Algebra, NAPX-E4-CA23 SA
U2FsdGVkX1/MY4pQ6dCcsoZluIMYXeXiO+PBL7pqGpeEIyCuTw3yHyIievWKS2JVXzQLTdMsHDyey4dmmP7uf67nD5udK+5FEX8dsIA2yp0knSEaSM9c0DbxAUPR1S7iCZAKM9mfoh4Qn3tb7AdXuT2UixVB4yx9+B6WbpxaCtbmE9ZQSVdWKskql8XGEfGFCSF12noiwiwy7yIQLzPCV6xC/G8QRTCMTRWEYPFyqAU6bRzb010LkdFYAHv3EorOgfo7GffXpzmR9PdsBus5vD/jvDDpUT67bMTKwfa4yg8eD0E9RNHcyYgeW7GLfiMdCx1Zu7JAyf/KimYwS6apG+YxXFhRvdNkkztR5wxsN9v4oZc14xK4Toni1YZXuDheFJc8G+TGYcnIuZvQ2YVoT4z+fNiKhnFX7C0vbJPZyYhqUj4ZbQTCIFIjEfstBUQ4ZNnlW+RNoL+zkS+o4Hi9SHW85vQ9x5BOYOdIuk43XsgZxGu2rJd+Wwb1dcxijQT1Kj1+yjE5BLhEfbfzmSU90YX1OqHRpAr91AH52nVdociclMJs75OsbAtCpr0uN/C8InLDyapkfbIhP5eS0fRPwSZH7SGHP7V+N8s3C5hQUTv/fIBWe76y2089HFl0sgqOIR3oDUbXkKFRJhON4pYr0/J9j6JAsr3gBZ2XYZ4AFopXCl9ScNzyLldSQ7PfC+c3VXxykVQ5F+D0vhKMR6lQq6A7SIjrCKnhHOfJ5f1yflCvgsvDqRTUDl+IQVDN2tduEWCTktgCW3VYaXj9/lmZEcE7ZBMRIRB0Bi9sxPkSVIUDy1Tgo+Kbj5lxz47l9/1bzaNya4xXx9jmhUZ12eGWatyRBwG27ygeDLm3sz2+REVPzWjJKW9zJgzd1DPoCNFP7gFUvqCOnDVkbY480JcrQEHyBrAFoyTfAEdGmvQPZln/GPfNTKAgrRR7Mr2UftFmau8SgWCRK7jK6fhPkJoSZgMy9t4jZHeKP8XLvfh9ycxuND5Y5V0J5Dso06+5xU5OcR9IX0TFhVVvuFlT0LEqz9+0slA2g75Mz3yJeYbQwHHK2gkCDsBxhPenkjDdLPSjIbzowzaS/fzYTw/ArKjJErXOgfKGiW0KgStFx57HOiHjHuLsgkoC8iDHz2fuyIUHcIVFmkZAVVVNuqZUjm7+71zrWH8NiAWPQzNf8FQxI1O6LaIayy75zVC2U1kQELuoTr0zMNFsWD7uvAggzULDE+OHHNtDQoM/y8jJy1dKLl75wwxWidy63Ii1FX5Wai2rg1uxUwtwCCK82B2rkPQJmh9Gji2hpWOaEomJYGl/tZIOiI8PN3XDqQfJZkE7GgxDNXGjXTx47yX3kHgfjpZtoxJ9iUwPV8iyiL+QVXGL1aglIpZmoiB4SwW3aCcGnmBtruvA2vDDDxcH66Qm2NgxQafG3AF7Jk+HxMU3HSr56IXMDIXiWEtWaw8RkG7FNkMllmpjn2MYTxrrPwjTdoYze9YfUoMv8g5LgwNiVDkLXtSs5HoXpG9Cy37wvVPYdpSFzuryrAKvW2shtcrYLPfQ7Hih2sj2TOAdPt1BvygyF5ImwztmP043fQaxAMQXR2ZTJVLoWrdSGdKWzJ+564BbImcspEQQJ19Ddl3uDACS3dIyfO0Pn8b725lSXmISH6Uj1y2Mojp6hpO3SKfuFQ/pR476DAIUV4aNHtyEgVhcFiNzbK/HFB/z8kQbKv/nuaiO2eY11GXh4zArCf3LdDt3VJJpgYxB1Fp6sNLaLFSu5xww4HrLvmcbkDSsEMf7m9GlGVM1gAJ5Hw7cjjnuEAevrdpDb9wdpYugUlxHGFG4UCiB/xaN2WAGJ09DkPJ+eRbPUM1q/OJzX+hp4NocR0UNm78mJq2C5Z0Y+h5Volj1peuVp2j1iP/2z8Iq3SQ7J71JkYHttcNtEBmm0e3gfpn5Rz29md/NXjSLaFipy+ktSiCeYuEGs5SYqcYX6YdbVuh8U8L8MDEaoneAg2/gQlOfD/ZJHkvB7t0KkCJXJ6+2rrSJd3QaNgSvuGU5JOVLgoOUZ87WyY6yRKEnHsS2mxVYMD4/n+4Rzatn/Cupkwc4gZx3ngTYJcapnUQaDMFKZEzHJfMLtg7ES4nMMoj0KQsjw80osTcUemX+yw+xVLaBYy3jU3JBDQ/zV4uxDxhrrnujTJgYIZMSyAji6bl6x/3L8g9wbZ5vUaq88kB7xkXxRI0Ua9BcLInWI8DMEaYA6qJ+5ueFheOP8wS7iLJI7neTA9geBs9mGic+ZYjbPuQljuCmWiksUzaZT8bHc+Sh2NRwQw6vXFzoB3mQoP9Kyp0na8DwHypqst5zRl2qXSWmTLYxddArFFMKC1+BxZ3RCo47XbHYdvonR9q8uxHjcwKD4cGbx0fqGTYf+yy4CyaXnrjfDwLITqxum9QtU5ei3cHwR8HGNomhZd/8JF2FeBqYOMG2djo84G9ieq2UnrApN0MIIEhVAEUIMvedM3/B7EcsMoU6tJG4MdU9gx4D32pikrURAc5ZB2EaP8Y7FPVrKyz9nuGbY+EEhnaKbl+1acBlYKUcYqyhENBqGfkrtsw1ImoINz8P1GSOGmRdq+g0KYlhZZEVLanls6+j1PqB8VQ5LqCZmOdswnOmSimzW6EZz40QSr9iFSMYf6TZLUrOfomxyZBylu1QDg4lbbxAOES7Vyw0JxHbO1ZwLwCp0x13CAAancB+0Rwf/rCMv7CH/ZhIceyZwghrJxVY6dAR6jTilGR1XI+yqq82j1a6/yxYT6yfZJQ+294PLBVpf+da4RdMcCVRBxPM1WeZW6SwhPYGojNs6uIgRnL7nvhYsFB7uFuc+Mevbg42I8Pq15jo3nFLy+g+SeLlZuiITRp57jLp6zvEAPGTktKWsufe5N1hTXY+kvF8aGpcxqvVMkkKjt74nlq86pXWBPgLAbuUzIp19czlI7AEBUv8MfNHuHTAecZklSxzpcn0uwgkw8sIRL4OTagvrTCTaC6JNRZZTAWB4TkO9IfhOqNbiH78bVlJwbGo9Y0DUgbvEYGT1QzFmkt/Gk4de4nRNlCDHIiQM/14OG365KL7OOa+lnROWLFEIZ7RxVjRIOPKSLmqxhBpI7OzYM8KSh1Au4xn5hkuB0XZsTzYuapLvnf5rFYrTbeMmdE6rJ8VuuUS16JGdLY4Vr1fYV8fIQjfxF8eMIE1pL4A/OUkGn/Erh1MVtdX3Y8nLbquaUUUrx07J6DaynZ7oIp7TeEN+PFud1AdttsyxKAjeSfsWqNIOr+EKeH76TLgJXq88rvCtv3Iq1g31RfsyDn2XmukWJMsSL3GLldQCoq6eL0+Nl1Uuoc6fBkWJ1xrtUkpXm2PM3VKTkLj3A0VtzjI3vvF3QIEytqtajdFaK22jhQRgUWPa8PMqCUMZ9gbmoczj6mIlBXyJz6DrkbSRqllJ3lDbWIqSvrWM0Dn5FIzh4P1vaQQ9FDHHkAfTB5oefwzAVkPmfpVjVDde9G/6E4exQEWdQvshG3UKyL3Go5S+1WZX1YsP7FbkYs5pRm51Zaq3xks34N7y0DGe885fKQhXQZn2jMmH3ZxQLJooVaw6suckYEmOovkFM/V+y4TuFWuzV+Mz1ekR/CRnpul/1I9FXajZjL0zZ/HoTdLnC2w4o/y35ZuA/EOephTLFukNFdOBBciMm5N31Rtb8i1/CjvVs28OvFuCe0z15e5VIE8x0w3wkL9h0Al5EYFY2/4BjdjHwRw8afh18FljIGDLc1C7XnSmxYnnly+82z6juuKKU5aBIQ9i196E2m0m8K7YzLZwQ2kBrhzyPD+gDWbIYmjHQ0GfYuPflEWZtav3zcme6AgUsGsORU5Wg0mu/FIMRpMJpySWvdISj5IWCRLQzni2kFLethIKvJP5qwzriimfncBSUQbXUKzLNf+5TwTkgkCntsAcnRfRli1BvmIqAs3OUGhfY7VzAdOMtDKdQNGBtNh+cTWrDXsEF7X+AR23kmwyi8/1GwX16sg1bZ3QMdd6Fnwjl1MA9wTshhbecqRifnPnc8RBYfsVwyv1eq2KnPIgt+63RXQ7CeufmQq8XTw7pgrr+yEqXB8nwHzbfhYnADC8o1mG0RpSjgFZjHexLCAe46287aKAOdP6kzGk46jNg361sdg62x6AhKfefL2L6ZyFvv1X2KplkdY23MnWZ+2ZbaR+Aci+KI2f4/N6KrBZCfomX0U84/phWtXD+iDtG+VUe5GedNBnEa+JKiXuXLUrob00K7BmqTe7FLgCqakcabExOl0njgvBKmd8tJL8+FwVCmkBzbKw9VHXYhTq+nZceGn4Mfbstl7KPtrt53ybeHAr+UKaOwZlJzuxZpKJ86L8umEUdDQIeqhhjzirWnlLyRxf3dzTwp9brkWRDfzUVnxnYTENw2c2TbThp0dCDlPHp7MnMwx/5ZJH0iFqvUnw1cg43ZGndCtG3wAaWiN/9PxCkpQBnwcKH8aIefOrv0cKfe9rdA4pLelHU3l7I7RxGyo9tMgUoge9rp6ynMAKUvnhd/hft5REgLoASQZlNjB/CBHYiTU0vtU0Ec7QxZOeZTvWnIcaJA1v+kYLw9LmD6lWsvGm9qV+VNHP+xWRZwNRa3t0IGciPDUg8wOfyRKVa1yj+Vz1fhO+dBNfSzFsO1Kco8sxZuHTbDK7BfdgjztPAEQ54bPMWIfZOacdRYNVfwqj7sYh1QOga2lvKVEtvFk7fgXh5HeJbZtfWMW6muPAceIeOH+Q/4rwwF38feEqprctQsbyKv+E41rth1EAfMUWQA30hW7oZHmIvroamQ1HEWJvlmh1/rtF91BMg4MQj+5nR1wocPHiouDjHeeQdbaqh65PZTURuL97A6DFZatRNLS5zwXag7lEvwYehEr9ysUn6EbS72gokiggv3AjBXQZelEUF8V62GzQoW5K1abJODcBxXzSymcdE27ZM53T7dsRXnpjDPCzVjSonFD1Nqw4tyn5DgUvse6Vg9eV44LK8MM1dfO2yUZeaFK63zbxddp1Xtl4WQtznvR30ro+jpg21pBNLPmSDihbQZC3Lqk57W2cIFL9W8HrXbE2+bb1rzytRD6Y2uiPbrVBBP7E8IYeKDWz2bZC1/3t54gg70L6zTijeUIwZBqXy2c1t/dATzf80l+vGhAmWM+A46Z58H6pXyDZkaoRNPsGfuKVr6X6hMVT5dr53usXTS8nkUIX0idM9oSJxVm/AOVfj95WNUPutsxG1dWVxHdnTiGkOrfoooIW/VcLJbzeq/7SoHHzTKv8VAf40QtLzceaIuq927vhIiiikK7CSwa30e7/N2WkY1BsePUZM0mxqJ/qh7x/1sf/uKI1a/nOgHtIZNZrKG+7eMgmb3dQuPErxa4JtQHuwNcdxfHP0gFngxSKSBMKZukE/cxsSZhXMXV9KGX8dQUhq/mlgGPCam/00QpMxhnHLmjCUqcmf4cTmuhF/4YVuB2J0ZGNbqL8OKs4yqqatAeP4ex92jNkZLRJkX8ky6dyR/228n/zR6zZvOybuzwPR8r4UDKK7QGAOF3DqzlHbZ8Q6GG6oNSArrJ5pPwlAK8yQ/MBYovw0aKK5lI8unmYIT/lODFK0fs4bwYArdCXHZffN54FaUstRq3cXBNN9nCREuA7ACHLOjpI9R7vDDgXEXynbZXEboqqWuifNa88hLrnSYIS/QdFc2aiA0MTNGuNoyqGHiCFFlXw2NhzFUK4dXdSsA67Rt/8PFYYDtgSbpqpA1KJfjTqGUn0SOY83bYgL4ZhEpRl1EHG02HWmf6Zxc3Tsx8V8tid3Yprci+hU3IAKfcjU0kfrS7Ftgitxc8iNxpU0OAvRqmZa5Nv4D848k+W3Tcd0V+3LgMrf35J7ha3kxIxCWWPYQXb5irwIOYxOYiG9KdSS89vjDoHSi92wU544Pauv3sq6Lr58fLZttOtKAuaNqzNnERuR7J2SUcGUf0vL7ZUiJRgiMzCNydaRfk8H225rufvAqQMkGf3gIx4+Ap3+IYJ1VnCkbh8dMzBj+iukbBwwwSHKSTcXndAKcMi6TCBi2dsI+8+vltwX2qQ3/+RbWCqVsKOl4BnuyaiaKGClHrfLCpuh57HgAipvRPOhI6gZkpFOiY87Mrd3nBoSLN9Bf22inllfD8/M1WF/+bO5vYSE01xcB8OAYgaQr55hvaUGzm+TnsFwZq2kpkGujyFNUQ+/W2EZfH9jIlLLN6ICBHJXGkQwOtmb1cDyTF8VfRtLmAKKLdb1ZgzVg4UxXGV2epz4Em7DuUFg48DZpNO0HKmlpiHBNj7eimUBvbu93nKtIPcv4SLbqo6URfvJoWoHuqILSofzNReLcx2CP8OYq/EINx+HOgPzfSOaDVs94O6qskHNtInFJsgJJ9iY7f0MopcVpiqbAeCdTFGu2tDb+J2spwcxukAvnkTUz4ICZ7u0Gn+zhJDGCaE5yauA3dw8GUw/tW8zWWimo4Zxp7psgMPzGKSiBbpMnbwVue9iTOFwYURV4V9NzPXXvQnjbCbB4T64WznsR+jAQVMAOm0mNN2ZfiCFkefrSv2xwwiZJgAYvw+pf9t0/UxjkvrHT3oghJZ66eU32qcrmCHOinqZbCmRLoWQQP6Gr0Pr7JEMfXh1XaRlPmAXXiDcHP3z6p9zKVsPRu7s5RmYRv16WcHt87Sq6tnQ/VkMb6wLDVNaBgcgI7M5wYla+zQvdtoYxPwfRWaS88vbEhFzddHFGdpjgDK+Nr+pvgpfQa6CP8gsv3CIVM12L8X8g6BrkG7vF+ZLYQu/wRsMaQI+zvzTozOkhFnzrvtd3c7wFtLUQ6vvbPq0vjKOm7toIVgE3K/gGMRvbtjrYq9fsBiOQbFSnYsUif5Z0y2npA8WxpF2/29TsrhI0JV6Bg5edKgS14qu6m8XwT61SZyJDgOCP1l+co7klwJ0X0DQzy307HTONgIRcCKb2MCNGKV7F5eVrj+iZcVzQZXK8O/8w+CTtAenJA5Lsdg4fYb4zn6qvYmutwQByK2Lpy4+saRP0ySgeNz0esVpazxCRfWW/XikrDWDExq6P/bVlqJmIZnMAxeDPsvOo/7fcgybCUevh84pJfcegEwI175i+Q1PpC1RNCLpxOpOdv9VvBPv+U1QHxlnbB80qq1opQuzWV5HKcfYKlHckU7OE4qNw9/KTrtHOqnQr2p2k0MlK4qi96kk287eR0YbKidBsgsPtvzEQonTKGCnd951TIzVtqqDA1KkzheJTDIGh6pbY+Xadxo+29VCvTvIiQDrH54o0MrRdL23iTcNSRRaz4c+pr98hK0OPREXDR2JyqNQ8sf1sKeV9CgAyKxVX0PLRBfSzN6SLReJguvRkQk/La8XxwB/t5X2K/A2e7YE5sZyBNA/k+31JASdzxmweQVYg7XcVDDlKva4ma9QJ+6b3M8N4jnjV5mGqDoENpWLE4dNMudX5FRpdhm5zo4pvInA5V6EGzHJjJzlD5kf382xIYx47hk92u/IN5EBL0PkAN59KLtR7PTAR5/f8AQ0sWBZIj5Ib50j78Y/3AWbKls6DwVhuxr/t6hj/vSOPmOfK8wl1Tm2XokfuxfmMu+ADkNHs5mnlVySHYjdtl2tfBOtqpsLBurNv0Xc+Br4vZTOfR3FUcpISZYYfEWJ8E1R8QUcxZs2kCrwHbvki5l8b46IaojaO88xM9hhPgw5wzmzftuR3bJUJGnpUxx5AXxwuwdGyzsfQ66jaic8UEFZ0e0Kt5xVa9H5oku9ULc/p5EXtq+K5s62zzJaBlJIHfxRBTaWJNu0RHhDby2MV25e34N5OMqIHTRZ0+DfvYxl2roTGt3KkTmgj3RWyOMSVh4PDn6Iz+NiAaBIbWkiAgSz8kKx1OJ7nLgyaNMwyN+TpL0uOge8pZIHZPf8Gvi1ff954OOc7kzVkxkEaDJnBryWLxbPOrguHGPo6jLTa5V3BTKB6HF4qJawmMU3S1vuFb6hA3PiknRnqh//+HZOrm/ydbm9YrfCAr7dkPporegq6DGrJRlldR9ERNm+qYGUv9Ozeas37APkqQNwAhOiLKwgwStungFlYl9ZX+tluM9FgyqqZgw9VxS8Lrg9HLslXu5eunZWKTDb5V3Sq7yqiXn+awORjfsglm13hHT8DZCLDI8Q1nvX0FGlHDPO5YGv+TiQKDI64WgYzrGHNVA0sst11sMFGZHP423nq+mpLFkNzNpVUKNb8GU2fxQPx4L7nfoElA+ZVCP5kEx6RD4RtVIWQ3sCqJIINmb4hRj4zy3H2mic9wQUfkGg1gtCJTKjmXfr9l83qEB8Xs4KOciqUmLQy8L8jgrHUwn7JSkaU4YsdaXQDwqx4MDs4ehRKfkYmvLUZZYG4utZK3u/Am+TC4TT0gpoAkCCugydsQG4INtuF58boAK+5XTTBrUvk9fRNx/sPXU4fqZ7J6AF8/6lLrKL9S+so+N2C8fB0VZTuAhRwtmsNrTa7vrjaothPvCvNTm5ezToOYni+iZXCtdhinEdJVU4vbPfb0IyCEIB/wD76IgN2l6i9KRZVgdrUSlnZOpMKz7UisOzlZH4Gbroic9vjyoaZhkFNdipDCJe2iZSJvdK93fvvYe0tWE1LhHFceW95uEi8D/nkLZmMJUguw8ink0CDlUPZf9dEq2EWgyq0b2fbwgMZ/uRLP9JmF9gs3HxxulrbL1XPX2hVevDO2SxfMy8UcRE0C94mq+Ok/swf9Gn+LCF7jHmG1Z0ustgnxcv9nflRz2c/PwXgyF/4vqphWhBjOvWN9A4iFWZEKrp6tOPRCr96FmxDwUzQm9twAt55d634JV0i8UazV4E7qbi3BAV3MXgBjjgF8wK2o8IqKzy+gY4gFm174fECwGK7vBdZt2lB2M9GijfrG99+Ki6nwAvklwR5p7e+yZZFYPcOtVAXBmQ7Mr3dYMww2eA+06/P48VCQgcfG+6N6ai9ng6SYHuwqlPsx+5+HRWj5Jb9Xr7TQ1sHM5rfX+6h+L9TIUjQilPSYzu7B9actT+5RLRorMAM0SsBkZkO5Xw6mYQ2tCpTjTkj00l61Ihj1SrbarADuqDrXQpW9JSGV53EeFhj3/tR6H21tGNuKIyzzPHDMtPwoGwAFTDxp+jpRZd/qWJ29BMErotKktcVUIJtzowugWPYqA89sSt6k4ndbvwiieiEIwK1uwfSlvft50DxYmB0mFsKZNbfjGLPQWFL3bnz04uN74dlnv0WwXsMEBfKHnJMw2fBqJCBkUgrxOQqZQj3h9z43mn8U5ApRG7Y+Z9CB4+BafOk1lKwNqpFc6YRPK/qJsH3vooWnUgmKjnVcsoolw06volnh7yi1Nmx2cwVcD4McXnzsDOaBqhk0Oms9Bdrra1faOFOlCA0uV4m/WJUDfQyknu9be6Q=
Variant 0
DifficultyLevel
643
Question
Jeremy uses the formula below to estimate the population of Amazonian River Dolphins over a three year period.
Year 1 = 2000
Year 2 = Year 1 + 20Year 1
Year 3 = Year 2 + 20Year 2
Estimate the population of Amazonian River Dolphins in Year 3?
Worked Solution
Year 1 = 2000
Year 2 = 2000 + 202000 = 2100
Year 3 = 2100 + 202100 = 2205
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jeremy uses the formula below to estimate the population of Amazonian River Dolphins over a three year period.
>Year 1 = 2000
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{20}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{20}$
Estimate the population of Amazonian River Dolphins in Year 3? |
workedSolution | Year 1 = 2000
Year 2 = 2000 + $\dfrac{2000}{20}$ = 2100
Year 3 = 2100 + $\dfrac{2100}{20}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2205 | |
U2FsdGVkX19JRqEjTK3NXodIfDRc1IUP888kilD2V9DGB81NbDb3RmR8A8pYPsqxY6LKUaetSwXeDLBiD8tJLyYlkbX6kCx4tmeikzfoXkq4Zr00qFkcr+syBG1uIlW8XGUHwD1cnj59UKXykk4FODUUehi66p3IcOVhoCt4og+wn4xnkRjK1WEIM+EeC5zfD//XM7TCJV8Re/3S6kEApcZOka9ZvSK+jKtof+0wwN9omr0DBCFekT8ctRISfBSg41Mzuhaute32cCU4qdASym8DHSUnJX1sQAh/kUw/CMBBOylaI1Eh7BsWIYwrltYrJ/xZM0UHoXwt8zXw3DZDBhM7lTMac8u8SxRRmQ/tkKeEHTxUeErH/GrzgMnLGKqccE1fYvdi7j1QiRyZDEAL9KRK5bFetEDM0K7ETbkpl0HjJN3/qfbinTn+1hV1OWoQDrC1iETb2CEKFvEaonKby2CVjH9vYon+y9sieWpwUuC0odWuV9ZYRPVaIGMU113jyiH4qX9p2hpt6rYZq9di3AcLwwsdlCtPttAAZ8cNiW8V6dMj7UyRsMjf7tkTlcpaFrU/gLT0IusRBqEK+LF1lBoa3O3HtNdkcmNDboDoQuMjtwgzdGup2uSPylRwF3qYKSshtytCNvq1Tyg6LexCJ4VwYKHinz9147Y52Db4TJY2xmCTRi4x0RUTNDbnNxoFoZbRqGVt3JAZyzSpBB2JushuTfsd0lx+8clg7yujuAR0WKKWu0BGV6ePnMJ2RK1b+MbkNZEJVxhd//tZEGcyZqXNd3w4ZbklmfBgSfVq8tJG3sdT/Y2eFG6X7G6nm78oFaz+MdDPuDCrfLkG4N48T3LSR9W6kPskNvQL33SuUwCeq6EmbdhfkahbEFGgOUN/WNqqpDkrOFANVGFnPKrp5lyfWMKDhIcQlZh3CzQpJEeUlsruK6MrFZU0aclH42Kk5C6Z6LXbFyrsc/89zekhpPNU+25fMPkboApaaWOg4cGtkZBOuDoEpVDH1/Ksnj9X+LvEX+3Y5G9fj3zYkMsHvsVgglvel0u0tpdG4YpFuNMIt/QY5SACusf9Avx1QqDqwBBA7ZwMMHUSCuOPI1lktKPt/2P5/2flEcDt8+/Mq82AWk6wSQgIoWhr8xwj8liQNM6YuUxGsSL/SvE5HHVOw/S7W80cSWVPgPKz2GiLtJWUHPh+DOO/vxAQLrvcxFUpiWYdHrj9nRCQ72L1lM5T/Dcw6q5nffnMhTeirq+y9QcwfVsNcvm9rdiQtq0g7a0Ntulc1uNEoT7ZEiXmXzegx1vs9wGNi+vinrOkdvVDWPKfbZW54erHUhC9tgGt3Kxu80m2p4YrzxBSMzzzpB1zAWOV+ODcmP26JlRCw0iIM/fLJ5jNcXOhd0HGEPPNb5KbOunGqO4+IKCCU9awF7jnQXQ8ial/7G0YAPYCYx0sl9uKc0/YMpHCm0CDW+CBsZqmIaX2Nwchny+18DdjJyhuRBnNzHiAgg7PJ664WNNZMRW9wMG/yNStayG5jYGAG/AEcP4nKZCZSYoEuqrqY79OdhVHshCDNy878X2wZV1/pLOb9Nixr0s9c7QMN1WTl2gbeeEGIPXUQV9njNg9DpraROiYDKRISwvYxDqKiaaWflpPJ2/esbktn/R6/qQz6IpqBcu23PXwtUNPUxZ7NHPatAfxwsmtM4MYAoghVqEVqGnl+TpfKRtAyq2e6zndfmcosI/ynidb0IFTKOS8K4yco2ookXSBlEd+LuLGLW0SoCy0Pwu+SXxgCKi6s59djcWkEq1Wuizhx9sBdLwCh/0l93sRuemve1O9nPxWlaiMRnc7gCgPXxk+TUtCpM0KrVhs2+KeOURx0BzsYFHwiftr0DhA9Ei/IZ11nFt/8YiqkAsRSmKzq2IYBiFgl+lugmpH4v2fxTVu08PYxyVD/SNTrPM3Wg3C4uwJ9L4PR4xda3lR85hJdL/y3vk4dcEB7dp63+wpFSOenxpPDYSCELX9H316oxFnNK+4Ac6/kuCDVHEURzJLrMl1/a4Zkk6WK43TMft22IQPG7o2ZnbLTy8qvcR4DYoFGyjnLMFJ1g++CIpf1TXR6AN9Qz8TXxAOwe1+gIBlEr9SaVLYi68p8EC5l5q6dE96i29Krz/LPMakmh3i/bV0/MGWYTvI9mLIE7ZxNLdoUe3dh+ZCCrs45N7HEE01zX9zZgpWn9E/3SOepaTluWI0QI60mayCsUpBiP9Lc3esZqNeRy7edFwTcKh7fOLVO803Rda7628e5m9G6njM8+6xeQarKCKLm3TznWw/7cTc0ZDRWCvDgXDj/W/0e9nMvX12tTOOSyCnqO295z4CzC6mrcQAXvG4hDO7WZNeRIeV0LzOKEpzb9bvGeEMSivf+WLx/B2YzGpHZUr49/7z0EcB8+VCsfNa969V+5FUvR0PUGyHCfcD/RMviPzTxh3h6NnbHW8VAcdg0F22k93YSxQC9A7QJHB5yJSolS8jt5PJR2xJvWxc7/SgksrxFRVviRpnEQG+5XvOaboMDw7p4asp2gRYSbocn+IgcfYv6o0xYfBgvTc2sFdm/sj5z9uOw1qmybgxpD1xwn7wG3SBAcyiqLQk3/F72FShAkVBqzbfAj5q6LC+3Tnyq8DjtVKCOFyfaTCq5j4nq+Ek3Ivv8L2D6aPf+UsX8CF+ohTfZZ2fHLW2fkDZ7tVL3qcC4o/+SSF+duAn6c8toyHrEHixn+sRnLFz8GL4eFscHa6KwjCrWoqR8/lv5jZ3sQN+bz+eOcmGyWHaGTI9HWPpSQSh3e7/nMiqPjpiURUbjJn6kiQrY492EuTHwJUV6OwhpQtc3rVEWE1K9JuZFqn1CmILKtSSNbtMH3jzURbSnZWsuB6M8iSfwj8SgSeFcu4VLtlXM4z4RIFilvh5/4qpRGpnFYNMMrP0dX4SPwLe+Hk73HMz8GIQbsjkAsTeSSKKFzG33kCc7KZ36RrNCh1ODQE54JVY0Lby95UmKlmDs2B2LwpaYSOWIbWhnz7bV+23ShsX2Mfn+jCqSH2VN98CRhXfIQUsJZtPzqGTSJaFUuK3yF8r2VSfDK1QyFX8qyd9y1rhbuJs26/BKpgSs2RHZja2IE3pIIpVCtqYPklOnFeYeWy+6Pd+Rr8++u09kf6mMDk0W04w0J4DbtBpgCBJEdBPA+vozbbr4c8wAQbHMlmmt+373fuOAdF9ODp37gzX3yAlZ1XVSppa5MaC+V6SldFbgC/hEzo0Yc+B1GIFz3AoOKf+2syLQATI8eEZ9ebCUpVZ1SfacemH8JNn8nPaJl9zdFRxcS0NkuqdD0vk+3b4+KW72l2cSuOTU4RmsfdKObwiAgW2+d6Br+qkDOeTSRIFYoBNrXftKuxE4+LgDP/ocWyPJUMEqFtAIMi29+esen2jEcZSBA1b4jSNXUNxUtRDx5uyWnKRm7ZQ3877ajbC9ARXE74i2ejG+/9C8w5UOkZ/TGzh1fgfqv+qiSpMFNBxmESinMro6nva9mpnXKQsSYt6anQT3m3asMbcC3IoRUgj/DBEpa693EsV5wUNGBXZ5pzSxqOrm0zO1C1HFRZ4nvKOPs7ehXCKgWlXdHfcTmoC8+x53rgI7BDmoijxX3zf6Yp95fcvpXacJphOw9Gc705fkhdAa7jrllP2f78yqFjmwuXeCQqw+UdLTTVNB4m+/0bu+GDbg/M4nmjlGJT23m6SKN9dg6z1TVtD9aAkiyWr1CnvLs9OCtYDagK84e9fimcxzOVh/yJ8VjdrFZjqGcxXhuvqRV1P0+6JYRS2YB1nB+l3XgGclM5LNAabBfYyNSmlT0CLJcrLnM/7cdmdttXCWE4Y0OCqnSmYzGPUqdDWIGnafcETv5ioLJjdZIvmDgyYqfPCyKubUR9J+JFyuauJLYmssIq64bL7ANRfKj1jBc+f2ZIfQ0XgHXEXg3kGsmVPeIK+YaPB3OktxlhTvGgXKRTvIRz2KqI7MS0G9fdO796o3ZHzsN8itSYOZPw2xZmUAb4+yiMcsqGq/Yz8TNPHd8pu4uwf34RM5OdQ4cKOF93DOkzfERfM7yTLyycc+OFyXLkPZmpZjZCHLVRXXzS2hxldABt/nySBSjdkSEGReXgLYWk+f8E3vHUuk+qFViT+MpMZrp2MS8zAaqrnlsnwnLkujpDSeTolO72kclLYeLfuksPavG9Lue/xP3TtZLMph3jTtKFUWWDv9fjLoLAAtEogXGJE7onXakXuhIXovwlAjz57Q09nDX710Q070sxAQsvkocpsd0jpieXdaqfN1kZKlMInLWP52U09xezOSj4Lj21L97Tu2l5wSu0O1jv154mCCq9nhJkYvoZsm8NkKNqP+Svr6hQl4bTAj+RBHhqkrYbL0KVqsoT14H+JSCUhzObUu/CWg61uYOurDsIAnDz1fvoQjTIItQK1t37P5XaD4krYn5dwZX/wXxPU6g85kz8Hy5ZxbaRgtMZwNVFw900LQkxGvt9YcEnXF1xFzooCjXpdokIWwDtHLaYmpjEacBoK/eR5CLgu+qr7t/ZNZPIlp3gJuTQvSWnW+AJBl7LcBoXL9uxcPd5LDSlaX+UiHykf8zwIs/1+rArf9uRhVSbou+xN62qJWE32ey6+OXS+ktscl3PwPkMfSIzVUd7MFRz6SFGLDUbOG92Y4de00IggwHawhUbyg0ayCGWkBUtzYIHLYDk4c1aNI1is88r6KghExna5cIZ4lHvWFdUu3VX9+g58ddR/ILJpPizHJYD6162Zy1Gyxt3q+U+aHXPMzU98cNbAfyT0moQWs+kOMXog9n6+jUuv7KFhI6AeOIV3BOvRIyrwrhFv/iCbhVJi0shgnP1v0dsoQNussnaTAl3xfmwJICjdysYW7UO+BwQYdnw4FrhaK+Mbj2clqpoI5nRGjdoEwr9/I7yeJVnu8k7M90kzcV4e1fKsc/iwfsOPA1i2Pz3Syi5KHh11ldg4ffFsosRDMfxsmKuSn1R3UEHrRjhu732GVej3sDxIf0MZ0b9p7tX1SYh9pwfTykNJrYgQvSZk31xbuEv5p6AwgqgDr1gBsY0DLM37RdaLLEaMFPLRDNp77Z5d1UEIkwjkEJ4lWTFifqr1AYWAJYlavEDfyIKFyPudAiPBiNc0UJ++ijy8ISxNIlzzGnYJXcvD82C+6pxuABd8MH/BE3yDz8rvpvxYs89CjF0KL0zULRbYZ6BZ/sE3+i3YPV13IAFyvj83HnTYTe3N88X+P3WAQ8hXqD4vC+GhXlo9BSIcsVDSAyGmNaPGJX9M1vA7wuJb6VhO2O5QOhQ46osf3Q/uLeY9ee2EMl1gn6JeImy6KR6+sNKTcBSEFNlHKsKF2DXVG+V0fUPTCm711U0wwGRILr+najKBU+58fEn/URYrkDhTBWXYUCF7ADH5Mw/AVBY1F2bKTtKpi259gICqJdPeYBBI91eAFt72EHG7g0cSlcAlUa1S6liRXBKr6O2x806oVkZTsOrPoI5azF1/dBnPKv3Je1zeY8j37ghgmKm9uAfS/DfoRIxSp8toEeVsQx6/r6XddFkB1mCusaKfOJymkN0ZXehnsRoyYNM9cuiBY46LnpWhLGELdE6J83DPQbB+PtRVlhonZ7wDFBb/6UCcWTiEekQy76jFVTWkPrYljJO6BgnjOzdKiPDF1833KinMKRlP/Lrl0iaycll7M+MIzqWWbYyWCfRm2jqtvuFN7oYYl0p7b34ZFiissq2d99txMQ2H6RbMQgYtfiE2GTbqom+VRsuNVHASu09OahpBFyIoJBXkq3kM5c2FerHHXemGy7HoDy/fqX0lo8cCbsUWnEmW4wzOIZG5y4tXIny934I9iRRl6tXDhmAbJevXRz0mCFeblkcsaI+QbiD5TnGmpKtcfWXKcH6p4fKkwVkdRYGFBvtFoNxS+33I2MsWjiMIRSiswqHFWt/25CJR/s0X2rpf6z0riCCD66Y1vBkQUll09Qh5YXhb/l3gAj/D/TXH8jCoWn7gDCZ853ArNGN//7MQ/zZveDen801+rkVYQoGPBa6L3I0Sz2JbzFHVdN/pcrgV20UWWqxh3ZcT02ooWEzmBY0WcjiY93eoPn/KkwPRl8ajrr2/7HTk0WC0VmWuUrIFCs5I4iCRRWBZfQchd97DSj2T/0Rk47eo2zqI/iK1Bgsix4gEIskohzgxoOBkgpNvnLxR2c9ok4WgRU55VC3YgpM6OeWxsufM4ZskpRE/hO7NGF6f85gvK1bF1q9HkJSy2X5xEQI7mIFilkAUkejcJ4XpYqDjQQZ8T3yrKDmt7yBfGrcqJeiI8c4VMV5wr92BjQlHVlBM2lghXvcRXK/HYociGCW39vY7YnmovyHNlUrZoXXbuvB8AM20LbLqqf8ZyHvgZgwCck3AXy6GJETmGtZHc5YBOCNQd2V3bVSyr8dlfD/x4C9IPIpsIwpz7MViE/wMviQroZaw6poa2VFi67Wb1y5oX0cWX3m09TkkO2THoLgEjw8eN7nnZsSTXwxwjZcUUHu6hE3JABCmrFJO1leYgt4VC3OZ+v4c9USHmi8xuGo+EuxLftZRWX4WdFKfjqbwbglQ8+dYR7d/mhpvxJw+TlK8Ae6eR9+AZAs5UNwJe9Tvg8tr8IZaomu3Hlqz+XAC+6zT3+eIxPzz6e5lpfvlc53p1U8tD6r7iFm0MU68DnzomVHehOAAAA6aKFwzXpMTvv0yZEiCtz7+vJGW0RX2BLLYLlN5RZMVJclDs3R2mHfgSWqgs9sN3T3gd9r2ZNgp1mRGxtt9zByOYLi3pnJTUg8DnbXYmVsNz/4Si80H8HouRBiLF/jG5X3AH150YKT0IjDJOTbwuvARhS2DvlQnlB83RfHxxloDpLyOrcp5LCm4eeILFP2rc8ckonKt/sdIJAgEDFZLogvfzVrEGd87+abe6Uw4J70+fQTeCIpJWMdynpOsH3wMitUyzrf9DIA3+lyWoYdQ4LKoCo0mDMnSwMPMYko2Sah0htChsc6cAbMln+lTKlTN2A9OT/dm4oXGz6jB8aButCEIcTx4jAYhPU9rOIahWTrKVWOKjB1R7Cq7Pj04OCnXM9rTqm79vyuwe03IMWMhJ42CeNnIcaYkY2EF1y/r/Hp/hGSQ0ILTnC8Tx5THyot88AGiMGVKIhPgVKd/zDB2sh1AYQORWWpTsaoEVUgAfe1TkQudmDrlt2zgRIMayjf+6PHPWYH+EkvQlFNgL/Qc4asYcieMdZMTpAj9PolyrbQCiHQ3qItUQK/iYvlf4INf0/ZP2XHWmJ4WTjD2/mpt8PIXbxoAeslWChFCcjLzFGx//SeYhTN7Zu2a09P7tz/l0PQO3RIsiMA12hWj8z2fAixbFsoph3XPJ2snBX4yfsanf/5l2atGcLntovfXdAD4H1INQeWnEemx71VGhXXC0RY+SIn4F+iBHE75pgdU+n0A9cby9jHWUcvACkXGagXstmCIcO3pZKKkldieFlcWIIiRnCRTYr4MbDRHMUc0t0JJegLu/hZNrjrwcBSxn71ryn8Pdc9iwJ7gsHQ64FLcO9b5dTBQSmjv+G/N5lNXb/