Number, NAP_70007
Question
The area of a rectangle is 18 cm2 and the perimeter is 18 cm. What is the ratio of the length to the width?
Worked Solution
Possible dimensions if area = 18 cm2
18 × 1 = 18, Perimeter = (18 + 1) × 2 = 38
9 × 2 = 18, Perimeter = (9 + 2) × 2 = 22
6 × 3 = 18, Perimeter = (6 + 3) × 2 = 18 (correct)
∴ Ratio of length : width
|
= 6 : 3 |
= {{{correctAnswer}}} |
U2FsdGVkX1/KYYqQm0dDDqf496mesJf6yMbUseaoK1qRhefKDUJ2JP9HM32MNYIg3ujEJLtULE2e+LkBoGmIEkS65zHrEVrTw9TRi0QbWNFk9oxWuwjoAbMDfgff0bjRBAMxMx4BOVIBJNL33hU7K9DLJXobOBkPmRn6OS5WzA4FqLonhJ3ivt9SrZ0lFS+gleIBSk5/ZsF/yTNLofvFqVEwfjv0e1QAGSkpAceiegJnKLOrJf4M65ka5ECK9srDz+xXeKFWZzFY/7M7eSn6IUnsg8E1wdlYx/1HPMxAoOSuE5te2jyYXO+gSMt66JRtwjmgif61t4nP7g9Xqlw4aqgmYEcgP9NGdgBvgok/+wR7ePDHACzBVZ2U63GCM2hrLVEQxFtUdKnQELjQQpPKjISe2qROTcrr7lpqBtTMqa/7BpBHGEBvD3PRqskMmqWbRUhxiGzCbjUJ4i6rJY84svz/ZuG7DlEjj7FXWkMQnabMWbVEuGoEO/WyB0XsN6fH/l7nll5zVyusYvG4dfjhn1C6DDW0qwAnzUmIy+1f1V8O1ckpXD5eFb9SzRiZ3LhZscpxo+BIQYzHDsC/LB4Eto1/4KRNWQ7hvJIwPBFXQCfuOyhKAdn+cDli4e3Q7gb5aZIkhrfKdHyJNnik3bb/BagSEXLUJIXJKaVcbKKORpjMYdyGqbNmLwmv4uBc7AbGEa26InX65gm0saRE7+Ty4EbDymK+qeCmem9Ves8GIyptxUxgxVZO7PW/hyiSw+0imdcG2igNtMf6grSHYeHKFCiyanu0ZdbLAgAAxHELpawgP7gtc7LdH9VqR+YoPe3yOi5+u+1iI/9xv8NfH9tAGUKtnhj6R3JlloLqXBbhLVneSTat3NUNbv5RU31JpiW2OrH5D0umH1W+rX9UOMb+Hx88YCGvKTCeGCXE8L778n+Us77br2/3fhDyYFfL78y+FQkmuY1mIjpWetFJkVa2NEjhvZEv9C68/+ado8WGHjLEiI3w1gsBW+NvM7bSVhVaI2YrBSeAOSWXG3yFaMJ6l9AOxRojGSL3Wz9U9aW6Vtcj5h1zqmDWCNT5L4lYNx7AyhIzAHlYi8kmRqtAt9EiHi7CAkWxyfspLy8N8+FH8fSQsxNZUTekIz4GR5HRbo3KMEp1FjFckVmwZeUApa1UD0sF/TQ/Gk8QX9gHgzpTvfNYpZP5yzEQ1Ya4p0+enRkAR2GTx54WUgpmSz8wNfByG2oBAAseY9lnOVE7ZgRNYrTi1UtWbIvGPRk6pPL7Ny+3vVkOpM3opxN4loS6Nc7TbXCgfczSS7IYNyIDZtlmpR84hQAV9XKbTLBuqcxiGiiFYKk3VvwFNm4F67XpH61aE0NMzU9f9OwXEsCUWCHrFSeNHb8I8nA/Cn51pqEaRA2rRQWy3FZMKcM/nn3eXKE8CqbhR+SM1oD9j09Yh4WGQJJse6kcF06A+IYJbRHB1KnyoCyEmAZkYCjbG5U1HZoJ7xdbHsocNbMJDOO3OIpNRDWs1nHcaA2H9Gw1iSX53kzr+sE5XF3YNOqjmsIS2p/6/VTywXeXG3sP8izIqj6qCWpFGEALmtnKy8vnlsLnPfMjI+tuc8WVFcsAqyK829n8ILPXZJQpaD/xTXQgHDPlUhQ9QKaUjpp7ioBTLnTDLTDmkdDhw9c35w+o1xFx92pHPEKjdLSNfiFJaAdPowDRzdzs3Qww6cA0r32WvLp5aJPpRZWHdW0MBmOUwoVJ0SgWe0YL909q1i4P+jZGfTsQO5LIGqmuHazRnrcfL7PYRI9QsLtnCg/12KA0x51hFmiU/rjn9lHFYcuPQom53eJ2mAvacRT20wG3OOif3hpnisXmjtvVKf4+rrjgmbD2vl/CRyUP+OYoMMWihdsS+ZJwc6hJ5KTE/VUduVxH8fB5Lps5cfqopk6ir0AtfAW/dFv3Q7WxGM3CNPyB4JHWVRr+B1e4v1Kj07Hzot9d+U7bYLSpDul8MgS0PmrfRVmQzrO4+h/K4uye7ky1kQEOVgrfMVQlquzt5p0YzrEiCcVU1L59Xrsipdklig9CX5KqSHz6AojuS+ORMEVxf8axbKO/lOx8TsLafOVfaY+3CO+yTxS59sTkpTMbc6GCDwEeldUnX94W3/l9UMfu2Ov2u4H/UtquCxdBKMebPse2vDrL0sBBfTy5GYnXohROxQovxZzsbOkHG7HF9txT7+Mm7o599Wah8yIZDjBeefYAy/eiz2ug6Xcp92/XYliMrohXGtL9/10Ji2ZwBbLGln1nRGRN8b9uUPVLnmBIJd30+uHG0c9HGJIRuJIhPfLABMNTzZvw7emzs5gk1fZiZ8NSyhADxJdCdTg3rn+SWoeuVGm8QkKROHoyaVUeE2+JclzCFYJLOijHwtQ/FZ5KVMboj0CCs2no1LvtJikxotpbdOy84/myg78b4rUdC5Ku9lSiiXj6cV5EFFVTI7VRXL9aKmSqBE2nRxQ+GfG+aoK4j4jWc3BHFeIN5d05b3gm0AJDGDYwWSsXbLZZW0kBIn7FTedh7G2IObbAcE+WAnNebhBg8V0Yqjp9rBx7XtsfgExXfz1Zg70kI+ooSzals5rhk+QQhMcxIuW9wa2T14EGxHvm6RFlUQbPe7DL5dl44HWJODpgx2xP/kIKihk+q4UyZkpUVmusHH/0NfZSH7lb4Ra+Rzk6PmubEbkkmquJs+p/7MN5K6U+kNMnI2FBYpiigBzrW5R5rlL+UAKSOFQcLV/3TxPfMv7D6iRPEcWuOXWojGJ3x5CNkYl2tHtWRocskDCO8M2ows2sj5bg6YFF5zTmoQOn5WsFKJwd70+bGD0XY3g92Lcz/VYshO4Pvv9dc4QoEmM7ZXIbHohDWAl0gewBx4JUa3VB7ppDAfeaWaz9JUv7uceespWh/wKlr9VNjamB5Dh91lZI/HsHBniAYp9VK5bJwgMRO6ZMMx/b1IxvUJk10NtHEekw6p5JN1wdvE4D/4DQxaT6l7V/m3XuVugsKhJWfLsn+qhvRf9WP8DXO3iSH65tdYDk2Kh7tz7WmJoYoxuixSdphzSXtpxXgKSNU3MKGiDOdflJOO/a7n4ji0v9PSKpUHdaBS2K6KQhmQlJEsF1lOyvnwh4DLyqLBqugFTYUSeD8dMenbGUrJt59draWrmSgkAqAH6bH+34qqr6OIdDuRLjKsdDIqcRHGX787/H7db2FegrTNGL9rfFRj/VXrw/ASJE/sBXfvV62YiuheQt4k0y0TrIAPJkYQbSquiu0RDveMbvRasF0WqB0p3cyq8Zb5aoQgorP1YYVr8zB+eXLo7L8j2rcrliMfW5eJbWNySnZliVzopXQdTphwQRDmkJTRDHwIXzF4sDG0ae6GX1HkWgOP8HJrE1UNc0F5LAP+wIDu7EfparPeZcLJOdjn9W/AFggN94MQl/dx33OJoI3Q5Ahik8gVMspxq9GRQPfe78gX/5X1pLnrWYjMXrXcAm/+mL24cmOrWkic/ZElcuMFdKDcHMDWkBzp8wYxFqsra59/ca09bNeGtCBaz3SOduRRb1xn9e1YCzm455rUttlfrHvJnSxM1SBwy95TPX9AOCagSAuj794JTZPiYhpMSL5zTY1CzpT8Eds9+5L072KsFzRvwAtAEO5AO47iukF6zZYEvBCDFkUP9a4Kwk3CZSH9F5/Zqx+V8qeI/cXMNK1VPpcfyDpDLOSvgihjl0TMqFeWKRRA32D/EUKVKVXj78cr7mU3mviS3TiGcMC4XF31ctYWpc2yOssjI8OLKve742r82hQhtPCwYC2tEfwQwzKcSUL/s1HAQQxYFpLvOIILitNyAJoF2AXo3cqAoTsbvNGpyM5EPCM9Kv/KpFj2yBL/kBOFMIgdAZMmTnsLWSfOkcmWS6muLz+xMzfdxzj7sxXRuF+dW6KgjPNCDG6vlHpEWP1j2N/d6+o0Blfls9oYsFBe0xoCydKiW5k9i5eR0yD2JhyDVI544GvXQD1t3M/Mncyz3uw34ZP04b+lf9Ij/N+ian+JQv79tLFhYHOiVyJhGtzAp21+GGuwDuuJSh/ty0OoHiHWSuO3EbsKFAZIuqTsUkBVpusIQCViC3kM5NiGvlNxucfTxylJ8D9Z+c6+bC/Lqd9sMRX8uctBvqdkQiokRVGC73NyHupzEoOPSK3nHnzo4U0+W+dY3UUUh84CkcNJg2WkYic4Fu3wzs0UA6s4h+q6tImL6JsVVp2N4mPlr0ng9jcz/1sK+zQsUsvbHfePnUo0vY2jFZTCMRr+nYunw8xLAOo0ek3bRUxOJLbE9oh4nXRTAX+6RicWRSwYdjqgzC1TE0fNs+n2u36QE9FgW/734MqS5O57hMcqYAdA/W0pM8zGELRqGOehRslB03aKLcq6NmPuh0edF6GeSnrWzzfeT7qAfOaKf4OJIs1FzmfdVjDdHM+wlUm4OQDVET75OmebtkvqN8nMsB8AbGW7mtgGpvNgrNHgwVgtABUvR9Aiz6xoC/Gd9d6jYWgYQahpEL2RCQYUCXhSwj0fGxvOIwsO7G0/aw7wgCorwjfx7plmlNH6GcLFpYlMtC9ckpyjcpOy4QX/N31ShPB85WHZLplL7qBZqFMOepbGoUOrcol19UPRpz+ZePjp68bk05dtR4fSJapaCp0RnyUhHQEMVIKqW0oYO2Osu0/J7T3t082UXd95rj++oV/a2T6yJD8FCadaj0lVP9b46FTPteqgi/8e78NWeUC4QxNtr2E1YU1+3FEaVZkvSOYlodtYIvQUHG0ULxhPT4ZqbEdA6jhC8tQDG5ZCpxkKENk10ZmPcJOBDwFIc9FKFVCObnA+cV9xApZAsCTL+2ig0QprCTb1z6LY6dDmm98lTkWCjgsLg387nVegQ1czGYojha+JWrhNjtKWj5aRb+AatVRZoLqQieCNPJnw/JE0pkuI99mH776nP6WhQ6uLZOeYQr1r+qL5WSmuLup6rGrNiUV/59LJpakjhaKogBmF7//WtfqeX00FYrIIM+07xv4Y4kQdFf/8xhT6xeiD6beX3WYyrKWAJAC2glY6cSCe5VJrJFGevVy7jA4caRuTb/aQ52SkLYYq8Ts6LF5w+K0HzrVuwDedaD1/x9+cr01It0veSlTlLGrjHHZOQUSgOb4ODeLpNJpQjTuHccqjRlh8WCt49K3Ec7lExg9IJ0Ey2izN+GTznC9MknpCxwcpvd1qWwRHwmjw5qbAZNMdqx5PxFrmdi6PRgPezit66PyJZDkmmMhTea60jvEY53G4xmdIiIp7PF2vQVbn7RHR1adnTC41Vr/YDqslrABchgl6+FYspj6TFX2WnLmV39S4eUCzMR/C5D7d8nWi7ePR28uMP7yd7MOVjb5Aw2triwjuyfEK+W4WANsjwD8PdWcDG0/SFdTI5lqRWpPa9uLbYYIrNQb91qTJG3eo7X0gyzxCzZ2Mvg8XBCsSmbgtYOjLODIkFxgZ/SSIwAYd6/h8d/2Taf9/aPRp6XQSJN1vD3jAxayFa26L9YQDAxhzPozpWwSysd+/K47XP+/nTJu+bvQuAaYrW93FXL0PSa3ZTsRkDrX5od0Lw2BV/dp9h56myeR6fMS/nIz3MTt+O5vYZVj+fiMMBFV3V0F193efdsQfPpxCKWPOq/hP1BxRiK9zEyhyEd+qx+qO9Ir2lBpylPnWXxKPQpUi0t9qHCGL+J8HGDsc/YVftG4idIO+hEaQOcuZqTJHU5xLqZFv9DW+cAhsc1E5ZYtDBLc5qa4unJphbPTzopjS2fga8hFS/zufSFtvfZ+CwDDEEx2DKesFBv4ctFWkq9ayeyJTjpcqfzNhX5YNNiQFOLyIX/Bm7is0ivD94+2z4ydfbztgJn2Trg7ud7cgkX3v/O1cDDUgMef/ZH5MviBncFCPJZBQVo9t/Zf1k6eKHPAB8hssvVy9bTV0+9Jdl1wcZbjywWX3o3QXQb8tPac6Vo6c7XVyyXrSN0Ume49VVXig2wycm6JR09VvebrUoaCLZICxklSNUbewhrFE5R6HaGbmWwnIw+cd7BAd5ZTcNgs0RRnMbVragPiMlnW5dLS+t8wdaU73BjtRrrsTxvjAKUTK4y7GzT7PsZAvddPcq+WQv4KmMRMCPD+cTzVp4YSU8X0FfEIw+x3HmEuc97zAxfn1JlBvF7con2iVWXZczpYm7IYTPxROxtfinEZebvrF1KlUAPOYvQ6I6g8a/CPnvID1K5TuMj1JRdOv3FV+5ectrTGS2UCag/CxCjStdIuAE+R39nHtWqxDo0/yt3qqO41Jr+2EMkDVOdUvfb/QsKKI9VCRWFwRWaMw4mPHjt56C9aXSiA4koWojVjAdgJrCIogA5tIE7DgYDpRViUdIr0aSi9G/Msi9tRNyStSnaYA0C8bbcOpnjCCTpLRa3/RPp1uFWnUbnr7a7xWRIh6IH6ScntByBcjTX1icUbuXSC84+YHMP7u0GVIc5U+/ssqXSd82okXaCIe2YOqZMIAwSdKtWc6cDj1lo5oJNTk7fxAf9AUw1h0dcmVdwIHp6u+GLfv2VExHwzy1BOKMx/UNqUVJID9TMdKgFJ5TtiG14lfNsICJxy6deLYR0B7MLsp+OfeqsUrhMXEuwihcTP+RHCJRR+vcK3w5we2zEZ//8geUHWbwzYJ4yL3P9hSDMuFZJEiRMa3teuXBRmm1stDQbpaRh12yEIvz4dHtkMBsbjPwGSZdNfhbDD4G4l9YPN5o7xY6vgmsG488nnAQEhnblXzaXhKwk4tE3wa2joiBm5TlR+Q7s4Jd3c8RlTb+tTbKo0vw3mN6FH8EBB9anX/jE91LdRxUgeMzKlDBrH04zKVlao5EjBWtpvv288cxO3+NEf86AZYgW70KaKr/HKExEfLxHRE/r8b73w9JwgXbFfhKmak6KU4JghFHWRqtJDWcp5hwpHL1R+W2wzubuVH1xUXUks9GePlOKBw2RjGSpnQBhB5WKC+gzL9HWqolB0mBZ9zlAkR4xeD3bD78z1H1MS5YfkVStj4QT/PU3gmcS+wIW+zW6SJBlETUhZnAuq7xY8GWnROxRGsnyxhkab5On81IUTptlfUUg2e2dJj1DFcgkBSwAkWlR6I34ospcap8Ix4CvPpaVkWxYNu+llyqU1TuuYmv8sc8mrUYz4MwNtEEcyLisTSaZxsGxCavTbfl17jEJoL5980MpZ2tkNCYDNwGk4bLfOHQ0v4by21Z6cvwaGdPwhvYrCc1Z7tBHMo9xKGhPQAEIIxvXMusBGRDpZMcVhoOLAfxMyFTtWPobLBmoIdvPBRu2AqdT9OmnpGGNYGu/dZyygEoeZ+9HwVaZzk535udIunDr00wiaLhcb1jxAxDGJcIUsQKMl1AvKuHykdSzayumTYfoW1ZtsImEg6o7gaB9CNs+Zx93DGxRerAZ2X523kEFfzCV+jIoEjR6ieVj5JmITwuuvbrWLZg+E7iW27pk41it/4vdQT3f9RNm9NMhOQxguk10r+AeQoizuFyx5kabRc0u/xWLY2+zbubIQLs8tc8dsERiqI7cz50A1NTLV2MRwUhvHl95nhHdGR5tByvTyqNYMMDoX+fQ0iPime1g+BsUStNUc/1Ieq04ehl/UC2hnl1oLiKK/yPGXMHoCW4Mrgc4b9zSYmqzsrcNqGJhRPm3zYZTXB9h8uR2VtCYHKtBZlH+5E+QsvsOMAa34uKN2fdZ9sLaZ/LgDpnRER7+vLJBLUgnxWmt9ZdfwIXec/Vw+WgUcVQX5tyK+Up7CEkDLKAPN0RdGtiKkVwF5GoRhSxz+YUaQVeC40xBWxsaRlF4shHTkXWeP1PMc2gFrhXuYk6Dund1ubn0Dbkka8zdHMYJGIuqwEqbmUO9rcGfzOJfuJR1v6Sgh+ZMyPPBD8y0KwvuVWbuCmYM1B6uwxBcuMUMWNiuCIEuMKAX6BHUfFITdObO189pjENsTpTbqkTpYA5Cxs2D2GRyPsFz+ZYy35Z4UyS/vOqK3zthfkMsM4//Leea3TRN48vCDYIMVll91bjS8lk3SIWjCq6eqAwrVql2CLHWS4RbT2WrpjLMRu9uNIuL/G8DKP+6HNnbDarBB1bse3SL8IeusPVlB8B1/OtSbukJLoi26WQxpdSJLFtywDUgIZM1/mv2shxK+jGW1YIDXqVrB2S4U6b21ky1vkvdNSCGHzIn4UmbsHJLX19lGW2/hpYEkKxOvfqr805vADT2QyRqLAEfWXwvcsIF+Y6miZr5gse8OZ9r+IN2nAL1ikYC/Wm6d8bWQuQ5UBspSPuY0IRNUmmlO4lE71SXXd+1POqrxnHiZwvbNqXq+iWFukyKKPoFIEMuGg3EG0Ia5elWkLmHRxKy1vPmkBbhZnRQQc0mCiFZ61HU1EbrSs5Xr/PdOVyMvMZpP/0N+D5reccRI6o9VHD+yFpdN56i1aqqfQUMx/9qw96oRjYu0j2yBvT972hEMf+vOkp1it6isgyE0A==
Variant 0
DifficultyLevel
573
Question
The area of a rectangle is 18 cm2 and the perimeter is 18 cm. What is the ratio of the length to the width?
Worked Solution
Possible dimensions if area = 18 cm2
18 × 1 = 18, Perimeter = (18 + 1) × 2 = 38
9 × 2 = 18, Perimeter = (9 + 2) × 2 = 22
6 × 3 = 18, Perimeter = (6 + 3) × 2 = 18 (correct)
∴ Ratio of length : width
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers