Measurement, NAPX-I4-NC29
U2FsdGVkX1+xDfcStwFqJ5QsXyLG3orTUSrGQkKAqeKGZ3ZkWTztVfEU4xZue7w06cpGurMcjAFhzMFIGBXP6vLC222N8c7G0R29tDy1szNdCV4xCaZ+668Eco52mbhCbMo36TIGagYphiCaHmBOGJZg/huIF7rrwSKugrvY1EtExoGybkvj2xac0ztWQQYT2do28qxpmYK3Dd29NcI4YprmPTbVOdf5LaPJDnSBEkZ9RSQOIoW+IKUtUkQBX1TAefm3NiE7mtJZrv/psJC808yT90pULVOCBIaSYpm1rpgm1dWlk84gmITzopEjbwoKiA19yuvMAd0q2HEeWWf2GaeFWZEb5epyZNAQvixUdAd8zounuCsDXdqr1JXou5tEdkc9R/VFzx7tVLTK9g0/7E+QpQNUPfD9FBK65vQlzSKaaiI83EkadG6nNvpJSSHi3S3KRFl3vM1pt6T4j/Es7e95BLlaHnxpaKD5pSFZNXSDdIYRrFU9LVOy02ZUXM4I8nmTcOF9N0cFsWRsJggNQBmleTHbTvuPjCz+0EXGuQ9ZDVuQ9AlnwpxnkL2DTxdmsGc/oiiwsAG8frP+q3RS6hWBte+C9Zr8AQnhuMLuSDxWhtUKWJ0+tzDvy7unJeoBiu0LexoEUaeHPiAvwBXROw1UYGiCfZ02jstZOSll3FZKXnLXcAwptOJnRcL/FxlBfZ7Pwo9/fYp7Zvzwk5NTPFqUBLXj0N7DoV9nZHr4YzrMav4mYO8kcyRRqEpxsmsrgKzPN1D7xLkyk5/qxapuGO3RwcIliV9D/WEEdNXVUJv6Z1eRLIM/B7PZN4Yunkwpa461aM05sFcrcUC2H3A2yn3v4qZTqV8jqAp95ebUe7Lwq5xksVIwsp/A8fVv+nQXKyurQq70a+6YxOoMiLsZRCBaIqwK0C1I39oqHDxZoL7yiOfmvRfuQy9TJC7muvHPI3AnddQMgKbzTbGczAtAPVe8P32Y5iG2VUJpgfptmqar9MRG1OYvTw8iah40xh7+BxnQmejZo52ftM3y7JiTo7MptXvpgXCOZ+Kff4qpkgzYl71vvLpYQEXax6jaUWrIioVRnHVhXsg2LfjfrBFcr+jBVTxHfA+mW/vAqyDSl/AO9FBT2uCdVCDNcFikz+x9g4v8VtxpfFEM9V+XMFY7ypbBiSfjCs+6862XLBLNDaEp2mjd7xOlFaCPmtgo2T14AfZ2ofrA2YzY+n1ui6SQkN/3rJaJecAfR6B7h/I3lGKw5wEmV2oTLrRLPLpOLlE4miZJAk3AR+gTZBtcvBvq43wqoHH8ZjZ184akDP6D0WLO/Z74Qgl+QhVs/8R/iJkHqE+slCSdcFegTU6oujtFXqv+v29spQ1XFO/kT8pvhYg2DuKeq7jDrLIM5neLStp5Q7Som0ARwfZo1BTCgUmcj7LzMCVcMgEgiCgz+xTyTLDsJ/tX4rtW1CI4yR811Wx3+WnH4AXPQMP2UEhhL6FWbjP2iI5qTqMXgXyhfWWuJG5mXdzLWG8/3isxdnRM7HSdFjqZ6niUHR+yGMUcPnXDSlQXEbd58al5WZmxFDtPyRcvoeYnOobJYYz3TTx3hbqwuS38MpP2nkxjasZ26i8FUUc1iyK+zWJdrZ7zSd2WkOyYbRPfbF242YGbE+IRN4QnrkgDSFuhI50L9dTGZSU219N/TxS2EPRYjDxQIlrsRZFOPbAXKwUY7EpxCPiQoRigfl7EP3IAHzQzOFzE2gFFzsD+b2xgXCIjAbxuv6IrH5N/MKDin8WgekfCNUPyI8uR4oq29XQ3sibjH9fYS0Jo1MjCYzp4xx2+0ssJGogmRq1LSUzl9cP17DIlQ9klNgvscpIkb+i6jfAdMjoUJ7XQy5m0oL4bz4Q1mUBToclNEN6g9hGKdRRlGM0q1a1s9If48Jr3vnRDMfwwtz6MZVheq/Yo5CdRuthvC2KvNO60rGTm5kDLdi7Xxy6e7nzssrvXlUWXlbac6vl0wt0/2akYf3RmpUbZy0ToAtETSfuW1wp+ebNRvK8pbv0CUefIXUDIqh99JhtwerppiP8SPQa6nqsuK614ox1LIEU8eJ8VS6T0x1bEfceTScL09Bm6zN8m8c1QwdXQrn6r5iSaXVlTtpwm49cJUpwym80tq9XfiE5IYEJXWQNM7QK8oIRMg9l6XUHlxToW+vLZ7kVFJmt1ycfzt2PDaV8S5LhnQ2CqwzhcVJRn+KBEyP22E0HI5iDri2nTuWHm4ywXu/r2D8GF5i0qxB1UZ1MrnktkxgKtiWArJpToxrpFzWF4t4KB9O5v7Rgbp9NpPm5FNupJJVAwNwPELw7xbG2vJycIReLRPC+T1UvYh2M3se3lvFs3lAK2uciT+VtG1O44kaKPVi0saQNhk3mCJGdAufuQk5EQDL0seBcDUNsIjPZ4CLGpm+tvCFI0VkUTt+JcXoMS1zZtVa8V2ic7DbVBESsQU9M7k9FLrxAud2MZAV4tBhZc7O1DG3jnNWSDSkYxZf3jodFXGCzFeM7HoqbMsiXYy9cxVTVsE/DJ1PIgmPIehtXOqO1R7E3aT7u/fV8qse+aED6QA8JATmL4oxUjDu9H2hTSdcwc0MvXXWmuavL5qTzCEn0e1rWb5hXM3uv+VyVZ2hMOI0Y8Qic1hWACUYSvJjPBTVltHX0n8ovNLPeDFs2jSFLF2sA0JHgRz54cuHPPnYWdVgA1Zrcq2DezrrqWeDwOSmP5EI1bBIfMmtZQ8tAFgY5Kfb17gUKByt1J2l2Y/aOUFMtEE0NPrnnI4JZSMjppRfUIyt5TsuDSQOyX/al2+r0Q1wF2+Cx6etovdKnsRPQuFZR9aUiaUo/sQS9VffFLstpxmc9JkvB0/msK4X1+yVV+QyV9Vu3tmUjyoM0yBSJOQoeoMAliHQRYzgpK6mFIf6iUo67hJhyenRGIHaVkgBITLR8C7TgT6JotO8WqwNR/qEAhA2+7afL6wtiP7uaWyEF+c76hE54Zt1myOqc2zoeXl8k9WJ5l7QFR44Ri/sLnj1Ct8D2wk+UWzlbifUufPaBUw/rIlMIhwDCMiBhLNReW3roaglbZc24z2gqAyr5YAHVM7DIet8WWsoy65t47beECVLCR1y9jQey2d7yd0busGkkMQovNEE/nOBEB5uHtzB8Vi8WK+K7huNaZ49g/9TGADsUSaAgso6Tv88qP0rkyNLRf7v6djlD3JpAZ5xaKG76eP65WjfCgHPLuTOvFD764HyZnKZ6kH+4vrUFamhwYMz5+oG/b0vjbRQFQXEDHxXEJGVzBz80MNxktIeqAbaVIDI++M9LfWQALKfPNH/NK/DycA6q/O6ywAgGKDj+1dcymAwDBwnEI4TArJUP5FmrWv8QDw9ho9npScznjAAZAGul8gGUROUBIdPNTT7sgk1YsYQGpB5MfP7x/x4ZmDFmtAXGP2vlH28CUlHLdm4n5tHacQeXYwr4bjWvzRJ7+7lRLd5D3pGTrJfQ2J1amiWihQ2G4Ina94FL0GRmzF4bfnvxbA1hz4JTAJgu7XVV+C8kfDUns2g/RG1Who5OyUk1eEt1mI6IkO6RtvburYhByWrXAdXDwHD3Iu7EmQRz2NHpDgIuZByqBELhWN3ggFT5+/aP/2UA2oohgMR+M+Ox0VZpvfpT1dL29424lNdAEnCn6pyFbj+wo9wmhCr9ee0UV3MCqshuDwXMPBvps7K6jnPo1TTEvnKxvgLVZyA9fGg9o4i3/iysf1Iq00iizKQ/sfk8OO2gjxnIUzPRWPVmIF9Viybrt1UuaMnCyrZLKzetSQyA6H+uCr6mQuAJuoAwtZKE1gVpCluXaN0lOFhFR7WpnFE16cV0P6cMEGlKrHDZkovzPYJOkgNBcVZcOmdxu63brf0KFVlC7T28OcDrYRx57PWdjNMj608dqn5a35ymNmabrp+ujD6/gQOk4oLh3QVUBuTI0uKJdZT2lnxtIjz7SYTB5DncDqWVhwwqzKINYMRWnlQ9rnIdjPmtcMz6bEYLNxjgAmHfxZzuqDsxli24mKlhaMBUgeDNg1nuJEHBFyjZeFAi86a9g5mmvn0bfU3dYscU2qcawBHTNmbTBad0V1/nuDpfQoYEsVi0Aex761lxi+ShJgQaC+IlInxhFElIMkt/A9k5VBtURzEIlb4UykExnUBLkyonxARpf3u7VN/KBho5yFXJf+2LT0wZ8g+o4B31Vh/zFoTQsMNgk3oD8iBM8x7fc/yE9SFAmSnAVG6aOoofnZiheNKF88u4x9d2RwBMxrwkFbedtAlcxu9Fq74+EKA8liAoqEv2LjZGO1OrWi4ughbj/P1G0zlp6tA2rnbK+ouVU7hcDAnDtLeDE+yTWv/bJwv44Dv7r/v8YPBReo/9WI6pghwoc/7MsxMkZ1JtNYoxTvwE2Q52VmRwr1Y07+iKvWvJe58mjfCJglvNETy3KxXtM/aZ7wCvy7m/uUUN19VhAYMbbPxdrQpFcdldbxAQ4xSjlJcTd5nhRw0GDFfED6i0tEIwbdoEA92LOXm7P0faAl2ZPoDy3JeS83KXaZCOR0DKmRRyde2mMqOrEFzmlGgKOts/1Bj1wFwwnrzJIEFvIncH2oObpygahnRWmLr2JiZuWSeYTMwMxYESQ8Tf/DKrKagKBatflJJq7WfAW2siY0YhdBVrrYoWhdXl2L7cQNtX3rq1YAMhcny9a+TULS9W6ds8VdqKnZe30D6FxuAaAs0rzsaOnPw81Z4ZoxXlzcQlXtmlRUoHbCWOGK2c1Wag0wfKZnRrbo9Swq4V03vIoiVa4QimYPJLmHjjzgWvfI9BDxomLIYx+Ju5UxZ9h9A+JvP0nazXBEUrw7pWkWIwKKMriqiM2iuIvgHmbVx/8zesbe/U2aIp1t2IaCDhN9/XOGg2pWZxIDDjP8+NIkkFP5E5a8pC6snByEVp2O5zdD+I9iW6ssmrJM4Nua8VuUWRwH1joBciNH1gNS5B+eOxeaKUbHUfNIs9GNGAA3HzO9AxxgkUMmhnVrgt64j8qCznJfDG7FRimKn5eVXef/IkV1wlc7/bKEO1oACptwkzEh4QOK6Kvd/VKE5qGG3wFBGufKT4o8icAf5CJS3zgaL2aqDUA5BZgk4+RLOwWKN4/dV0d9o6+3dexlt5N28C9DsefBA+UEkk/hAFUs/ZgtwL065EMaeDuYd0mnV6NqGBv5YKabjWuTm/1kVXCXk3oc0R2mwcU8cAy2qBNnGfTNjAOD2pxdNoHLb8BLkcmaO+2suZ165RoVYjjwr3Fxw2mVZgcJpNdwAKHnybBVUx731xWNQPxlMscERy5/cjpKwIcqEQXc3kMeNmD0uQGDKLxGEF5uMLGA5vnmRExSIBwmBTMvj/g7bFcoLvvaZy0PlXSkugRf8q8Bys8dfHEZXHnsBrtdaCMxA9vQKm0FJ3xobod0FZgTUz+RN8LSObjmVBBRAQb5V2tsnLjfo7X1aZbBbrfj9btB+BxVHV1pBOnIMw8WvSZYIq8vx6YRWe7CZ4gU8BLg/eX4AT86nfK0eMGuSkfmFKeGcp6hCWLryzNSdIbyFezQ/jCAOIyquIpIlL7Nb4EZaQC3mTId9TCQmhVIfz8hBVF5QZ4WFcZBVNIpbjdSxUR80xKohOdPC6OV2NNfz+TB1wVo4DMGim1GxBsxe3tWbP4YKWSKmSv0IUm69QQXFG8kNBsQhDOZidTpp59DgGi145uCyXVZ3uDYoRqD2PBLPsCqpT7V6RpbR/Gq+vWxD7M2Urg+6Lad4XAAQWqH7zc15Idb9NoH9vz46Uk+jhngxI2Crq4DTN/EQRCsxop5s7RejjAsoY3KNOMBYyt2SWQPhh4sZhSzPjOf5lKzEmHiP3i3q/FfLCs1MvbMu9QLlUkiMKJQj6rkEOGEVgRRRz1TrkW30W65UNA2yK3xG97bA9jPo6AWOyJNPwFIRyzztxZd+ohXrAtRFCDAdm32dA6Cku8QDmcdTExnGAHILnWEgvgbF/QELv/CrRnIoLKmryaNfpHP0T/Yu6tUrufsBakHhbbSyBJSlftOKTi9i9o6/fdKsEWIq2yryX/ofz7XwV2x0k4/Txehx3NULfmMSaynSAXb8YiGUoUKOzNH3dHBjKAeXtpvwEoKNxseMPQk13JqJBUfnwaowMV+FhF6D6PqmnfxVQ/nZ6bykFsoFoQoq4nOKZJTOdzLIVcnu6riVqcXCdSGZEJXYEPhnSlGdTH7tq4rAboi64siwzgUb0JKY10XWNN/pT2IAOO9unJ4dtlIRuHVwHEV5JJiR4KOdLaBDNLw7Lc/Sjg9Q7FiLdl2IWlqC0uzH1v47Zfw0EvZaJCB9CaLkX1YATyf7wRatc9S580Ecidw4oB5uwuoFoEyVYxRlJQeD+9q9H+z7DZ+wSXdFNhc9AbYMxgkVVLkzBNOiTKPXW2bJzhntjWeFsVdhBMN1LoscrtjOMmfEUI5JX0/zO17uW8/53e/Ddt1ZyamhEgsG0w40WaMoJ5O8wEpVfSSSLnzH1MvBtXtoyUwAqZkKjwp6EkhKnZ7LBgg6a1fFOqI2kCe4IWI1hHom7K20KpWtQCWoo3zDrvlLW7SIG+bqiaR+b4m6vkZyu/At6xvKQaT6KXlhIz4QwYnJVXLvcInmKomYFmapwNhkFzCHRkYPHyKyQEseGVe2migcRJcJqmqsN0KWpMMO7Dr5ey0W4gq0aoUwCdLCNb2P1dKCk1sNzgZidu2nCgTl1rmmKwjCwGGQ+0s4ZBWZnJMeutZ1lFpvRAHmJvNpzDW71tZw1Fzz4ocJRZKnQgxs7S4wQEKwRR+L5VgWz30f35QfFEwkXGZLvlmY/n1ajMN6K8KUvaidcipLphHWDLzgC8s7ALbhUvAF5Ca+87EWQDWw238AQPV7JxFtfRYRynhc/7wA6sO2xG/TTnV7I3BBI4spHnoZsMkhuCVjZzWmT1sEadSvzMXlXVdEAvPCKamsCWwZW+KBoIl/ne8jL/a2owJgoIR+KnBXmsITQ0jkRBUvU1flub+Iaxe7JNbmG3J4JVtsOpvFMXabQ9Bv7NewHtPR5R2hLvOu1wbKHwYr30EUbsLSofhrAuq2g4h6T73pdxOqohTE0o7dM3mv/sZI/BsuQ4eCknjV+I84NS+NPhRq0AQmLTBYTup4npTNkVGC5yYR5Mu+oRy7CAwzWBb23B6/i+P2wqcasra7In0M98WDyot0vkYfkjVr3/qh0tjdVcS5Cc3mVNpKFWZayrju9oRqaL1XzESQWku+8mkPC6LSa6YhKjFz8ZDdD5mcQz3tjE9tKPXll9tycKbNoDtPy8eImdkepT6XDDmIOrhypOFGZmOuGSWeFzO0m4LUMiKmM5/eKtGPfHhKd2JLZdIcptV3JXOZTfW9x1oz6jAK1pyN+ror1LGwv4OfkdNs8aAXvXgvMcdDsBZAR1AXDWs8gPKpAY7iVyQmIde3g2Nz1de7xQf93tLdmh8v0Un8PhLwqYESmK5YdBfkIP156Eo0J5Ua0a6MqB0nM5jdTi2iNd6bQoumbL4UQBSEPSf2aTyyXemqCSSTpkzTLukapk909Z5H5ELXC3V8a7j0x4iADJ51C7WomEMbi2e2uwzinRcwHylkdXXW4e7vFPBGYPnlTYgvt27Oop52Dk4M5yDM4p3SekaLOCoN1zIvffSR403m/aJ/qD/3wQSFI/RDLM7WNO+SslRyNHm5+5i92apdVg4ddKpKqg5V5mKzGiTKpivCZcWn2el4gfDKjm1uMLtQ9pkdCRq7AhZsGCrWwLxNep8nX1ojJOR4Rb/Rvk7RjNeEMZbRExHONZHxa8Fd1PoB1V1o+6KiNaX7zVXDSvvDRWQv6TBB+xGeyNArh7vQknDnZ3+bw95yT2ckRiwlvBTGNo7NjO61G0YOGdSH24la67VHphhvcVtjMtT8SeV/+YVq/z80H2eZcN4Xc2TgDsFUYb7t09XZtECPZgx1h0n5sL8qqnoEhX07Jpz0ADDMfEubBEgdWDNIKl+4cWa1gG70u04HmENbKYXXo8Eme/+gD5w/Zn4KuEnhXTeuPKCHleXjqNPgsV6Rh1Ju9d//pqirHZ6ZJ2++Amu5cJUPUhF9MYxsA8c4WkAfh8tEHPB+kOA5HchFQqvvVLVHiVCHkHbJYRCl9oGJLaQMdGETXor9SHhkGuDoAs2HCUl+DupR36ac/mQ2iVnjT4BuHzemrSM/KDUczlqTUxiQ1v+1A12LMkLtqmyISG2GuONgkjqYaaUaF4BRAagNOwWAc4jyCyR3N2/etU4iYxBX3tRVBbR0xLINEw7SD9VieCdFkrTTKtKXusVYjyrngghX2rXlomehhWDqh/laSAwGrVc9jNSWiRvk7Vs0zxm1FcO7APerlPt5vY1Z4Mu3JrRHk84QoRN2HnE6gA21ivhXbgwcTBhtDZmDG+A+PGW+6FR0e84vJyR6v28+F7NVNHo+jSBe5Vz9oHMXWvZUBZfPO8I/CYwX8tzVyeQD4r8PM95C+scvlVrhxcLD2b79cwWWL0Paz21c2WYdIaU3aUT0IkdRZECYJkZUiX0DdPd5aJBaIJJiGadx3keEfCi3psPk7kAQm4fRTL4bOfCWyA1br2vIoM5GR6D3PUhvjSQEK07ncMpnw0v3/MIBSS3nCXLZDc1Fg94Q3GO+hbWQxeXdnundY1g9jBGc85yPIjRgz52yLY/R1rl/09ShOyecuD/HlHQxbV2ZNyDszzwbPjv31VvTqugvrQax/uubuT6J8pRMqFMtqVUHYOyvTBo/VAxrAyAUzK7pcQLBWoY9YDyqnDcdZawf3zfmtT2BFCfc/wLhH1E//lxOzXt1bxE/oUfLPBcGzpFcjbKt9TrdEy2F+8r5bZfi5el4E+sd3/AQqu9kgo+ZGUFs8k4t22Ff/xeSl5nvnYT8klBj8a8F0JlDe69fuARTbJUWjEOL8Q6IQV7GhjXmcSAgzQ6Ev8VtmgMb2dGe38MjbOP6zXpaBJtUvVvlSlYWVc9Gzxstk+yNpm6vEypP6Xy8JnZvr+sJUWm0OZvjH8uV5xQKVboiIZrAsfwQO2VVKprkIcwoPb0gq83UokMvoME12zjZj3HsRrgr1rvXYpVk//SU6MoK8ttaRHXsLSIWDogFPICEj9a/YJusygQx80tjv77SZ7V2aBn2jqMyKo8L6N3D0TsyrpT+cyiFy9JFUlZKcfL4QoB081BFrjNpyiq9wG6xcIwBEzaT6FLrcXzmYv2Q11e6ycLy2+DF/zxdLibJ5Ui75CSTq/fHGVeLMnqKmi9L+pTrGPLegMSx7OavO3T0OFMXVclKebHMi8V0698WjnvJtRUbMaIOsQhaS1W+H8ZkCEm6Fe9FHbBwp8di7tXT9KZeb1otAFwvNyy5Gyrao0KRJdvPiQi4xAh7IqhLxcbw6fRR8ste05HVWFvnzKBht9WKeNFOV3K1Kh/kIF9i2SoFXilIKSe8gnErqEWyzuATgol4r859f0yHDLmU1L3BR1ZMgZOSBKxQpBCTBLku0dzJPv5Ln66dmQbxLgRG2t2DdTEDit7jE0GwxcdNUTXEPkwvmbU0mV4diL48SSXaJSScGCuw0QF/Tw8QEr9Az8pQeiec9SMulKQl+SVSLOXNYt2t7r+JHl/n6hA41ijoCtaMa6Sb3gLofr4gIJ7S+IIl6xWZAscpqluZhb9/7heFM4bQPB0mxpz6hieIcCLE9wwzR3RIzYazPBeGRW8SsMCmWdmNszrB7+QAO1/laSnWjFNRyx6ONovhFwPG6eNemARUie+wcXHwRPJuUQ3ymwb1RPkPa6I2t+ALKtuTJHogTtqQvv9MGk13quHROpItXds7qC2gBvOUWRy1ggxYrnD/rn/xARVn7FtJC8asJ2ichHx/Coyzq4KgXvDkEcJuPBDS81Nuio45tHT6+Fmh2vpPlv4uTZqmeCSMEa2fNiqBLYhw93qz+CjzHczb/IORLdFfDCgaQ9JNJeGExKA6SVrey5cGZ2RkniVKcv2w2vT8eTu1FXYv+SoqgRQpCMY8AYa3CIp167gmq0iwm06FZYWy2ofUqOnLcDUlGEzZi1vSaQxR5NHulOAQACb2nUnzyRId9LOlpNev1Tjh0ThamOJOKVSJ4cJy83DGnqQxNJzHPxm64xyc1w1QxgNVt0Xz2tWDfT8YWn4IkuxmhVyq4Ut9sB1dGqxucwa7IZwboKqhGjowDQh8BukmmupYcCksI2Io3nXTxMt8F90GLpYGS4SUcwusNYY3V4Ar2Phf+/ZwWojggrvAXVY8L0XnMg3PwLrITbR3nM76aRagbxUxj49GCS1caKCeAhVgH/4PXtVeHW8Z8118OpUATbqAauUhXvj8V5To8L3lASXA6mBNa5/aI8qClAqLhsBxQW9k+yLt9uwIrSPePumDAnVhKoWPOU17mC4mHUN4f1wti4nQhC77jGq47OoZNjuhi7mx94nLq3OzSuqnjaxxivmaLNQ+gdHd4OY/mZawHCbJzTv63QBzepvs7UZ0ngU7XVNSVUtUzlKw7E+O/ubHS/eC/vGuCf478NeOIK6dA869/xcFKxSHXGZiXbkoZk8pF6fk9wYavUQozK1hp79GQbuutpyhcsd9hXiEnWjqAKfutaWsZbVTABWXLBaonkVLaPU2ZQwym3t+b7PwqE394Y8x4ZlqmAnCbRI4XuaS0J+22wGePw0a3jYPuR750moUB1dIXSAl5NyQwgPImf+mUOar2+yovRG4IkT9Py7LlhCG5WdPtWgsg5AKf4SVYFSNrKiGmOTzEyYuJKSFLg+gMJH90K5tc2SHJVbfZ4ChYB/Rt5wBWS+IIQvBSoBjmXs2NH0KfQpTutOtCrEqZG/nap2mwC6xF7fXEzgD94hkYSUn7U4DLFS/zuTSlGVFc2Una53bpGxx++9kWrU9Yk1dIWcdUTIg0C+ZfQkWNoaPlA0O2xl6qL+KNQKv8eODyC6V6l4e1FGdQFOXZ9/Zv3sXDozJZ2MLlrK15UBTndbIpNvWOt1SwEUxUyXoS6OOy2wWZ4Xxs84uSOwLZhClLQOfVqN3jicIMCSJ2uPCIiKSyPKr9JWYmpn14KrXhz3nbxxPw36MmI9T/qoPTtPm7fsZTL5iWDSvQdF/bX2nMFTyNgvemEjkiys0T4N+/dFQTvlpmsgGYSa9vdrH/IqkU5kgAWrH3lbmpYm+qO+KcxguPpYWnbi3yPI7cvOKmX28FZrQgvYWZL3tbScYe41r2mx6MIFniAzyBmcTPrh8wMlGcmSEkTcSyKOXmHMgDLnyh/s76BsSPaG6BIvVzPWud4R8JAVOPExyPMXHTOnOVadLAYefwwYja+PIXNwlXBIc1yD/Sc3PzPUzzT7CgefFK2RDzw4wn7+ZR7802g5ToWCmoYr6Jgm1BBUyI7KQNFMcsdS9zaRs8QKf7beb0b45eo61vTvHrXAdmNr4Xp/fPT5bAOP9iJ5hPOg9y6aABnEFRd8ejVAhuvpQz4ubI3Rkoj5F40J4xZxDbo28QYihg9HVr81Gi3DaRWlqxnYgx5IqnbT8KVU63JzTK2wP9aNbIqTEh52bQnalFdCvddGLn5/HgS20UMCMWZgrQFW5Bk8K0Zispao0WcOn1mp1Oa53I3cdPCf7dgN02wknky5EV8WoxxTeLbaldw+GFx3gkomUVVD55csocHDUylOZyR99671fsQeXrkpQhFBF/ARhxzmmw85Gbqn1D6Hk0LjAwi4W79wooNpWerQgb9NR2vVGew9xQFcAr3QmmkPgcfJW5DTklLAk4JNu7uYYj38iJ8BIidnyOCR1/PlwE9SSUnnl/qjswPTtrtrSG2JcwIgUjhtLFLCbaPN0MEOEpCPfpiuAGaIhW53xtRa7UTccOxcrI7I/nAbLsQKrZGkFul9L416DZKU63jlJLmBex1w3E/Q8WjHQuten1ydg7MB8vKjbZpIXG+R6KYsRnDAA5IxBrx3Xx/1S3GUcHfix7T2LiBrX546Jg2Vr2U2OjicJK8sV3hz5ynPBhJI3W09FIZkE7w60Two+5KKYQcefQ7A+fllbdZ2d/ViJhsjQhfxR56H7TOhpw3t2sb1akF4Fa9TtOqymx+7iTuXIbe8UPoh3iEc1k0W4Nyoul2NKH/vhF9FEjlx0YhDCfvcHOg9UsF8QIDRdQ3YVVQp8zeqe1x8A7W1Jr92fDbKCgRnCWduB4RWkl2Dfsp/jWjXVddSePYw4B65F58EXi89jD6CM2/wwLW1EyyVWQoAyninIvIXsbIAc43s0lGHB597kqHHnpQgRbBwJYP8f2CcE/S6XS9UeJtAW+677AnU+ydtasr1aMd0Bkkbi//Dvxs2B6mH9aepzkLeupXY+IMs0zBwvOVzaF17Mnz4IOcYwFbSM4cUgN28DrBRBFofCWKNHg4d4gqFNGjaSKIxoVQAeuHXQ24IoDNctT7nDeSySb1PW925DophGcgFT5dh2F/CvcNIDzB/0VB2MA2w/lB2oPobVIoCuEsg7pXscMqF8QWYyjtf4N6XRXjloAQEA/Y0YxSK1XmLHvvlHwpizUdXDk0IPLrIJA9Zw+sypGkNjQNsMRApnFEZS4ijQ53iLV6XNDDQxhE9DWJ5TUOVGp2JMTX9oIz8icP5hxS8MdHnSHmJoypuUIEh8zBZAB8XAOsjF4TzatH7E1lYFvGmVJBlDFOpgCyZf4/llHrxK/JRVlkkxivsMpZD2aXOlEvxo7H7sdJUcCeqvNTKZYcRPdjH6SipYZbFLGflnGBOi7Qo/XyqF3T+RcZ+D9UpDUGBKbkClt1Z/n2+G30jxGCE/3zC/5WCgzO4kcufWm/rfrhos5nwkS3Gh45jfkaWX2UUDW8qQxn1se8w5mu/G3eQ3NTpzwz9tm0nalfPHbRSVVmFFCN5ZelFuXQht2UMemfBl64i2T3nAyhdfyGAGTMQ559mGtCLE/FWTmy3JTxIrXdrqp4ZyxdFuuv23tfYYQds+ePPjKyX0uhIKJQOId0BXaRaqIq150qjNde
Variant 0
DifficultyLevel
727
Question
Ben bought a dog mat with an area of 0.5 square metres.
What is the area of the dog mat in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 0.5 m2 |
= 0.5 × 10 000 |
|
= 5000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ben bought a dog mat with an area of 0.5 square metres.
What is the area of the dog mat in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 0.5 m$^2$ | \= 0.5 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18RXhFcugswopilfha+wU7PqiRvSMrHXaQJqih+ufO28aFxRgOrhXGKhfas05HAtFAD4WEK9aCE1c3zp6UA2a5dIE77BDIKyH0AtUet59AMqFbTxgdqgD8M1XCBEuKEVV+5+xpgpM6jhbJPIvmpWWJKHBKOVVSY5X5rh1lNaDs0YOyT9gRp9+Su97sInzCBA716r7vLoA1ehD1JU+X/wrcbz7xoZAv2jKCC31Fzu8lC82Bmx2wKquOwNSWFqgW6g6miJcEYLQHM8xSgB3Q7bncfj7wXnVih+lXO0OPo6Zt/GmskWugSwudmJUhD57Dd4zlJZ8qgIop5mYNnrrjVRDx71o9o+rEotAZDekYFL6ybHrpccB8DDiainw972B/M7DPvk4rBde26luQWV/dQ6Vt+0PbYom2l7LKI3WK4i6VmcrXYpoqB681oTznQQrYPSrR+2tYwMnDLm68dmW0JAQz4d63LGSTb/TTukhzkHqnSzI7YWAMuTRWiZ3JKHklKGG4OpndrVRs6bIPBSG5w6KCW6vtoMlOYel/4sCY3bdIPe3vdsw3CEaHKR5ko9iuPVixc2KgHC0h1B2HHQ7s9k+ZMGQHHAqtkr/avT5dzwnnVYRIFMbOZjMeHT+a6Wyy8fD72j7syYxupWJ/UyIAWk/l0quka5MkLVEMaTdGJukMJJTUBd8YaB1LPNCDzaBQslRVFDG9ImVG+isucWI0tvRXx01H6Sa5ZuGDU6v3O488yioDAHKHifdtflQHp7fLMRKTqdAktk87j0oqT6RWCXlFG530MBoxF7jfMyhZgENvJmwkTDHJrBmocD6qZqcE7eeHNIMVYhLQl61SuRkjhOTDMFVmOqCr7/A0DFcpfBt+LBvjA/rjFKj5qSYeLjA6a28czqtI/mpOJrj9eeB6ii+O4myW75/NKcg3d1CzgVKFDuJblH6z6Abs3feIq+iWAMvZOF4NeHs9Okga/f3aDVG7K6JTBN+uPMZ/ZyZU2aHTvVP4p/gav5UKuScCrUCa2E65fM2DGdSTQ8nrWZam8Yxctu1PPXGt2+D/kHGtcWSmch2BuQK/HPD8FUESwIqebVe6xZ5GIXn4C6C182QR5rQgFqNy9tSXq/9OAJgfYkZGMEGXQP74J5Ma6Uz1EVbC6pCNXODQPCdY+vI0KGQI10bilRbdOpAzNio3VnbJM64Vo7K3VzuEgEUxnuDkLJ71Fnm/G/9UxMPAHDa0mgS4mxXpwCBLmSXj8ap5ZB3nLNDpEVi0f28M7mBHjbIewcEgAN/KXYhem7N5RuJKsfcREZBu3UULtwE9i7WXPKMDHCytNU2scWWwVNH4oaEDVrkA35GdP/4FhLaa06YNSVbJ2Bmtq0hH28repuGD1qqm2+gj6oWTPKlHYnVzIKI9bYDo5dNsK+DzvoHT9T9XHBP601RJr8w+HP9YC0i7RvoouKBsGNw0y2XN/KIct9w6N4NgdJkvl8tgV5GT9S7sbKnE+bzJlWZUnDOiWDknTkWjC6iaPbGmf8vmwknegaJR5KHRZxML+qFlPvsPBaRd7KCAWFb5UC8eixl/0jbUcIclQufZTLBUOVUXAnWLtRsWU/1Wmyy15hb2f37Rvy+JLJtPjBIN5Qv/uYfyW9onvp+IC3osFp9t5cfQ/q1nOs+lONJAeHBOFELnHE9imtpr8eXceL6DN0tOCLv0GRivwAzwC9oajQtrrcdMgxCWkDN9uTw5AeLXjYiIX/8loFtNoN26ZTH0CcXQzRqEXWSWOm2or4mDhe2cg1CLK/QLBxt/z0eSlo72jdf3d8AGMBpFlvQT/ijxx+lRO3lovYjld2f2g+TdH9x5pdshEWrjEfSYvhhs51jT4+TFaz6MZ7E3oURFE9W1MCo2gb/NcdRbnpzh8ky7MTHV8OD9o4UWdEiU9UTqsjIVK45HmMS8v2f5J05BBJgRxM/sCTRUa+DyxUa4DoL0S6Bb6uLcBvRaw0FjgttLxW8+wW8klixQmUTvjB6ShZtxB82yfbKWZU9y1SDK4UuZXNMw0DKqiDgf5KgJ3YdBfTAMmjZ+/kIIrJTUa2O6Em4V7f91tVYOHfMuOtpTpJ6rqn/j/tErGz5gJWUjiSA985lXTwHKYziBfgqeBEdRQwKSwwy/Avby+tiXXCMOtKAbyvZjjON+BTY5BsHk1Xr1tOyzb52KDyBDR0khnyXLxN2Hfoozz65WDSDFasMuHU5WI2ms2+8hz67/SR+utZlkKcK1f3JvyQHWFMCwu3asJId1gPU5lj+xvjpLUbVYOwBidXZs5Lw3vZWpwuL7l/xF87r5o6gsa+PSbyvXSaBd22DWklmAJmqjOAoY8qBgLiwluobWotmv0hjSVCMx6ARy25B9T79xVKLR9KTSbnl50daU8WexT43R6YqZqBIdB1VWPvjTPr5DDeS1W3bTGNZiYdeAJxqxZdFui6SRsOiFR3niVdQcQooGT3CmwySDmtbzuBm7kmoPdoFwWDjSh/jrpMuqCpsNMzL7e8Prf9GHOEJrd95g3BHLQjxaJHEgpzfSE+geOQHuE3fjcJxpURjmWw3iAT2iFzfezbf78FzfCvuxCBZWP8nBKUVtqtA9zHbUixYC5BBq/F6CdTZ04vVT4VXk+DO9JPA0CHM7UJck8KfNnVXzgZJhi6lC5hUq2GbA9eSKbsJhAauPYqcZ0hE347PEHZeIZCIVVmdUd44Ueinnk2H1Zh3JURe76+MbOMmF6B8Bo+4f6JHY9Wg0MOdks6d6WCk6dYYXkLP2borNt6RU7psrSp7rmH0KKp3azmhjOUCMKOu0IPHsktgo6eOiJYAH5FCc2vZiA6eo0huKEh4G9V6q0KFBtr4YcUyX7yb5oPxQLulzdtOQFTRHOqrsRbwriacuuA0kJvgXleOcfo8e6XC9x53K91vmJWzLCCECY535Y/gaxLV60tlwdNFU2Hm3kAtYJeplp1o+yTP/lICsO+kGAUQlnBR8LIjeaEseh17hapQNhn0lmrggVmRivwV1/v76lf8ECbMpm4OdMEC6KWDne6qMSvh2k/htfPGn0JraxxtTLkToR90dmOxmor6w2JJQ8zwHg7nwJ48rzjXTjR5qEakA/l6ri11Pkori4dP5c+CJuU2tgyObsAGPG4RngGSWwTTwQuYrNanFhqFGoNH3k1+10mRdwdrj3z7B0JyEckfuLj+CTgxFFVal+kZe5+KuEbZ7G1BGhBdG/PIcSQtBVKh+0Cuzc8ajNP/z9ATRc3GSkS1Ekng3re/k3QvhknP8NYrPtJTvqZNLskV4MScbhqoQtmgSwEQYv0ySzblyRU9/HW5s0ihvM6Kj/y/+5yonNwuNQu0elHh3rq1fGJS9r8AyCBiYJu7PkDGrDoNmc7Te+hzn4TAGbwUIP7Pi7oSr3a5/yCVA0JFBcYSlS417IuBfIQ41u/6mi7HN9Ae6sPkMuv+wDVgEX6wneAMuuS/OAbANXdGP53tOgChpfMwI7xHcDOJUCdbCn05zvFejyqAvOosqyUJVj/+9LPvjq3eutdjvQTrbxox5aH6NIpijPRzBjfaJnmSOnaKW1rjp3YUvcjvhS2HUjluXaDONP/YYvmj8MlzkUVQz3D6rP6aY5Oq8c8kT7Vd5fUm+KPpFXIi9R09Tj/e6l++gKOt146UkPHS3Lzq0WYoOQ6nyiBPf+1FeuU7BMm8HjIWb9SSCmTetQrA6CG46C/jvmNBebvSD5SZUU3occNdlXNZf6h/0njRyx9FEfDQLy6KeZ+G6LmdjGTkP1iNafdV0i44ofxmuBPP6xqacUoikiAJlpK1rNSOqsYQoAgL0J+WUL7KXBxyFn4+6vVMYijHdME59DQjzxHzkfB6doVgHWfDgy2OgV12Hj9IqzX0H6aNdvepsAGPjCdxMLLEL1h3pa2wZGj6Z4NEVB4u7sAWTuUotftrPadlEP+NFJNzj18VfIJH4CAiBVmHFWm25Zd0t/TJgR1ado4rFrGTAd+lxFsNfGqMbW2bBCR539WupNNdCyghpeBTfMqJXnKaHmO5aEo45TB0fZrhl7IokSkuwIcn08CieufEUP/Bcnd8Cbqwc2R5BgZjq9ALIommyHJxT/Tgdw0nyXe1TbYOzsFN7X/48A1dtsNjeOB1WytuKusYQ8yBT0kTaRVxbooR0/pJYED80Rked9Mtx4tBnQOilqIYpCwZie0o+BJx4Byyr/vaet6W3hdpG/6LKBaWZ8NevIDeHdMK5+MCiZw2by5trYfHKsfApRhg/9qSFLSb83lMkXSP+QDiVevio7pTwNoJnJbbuLzYCCUxV5zrgQYtgKy1dFubNa5xt76BByBULS9G24xPFVnltbcihTLCxDecuamV3Ui7CHpWYCUZ2TFvvbHmRPIHkSdiJtbjCoAU80RCp78pyRW6PbiIq51lo4mqkwZTE70A6tANElVuF/pHabpecy9J+fDqJsJF2173bvp31z/79zpOkruKnrzuAO7QkDEJVpOZFLtI5tKYVQGXLF69lPC0YktZagPFKaOChgKiNpxDrbuAoOHYdJEJt8zZv/dSK9EzIFJlAfCaToCtEsBYMlXQlbo+uyO5KMK2Zn7P8oAKFBJWDioKMjtfQmgHqAmO6HBc+z5CC4SM4fR3Z2wvPjxr3YX6yhf3ZbI4SK1iSB3zLeiQQhaLBGoILzT2qU2ZsokjgDJSFL53DtnmbD6Y/9bnGoQlClfTmvXTc4OEF2m06FPIiJHYpEQ4pnSellNsqR8mOkwOGV2GlGfmrDnjJtP8tBY1ybSLBuui+DqbAsQJsJQfEKMwpNHRiZLytDULdXv3zVbKyG5inSHufGpOUXDrACsS4g88kOw688O6ZX2q8Km2IPDXvXln3TIiqwm0vRNPymf0ZFLxdCmFsjXE0eCzRBOrT2KYIPGaxbB3Nwsh9nyT3dGRz576pL+4f9iTJkE7KMxM+7YkunQkWisq1O42POc5RNSjFqaPVy1OEx30s0N3Mqmfh+srrR+W3FlQjns40afJxDBwFX1yo4GT/HUcUD3Se1MZwXm9jCN0rKnpPWt5CzJTHLs+psJr9YqQGynll1OfWZP3zJxNA5YASbLPBmovYNLFkbALEvG1Fj9ph6d+TQtcYyKDDO32fz3T6Y4aJoiIfo56b/GD5pd+bPzqcUms24o6UvNpP2LTlQrAqPDiA10x3L+3v9ZLG/wiz3sSfzHGbTc01tRQyp8SthZz182L9DKlGXO0k0v9jfvziidjdZzIzZIehhkOgXLwPorqN4zsDBFyX9Tmt3l4wz8bkp6oB5NQ+Ck97JxIhATvwrgXwdEAmjtB6o3LGXq8F2C1SYH4RUbWyojuiYk9lFZJ6sMqJCjg3lA/aOTTaelYED3guI+9Tnjm1PozleKs0iZwmq2rIlwNT4b8fTTxW+ziQIumm/1ICiUqcmv1/lYxd1cWYCSd1vI9NEoqsVfnNER9CnwRiOzvsVWTtMf8lu3hZnaxreD10ILCv4z84cHbM2Vki8ZdT1lNhbiD/1HL+WXyYT9fm+pDAv5UrOcKrkUK/ZAhz6KcpVqjwAiRVEBWrL9u8wPdem/XzF0nYM7HA9u2o6yLnKdbfVWicxNIzld88FJdiXzo0ZfrAR+bm2D4l3pw7+YCGWu+QRxlAWp1YuVRl2cMRu4I67x/RE/6/cYQRqxXaaU8TGrU2OHUTzDNArNHJgighi6D7J2ky53Qbr8USndCbutqogYsUj5mZmw5MflKbqfP2tKVkJMlLPssHa/mcM1GAxrl5h2KgEb+Hif/gUeTHUTYscRUuV3QfCkgGkhzsNgSnnQehlGoZNZlPnlh0lD7tx0WJ5wzRGbsukYuWjKbrD9b2o0DBOX548QyvkaHLkrClx1cidmhCjYJDJq7WXMxbNbsSP1fl70a81hJeNu6q3LBEFTcVqEAzCSZU+4dlNdGuTbX6jAHEA9Mm5xzOK1X/RxSWo4QH+/SUxcK8sWEevz9NGW0FhWVqmc+dUO4xvEssqLQXv4XTh3Bg3S12xA9PrbgDoxwQVA9jpF5ddmcz7ACScLut7Yb4AWA2lynkQ12NPm8s6oKi9Ge6k+l+DstUjP57DCGTuFMqskwtxFIts5z1YwLzqY8WmttmIDEgvHgMkk9oHrD96/yy6twvygzuUFKOsM8fciYrgmsoHZV9TQIwWcgo3uy7l27JNuJ+nRkNZ/2InpOHlzoRs1+Xcm7sQm4GQ+0+mm7Qpj3rdIrS2QzzRJfZzjc8ooGurCOF1GU50Gakqfsb8LORQGjmkNBFjQWs3pFLQdTqn1lLDCK4sNGN9II3xlKB8pN9kH1hDltns402JhE0hjHkXJ7O15DxyYsqzVUoTvaUyElI697ZCSHZpfqKq//LpIGhuuusMV4G6wIbfLzave4JB2ArrEcv6A45u0YbHYbINdFJnk+/62v3qmm+JLViRTtzxBissPxOh4gRSz3L7hh3UdhP6xuf+zJb6ah+5c5kjBCy/5IpbcBpiNTlc1AZmk7Ea0Z2ueFcZhF1gP6P+31sqNhpe2d/kniFjks8K5pbVQSqb/O830e9ki6jK8Nf1ls25Mz6wPtVF3kfnKUaIbWDZ5XjcsByDzMFjqrRsuV2ikzcuQ/dlFzUwIxS8/RNgEIbrKKDLValn7g2V99EkRey2NrOXhXGkjjIpSb6eM2/AZwwEMNyTByVyimrn9CRR5Ydg676