zzMmzKz6UjgKinxxgVmtI2JTWzAE+JDZyKYbeh6xewRijI/tBovQzsqHwJFlCZtr30OTHiYEiMT7uW/pwo9uEHMtaPuVxjhbtKwSDmlPUb4BUQd7WI6Gdvp2hyDlNkCr9wE05iZFVHcILljzP7cCkTKPKmD092kTg/FN2U1SarysvIj7AuZ5xNh/hywBbC3cJ8UXv4nCxDzjQhjj96t/0nfwi15bpGoFxeHAk7TTOmbSMlJmSC+aDC8y6Oy/Av1wn+lKkVF4/0gPtuHzB/OfnCjVI6oMqM7mGdcmL0aB1Q1aePYcW0n73gT9nEsE78EMVDEsZt53jBekoEkHc9bz7gyLOR9DB5fCyIY1AUEQ0JsNWDfZU3XZRGX5jB5vIpjhPfsxcvdZhmRaNNYDs8V2K55Wx+mBjrplJl2OH9MSHpvprLBoPQC99dwC6yxvgW3HGJfXk8miQ/nEyXH7V+6ctJP0ooUmbxggoKwttAgeRTUQnywGa3Lch1NrCY9kGiyxr+yUZ+zN/Iug2x8NS0qs75TDAu2n5o8b6tKDWFvVWvaNr6cQMwu3dybcKdPx9Y6fwr5LN4h5062yLpqhZWhr4VW8NT9i2xSweYShnP6xW2SZlbVZD7mD/zwtmkxhiL2b1OX2W8vV3LEl2XY1n867eqaNFpt276i59pMcL1DT3khIYPN0A9kw+Uyfc83tnr6+JD7D4P7NsEVl1RPoOVGqkTdxUQrrLFOCnTr9U/BesmCS38H3kuxKwvJKivCTZvKL3TXyKyw+JS6wfv3kN9FoPEBQ8JO8jYDEmjc/MmXBB+UvJmbt5zazBQ2mBMDbP+rnMahb5pT1MwJ52b5+UOjvZ5EUT2he7P9eqhU8EVEoohJfDU4KlypB8G/LjuhToA9Kg1zizz5SO3z8EiNYnWWq5NaHGYsdA3Qr3+S+5QihNSoaH1B9uN/hQv8bdKO9Z6XW1FAgJT1JPwJkaBVju4w/m91kbWaj7hp47QVbqi4RazOg16pLWRFpS7zUTSkczFdvH5bA0TAGBePLSPWW0Vex3Hg7DMvji+zXwK40Yu9KNTv/4X+4N4wYvRgRxeHfFSIm6s8gwruGsti5euEJByBwOfhLRQLD6geZOUuT2eh78lXNdAVinhjJLx9Nmas4TOLddQ+ro0ab/HHVDcynMdcwnkz4mXMnz5y1ri1fyTZ1VMyw4vR4GMl5dNk/0Sv1X1/hlZosOpTueiC3I1lq50hhDoVj5dmiamLtNtuK9IvnVTQhObtULpZj5B0ZNNZa8eKIjUXXIQSTXLrgHHHh36wAkXApwUioVem+p2xoJ7BoP+Eza+lg7Jil+QRhqVou2Mj21R/ktqWD0dTE795oNaQGvO4em6nSO+FDMVy3+aTCcBf2IXRpxDShtQB3T7ZoUQTrJ8NQ8h0A7J1Gk9ex3Pdjvr2ag89guFrR383kUt1e2Xu3J/vQvOaViDkA29NGIjf33HFB9NyO+0vG7KrnVew/m5/sHAYh/OBoHIGMZ487Rf4L3cR7AEGKrcRJ9FYlRmmrmNrU8DkaZDGqcN8FAWEdVMdMTmeMpU7h1ZbGoh7iYPkjmlCYUj5knvNzxYVoxjTiIkD0xYLOq3QKb2otiwV1kO+BqeHhHqObbI9+HbXX4juDDtXFANB5+QQYe+AY0LLXxd6nt4l7ScfPFgOcgHgIej0wRcpgMhmgYEOwnAsEtdchMZL8bCpSKBXLanGaCVH7DPE8KizsVOfBI6uC6xR5cOIF9zg7PYtozIXdH7fSa7WM1FYTa+yewT2kc03bzUwA==
Variant 1
DifficultyLevel
640
Question
Will uses the formula below to estimate the population of koalas in a national park for three years after a bush fire.
Year 1 = 1200
Year 2 = Year 1 + 10Year 1
Year 3 = Year 2 + 10Year 2
Estimate the koala population in Year 3?
Worked Solution
Year 1 = 1200
Year 2 = 1200 + 101200 = 1320
Year 3 = 1320 + 101320 = 1452
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Will uses the formula below to estimate the population of koalas in a national park for three years after a bush fire.
>Year 1 = 1200
>Year 2 = Year 1 + $\dfrac{ \text{Year 1}}{10}$
>Year 3 = Year 2 + $\dfrac{ \text{Year 2}}{10}$
Estimate the koala population in Year 3? |
workedSolution | Year 1 = 1200
Year 2 = 1200 + $\dfrac{1200}{10}$ = 1320
Year 3 = 1320 + $\dfrac{1320}{10}$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1452 | |