zHN1zAUWzLaY4SaCby4vR0srLbjSyNwxZNgo5GbgN0btV71ozV/pGVddsOa3lQbBxD2Ec0GNQamwSX14slUnhMEv3fK+rCMHmLkbsD86fKkqDLa+VIPVOoPlorZ+7uuD02rdwEuOGMrVLtoyoFlYRh+OvKc8PaGnpxOBdfcaeMwwgzVN0XanmKErAsZlZjTMHhR5UVHy7AL8SsPu7YgDxNggynVrMLJ894/LGcuUSb4Ro++XKQhMqRv3CH5ZyXeABJ7q9L2vsQ4Kcf9Y1JJr46WSCiMs/EcRvQ50jDl0oVt9gv7gYbCgKek36B+E6AFcVIouw9HFCvsJwGFcLn7eqW0PYuygZYkzAZwXed/vInm8Q87SA3vl3dNTdUAeAwKwG96fVKX6NLZz6dqvw0QoS807Y3Ha6tFByPuPZehc2rqTfkgVka6U8S7SdjV7YW4TPMBfc8xgw0DSKHW71WVUvPTewLKMdFtAnR6NPOcR7MyljIE+EM9ETli/7udFBz0pcMd2CFN77yvZ85BvF4owRSOsQADtl1gWbuv9lgCqqoUqW4yMRrLI7vNDD2cBrhMbz7iWxVuZKKqjhS5ynaqnrIdW/UNvP5SFs46Ajph52wPZ8jXsmry3TqaJLnsXQlpsTGAWHhGLv/7bjddhsHpwURkjMUxCkg1aFXMBiJxQUO+LH2lLT397igdwoDsr6+3rJWQD+8r+jZ/s4G2jpol2v5ejAhr2fCCaM32kEm6bUZ0uXHL6fFH07nj9faKRC/9jxaULsA3dNB6NmCQuwO7HQydHtYcTpqNMB0iAtfvQUZOoIzBs0pGE82pDAdIOmKUolpASiJDWpSy6TsFbmWoZuZj4XFh1roQM5MfgujpEr5hsW5zVO91be5uXmMd6MTtE4xUpr3ZaY3k0AbK+EyNexZ15/TL9DAl5kUD9xg20J4IHSNUIS/JMH+vV463OdEWPwCNCDS2xpCHwxBr3FmUbhukrPlPALrECS+XZfVf0xBc493v8vP+B4MKtvIjUE1oHZBvzt0S5pnOarq+KfwhBSnfWnr2nOsjtukGwJbjNrIGrS0IXMYOJlPq+7Pt0gb++4upldNMLeAM1N60+BzrXNTSEWg6w8RbtAtyp+XcyTJE7s29V7kCDekAE7L+AEzHj7uaEO6FkxYs8Rukeh+D5E3xOgzSv1lowU/oe28dchxCE/cwCzZqpm3izlDnX6MGT3t1fRDtZ50Gp4DsgYNQH/CLMEteiP3uv2cXK6Di6N9r274fzfB5ldCAB5JLy+0zRP9uqzorNOIrIeXvDNKcHeluqLfe40kTujOXx65nzww6f6Nv6XGV6hQ9KdT7QaiStJ036seNCoYcjS7OgJZdivQKfoHLjszz8M/Yh2QPoE7Ms4XkgeZ0MmZPJebHt2oGS6Vo+A4wYbdanJS2VoALO+WZ/9pAgUNxC2j7bvC2cwCngZIQJTP/JbN7ZhQK9VvKwt5AkBtPJqyMIOPSylZHjE47h88uJD86DUsPPABPqT7CiU5CyzbOQAseO/1JOrWuVVd1kMLc9wLKH2pgwjoiRz3R2S/3a1zZjbx2A/3P8d9ZPwH5pgAZIZ9uTYS9uL9tMPLT99/MuzzTbdhsxrfrldFcNspfMSV+3jti9BXqZ5PeI0ULPYHWUBX0yytXG+I51lH1pnA7+MOxJygSU+jcqg4J0zvKsy90T54HJRDcjg0lf4LbGAT7mCdyK91OesdOx/DrQg3MCzjew4xy2j8hbNYk+Uhp/8Vwo3MTgMaDfJ+Ho2o5W3RB/vbjbXo5j1IH80kzumzKm0IaLhHRoq6ENSGK/W/dW+0bOAHT3Q7KZxQNYVAhKv2wkjGaFmEjCrC8cX51BbvCbonGyytI4n1AxRxEtQ9aHmxu93FT9ArWCvWBfD4LKpB5CFL8oUn5wKjT0KQkQLD9PLerdIW1T25Lqo8Erocyx5GyPIlhsRtF5Sswn6DylXvWavZSpVwK9uQZaPFzpvr9YNG7haUoCybr5cZQJvxHrJC7vU+ktKCg1FrWizL6k5BMNCG7qRX9yWOO5wptMw52oXfCTfONjZMv3O/yIYBcGeZtYWUcQsLTaSET5rSuGfxrQ49IdeLyOpwsiNbcu5XO92/JOoy72c6n7HBeEI8HPYNV3VCyOAtex5ZgBCbr7qiBWI5mJmuonrvM7qtFJ13qngk1uqL8C7J/7+itFamoGg7b8xu+Fe7bQBEX6m+eYWr1NrqGYGgmu7LKyBm/XzdmRIylxskzmqbAdY1FAgF9tP65pcBYgxQ9JJu2VcWGz7RXdmZVPcwy2bxubwbPV9ihZpjHYUR+2sjYiGEysaI8vSZNu41kaC92F1J7XIUNUvJpjd+iyJBSglYDwJgfF5IYOi4ubhz/LVRQfjJIqu0xH6HkqqiryrCicMMQAZvLPeOEJuyw51Ip9tOeHG0Jqsox9QguKu53rDkEfOJaJUb5YE4VI2DVK1gGCEw5jXq/d2zQVlkSExorXQK1MnkKgMH3trTyON3ZVIk05q5lK8zXZx/BUeWdGwkmEqOGWNc2pZDyk/UpIooTh3g2rMyC1M+qWZ8P7sKaA/8Phz34TyhqqZ9oaPy/P+rRph+K9vcVt4fe+OWXrVVChQJtAZoXpA3x3hsFvjTRx5KKxkJm+sco9KjQyHn2k9rXH/riLcPrOvsganE4R59umGyigMxvTi4IMk/11G5ivDPOgesHioZ2lAx9XT404rZ7HHmOroM3nyCcxtd37mK0q0uzho/BYYycBeXNZ3NA3QzsYASA5G3orVaWnQ3vKE2PxjaWkywdEZNbYUnUizlLQAXTYF43lwpftXCUvOhvFxic3ZEEK/KoAo3ofG8KVKQOKlMpXDfPiUHgsRPXdETPYu/DwbubmnzJEJq6Zqs+jDpgTXXp6/ufntOgQoiyv4HmH95IDacTTXgxbEDDgUnoVM/iB2/F1uNzgKhs8VKKr/l0QvjvaFYkVrrYLvh4CVFat2IAQvD5RPZ0QiIMRPhF+kRV2GMUVsM3p/a9b67ZVha9A6laNC532CmWArmFYLii9a54zrJ1C1DcKOwz9YRWxskFP6c3ZArxx6TLH9tH+Y0DH+ePZxL0NuJF4zNEXh916n98Dye5z71FATOR0T/CwF6NcIfLROkJ58U1WGHDP2EFR+mHyMi3yXSZam1LQ3n+Bqbv2eypmelbP3wcM+sw04TTB6IkXsYj7OIyc9v2gEn9Rq7Zo7YkeiUa3LztP5STvdiTKmzeMK4bWDCEi6AMX2gwJdxEqjfwB2Qr0Pb41xyro6UbsHsTpT7Y+lM59c57sTwEuePJPzk3Vav6SZoXvr5/shINlv9u7ye5PpLEmeqj/Bv12BrAsfuEbh7tKkVgEqs1MBR+VpbumLS3+by7hF47D0YnDnFY0IJ6Df/8KldZzy5YeJSVts5F6Y6bRPpQeHd5yOHq0UFNvpiIAnExvp51mUzE5sV9eYjp062CQi3kVszfDCTJEn3QfYo7IYZAlHYxT8FEoELF2s7gLiEv0kc+rZL06kS99RBbyFjF4daI0ze5YXZiBhlQq1p3y4eu99wA87RESJwhohQ8R0GzPB6Wxgcmn2iV5woPiPYoLa/9F6Hq8zaShfgF3jTS2s/qC6oCKM4KOhGvQ0pZI08QKfHHO+LXyvt1zBc/w+jrttszKK3HFVNRcSHyJ/QSgADC+xNgeF/3lEbnZH26YGENJIH2FeruLe4JNZCYLKwClVpbRiLW4jZ1h9cv05bDFqQ0iYdbGhDawXRnYxgK7G9p8oAfH8e/LRF0EdxxVdZDneX6J2DPoQJhf3Z92ApRMZBJmWaddiHWtBN4qBtDkwa7Ahe2E/U8KIBsMpJ4eWG+iS1yMGDaUGqeRwCje2L60vERLVhp/+uGQ6V3sCGj5G1JKGvG8pnlaioTwPIVc9TeZk9LPswh0IBAVW6OE3sqaHFDgUz3Vd/gLBP1jOwo3Z1YBcPpUzFnagF3NL+I27LMIcTQTy9BcfCRp2Cm3lCRb5lwXQ4ORiJfydrfNoM1TWhOHkBpBcinFCinW3hcbKPs/TPKHGWNB0IZCo727fe2ChADBcV5fyFIaziwN41zT1cHlsvJkZgg4FqsXZYgTFot4hjQK2xSAQsuF/S3W+6miBl5Gjx56U2ZbpfU6QrV9VKOw/9yvkCaN4MO0Hk0qGrX26nAJmwNH8WUCqu1HegSVV8Xd+2KDO1c2OjLpTPTJ1DyFd/T+PFiVa9jxrM8MZbSHbO7wTkQG/106+LKFJxFziDLbmgNqA9GGFVMUeLkmhZxssxxT+Ek6xwe/T+vfeZlYjFZP6sfjV71nMyig8T65dcodGreMTDd9+Pfb96fRoyAHCAGqiTao9uX+2OplFoJe47LDucRU7WjQPtyHSkAv61RRqoGixh+0nBAd8sylph
Variant 1
DifficultyLevel
623
Question
The triangle ABC is moved to the new position labelled XYZ.
Which of these processes resulted in the new position of the triangle?
Worked Solution
Reflection in the y-axis:
ABC→A′B′C′
Translate the triangle 5 units downward:
A′B′C′→XYZ
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The triangle ABC is moved to the new position labelled XYZ.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_69.svg 350 indent vpad
Which of these processes resulted in the new position of the triangle? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_69-sol.svg 350 indent vpad
Reflection in the $y$-axis:
$ABC → A\prime B\prime C\prime$
Translate the triangle 5 units downward:
$A\prime B\prime C\prime → XYZ$ |
correctAnswer | Reflect triangle ABC in the $\large y$-axis and then translate 5 units downward |
Answers
Is Correct? | Answer |
x | Rotate triangle ABC 180° counter-clockwise about the origin. |
✓ | Reflect triangle ABC in the y-axis and then translate 5 units downward |
x | Reflect triangle ABC in the x-axis and then translate 9 units to the right |
x | Rotate triangle ABC 270° clockwise about the origin. |