khWr2qHMTTYiOTmTEPvDOTfCNyCGWbST80KX+HkqzB88uRcrSsnEnCVVMBuSXZ3m0g6N7TGzpAejXcKp8DY5bbhwXZV84hhn90tTYtRgYwKMsRDCb/EWnX4fSk/ecJ1M8n8jEnvzWEJzGsB8348dcg6I2Hr6kGPmZpNZUXfzSZ///jwxZVYm2zp6oXYtSgtUq0eVCXDZX618hizAQdw6Nzns10IodPoP0NuT0UVu85Nz3Iao01e5dylcE0eeDKIVJuNaVlDAYhg2EjX5X27mlsPiAFOAZe+0ppdkcaKV09/L5ageaJCSkISotjzewn6oeC+u8lIVsRT4yypV0HJ2LozK4a65H8yyDCyrHv6EpetVW8EQvRnBKZu7/qnkdbeOXF3B85VVnNR3FI1xm37d1g0TlCFuOG04oqwVyqA+qGmh5pT+5SfMsaDqsBicXWwEt0Ii34x2emZ1394sYVa0k1ZD34+NNSDBLfA2cbgxuEMsinJGvdShq/55tU0DHTbC1aq5DezhU2ycKdHDbx9QWa8hnlqT2KI1yP2SOtE/sldMvuAS4COYizchztXwfIRJPmgxfnXyHhQpzT35CFOZYZyMrsxXyxc9R+9jQi4OlPPxK40A6h7Cv9YchDdGmLGS7ZDxxld7e0ChnNLby8RMQ3fkY+srTfWBycjg3tZaU21t42UIrqTIK9To5JGOgYgZATnvbgixG/8b83D96Np5tdPThhJrwXXYm5hyM+B5SqRxAARg0Z2Om3Ze73wHgd1OULeCVjROAeqCVMLGyXT2e8Q8J4FTYjilzMS+vEO6TqsbMKaTiut+ThS5RT5a6E082dH/a+RxisugGXUIJNXbntLVaCGOwTOtHFX9zWz8Si7jwMX1I4huHn+xqCGFSwFHcqDW+w2IuwWX1/aVLLx+xPe63YAHun7AJzu+w/VLUVWz0m6ALJ96A0ZJuRPxtT4+Nd6gU9DR555I34Jrl1xKVG2JBvZIOXfyJTSruq6VuSdEkhTkuaqSs5AKRk32kMIKJKtsmmKylTM+HKlTO9KLoOIvdpv1JbtBuBZPWbGwaGyJu7hzs78k/+xtwmrsBU5rTgxy0rr+dfGu8I+hmF/npJfH7dpp4ozTEZNNt+gSdwe9bVbwrph3yAzrj6MkRmem4sSEC+9K0jf4iUw3yq90+qJzMikwtzcvHPn252JCy8ZxAQewzwJzAOEmqKwyNNq5XyCH9lTfW5bfgd4E3Cpn+hrrIAx3RqhRrRXU8yXZkhSwvXwVTF7zgD5uaYvQJ4hwbVzrYek76izi4fZ5aDfQJ0WpUnvu4b8nzLhwXRZPY5u8DK0ecvAtHTrEbR/7QHnbvOjQDBIseSeCAk6O+2Ig9b3f9elQ/JDnexVeut/M6eUgMMV8SBq5w4jTzUDJnqA20qZMxNDHZ281NYNGsZgFh77Z7jWVJX1tDo8EUBYfD6XCCoEdBaWJKSRTN6a619xZWJugwjdNnvtO5mTD7NegfRCNGtqhwy1rx6VmPII9uJyYhkNDCmW1Yf/uM5pRJXFra9dTdbM3XpP31Gxc7IZYkXz/mJ9HsAFY5tv25sPo2jGx/rX1w0XG3jsqEut/MEKgbIhwSajMoi33WH7rLyggjPzEVB3o4mvW0g+vPi2sTeV2EvHHG51iJRlCtn4Bfhgp6p0EaW974HPLeKNRzyEQbTfwMlWcpY+sYiQVPnetsfYVekdTNOrbkIjT3BGa8FtEyBqAPbGhBBFyYzYsHjkyxa7QU+pNM48U7XW6byYeYvfe48J8QM5xDMjgY5lQnEcyELysjfLLyAImdj0w8Fc4y9J5s8h1EMF9fDjiPQ1yv1jJmasP19Kq8gKMuOcKyEjKbBgLKA/AaQrPGPaxK5OdaKP4OebkeSXw3piK/kuU4t0PEHycFBKpgm+BCSOuMAbSpju8P2VN2qHv7mgzYu9NExZr5m88o6kWDMtQIPhfAtzulBkgii/IKzxXH6dQdkg8LeUUBA9W+2He07HTMnpUWDketQVKG39vCMS1VM4i3WOgR4uHQX6PFY2BAFvbmBhfLfI7orChL+hxQVf2kGkjQTR0qmljtwzojnnr2XU3yDQGXZfCF/hlJc6EiZjxXBFQ6aSb+fMcc14WGSnGk/GVZOhbvZxQCZwH9a+pn8dI9dyECh0ZtVSK1F1AHc39TKe5RLoI/vB06czzy150/yPF296q0nEryIDJZczT2SU1wC/qhoa7PH63GAzMbZ30uZRZ/oV7NyVAMnyKP2dPtypgA37+xj4zhNMjE9cpZl4IiEb59lkbRZSBSSLkPO5y8Ts7R0+yP7X18m00iL5HSi091IqfO5pdHtc946V10AdDT+WbOI9+xodp4wAwFUdTM3yARTxlYvS7zvGwVDhH+27n9m8POfse8J4k89lz0bKwuhuLJZhHSt+bfiQUrIpQYPb3Cn/Zh6oPGvcvJgkjmHzILRJaC4MYG3kvKX0WmGg8kyTIEIsN2xQ/JCiTLGr3e10hmGlJYXdCTIJIhIIqmF3jYAdZ5OgNGZtwaFEbsBcwUoEbLchBgpoMiBK07QoF2b0Dwy9tiNqKCI54Cpa/v8E0saYjZCde/ucT4pQqm7m+RgcQWvo3ZBrOEEMgts3S84D76vNSCGNDVzfhvwB4Cl9YCCys8dhRuGHPn2humqCojqPZR2ZEoTFGjSHsR4c80vGcryJCH1D3Mf039fD1r7+sTjM/3/kP9nK+RultbJle5A1k07b0e7oUhMWjNIUPgmLwdnr+F6FroZoaU6figyKl+qQ8QSYnnfttgk9JHz3hkqFL7yu3D49KyBTZTyxbC/lYYgaysq4i3hgnsyH8RfbevYTSRMbnCVmGECFTEne22QNWMYQrjrNVeD98/nim2vxg/iq2dcJW2z/Y1RivxcbHgHYXNTFMFnPs7LtcmiOMnNY54GLbemgcCOqS2AqjMS+J9W+4pubSt00sh5I4YYx7OIq3CmD337G7CZc6YvHacn+ZyJWpo1bzbQEJfoK2Oi0Qa2tlk0iVCOxdBM6Eqe1aw7Ev0UoA3Kjazg6B6hIWf0Zpg+ujAMV/KzvjvDV4gkhNQGw4Vj6ItgHQtrPhKr8c/RJ90Pz2ZqhZy2hOndFgvIpyqIKneLfqg/O2J7r0JXhwglS7onMxQceBEYpq6c22nuLSYqLfCrSgl0Yb8nthX1eMj+s/EVpxfN5q/e1EQL/SKEbY70Av/pLYtTfEsL1BpCwNH6SRo6jozRWnaY21kD9wWg7/tu06MZTM4TlXJ6qDtHV04Z0VU2KsSmKcBtyNvqYh22MgtsMDpoWj8rG7clr9tRLlpVPThL/T6dqVCO3nb81286aaPI6oLlnHTsEJJI/SdpUn1NXz8DXnWT5K7UnBa+lDzuRyowp5mI1swKor5zDJe/ZkmM+B8Z0XMJFapWLO3hcHWKdPehaQC4RHCDjq3JdkXPA1M+/ZDb7SlznA7LUJYXifXx6m2CpOp+jr0lO2JhXImz65TdOk1hvK3OiH0kHCyPQwbtxJYxQ3xqFL+ZPmNN0NNLxEMqXQeWqapTyQyfDvW+bw2UkKXnuQnGEYkuHIuyDVPUT5DVnIeY21A5R+QuYgRwWrfutxb8RR/s+oLSMfFTALYduZPZxWx53twK6iKRFarvZC6Zi7wJl3TNF2Vke94EWqRIz7hBkLJrIAl0j51aKZxP3Fj2MbJaDGXYMDPlvQq64KT3XGVXzIf7x+fdzKBdQaqZfIyy7pUDRGcKAHiV0/bkR8bApstlK7SEKGr7QR15EEb60fEQSy37jfRLn6IYLSMF8G27jMaJbWX9dTF5xzAoHv5LYF92dPs9zTMD8MBE2eU/QGicYNg9dcf7SF4OcR4DGQifOL7Ex1BdPEDyhLXkvINKnOkel1Lp1eTTX+EeJ6FGPfG0/Wh0rYGO5G+TxDYrG0HcmHwasKwsTUkW4/l0bHZ4qO97YF+jmQ8HfxWvol26Dh5LBLd0ShCLbw/1/r31s3C59cKJF3iEIQkn/+jdEj0qu+o6jk1ea4sJ4wJ0mZkIZT0b6Nh9iqEJc1kkIoIS9IYzqIU32ysqoDJBqwPH/h3ynFY6wyM59J1/RE+ucWau4k/eKNHbUxowTuEwvdQRv8VLu1vw4K7mhdXpqVMh4tLYsDfbzEJcWs8do4oAM0d+E0/L95cSV1+VuE0RfO2C8nJLHNGfQxSvigjcggCYc5LRxrpavFqu9fQJu/G5kjpolUv3lT36LkCs8rUdjKSmsqipG8pWSlTOtDL3AR3KPRrVDnKlUHtF2gAOsVvapY5l0K0eGdxv9etQRjzEJNJBj5vpPb061DjS88n8/pP0C8JZn/Tn5XnF3QeXdaTW91JvsuHMjNOzgjmWOBe4eKstqeSbfvSJhW/7O8URtmnRVDCguwNJr8SzNYJ2DHrUXJRkFBWPo0LnhCJ3c6GzYr/PBbG3a2vfjjQgrr/DtbjG2vV5NRqTxKyqHTfWzdJQJjjmB/Y1FwQMS8fwwQvt9qxQfwAi6O4zRdTyANHQYyydoTPKM+6WgffGtVCwY/2haWQfxaGD/rBOWIikt4VQ3Ns63nbMpJhuR6yAPJr/3JuZ8R2CEquXlg2Ly9TYQ/GZ2gnHezBIdQH4bXuJSdqN9tjre3ZEoO0mB8ZAXwcXD2SH8bPl4IO60DuvpienXYgongOCEqk0dB09ZNYSX0MiHYwDmYQ+MVxD3NfHNW0+nv2TxScxbpzfU6K4wyR8fpHvT8tN+iOlQJbOygyUEoiHK4172zCLl90etrSvihRslNY3EjgaaicQTRhV/QONdfGKeC8Tr7IJVUZUErXwe60DfIcfoV6k3UomjyPY8RWKOzJvSsyN5sFZdPegqY38PFpD2ioIndctAFa48oVlsbHiAcqXGlAxfxq1NtlypuL0DTAawWz0ofSQnkN57tMmJZbVx/5dHsLq0ADbj4ysS38bwuAkMa9uV1UyfGkyj4RYNkzONGEhozzEJQZcKSUimQZd+9ULM/4Oz+fsGE31U+jbrS0lVKUxUHX67E5nXV53UXLpTRs4bkCgEssEy0p2MQSSmaZrnGtFR3PqFJMoYmHdTXjYR80Q7icVR928KvfhVWtnMOG9cf4AjfwK3EvCQ+aejJhfcGMNX6zerETGwN58quJ9hCxYPeed323yiX07xgR5xmm9e2Y5y7kxu0tZpIfN6jI5nx31hZmjvmRhxufkeYotaRPECd5NymMBzYo9AhN+/UmpIg0rvQwMl/9CueMLFGUuWZojRmz/Bs5/mb2YXjtZiUwJeYXtrfstRg0ZyQ4N0arKclNQpB0pOzUwqpCdNdAjN/pD6cgUwoKTRmlgRXUkv0WlNVKXlYgXVGepsEHEnt7MwGyO2yQ2rqObsC3JGbNpnWiLfOII2/YA/9VAK7fjQQ2og212s/hS5QKjgWmCAJMGeUfeCs06OLPPydh7ZPZie0WiTRGO/DaqzwlUtqxxBVQBxhwlIErQwSnRflHtaQ90rwgwl60V2Qqu6ICOQGN61/22Hamii0z3qqlt+1EDoGevKKRKYcPc3fPPluCRRZWs2gLuy0RrxXMdpHFTuNpaY4AUW+NfrUWucDlL6g4NCfSrJ8dTD2dghvnAXxc0dvPFUC3u++w8gGppYhep9DSak+o9yf3/XTFQtdC4W/5rA9UqqlKMq26aWGoELSXzEu5rXUiESFN/vqEHMc8tce4TMs1j/8cxjduEzQbiSajTsD6a5qS5C4UiJ7SVVItBL8gW07rA90rHPtNFzE668p72xnj4pncjsD6eSKsiijeXb5CopLbwe5rH8l/5cDMP/ZddLJGv1VGXiB4SSS36om+r/G8O10+IMF7xtdDRRQE0KYPlx44KldS7Ra4NQioamnXBSKCuQCODC47Gj5I1tGNv9xdAuAONxREUzQelgrOvERcW7qau2B8LfX1n8m8knAuonqoiAnpN36QhX64MaAK9i4WwRezk+wajpzE1GIGFX0E0Nua+3teOctEt6PbbGeViNzBsYbIwiBkIZ0WaV902+2MlttxIzFtza03MKm28AoylmOjqIn0VBTnkrVPr/4utAKDxGOYgfie+PF6dODRfasfl1q5mOcu+l6CxVJsGpngtwbSpozmb1z94uehw8mOFTtDGTld8w7LvB1ct7cYUbebgZ01NYdV90jNsUXk62GUALkh9yvW2y6bL8Uz8hhjJv0+rXxiD7d/T0g9Br3oURI+ZQA7vsDF+HCI8dhDvQd40mSRoXiehkZRZBUQ/F9Wh+kzhBdV7Nqxg9sjZFYxtpjAS7LK7ttlcGu+MRQzLE9VdJaUuinE1QFXZk80pf1U353nTVSPTw==
Variant 1
DifficultyLevel
726
Question
Julia bought a kitchen rug with an area of 0.85 square metres.
What is the area of the kitchen rug in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 0.85 m2 |
= 0.85 × 10 000 |
|
= 8500 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Julia bought a kitchen rug with an area of 0.85 square metres.
What is the area of the kitchen rug in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 0.85 m$^2$ | \= 0.85 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18rzqXl1kCqMdLdmdbx9ScE30R6vxpfRHFJyqxJQ31Ahv7JDjBajkMelzMi7JTw1YsG5WOAfwt/8n5QlLVnVitXdRBSoeCdX0lEWGvDbLTpDAvgU3JBa9LlZjhn7dlW1c3J32IXW/dMT9J2oU/TFvGIw776f6n9Wvuh4KWx46DzVCAnFDnzlY56x8fTcFiVyLlz1A9HK9O7JBqsAZQKPt8cTNRMyoWV0g0bmtBAOZD5UIfSV47l57PnG4WkTioYvs655CAZg5rLHlT5DSMIHduB4bBtQDmpg7Y14FLbKFEIgQ3O3z8XfFlgHy4Qx9gmo22FlKf9A2F70gVQkBZ2CND0TTH4tic6DK3SU+LPDNyDssQyy3TNaTCNA9RV5obFYcu5FDMBYcrUnr2ISFY0ADd0Tt4YBgl0W9D4WJoXeX48YTrAQNWKimRLxPCZ6ojU2dCFjZd8AcnGuVBH+hU+4pu5jMnA//zeAl7EJLMC1HZ7wffuBaZkxjUEjcfWFs5iK4eTMNRnJBSO28QkmKOTnqtdt6NATrUmln6cctrl+YMeHoeLl79xIMrBtMrGvEGTfZ0+tE+OSVnaAH5osRiqP32iE+sMrsQe8ieXTkHg0UES3z1cMS2XNSVo6ADbTOsS83GHn5KCsNb5xRbRJ8KPXpOuatjgVFNDVRwWnVqeN5I0Ggm49S6Ee2mAEMMnG7DKoKbBVR+ISDDSyehlMTHexW9yje+lX+lPvnuiYBnMhRxtPo1YF6bLc6o80eRa1BSf4fefS8oly3jJhEeRJyGVxieeyf+dIm+oNzTRM6uWRdVALZAInrc9n3xz43KiWZz7Lmfyx9/ELrL2snXyXX7Oa2o3QzelXjIhbQHBoZc1fO4sx0ACtcDpXXCwvLbTCXwHI0O5ZiV966+y2Lvwywpq4n/05w22ymtYoO3iK4UXS8rMfuoAC/fKjSQbj6vywrclRiwBW4FooIPc+SBeWyZ9fXRTcAOJNPzwwAxfnHI4rIMkLiacGEcOSQhk9FrKU5gsX/ZpP5Adi5cDexHjyRROqIIkbXUzxIPfdvE+XI7w2aGoXN7FIiElXDCgxtn9tomoF/cKRkAFIaRvqEiBsmvmV9bTupSXAVN/4Vcx5tTfcBfyZigeipb+ocS1iJdsOAAoL1VKS1UiOTZvkORlED6rflx7ltsGtdw5twlQQdZZduI/6vi9S3rtI+YY+yXVZm+AXvYoW41PP1ED2xWjmUDSIAfHeIWnVzUHsEBM0/kdH1hb175xzfHodIVP2MSrnBvrxR88ln57WJNzlGUDoJd87vV7guiLW6OCAGCAUj2SjLjppFiO9bhgISDsJ60vfwu6tG5RBsmL0Nh/evwXz1PhPTYvuCB8mkFgqkmPkeNA2yoJ/wod7nUeGOzWGLr2ZxmBcMbw1BlMySqW7418OBETvggo3aBmQCMH9C/1Og9QTwet+vRg3gqeixbKyA3oOqf9clmUxiEKreuxdYQgT0VHoc59In+1sfnEAJmA3H8E5ZZUMt3qQ6fkrytIHhyvXuMqPjoUU34uxaEIPQSlMDY0z4t9FhV5J1YLGKjBLZSQS4mxi2DGkRBXbadFu1N82QEpAJHXuHUF0K1uBnR1jWRNtzxOOE7NqYeIPktRjadsogu51Sr9ZQZba9zQL1vk6k3EwH1/77T1/fSzd0Lyr+bNaAR3m1o71Qj3twUCJB7quj2ub9/7q/D/dxcfls+wsOC9Tqy6YkDw8323GHLgi5Th5pZ7furZrEVuPWsxTJh6CAD3fZ2Nc5e21IONGvm7H/52lVNcvAUlbiuBxVSNpFZGSlFhCOw/mMx1bWznJEO1tyBMB3/X+km1eMP1UNbCKjyCS26W4KVT7JFXxfWce3Cx8NYHroMumWXpEsZNBd0BmLBN5w5qcNdDyjOS6JFjjLbUj7vyW5xJZI1N5sVZIAqYtX2ZxfAf2+coBDsdUIZjR96yZbX5ffVI+G5HU7lAzDqc6grxobGfr7XVKjxUtPzb+I0UfGfn3SU23aWcPTg5croteaREa90yBRN5JedZ/lQ1jghaM7eGunq7eU0gj+8V0Q9UtV3wJ7eCPhTL200+6ZMcSMwYtJrZboxeCOdLe1A2RnCkOSTN+FZ62i8fhKZKXAk9Psid+TTj0ogzKrzb4Bzb2cklq/R+Nz9EuBH+pqxGBzXbc5OyJQzLP/VaqUgvZKEolGYw98a3znyD5d15IO2rr+DMfLF+oHxn7EzSkIz50GoSrMhERiQJrxM0BERzcLrP+qS3W1KWgaIMydf22FG8+tN43zhNQxMdNgMl0NiLY689YBSfl4PMjZ6hAbbLpxR/Oir8UKStkERvpd40OxjsphChdtQL9Hs+GQXJmNm/4s0LSnYHB0oEae0NArn9noUpKR23bN5MHMC+hW4WvHgfmSHeRjVi4HZmnSekc2OShWw2hiVzFztirsow5oKfegZFWBP0WGYYPfXfK3rU/Pl2txDbrh5zMVy6JEu7emdBMPRh7XjaYZzWRn14Ce721YLT9Bu22tyWnU35m9ZZLtLRe3IzHW1uY0j+6ScvLqEYoA5kk2+7touhchqgkN2yXYMqWvnyHUuzEKXFc2/Cpn3vlOjosRStuZlJQFayqUWN5n1GbAgdZ+b1Sd/XDLRsbzbeuzQbpQdcdqsKiikNHflfqT9yrFDHmKXVCCUBrZ0yGrGWOML98UJOvc2gf8nZkvXQmmSqk5JdbDHrwuiIDAHC3mVcy1YTvGY5Cq6h09ABxJ/M2roDlWEarYPGSzd7tzXkojspmz22G7Fh5WRxxyGLumtgeUIfRNXyd7of8/TEtIVKrtrfxvCQIoZ74VtkIrfa1SC5ibu9rIcBraV2xazD7F6jOqHpVrG76tIULB92ZMr3wjC8Jbs9yxE6eXQAXOaVfOf7JPMQEMQhdNEu2neuHgNbmtlAEgfKkhvuanTuSyvOVHVTZXmEwvAHlvQCu9tB1/wSkpiG1LzosIBRYGUXIybsvWO7n9KZcdwKpn10ILtHW9DiuPMxMpz7mhXB8fqOVV7JpvCh/pwnESFmDkdEW1v6HnSCsbKXLZP/fp+Pffl1vPwm1YziwIvaRKfgpU8Gh+VKbYYf9i4kV1fypjkqmRcFoC/cv6ALQHKdifoWODCYe2Osfx1fHrKeXfE98m+PUM/7sv+fvPHDuTS6T5APDgHgMLVZbR7MhrHwlZNUoUmDZRDsHvWSxh9vLrfz8EKw5E759+HjeT9dT+H3iCgeoGwVfpkPNwwV/bwiucXy/T9dj9ePpANl7dqXO6crGLR26TiQvcANF+fmr3jSjh3o/7MHT81MHlLXg4Nf29FI0LgfURl+7guYx9w0glwdXYFcMUzanGJ4XgdRZoZ/vyFiuTfI5Ee3DG0nMYQzep/gILDdW2d+cKqQbhXlwGLZHaEAlgIKMx042bwcmT9Qi/utv8MLCdWPrqWLdyB14ZWm3wgjMSy7SMASw4ToGahjx4d3F6NyKXfAy35Kf4aIx5/1YlWEja1W8H6fpbcIPESD4lNOgKOU7ZyfyO4NTAd/ARsRdhf3HAgdgJbP+yQ95n5T1tYDLxZ5ushvz5xJHcQOEn9KSEWqubla5Oj4YktX1Ug/uXIXSUth9RTFMJc4yBNi9zccOPoiqk536ddV23hQPnKvalU4NMgS+Yf4fWcFVLOpr0m4NCpgWg0lV3ZEiXkj7YsoWccEM63iGwQ8Xcugh+mAH/Q9qf1V4fxrHGcLiZkKbNFlXobY487EJDq3dI05ojdUGigHUiMU1/m6Paz8BYTMhjMBjSUw2bS8TxhjLxVZSkPq4IEJ1F661liQ7SUcUQhC/hHnKzL7GOOWuY9KUIF5qRwAj13KI5cmbN8Ji6l4vgKLTBRVe4mgmKEuA2SsC32DVaUPu5vlFMyPvHyHa46qunK9ZX3rztM8bouo/Ov2FI0OHZNrQgDXyIyudm54Lg/dCAWaKdIebZ4Kao2yicdY/8uo7RNvFHvOXL9I59uZUbSoysWjMZSSty/OkqzzdoKYYB/EsJenEFmDcnJIeDe7KG+HWAAefeyOuYsHJTZkG0SeEEJXKNxpuDaPLvSHQ9NW/Z7e1YEVigWqvcIeaxpW3ZXSrafIePUOtIVhi9lV/qzpO+rMsNjC/tO0akRx/F+3Xf9Vq/2k0EVFrjwZRvLL96GJmlPbI26Tcp9mDO0W3WdGGNQV7mWISwUQ8rq2lG/c/LFJtvLD1X+aCon0j9F6doP8p536az2oKCCU4vMcIS890MrtYyJJpQxIHAQm4WnFvlzSUaHe7j6MzFusb3RRNOwTUzM6ik917bvdBCIEveBkxbZ+gdbpd6Fp/Z8p08hVJBGEDk9sIDymnmjuM2Jv1HD14UakHJghSbxu7aKqAIR3BvVaUZAG/npTmATqOSNrT/jjj30UaW6PDU5LFWED5w7LyQl1LQj42b7t4ho+1R4fbnQkZGbvTzbMfMHAzfhGGKrsTydscTZJkILw3BuA6H3qCkDbtk8GEDoYKO5JrmpCSRf4kXS32Q0FutSi0Hc5pd+c/wjVCF8l9AzHxeddn4l1Lat5iTIDTgGX4n7gHlcYUfhqS019KKX9Rot1J1V18BTuK2U11ogBVYmI16revanCBEJd6w58Ap6DG2ClV/IGOH/zYY0txlnC3r6TinN94LSvzETT/eZ49XIi51NFwrAvmVccDZ/b5woXOGsFmu3DGuUo49tRqK8Vhqq9y58HpC+eqNrEVy1CbVI+Jvjtky65ZqDX3O2Ho45Lbyu/Rjult/IGDcY1+kOgqCjxdLabuF23cidaIViuMDEJtnfR/JdjXGpAXhOIvJGHV+PAh1DWTU8RJqVOCs2VtQQ/097qs3XGQcqJNPYyymX0kVGPezcIcu94kjB35eLHkKKXJ4Z6AsHHuHJ9eQP/ITAbh74BbRLOPjpBmavfEpLNXCK0JljuV5xkIx5ufD9BYJTIOE/GWG4GJmHdur/1oNN9/nfh1FMp17mz1hcD1mY0cSatNsPijRQaIga+zCYGnjQeSrxeXmnluciNX+joSgUEPqrha9xd4mw7feKfA0fZN4P1e4V+PxHoJ0mFeaG56TiZ1Z+uCWmzEkhCHw3dGEM+riwSkC32zkrvks0Q2omkRwEGwQ9VbpAosVwR94lhVlfKtvCMuj27x4e3q0Hjb5ZgZwkDWiODuVcqetZMjB9c66c2Z+PLrjkhY1qn1KG6T7bQg7Jtbwqu3hHQ6bqeUOcKHCFYjXhgzmLiIRS+nyS4+AApFXq7f5GKkH1cwQx0BxL3MXuLbb0FgespTvR4fGn/ijt/wiAEH60tOI6a10bT57Dj7BGOJG4H7YpY/aL933/grZ6CeDbst8oIjZ6P1lUXKfWSeiGqaBE8N4o6qyeCGfzIqHFxLwiCCpEXgqrmOJYWHzQWS0KIdvPBE3RFqDw5yrZ+2+Qq/OSu6MxX7PtDytUg40HoOe8lYr/Vp9x2maPZ8iLwtnvROaOApV/V61knUuYOg8Y13xxW0i91s8w690QZU1+E17PLyUqWcvgBcv+Gyn4W2oRdneB802QdH/C6wObPIyf/9AOqbuMY1rr7SsFcgppmDLcHKiOCte5k4aI49PMHAZTaQ1b9YNUhDD3sumTa3Kpu0wvyvSJ8G45rAPfFn2rCMX3EVM2XAay5pV9AIkzul+TSe9HOYIJ/1ACOqiFVlU2DeFkRx/cR6PeQBTmaAxx526VRK6tQf5nlBrVHWIiuTYQpXy1P7h7+F8xZ0cS0IcyGQrmAy7uIfUkOkqqIkjngdXgH46KUspb/hgt4wvygcYFP8AZK9qBdAhK2luKnpwGVyFBnd0LnH9m9CmGpKaMYhknP7e/u764wr/vi+dwqgjhNj+4uME1eBcdJKcr/ID6h+2mJ4zwiSwuOTNJhRFxkwVEqA8m4uJTrdWLtrNQuOVi4nj2mcFnizv9rHJH3XG0TervW9m001XxlvpoOqnWkgqk01i/eMQAcyV7CtzP1blLAMleu1urjgdpn3NbWrNsMEhtPfM0TWLbT8fkrMdXHYhR4GyrkQR/ZxUJjoGkkIlwk6aJH3ryi6BhBLgBlS6lSuUvUhpwdEtojFoh360DtVlY6VkhcScn703NrIMg0+Y4QLKDTG2BgQy9bFBp9iZumplJzyXUytm7pdKg7l0JJulrkgPvkHntTuGwCMOsxeIyw2PDhFeBQlXe2gv9ElstscP7oD/uq5dZM2m9NTs8XxZKkZiJU5X7f1CfB6QitrBGxgNVbpu2FGGo58IS9xLsWmEacs/E2zN+LJoVobnj583U6HHF4zHagD5HhcD2pMYbK7iW/+HdxLHry7JqfeSL1m91O/UH3rz6F/JhCAHSDVhmhKfvwQ9KwW+vTz3+wtoZwO0LfJE2oUgjOk5SAu6vwCISr4Z7l8EaBG5uc63gFJh0suOWGKqLuI9hGOhNYSF0QoJjLusvQxciVgWWg89R0YWTmc6eZQyO4VRJ4hPaiXLpDkSEONXsRMtdPU4OcRRPqFrjgRctgQV2RLf2MJagrbLCpW6bjPf9fa+DP3lmDfEXz/qm9tLBYXkTW2tgg5xUyepe+k7dyjoZgFGtq+U/vWX7SQGtouKKBfdYQT0JxFCrL3edH7inPwdJ9sLI1hlxeyP4E/dYBsPElVpyRHNe3nPFfJ+Sfth3+3kYgYGEjuHdxk/LkkpdEJK/3R3sr27G90fFZBamo8ZDASX8Adj4/vl7Rey0dARFGxgXhU7XjEIMBZ1Z/LdsSZlrreYTHYCKDUnGkoV7rImxaSH1CpDRHWL5FW2p/5zkgASRgkTZZHIi1OEtIHCjF2jBmzgWwbggywkP1QhAxl4bNvI/Iaf8CxfxXH7e6szaQy1yLUy/vhAl4ydeRttxvXvYMBsZxv3PXoagXj3MdgcQUs/YDQUlaH1Pt/hJ2PtR0Z0ElvoRV1K3Mm9pdf4+y4iXUA4DB/iy2tVDvVL+0aOWTkZ8gcjgo8J18pLhHrfgifn7TBo2HQ9TWdrVLQlRcCVlvHRDhsXaijOtAYzPBcKWH/M0HbA8UuYeouyPUL5UFsquXKcysoihPlqbfROaKtlECMCsCOXJyRj7f7az9tcADtC47V5p0Xcwhx7bH+VCPPqqrKJjrhFBbbmZYrQFrWadetsVRLaQZNUoVs3cLLrGiPESGd5ME3hmLxwnsJB7zCIgxAh0Jbquvsrna17GHGK43JLHR6NsRysKgWwV3pzWa1Jk4uERzIwzLeeiqyWNx+CoQgUkSujk2jnInz0+afdIjjK1R6le2wQU20lNpeHbE7Znuk/QlWLS038P1NQ1V8RQMbDk16NPsEb7o1cJje9mjvYTYjLJJzZ8MWhiWt7N1LKelVmZZI25FjB4mn9by9CLVK2plkQgCSaLc6lK3UP4DtA+bL2mCgpTDrmTycGPycrxeUyHzyd0R5gV9L++4IPFNimjbWJgO4RBedrMLbkxgyx3jkxK/Wez5MDJmzVTvBduNKe0gFjN/HoPkX92DVllpSWEg2NYpO1bKQXEf8/3RJaie/Fqr89+mbJ+BqWRb4GYDYHg4sk7PYAdXVqINJoh+tRX3UGFZraKF/o1PagCIBXItGhgbWj4iHB9hoz0KvNSlHnHJ6V7SNXbNTxBVNT/W2/SsUUGi585eZQhfrl4rglPZlHi6gRmivuKLkamZIiCxgeQQCsYNbvIkZkX7LX9XjVjau1yhkMlznfeT986c1iUonKLDPHxP8Rgu6H3L4PEb9s08Un3SmqCk40kKWYs2yWusY2G9jpFjyoxCbxR0zqvvCXoUsk2TLGVaIBeqyXV1PEx2PNJV3vqVyWMLbyQqrz8/0/62kdz0LDJj8b/cKcrjRXC0otBcQAxK+q2G8GTs4mPXKtvnP+yMmWDEXAxLAgjHfVEDZroXg/XpU/6zjAeTKQ3WcrlIb6hjrwyQh5hjSRrhwq8jNijswFO/OkmtFddkZQxzlJo+VrWLn+0gUsoMchFmkSpxuet5ZhDvBUqXNcX4tAs4MABSRs9HpRy8ysVhBGzrq9NZUJtJA7CX91R2Io5yDhrrfsm3og1eAFY2/Uze4DyTtdJdXS4eswDEUaNFwi0Qo4gz6+3yyC7/FcmRrD4YYq1r6fJNzR5xuRxUKLz94l9aooAQUJqJr8lPCxjjaoGmqT65HKJKZWlK3rkpNu1D17ndRYCir+pCwqOxC3Vr8qtZ8cLaCLtOM3gz7oOSqBme8MGRtECgu7IHZt0o8v42aBy+VlqB+vxldGGjqI1vfZl3kP4bog4ble/7zHeM75Nsh2ZjjQkAerVV0OmOl2ecztZzt2HHBjqep5eE47Ptcy8NZo/S/0NvJQDWbGzoTwD5eAygMz+2KDKAHPAxPbpcJzHcw9v27GL1A/ng5CNCRcwkqEGqy6QfZDBY6I/aVmldIa2cnsgKQtobJWqJRxB9LkqdbeS/bYSsf922KET1t1+PcX2xswif0CKlyAGl3Den4Z/MrCLIqlitB/p4VGu7aHlmt0RypFwGf4N5xmd7TqfpwDBEBMJHVEdNZCxRW/91BbHXvgNFKhkh6kGRszW0zB7fBXDgemKye2TA5EY/XRQDxHhhxzozD3sv3f7TC0vMvjJ4Fo3fLvIG+LR98df9GrEF67Ohwt3agm+dCq/iRCdqIwordzXEdz3LLKtezeqa4WhvEuAid7qK+Dg4teHnFKTa2bUR9rC/rOkP5kB02HkV50v+zleUmobNs7gx1HRq7B4JFxRQr632JD2plYklB3F+uxsPjzTKkPPBLBxExmGUZShu489Yk7DrfVrWHTh2JwoBDcmgb8js1/L9uXU1PbKYFHgGiSLriykZN+phm5X9VQXLpJlv8fAwR+Ao+OSY2q6wZojc8hg1owqhBCp1vJaPG8VcuZNcQP6BQlTw/OSIiJtRO2CTLbunEaM8iS/b7UvRd9L340RGJSCpnnQ0Fy5Tq0Da+xyfPM5ms5Z7+swjgnwYQ418GzgyGoBM/JuaKKqZ7z/ZUQsI9arBguRpOkrRjAWrGbFW/SYNyLR9q9dQbqQSguWCSQirzkD1VeUmvw6ZYdr5o5ptSK1uCUeHAWGuiE3PLUMTWBL9bnIFhEhKIovpuvi9BV2K4MGtKjrqde3u0ySXCNNFj3CosnnB1Sla7PeH+lnpQKXz3fwg8bZMxqcLFSc/qgqSBddUlE1vnl4FgFTAFNNUl02VbsAWYrXwDpj7QNGWEMv4m5TA77GPpQ5lWUex6vDdMDZKqvPXLImx1/th/mPevw45iC4y4coEYAaCEL+/JZFiwR51qMJE2uIpp/V4O3XyE0bilJJecRAppjhSnHL3Z7mlhDBcQP5WgLGs+mP2NYiXMDM3pzcuqHAhOIG7j8gM15HMv+CBiobRdM4JsWLMhAtCLAWLB4MmSg+Cx16FmUAmQ5gnQqx1WYpBJIjHmoPOmfJhRJR9uPA4/LLF/AUiJ8bBQfMzcwl7HgxXLDIaMZwhYd5SkGIGe/p+EdBVMzndAp8y2ypcqSZRW6yeMvG2SqbNZpgyeul2VbW/ZlZ3QI1TfN3iLKYXVdtpOyjKsNNzQp6ONlEC4t9kFvmCN7szOwn1a0wxZANw5UG+jKXcWmvhYv8AlzE2K0XIkvuJ4mDy9YPzEzW7CVm22U9NaldndMcU3HM9dOmh+tk9OF8rbUuJe4z0u10OW8yHGAFbCY4318N8dhcl2gXbtJAqyNxvm3Aua6jIXLeZ0sCv8/Xc/8Owp0jVOEhNgktdsDaCjhtVVBhfSSZIeTRWXuRtRSKCnUcoJJa8nEaDySb7whD+QSISf4I18+10xn06X5UqtH7gXIKGqi+wDuhEX5J8HjQL+tqhuOgVh3qtA8W/3jJq7tQIn07uOna14A1sSyKeoOmRA5uQ/Kl60AiZ9ny49O8Fvf+fU3CZ6AUe8eFzFtyHJexUogEzrv7IoDR8wkMsRCXGxHYjAIyx2TINWlQKCdk7YaWuH4sc3fhbHTNoxmVkayw/FuwDC70WJo4z4kgVgpLEc2wKml9WBFDndS9lsq6QWrMp6SdQWkNT4pxIHHD/oKP0nOujgnO7imZJTK5eKlusPz1PnKQ0O6OmAs6sBW1LDCp/Pq3dQ9u1l9aYdP7O54dTQiZJcPb9mCkXYXj2ywfi0xtn/jC1ad8J5AGzPbpPBTXk42jH6J1Wvi4yDnBffedAmJsknDHD7HdiGFwxAHmHzxb04QPOJC2b3x6aZ6+KH05kqCHKVobwyBSYfR9jFFJhn8Ly/Ktoox3QeXP7GJVcJ0BV+EMY9RQW7QyP7HwVZOghO88uqcVVxAi5CvsZkmBnyuXn06JKS4XnQc1YqppoRQAGfmMr6mrsEcuRpqBSrPf8Mn4f34fBCr4Ef3L1mSq75mqUruIk5iXvwGMctHfxrToyagYOKx17sVbTszcq6M7zfHUSwO8nugxAF76dg2XaJ8xOeSD5nj3xnncQYTxAxiobcbJRcfGAIeX6yXranoo/ArlUE9Ucq86ojlkJaEQ+hCKeAKIULuh3AMSH20HAMhBm02z9z9tV60XXBOInWeABLo7yrxm/yqRAOO4omYbWhosjlHx0cdkyqHQxmvoSnz5lQZiIOAyxfP6UX4fzuF/pd+Ld5xrdLob2yY+rDMG1wX+SlCtHv3xOuvYTGGureVjBaDvEyFeghtGlYLkrLjheLh7vl4tm1DxwH+GRF0LwjZDio60hWMTfkx2OsDFdtetRuG7k9wZWwl4d4sXqXLrhwGWJ5+7AEigjtOVmFZUwxJ3vWuGaoAFLKa3r9kkOb1w0iB9v7DjMeeKBgXyXzq2YpASF9LfkktgmqEcQhgAo3fGuICtyaD/H5xU80+tfceptK03Y5aJmCXDF4mgoa7+aJq7nktOcRWIFf0pk14p/iSwoqhKrRySLrxxgpgZjmoHvCOX3AuDJDatBs7Gnb/WKdR6i85aJzKb22EBx4pWgP6XazSc89J58miQFcSuw5bDZs6cepjpAHRMgc6gdaPDCsgj2U3sIjcbNB883G874eWlz8iZjDzSa95FHz25tdN4mPVtBgPCjh/1WxsIZqyJVYJjxbElxZYWD//tEMcW/RtjXjbpdyo/Ly8SW1tl/WNmnhuNNE0EcVcsR+MTCP9zmmlHtN++Gy1zdyxnfm0YJuZfh/PSG6Ae+G5df5/krAujxdvVN9JwNR8GbOVaWjHVmRwoAftBlGYedyMCiEuS0tgsi4iZ3wgAj3X8ncXEpIPMyFtxU0caq44UO263XxfjbrRZI3BvdRKZmbHI5K9EXo+dDTdN/Tib49adpyEVJ2QD5hufl/T86KJcXZ6tjYWz2gzVE5UFWqPQBWglBOhH+AZSb8gWHHNPbO8TAxbZMeu9vBoT5BlrlXHkSgIOlazYDUrE1oEnDHKYLYXmmUZNHcGTFTjlilUeEOV6SYRDANz4IKD7D2VUFb6ydqQcRUmPeaklYGrNoYfmm/hbw4RO8p31H46SmJ9PwK2P2k/kyBImNiZRqreRZe4L7UFWRWkMv1e7mtbXckMOblJagdKBJDHNZJEEJXIgM9zBDWwpY1oW2Zno1aynOkDgvRMRrhg/vQBglF36ekf+774iNVU1HzdVIQK4JsUgNfVpebo7JU3KZnqQB1ZDJLepNgZLk/GODRK1liy7QfQMaZdIoJymb2tyI05BEsqVk5A4ESFxeU7905wCQNVO5SQaqhtP17V8xUm2QfJbuSMuydGxvZfCv15GGVYVtJqPkNbANawsfBCcQQdrw9JsSzrjMmG3/2zR5cXAod5FArWkh2UaOvD+/Lquq/TF4poRtMytWzFNgSdY1orqW27dAMQuE0nsKp1pXVhGZFMvxN/NAJNsqThQntoHpKa9inXHc4mUrinOvUHfpCBX7iMM9Yojnh7iWa34Q5vIVQoUwPndnAq6N754nEmBPEQEPbm1KsTOVgK4JIWvL6sZDFndAmTRwHMwS26NNUt3xFadAWeTPYndKyDrluaVYqabbVKjNoenJhlDdjs0Tbo9+q/dxFLPhGW3Vl/e+YDO7z3uB1A5z5UnIkehahdsAxYaMlt0v/IJ1gPzEbihX0PJ236BXAjl6VeRLpIJdtdU6ZtJs8cYWwTOoM/WMu7+PrKrqfpasKGylN/xj5596nVa4RIsKcAEm0uOc++BFCCnIiz4c/pnLvH+VXtV2ouaLn45n99f7eGWkUjE+wnW7zg6lnjfiZ+yiQ8UySdOtWHn6/SndiXYsrijEKDBudeCbgeZxIivuX97ftwDaImHzN6gvTVr/3R8ddRlqEM5vSk34C5Ky1uo54eNWMnjkBQ64+vJ2JTMMq4ipFruxDrAxLoiPBc2I7ohLzn5uXL4hWC3Azav3UKEXXF9x2E2sDRYKPyqAw8gKS65pTNqREVH18buafDJtuA4qUG79tXmXw6/fFuZad80qjFV+eDZjnQ4QGpvybZoYZalpCEGt8ttHxS9Zq4HAPfVhfkYvO8fzJkwivdyG5zOnDoLpmBYvk1IrFBFtdmqMjOps62HvxAiy4BuafCu2+2KNHgx8Y69CYSF59uP48zAsRK1kZCtSNeM9k1zg+CpzBRtkXBNB3Is3zphbx7IYWImB12pnwSgiUz9bJzx4DmX+8FNS7w89KDAbR3pKo8xFkOL5syQBOzDK0Yl5zjwit7VbgXIvg+R+h51PHZZnh1N+sIpeO2RR0j8uO+sRemCWaoLxOBEw9XuouUUTRxmLkRjbEwcq8akf/6jEqDUaK6l79lzOdzFUmejN060UFZzIKeArJ82KjAMeagkEDHSqm4alWQz6fdbelRSdy5xJ7HnbEzlK4jUG3ao9QDOUblf8fnoS+Dz7Lb4QyONqKV88TUgsBMlvb0ll/LMqtOwyO6iUuNmbVOLB+1XVgzs2ROdNHNS15huyYmn8K4R58WpX17sOMA7+cx28MycKcO4mv8stjYgUZaVCUUjTygYIYFSUBdjTivul352ZygjTzHxTXdCxO6rcQYWJKyjmBLCFVmui67qG9aBDJawMg3evQwPfCioAl14Lp7ttZaO3AQ==
Variant 2
DifficultyLevel
725
Question
Nigel bought a wall hanging with an area of 0.4 square metres.
What is the area of the wall hanging in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 0.4 m2 |
= 0.4 × 10 000 |
|
= 4000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Nigel bought a wall hanging with an area of 0.4 square metres.
What is the area of the wall hanging in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 0.4 m$^2$ | \= 0.4 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+cZfPO3NI8SJhNS8UW+04o8JBlENwqO2gQmKzl+UBxsjr7zIyDykTn0IUjSlujLNlAakzr1Zyu0orN3rD9Il9rXP0/x2++S/wjVddRcKvr6rJV8wtNE6xug3hZiuPWFXSVZCKOn0VU4otV2cKhj+//p0vXIgyCnIOpLUOmdQ27zMORihnKzPx7KqAymcLsMSXEOxAVKQUiW9CPXpE4/pQslrasSICn/nMQQiyLDlR1vBllVpuwyf83kIdztcPXog6EnSYdZqKeE2LCC3GQ14+Ce11BQgEXhLSji7bGVWHrBAEn9ce7bH1cTVK2BmxNHKl6T7/r1koKEj/TmEgJgrChUx+tgUp4yYrsC1PJ9oa/xaZ3Y0tBEWH0ifq9uQFxGTX+qNbkoD8l0GPTDGlJY9+2JLqxZysBBzYrVBCQpRkQx50BXYReSRwwc29+GL2rA4d2QmjUbje8vc6KlDQMB3Aw5YC3AhQmY29NUqSbRxFvZDXfIrccAzMHPTo3k+5nYO/iNbNFD0f/sxpKIi8B3dYLJtu6GojgKAkyVrwKCzlJ1TtLy/2RFKizKQ1ZUq9a/D+3yLafTxZRlgZZJs0SgR/ATWrS+q3jiKy5XEOdkLU+00GNJ8g7UtXHqz+krffmgRYLsnZsteFML7WL3JyJKcDsTXS7bHYln8vg0I1CGZxLwplOT9qPs1l2XkELJLD9qJbpYENJz1bNRFBEG2mhpVBGgea1F2oIZxBszJthy7oxmPI7HaaFX0Y1A47bXTQu5li0npsXdO1xmVjx+G/5N+V1D3NXwIxpdyxz0Po893F6U6z05AKisw+wdjePftG/T1NqeSeTSSu1sEz5nzPehYxsj8wyfZIBo23z8emt8c6VN9oo4hV8a2VzuKYmd5tp8dnShSE87aNdwH2AxY5o4hQQNhVlrTK1cqcP3g2OOy9BIDQ6vpSaei+C5s2xZbOlDnY4hvsFVqS0C1LD8fKZhhR2bixnT/h6PrR05IYIcll1/rxmWpRtxe2O5zsnb5PE57p79pwg1E8YEaVUhdDq2hDdOGyRs6ppmFpkUD4Z+qN6OVs7HSTxzs9vqUW3U0rDZdxZ4Ae06EezEwJp2eOXIItD/0Aj1aTLCQ1XG13yyM8qnzbU1lXDJDQ0wQTcWpfQg1aRX/4OjHSq9BoUT72/3qGm3Ht2JHDE2eb0OewrDV+ifw8W1+Z8/0Cn2tWzribXnNr7lJAhFl+6RCHiX2FgFWIwCVUOlx9CXh6P90JFLyv9km0G86QqTxAlMdK6/c4aTOdEhPmCixcT442uHjIqx412gVRs6ahepo4OoIZtZotQMF0LYd2VkWYuM6Vuom8ETk6JbP3vXPgDooS1VK6FV6lA0/ysSwdWvIORUrByq+4xI/MD+xi9rICPHYCuFWY0X0x+J/V1c8xlZs6CSaFzOQrOYyi37KLcFfd/sCLeu9z6pWVEnSJPlnLhvtVXr06BLa449kc+ayYh477KMiKflwndnsRsvwFpCILvs28OG2ATSMvrXL6gMyqX4nwa16oEis1SYjEOB1vYaHTG7MoUya+mHDdDtchdhqo9OFER1U8p/rq20joxSv6+n/40+wRZODYSJBqezpxGsR07n88luWg8TYKku5XXw2z6IBCOGzxRBexDwQjiOvUfKflQM8cEcqFO4TYUQ+VA3khLTCM1kf0xjQ9gHdDerN93zqC2zDrKaiBPsXLxrdngs3VNP/6eeAnjRQTVtb6vpYGujd6RTcyDLBqs9z6R5kUxinD49N5PIOe00q7IkpHBZBb3uG5aQuTZUyKUjCFmSigvVDLn0pS2zFsbeQretLxL8SBmva9Z0Yi9d4u8v5yEKFZrU48wMv2FVH29erZ0txZ2w6rh3TrXmuRMs6FJc5WVkLa4mmJs1dQ1Dxxc4bi46l1zMqdKYtDDYJR89AtevHnWEeAgNt8fJRf6DEfiqhkyw2rA3mGxoInRZDOwIikbazAhsoLxFf6TsVIDPxDTkG3hzTSVeS1P88mWHA/TDQDI+50dsqnc0HlWUqBJhsIhUGmkao7saWDz6guXB7iphUzLfd/43Vsw5DkdkyfpnaXb2chupdplolg2uHPJHHodoMmrFQTQXbul+xI95dSjyV0JV3G23qBfgiwD22fc1fnJ+UOCMtVGILjxx11984QpMVPfkLN/Fnzm4rd/n3gfOzMya1Si5GrWYRtWwKrSkrKTvXeftM4lq01268OifXXOEiVUYNrhE7nINi8wFhT09+K86yFugNGPjcnu4IVakfoEqzTYmkzHOr96HDC+KwNMxnQDQ10Eo0LmsFIFE4v0IoQCCt2QieMC8s3UwMCjoyz36vYXgHTiSgTD0DDk8A/h2z8mSBT3V/DyrkqTz2EsZPTgmIV7ojIZ7U4zNFVV9UGBTZ5IOctNKmSTN3hHibcq1Ag5B5UXqUgOyAMlIpxRm7suEE0P/uNbBcCYZXrFmm5M985NsQAONYfKYhzrCk2p64VDZnJVBBltpMSA3Ok3JefJ/NJdunY3ybon3Ga9kQ5mQ5qWHcfzYMTSab4JsC61qlj57LFkaITSvAJx93apGZAr/D2Rcs8OzixVCrjstV+SUtkRqg/g2wXcKAruzxc45bU0zbrRUDG00arvw3GJTpaHrGkRh/FGYEr5vqvQZlcghg2wH4LFLh6oLQh5qSx2TAjBtW03YH0Uv+RyCGalUqNI1EvASaGA0CE8ocIUOojiJ3tJMvL6QRwuxJR9N5WBvc+o7j9FjtIaKHNv+zJ+UxYUBwYtX5KbwhBRweqIKU83dgodLn+99EgwCa5lXX/91+LZ/yAbXJ1J+fbEWzuaVzHp0BLk3xIpiqN7sCT0c5t5NZlT11ua/ljdlSIe8O7QIDUV13xchaZJUt7+TgkjWo9DbHN9PZx0k23c8d3xgT+VVF/X9YtUlGkIpuerIjyVTQILcuTTUYsiuKE82u/yeenXD7ZL21w98MFuv8GsV77LxeH7SKeXYIYgRaNrY7nYzbH/1NBzuVWoZ+Ek0RAo6d2APj+YTLn6KRhCQPXrUwkUCKxaH0qEZU9iLvY+6jH1K5lOIl5g7rcb/2utFA86kmFlSs7b8MsPrZzvLpEuUZRizNo3LuO0zyoBQidMBxR4BUHn0cXbQ/rv1C0TPJ0Gg/oFj9RebJpPS4aessa8WOIC9j34z7/zvsdVBtbpUZgvLg9hu+5gzI+vYCOQ047Isbmhyy/eMRlBuDGt69WI9D0f37sqHkZFy43TrlNb+r8Scm2FajtmpvFG1T6+90M5QIX3/huGXi2SWABv4pgdDEYPGrzkC9RRlbKk64IIhAhr1ea1J3fEjKyXGEf8xMsUq1il/7rzUFC5Z11TEFCw7SuohCOGIKBLGXGs7sPHa0hzqpRSzxvKDQMePHWPaQOr2PPAoUEWdqas+DBiREU/MtPEgwNYQjiBqNafYjYYUWFKL2p+nrDiW7bm5+/9OyGFZIUb8MWYVszwn0egxFNnHyxbH8VA8RjN7LnwQpbqr0wLjFeY3xL+2BmDrulC1Sq4dcsveYL3Hne+ZFJM0yGbaK66WH4fFhrLZhDyp08YYkur2zNpWZc17EpkFDgGowifP+TfSsjaXdPxdFViHqpjESamaMNvU1II7FXENegOCTC4MEi0BkZeaogRGOewoO8+fwyMZUADn1lELjwB8ZYr4GnMTJU4cZFiag2ILQeYJKFJTonRAmc+sYnzygjJIgO8yryfu8noyBYGqaPTPYUo+DmPw5uJKBaobVVwZazecx11OXr0QXgxNjn5CHLMtCtpP5dZokm9RRLLLG22IN/zse62RXGQlr+Dh3jcpLteJKB3fmT31Om5hhPOYe/EuXoDv8FBWAjL0LTivLF9GMg3t2KS8EJuEHKcItYXHnjSIAmoUlVoXFXvuyKQeTNnkaSH3r/if6tCXoUalHWKHgu2U/Mr8iyNo/WRhxpjZwSjkN3FV9flhJ8H55E1cZSmBtYTRPbGTcczAmeEFpvt8EMybdZ/x2gBNWcsqSMRuL9GwY5JgwkSs0M0vgBVDDnHEvFQWDaDzp9UxcZiikIbHhp9zMZhA87LOIXyw5+ZAKFBjkugYQGzlJB1MTcuGA8tNGTg3nwXE6hexX/CZyOs05eSqKexD3vOZ+AOGp1OYyjbWx/k6FH0kq63xjY1/X2iwy/Bxue67h8LfOIYxW2uevRxmjq76ifwpBxKmO3I+cJksPT9Pedh3jB+bGBKaUk0CP0/9TmBtQgHkIbkn2M8bxK48zxGPhfgjz4YDXLzYPaWTcEhrmG2E5t+zrlg6SVOD/rEUp6d6qf6dbUF4Vg+YTjEomfxNNPA28hZri5Dhsz6yz/QnSq584IsXvpL1t5WlmJXfd2HlBw4Bcy+2ic9TaET92LMirsYO1523L6Zmh3fdR/aXN7KDSHDA3hhxs9GcW3IHnINjJhO0kjvIDzalJo1m1puabHQxNXWcM5nQu1rsdEiA+C1a4jMVP509S/TVf37NAAUXyKcZ6fEs3awTcK04cj9910yxjQHfnI7eK65kTIfUFj81yEo9my/U3T31Dv6JI+SIgtjEb+91Kk0P6/KRREUJkPo/oWDPB30KgaFypViN48SuXme0aK6NJyA/YicX1F2NGAvcoTBMGx3gRAyGTjauhJoSrexjL/U0xUUJpjvqRfaCEazXZPmwwbMu3ZEbh2RrCvJziqUHim2N+NPRHKOd4V96rcR+FPxxqc3p7AkBSalGzdxhxcrCkfnBFCjhsuBpuCj5AbHgN1au8RB6wzZbxQ6kpPVJKMzl+U38cC8++c0yBnVRcljDLNO2zGkG4yQWU+Vd2HwKH4A5umfs9u47twFqjJz1q2Z9SuSY0mWnzDJJD4oj4NcilrDGf2QoWhJGCkrgv7A4jBwbEkHH/waoNq+WohGBUxU3MH9REFF03Me2J/D1Lhv2Ux7g0sofrLIRvv4IOzMbiVtDY8yX/WbglKw1lISAZLXrHeKUB5O56yUIQ/0wyDSRvKbKiiAsVd6Bm5/qdtBaPgbPlYl9sJIe3ebAxWAKhyKfIBUK/XaWofpQ4nRlPYCT52dtjswQy4W5ONlyP3eCSEQi+eTGcnrzDYIzWjTfLqZR1qWelkFTx/sBIM2Hj7OfAYn+92zFmpDlIEALI1OJqojNVr1tdbXhAsBK1wBOwFdbz97COkoZ3Mm9WB3W8pTiVWumsp0q9ojdn+D7iiea+7iPMVjFta2xcPVLEinAu+pCwuGBHhJngLUp3FEFmUl3m1JwQTJi+sU8S2VPaoKgdjPegrrGiG6QHaIznmRV4JOCK314Lhp9LJvZuOurI2MwIFEmlsGsBuT/LFZCb/7Zi/rchlSe/9pTT4qnwckYSNndLOp3WJeVsYKd5OBSrj365k2/7xc+6m2KXoOkm4A22ygN+NbTv/dYzoqD0fQfTb+afXWM418dMKu+8Brn+2ZgDctFV6OV0TzK1384BdCB09DbPLOvCVXo3VUH7xxBs5vd28jeTnpSgBJVOXYN+871gtNOn0Doo9HYs5KhOSt2vXmLuaF83WZNP3tq4mg1NJPBpZ7bxzVFn5ib0IfSOGEGH0xInL5xj7cdxYJQV/GFqPTBWDVKKH5+8aYwB5FJmbKVvuXk62trP9qbZp/8ughQAjt3+6UY7AoRNw5+U95ww1sFX36/rQoawTzt94aQQ+0eyMPWscJ614UfVe9Qtl3MP7vTEw6ECrOPfS4jVz5YquJO7FiSm7nkM+Uw+Z+u4Zce65rTMdO4rf8mSXSf2X1qYkXlzZ2sYLHtqWAHgMP93iOzqKx1SvA9KIkEK/6ZGuLA6xqngppf7H5fDySRuPJ//y/s5M8O+NE/BXcoeyvnsqm2ik/RY6AipDAPP+ub6t67D/u3uDAEfFGoG+1tZ3tE6KIaFNKMB4jw9toEk7Q/Iy1P4DzZXovM3ykbObiuEgvklcEkhfmGUxMk0R6m/fCC9D43a0pVfd7YGUXatMvoN9JSDrehHFvXmg4GLSiYcR27FWFquqOXk/BZWA58am7TBmK5OZWVpQaKOXwYYVKbpXEjaRkFCOzyZ1F9yMGs4B5gNplhpO8p9Vh7b+CqxpURVdSwSqybVwBEhtxCfZAs0CNCk1hVXUZjEGSnv+H1Q+qi//zNR+21kHtp2InQv55k8Dvn9keb1QRiEBgbImKiQ3dOxHUX4n+FGL5/x8RgSsRt6Zum59Ph2v6ZmrSONuOIywW+dm9aWiQLk6PWgq8x2R6C4YfbaY5XJyv+Ur3YJWb1kdim6kxghJxhoUPvUr2B8fYpU2HHunxFquaoqTiqX/wzqBYa5f5ZoAFes5wkNSY4Lc2yUbZWvbRbDQxKz4mqXRAqL8kJhhwUKwjk8O6v/+d5PSV1CS5JR1ZYOO/oiAfZVtkPKOSpzlpdB0KYPtcaZB2s7uT8GMZvOWQt8lSFMEPF3k2Kk3m5HB9ltZ560CE1KubVlMKXf0niw7BnPURoQPMEeyysT0ZpFB7sCltuMstNPtzwd+bYfHUIanqKhk5bhoP9ydI0F+ljGPz/BuGLuhXgylk0fD5aaiIgXaJ/StvjNw/P2x99qqtYDBsJ8weRntiN5dcFz+1BfhLUjzOzaAqub7kItBCTOObiFGk10tMpdAWtgBWlrE5ARp7oCrKA1izOhaZcUL0MylgGiQd+OhonTFL8jQRY89CJUxNBFmTgC7g/lphY/TBZKh5E8QgKFg2/Bu/P7PSRzkkmqSDGzLtf/z+FxhNv8Ve7W9vkVkYwnQuHGAooQCsbjumvecdC25JUEJcAgWe9j4jTUueRPNPL7Tp8bIm0dAIocOvc5WlHhaBpevnwiPUnMoCGsPRCqBnH+kzA4A4f3F22GMjngSAcmTr/tZk86xbORxcC1+dCfyKY/ErysPdnnp02z37ONg18kXRhBcWg+Ub2Bbt434mMNZs3cAbSLS1MPrmfiQAmfQovspVTbQPuVlIMCCAMLQBh6B6ecAeFe+9yc/dDDUYtIUuMMP/dito8WNA39pun5UGnTjkIZZuASdhvP6ixO7RmtEEH7uAhx/fnSoXw6jfXCcRNSRnXUzrAmj5BJDwiWFK8HNSlfTaXJPufUzLXqPFKnTEM9HjBEq8VEC5l8ZB3cr/KX2XZKOzZXaRhYL0kBMOR9kS6SGK08I5HtA7rMgE2YO5gsuOIfwkC0uccpnYpg3y/ZqUdYJHtCbwvY+QNmgdrjJ9SNFkSjUUu08viXUvu+GdXwFEyWFP/WjS2gKWCEXYgDVbiT/CZNIW4F17QVlCJCvQye3oGhgsrcgnyPkR2CcjIKGAv7a3TPaJ5/+YFfICkwZb+xBtAJp3Dstpin2LbQ8LBFQn+kk1ZNAhd4ahwaF1C0tyFinDAccA3a0s2CeMKIabbMgsQbA7jOcoIzy85CCzxpfdiAq/z2xBid2GYmv8XK0sOTrZlGCze9CNDbxXT7b+/lN1P2ZZnS41FWqaedIJmGQbBgvH6KmdouhNea44IQlCDPkSIcLle1UO0nXMbiFDs14KSQB8mUsALOGewzel3GKzr10T12XnGqWJT9GFu+yfEVtyzowxsNNo6DZXUvg8JAE/nEl7hB0n9DET0AIG0PBi0sxe3/4NmT3X/rViwMwtTois8P8mFeJ/XOzSVbM1ocxZ3SpgA6P0G25xPd1YjxvilH9tPOXUifW2R+SVdxRkJ2IwVDPQhJRNe/OIum+v61B8y2j4BlazSGAVvbzDthkl1mtzSyiSdGP4tGCl68CxeJhX0qqB+JbBWJTzritW/6lJ5/gPZggzBh4bfaVrUZo9rftNuuO9IN0mCaufnO0yTjFaxoGa//TKCghSztq6F2cy7X6dzkW8XT2nd1p4krksQXR31OkFOk37GobYnPRqqk5a9UpYyX1/Vt41SsQYDNvxBPxYIezi0C4b8OB5Dm3wS7yJ0MPFiKX0omhD0NiKgHl9jnKB9hxa2Pa+f5gp1d/UttETsW7wbLIlZ0d3F4ZglIHTg7P4xXh526ReudlKLznHDQ6BFXfp7mwYMb5WBv9v56ZEFnGPb/ndshzacGYl9nmg5YGB9gmvA757XH7gzEg2keYPOoN//SZtGolQl0wjKhZZUmIEw5CUudv+0ny1kGwWgkHB+4m7teCyWKljfoOz1ZayorGCMzwOiqYgf5spZlmqxDklb95HVyOYWiaRfJ//dhR15ZbzQMr8aBUt2S46gZ8lpC/quPBkFEh2tFtkw2frWKfZxhCgWO58Q0F37gGR4QlGsmFNbd6gTT5jlemtj4eAWwYidBe5SrrZGxKKS6AqWMUuKFTB8UPrh8fVS/BQPBHjB1dt4zf1h1lNo5Ma2sbsyLjYy75nz2F5XGuFbEn76YMn+OwFgiXBmgEWrvwBoN8FkcNNKbdq+hpisQ9YZ74Pgdzkd+imyLWB+MYQJ+fQ0bTMaM1YP3CoT46dD/hoodt7mUBF5EzFIa+sGHcEmivjLuuufZnygr6n2yeN584DQgyP4MPtFo82ONWGDnWdhIpMAf0r2Y7Xr7cwF4v18++xEndbHAQXKxavQdqraS75eI/CnCyxt0zSA5CpxrHWzUp0TeEAfvk2MRd/eQOd3i+B7q9vaCEuWv+qGuunRsm7IqYYP10iFbAzfHd4h2mbd/0QPgZFonQ65qss/7qvX3de0fMwB0fC3PCB9gNgEBhxGRaUar8/HHZ2XlRbhA7vMGPW3FOBeyg67cir3WrdtwWD5RgnEWbeG/BMwB3KEqjTddS/CWDbdR7PvY9unQSXRvlK+twut3LW0tNUXK2wERKv3fLrGIpY1AGq0xAdl3tW31F/H1Q54wycUwRqvXEOdOJPQ+p9oMMci6sjEUFR+dZ1XRGQ70Jj94JPWnyxpjpPCOK9iCQSeoHt926jZgO1kZ+dqpd1QEDB1hzktdzWNWpih5bpuJgRdNIzEVhRYz4AmgPqi0j3TUpNXfsIcMTU5gS3tK0oMyLtddtTCWXDDBinFmGt+jo8s4Guya1f+lSzn2yvrW4wdnzZmwVXxyil7dXuzHXi+W1ytGZ/jUTRK25Me6kHpJwCUHRkFhtLAkSFCd5yi+wTDPm0RpiENueQrQdi4xnOiX7S58M6VWGEo9Z3TEDyDEzGTtTnAJFw5R4h8E9ZIdxCQd9TuLBMqgpuKNHJ/nOR0dbQy4MdwLEbkcpRArBeSS315nEglkm98KH+cn/Sv/J+p+UbYre+dpYfzsQ7qbA/r2SDSh2od23CI78EjWvFM7OijivhbODaUXBiYYoQk1D9DEfsnx6rvz10R6QQ/AjG0GlRJXoC5Gbl1taAydxPeqQBwdgoKOCELsW03efucHfiIdjaSmfz37r387Fu1ITD4T8xj0H/w6MWFh0sYvQSgbKLh3CKLDB4IQoBHRLyf40Gjyj7m66CNuFWPpp+m19XO3RyPnZ7klXPL95Ev5gKp8mI8E/nmqpfug5m5DJnXyxZKqqXmQw6H21lR9jUyGGs5Ta0fXlT6iOTeHb3YsaeT1HMhv2YGPTOalthhPjgII+bp8ueMSkq+SM8J7yZdqh1cD2Jt97dCZgJnuBVFmMktSie41ZcyWVpb9yf+JkYZUB2C/iKvBsameozGNXfU1u7iAJb1O0ulDi0VHVdJHQgP1jF2+kVo84M3VVYr7aHr1GiGRHEylLp6dq+kTfiaYUQP4SYGh9u+fH1K8q74xtAvsbAEv7OurzkghkrEFTLIanddwJqdS8qynmTj3/MwBb458NxdaUxwzAy8DeWzBcbXhcqUi+HCochZlxZ1kn3KujJJt6QvYx4XcOd9jrtRlltoQDeXj/RkyhHmLGB/M7Dpzl14GbJ1fggEE4zBDhfn/968gaSUr5e6+9teraA1PPViADt4SDXIQ4iY2gZjVnj7eQfWmlhPT57dgJZZ0fzvAPoZwmKXnX/wxYajsKpiI45u3732ui4YsUD4AWlxFXe7XRNZ7sNY/7jB6d1Hyyf9y6zXQElWXnFECdmKzl0/r+Xngi3kNnRrTZRp5uuLAaFZXEtpbSgIvGq128KWdG9VDZlwPwV/begiAmI/coJtUl5Y2b4vupwLgvRU0EP9oAk9A+L3NbIAt4IBWpB6ShCeIS6BKgm4CNCHMjOQDEyMB1V+rPoheY5CZW8+cmszIOrGdXj8aSA3cPmrv/rCoCfkEsqRS3XOCtf5BeB6LQUCd0GOzatEODBECjnbf5DDUuhZvkgukMntrhbPrx4e9rF/J7iyZnzuLFwRW1+OWYUqmEKkf39stz8g8Pp0B3DOViwSr4n2z615bt2xmeiKACk2NrCdL2em+5P+4NWKPBupkUt2iyPwlmKtMiwP9vMzetpZ/upRHEL4Na8ASqJg0PcdH2ty4dqpxcaJw6a3mJUyAd1nwydMRg5UpE3sDpOnqtXrSR9URlZd6MJuUfh+yoVwK3vg4DM0DVyBMZekxj3tVD5wJNwSl9G+0ITPO/ust+VFQQ6suCDoi1VfFHqMNs8zhWvnWff/XxZWJnZibBBWCCzGBxvHYizUFj2QtsVUfBCtIoyXSd0Vsz8rZKXJ6vGtarEJk/ciLRwyLvkxk1H49Ze2vAE0hCj8faDqsg84kK39MEZMkdvZbLVEhGeeE0jl5bwbL86RNm1lSxaKukppN6KOUhU93BajAWeXRtjJvTUq5D5mlVTzqFYJKvfKYwqe7wRWdyfHSuqBoYbTBbmHrMsz4IXEuLzyQqxYM7p1lDyz3o5+T02b5FfWoBn0wL0TR7yUu2ZGxs/R8k2Y9G38BXce59t/r0RdPEjCDf5xr6+a1GFfx0F2MP7MYGw/BwFeUvcMLolnYA6S1tZRDDUZrV75tddSAydkjhXZBAX4PthRWVGSrgCPV8PK0O0qkrSI5uYGRD4HQyNGMPRzH/rOnymJUb5bZMs/y26+MxWHxb6y5YAWqgjWo3PPhvwfDbvnTtO6M02cXulM+HjcC/Y3ysqxrfrwcjqtfXik6FwQM0rETSrFFtG3GeWiLMC0c+nNwr2//PYCPPyrS8Vek/C1V9pRz+xRBhmwJNkzQIcDNHeZKHloc12t73Ayd+cllrRroCiUJKAypS1LHFPqyIhpVa2Uox8i9IlUjy1DQgndEDBFsyZBs8gbctc4OgnIiKzf3kplZEnxZPVG+SI4V1oIKJ6BQoDHvs5vgnfXYOjiICm0xzKmOuTDjODKRYfthDu6boHyxEQEe26S2WzJHTbH33lNB5TRbEW9KiUmegWHAq/mnepqQwafVpJKPbN5jxVd6aeYU9d+gH+ehsDc6BBF4n7JfsBw8e14qf49sOE/FzxWWpIJHVyzGITEO22JuxgWuWOT2wj3LVLVwpVBQOp30mkmKWt2oTmokCOQpyahhRtrPSbg+ke3LnkTMpxZoGUq579sBDXxKZOPb4/OqQW881WMcxJqhTcOUunAI4UEl2V4akcCsq/lKQGnHI/48/Ea9G6ThRQvlr230z/zuIDb76aC4amjiHObBMI1kMXK44gfaadToFfabEXdSnzkIWDFOe6MbiiubSRTDPx3rLRZLWUgzYyGKOxsQ77ZdvCsad+PPA4O/UU+WnReC66suZr0LE7LdJKU53sUv+xgLTgAA4nxGHGn3X9utMvs7HjludTQSdBpQIJPen8VdMkAhxBZSqTylsbQNX5iRM5ORZ1sCXIqZuRjAua58SYGgkvJHqiCjrqRjBfmXWURQCytR1G3e/ic/lF/eJVGE9AFw5/7rYS1YlrGv2nO/pZUrLCWGjskImIRNM3T1OV/vivj092dtBd68QQPdY2EwCW05P9g/2nbcH13EXzgUzQ+mhNnBAvmqs+jGWqvnGQ92LcCLjp7W3CErDTXuIjnRxVtpVxK1dewhc1A4pQ9gez2aNWn0T9a+C8IZyzqq6sqUm86k0GQenZlS60+lT4xiAKm+nE+Wppo3o6C2+tqpdLbWvRfI8OFcz5fs2dnR+lqNyQJp9lJz8IYmDISjFTSyJEyFOVYeV49kwdti82KJdKoLQJSGCJIxERwLqIWEPHjynUJN48+t7/CsRyBeGzmr2ycx3Od3wuO+7OjinVvb3xKs+2xL79AY9Ju4kB+VuaUp7ds5UvDe1OsZOdXUUp9z2WFjt87nckob8x0PEkLCjTdwnteOwKkLfh60Fo2zbyjPC/N9A29/214LJIHDQf3K8W6BUR7KcXKMAor933hvkv9oCEc5wE9qj5Gz2fLfy7XPToXABdQRuZyn+wIadd5yGH9Kwt1jhceKX4jOd/7zjbkf47/PJjqwMhfC9sOYRPNTouY6ThBTPnE0ZiqHYgRCLk6CMvYPFewsyY3eoyTR1DWFG178sFuvABUhdkueUOKRavQqAyquAHteJIPSJikOEHE6QLnhfo+/impwle+X3LIBAvTta1wxFJ7+R66TuF538w1xpe3jMbA4LyQV/VxL6DOGM3R0LdDxggV42uHwFzqIbEP8mvTUjDoLLmcmoTc7dCZ5gUMiuZzKtO5BLvzuv3cow7sC4PRgMLWfNqIraJkBWHmrCy3WrnQ4aodgXa58ONenfKbdPtxZrwsT4udcXMDrCFDkBYMdULJbGXHsAqEgCaPZPkrgiqqhuRGT/tHgn/2gV6T5NSfaRKXjDVvdXxHgO0LyfKK2s++T1DOkz2P465xxWT01W4x2+BlHM3lRQ84QQV4aiXZj8l8TOfUSOms3/232+DjFxGTWOMv3fl9mr2SXc/tr1CrJLvU6F+AcWawV097AysE+r3gUhupzYktoe9lkf0scwZl7P5ZRTMPS3EIpfEsIkPx/gkKcoaL4rhH54OTVMk/W4NN+eothnd4IKCa97LmzVJXKs4oXVRNQlPZwSv3mbeBN+TF7KRqejbktUwjFtjkPL23/1kyzr1MyVYeXL01kmsLCVMItAX0RF1U6BvFjsug9G10kwMzsNNZpCBeS1397NQif/4ISY8JDOQfix58KXxjrXESaEvcyemiEgXODgR+b79k2VFFpOcXBlrpu5gI2dZAqf6zZABOWd78HIrAaKssCmgR53pff5xVNhk/lDVvg==
Variant 3
DifficultyLevel
724
Question
Louis bought a picnic rug with an area of 1.2 square metres.
What is the area of the picnic rug in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 1.2 m2 |
= 1.2 × 10 000 |
|
= 12 000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Louis bought a picnic rug with an area of 1.2 square metres.
What is the area of the picnic rug in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 1.2 m$^2$ | \= 1.2 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/ZcaaMbGToj2ORbG8BymcTiHM17iG7ybfWkHahTjhZOYXCEiEmIzcpke6ZE1CtdgvbSMt3PMvfme2OCJRJ6dON3cilZKiYD151g48vCwxL725Tebm/JqRRKeCdYIyZz799RtQP8UfEwV5ZyfYgouAivpR4NLc+RTVdxFqLNbyooWVoKhElY31e2TmI/A5BfOrmj/tNUvSv9rU8eyGJyzHQ6BPtUeuN5a862TZ6Qse7eZAGA1mEg2HiuRtYXaGeoiQPHarYWUZKUtnwhlWgcx9u6szcmNrQVK8OSCayqwbNR+hFvwWAxzhgv7jWepPTDn02RzSyL5obhAhq3Idjql5Ww9brtWKz4k6+XBwJVEF/R0OpkZaLw1Xx7dRNStgjzpCJsmTDS2oSyT9wboNS3iisdDBKySo3GRCtjJegPxSA/ZgIqtGK1cq0RvNX95r5FueWM3ZE7tkZMUA0k3DJmLByE2ijv1AumUGuvk9peeEO3QnLmDJ0m28oblV6PGOGadXhOey5LKteOoNtslVj42KC+5uHQmRROCqHc3iK++SlKUj2jDqVsIS5cGwuFU/Aeo2erjSHRr8Z4MGoLgmexo97S8QxJuImcvokx3+Ox9nAJfY9hGh6diiLZy1S7ZbFSmGDRxqQcKFyr5/F7Y0vQ8Ths7nK7gaH4oKmhRebiygHSK5dcSbi+c2WcOAnbgWAx1Sb8C+w7iEYShvSzoZkqFnKY2bcGmUl/vDeIrVUm5KeKs06/Ral85OKxirvOzsHtNlKAV5yn8eSzIyUC3CUaA0ZzgA2hk0hLOmirbeuIJllAHm++hy463yBjCNIpv+EM+bOoHTtqnExHo5tm7s6MeDujbFBEFsLNC+KKYeN6TPSL0X+6zNjHMBx8wJPeV6ZVmp0Q8YwVTPt/aex3O8NPSUDZmfsbf7i80+U6GT+igQKgRjciEJ4BiILnaWU4oO4lRBw+glLBxl0ST9Jd2wfO5p+uhcxYQVH5h352YW7NV0N5hqzYAog8mfFlMbMnSIO8wdqsxu+x/Du5qJqwgrWR7G7GcbdPZHY861jkR+l+Be0ijUUYhfepeKD59G9UooeIDIOJs1B+5hyPdK8yXkFJKiIN5TO568LglH7veBmG6I46paaUE6It7id73TKuEy2kxXVGDPBSxWSf2uWPuu/eamN4qFkHDNjQrg+ugHvsi3kRkFv7ZObzCBMiktFx0wOOtQ57HPnxs/2MWILQFXWqDJSnOUHIzk0MD2CcBsRmBHi9RBa11HFfeIxs7YzRZbGgT6R7GJF1BAvPgqCw7JkwopohoMErODFXJY1M31j5sRPvSdiIr/UgYWuWHqOgZv94OZKTNL9cb7KbeFdSNXl2E9bV5oX7+eUTcLFmE2gOT82ukcVg+Xh8i4lox/fEuMQrXTiAWVECQhSpDWAweesKtuihezOU9Z/uA9q8M1XYnX9Bs2tGyYaxQKITtIIOe6wN414uY/K5Cr6DN7Udojyweo35VnwSeHgi6/WB70aZJv9xBULeEHMSWb8eMLwk4/dQLDUASX0P9dc5lTHIdlJ5qK29GUaWD1EWcYzCYZHZgAyDtaIESBC9Tc4vqR6ZzCF1IA5AxY/gTvrGJppiPQLe3n2XAk8/y6792umPVbLYuL5II92pYIYduUYsLYNfSNLGroNlPOiZsK1ullItbK292JcP4t+9U+eyI0yV5Q4wzUR1c+LPIKHvSPdFNL269hYgQYSfLGurcFioKKHJOeERKgkU2YsclqjmIRQNzmstqaXAzPYH7NZ1BA3isB/G93eKLh2cMsI+Zoyg8pg1KSl09fcSPCn2R9lsybVshUCh8zMm/s3UeybSJcjnt0/DoYX99VHqjQDLsr5zo/EsSVAOHhWT6XgtpD79Tcsw9KokwDf7totxb7pP6hM7EQ0AN3KPs5kspHF4wnNSnzCFR5rwe4NrSHy+X9sj+sdsVCU2i/i2CgvbUK7IjSYBKwg7/Xnldvx7lcV1za9kwpDsrasgGIjGz68JPbheildVjRWYiZuYeHMVrDNWNPfR1Um0tpCYNamby8FS/BjZUNsywhBeqImSz/E5NdBzrQUnwpJCdEJwgSiGIlqRw/QulZTjOsUnYSYjBL6cbRsElPsDNT2N3Y6koZpMbSMJYhyJAv3+wiEyHUrWNpp09FVlb0+ucJ9d4KVOiTHLJWEwkRCZ10TWDpP2wi8m1HIJdIuy5tkfpQqqBgrBWjcbk+RPTqNw7pKgCFeR5gFe1j+0HxlQLrnjKwnVSQT2BhT4wvSaq0abITHTjxytMb8yCVMyL1/oIo6og3cBYr3JRn8ZBjnakR88eb1wXEu6Rs8aP3CntP3/4q98OQbsGf3+HOoCeWzmuv+9ptdsSwCTLvz5qcY+mQ7OOuS7F6MGVrY003yfyoFY+aOkNYWgA9ghNkwu6PQiILAdyjg0YrwkwvYOg9JgqKjGVW3IZjqE8Aw75vo1BteEhALwZ65fsY0rRAfULrzkTLpgSa4bo2VaW5n9ForBYu5XUerYtMCFawTxclz7hEH9vsR63aLVRFMfA+WLtoPb/TxESksgRnA/KQ/EW298OpA/bbWUHTI5Wqhd3lpXxS6TZHGN7CKKgEdBxMsZQO8YfawBL3hkbNzCPA1vMtN4E17eFanau8SK2hX/VI+qDU5Zg9+DGptUxj/egNLZC5CVbLv8Siaa26LKGqdYj0rDB3P1ja8kdm+KnU1GtqwiQbvb1vrOlopCJDOyHJqsVJNG6DLD2Yujb7k4I7NXPGqqTSSHD6NggbI40scf1es997WEIgwRInu3uwJfGpfTfNhQFJ3Ykav6sEqAa3efhS/srgtsndFJ0Qb2bQNH100ZtzkKBk0FC4Q6iU5NTk+aQZBgyBD2j1kpeZ5U5b0Brhe6yWCamizrSdtpsVySQciCH6/pBS8nIHIOBNt4LUgy2/aWJJYM7YgTjCSEt17J1g/bdRtyQSomZGWKoL2cxrVaAJ4QtbARwyHgCpl+bbL+4TXAaubeixC8DI6GQousNOvBdPuaHXF0JBQdWf3Nx0TgbwFJmg5d4uKzf7ZdrUwmOOQsffg4j9gKLcZeOEnnh1NsiCm1yLmUggTU5daaNJm4HjFYSTIRPK6PdzVxkuRUkVHRIFgK0mMfFSgjx9XeGyhyo3ugehJ9N6JPqGcPh6N9p4m/pxUBGbDvdZb1myseRS548nluPI8Gtlp1G/diEftt4GYJ3d+l15d8mADw2LE+okjPJ92S8TASuIUIviExLZMoAAUzvOXyRXZIzgkJRhCCIs3xzXE5AH+1JKgqc6U0zTH+HyihNJwrAESuqwgDz3wZSYdushYwIdkpQ4I6GG7mT+15g62kHWnfevWKEjPXYTIQH3MgzXzLBoiS58dh1l08mwGpZtGUn7tsziSJoaL+TBpIPcJMT4bTD8qkvjUkx78rCSPg+nw2ArvQrP8benDVZkXcWURq+71VGvKgFga52CjfEGkIu7PXVzDvD2UdLv3ZKsXQ974pRzf1DJjE0iHM+DIwQDd6xblCRYgmLXpADZOinf2erxqpLwMhgEomfowwAvvQPY7l1Das7QOP9jK39VDJ0liQP2pZZZy8Zgdcm9Z1/BzVuGjo6bGrzZWqx7U6eWj0/yHFi1/r5YV/4x/QuxiSw0mda4gSbKuM9PTOJfVDZ8LHs8bkO4AV6OR6V35BHw9+hjGb8FVOycxooWsQK/jbAtuMmRaRwAmDEOFKfKO6+X6I29Lib0S5G/APgHNPEpLI3XTWEEAPQhnFn0dNjvuWkBbbyzSX0WZ60uMuMaSTpGxVlupQQWzW9y6Glpbt7YIVZPdgtUv/uwJ3i/uyeBl1Fmk6eCQWgHZz/DmnrDldUku2DFYse9zbRndLNC+KLdWcLFYSlnSAMCzCIwKg1AhNgVe4j0udA3UJTyaGs/ZzP3EfjcmR17I2noUimIdftwTqZi3A/pkI/vs2N2ElIaK1QopCVOs8hpuSv2fS+B6XgxeoYbZRzUPaY4jg6yt8EfgzjnTGBYXfETVTnPAPS4UgKa53xvOYUFqRMSU2hcaw7ZE6frHtURgmDxWXhu4KxNNn8JeK9StlRqwVyoogu8HdAhE9t362CNLdQ6zOzUvzFbfYlGzeaSH/2iAu0+6p7lwxydT8uBhmm78ZZEOEFxFwqOpVePYAWjM+sAuk3PS7pwL58s+if5sfKMqYLjGQzHY21npk0hxmgfd4ObaYqT9Ze98iYE9ZJ9a0lGNO247ZaIhHIqEnFWGQI0qy6t+EFTraLwpRCxI4LUBxX5+LHD67UW0uFDPloMz05QNeyIs55bsnNcOAlD81+d+c6KXb0GLmgvtj8o41gKnc6MkSU7hM/cgZUcCLejr+aCqqqBeBpmz4pM9OpJYHAxwYuLtvhM+vQSBiHbKpAh9lZwnUagaA+alP4+DCQDi/ZpJu7W6kgKGH7PHX4OZyl+qQOVPsTaVozJxh4P/YgoczdfSIV8hrbkskQn7k4VdVWVVNqqJU3PcYrYWhfQgNq2coUZsk/3hbRn3YX4/w/hA973ozrhejcnPehbez2CYbQgnamSoqxOj+Z6xs812Rpb4AfoINpxds/0iW42k34Mu6dZ7FGMxdcPTj92fCPnE3M9ey8mA6T60ojGiUEgwhWHhISpZX9FQI/6GjD7m7XPZqv6VFvUBnJA+mIvs0Qj5W8JflLH8u0N6XgPb3RkLYTzLVQeFQMxVTt47Wsgv+n0tNzzrBeXV06zSE0CIsLYi9ZLFtbvSxX3n9FYHcQw1Hn6PT3+QjFDggOoqIvastkoRlFnlyCuAcFQxR3Qe7F4fCHIQ6QWUyr8QjNIBs80lnoBNJ4czPS+onae1q9ykpRQZnJ8OkmQvH6UEuhjoJkO2wiSO7jUeYImab0f3EA+PvuLHiOAKgPKsFYORLnYUXttAJ0aoHhTBk6YqucyvOBCPM+tqWrLb7O3uB2qN3r3ag/beDlAIZRU83Eb+OHHYKUTjZkvdODAXjm/X9B/SVLiAkHkL29aOyPqBTjujJzqvUZ/FgvvpliQzAQeYIXMwzvGm8ofz9AVVp9WXvvG6M/sPbYdqm6uqfC4U0aun0j9J9Ov6W9w6gbFgISzMni65zBsNsb83MCkOIlinS/A4WC5GY2mTaTI9ENY5G96HsMtxHPByAZdDlC7fJG4tvQbGGHgNeKE30b0vYNfGePEqS3Y8Dx6vhwhRy8WlTZgqHIk+8fqgUmXtsiLaP7tEd8Lf3HSaX/SlOaYsghy3V7WVXR6tBo/zQNkawhyYzSPXWtV9mijUhOnQng4lIQqEj/0i1AdSt/OdHSpwJLZw4u6+Q6eB/Dw2QJVhU6EFXAJyG+/rtM0gHyloOQktgYGRhEch6XyMqqZNefz7OoEgDYDXI1M7Oz6PAJaEMhRKXegSSxDSJQrM95t3vq2UGBQxirKJPDQVkoVlCnGgixSBEB85R6D4ZbPRW7LCpbPqRPGJmvtdVQQCMkfFYAwvyf0Uy7/FuuNdzCERsv3Q+0vJpBpIU4jp9l6tC/pbSI66Nm8iOBPLoSc47AvBEJtj6GmfRk0ONZOriNvJU2/B4CMrOhayWeaYUr54ReGlTxy46moKejZrA4q7+rSNMcIEAAPFBYV+XSUXftyVSHVWqnSo67+8r+/SRIx5gHxZBmN0iSV/HGPuVA8e64xPWuoGqMo2Kw+AijvRHuleVr9gg9EEKAPbzQkiS/kHy3YrfibX66+LdFaYHFvYSetwhH203pCuhGux15nr3w31dAOdGHRgN3AK2fXUPW5OuiNMAYlvdjhWBafwRbmqlRC2kIoNZ/ul4oCGHeq8BZefy5bLuMzBi52oLDrd5Z2TmsnZ0kuYOUJvwc8pH5mIeZ0+n+Cc0IRjgM7cDxuJrm2vC/O2b4sNn6POKXaHVyF0pn0O/TVMo6+EnaYUAoj21K8HXILxDkSw4lZoVdBOo2gkK9UopSq6QbUQiSvNZOzHQE6OOL2MZ2lyf6bVd3azzyhZHsf56p9Lk4FJWzuIWjLQAG0eIblZ8AeSrn05b6LIyalMdyCliMvnzCfgYgAuBFZgWcXNflog6sdiGRU/oURk7+lWbyxt8o8cOX8YWaAv/2sE9D8h5XWfEK0B94lOwRl7ZYDN3ThCEqCYVqbcYjefHuoZLYCj/wQkR6h/TkXkBNsQ/1Fw/351ne/sWpZQI3op3GwYaqmNjYiADf2qo/TZ5v9tG8NbJ1LQpeFSkrB/83uLRLXmmRHwXH0WCeAWB6Zs7VFRORuz/lf0RyVk2LBOafS1vaE/KWNIZQGxSfDFA4FtUqWFI3eWZHkbarPIClTMg9pXoScOWCDMMNiuc2ghwE+BZapFDWTyoe5ik8YhjL8owXFLRgjbeGwnXVVOR9S3JK7pWkZtC6+zerqvQ8sFRySdaDUkgg3O960fWJcLaqa6x3bkKxmtsmEreL2jcEM1CKreTJpGcTuNXcW7W8gttKLUIHvapGfYRlZCVtJ/A9vZl9sR7SK92N+lFUdt6NquH2NZ8APrIevFEzJSqegbq8R+mi1HXEkRYuwHXNk6KKEYy6qPfJcdbmqEfzjS3V0M3oB6qYT+/NPGCtjwNaPIHALSZoAe2a5Qu8BSlJzCI7tYEWLCwopJtl+okR8IHnqjTLNgqSpKQMA7NxwKxn/6yYx7QFnh9jSh82Jxza2pY0drG0JPcwKOzKDBpd3uaVi0JUm94vGWaFNGDu7fk9i38aN6wAbQnlwjSbE5Hu6EJVvQ0u+lbcaG6Eq2+yBDTBL1qwoJLFogK0dsUEIRE7lpKEcHVyzkKOeZ2z1zqMrKqXDx1JpqzK+Px7HuoI3FhqKr7uGc2+kpcQCy6ot+0jxYl/00DKF5fccG7l0G30MQijEz4whefEDJRvMyqVvhheskiwZcEjFGkE6WNZeLOOH2V0bdLv/uTx+6PY4G/tI2MaqM0sTT9yIuJJ5dS0kTjrfQYgFa9DbSmkfnqFGDxLEw8zx+oY6JIXKhISIj0EH4RDGGxpEPU9grFQ39DaqI4xzpRUxUriqf3HZYFdaYmSr+lI64Qj8MDF0CTp+m43oKa6xrogbktmL5mgDIOLZIIsHuOforN03L060sgZOKyi5LcNB6NKFZMXn46QLyFXyah9x/2wj0nLum7RQevJRjixGV3IvUB1asT3YxlaP98xKc7khD4G6C8l8POP+xDX3ZXy6D5MhrctDrMNFYkfuUFv1lOSGjX2YhNeuR1k1tzHMNgiuiQ+HT627JD2DlZ3LYeCDdlxsQC8b2EDwZa4TfR1MMHorN5ck4KEG802nNrVK79/Zrsd0xRnUa+0bNc9cMwQV2QX9OKP1hSvrEz23tN3Y6twQdHrP3eezE9Fvvlvf0pfE3hd3BN5IVqZuAW2dhiHlEX48QcO8CFyfsVnqLgB1rFNlPllZcNNNHxJH5fZDbmw3HUGmkdUrO40I1//JYnYIf4t/+IKk3sOszy1DmS1FHo1rJTzZwwVTXzQPdldxFi47juXq2N/s7GtNSKAm0uOtjv38pwG4D/e9y4vDYm6doEsrPmNTXUz9nDG4uoqdI2yVoaFWU+I+FaAUN2i0GkULHWc2AVQS7NzKeNmR8VFzUBBq+9SvT8vzow1rfeBLEdOqssVRAlTk3ypH4PIkXuHATcPpX+ZIqJQ70jsv4MniU5Z2GH0RpAORXJkmumzCs/LtLVMBigieVAzAp1XVsAq87nz+K6z7VrW2EmliBSR4vS7c/4Hv7ssYkFaA4Hb5arGmwNcgQK4GJTR0rASvARWIAI8ROGqXJENiWUMScLjnlT2nXQqAVzo8/mdjFxcTcKdQwnUiOiapVDxMgxGX09L6dYH8X9gYoYX07hxqt/YlpzVJ5Ugrv8THGz7BQ8Ka7yTgzrDhmRXO4qdXRS2Z8y7QSaMJ+gfPWBBH6PKEG2g8NWZHusH6x6yy9TC7kSf2IXZXth7uziu+0A5wu+w9ZC+fXH3q5BbPjW46EFi6UjbZi3JLLu8f1bh4X+aSHIOh3RFqkZ43pooqpEgFDscyJ2Dp+VjvpvMKl8NXj1qHGUYTkjDJHAYeufnyH59hPzP1R2Jj2+NqJy6feReqBoY4HqjZsAJ5is/kcVK1WWLAyUG2vRW5v8xvtLHhoYv7H2P7NN20SGI1Sk40q9m+g9f3PPWvzOYyQYoOiLlH7Vbjnr+GTI6nBI5itGzZvZUHD0ZA3pzOAPpu7X46M2ku/QsG7gIKoGMrbWZIlrb9eNpIS/Bsl4snlnx/XFv4vIs8u6PikkyOTGEOkCOU+sS35Sem6VscTPyBGQ0qLbg7HfpBkLqc+UIri0AWE1hQTd7HEEiXp03M2Jf4jFYpcVKUCt2bDV9zOeuymBj1pCZYaieMc/i++zhxM5q7z5iHZ969EC6o/Y+krnqq8notN0oVGkxoPcOU3zuht8y+NPlL96ENgeoJQ+z24hdCoK1Zj8ncXu3eEMD60jyL/B3P5VYtVPJZ577CzUiqjE8SJbLTi+tDtjDg3QJZPn6ZWnPEWj09EAexmw+3E5ywZpqaca4vhLBBtR7emyqDsbLq4nrhw6eoby/g353nvGGaxbYcOHZUR3ES1fOt1iogfiX8E5nWM7y9RaFhbd4sxa+sTyDXB6/e4TfiWl4FAr+j9ByMo5IxgC8h5tuUlB+tMlZAqR4SgcvTbq3jJcHOUH43M7InECwu+107gEqss2CWjp2cFvJMbsTDIVpMauLaoS0DoJ4B6wQSYlQeBxEBEAdjbJTVZNpPEVpk+yC5LKDTVzopWTB2PE0iMFGrNGupKa9jjp0Mld639lhOF+ZQfYmYBKUx4ZW2VRmssUz0w+5De6+R7r6N7tp50WWhKW254UvcAVZRwZmoDkEhyZBi5ch9wZGn2YMRDQmaZQ0mhd6ls/7/3hAxEbmZI7pa22p84feaV89CTDggRWcmENITyYuTiisKGGuFSBU1+1IpTCzXIfddq6Xyv9tkmnFfekX6Wz2vZ+UyLh70joEpb8WCFQ+eJpJmvWvFGK7P/gOeT/+ZyUbXIMi7Md4WQLNxajzcE7q2WyI7fA1bMF2kjB2CuA7idpblPmP/1RPUTXZpg72Y+LZYU5DjAOQoqalflhWmsPuRMY3mvre52VC1+vbmHQBvWjrNbLzDyX2rvQ1hnXNeakG2cpNoeVBdlQzpzYV33Xr8vejfdX7iRDgjgRTbX3Rj5BKZiIT3tBEVchu1seXWlSxv43QobhlwcY5ivCSTh41Ojd44Q/A9xWRm+eOjRvqqBTkDxwz01XUXaH4UluXkzUY/4W60gK6dED+GWQmF4zN35X6AgoPhrpTQgBFG0IYVCgBxrP8Tio16Ks81hZKH1OWrptS1I9aQxPCPzMBmSr7uCTTBbiuBmiNFfsbjtSUkWQP7lJsrjc/mFmt1+foX894T+UNmaLVA5fQyfxd/lrTu7mkOLTfuZVwWiii2ymtqalTZmHhrwnQwi+U3YT7Dfc17J/r/950dLZuG+wtidNZsGsrjVcT2bjWgMdOicsdMcaaAQAduPZ6PBSp7l6TcY8qj9ObVEJ/kAX1PTkEXwEAAIiPWmqPtMjDzRcsWCUKKpv7jpgM4qiOyDL/rFnhkPl+NejtDo5+7816HXKFLUKU0CqoSoC+AAg+cfZE8kns8tD0Lw8eRtT1G8ZaUbhdCBeipegsJXHg+OlB2hdO2y1W92y7T3P5oEu+AxMYN4FAlUbbTM3qLdRK9lQZ/Vs8aORZYCsYfHYxgMj28q3w2Wemb+ouykIczRNGSwb/4xsdyzVzuoZpWKkhjrY1DaHpk3b/qI4DpxhZsTGDjFq2alVFO37a7pxp+Qt7MLs5DbL1/Mc9D9h3Pv6DnJehNmb8uN5S/52Q22jK5STkkCLLQptZFin8/aJNkoxHjTQRvev0b9I1XUOSdkGU5Z8kSZLX9Ou0dhZwS4SyjUVseuEJhKZ/dH6l3xf6asJtc+oeFqhekwzwMFR91aTJ02pHIdvcqiCumMT0VCWN9K/zEwEXhpMXFSAoKxsPHX2abLuJ+SzsAdEkYxnQ8MbDg4g+pZidg5hsoB6y6zGYt3iambgOZOUUGg1ieZXg5wWZ7axClfyYMXVgIdetDFgt22KIjOUv+6w7Lm8SPn0BJBk9vdIJg1Bu+LT+3wKxzzXViX4OJas3i3bEJ65dNynn/TxQZhLf2GnbCDkpF14WJoOh5TdUrqPa7/PTMyZhe9miJh+HpUGBO1X4YwrbIvEVaBNy8QMi0o75J53YfkPpujZG26WhOUDCIv/dUHywgUPAzEQoBzyt2rvXhuPwFyYFP+QnjFLK4fIg67RZUhxbD3hHksDDV9/WWijDE+8w3n1AH7ZXDqBs/ucYCUQwiOnYfUKeTl6PaKQuviTGTolS2iZH5H4j/2DpxKJGz3S7UqPfqDhUjgPKmU0JtnzOVC9Cq8pT2FJ7qubj0sVDXXkjB8syvGIFF1ptPDdCi6RfFst0jJV3UAn9gcv3IXLO+y9zJJzIXXF5rdfmud9wD7tDSA1UxeoRbRVVehakxy75dUvfKPm3O5Yg4xKao0jE/A+ci6vh559UOGNf9ktSUE0AiWYKtc0Dy055m8dvnpZ1Ui55JTJRmKekbIN6VIYYnYeM+lNieN8BFHxrLYKqBR9o3SjMTD5p7t6IlpCDtxgtDdCi7nPMBrRLN3FjXZPf+mEYTeOTg0II3FZQjuv10dXF9JR7KNiG6p6aLo1SgvkkSYydGgbG2g0l0DSF8BH0fankKLArxRp2wqsCEQyhH7xsMldthUy01z+Et6WF4KaoJOTne2az0s7bYDpdxaUahHAuDLZwUI8JjXE970k/SKul1O15ZurKvjqjE/sKLKgHTO47ZDJOaJsDJBXi9YuATSfP2VbVaxJnYUpdvCSjXT0mky/jOc9sY3wJ/oFiT8/KBviOoK2IOjT8gTPzM4tvEVB3AmWCFrKMNM/zEuYBZpgHmTNjUeicojVzSKnFMfUj2IuQzxKPch7un4wOkssd7/m/VOqqoXm2CobJHRFRzosLPD8HYZTm9Ads0ynCVwc8UEd5lQ4odnZvwwCZ4gEvP5UPPRQLlbVqk+ydQvC9KP8Fipt80Bc5xaW18epdiDM4TeUUNb2F5ih5XZwTdJQs5SIIE6x/d8HRLWFgcmzjXiAouBCtGdBdb8Gbge66Lb+JRV09vtWINyIDyq5OnmOwYVK9HGTIwtztgrMzJp8S19CpEQnKuAe0z3Kz1zXf9K2LfuuL7rKf39xVZ6/9T5Caqi26A4BCr4rj13YysG/3/bG/1AUQhBDfJzJJB+UYurjhSpAKU+OWTamxO00VfMZDd9SVaY10gJLsRxZn2/1IJs/qY7A+lBwRRPAL6UcP23+rMMZTR3HC1f93snENXWLYWDVxBOvLv5MEBQk1xxzdyN59iHbdC+++XMNFhHJjWGFfQ7lFd5RT/iM7wDCjFk8XkLPD2tReaAVSv5BHRiA29nIzTXiy9QwJXWx+yva2ie3op5GWliZkYOGdjq2Gpp+MPVDkn5vrOuFtKAmN/vAwaRtLuvqU9uVJz1t32F4VIcUSM1C7hTAD+Xmvw+pJufyLG4lMzxwwriOmdxk5qp+E2GNNGEnidX0U4xo9HB55bmQA6mm/B0t9ZeGGuhjN/38v8CS9PnKB9MuKuJb/fv53GkxZyfzsY5hhMtjNRCh1F1SLaJaUp/XzEYe0fCeztL4iw1VyTShLIcGMk3zyH6XLHgrBz98o3Mv0/R7db5CPV1jAmiaWMjrYADsXBVtinx/eDqSk2DkeQJF8gRd/gZ9S0LLeNDd9s0iKDDtvSxaKbyarAN6cJsYllXdyr6qwfMoDeFWXehBKuOJEA8eqDU7plpJr6il9UHQPi979pp+NiI/pu8XqpKAmBFsOVlf5JdwV9DUUToaCojtAbagKZdZane0WEnNfXDoUrZqTLC0OhoYzF3HsiACe2psrLWDWwJM0S+0c7nRZEqk/gkGD/uG9zuBBCJvmGFAQAZJO9E/IE7SzatRoJOFgt/ZBjVyjRagOY8D2WSryKzTDnbOoVD9BjiQRd0hFznrxbMYSCpwdotI1EB0tPSfdIZJjDCY4i0u9SJBtc3xgjKYsTjyXYehmKzKsU7VqkfzpXnX6uusJe3C6bOthMYC4RCF0JvYiPPwNd6IZU85lR2MixeckcHFjLoh+slTClsxJvYViXn4yuRv6BRL4CXCcb6LQPXm7IzXJEK40GbDehA7ruVesD8JMIsG4Q2MoWlMznA7QgQek3qIKMpOIQmPCT9DbqtQon5UmLKl50ah1nq0X1kplDz6xmyhl0JWFExl1Kyi/1U+/gzKFJmZQ9Q6Tm8Her4woMJkzC1b/zb9aW8StZTUghat8wVPwWLkWMGRy6vmSruC3b+U76BpTWGsN6Crbb1U+4HK4jeVIOVqutag2QW1zfkOtJoW1e5Tn6Nmwf8CXsV2vQJuzPWDnltkd7zJ2O7tI4NrHR15Om3lvPEjK+nPDV7aAf98aUhwm9rm+DebrlKbtRE5EVqlG0jbpTvEJzTeGddbLwMWSz/zKZPew7L5+u6zFWwIL3SgdUo/rKPrj6I+Eh9cBjoFE+ntPtMzSaUVte/6Y8qg8uoNTZrKBjTu0LMGCL3qOmMSmyDxIhVDkUk4PgAacHIS9jLgMDSyluuDv/O7MowKLGtSlxKn4RpzO/wQPynOZUMZFkqALAxVCbwgAehBEqHw22C6akKiDRs3W5KpZi0/JwsdKn435gU1MRo5uZT3ux7nnv4gAs6IJ+9kBNrtEh4GuDJ3AkNAGum/6FnfNIgdsXXv7+D/S5Wxp2kSIQGDoX7+yzn4lrjxquPV5vb64+2ECaF2ScwFy77Al2KZNPN4ZsPHfhXGYDnv3Axy3exwiSfaBt3uVOSkRzJjqfnfSFe7+K0ljNqTtOH7y1rHZkRivxetIlvJZTaixmXRQs19LCGB3ZBlQzk8dMiXgBLXiFK3vWnvKWhbbfW+L7oZewPxZ8wtUag/rpP1GY2Q5EkxxORYJdsGBusD5GGlDSwbw==
Variant 4
DifficultyLevel
722
Question
Mandy bought a table cloth with an area of 1.8 square metres.
What is the area of the table cloth in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 1.8 m2 |
= 1.8 × 10 000 |
|
= 18 000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mandy bought a table cloth with an area of 1.8 square metres.
What is the area of the table cloth in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 1.8 m$^2$ | \= 1.8 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18HHzzUfGr6+Gf1LTWbeBK18Ua3DCV14LE93vQjxI5pqPEFW6lhZjBirPOeyzdv5gwVQs/cliGNfE6biKeIiElQEjvECl8528uoQgXUHXHWQoCKpV66PBYMLi1cVsye/2VDTFPzvRsUsmhGxjlp1uC1OmCXuGJI2oN+fY1vE3/SmC6dtefYY9TqoutX+ppbI4FN5BuQCAM+wX0ZaTVxMYmQy5whjU49KKMIVYfz6HPDPsWkdW4gVyfGjXttUVwPefB4p7xozkoS7j35afK/1uh+3BiLiI0C4BoWI+TgYH9QmpvSfT5CbFdXcfzBK5lHVAHukUxtElYLybLv5dVRXNQF99+n7LL77tWdnJp/Yo2oI5fYyg7b0mYmpGuT6Pt11cNmbEkP0NW+o8DI3PAI8ztaNxG/Zk5PnY8lDsB4ACEoD5iObmWnCVgvDWtXLj/Q+TjbTrDyG9bxtnFQdflbfhv0/8A/ogoJubRmxJ+kG2Q9R77In2ytjvN0s5yka/Y+9SC11fQGJxdpHby8IL0WmdZdCAXBw8fcUn5zdw/4mrgCgU/nUuadK15XhYQWeyhpkKOGUaNPaqW/dkp1KE3TVLnAKOI7jaz5gi+c/9zzRKYcl8XY0wPvGyTujnFb9OXP4QlCG2Mlv2nA6ZrA6nrkn1x/S6blnevhiwcvf/WIXKAHFIKDB3roI/H937MW3eSA74EFu6ZbRIFpf9AO7tCwOLjuwmwlTkKqHSfCceCaJcroxkW8QFgbjqyM1yxpUdz4ByXpf55gAHnYsvWN10oGUbD6KB4s32OYPKcEb5nlPGwl5gTeBgU0MykNJcOm0J1dtlF3sy1TGujHNOiYjj1o5UQQDpwIBbqfn0MIK7kivTh1+CVDI3I1Y3KDPmwQbYs+Dl+fPxtVHsg7C+jVsTzxkW1sE537bFpudmCvUWsDEWvyU++CN0AGhNYgkP77hiplbJlPUNqWxqQaJCt8cbMFuPEGGXw3DTslW60qknVGOnNHkidiJk5NMqaXUBRA4u+WBoS46qsOwfdjPOZzuyRiM0zLdrYvo26Mrn3zS+byU0G1GuktmeiHep4NgcQvnPZ3Mqg8s8VJYQIj5irG7L2N/eLtHjIDqYqGXrnQOAFF3eZalsIdQVOyErj8EFvjIGe0ayn7tG737UEsDS7sZkYyV8Zii7LFAgZ8lctdfU0ySNFmCCukIC/2KnTGHkjLniFso+LxzZTYL0fgIDKSAt+CU+cfDBVwGJlnLl6ncS66IrfWKyb6NPWkRV6XtIFdqFQJUVyXYn2ElfKV5Hul3oyEzhzDwlQtmIF9Gr5fPehZgyYbcQFYYvZAaxHcT74NS28NgWnJNZKHA3Cf5Uq2AgA+PHKNNsyWIveY45bMkwJI0ZyR7T5AkrRyaXmLSfO4CypMpqAz19f3W7vqphnCNAn6PosEe0NJ3lt3WJ41r9nkTL2iiOgC4zcNEVnJWr7KUCMRqI5VzisSt1xOlQMLT64JLAEa8blOzB4wAtNxGMCXQLdriKgSreai6cY8rWyUlz32GgI5Jdh2h4NMePGfTDdQFt215J0f9CTlOAdli/zvd/dptkX/8Xu5JZ7pIa7V+jS73OP84On6AnuCvHU/DEc5aKu44RaDRz3BGnCQnclXigbZgiOOonYnMZ7pCEVX48gmphjB3HNmHRP1EYtUXWy40y/Z2MIv83yebCPOBIFa6OH/kRqBCaLXvOhZKgPoHQvnnW3u7D1xBhp9soYb6Ju4RvYlJpqbE8ZEeg9NTAylVtiqEIQH0+7iGwGXhGZjyxWlCJuRVrSandY5pO5FHHp4zsP2eVkU94rqmavSk1LB5BltcYv6L+WuWGJDK3g14AC7jn1B75klp84ckOVZ8Z/aMI/93JWQDkm7rI5QOJALALWNnn2NMMSGBvC0k7UdPuvPy06HIXZFUJuNymmJWEA1yvC16S+x+rrJid8w4R5t9M2kIv9ymXsUGhU5OfntKA2zkozTtuwP5mwqR54f/7dDQOYOGLyUpjUJqBbJBzBY7Vxp1P/IlD24f5rrcH0IhaiC+nR6wrZz6Safiu3zIQg+a+dLpjq9ra0ML4Y2T8fISDSPy3IuUZ03Mr4Nf2aaMKzKLarZsjKss+C6lYUpvf5SsNhYzB3/JUw3862zseBvArJmNLRYneqq3fp7h2oeDqtVNTIbmI5DEvaUhGLhjm86S88D91thri3ZCM5GEEOzm3E9hxVdkdcrRJZFPqaj0BfpWBGPwAWg/lv9Dqm/i7hIfOWfQQ8q2bexC1WrChrHMzcUlfGU2yLh1eQol5InXZmUH00dgy89tH4WbtIxPLb585mucv8Fk4K7OKmJg8Shh1ds72r7hYdkX0mgFqyOZrAFSoFOK892/LCzKfEfk2kMxaGjWF4666Ux3EPZXdJwuQLylGInR5KCHhJep+T4Rdwph2A94kx9eDzABBsJyrUgpNQw5tjz2J/c8QfCzUzB573LOjpUxDeu7o/crcPT6yatj10w1Fj//tS5sQAgApVbH3Xrq4N3vvQfNzUhtM0UKgd/SA6zMB0TUPrxjmUUAz6d+IzD+ESkOcTQ7LRnAAjeonj1/D0fqEF18UIG49Tgmptu44yQHc+gxKXhwXhWet8fib/8meolGDelN9NqA9fGM3GpqBw7qyxewPJJnjQJWcCTNdF0ANuVTLGJMo16PmbPRSBVUxam4ZxJVI2PkZHIcQFSiTldc+xT4++3nR1XYu/EbV/pG4kxxu6aPrBrvqc0HL5kJA7zJ2mqvX731l2GuKDyIii2bJeMuSn5Jt0MfGfcjTbEbIkciH29gKz9WreFre1LwV/DfA7c19znGZ5C0Kf1CCwMQFxTY9dMK+aVG68V96DZ0/geKI4w7o/Ud/C0Z7+in1VWVt7F8+DSbOjAqOkcFOeVLjohaYP7KsFKugCDv7LdDYqA+PoxdLGSQslmNKp5utAZS5wQLpdg3yCQ8YzT+68qzTad1YW/q/XvuozyVZB4nefalNH65hEIPjTKo/zmY05/sJEtQGXqehrkIJUOArKoUFzQi10xZOEAmm5WFghVYPG4yq7EKg3xaHcQRXoWUQCOP+PCNinzSk7Q9JlypkuAhyJemAcxsq91ZgHGJpLkjZpQTzhvf5CBk6g58Kq+8RTrV9nKHvYgczhFoiMAgXgKArQYUNrA8jbD0mrCkFb9FXxJHFmCWHuZeY1H131F/2oyn3X7EMFOwXbbkinhyQlTG5v1oGQ+qVBWyiC27z0ikoMxMJHIRmMcXdy+IbM2oWCNnySCp2Y1EMT1pF6Dvs+NuysBom+edk0v8ef7AKEvaaskKjBO3xQpmZSmRhn13YvJA7qL2NhHt2eFTy6AmoN+9/dBlrDD1OG8Zh/Lldj2mIwCfieJH87WWcQJCTxS7tAPqbkrkR7yH5biU1PnLxz4GCe+q9DGBYNPXXHvwx7dJoj1OcBZ9L1kygdl/+HncvRKeQ+3cMUQqvFP3lOZfnffR1/ztNHg804F3Z6z5IAe1tETI+gHPRHJL/Zf1ECZIlRSwkEMDWgQ5RxhZVyqF7xUPxOpJh7YW7eDodKizJkY1WqmesR5uwc8agecXxpJmMdE0JFywvBWsjPNp9lJL3AL5UozP3f/60/61tdQd0KoqXxGNThlYkHExWO5X1zSgULjAqrCCp1GaCrbPO6P0Ku33ZhtCpDuteQsVH4f6IK5o+sNXz66vwS7MB+f1vDq51bPCXuhgzVB0ixJ78K4co4e0DusbGjJImEC0lcSTYWQz1ENi6I6/Dp0re3cKaUOZq14OWdTLijUuV1qZzf+Z+Q8OQ5HZojF1C0311kDTBLY+dYWRSBJmZPPYZL0eS+yU20IgtC37Rmk+wUbUm44K41EOIAB/17RRUa8cHrYJqZGMCq16prNSrYuv458jYWiGnNXgphCJ2ocER+siWeaMlWMslBXs50Dz6dM29P5wOEbjpJMzlnWVvl79I5QLAU8uGrR6nnZqYk6pkNeBrThBX8zKj6TYn0PH0pAkwgJB4ZhUldjCdhDd6/UkhlNGdRk6Fvin0RHTd/EDGGggpvxX5KTrzbcrXUDg7J/CPEATWsmpggNkJ0vyXf69wkKBtNFg0yVnLRzk+M2ZVooFly3nrAIBhSRXIr0tDiKCVu+z86XjyjFwTFjNPQP5wE5g5XTs1sahiA6rgVYruE5DrulKjjphxB6BFg7+W87h15GM23wXxQWtonqBTnOxpKXCHWnI0AfE9LkMs+9cLWU1sjhEizlZqjaqnKxva3+HJRmWMJ5Ah/UM2VsgUhonOJhZYKDMeqPz6a5nvmoKWc6JwUjC8qd69mFEM22Kfb2h5tRlki6ld20zwlyeCwxaieU7ZcPASIKT6BN7yvDc7wl+YrQtCchiQo3CEa0JH3wI8CKc84ok7pcH+E6T3NoNlpWHQZplFK+IdnrKmVhnw/o2e/KQFfd3QrVbK1n2TdZkvo6bySe1k3rRrrgjhcAG6yQO/WjQMZg3VwtJiUqjDrUCFMTMOQEcbo/JXvRE0gDWYUSTSgVIt5VA7PP6AVtcX8oGCjMsHqK8s5vaoLAaq8QmtwXAkuTCAQsrDpiB1IgZrtClJ/LlZEaBKz9Z87nQmBjtEn7E8EFmptWJRT3xQVQU+XrnxnjZcQkWYnsOEy9RpffjxJf7jeJpJxaYR7qusBUuTYEWWJ8aFvMJW4Pi4nZDgj5C6mXgMQ5q5yM+gd0t3k9Sn57/1egvjyBgEw5ozADUnv5LQi33PJu5mzDcdadVCBTzjLLJP1ro7NiQLn8Rn7Odfsjb01de7u+9VBTwcne+C0ns1xVqvthaRvc/zQasUekWQzjyjLMsM751Eg3XN1NrKIjTdhs8SVwgvfJVbzzSUUOfMv/HD7W1bjPj2UjROCn5rndXdWRyDguOz4f6X0RRBOPKBIT/2uKA+mAqAUkjLrEYLwPtxF0aTfDn5TIlhxZT7jLBIyAvp9eRiXoQF82lSnZlrDo5JIvfo22BquOpEZkXBmxK59jhbNh7oIuE02Fu68Ei9PL7cwiqSefHxkHZE+WFNcwQ9HBXBdKgBf6/s/ZFoP6HwBs2JB2uOmozeM18KZ8S8ZNL0Qlh83GCoeuDBRNvT0QBFFK+s3fVabZekj/lxiiLB3o8Tuk9AOtT3JjOSBc6a51XU3f1ZaV0vzEA7rrtNsZH8KfZZjmKZVPH/1PHRCJI1+bUEUyXdiJE22ba0QiwMKyibd5r4Y6RGWbaYS6n5LU5bfTuM5lKhgmL5CphtP2dVyUrJbaD987uTe+Jwo2P0x4W3BxpMv2UogqRMG3z9lrWPk0gRBF4l8xYHBPGvnm95Q0KbN4izU7j8JzOPeXQQCthQNKkWBBlbAoYm9LJu3JQswaLhBlCJEbD+VuhZMadk+bHnqXD32OEhx4SPb3Mk+DoOV1W8/fGeIr6Lv9x/tZ4AwSiG9G4ctkylVsTfVWsbbSDwaq1EeiO83woy2KB3XJ4VdKCJvVUptEfNU1QF3q2k/SPRGuyXf9DAE7kAUEQDv2QkQBTjmt7d9RQZn0XA1NnbSFcS9qtJdDl43cUS6GT+G0SteVn62B1zEMM4+XCEf+NxbfStLCmySQpLqNVtOqB9swZ847/Vpb4oM9f+P9bVdtqJj+0R4P/GS44HU64fb0ZYJZFKWHn0/T4D2ZT5JHM94iu1krMih6h/bUw1kv6/KrsVz3tIUCNy+1+yhGf6B9T4bJdKT5oGxfxeJby0QjrzNDqj+nYmTjKm5v838daqDARhnVSvwLNE9sQwgIdeGJIBdtH8jhG4Q0wvNoKZwlpo++6/UoeIefWnDvpJEiBSp36LeD6C/0HAJptiX0acm4mfGLxJQaeSAzxGV89Fg1ieooju5QHuiG3OS/QwuB3gRVOUbDMTYUlxepBDyFCuF13L1vgU4ZUQZJnX9MtXoxzcMapNh0s5/jIaVfs33mVNMwod7wvLwT+KR1qb/PLg415uQSiu7lDuSOichg34W13iJmQNFWxQacv8m7sPB3epSQgPFFF3SuRJiEjcGRsx4jPEqhKrsZtQegIxwrDhINj+M4Ht33V6OPkpZ7fWjeqlhcJEk0xq5JDR3T5YLXgbEn5f7iiK/8qIUehTVqanTc6ljhSiD/dVrpgqJ5MqypPayI+3OxtEXq+LpyjHyx0FxoExvOxTjhUjKysLHHVXamMBfLw764j+W8Orq6dxlT7bvbSNzeYqugIOT7dgljAqZVeb+wTVRihxJdnO/z/ef1CoPLH/AwHAvzLkX+JbxJKOiM/EgBKGD6lB+726JlCjwQZsCxX44//9V2FwiVT3J2mt02j23tX8AuKzr6UY4MTJGquMpyqFJGwiJceiV7+XEuu3l4XIN5yD/l/thBJP/FIHcGUUKvyue+sF2s2EB6Rdwh9q1w6GMujUJrJamAAfP/VVVKIb8mmDKel57njmTOvv9etF1Edg39STL4BWfenozeXWSOzhiD/Qus+v7ACCS+N0CDvtmVsc1U7ZiFOxf1N4QLQ0t0ksf+lCJrtbbUqvZYFoRGxEDF42cPxcrzg9bXiWa35evc077d+qxDCU1GbTyo8DD2a+hsgi6q4mTL4/VUjSyWjoZANnX1BLS8fTndCHYVfcF6ame/yCIAfeGMg+ZzaDn+8LhDeAhjU2KwaOHHP0vKKgR03rbFui8vcmfk8J0xA0Bt76jZWjPklAyRDE3NtymTcbgsQasYDGU4lLESFkynyT/h7Mfmqxd3gv+xCC5ZD+vmpnvIthFlWoUK1idlDOikrkz+EMZ2i3kCn3t8IjMtY01t7KvkRsHlcFaRprDyyiYeVGuLJCZP7ghIs5PNo5Z4fEYoQS0jj3DlE+zHgTrPD/g1q5HCc61gu4qLY/caw7v9roeEu5EKZt7Jwy9eq+K67x+QG1W3jsN6Hy/ywXQUn2Ee1VCdtGacriu+SKYCWR3ai87EOFf5J1YjHzQj1mjTlyMK5HE0RLfs0ImtKH5cyg1RsrLSx6eJyxq8WzbDQA64vns+mEDzp7Ws6y4y1xro9FaQHqt8cacUShyHtL2BPTvLzON73uiugcuwXCfRwVmYdE+e7fcC2wjSYfpbfzMHmI5FOUhk7N6ovYA0KWUITa9VKxRcAqCU/pDfSeoNEDynDjDO0Ci6L+BXnaTICQfJi81nkqK9vnSnBUZvimMPYQH/9FAz4nZn4NVidtFsPvIZ2vOycUC4jjkOFkEO8vjo0N3wdprJ9Liw5lg4seCynLKF2PolprrjX/SUSsg+bt2bq8SPs5/WVPJQa/s5cdxr0QdGZ28m5LWMMiAu2zKYyRbSojcw6aBF9qHTNzpb6UBbY0bEF4QCDPQVkWbrxKr3rTxEfa1Ijg243qvNhOXDAghAnGDooLixnK8qCoN2+fi58Eo+3VyzTZmHHrHK5hhO7DMuB5mVOJ+xjtsZnemzSWui2tf5fockP4bxJLqyPdL7XcXGJ6zRfD8SNHgPMZ9djeDVXJ7n+A6JUVq51+uuqYoHxB35E6AUOjnYIHZI33yX3bxXfjii0umep+6jAf1jpxhyfrbdy6myODasALxZPeHHfUogrg03VJYcTrOcAHVOw3488mk+NA6bQlVNwgtspGjC22fe595caON6oKBr6HhOl1QK/ifCEVelxHsrUXnSGcV6EB2M/+E0THYVEYJKuz07vauvpqr7YTlt96HpwT3ujVm1//ws3/3Gh/uQoQnc0QfR0hRFUPjUxX1oXrxkuYRxIsKfy2fr9AylnJD+NbxlS8jz8WKeJXgvD66dg53C7qDVkazzUvu2k91QajjTUufwmEoMclWF4rAUwPalPg7FyskslRQf0c7hs0PKVoEyTeeg08IgkBLfeZp6ty3GbNp5351JQy/gW4++9YeJ66og5h1+I1lHR11ms+3ZgdZfMhlaZVJrGpj36HCZAKpxUy+tDO20MzxV3IWTv15sITrqgmaWRxpSNPhu52+WxevcXSj+gtq8UVjj68DeQt3fxSABs4g7L0IZ5Wlg15hq17x1Bs0mvyjAJjAittYml6EaZhc/mReMD3XxggRsLtjaCWqj2LDYKlNi7hcxvHOVCqsZjoqAEEUSleGbpzypT6Le7FWNwm6uflcYqEUprTY7CK7tDoWzyIRUV2HerC3O5WslFTb9BQrZQWMedJDtLZZzzNxkGWoka3niQxXL0i5PIyKePwuMmHPmudZFDhfN/W8fOHnN0NBYxJ2lJYcSCDeDzBvnK8BAsGwKnln8IF/sGyanJC2w5moC23kms9oIn9zuAtK+AvOpwZoTLrD7L+iGdanAaOA2j32Hz6fNevjFRY0o5PlnsBgkusPOlS2BxrEwtX48GNKXBfYcnjZjLHh/uTJbpbbe3EuPZDYOpY+1JC1Z53r4xOG5dexfX+wUDY92LCgB1S6lfqAYA3ElHtpCQDTubw011VBILdVD3uHRFLZ60CyxnFDYFXTGLCGKnftr1KqGTbFcOlsMyi/pYvTV+QBmUQzbY6xzaVHgaAN85Y/Ncmz7kgZ04v9HXeCRX9PSxmSsWpetg4Nu/tNsWAc/vgqOxIDBN1UGtXRJvC6itG8bQEb7Q8QC2m58lFpjKt6N9+DpCGWObiKpkDqLVkQne59Zp8hjBuireZHBYbHo0ODa1y3dnSI74Fa2Zcbt3skNevEwI5BILO+uiV5bggrr9I4ZsxoK013rquIh6owFAuRuUNnE0SaNmNGV9yOqGuz1SVSEhETaF7wbRXQJvHewnq4X9+tXpfwxkCCirCQXwTY1w73v7qXnKpcR52xoOi/niQyGNqxJLucJrxt8BdG2a3MFu+1YegsHeMVku3Pj3Zw8KfOdMmO1mH0I8zz8R0hLNIBj4rV1szkVBh/LYL58inlkpvUIb1JlOQi+gUm2HgBvPrM76MxXg/IZFGoeK87avlFtB7WKhSg54IXtOSOfDqRrqAcBLBc4AF3tG5HtEitXv5N/vb1HS0iKjVCMD4+qlBbXJRedoEIaWRNsORRKcD0xrmbPOyoCrN8Vmd1YozVZe+j8MUcoxrImeWWQNcB23kvv3QghphTo12o8hK7wkm4GRBFWXtKdGzUNKXWKOxFSlFa+IJuWSfRmp15hGW9WFqGO+tryLInLX11lLkxPjBvjL79eMe6cZxPYNXYqYUpgUpC+sWN0x+LW7ruvQIbvZLaqZAsCZA3f0ZCwnKtsX+2OiNiPzXLLZ0U5NboNeoP9+eoiA0kRC7BTIV4sZFDuID/dDKgaALgtRcRmfnA6WT0Er7J+hjTnkIGQi8AO0MoNth13vXyshsXQof4JOAvOr893PyKY6fn9HXw1LvOJYlzBe83x3dr8XlacnLRfSXrwFGok7aPBwmzgBTCsxoMuf8DiWBNOZUWlGNAVQy+gCV7SYH9agppX0EBKzGYyBFx6xvPMhUOyvBJhgVheLoykZVD70bTvouIxNlfS14GncMBXkapXE3YAES1iJrUijGT5o5ECQiNovjvasO04ALUPhWuSDtObZ0tR7Ezdoo98gyVuPHFYPR124zt8xt4Ar7t9jaQzDPNxX02R8+ShQL1JNHAn1DV+784Js7p5LMJ1SlhFUIj82rrWz6w/0/tEG7OVzuuMtdTUUBHG0d6vKimJ+DP8zorLqIDtLYlAhqm8Z1ougswAvJhvAoj9Ft6ObD3al55xnziyicGr6KBkExezIVwMVNX1CBeYwRa8hbC8o5upTBBTX3Ta75X4BOb2kER0mj1O+hyl1b7WqSOHvnzZUBb/cSTjj+00keEb4CaNgJlx9s3T8ihZrPsz9hzKE5KXGVMaliVfP6Y1OIh2upyCTdnzyqcUGZEKRVNA+gO5iyphLlhivbI3OXVQplEzoe9rEd7QQnYc1n01t/f++yQeoojvljkhO4aFo5sMajcEMdfKMlEj/+sMpjf9msnsooZMmGyO7bK35R+pVrPzZikpQe17AC9CAZxrB7S2GAyjCWJfw56uXALT/wScX3nr5es2cLlFJPt6i637ZmzqNkSSSIw1wJ2o7ex+pxxtiJnNTrLDSL2Lbdzos8czttHFH5ffLjoLz38vxbxd0Gjsu7pUHtdnkF7Pk8k2FsUIU4QInVGqkY7jF//pHTv16YHPyW75AEH9qq9pnDsnKldtX1hfAprzPeeqZc5YL5nDfLzsnLqnrYTnitpsQqgCMvOHcChc1FUuapblhXd62TR3yw3otlYa70DixUms1Wjb7NfQWbMSJaYfebYRYTzgtfkD9n7IECUOjR4e9VuDXiynVQGcSlu/cf8xPMQtpzb0yNGWkudW+OCBPnh7mGdKLe1QGPCcM2KcwRn6VOgpVIXYUa1X6BX/iZuOklxxZ6qyJLZXV+a1+6tqRtAF2cbg7PM+IslahVRPTO+ZC4B4gG1CGINs2ppyCo8tGZpKrMb3jis3uB+ed91jvkuJ/FI8YyZTiouyxdFuMtL8zErj1FA/9B/ZmF4mBLDcbQEwRR9CpPxQZ80WBGG2vZLnTytiivRSIj+BbVLC0IGRCxC+kMvjw2wUQ8cyHs+6emHTFqq30RP4yvwDoywPb9TPu1JPkAnFv4AA3GDN55fz4OY/9u6oqMbwk4bL1Nd4uL2oYvxYoIgYocFUG4VFI/WIRR7K5GHltxSJhidbOyzOWPLoT932vcFnaJo4KKogI4ETUgGpUUK7I8lw8p28m2r/shMA/YGR/TYxsw5yAd3TXAqYuynO72z6ediBfvjsflgEciK2IexruiWEmJgcS3//qLV76TTB59UumP9mxdF6NkprtGWV1QiyF7KvLPWi9otn8Hi2wXKKAEA4+tqxc3WXTIkCRgTD5OziL5YZA6ZFgo6FgSkQ0tmIPVTfAKd6aU2JgB/p1RFc4W5uSGZN3vF6sLbzAb9F1HKcgPwLLSuuTN2ZSzd90Lc8Bv6Vp8heMCs4ovtoBZnmw5BU5iwG94TzuDdQgnWwJWcUQXE5fs4XsXjZrkkmrPUbZeunHX2wqj2noE0kvH9X/ZLUuLhpx0FcEa0YLAGdyttqTwt5xOAae8lgUwVXzVS4pjgnK90cqN/1RNfI5+dV53JBSe35DiPt8yPzw1r8o3JoICzpOYbq2abGNhwB7V3C12+YmYuW5DBbvKdysXVMHjSTPkJVtN0r/bZQiPQ4kqdeEan58huL9OP6lrfEtVGvDeMNjlkKVqu1zfMQmiBDPrEb/pifPe8EQJVdrGQUDrmIHaDDyB8iOrkDtXjYVRuY4CcYH//aqtrC5oi32DM/WKZHEQHmiGbsvQzX9gn0FbkxNE8J9K/c5i/SaNbSOnXT0BvoN92m/oYRMTgR+FhRQr7wm5mPJgp6NJnswQAX2pKdY8db3/LD08NOFuYv0Dglk5OCV1lkFhp2SUvEXVKiBk5OO9PXNu4VtoC2GJyoraG/PTR2blSckz94xdOx6WKEuC0WBCiC/SEvG2YAH73zwnUyBeJ5yDXIMqpKwoz87Ju+r2qH5UjNxRigJ0hgMjJOT2KjfLP9IVh3SfSDnYA3JdvFlCJslh7TdtzNKcTpWjQT/rDw8xNgrbXF3oovUVJZYlVbD9VsuBmU5rITBAyTatc+Q8QJtH/K3BfeYu1zmbqA5nVpF8JMw52VT1wjY9hRwCHjTVkdIQP+qqdva014J7rB43LeFuazvTghEYXJn9ryhU1Ma8fwVg8jH0ioFxlCxxohpydaqyV5N9CUsQiREohD2fWwl9DEF1oflE/2sz0VxFt8XBWCrjqD66A8m/EEb/vo/SWP3wYfDcvyDpPwFUEgQsuZVCoEKLP1YHUjNgrvAVCwqpIMiQ3SRwnMmJcaaBA4uK0OCfO7bmF3aX/YUPFP2P1MyaOjxZD6rsN9IK5t4sNk0p+8vLOYMd9VXqjh8V+9LYQ/J4X1lIws1XTt6H6unz/RGKcRj2Sz/2rVssCPK2DgF7C3P4dq3nLgeJwmo/VwxNN6h6ysWkKkyL0DcncTx2RNmLMmlAEU/UCPyZtIKXxW2ytq0sr9yyhpnZrrs1VcZ0+n311olZ0+4+234lYpBqQnXrX3YkYMJKa02ULlHg1p56kzisSTLOO4J4hexfJU/cu9FYtnB3gbeVXTAGUhEgeayJEs4HuGHtzADKq6XMcYgLDpSPSkjX1ALvjEiHOUI0wJ3CqSjE4pa+gFMX7xZP+teJurvQ4sKgq7GZn1eVOGyAoPNT7d4eLP8yWQyeNTB0srWNKN1lWetASRVU33iAqLU/ZFD7cmjuxnh5YLcBMltCqlplnrQb3JUy684x3KUlzU0MNn1z0XOxe9GcC3oDxtCTX1eZCrc2Yf2uEA6FhQIfvaUGuKQpAbregw95QZ8rbHrYyOAu0dDrHNhpNrYaEgoJ9L7/lFD2uwxcSyRco52jhWh0B/lTwLqHMeVI+24YDoafSHYigs4TsgDU+DBiJG98+wnn0jfyNk4mqpQiy1+nloatdotkqVj4lvWNwU3xwbZMr9yztrSksN7TeGsuH8FPUXaBEav4vTRDXHfpC6XfIw5HHs/ftWWwNX6nXoeqY4zOAb96Bxd7OvgotOqsGbQntkOcSxk+YAxUqvRexecDAbiC4kNN2ecBVMUE41nNK7SRivvBxY+mj/SEl3VNegkdycS6wlgmMEFViIjA8NVomWb3g/u8heTB+1mhSeJcPei/W+44+NTKfTbDDCXjeH7IWP/993VNB8rXkt50eoa/y5MrG1X0RCWOco4dfp7h4XLpgxfY97XLTJ+j5SQirUca4HsNuzCDEgDsO8QudQB4T/kOCdOfTGTxKum03eUfe1/9ciRIxj0SQq6vsM50DEEfndboRwRUtqTv2ryaaptwNMeR5FlP5Ta5vylip9w2GEtd0IwrtuAEN/02T/AT6DvxIv0hYt8T7BR6e0CcBOH1HWaxNsOOD7tyhF9GjZ7jeDw7+kwNzqWawxfj3sQTKYCsQUrjqqWfoiTbsYv19CIws39izHMtRqKv38d3AvQY+NbH5FtcLybBbIG3s1+D+pV7XB3RSBCuHplhClO2gI4e+XXe/V
Variant 5
DifficultyLevel
721
Question
Gough bought a canvas with an area of 0.2 square metres.
What is the area of the canvas in square centimetres?
Worked Solution
|
|
1 m2 |
= 100 cm × 100 cm |
|
= 10 000 cm2 |
|
|
∴ 0.2 m2 |
= 0.2 × 10 000 |
|
= 2000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gough bought a canvas with an area of 0.2 square metres.
What is the area of the canvas in square centimetres?
|
workedSolution |
| | |
| --------------------- | -------------- |
| 1 m$^2$ | \= 100 cm × 100 cm |
| | \= 10 000 cm$^2$ |
| | |
| --------------------- | -------------- |
| $\therefore$ 0.2 m$^2$ | \= 0.2 × 10 000 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers