Statistics and Probability, NAPX-H4-NC20, NAPX-H3-NC26
U2FsdGVkX1+ctcyMgIN64kgFbDh/U9p9VlDIgxBrx6P/J2MOcjdO4ioea2r7O/PySlYner85a3HEWnuttRCcw7SGAVrW8G0ecvwsDAE+UGfBtw/8PZutp4485v9MPvH1qFaiO888ppWuI6BOu4Fql110PW+KAv4yq5cPOPdMRsu4J2a9WaLITbI196Xmi7kiLhuYRPiLZTSLZs1WDxrCTUbiwFLJhbKPZv3Llcr9M9eMVVJfcZdakuA8Y8yICasUD82P3XopvGSBSs51u6PCsHeBlxiRqRObU5LGvFsnKkSj9XGKhvr2PzmmdEyt92n6yDSIhM7wWWU3KyGQRDAXOnptkR+R5lUM9MQA0jh/dCcIEIE/8RBO5IZloQxI1LML7QD28o989kMyLJc1TKwOYLF65niFEAaiYoBojRsDEU4vb+4ULFziSBQseS3ii+kwrS3i41fM04smU/y3E0p5rribyFrk86jjHroQBcNNGwbS01o8z2JquS+tWKeYdJrCZDUAmN/6l6syKwQSjteuCp2e3i0q61T40WRAFIXArBSnGVPvPwXokkdLPNmQxbJYUK5ZcpaF25NtKBW29HXf7viFuXmY2X4sbVRX9FB66xyPDXBzv7N1f0exZjsasYvh1MS2P/nButOvbqrWoXAbupXuPcBCp3KNLuTkTSLmtWdE2fQnhGSTDyUQ62OWKXc6IfObhZy8c5Ns0ym6EUI26S0/fWraL1eXvEfE1jSzFc2+//O7iJO/0Y6uFm6tV7HPJ73AzgU+OEFcMs+UU60MJNn+QNyIiAMx8Py9ZJjHGfJx5ecLe/RqOhQ765oYkfeTGgIYZ5q+byDOvDbQyZIMrOMAEPLUdXclNIOmA52dYS3exwh7NcxEMnT0Fk97esISCxjWxKPma195z37tzfn+/aPVi6VxrQsmJU3ueCgPThgBL0zdMGJ/GkVk62GXZHJcD2R53bscEWPv9wNlopd1aX0XwK7p4B8j37rJOlPusmppcm+gz11sumj/n1yI4yJMA2ajzqPZV/P0EC+9dGbU9SoI6glcWV00HDG5aW0S/tx6ChstOiF1JwKQ96/l0f8EJjaNDKR9//IMo757tvjsXQ9/YMYGUF+t8ZmUv/lREFRFq/5BpG4K1ibVPEBrBqlBEGRdcDpeqad8LVxZD15Tvj1607QD3lliH2P72yPVuLua8tpnz0T2mxwNNnJQoJSwcT+Fim3YawOSAQOxu3S0X3vZYqwVGW5Z08htNjvS1ENDJU0jVIfRN9+nfglTBIm3eBCuITvmlrBDIManwN2fx/wYUb7ewLF3jiNuYxfspZzTvGAY0M/gzs4oyAGFYkiNrA/1/RhnOg58hztkx8qz0lhAcPxts51Od0xJA/qrFrqR7JDfIrdA908FCZ6SojiqA5Hyw5vVVaZaGP+sxfLE49HWM+sQf1gftwrl37r4Q2lc4lNvzLyzrzaj71q3p4SO9H4rlf4SolouelZ1MItCucDBNGhiTzUf037q52046qnl/rXIYH3Y6NV3VZUP/ttG08Rerw4Ig1Q5JSmOGzzdg6HX0a4t8VySDZf+xJaXjiOvx/PkL56XUeAH0rXDfGhMfB/8cmICvuLKI4Tlv2ubY+9FvSWHs6O6gIyC40/PELqiIocexiohWntdFtnT4iAd5qSI/Q7wrYBQrokE3VCPEfby2Cp0Zu/Zez3ELS4CG23U5CMpv1cEXWFylMuxjQpJhbP/CJgK6X0sI7sStqacXQFaDHqUtH3Ylam33d0pkjg1yHFB+TrNKIMZe+nxTbBK/fYivlaKuc2h8N6mR9VnfXSoppH1R9xkuYrO+/E/3IuRyh3I7ojOvMXWRFeqs7I1IdN9/rwOTlsuHymnRcERHQrM1ffjcz3BmJubQ/tkxrnOzwnA8mSVeKgU5mtuWjFM4f6jOuoDQu2REI1mOTefJOfpif8kNL5RVPgXHRjPmQaqATde+Z9JHjYDtdZEHhju+vhfzbHMVdw6o/lPZ42lTJaLHYyeO2plDPW5gCarjODZFJidYcaDGKIFJtQRQnyq7GsQiTlPPov4DPn7aqYosUWc/rQrevUllcJ2q73/wqhM0aiX3699U1xVxjPE5hymU5mhKPFg6oblNP+8V47FDBXbcGOr3a1IXS0ptVKhtVSQ5lHT2cZ+LO62VsUxLeC54ewLw0uQKxZrHGJ6LeqGW3gGwzDliK8UeqFE1mZO+/GT6AJYbaBsoXbjmqjt28fmz85GYjwE3atI4Crifubub9d1kuXJHQTIq//Qe4O54FOhkgQbvpK8muus/Qhjiaif4tA8uSRDAjjRy52ftEP5yJ3+F2luLBmKZTtgPoAKpRivjUkKT/QB8iLgjmhW2D1c+TfM3y+GrAgRJE19upKgAf/1NxmoJvmpVt7eA2mkFiJIID+zpU8JZ084nEpvP7OONS9FE8a+Wsz/i4W2yXyn83py/kjRqQZMMR9votg7O/zxX13+IaNTvnUAbb4z7qlAKpl6F8BFaPAn0ENqYaDRYAkbXr1fgUzdv0F3uz4Bjh3WpArtP3yWXJp/o9OlpLgG3WKCHvYt5KLTffVUGNUgEH8YfnqsAP6MchQ84BPpyxzURlFt6ngqaEMczPddqW5L3qiqx5l4ZMJORgu5hzmc8egwRaFS0ReaROfOg+wSRdUkWsGMqhCklmFDpoEyKuenkwAfrQnV+j+M5aaC2VsrRQ94JmZ6lKeISLVJyy8U5TStU1M8r35U58F5ZBcWmeoKUTT1Ftlv2X5+9plM0GRSAFaAerYTmeF6Dkrg3F4Qs3GHub6l7p/BIcJ0cTaIuJHPWQ93Ivk2XfLER+ZI4JBRlCIYS0VuUhH47I44xXd4mK1Jzlm6BQ2gOuTdGuGV9eAurPKzg0rJ7wgstjr6ridYNL/rnZ/isZFQdDIHPAgPHS+DiWIxSm9C4JNGFuB2Uyh5iqVPrIM1mOxGhW4i+1LN+ig0KWZzi+pMOPOSCPdJ2sIuTnafHlk4KZhD2eDD4+2guwwgjw1y0nco3ff3RloQwnZAYHPj5Uhp3nnFz7C0ZeqjvEFtHgSv3kbZyLgjcfJDxr4BCqt76/iegYcffFYJOc1nn19ee55iIgaQHLMdjdkUCUw1Id4vbyQFm+sgHpkNrMHV/Gz8PYkL6uxa+kvQrl1nlp+3XTPcD1tF5zIhUtikjLCDqYHEQS1MRg1U77XreLWxlkrbE8uceW71UmC4nBLhVfy1+T1AQUrXAkrjyswRZtWBwBoGCl74+1FgZjTdVJGAtCEDhOrjgQ2rTQNXY8Vcbd4Ycy4WY+Y+WciWAs/27um3ZHemxUay+FFDmRulQi8/Fnr2w+GmGaML8SJYaEi+iH8TazxJ14Qhg/OBBxcUiqTTy4A7b5g9gGlenQhPLCm7rMwPbKG6JvyeeJuVkT2eTo92t5aqhAygglBIx4pOO3NZRe7dxfP/C0AGt8sLHJ3YqkfqV6rXJrYnP6PcBip+MmtFDMRV1J21Mt9VbYQ5/geWTHEFIaCSFz8TvqSRvAIkeqI3sQAdXb3uGpcGuQKNrlElASGwW5M/SwzG00jtaP6PpWBeOilDhUZ7O/SQa5iThUShyREKKCTu4RhW8tMaTsfxDjZ//VVtlTHN47YUyTSK16t4LK2SuWmeUBQWK1OtjGCxrhXL+VQnWYz8p7rXWKbAQP+VEIGdzVHiKszWTirJ4x6amyEryTixME/XJVOJOsK7CLaDlKw8FeM89hTbp4ZzpIGQJ7AktzPa4kywC694d9WFaYc+HMX19sgqieEBAcp+XhzxsnGZlilqL7CQhBOqfrpNkC/W5DCQumG202kD2qJJpveUhtoU7E6UXjbjkfQWCTVRwXlBUcDkoamldHeHa+BWA904lwbHHVkCfjwtgIfvsEj62h+LOShkCIe8L1J4vYWuGnleOTsMBPKDS71dvdaj1VSyR/gyOIiWF5QPP+WCKJg9gbQ7Oofv8AlfM6koLz4Va0BmEBxgwi8bCb009+djd2fNdObV66/zI3jAGHL2GiEdN4d2gbq+UpOP69M87EF4qDYauPVowWYKBdlDeuB9tUTXBw814PUBgFORxo6jF+RxQaH0uu7f2X+IEnuWwvsH/YeinudlfWBMRNi6Wh5PKY8sm2zKla3WpO0oBFRYzIyeTtfpK4ioxD0CbJobp4dhW4OP+yUJvtZVtsjfQ0xjnUSAHr5xHoR4qjjed7B21ZpmONKueKNrCY2I0zdKyKdmU4NSLcH3M1OFyrO9+HVnW1Fc8uzDZAWos+VMcyYVT/LZtCcPqzVZreQiQ7t53NQkvfLvn65xAGfJCiA6JEtIfog7yDhBi4T26NdPYnSsbgC4RzWle1FEUZyJYabAm17RFxYTNFOa7lvJGhCs50K/unS3bJBxNkjZiml78XFfeDZt2uGGgFyn9qhsZbbu37GDNlwbfEWCsocMFM+4ZggNmHtng8ULIv5aJes37jY/qiCRsrDpyXTVZkZ+c/fF87oIyxd3rchkPHP0xSxRriaXcfQEfPjMwefkeAq0+V1rP3QJE71l5yYUbTcL40Yr++tHRL3g7D/vq4AH6Lqq44CUiAqJgZhAyN9XWbZZUdgQDl/neoHdpZgcphjHFskkH5RtFKZp44vcUH5qBKdpX7+BfvEbfC0FNBDtdJdHg9drETIdPTTaMPZM5F1IvXwFctN1aFLFy0z6KYrnhQaypuKS6Z/crfUPJ9v9Rf4Ys7U7AVcDn8pjhermrgowoFmb33hEWeluLm0+T6NqnqiFu5J7ZwXpaYdl1sOpl416AFDXRF39Rfpu3yWuS6Y3gaLkPTnbDfgfkmAXzyLd5vL7w2yqGuQfo+5+vZfxGbpSQidpZd6pw9W4gM42DUzRAlCT9erMRsJMIPCNzIjTr2h7AUxZbO3YVv9TahxQv5TcJEfyWU7v395Pu9kZD3+bwIusCKH1buiN+LUV0WsLn5UkGPRaC6Sh9NnLPBdXUA9cBVVaZxVIsfuySDDViLTxg/gYQk7cwYMxGgPjEaHtzqvxumCKkZGJw46tEiwkmemSVXLvGOgK6ZOVRl8sxHeoV8HtZgCLUF48gsWjWryctuMtyhp5BBhunq4KOMM5cAAqTUd1QCqBX4i5VmLTbbmFCs2y1CdHvykkIeh1Q+z2tPXVYIVFd26t8I9CwdbbbyCxRFHqYWPLnZ6bcvdlSJ3JkY09eygs3MUPsmXbO+VKeHA/aC7MGDvdFOnxS0HSWBje2imoTMKLgki3W9B7ykRX8fTAupNevYyyTGzu1hqYajP1BuAXB6CYxjekxUbt7vS3BNUNkUWDf4B8H4FriMVAe8REDbCM8Wlh0h9k4+bJwBOGsYPh9tY4D3ihhGUySln0GwMAZ2CKXlEYQIsmsZoAq7F50rUatEO9zbSlrw16ArAna0x4YdNiSe83X9NZWMZvkvdalSL5Xa2MVYX6OdRIkUE2uAS2xZT6k3IHQR8VME1lOUd8zqZ076ZOyAXR3DhME2KBy+BE+urn4xldLplknBRWIWs7ivkcpjptg8jV8y6zRbljc++r6DiUUXGnSF/7O6ArQ8vRi2u0OrGJsWz65I00yIZtmA6s98pLuduOURnUWh/t4Xc1at1pcRWidetZO4ks5M/no4MHIGPFFQJ8QmzqidMZRtwjkbO4s4jW6q3N87iwZL6auQx22O5DBb6g7Bhd+MS4oMVBCF2/YO8vfh3vHjWq+XedIwNMqcJVbM8vIFPi3yuL1eyzmXbH06/yiGAVg6U0XrIZFt/+vZM748kRz7ub4BxqD2V1R+79fdnTMaau5nuwYUFgtClqkHu5QBrAHyTvXLY3OS0iT0rJ7dCbKOO2ebXDX2ypBex1FM4uO/zeEWBQAGzLYremVlSSsRULGwwaOWG3q63DzVCA8Eyu1pO4SnzNYOUQ63WTL6ONMQjJVtOdk9u8gc0QATnL6cGs8zScw6VuyEo2O1zr7N2zuOdwAwztZcb7uovOoUW6aTVVjQS4XEnQvLLZjOlSyUQztSjucJZMY3KOITrJI3s3Ed9xdPJBXCufmsy81nUP46UrNl0DCe7eKiLODX3TsiWi1iyfu5ied3KyQs8ATDg9YqiK5zDT4Sswy3MlVDCQvaOsTt8HXc6BSf2fff7oPWWfbRMwXQ7mYw11TergKjA6J2UfJvNupnwySt5Zm5HUTQw0zB3KQ0Xe/vt5Ze3qeUtnPEHaETcv7YFUJLdJ7RYbibyCxyxecWw4WJssiMwI8WaAA3kKgla8YCYfDtAQ6CWWSwelRvlKr7o1/9X6guywdbZQny/TvXdi8OqhlGd0MEh+fXjA9xmcvvDk7NxDPXl1t4DwC62x/FcTNn8XdwxjQ2jdC5w5rbIBsJs8jYZaGnMKpgx78bCIgTqNVqKnV0BHbZWd7G5Rep9NkX3zP17pt+/fpkGlhwlxFcYuBoPMJxP3t1lr4ijuseXq37zn0dlFBiuvCFKjCXMwnf+bPdHc46MEbY580k340Cqf5EVYqwjQFOl1R2Hb9s0h5LDM3OQ1D9xYCmtUqhit/guOPK3MzjWhC26isFelLxMbMND/eQHJu+DrpDvm32a+gkJmyoWlpeS7UDjrYU/VIr867cIw6RB1RqjqHDu3AR38Ag/hT9Xu4EbRzTYFtGSGEyFeEipIxyvVTWw4hUglYPrvb2TlmmMgdTH8/AcqU9I982Eg/+wNRgf1TBTIk52GBCp8Sz2QcbBy3j5L/qMgM3l+Fnr3Q2ZVWJhy/1fuARukW96m7tQqtFkxjyWSz9t/j1BiI/hhzHNf/VW7+VjSMEPUNk3qcMrUB2ij4wdn9WQbB0zNWqBg4dEP7RIllBgIJsDaT91QNp4t8+pho+CCdkwoBgzOmslmR9YJJdNkprdX8jpTOKuI/3jh/EkSuyXLCjIIfNTj9NJfWJboX94Y38sfonCPfzLqEiQyN9Y6lRKmPAErndHMNBCBibufkk/3l768sIKw41slYuDqIFpMnm/trpJHRkhTBFVJOrxJ32CoLSb6vDBgAH8vsLLxQz7jv3X5Vbwd0T2ajEnArId0MCnzS3A/vzAsxuI+lyp+NO9LzttnegF1Wm8WURxpVdyJmjRn0Xwu9XTb03KWQMYSMJRTwrcGxrAxynDqd3Hblzt4IhMkBhZY4J2ta5F6XWTtSdRx3DZHs7fZXpSXVBrbwrebA0ZtsT6/SbyW+Uv8/TT000vEJX5HlptcPhDYhj5cuB6YeWc61m+JlNcmaBW3tm1CubNdjIjBt2YyfroZFTw68eOwBRVGiwWCkxFw0uhSs3yED3BVNgtgSu1P7Li3hY28C2FzDQ9hjvBPLc6z8FlFdAVGPrAq655//jT74OBxocUZSJddxUl+70CJrWekrZdP4hyaI4tYJhGSpr6nCGhSJAXQ7jg0UoOaWdJ+vzSs56UxQjjbxRwjHbTKye/0J0eTl12XhXhb8vMybpQdfbgmfB33GY00vzZUOm4Qe5+adfEZJgSMx3+OK4yBI9WxS6lj3FY93qBRYdjuqcajNa/DJceqNRObdXd/vhBZIZzfFzfaA+9X+UWgFvtIu+edXaF+jpPS0akKUQONTbIHDd+Qyob20MhKVrN8ULhKVAGdTlNWnH1zZJhXgjQp38zLB9nRtryfoCo6Iw1bb6sQFGiDH3/BTQX0Dy9uOiegEeNm+pvUOegfDNPmynrm/EllEA7mHmNhzCWl0VgZSAnGSYQBcmuDDYWq9KXbvqfaxTgPhjQu81F/kAVzQtmfrTJXlvMFaOiwJr4KYH/fxdHhv0SW9cAeHZjazSUquXGbR6C1WomZLHAQp6ChRAEJ7WPSrf1+ELhdDHqaW0ct6z2zjzIxKzC076GRpVsdXwI+FCcpi9YCz0OTjMGhMIbITdVXnGfHXOvl6cNMJm4iqHLDDJV8QTV5fqsIqGVsBJ485vCNCa9fXxuZcU97TyLS0MTlrlaWvLCmbIOcudfH7QVsH7p9yQwOQEmdCdjrkzN30zD8TAZeauNNcdwkA0TTQm5AnynWdXiE3spbpAXfRD4zatos1ME9nutUgZlBlp0PPPAwuyvFG7M0GmUINIr/LxqWQmwA9hBjtyaH77yzfgQHDfvrEQHF28nZqbSy+iHDAR0N56jgN6bqtcwzG5TbM12CAP9r+7Cq9CYvMErl0PorqHKW8cDI6cM04c3dRX1ea4Y4oP8TtAO/j01hCpA4QiOuDEfMO5YrGldk3e9sLGXFCeqf6yau0Np8BhebdJ/ieHLK3xEGdtbJgLes3Ml2PXnQuZuoPPi6pd/+acl/UvxuNPFHLRB3h1opjBNl2CQxJ2QXRb5zByT1GxNqcKF6Dr563jyvcn+M27nj2Q25NgBYtH3yze0WAgGR+iT+h/0DuZPLEppZnTGruSzMkrXr2AHphR42ZkxHrXvd4BZsWFksfYFMeewKqEvBZzGj22id2396cg4DbK5ZqfdOtpEFdT3czAc/Xkg8HgCyPU8iL7RAML2ppM/YLjrNRbmmGdnKAgcIYgSE9TeguKs4jsj9sbVFZDKrpGFoc6CnHGUV6Sb1P+pakNpcv4NTJmUw2tYfNfzQNeE8SKdG+qnsb6k55WEDCO8TGUmcJN4mL/6V+KnF/hPCZpMD2mKDb7q1F9TzGUuor4nZTEDjDOMTXy4vJKujIPIWJuDMmdVo4vnHfn+e/dSJYgbr6hITiNFThMFwoRd2DEZzfauR+hIeLvO6BYuXAcv807RNYPPxYcaZqSGK6qomVXwCUD4bEe25kIqJ5xQuvIc9vYxkBYFxpKVkxOQQiVi9HOzsuDt54jlETvjqOhnp5Wz9WwmGF854Ebv86h0KDQpRMUVx+vroUthnBo/hFSdUibJL9xVwVhatoHauIB+d0XCOLjqsSAg8/YF0m+OsDYjqnI/gV6GXHVXqVwyJsVOXIRP7Mio0+4uO7j3asC5kLIbnEYqtm2hqpzZicne7+p0DWRRy/fkj+j/zm+49iorSX5nAge+Sz3fGya+UThRXaW9nmGFIqQ/3tJVXeoIul/vEyYQ6jd8Oggl2Ki2iVRYAtG7wyhmw3esr0n6CPfzE7KjWnkJ2Egsab0yNyzRqQrTlQPVx937gtyl6EfP084woLxm3XruCdzTJOz9MCI97rNXyHjt0J74HmEVg+P5N4DTlE70dp94NQbnNZIURDWV0OApOhHHOTiN4MwK65ONQliYjTHWPk7ySiPH83v4tB4rwRPm6Hgzm+rACENXa1mD//PV3FYx8KKq/mBtTNsetHURfvx5X86n+UXi41T3x7QK4mUml396rHfCRQPouwNIpRlaR2UFNQnBZgnhvcKhaVuKWWy0mw2m5JiZFK4kzgSy9jrpMQ4CUzN0pBosoU1t6Mi9l1pIJScGLky7Ve9wgocJ3gbfLpLhBDVKuWGmZlZeBh2LPddtPFIMJya9X5EgdcTjtkrbG+hDgg4usLwvr1hkPRBbkhXN/8LGIXEDN8h+M2YuxCJqbjMoq+UnUuxXm3lrKqoFWD/raE6EkoVsOIu8zXi2xdhbZVPu18hHEh/fc+EtYdpP0NmQXh/yPdVxuDpV80zHPGk7pebMOHLWP9IUbNP7ndfjggFRH3RiZ+zAwFLabUgX+i2B5kep9PTgczr1YxgFeXoO8gtBOmtgo/2cGKoh0fuxbpU6teNAiqnLCQNOzXAojevnIV5bIm3yTQsjyr1SwWFrqzenrBjX9sOHj56pbtoq9e9K7tdiV7/+O5AZhW1GQdFOBuD7A+8wzjJB/JqnlAzv309PaY17aSgWclfYIroiE8sMyy66SbK0aCVKjqI6aNJ2gOpiNMmZShASwzdC0qPmvc4T+grDkhCxhm34jzOBn8T2vSUTJWUed6zmheimN8szAbQ71pcDhbYHKoyY3X2R3lMDEXT98BWRmuW0OZMxbVbGW882Qh8a+S487opS7sh70v/FrG6wLKS+C+GpJ0oDZxzB7J6XmhP6k8BM2yGa+pe2HByggw4RtcHI8zAJHEy7lNz0ukoElkxoYi0h1brqikgGMpsBYEc1NmmSVvhkiUxCCLtCTprzUVloLddY9OgLLpWSu2G6ztb0uMXxfWEyUAu3ncgNKykiqeHAPfPpgT4b5vZIdy/c5S4wLmfuj3ClGgJIa4bcGiV3iDVDS47xntyZ3B0FBx5N5sRDHB117ibZoNBPPpTdg2XazmqpzgAObxlLrBdZOOIlL7JSxkSIonQkK1vvUYxFJh+Micjny3CDUvm1KQ4/SoYg3L6/OcjzjWAMkZt07CRAczzLSqacDw1UvHd9RK47NjsD/xzaSciCciBD/bNbladKvZxXDQgLSysUmJBaaWyA7Uje2kzpAoG/4jGo+4tBp8V4WWLkU8ZlxjksVlEKBca5oqKcbStdGbIdlZw5XNiqWrtFEE1zLsf0dtyIXt0oTXsSIfa2z5OcWPvk5XOkY+VmptXtcYOMpwc5VYuW7jddFp6ngmsBSEHJdokatMiTHPcuXJco3HLZGX/k89SIeY2WuSLQPAjplkEpWaMlh17FgwIRPvtMVilFrmEq4JTodgdXFY+vC91+ponbxPKinNKCHtevjlMB13mzaBXaJxPcSat0Y9JgG4X2UadWWymavCImHE1bTmy07S+X+qoRcYD1xgPiET3yMqgmFGWlzFF0+bkomKtPpVgR+N995DogkmH/yiEWrcYnKQhXyJVB0sD/83aQuqen8J25/gaFlq//E6OlSKiNlXfgKVuB7cIOGW+rTHPHsz1pw5Rb29gt0rwPmB5zRh6rR54NknJyp27w8Utx4D+2oDgj67PTay/ocRwLzPGG00bgm51Vd99DHlWwh+RzN9tNovmELIMLSTMZWNRsErPbZt7V7zMgqOlEDQnenFYwvZgPQUIvG75Az2hgtxVGT8wWvKK0L3ZVDyI9SCRIxUIOaz4sxz7JbJvERUgeHC4G64jjGhNhUbiYPnGgb+He7NUjYkC7Mo1GF4DWvWNQxtbdw2JT55Zj3znMKLOV/d0T4gyMEsqg+vxRfh/qv/+x5svPlU0g0TFGMjduElW/azGW6tQyYXaJtG4+pwYn4NgxeCLY32t8Z50JRFQvtWO8JHS+nCMja2W5c1m2NYGo/2Z1o7W732f2zOCkKiuSw6PWnVsTXkDl4+BzKDe194DVyvdiYiDfjtHdfucdRG17nT3uxMB2GzkmQAxwcg+x+1iPQkNW8bI0VXhD+M8sz8zItbmDpucef8B8XsmuxtqEjJpfIyl9ROTV8+SNfG46JzwYWUopPL0UVM5h2rmRz0ZnHmQQyNp/mVuCTCDYE9TWWSis7y8bgaBcIva4eeNCtmsHUmDBhOpSVubRXGMvWp1bxJ67LYabChnQ8L1voI1S3nZupkgL7EQtlfXUktsmNVeaEuQ+qZstcwDEGRGrF7W4z6browSGeqA9BFHAoK1IZRub05eaAcYuveJqcKOhyRKymd4P+sWajDi6gdLMsRoefKTxFmLd38/eCgSE337eN3LzztB5kiDGlXHY+RLBQTqTG0D2SzN88bc9v2ZoHqVadQr88EKEG65/3Ia1gE9DrMpoiTBED1jriWjEJ2hendjPST5ZAhDctIcMpGvCnCiqn/CbpW/w1Chd+qJUncXXiL2i7Tgp4jQo8ecrkfYEhfGMJjWDI7dpcpHx/nI+TdqA73AMnOuWHVgP5vHys7l3rvTeFhay8RU6curN91k91GwMjuiQRPAjdcJzc+pkQT0Uh5PE0WB0IX+874Tw47yya9FHxTG0amW6IFF7PJ4n3XDcX2GUaJe5++4OgPqhvCz1CiwG5V1G4nURk8K8rFlGUxV6FaxWF47L1F6Eshn0zOYj8Qucdx68YwLFZItD5uCsO/E6Kk4Lf9duQ2pYZ9gsFegVL9QKs/V0biJB4wN0Zdyml51btJRP0a9uQIo7g2s0mU6qQVs0Fpprw66lM/Ixmfv6mZL3eCgVYwKp0DPGq8/y94Oh6jVU42ZCUFKUXuU01ngxKUIZ9jrfM8uDVO2RFklfX51zji5CroGPhyayn6bpAPLqxNu31nP6cQn7Opau0G4M9HptQ2by4cwdVFM6GQe7pOAiUq0eGIeR5QeJfjisqMdCmIkPDyCV69Y0nLERvxV5tPigBdfSQcfKP+/x5N9tELfgmJhc5o3h/kCesqfODJBe/G0Z0DVgUZFqn4Ruxo3vMq3kIakxIIXWS2UCkDwMnMqRyCamz8wxNo9PakYPksZucSmjT9uGmuI+BNGt3o6nTXwIuR7gz/4k4T4M+yW/wlnamIqny/FbcPbP1S0bSH13JlkorufFdZR4xvnqIHpWFyuLV4oqR5ljBXN8049XVNeksnvWDzhi5nR761omn7qojuHrcjk0jPZ/7t4D7zgy82+JFEnctArPhoHCjaqEeWdUYqfJWBTIFlwBaAai5eKRcaocCfTXHoLt8khHmIuW63tbzv//tkC59479yvSny8QtsvvnViuLAbYQ9fVBXAlVzjoeVE9HsiiAnLwegwaVbttXnw6cBlWhydfBq2B39tzWq8EdBcuWdz/8rr1W7dj4TL4c8NUCh9h2gQSScW1/vqdEpDpWk6e56ZD26S8S7CPzG8a2npyd2g+qoXE/EFYGCCfFwRM3en2+a+wMwS8oLzcRn8UHaVXYMLBPNEhdnxueh9BN0HeP9GQPn+C+cWUggJHwwApHeIBS/Fj8/HKiPaCzsqq+mOb1qxdir0g77TRe4RxIUOPLqeQz1+szkA8JJ1bWhSG4ILjPf+/5AGk1kpGS6zF+nAmuwu6MCCNp15AijCsnrQEZ9t51SHBD6pducb/KPeDN9kTFBRTB3Yg69z0qfu67+aUCYPr3pBgorAlOCpneAzJ+8VWkYCjGVY9A2BatNjBXQQj0G4iwTlabXvUo2f6waWQz41Rn0X4+QGtN4rkdhX7mn0De5Gnj/Z4Z0PiePNZMjmlrPxv9VuGZetT4P+GWXOeAGVgMEZCfhiJjmRrsPl8RBeLiCm/T9u7LkHhENZIwHNPkx4rKFFAQHUQ41O4DbJ08ID1coyrrdjPBLwXEUdJDi9Is6NVOdpLE0nEhYleatWfBJXrXVcqa4A4bDIjjetH0IcAxYJPi9Q1jOom471wBRNJsW+xcZBMSjrQq30ICci4IjlZLRp1O+FSPNTKZO7IWvxyFHrdzYuOHIvEw8X5Q0l+yHa9yotqkKAS1H88BMTJrpTUSoWsjqSRz4EJDDBncLyWpIevSI5iivWQ==
Variant 0
DifficultyLevel
679
Question
A standard six-sided dice is rolled once.
What is the probability that the number on the top face is a factor of 6?
Worked Solution
Factors of 6 are: 6, 1, 3, 2
∴ P(rolling a factor of 6)
|
|
|
= 64 |
|
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A standard six-sided dice is rolled once.
What is the probability that the number on the top face is a factor of 6? |
workedSolution | Factors of 6 are: 6, 1, 3, 2
sm_nogap $\therefore$ P(rolling a factor of 6)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{4}{6}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/hnY8MvxsTIE0pCiXRzvHwXgz835tygGk0eC4Zvv6S0zTho6P38cpVnVRSiSQQuZaM2lOTcUH88wMMTxbt0FNXuHHH+WcWrhZD19jbiSdeECZ7gSk686Lwz1FJkzOnHH4o2N6quVrtwuYCIlW1FXM6vj/QhW+CAAvR96sWCzrJoZL2Le3FHdD+ZDZ2tNecNaOq0r3V7NQyT5vSeW667EjSOwRWtLPnR99TfkwcmElcrlEuruGu4QT4rNsLEjnWvJry8wMc3yC/iHoVFhQRKwa6ppWt4xykFrH7FXcGPRLkdYIhOGlnIp0bxPFA6I2UO9cbOJgrx8gIgErFPfx7I1I+/i2Xqr/E6eODkgpvnTFajiHEmdf5k1NH8GYDSNuhj0MkPE2UtdkOlPwclwrTs5MncAhI1RFOKAAh+HeCfPuesQTprNwKcRBTocvGiQ4B94rOCpcDpmi2AOzWDtdj5suGMaz5huoOpWdFO7uS+k3SFk/Fvst2oAOATyWB0ozspGXdDQqhd5lJXn6gnGLEYOsvrxBweB891rv4WIHVGLlf1OaH3xAwhouU1IZJ21E6jI5Vvn4eTrDt2K5Khj1RI/x5d06RANiSBH8M4SnhfYg4VTLtw/sPPuvktrUqrgtQa2m+7mvRxpByuRvUNNKbGQ7e9/3/yj40/Ap6t4NHiUtG9gd2Li3tRsSH+2Daqxr56dY0CU111a4YStXA+tUk0djpZUQb31ZLiX748jVPIqsj6S2bAnzqyYHWPABRu994doioUGFp8BhFB2rbZHEmjC4EDUvNezgDzd+l+p/bN72E53vAjOswtA5EtHb4DPNTN2B0in2AdvzWTyvFcZbAjK9mvRizbmFiGl82T4WgPNrdyrowxwsnWYHifv4FQDz3UAy/lvffcg8EU5sxMRYOm0CsVuyFvwv+WlxIQXmxlmYVabywybY7d3Z++wRK7iSoQjGuU3BmJMLt0ijJZbpnFFZR+j2egvXBQKEwv9YwU2kdDfHSFdvHI6s0yuejsM75C4UBPGhlCxVyfeGDbHA5+cwWukjcb7fvhYBTXk7ZeucxZVVPH/myuLax5Xudrhw+fxpr35kdgS7JUTmHme9JpyHZcCxgO5TkvXySYKz47TVfMe1NBm4bf3LL+g2Z+bBdxp+86AP0mCyIqrXO0cUWDfeSxvSKnC6xXvTkQH8c1CPbiuPp7Gync1dzR8G+DcAfnmMMhEOTanKIGyct51My2YyAfFiFHYN327XL0E05ghYlds5gxXy8pbDjzAdbbU7dhSfREjGCgoK3QB4EQZZxvti1u6Zq0gZTCPmpaNoZb8BF98dKhk9YPot0BRXVJkAZ6xC5C99C0fiPxseLfae1gZGTpP5n2RPMAyg2nkaUywfdh8PgCupn7DCX7YhaWfPQt07lxebEZsl7mwVo1RoXFpYJCMHkzfdZCTw8o9ZKhxgAyvnQAdRvz5KANj2ilOcssaoMFgb3z2AAz/LNd/oQ55HfZalEID+aNGfrRr7gyqRYKv7/2+ZV68WFm3+w1ezUHXGZITZlFf0P3dM6GEwXXG5FpHggE7SsyvMOZLvXHPxGm0oLCY/g1DeibDm/JXZWXxlXy16p3xWm0h2+O8Y1EYFE1Uxu1IE/z6nC6R3gU4NeAbyPLjCwfQWxVejxFQiGyL0nmPPWLvEJbnY+Pql4ghhoAkURlA3XRq3hIMuJhqpSdcCrH/VY5LcEo65ARrCsnEiUg2bvSNJx/tgq0KeDIEhig0ts5C0wvg3yOHJl38T0INZ8SZySxZIccW01Sc9xfxuWeivXqEiYp2A908mXLA+F3raSYWN9WPclhjRfLHEbAROk5yFwulz/fx1I4x86elqALft7rrUyNwBIB5kRo/AE3Ol+4HBHqQEE6c0HMR1UcHgl5obwcNg0WhfDgctdwnAZeJDJUMSZphympyaEEwFGQKAct5ZuK13FG8JFzXqDTRwO0iSJXINBgtxD6QCraCZa81LueXP0MgnN94aAJqQ739lmQMZjjTwnBUvKpoBqPJncR/7Yv9YyhSrCpXXB6nyU7o/dehvQIa43mPhdV5qC18hSppnXDpTlsbpi2djxvd389Abr+WRM4ZjQ5TX4kq1HhR63saQgRbhOUUlDvjRDmvOMt/O/zWqAEOVJKPQNefn+vX5myr54ndAlNsfUZmkfUy3j4ScmV07SL4Syiq/Md0OCmPeiCI426zkiYngfok3D48rg+8MM5RgsYK+lwwdB6jO6xOiYYCNeO8ow8xONGOLMI8hd6IHMQeye4P7ybRskMdHEi00+mJi9zGjUK7OdTnh6P7Z2OVETSQmNNfKjxsb4EORAA6cQ9s7SdlXFvG3ldqsc2XkhbNW2RICVHZcxi3Hm+PbDIhrFQKTK5LKMIN33DEVADJtI1Uy+eF+1FheTHu88f+djh7MEUuwBc5WaAPYrFwBx69IxcRTAMHFwhd5Zz4/hFV7Gs7/eFtD/g4/OVE+NAsb0d5SjjB+R0eDJW60DWolBGGAhOmQfgyXBbN74H+Uh0Ql3eREtnjGnWCvUhGMYhl3lqjszvYvLcbnaFAsp6N1+Xb952s05f8TVYSz26ADloiNSfTGKfcI6QNUljpZu+29HbJ8I0zhejlgnsoYBQ/wpB1Xby68fB0uG7/nJyxICBUdJtzecv/EHiezhpviYe8T0stuhUgZ9A7UqiWKFLhVyCxopaCuAiaAxVB61G0XFHAmtfgqyWsviHHGxsfC5VOFhjsiXMne1IKz3ZQnVSkK2S6nGhxhrcAd1iIx6WYD68FOi45uHmF5h5BH0t2LToQiMqovF0iPRPML7mVKHLpHPFTa01MStRKcKCEjqio8/L4cRRQZKLaeX3od6Z0lTtD8X/RNw6WtTkMp+HUvpe9ILktxc5PNBr+znNM2gT6VYVIfgAMw1KPemuAcXVM0wGs6vpjGUqeGbvUjKFqbAMjAEOfgrSQ3mm+3oYGptkIpRg0mWMkGrsvXgJWg/MK3DA2B6ywKYfXMdTp0b5V1XX0UzZhZmPu2lIqXAGn19w95iq2I2b47LWmzIMxMdUASFv7U2jqmYa3oA+y2h952DvUkXD//3c5KutnOYg2j1+vIQa+2inP6ga0J1XWVurjk5dW+3K0Qqqi9oh1H8Zdjgi3E6v4zsCxCFCyeJmft3xhx6eU+Wv6PiNqMmXiwx8koakSzmEWhcivzjFk5tUO7NAfnKY0yV1KQBf7Svje9S2cmC6XVWlkIOvkZEMZhU1emAF6E2lis/mLkKMlxbbf3sJVfGGYatvircyTdEFN2oHHGODXmf3msxnTsdFHv+rAfm0WnqNmndgm7Eu7JSqxsEJPkd+XYWdB2Z66ifrdXSkBwVvLbmgSq5wlV+V2Xwx24xXpQXdPRA2vJ0OdaUPzHI8zNsSQt5tNR1R3vT8xlgQ6OOgEkf8zcNZXvH1ITfw3sCWrzte8stf4EOCMfiEsdHUsXMqia2tbb8cSB5JSwF8QWBNT10oSVFPMsw/RQowhOdEY7AYB+Y1eC5PzY482wP986f8ReXqiQmC7hI+JYzKseuyI2Id5yBC/Xq+x8HHlo0wTYHRvh4jmsE/mi0iJKj8IYHj3/GskpawsvnPzgTyRM9fHbY3FuMUDo5+eUDn4OVxXaSh4DA9ZlmiqNG8fSvop1YXlDZDeeSSwC7aB1lJxsQoMs7wdBrxew94UVE8ia6ffVOBoatUbaqIJyCgosYjPShiRMPzEFRo7kKWFdcRo8BaCJe0RDZzFDzdIILJKyLhDYvPQvfe8tN7QgH8l+b9Z7fu6/oxjcf2M7EwI3NQ+Hmaww9F3/7bFomBNTCfLVg1rSHabbqFzD92MQEw1UFhxptDeuwz9ga1x8G83kelKnvG3ilciGaTDrELYlJHIi3C3rhqIwVtBW7v46Tx2QcuKhlfOHbt4RUZFgafI/oK8QTI+KmgE2hgxUPol9Fj2zZ4NEYAWzGmKrCN7+dIYqsvhqdubneM8AQXS6Y9dm/9XZNmBc0jSPjdqAaI34ugk+ZY0bevYEuh3grs/mGFBwjG5n/SiepYptenv+63EyDBsc8WnxSHePmek7cLmg1czcb1jCyUJ1cwuwnIZI6KAAvBJVwopQl7Lf8XrFcJarD4naEQ7GR6NPo6xdtP4WE3sXasGc2TWGLR40pzTZvduODnkJMRMBT1E6rYrN8DoiBLL/+kh86d6OOqssh6vBKyy7GbR9dw2VuYfMP7BUxrtfNz1q59sZh9SyM+TqMRdLNjTpvoU3jQHggZTUmSwB6cfSWPoKZuwgFZqNmZwOJkuTXPv5lJ05Wvh0qvVQoweKJM4b1+eblidvWHYWED2PjzazNiafuJeIWcc1CwrVmjcB7L4bZ5leDXGAgjQcJYou70BtrrA6+VQgK8mpWtGkeorVE5vBL3zsP6oAqCEmRC0IZnaaGizyn1A8BOkVrz5+1VSf7ZA7G8c4knY7gkk41rOHLTk7l/SaYRpTXm9D9YGHBATj6tZjsX+0jTDQbPbDJF+0aAlvus7/NOzV/rDgkFpfG+ZzPZvjmL0XCnq7B/zROJiqREegaNrsaHQYtViLTkwkaX/knTfM7oIfSmHlZGZGsI7+GiqBlQgyO6mU175sofGy/TH9lqd6MGbsJdgz1mKoFypBk/r0t/nSE0+18SU2vr4bm30kbkANTeiJwFtmnJoLHWCp/Q4Luc0K+QcyoMe7sJ/l8F4e66JOpJ2enIE2/EvJe+AQSDqBJwbHI+7Cs6I7zZWzuoOSCGekVMujad3lvamOvCm/dQYiGJyOQ1hUzYZj2oeD1N8FKVF04KOvx6mkuibyW6/i4U8G8SDpv0Czlq8Q4uQCXlfjs5JAEZMflYnYWZFogs3xKwYwWumQwuMVdmHzQCgdUO79VGVejRwogMUNjwznr2tb/vzJhvRw4sFT2Db+HNpIKL/c1QeZMQ6Jjys7hjPbGPzq0bBgDVmXdcWIv3UspBuJibNQsOwhHuTdJnfFMV3//pn/zSUJtIuOQUfUSGzL8LDmn3ttXCOvXWt2NoTBP6b0goqpBr7coT5QuIra1qiny1XEo9/ABstxf8uiWyGQMXXIg5fBqo4cAWOZYdkQ3uuIuzYvqr6hhGcFQRGn+NYPdytUF7WGtybntMcIDDuIfsuMxJ7BnM+Id6TmM4xQpCcQ71fkXxrutLwmhN6R16dWuD0UcoOZmgBkIacKDm3XufxVXz4Pv4pODg3AUFuTXTxBIu9+4OofnXdgiOrI7NyT5yVN1j4JYs+R+RCoaW/l2LzWi/A7r80a0mCKU2mpXgkViUKW+B3Ju+KQ+sjQ814+WQpZct7dMtjKRZ96rs7yC1BCEROYlFG9SN2ulSNSJ3mZXN6WDHG964BH318XNPe7qQAId1sX7LbQVdCRJITRboZFFifL8mQg+xtJu9HNDCK7bBXk4wm5gbY5eJtccYLJO5EnNMtvh8ZP6Hb/MqeWzBzwMDqQzH+F3xeZgnIIQnqzm+FHQmeyt2mrnFJ9lYj0HS4XOGon9Uf1Wlg5Ahi+LtnpSK7Dk1TYEc/oa01g90Mq2swZkjLZ9yKSfukdEat+hlBXw1EWhPwEXP6I+sejD5rAgmf9e/ZqZIsTOFj9DT5fleynXZFx7Vhe6VNSr/w6dSpIekLsuA97o0aQKEgIigwRi3eiPRimzMk7hUpsSf3ovwg1GAy3nCh2f86F5TpJRf656c2M8sxQMjd5VfiU9O5/YUZIiS4RQyoTCxM4OVMOMJmgaYNSWqZlL3yOjlkB1VaIq6WhdhaerDrhxMqSo8kumKbZCS7KsW7/naM4jtuBBCbylKdaRgSmFNM0HJqXQIGqBXG/cqw6MB4+OKGlhQxXffwFjQaq3PyCb1DN1AyV6sQpg54zENI8vk6r1+zVVBg8FS35CG6B1EHqGALfJZh9W7QJavCq+FJ6xx/WyiP6n7vYXOsABPzsWBat8YCRndP5Rua4zOsfDf+RCcSJeJski13kKC6s9dgBQ2OBP1OEOo9I35i1OOzH3axPgThkfZRI/0fYVxaRY9xmVrM41sgkv8ygItuhVxn8YEnaBPaqL+vuc96onADNG37Z3yc1p0mfxr9YBe+2pDUaZuS4K7w4GFCx8yDAnMddQjrsTx/tgIRpbJuT3lZ7VdOWX+BhhSJzByNTiSvhAhrdy7J6kXv+kSJQ73LPqp9/N8nee4PS7gT1/FRbjttzh3RT0wAzpg7YShgVc1s7gT5LCMS7coXKZ577Fpx74WCDFxBBmZt+mZ/xVdRJ/O/MFL+abViGNxOodziQyRkSk39EoUA2IYeCAk0vAPuBBcT5b0aw0+Viz9qGJB+h42bd3z/y7r6/4QxdbE7CnyhS0+gr5banNw2LL47rQUfMTng3O/EN3q9+atY933wc4SNHUiXR7tsobaixGQh+kGdGmfaI2OmFQQxGg+eqEqxuACXXBjJ2549VKUKHCd2EgINfsHgqsqK4pMEbhRLE2/5B67yootSX1uF7+O1pk96VUsPzrwLc7IIETWs/RBxhVxB3ZjucPJZ4XkWpCUhAKgws1uyDoFMZLAeOI9SGCh2EoliSA2dt3KDal8NiT+69WtWGLb+d8zxQVifcfVKs0cVkHucTVq+npm1LaCAcAE68+zBevKK93prX4bJDb/MpbXffHOlOXhzFN50Q+atlFRUkfO62+DUP+EOX9SNxviX811vWncbVAsSd9Y7CrCXK4SWb1UO6dyExk8+w50OOaUPkIRORuVrKhbAgYyubccMcPwcbJH1LssQuM026b5bHu0Hc4LPxPjEBb84d9sML4JY6m4hcKH0qxtSJFePb+QhZOQBZClxNQXdtNCM2viQefy6uSnY+Dur6hmWO4IFG6Ioquw5zThhP6R3IkfUA3rz7aqXF3wCRVCOYC6Vag4D8XJ6LaAgEHlrBUazh+M2s/MCepBPnw8bOlUGi7Sr+3zAdy5emCghf7WezeAxCufQVEeCmFEDV5ib2TUEYqguW2tixKGX3vN7I7H/eflvXdFmsPOZkEbj2l3+LsRyu7hrGPJpB7Q8jSS0WTXORsiyV27YV3SijvCAYrUOi93tqKYdmC/JX/nvYbSi5WzZuuwUat8VC9fVp7/Otbjqevz4fOmLzFfQaDfCjtj53Jeqz71OPyaT0fMzgXfSZ8aqBN5EKLaYSHP1oRQpu/XVBFiGkvvEsJPtOHoCtn1ZxS+5kT5p8vYJn1ZghJwzH6DV5ikWuBcku6FgJB0rRWf2gNR4DK3BNtiHmm0NmA7AEvRZYVJL7WK6/IEsDPLC5d0REssRd10+aWyFIoCVMoIGxZTqOTMQz24ffuidp5ojJeoaZ++ans/jXnJp8SFUBS0YZ9JUPgHUXA8tl8IEsPe/P9vcyd2MwINop/mceqY0D4LkDc+n5B4Wgz3eDW2mVYY1ZfTW8JFFrImdLH+QNQHD20uFI0ItGKNOt9hIEYs/mmj9yPT4ucPJQIOWG78l7QJ6EJ8NnvhlaC1OkfGLPhH//Sow6eK33UFk7g/QpcA7xM5EafXabQCqo+3StViwB+Wr4n+m2t0LaskslJ+kqr+o22GcMPn1utvDa06y/MFA9krp3SHQCu+p1JfOQU6d57FipOJkNJ2YElIF8zCR2Lt0eifoJ38XOxBFkmY3sHLKMJMRAPJINFIDQzGv6iFJH9Iq1EbyWmmS6LlntPpgt6uksIVOpgxzrhezne8KXZWypCC48KekFqcZg7YFdLy7CDIBFP0A4vlwYBzI4vxjARZ6q93fTLnKNgyrQVnuKKk7dFhpQoMyDsxHcuXfpGTIqe7T7lzMQYT7Uc/q0LsXrzfAwsUP359Qsl4OsIXcqgQdFerZMRoDXdQswpmLeEp0maRUqJZDpPZe8QnV9UgXuonhw1HzujHFP3nTlJCRUwHGcgRTLulKAT1y5T+Je1aJKj8ybB5NpN3Eu3CW2u6PDUrUMe0R/jW5xuFrvI/5Qft99z0tmeVujupz3U9IifmBHJ5fEyzmajHllyebiBgrIpau+sf5o7tf1k/uvGhCH2wvmkvuvCBNEcKJej2N9F6QiKpUe4KOmdOVsyXzDbV4+OAjOqTTLyHlK0JIfbcPAEFnICKQqhp5EOxlG8RHuj2zXmr8DUZZB03V2z6wBG+B79V3h4VReo4UpD1jO67BNQotNsoGtpwxjOuK0mZ1+dN0H3rUw9IECvAZyjxOpANXISZQPlRstkySiJi/hznDBlHfz1thvbOl4waFrxIVqNMraYaw7AVb8hDcAqR2YfZAx78aRgv1blItAhyM2RGUCNhQL49fiMIJ/IVoHaNtbtOkOpCadsiwe2z8RKSYiLl223aJ8eLMa0MdX4idnBqX/8SVWXBMiW4W1BBVeu7RhO9dHv176bFfWZR4ND9HKOunHipIebEEDyN9zxDlojItUEqg7pHdOfSsdK4PdxMMDdrEgY3/cHSSdkePu+J2K7fFrC5ygj8BrTMuXc6nSV5ee7ErMFd9NAX/2xSFg0qGvXHiPQjSYTI2sXiAS7SzkXdcTea2oiBS9Z3Lw9lHjt+iAkKWKYh4UHaax+fVHSW8m70S0vOLN4x46wUkv1ttbHxy+j0PnuHR62L6fVRYMhEEXhf80XFfhOgirfoFuLCR6AXnpkrQrRNgqT3LcwW6VtuTmnYdBNTtBHSJ/1vfCzSG6zFjFeCD84t2wF3eTnrrkK1XSvS5bGJ2aHgekpzqlWOd8NRjmsVTodZe4vpnExaso9xQrbjByYemL+16+5BRHkW7LpbGbx8laZt2VvTHKNZtgb2Nj1To3YWPtFIetAXgy91lmkg7qs88xXz4rUbJJpy0GU3/NnPcoC3n7qDiYlY648YPSMbk1Ri+gK6JIORopU0k/2BkkFLhOq7vD1fyJfHK/X+zzOkTXFzq/zYM7mYY5a7hjAg90oN7AOVkOMSS0X18y95Xpu9ccbSTn8cf6yyWxWOHNRFmBwbFP1iPXXZ7rjTCvWxzqtFqmIHCegSC15UL8gKkqxBe+6ZJeEkiaz8LMAAu4pCmqh0xhIdLeNHUH0899APOAlJ/W8kd3xyTj6+/uIVp2xNsjhrE/q3DHicvQ0HwYMq9GxmzvpeJo/TQO8qxKn7+bBYeUXN6uSXOdbI8n1tw9a2k+JyIIgiOrMWx0FUddqd78995NcTF+N5qYpgTHAlpoP7qJ6Tidyr96lNIVoUQARgV4KjNRUbgwElGC+GI52sMBol+/gUpsz90q4q7OXjrz3zgsIYW9yU3IEZXnAixoOFZ9AnKTuJXi3hGVIgkRmLz2MSJEj2srItag2Y6fFnNRa86UWGjhiQdsJMEKy9rUq87xYA99w5By93Jc19x8+idsUDbI8/22sNcWtvZllzGYE1whfLBAd8OUzuANOFXD8Yq7K56T8mdr2AxAnI9scz77T1GBW/hdZRwUWhNuYpmaPV8Hg+u1NRVTW5HK56HJIf1aV5HtWgZnD/o7l3VKFgeXoWp2ElbVZs9adpdSTx/GzyXriGmpJ6QzbusHVSlYzMbVN+quFMARHI/o8w3dZuNleACI60tO0xSP0yShq8kWMM5jYsOMRgA8lxmJXH9dH2yiz9Tqy0KDq6L+RNyqxcXxMls3bkM98BTH8h+W+gIQFZW2YuiM69Kr7zTwzYcOB7cLv3XeJY0ZHMnK2zu4Ipdm+b1idqYbEDd7z3xD5pjLjhHBU35u15CH+ZipdDeFuMpSiT+DYx/hApV+jfoX0+bD3cFxgyReUQ0bbahh98fvPIxWgn8beI6vIOX9GwUUUHbK+HXUZuNubS29xai63sIRkzv8VdxwS7wQMLHZn5BftMhrL3IgI/hKHhvDExtD5J8RGPcIB9rU05IcSmuuvmeKYaD7/bRaekhUrVCAjBz2HzEga3mUB8Bz5gb4Lb+gvKr/J3AtuIkFwms+sjI+vEFVsLqu/FpI2ZmET0rCCAJPdFJsBRPaL44nTgRPo9uaqr4LvvMLRKKR/467DSkPEY2d7Nk8wKMLj+01TVwev5BMZVEUwb/w27PCYrw+yD/csEb4Je3RgYSUo5qb2RbICSXqL1htSdfls2DDRVLypgLcBGBTnFXjLBn4BKzKCka/Xv42ooJL3wI4VgVeoPs/GOHUn7EvAnyUem7W3M+VA5FC1MaXtGW9kcURXHzwg2X8s0HrDEpv8B/s8+hVg1EGuDGGi2V6c5wY5o8nhw7+sig6lEWy5DPSIETzNqB+duxaAryRlDr4c+ifnncq0l/kXjJjpGeDbG5h257ruechQudOlrfl1G9IArnk6oI8B1d5bcsBKkGbG7XciGrgD9RsgFtQJxB/+jROl3jY7TJitjskY3KclkBcwWHyIBIeJ07v83R3/YArn+Ix/SclxGFF6BsuoQ1FBzzBUN/NKeXYe8mKDWnNLlipz80k206pSaH8OdDMyIQlzZ+UkAhuwm85qowVxeidMNiQj1uyBu2YH19xflLxjgvs4VKOiwKBW26bpe0brLDfYYxjWoVOoKK9OjPfzfhpbHltHsPf4Nd+XAzyZpxIpCdpTsChjXr0rdkX3XjeBKF1d2XyiCgdwMzbds5Vx0y6chue8Bm0APIY/eCQcuy2e+DOfxKucJ+ciTrCRcV4fDedf4ErHpFM9dPVM2WUbrqyQh9VXOeS8GjazRFBofNqHpv14gphU+l7E/uK9hx44mMmHqwgMlG25TqplHoX98baiAbO0ZCPJ55QYkWj/JNX8MODKbd/XULXUJTLu6kAiTTKyhxANMyCrVqT7NfDWP0ls4aSIjKzIU7FxKZd+lKLLVULCvZVsYhMBAyfsn6P3hmJ+0WEkWtIzcpJWYSvaZLYZmSb82ZUlD9QQ1OwK78zB7TLDsQ21N+DEIP3/qiWcwYI+w/WKTTbOBtxYR5wNjJrYUo8M+xgt7vv7NWrXuHXxMqGJlFSF9hx8qakjlVFma1L1w7VtTIke0xMvrO3AM6ceDfo5ew1HXXLZSDhHkbpddX65NP+JzNO2rIIqCVHA64KmBVbrPnSD3dkurhpLBPZjSe6wOu9GH6JM3qBO+WS8wy/EGizaDrVgxNIAJZc4Yx9MSe6+i1uC90IARn3h8YigMtWa/JXXEvb2qT7HCxDa61KP3fttG1BR+CkBrqXm2XKvtCpfhSOedrys9eNhB+xgF8j3jxyYYzmzHXiAYWALpOR/IGTBMQwhoJ8GJ02TtrarIVI8bAU4kDDCjB9jZJXImC0OORrnrq/ZQGKtnytiQouWbOYsgVVoQS1KwJ1LRTgku0QxUiBm4cnxnwtZE6BC89V/pgioFuL/Vmffhfa8pIhVMta7LpgBzyBaiQwp7bNd4a5UbGRAIKYjpDXCdg15
Variant 1
DifficultyLevel
680
Question
A standard six-sided die is rolled once.
What is the probability that the number on the top face is a factor of 12?
Worked Solution
Factors of 12 are: 12, 1, 6, 2
, 3, 4
∴ P(rolling a factor of 12)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A standard six-sided die is rolled once.
What is the probability that the number on the top face is a factor of 12? |
workedSolution | Factors of 12 are: 12, 1, 6, 2
, 3, 4
sm_nogap $\therefore$ P(rolling a factor of 12)
>| | |
| ------------- | ---------- |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+axvpOYH8qxGULYC7vv3BjVmvnOzP2TCnsdULud9PQ3DkXScZWuZriBV5guTpR5HuO/5vFjUsSeMDCCyo+6GLST3DIwC8GBbhZH/OPbnNWn9lptCkyQ7NnJH3hnlzyPZVFBLC87hhrtLd+iO/E4qZpuE/vxqc5nf3DK5VNNxHhKAyJghUR9gGLZ4rxKQH+KKO0ykHojR1MDApIyaF0OF+mSyF+qEPSePuS9CmGg340PUgy25H+WX2XFLPekyeXnJObahK7fKT2sAV2T3iQJOegFHvnl2B7ZZd7gNlkBJ0kW79d97IUPyHHS/wjLy7QgSuvCeRbaFKAIgIh3WC6BCHHTjawtvz/UiRGjP7Cq6uJ81ZsEhHCr3ef00k6YVNd1FjH6bLaMinHuIt35Rdxv+6+rKq5x2HW9mbNqbqkxoEXBJmwedg9GugyIRi3bjwzh9lwZU6A8Z6sNw9KGXWIAtnJN5gbQSUlmrRyowSLEzvYixsNAQVX5OXPLQDL127bjTZo3W3MARmtpTJ74yEwHR63z5X66yptVHeeTcaQ4jnkTU1/DxVWB2Jv6iytLZAPEAdGwn53njr34dnsabFAKTwDet7ksrdatglHuvQ4Qc4skNW3xLtpBMdtLd/tjoUlsJNyFtBWj70E23O8FGWyF531HDrFtuf4RWHX3nYtLDIxbqcPHWvuLfN/asr56rDCoWihjKHdY8+Rz6HqFDEMqRhmoE6EEA8wbhH773DEW04MoI31sWMD10TEnv4tsVYYjA4nY1Lb2zr3B4Wlv/O2jf0gLzSnzUSOa/14l611nx+0++Gkppnqhq8HIjaJGfQk6dl1e1i3SZPRFQ6xH10OWryldbPjtQZLaBvNwLSFJwF/LwgtHjQreEps84/SX1fkIPUGHIzIAqLJq/KoFDY+qz1LsoMASdXJ6/asPY+vJyiwjV8B/Ew6y438A8Oge5BZndFnWQogKfZxH8C2fKgVlgvp3AsNmfuJrSTrxETG8tudsQOt5ABvw/IONiba7K1D0tsSK+DykcTxee9JGIEEERRRB4akUjxR8SSuiDS0wS/UjuosYjLBluO/RTrB3hCGmX1ClhwKYTnpXQvud4/4snn0VduBohmwz2f7hySjRG0PXHEOWxdzo0IaguGWmfZFgxJG/QqKhyptY0rm2o3wscN5WFE8ZvizHjsxWvneMPkdyzvGYXw1SAtxI9V57ypGptXujVpVWxrO1rAgiIfD6yp/RqYd+Y2ABA/lrZ1K8K3b6Ri88Oh2WzsZgq2fBQSuGlBIhZIltrnmnAG9eF1fe8FyB4g3lmF1q0r/C8zXr/81qOYb5EVAs7CN5WFrvbmOE2CJzn6qji74wrXY++U8otYEzlF3r0KVcs1uH7Cdg3uSgUgaTk3bgyjOTUBeKP6t7IjnBO6LcjjyHXNcm908HklixU2r/G5IxBax7Cd59y+b6paIQ3loD02ZGmpppJnMUzuN84YEu/ahrL0uWvHka1RmGNMhKI51OYAL1NNaC6TPnJbxAAoPHus9WjajeBVIEDjebMwZSpGYeSt7Uc0PcqzUFO3ljZ4Kw/L1l+w/5PplzgRgU0Hv8ydM2FnDm37RsWOVxgm8njo45wEy6ZGeXJw/xmBcqkfzyYUl/AoLgi71cBvIYiy/88BevW8gna7qZRnpOjCCqEPorK7CK6ZyL/hGQjJxzKYgIXRLb42vu5C/kM7Dyuoxzt49WaVGofKNPY5HXapPMv5Ah/Y29R3XRe3szxk5MhFM6f/Bb2yrxKGtnqz73HlbCwsAa1S8aof+AB+owCxTGRjGytOtf6Hd2ctPv/F5iCkbAmiB72/bNXEPBlQcCP5V2wgqr54260lP40yWLHN3lrMtDEKQdZsrDfI91oC7FFu0fGEkC2HtNSJw5h67jAOABvsOiBX12vCqf52uTHCNaMMTCPCUNEStpdZUgRI7YBUZJ1EoqT1MMRub57H9zxxk4JVRchJaK6aeJ0iAc8VZfXny2d0MtYeEQXkH8oLhYmfkDhDfmBNnf6wOc7Soqh0VPvnKxQtnEqxQjwgL17u1L64iFcbeVGOCvll0/OitIKJdgBk7Q1z5fZSQM6rLIt+ocWtFtpZASdj55ivxvdys5JrAvV3VofrTI35gIaZMAoBs1Vio8PHU/cO0cJKgaiswccVcXUCcV6rl1TTiDleUE+4LusGlsxB+G27L+dNKxDwFA+Gkh0U1Pk94CO6GxQNtZ5WOiI0X11Lq/lAgq2VL9PQM2lmzLzFy5RiB2lWKFy57yXS4AMe2XvAOWCcUDafOBR9YD5qsdq/3dE8iiCeEOHmy2lnWYr7zXYbQgyphqysJyHEOFwssOwRRMVkX/+RyQplIzhM4chJBrhSxxUtnniMPUM1/PakFmrwrcsScC1kmOcLsgnQTy2OsFzHPyW0IQVV0mMJNM1aXbf0kVGza7PqUYFkPutG5gRrcr+iSn61Va9ls3DHCx0t8EPyc/lCk/yYoloTuRfBETmrPXjNvKNOnmV9Iv7SJWKlGizTrQh3wVgfhDkVjVTjQJOPkKJcHeIifqQVwSbNX48YHFejCeEzfGWuMW0EdqLxHi+LuRPS5juBQY8nfQK5Yo5HpKnXPJvVAUZU0eRJD3HykgCNa2FzV5tE0nBav31J/KhFTxK/4TSqgqEEnGgv71d+ifd0l9khzKiP2hLdaOfFanudOdgoNkHkNSpiAjsZe16UxTSvWhvweoq2H0rf0bb0WyF2BBz9YTmQ9NCVqz5aYXQH/s+pD9PldhsWwqae8gGTzu45RsBP89Fa7SYsowZy7H0jAqwE+l9E0tgsonvKNGfBHhBAZC0Z2YXScwDoPCDVi8JeQABcIQ5RQ3eGd+ysq123fL+JnGcHA9igozGqYGVNSTj1DBO/c+AwqIkdtGJJzMmbK85VHI+kwYcC5j3Axp7/QMK8QzwdSk9WC35nb/1M07Aso7/3I5di6b1YhfhzJ+iiwskZmv6dPxocaQxoWeoECMUM8jCzv1JPzzevppglzm19GSqF7fHm+yNJhixLL4/KJGzDiqzgxG6cIxPrOBxVbHI7R3mi0t8mvGIZpwxBLLsREe+pgnMwpmGqi7mxzTJCztHBdtVmJ63YxBjxsUA2nLXSWUkXXAQ3Ef8dgsu39eWtHZp6whKOPIXLVpVY1YFNdEo6ddEDJ22E8wrFouM58TQu4gBvaKtses8kAl6MRSQR32kbBI47CpLpe8V2tx3Hmkj5PTVfD4EzoxwrkVBv8EEyXkFvi9zrEi3cKMFO3IuYDd86q79ve+3v+iHaSGb8l1whFnaqLLfRn28tD/e2Ln3m5HZ3LJmZUzfbNQg6iX6AK9ESlyoyA73A5b72O9JNkWVq0RwqgEmAXqJqQMCjBzZh0VRTmNqL2OIYbNMJmPjLzSiqLjvDisSHxu8V9wfXSxckBhaFfMttNVpyV1LCDg93YN9xoV8mwZUuz2chw6foDo54L65KwYyY0I67msiWx1YddfNhV5zud0ZGSTfjXwcW2+qSmD/EqWWtCXqOX38hSrq8u2g+WtisbNYmHNgwW9iLENNp7Y8NRq8YXCHOnjvtEBZSDXU97EeBbx+xef6xSuF+FlxQpez7C/Vh7fxh230XAyPlpCQV5eqotgI1ocsOKwUE1E/a66vjBBTcGzVk99PKYtuGG338Ea6rE1kF5Uxb7ODB6X5fs1yeYdkAgGRlmJdRFJ+4g37AFz0EMnz/UjBV9TMYfiA1fhmibg0eyJ5H+mH2nFXAJurD/2JRNPs1KAHjXnkmHtRE1pKnMP0r0w04p019n3DYDxysqMA/BXtLvr0OLq2PqMbxlhR/9po6R7h18SiHagKO+jjlv9/To0LLym/gkOdB1P53SMdaTLzG/0LpMhmk8kvdj2dewa5IplDOooSxmE+GmGORb/NxyiN1UPATxpBeWwXpzH0haSH4zryYveMsaMoNaMMHSVnJ3IkaMJG4W7B93STH4guWinnF2+HDMgpe2os9rFwgDzjKj1NN0erjwXp8S+7ot6fcObzjZMfjroM/4MtkxxX6snoNHfqIckmSFXJ/Q4jprFCZ4MyYKX+2dbo/spswTskgceOtA8Ml8/zCbOj4S/eize35frDVcOz8jKjRS/HLy7eStvKN/n5Hr4YWL2Oj5hFc+4v9sxSXli36N9P3/SwVDXpWkOiIGRr17Xzv1vGABF96ML77UWH1P9ujJ2E4Y8VZFrNxqzyf8O7bfMSjUeB0SdfnGDr6gtFnq+f8BkKTJ3Yc1IrSmtkNq2Kua9mea5npiDzyb3ZBh2Uh8JDGTNLmreY9bGiwWghbiUqDqy93xFxKNOTKn84w1g4IuYmxjGxVloXJxYLMefVLK0TZ5WOXCimoIRtFInmDmNx0mLDw+GEqvM00Dx1c5rTFp33jWjAX5z+B+yjCfPg29Cf7TVR+8CcxPjSxBZOSsOC7gQc2jSljYXYJEkmMG5ukGEalVGT/nXD0XtNKjb12xZPVf8/gae0274bXAztyaI+/eI0KWARVubnaTa3YJr+SSy3RcnqIADFlsabLjU2xJCLf/bZSqtD0d4r3ohSZdUtB2CYkoebAIH01OoqDr5u8UtjGbvVv6ZqjnX8RTf1k7nmUguQtoJQdEplp7eogIF21x2Kn9mP8/AXeStNumsyOB3GqIRByCzcUcyJupXsjLbuKOE0okJfg9/S7m1knfEfDQ/gG6NdCiNYJHXHF8/NUqGNJFGtdBk6HDP2V/AMUxllSuI/GlTwlAgk8Cz9uYGf2Kf6RDo2uQV+aPMYUopiftSIA3/Od1vLK/uRV/RM0cLcbcoaGbMCdtBoUzXcqRg8d2AHdZ0iond0q3XDPsDlISpaQ4cduRKKyd6bX8Ta2iSmfreuNPPQL3tCF1OcLr6/8ak2DWTSwCk21emyqTEfsDpdbF15pmh4NMruxxQS+xooF4vf4P8irIWvx0LCeO33pQ4Ac2Yvnrhj46pRZqIXvPHqDs99SF4NucjTnB+4RRLb3kLH+1im0njGY4DuLnTufvqzDtgQl4zZuVYtpvSIFhDu34p0eN8thAhfl+KShspi0Cv7JrjVWZ5MXk4RPtBtoM+fS+CFkHhsF89TxFZxBrvUPcREsaGZOb57wws0WjHWnpvd0lAtrLj5wHKBKCtMhhlVKNhDELOWeYOASir8PKbcvNr6Lrn54C8u3L/JapW0gBNSpj+6Ukr5yn8u7lygVrmPSnb2e/MMulKoiIauGp5t5x49gFzHBE9QCeqeQcbqn/HFq4kZo2e1vIXy8z7nPMly6F4kXiH5KBCo3/PVp4m+qB9PVkE5i3vdxKAuDiNENekAvfYJO1BfaU/mkaL6YAnOAU9EYtUwIycRmOEkoKuCVOeaMR8dv5FBjOJCBIhZyxsKY8wH5HA5Fki+8WFu6QTZRztfPKzTFi4Yi1ck8qQFurwv4Tbm64BKuBaPtQ2M1bMupqxJLZzltTQjC9Noiyiyn2hwRdG6iviN4X4sYQpTFHIFmFvsORaZ/U0FvYa2l/D6qsBZxoFj+lkbFtMhJLupV5bRVCYcZujADNEEmqu5vRQMZp5K05DaTpknYCa8l1vEcnQuDVDqpz21XexhFtUZX6wWJL9Y9TyciD2yfB0P+yhM6gsUX5XvguRmaWhREguq+wg4v8hPq77pX32dkbkLqKd5rFQ2qCIrQwjsNcs0011J7+zVBJd1WMBgm1Of741SPkVI/fbS13leh9vSzhlpREwy0hVWqiONtniVjx+H/8f6nx/bVPv5o6Bf2ehHQoltsksGvWWo2SwvoB7UV4bORu2TqbLN9K3p/WAVvyQK+yJD7vhFdkBv0PnHnXUExw3V0BTeWaZm4nBlfmURi8AZB8t1HanyfWxWDOeC+b/G+CI+jaKDkOw1hRLgy4PE1QqP/+xKUAmJH+NQPii9AWzvaUZVELhKdzMZy/84UuhUNhNj/AEot+A0noz2jACOaMl6rRL8ZsjbovUEtmywHnJWogFOwMfT5RqjbaI/DsWTDyjjh3aSxfDOTRwq9p133EUAE5eyjEyYHsj6WODC5LjAU2YrP9hHfe0MlU5SnsLdS/19wY4hcHAPcggmxR+MUhpn9r178I01nUx38PJULHremiAEnX51NSAHmG/WN+VvlJ4InUJViXYhTXlxDuO6xed0kkcgSZ12SB8F9+yqeJJL544/v6B/rw2OWCqtWC7fH7UkSCZ1U8IHGa5EGKB74YNEHpFKQylrI1DNFSu9pW/ZsaDBBoSnzFJN5VE6lRh9+Ls6sMSh0+eBloeqC3MwVJ/f9K2F7bFkhrMZGGLZUK3CXao0vUxTJmWvSV2DgQKxqcWYG/C+MavQ2jQhwplsOFD+aPVAogel5saK+6l4aLYrL196wwXLd8sQlc41e8ThBlAQ0gElt9Biqr+ciyj3qjklc6eFw3HckukGkAhNSfdCJ2QcPyqw0/OnpO0hLhNEp9QyX3i82qrNnJuP5VVijSh20QbjQTXUbYoD+N8/7sCaP8l340uPQt6KPK2+79X5n+/eQou6FJxYk9RFoOQZcma+Au+yGiQVrRPMKYRRnq8uj2dgX1tc4SKly5CIdxznV+a7/pb1lWU/pLXfszOn1xNof17AWqzD2DmCg10gG9Wdl+Ka9+98yt6T16EyfrUQAFPxPdD077SfGfwohSSYbb31LMqAOhsftswvf/g5obCxSpCiauZ0FN8+//i6YPHxQYtyYxPvaszlfNQdkacTbDOe9Kj/gSWc9XDeT85Ypmc0yTCqtDOCRrPlBBcanTfTKx3TxxR5NnTTrJ8Q3xo3QfuXh71Rb52wxm0KuthBWEO0x7fW/bO4pV7PUdB8kfqYhzkTUrlRgeko+beTWaHGCdbmj4ourX7+6769+7ugq6Mkn/Pc7Qx5Fnuz/Mn/UWU+CH6/CR0Xst10BU1swg8kBwNtzQjn/y95PdDWvR8Ku6LiUJY4Hdt51UIm9rr9ofCDQoJhjv8kgplSguEgj7tFBT2mDf5DnPpm/RsAJ9Lg0KloBhXoBrmITqNk0GAPomr0MRu/6Nn52o3D/bRWOnjExIMxvkyiK4FIHAUgUz3peQtsyk8VwqicQRyEGJ1W4LEIERLLQGbwz6OdcJhmuJhMxjeBHgLzVwFkD0lohpZ0TsKR9elU3Eioi8K1ARAnD47j3CECUhydoKZzrAjtzoaa6gHFiaO9RkL0ElSxVJrW7GbGJElZi+dqovwbCpkNXjFBqmADDqRM2SFD1Qz3xYiCv6gEnGqDs3QJi6O88a57JPXMrK3voLtpGNq4LJWgli1Vt3W433DlTRV1/s09fp5091gIfdqE7OVWwacTSNW5LgpJ8Y2GcJElI8PrXFC4Z+oHtKP7RlIWhWj6QrSyQ/+v8+RbqCb8iJvDtA6angYhcvEICel2zMCZP+bG78jF5CqH604/eEECcwO+EJr/RBOK7HE3W4ThmXql0FpA/xp36WNEzdzORrZGJDEO2uKeA8Zyx91XDWhrq55OPQv7ZshxdU7uNwhzvIMyDjypEkFATINRzaKHIgSdAfmVzjx7ifJhqO3QOvw6LyQGIe2GTXjvGss/A18WMTLT5SyUGRaYpDksUbhNSdXxjq7GAKOAOTOEQgNhrWZ1ZdBsxMFBqjQfTzPgLHvd79eZRTeAU87hl/qqd/js/s1+MwKC8+rRl/c1Y5eTAZxhPuZFlgt5CDDpGyO1uZMQHw8Jj3VCyzPCoMidiz4ovRhvXvyFJ+APNHDMGQpdIMFJVIRrZtYvcONIknMToG2yCpqqlOSQjwSL0LsQrVzYtN8X8JstXmcZPzPimotoY4+YvUQOo4BrlT4ZdrsmugGYLlcXx5QznAtnO8lrmjKamsDXDos6rUbwncbiOdyv2cZ7rwkbTdD1H4/nGaA08vrSKDk9KQbn4sqjhoPqtKv4abX+ICMNeCe5GWcPZtvb8NiITBMe3EyOeDZ10o11he907oUaapin83wTnFYJbWcKTBNDi1MWInj84yiauv1ShPzx7lvDkYHmrwFYVSdwtC4T5/Kfk+4fZPBBFG/sPfoBge/aJgwn9iEGxGS+r+CnAIixwPgtxYG58RIFRiTVyZjFdpgf8o0eSNV7UIeKAbR8P2C96dgg2Xf118C6KkEO3DMN3lCUDidhd4jYK2Vx3sxEXJh29FNev8dE60hPxmNb3wlwYizvQn4WBLeDbr2+xMkbB/0l3lToKBZ4P5Wg14PhF8kiUmAqSNfk5CVXI5flUU4J345k6SD/NryB9PZPk3Dh088Hd73W7wTYRi+1VZj/4rRnOWi6FWUoV6K6s97uEjy0+V0XRShc4mhFXNH8wcXAwHqt8ZJYkbDfBRpGsCbzKH4EB2ZLfS8/Uhy+f9O7HhdtxGHRTZOR3rJypt4Y4HnlSJH3YNsC+Nzv2KdtlJUbetxwb7R+ejUL/+gcHOsI7TLnPtU00phIgm/oX6lBWXShoBDSK9ldHvrVzmm1kYZHyY/B5YDxRwNX4ryGtFNvq8ZGtzrAmjykUwT1kXQatzva3c5eIY4fYD8DeueHZs4gK8jJazMtI4QlDNfY2OL+QTLmWXbXFROYdSywulg8qK246nfWmBZ76uhrR0R0A+mTiXe9fXgRvXIdGEBi3WldsstkxEsZjX9Z0PbfhVzaGYmK/w9bN+gzeRObSOtiOV+99q2L6A4jkxLu/zSoodBJXGYeOVltR60Bi4xyhRO4KwaJyhQ4FTODHYlg34Qg2oZxBClvy0CCxXUuxEmAJYMfW7pN/u/W1tO7GHoFuARvEfO01Mgo4pQ94tWE3iZgvi+wfDHn+lDYU4BBjYOCYt9pNQJEN77gNJto8POEGGTajnpZ/hXyoGfxKRi2znkM9Syi/SfS0etBer8YOWnxF4PA8ykxClFcosdvqOgOrznFfGn3F81OK+pgD1nVttg6MUfYEG5vZ8myXfbGEXnAHoKGv0XG7ArPW7jONMO0pOvm9JhUoZS/+UKJsVU77nweaybK8aBsEzNetpIF18TNCvf7Olc4rqJrn7ZXCMg+FtjBGnmEuQgwo1DLPETF4pvkpOh0cvmT3iXxrAoswbCbh9ECOMHdxF0kQpezpMDlRvFq7y4itO/AeIEpEFtGycCP772O/8nEaSMRaheNycNp7LMoLtiOjOOHKgBpBXtTVarR5R1bgGZ5Bx3oAFuigyDRc8+LviJ1WADQvzY9z0qThoyWY4guY/oiNaK/Wz2T5ekQKQgofl+Kn1OTGKyuD0bp4eDjmexXSijhPmNG67bj1jvAAxp2Io94FMx9/4hZEMIUTNXrHonIJr4zv+EeKaETHHXRKj3uAM57IDbErcz494dwSxElp5reobeIc7WXUKlZJ2W4VEOAFqNtJqo/j89sb4wCghTUOqfIZWCtujwfNpHyAriZlX1r5YLIVJ4UBwJ0VmgI35f1sravQlzPKje9wsBalnOfLAQRSF1OVC0ivXUL6GgPnpBcHNY0eCdZR2OMN8S9RE5ZDxzFJtoXCYavyFXUofC2QbZFTwT33pPtIpD7cALz/xq1CVRY1jmkmmxnLesNL3XnbAboaJMUPlZ0sPohMavfeCo/Rg8Uiv9h0ni+ie+5eursjh+XyCOVe+BaXPqk+XowSRLDMKoAn+7KIgGSEd1IRgmVVSNt2SjoneUoPYHaV7pPd2OnM80x9tngWNnM/IZrGgNtbXmY/rMljslExCr6NuXdWBPrxFINKJPx+6NU5isr1uHRdq6BFeI8SEVYjyakggSo5LWUluP79VqatH5iUJS0hP/FyMEIBwHy/GFoPmaGufwtgWKTz+Zkhrmt/TQA/lu9asVGHtydN0KblXshfqiPpKI6ECAq7Q5S5A9Bf/ktQzgOMG6UNJ4apzOsAc6OibdNDnasnXC0K42FmSkG2kOD+p9xIVPjT51k8DuuMDd9DboVp6hAmqlQdwxdVZ6jHTaHKxG8tOvCrvjhJNfYEoKkYIUQzXN96ASMgCCZv2AkwvI35d/YJ7RsdlvUEWqyX+aEX718Q1BJp5M9WcWEXxCUl9BbEnQ+P/mmNS8ldJA420bwBWAXEWQWFSYccAW6YynhtQMh2OWF2iJh8/LSDWYEcqRl2R633HQTj35MwR/WcCnG6nQfHb1lOoDURot5Nh37/NBlS8kmLWvBvQeNy9IqKMgZoP2kRQh4/8W7SHOFzWhucvPQHi66h0x/R5uVawMKsVzSmchMvdDu4yA4Tv1ejn8XBZj4ZeGf2NqsYv0UEr9JVrCPj8k+9QPlWV/Q4TaOYVsf02SqUUOa3DUZCgcfKIZlBr1cg2hcufB9+IYl6W3gOsvtQuvt9Pe52sx0JAB4ymJFh+w4SMJcbwsZDRkaMruvmrCuKMfsp2spM/RW+eQPiPvVos02tR/mtguMsfbzuTc59nh42t8KsKxOySrZaNInHLzrabWjHnGze0aOcpF826tYsddiPX9UqKmQhI92C9kjyd8nYBgqQYEtBjPzRBy7HV/MOxTkaen+x+60FFIVexikdMtQXl6G85s2qPEABOj+eZtaw1GZQNNCCdU42yoHbKzwZyHvdLzTTK5MP89Z035gSE4jl9gcq/yZ+qaE+kwhjvjNL60Lk3e3XzMZ65mi+uZBa1I/LNEddQqwnZ4fi4pgnUe/mXMJbe4ot8flwXwrFsfJRey4M1U3K8/HeN4iFParJgqueKcewV5GWZLis1JHk00DozsXhRxqGalIQC2QapqBx7ML1pskwnq3EFL3kqwUBtt5wHdKzrtufPNOy/JPHJ8qmVN8YRBz0f28/HHjwQEGUe1XvXTi18XI+5trdfaAmdSsI0jZBvwr55iPfbWiVFmXiZrwg69YR65cOlMMjZPzOnaGU9tERjZWd3Pu6Hf1nn3RMHve4GyPtxDnu0hxAKEUOe0eUST/8/eQnXJvVvdl3ns1Ff9DHNTgYkLM7grRDgWdJive/e4ZjFVckIMfnUhUp6Q/31A8NJBxhGV9hNhwunzKjqPNZDVOj5stAAm+732XLS+4RNQ2kheJrsXgg0eCPEY+0bCPyaxf82R056yDH3LAHga71za/IGue47wVe+/WPvkwkCZO+inpT5H8mjG9+cVCfdAZx3nk1mttYBeGuHuq4x82GCMUR7/00b0vm9NW7xwyIkjtx2BRgIQESQD8OgdK76gWFr9cRNQW41H4LTWpnYS8tDzmpBO3cFRZrJ4JsuV1JXs69x/5zlovaaT15SNL0iUWa5XutSXz06drG634S66jycMGroRcjVeYuQ1LVFKPYKS4iMYRtNuSRmr0R79C8XDMsLc2dcqEONkvfpQbjLHrKzgqOfnYRqJGQn51BjRK863KeoCq7FU8WS7ZXePqJOgHSI7D/gUOcUWqyfaGwPoeOW4Ge9qh3vnUzlF9YV8HUifr255j6ouJ9sN2CD
Variant 2
DifficultyLevel
682
Question
Felix has 8 buttons in his pocket numbered 1 to 8.
He picks one of the buttons without looking.
What is the probability that the button is a factor of 12?
Worked Solution
Factors of 12 are: 12, 1, 6, 2
, 3, 4
∴ P(choosing a factor of 12)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Felix has 8 buttons in his pocket numbered 1 to 8.
He picks one of the buttons without looking.
What is the probability that the button is a factor of 12? |
workedSolution | Factors of 12 are: 12, 1, 6, 2
, 3, 4
sm_nogap $\therefore$ P(choosing a factor of 12)
>| | |
| ------------- | ---------- |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+5iratEImNnZ2XVP3DSn7OBivQ2aTRYCYRBXzz8n4h7gzYRMzob1Cwq7QBS2441ytVHJd/kAhs0t9QWeRdl2ACo8SoM8bS7VlYw+tdh+wF7JUF4abluOqdqXpM7pE+cOA4TTKyMmxncBNY/F+xbhvLGo+ZjeMFJ5VsSTJ4xwzzh3txGwKsN6Uv58uwwG0760G8b4woUD6yaoNgCITwtlNtuqDAe1tatq7oVtBoyd/v8A3le48vK5vuNtu0Boa4Z0jYMzHL2+liJhvRkvT5vQNBIfimagMkczwyu+LFsZ+bhxoRyyc/UPz9h3KcA9OEeKrvc9IcdsVNseR3T4fVn4D/YNs6NSDJR/8jDNFj1lT9xnPhtAZwfMXqt+2tO5+ckyWPwmz+3Zd6PLPragf6CSrWlOJ2npyHovCmJn59oRAd/ecZScw13OjCIm+u+v3KTWu6uuAuu7aOcugP2jGmeXZe1UBgc+/KpWJcNOXnUTu/zE3wAUW5cR8dJdrvjPUyQaEXfPvY2P0N3uwNWYuylSPc5oA19wbIMuHmWgi792G99WpKijgno0y19eN0Ibrb/MbtmvQuFB9uVFcOFTV0vlcBy3tYu5xedIiVxZ2Dp4rHAbaO2Dx+pfx+I5mE8zzTSS8zjbmtiBzvOcg62O2rtKPGqXbYHFCtZ3w5Uv5MGKr0unq8Ef8JvhGAH3Pz+HHv12BHgbnyYWxDn/1NR2ebmLqZL3W3WkBiq5ls17QkOzn7Rg/am8RcAdruOJxnkXW1isOiunbIng42hvbb0ttPGW8wqfOo0muhA8/iR1iXI7dztfSJkaaVdITztvY2uPZj6lOROSxWgaum/W/R7lVKcOf9/36Lib0i+jI+zF0K9Q4sW7HaSS89Og0bdtJ8Gj+RG96DSXJg/v7jz5uqoayinJQvFwPHuktr/en9fOs5Q0UXA+o+UBB29EXDRIBQfYdFh6HxwJhplo5LAI6HMPwqxz53gxxS07I36dW/Q37X5acEWo5wPCeTV4tva0YV7fX7QSFcApZABBwsf1kctiP3stKkQvtGG7yY+zpK+C4cZDLNXEvjghAGHSM5UXzy3A89Dtbhl/vqJDkrsqdYejASexlUUtLvVZKDItalzd8nc0B7idaELBNgZKbyZaW6uZUVzWWsPUCCNONIfseK5bc0qptPkrQxudRNVf86k2XZlizwPHECw2pzch9Jsm0JCSNdGq4AspSUckJfP3i3FtzwNGMsuYC/lAh7hOX0YSC6PMIx/G9brCT90JyzlTTC82ZFULuBW8Uz1jvLbxebNjkpGFS9I6jIbkvkythBXkOaHNVx+oqRthhRlRoNTnjmTCnNgfto1zijPeH0dA6DQNu/J4w/pCCsVa99ef4vvXZXsGrxdRBz/w/uHdwzDkXX2rUHM8G1slodGq+lM6ToS20OIxc8Ql/Qbc8/RhyydMdzm7QZ/4FNH02NRXzVDgJ0n2z3LhqfqyVi9GOhbFEcQXdwd4X4S7Yd8upsOsrN2E+Ilh0sMbZCeJkDbrMUT7z+M8X5hCwedtPJgfsVdbjtl+DIU7ACC9chdTnKrHBcLMrksR+w9NCpInrWiYRMpaIGYxnJ7SSKFufGjZxpW/bLd3vhLgRY5UfxPeQwB1vH8mL5AeNjhZevRYODB6bxRrx39RysuA2tp0y3mSYXzsEtpSFep0cgYbGzRCjgtrOjj1tVCHOoB3x9tqZY185Vj5ooNR3qDLzuRL0/85uHfvZtobWrNJLnYcRH8gcj4fDln+FaRLF85S6z/5TBWPZN1BLKIHbErwMGUrxRkddVUp+egYFEQkJn5NXZHcYpc9KvIOzuHAh9e3aKDcRR8StypWaeyLO+/gZLR3fInw6CEoJkUKi877Fm+GAhsKJjDeqDi2lSx1zC3GPuuFvk5tPZ6kAiKL6Fc9sXzVxvw9s9xDh6rdObs6yNp+BVK6OQhKqlAa1mLo6SciXbD1EEqFh7Va/LiXWrmriD/A5sD0ORfK4IW5otbwgZlQLPb72RiYWEmmxEiVTb3pqW1w4t2jV+gPEqHrj1x5/NlSzwmwSQCt9veMIeLddFLA8D/OsnRgyOAKaBbsYOR1D/VMB6PS7RcL3gOGgO+wdHnCm/VTxsKtaHXco5+RiPs6ol8D/HqMwJKBavfoXzam/3lRthXCy3SiUmoxwWmBCwkbhULKznIXL5rga2Szeqx0/d2+vpXMAYE+QuxNN/LCXdhEwSyoZQVinMSA++xn48R7zl9prVCb9qVLPe4p0+/j3yV5aIFxuAK1eqED2jPMOH0at/S8MaQbsV0KiEF2ZWL57QOGVSjK7BMa/D8MkAI3sy+PFN+FPpVFS18qwqmmT3s7yTx9nymTmy551K22NaRMPfBax6tYMkDRdileJ62/eDj6aTwnCOjhBAXwbCLGVVSYLJv7jdX8sC6ph6nAbdo8Q32zg2VKDiN7CpnClY7aKxlLGudBd3TL/jtCCH+JkkLT2DvdRXfBzWCNc1sowk+YhaVl+lB4RVPwC68djfAck9VErtTVqHNHYGVnSM9k3WVRXh266jQxvzoonZwglpL6IsvaYF9+j8npU3voj3ZpfvhY0M7UCQXHYVIYZNZ78ke/c96qVXcEvjxh2yvcY9GSFkB3A4vq++90IKO3/cE8n2J++6Ow+YdbJiahpETmhv3Ua4UB3hHr4j960B04fZ0o+cPSVQWzd+vobfXj7BDHg1LNGbGwXjTXVyKbf9m/eA4nY8ao5rroLdXblvf4gnvY+c81GBDH5LHWtPwMks2Nzp9lMETk5T8owCcfXXthvJwxPj4TMk8cJEGPhtU8g2Z9upGogXP3IeXrpm2MfHYlDuG+puKSNV/qiCzKmfhjZGf6oCEh+y3Ac3Vyq+KXHvJv4zpIn3ArGlW+gZdWqtf1sxi6n0yP9fpKGb9jLLOWH/rSFtLeEJIWiBSu6wfDIaynTlpgRG6vMcp6aqEuUOdLqUqfgfys4LeyusBsDNAnuVyw9Wfh/jaZC2c+GaVa+OSVU7tBUWSY5y/FxddPFc/hnDJPMe79kBqmGIll/Zh3/cZc3lY+sZBXyLGe6QKPiCe7YFRvfEaJhEIAoiZ3inoV8K51gOcHWKgtPGQE1mqd634LvHPLEnUEH3S8xCqZ9PepBzLxYxAMt/4khmnYgXtnoeQJnOFtuMSU05iYGj9JS0bO2LH+9eZ+KOn8tq24LfE7Iwc7ViSzeWqQTbCpJxmFPkVOhMGXO15LFDAiviUUIdwNBkDz7CZ8tltdZMJ85L4GGke4K5j30lZHJqfddlnIMMqNu8BLPCs/2Bs7sEuEHbbbU3S50SEtgRkeSi1CUJaIaHVGbY9iLx4eLrMIRDa15VBZo2cZs7a9C0N1+IWss3E2/pWXuve8z+Qx/TvpFQXOmdl/tTA8y4LPLQ4D/XD48FNuBGxO6N6PTjSFIXNwinXojyDF+e031M1PsMMLV9WGJ4ULCcEDSpFzBDWbO87yif82SnW2McLL+ioezhxT/OUbjbs4yOfs1qXTGRHYwDUdh0F66mvAZ7UxO0nnd5jZAPeCN059wOCR73JdbwV5FsB6uwrtfjIBgkT+iFgUVY7JrWrfX+RiEvOP5E25NUyW6MA5Cob41JEZGbnKWmudAr6+nfl7Ho2M7kbfbAAy1GeEcsXnJSijgUvPD90rLBc0ZQbFrI0A2xdIRmI4MrC6eVL3fbhKs+AFW6rxxAm+SryhOlCeib2fG5pkBsX/2Uti6sZELszR6lQuXq+LGaZw5S3IgyA8bI5rOKWEqsSb5I5Tk8k2cGxbtcoZRU5ivb+WmYqgPXnFaDtl56xZK5K3FLSBZ+T5+kL3r6C7MJUCTGLvBL+i0LcfoZFX8cBgrvhHu5gze9tIZtK+VikXJLsUdM3v1SF9Qax9IwmS2lRxdrTe3M70rLM2gj6oVwyLQabX1eEIdu0zIzS5WAYW35yiFBnx/+hdsOn+TQ/5mDE5CFf9EJPHG5ibq/tx7ybzqcI5zP8K95TfmiDAxUNIML+nCr8A4Y38fIfnt0SldNRS5zfyRSueKr7mR9lv9CK3W13bg5FpV6JKAAagS4Ykgk0BMhqBNMqpM8Kqh3mFhHryCc/mqb6UjUDGqg4tOnyQqIzk3TZLKoynnV49yHExferhi9S7E0I6QRzTXnrOB/DuNkZsvNc34jLVgDX0EZA5pFP3DnfOcJERmvZThDVwwhoJ5cknjFkKRfb2bCSrmt1BnDOWOgFlOhd8Iy6X20Dr5gZZf2v35y9XG/XoXBm73YXgLnqTCheyjuRiNU99GsrPk0xBrAClvEPXDF5yWEMqrP0NRShczu3m6IgBpTbcAcHhIJJXtYRcLjejDwGcn0Z1zxOy5dBlYR6lUN0s0p09s1Y058/53vCa+Sl92zDZFDNbBYExrXNJrAoGM3LkWj9yakFAjpUUAseb/P59jqxDgdTq+r0L/3DBunfZmR/M9dIcN9UuNHFS1hJHYYs7MrE28bmXKSCoprwmabtf8JckuhBi2w9Js90eekK3aTqCr8jqziCbeJd4Wl5Fewgqs2vb/1N6cNY8IfRtwKcYKaKs5kN+QFJ1pUeqPW+29dT9OY23S67ULrNkTfq0qQvCn6QU8DUScNtRjHFFsPhJQysBKCnrA8N/jrpx58cpI3MgOT1xR/CBSX0wwLTKRWa1GIq1rIwSeWEamgsp9t4wE0NEgkekgrYT0HY+TpylVg/tPv2E4kAJoT4nxFCqgnDjCSsJCXf6lZvKt+lCK5Yh5nh6jzkpWhtcD0pFcciOGGIyzFLmEMhg4Wr8yU7AUQC2DFbEgFG1sbNE1MwcYmNxcuHlQ6pPvxhvRx39n9nfns9yM+a+IfyNzzKJNIXv3TrXTG3zxIxnd/de2oM0LPxM4AIcRr6DEFBi7ggV+7aRmBIVQ1Pl2noakfTrUaK2+KGoo9p+aMnjliuI0EFleq2xCNRJDVplM7uiRFc3Xv6Z+lQv8/ePos5FLGe8IkimjoK8Mi8QwDjEZj1UKCL7huDSeuWfJVozSbIstKLFs2O8HlbOtodFPkypXi4wN3fz+66SO5tp1R92N+hPT5ozuC+/FJhP2kAwUK6IKDmG3U0GuJgIm8L8qbOlwHQtaswFarYIGjj2M7PlmB7sNVdL48XdaMSwfKeVoZWleNeFiOVu+lZ1LKg8z6ILmeUMJ0NhldUyz22gbcpa+TPdx9dQKZPduvYXGCRqBz5W0fUVgS/znd9tZVFrVdG0n+UQwRwbJfPzJWjZP9xYPLRcNsZunVSkQn0WuNiXaPwIOlFZskkcy+ocQOLZeHJrQK40qRM+AsSeEoJMI/ubkOt5HepPqQgcXMAcz1A2qEarHlKe2yTiUACOtK7/DWDLRcG5w0qu5TldfKm/6FgkRlprfzO7EsmBZ1KsRlYRbUMYNj9BYpN9lODAgD7xu/w7Foe5izSGJDiiUtNTxhkwSS6B8OJl1nqZcweU0DCkj4U8VigF0a2Rrg61RVhP4/4SL3IQbshjdTI8XFj27am+H4rSo3z1cyaDUtFjgvPLCfKl30DEEtI4xfKcQs0rsmahPL+ZUTESUF3rglZjh1ORnDB9y5c+OdJst2cPAixfngABLGwxgY4pZREtWCf0/WAHaJKG1gckr17BUINGqWy3/ONJATPdfHrDlxEk3fue88iGRQCFpNx6IOjva3gvGwcY/vtUaoMZLaIDbVIle8qepEGAvczKSuddSEociG7+svAKFkE1SR2i4pYvB4DuTQd2xlxKGHmkbyiCSZr0W30Cd6srMUP8aua71irEEx99eA5DwswTUe71Lb8h5jul1Zlq9wxICvYEmjPWIa67t4J8Pmps957f7aEkBlxQ3BVTJgegbqW+A09CRNlxH5+FLmJfAbI8QVtw0pZlP34n9th4x/PVqOhpK/ewb5fJk1GKkjhuta63Nzt0NgGTJJQdJjDlEzZu0fQFVYwfcBLhrnCqb5wMFIr5CHeBRryAvoylOo5ZwyIhF7YA/AX6H3GPIhfbEnHbU9LVBJmcFXSaTXz1csyDtX4+FYa21HL2oh9bHcHLM9Zu7aw1PVnnaMRflVsnIrDP2HjgDDHfje+y5jJJPJnlO3HZJgfJEPl+uHpbt198LEAaA3DrYDz3RqpPz+bhdwfeKPLdO06gz0Vc9BKCeSfm33bw+LC9mmJN+G1zKTDBOXn8tD+S0xdgJLwY+AgXUSsBoppl01W6osVEd+8bKG4efbi+qRBdAh7jPqdh+rPDjbWvDib3A4lkSllcI4Rn10JpFUHrAo+zQ2VVOHmOsZRIDiuaiWr7uUDijGv5cF28sEduzAzs+h+vB3zGxNmAhIcFBLkjPR029zUW6udMrnnPS7ZhgsR+QmWI8m8jgVJoD3Ty0+LPIKrKIfzuTuGjIhFHTwZQ1IiwyepoV+NrfGKhJrB5AO6GElweBlIHkKKJwSNBxjjLzvpd8cy4BgNM+Lw9MS2ITJFamqiw1ptIogbTijsyDwA1u0JX11KdAdceXjZp3oiv1uj64ZUNkLkg14BR8GqF/TtfNDiVYy/cMR8SL0RNBVS0vfugMojdySnowkmmcmD009xsPvlsvXFBvhaJhab/rkts7oP2001rohdBZCb2Ye/1XZ2CIbcGlcX22gK76m8HNA+M8PlMNq0TI2ph2g+rz6ytmWdyIvBU0NRLZ0yGipEdCaeUrl9zacMGO3sZr+8HWuZvctLyhzliaiA9R8IlNo+PmCSGYf9IPX/sJb/66zsKWtLLsw6t8P3R+nqSpBd7su/wDJ7foiMsJyE261vI1/DXj0UBBrKgIB/EZt09gzAMg/Im2sPqJY1EAbL2aO7LpFYUHHxn1GtBEYVHJKa8L41ERjKq1HoavH4BXRRHJUk8BAv+il6VpK6OtbexOutU+6OYVPaY/o0C8vX/JYwiuE/IXPTWoCWa9S5PdmK6MyGex8jOV1CaKGjPi/HZEYBCdmeyG/Ortxceqsx+WFG6+YWlOeTBj2C6xqzS1BX2cUB/bujrrdKHFXvw0UvjTaZqtPIZWSVR7yP02b4HtIOIDYpNEcrOBqyeMt6CST34zlsjs6xNWxRwlmSxI1dv4abcrVP45rQocnjaN9tpztaPiHRo4EkQvCeYajFA8TFWKIl0/rnhdwZK8YnSmWGRb2v6rLImdS98H/Ogpy8+nOLC57tCnLZPlo1gtbnN4e0ToPVpytOpfz0MBxcrm0y7ARU0K3gtavZ1a741GyjT+K3dHQOjxMuae7tqN/fjwOpjZgxwsrQcpvcGyEqRhrPnoWHvDwGUXmUV8XFkj+EdpgqiORgO+/GYupToRMHyn3kkVdegIEO5i8wRHnWmgUHCxyvoxKfyrjm27psGZILBRqT9AlBD4yzwFjTdVVADkgD1W34v2IV+1axcEGDWsmWpGVzarKEdR0vA1xTWasgbp7ug63fDd+28fp9IEa/x9n0HruojWRNG2BDRWXrwGm0ZsakoLV9+55zOCo0hvl6osSteRuYAChKFuy7bDJ/hocrN6+h4B3hyPsV/U7qEaI3W+oRCcSyR0ePVhZb5D2fvZh7ZD3OxrpVA0hQQAXwZKfawbNMBsaoyrLTPb1+TIeaZUnx2K7H/gKX10zHzymgSXv3UpyJQ/fYjqIOpaoj1nhY+V3ploRIuVX9DtI+3Ben0TZ07JJ9FKqzeyjPcK3ZmmZ5mPID1KBkjjanO8P6kZNSW/zCfaFTSKPWRUs6xNuyiiDkNWCF+u2hCmQxYOsI+SUcwLk/RaPccY7Zmc+IT3RmEOxmxd7JsDuV2rNhtIS9Ia3g31YMNmcUPrb86whq6DsnkfnUMczwKhtJ3pI0oKry1mECeBfBGEWCqYoYJBkfBbOrAEZv+txWKRCBjm05m7teWjjhsA+bduyoE4vcbPk3OVlY/62yhiPbnJE2lTjSh6P2NAHLeYX1eujcuQiSJc0WrMh9fHFaooRLe0bTiACsYhJkpo2UFTZoB/Q1rlv0OxMr0mq2+MbvWcR69xbi2qs28uw1eFhOXz0lfvYXeUyp4s8SVpOH6jYsu4919VSqBrbhtTfgMoQhAtgcFvyMpaokR1CLy4SOIN1l6jQk7F7TeqoiQnCCUnMwOFDT2u7zDesOacB34FsNUyAAjZPR1Ix9sUdVY/+SFDg0k7kaYoc0tuwkxtWe1F89WwR+YT5IfpI+dRMHVHe2xqth43Uiu6AU7/YHbqwwY+DehtryHQBvzMXXKpihr9/wL3x7pLzQwKaPMZmrW3oj3527HS3vMEDo5cIXOpp3f0oN50bJwq88bcVQgK794oU0fhuDnH2f2Dc15n7KBJR4fj8pvq/E0MYfQQA8bJI7BFm9jHd3kvX4g0HzglUkLtesOARNRAHfAyXPwVAHWRZzv7bvmQoCGVp2hhjsZDijPiy6cygwC8g6TxdVIeD/bbf0XMvQJ7pMJbCmrmDUgzpmF8K6+xFpu+KOYWItu5E3xI4muqNyM8UCLdPRAueBoiSdCIQzUGjoRsYHANJBzV1eMaRuJBzE01wFO2lIb508FnJElKvTNiVrb0gRTc6RiVGJAjYehyrCz/uJG/tXsltQmxUuWQTNvz2SJC/kLmWeXI1trfsldyUg8mwRqWdpCXpWidfyJjhwN+ayG27JEkDUVPjEZh0R8arnot6Or8fJ0xcl8aIYu33bE/EVhDK/gUCS2Vzwf8TqgUO8MS/h073oO74DN9NCs/n7NTHVDkrE/65cfXLszR7C459aDm6Ufa/C07pjCwLKr1Vc1cOpoVyd7sMjnNXY91DARSi20yYKPOoL1jyVafgPMIpymFw79itxw00IsFq/QsyI6xJq5VC2dYToSoeOQUwYYl/cq6HmTVLiDaGMefOltR5W2npm+OTzicGnKcTHnGNlEe2/15UDj4DTLjecz8TY2qx13Pi/iSgVJcgIlgfZanhz710FAiRb/6Jhw0+D1dSun+bEFfC/4sUNbwxTuNyp1afH039rrJ6+KdGFK3OHe0Jqd7JKtj1kBvi3ggp2Iv0KDoK955ciWdyiF/zCH6ad2Kl+r7ZN8Y3dUD6xc4bv12il1CDqkHrbxwXqjpXr9+76twjUhfyLzAkUwfUQFawiK7qmuNVxZLchw3mCBy+oh5XAGtTABIl9cYzNLDkySNt3foCqcmL+2cbRmW6LJFMoUyA9K2CvxpvD3Y/rrdtGFjqJM5sKATJyQ0HvIa9k97TT5jklYQdJrUuli65e6kJB7WxnofnPxGVwjmFWUnHrcCK36cMMUrkek5uk/uMGo/6iPTSNvI0GNjqHQg4A875U6tdN+9JDLXx1KpXMPvVtHiqczB2n6uEaSt0XA2Ie7NCgmFShmJ+CbMT3jNsa6iEVDTqAyWAVri4VtbuF/5ffdNeZma4leI4SfT8xYVlrGTrxor2ep234Eg/PiZFfrdMeSNersEgi554U5wWwDAxPtpoqkGJvt8rcLkt8YskiWU4cPWPModxR1+ekSenMLqKRJzy+ysZC8QnRYHCpZNuQu5cQes0B0H7SRZJIx/m1QyeqXCAzUFx/N9QbQarBuYVKYXMOAP1Kp7/9PVtgyxZ7k9XNUPEbh/hdY42ZdsmLK0wn+bOrridIo8RsfTISgZGt9ky5Q8oUDeWLU+MeYaXH2Fp3A6/N8nisF6IZFL/nm47HYBCnXL1oZZN5A+6i4guWeb5qSvlJ1nSUc5kFjeFT6/QczoS8KW4jxJxphXya22NePdxkXKCq5VBjwE2xBUjveugWYdtWksD1kC+7GzHWznYqyk04hLacr7m0e7IUj9QNsIOQBzSJbYYEB6J3AVIkO1vHcPa5AvVFYOGFnDdcywp08pDNNDzbnYEHs/GVJJbMJWPn1Cusk2brJR/rksXyHQUncxrDWvFWmLvfGPG36Yb4Y0HhPlScpmDu7tw1uQ5Owmjn0rTsU6Jg7ymjKVxU9cKgStmoTAVq0yjc6qBQ5LTLhoYFN/aFlg+2ViJJePUVU23WAMpsrK27BuIF2mwFftImNj0pSKUKXA8t8vPlvpIoRYpIhYD7PRXYXxQzdp9rky4H9qswCkaMT9JJJaIpBxJGvaIBatZAdmwhdLx4IUym3HbWS69WUcnYxr3IpyNj7j7KWd0TiQYBKVgdZYnyurgHl7Bmf2fFcWGYMAffFX5BvZkdbfc+5/NcFjTws5n2CjYueXL7zQDZplRn7rlEIfFFi6fQP1HVMrilA5u22fJgI10cIqlrEaMBRO8WFsDZjSlBU8FMLX9ESGyuhB9R4OldcfbxAR2xchH/q+G+8v/Hjz0DbthvrANgKbxfv3wWvyxeB1CTvhUSm9+Np+vW4gSrhD4jTda+BicPYWJ0h8Rb0sGaixk/c6Zv279B27rFzoOwq0VoKdo6zZ5vZw2uQ/e0t6u957ndlYqWR0HuSyoskqgaroe2490vfX16Mle2pBUwy0x7k4k7eCEwH8hTEbVX7prDhMJv9ZRg3FIlXPXnjOB2QKAzacd8zob++zW56YTsc4PpjrvNI3/NR4OPuUTQHKS9s6m4d563XAz462rsVoVK/4ZPAUOHGF7vUq8c8CYAFvunGT4XWBj2U7hJ8nwfGmOqnK0uEuGvEXR+WDmwqL3GiNoq6/+KSnZqGCdjDp/EC3kSSvtdji1kl5sjjERu2Vz9N0e/oEslfBKMl2LwHIEM9ZYqM2/744RWEFRZSAvefVYtEfdq72mxj4fEbI65Wbvt3tgCDC13H1ODcoRwCstQT9QVMcICXssZhjT4nFPERQr4QYpCA8CYTN9VsmVTjG1p/8QKM4yw6ufh6vTjJlJBeLWxRKmVqxCoPNdn306pvdo7KMKocVzcBs7yfBL+/xiaz1QHPSdF+zElpySdNBEN+aQw1xSDAqZkHHOoaVJaFjhJakjBYqRxtnHf3/RYM139AW+E5MtenU27OyxrJD42kUD/vr31ZAg2KOiRJTE4XqZQYJaInH70NzXm9UcWOwZ9kYQhU3tAE347zwHvv3+xpmltrCn/1g/RYJdSRw+pi8x37CSr+SmHjDz6AHy694VH53OnZnvhx3KhxdljHyp/CfCG3whfHgNXSmziaxVQw/oLrIN/wl510863ZM/CtNJct/aJWt+ymIVD771fmbvUj61huVp6BsNTNfLPpmCQuvaqlwjs9ifG9HLCzkE+PsW8nvGIV5c4jGEATVXDhA9qRMoRPhj4JCq6Tfb0YZuwoHkcaSeXA50PGAsW1gWSZILKAzGQN3uhvCVzbXb1pKp5OcT0VAYqHydvxenpE/Cg0nd68M7pfF/QUwJozpdWyNqN01BE4MstorXLxXtJNS/AhOFBfjXpikfGugjh83b4vVmWO4bJLfBz+RoILhrXi4xWG2uFGu3F6dTy8XzhjAmQzx+pY3Km/dqIhBwGlq4EfTwEDI23jx0OSu5GbYrM4k67H3PK8WPnOOC8GFTxin3yN6b0GOtehjTpFvbroc5Oe0r631qHGcA9T3Wx2wvE8i1Ap7mxOOfpstPlURv1n2j9grifm0Z0lkMgTakyrNJpAgaLda4qJ7hJRq9mX+c0NpaJcirRXNkbg9OCAvwx2dhGv6KsXjHW0pBxuuqsjLCJtHCEU5dxSHtXSUY+68lQd5k9eJynWSld42xxeqztvTBDUOi1Rp+TLKO/IcVyhovnxw5wZ5ow8Ct2FBqDHDE6ubc6sNDK7oDW8yQQ8eGOROWW/vtsNNfGyEipgg+ylYeGeA/+sZbOUHzlreqHpIRvfehwl3VIIdLykWYGxB9EXexBK+akLEdQyMYHe4iHsb+w8cE/reNCXg98Ag7pjF5Ebd2BI0kO5qgVfmqMZTf/ZhhXCnIkkV3PrtxwteWlO+8jKsSGtphJ+yz/0EtYSxwrYza4WulD3qAoKy6hzj+k+EByEO/b1fKNV+Pyaqtp1+B75KVPI/2sjO4dNm37XQLYhCE5icFzdH1zohtqEQH3Tw8z8njnjKRcqLvzXdvLFh4za1r7MK9X1SDcTR6gu+7Ts4AdRAePkXo5QY4vSh+BUULa94gQD9vPXFHwPiWcbHMuyEGkJ3GQ3gwLTKmq3T1nqw/AmW7/dtxOLdMootGJcrLaKdQZ5CM1QH77EbE4dBSeUtWPnksFWT/LSrppIAvjIWFAbx0v4BN9x8Hrk0EYo9DRuMNF5timffHSZcUAh2pemrPJVpRqexNV/gVTYs1J4SrkIRb8bW+T6j4a9uo5ckQ3jJFHq3oKQ/cgCUv1scw8Dce2DsMVq+FcpBR5snvRh77CdDAFFtb5B3Hn5M/8Vu2hcY0syfJ4SxlrsSCJQF0dvksyIEgunIcUWIDi58K+0fEtsBa3YkmzxKZenB9WRUcNIOOhjVJYN3237qcd1O0luSyS6RKshUEtvGrkeBrvdKEsrG8/cbGmu3wP8shTHvP+v8VQ7869Bhb6e7tPG9YzLQQ1Q+XpTTVradbnx+VpsphXhgY/9FCJelW4XJsIiKNVHMcxSHxFEhDMoFcL9n+HoXfAm6yhrpCSogtfTqiptu7iJMtdLuDNYxM3W1CvytGMatMYKhDj3RbF197ZegYW8RTH0AAqKATFs0JnvYhpYQ207D2Sffegsrx1fyV2hHT33rIg2eFQbv5djtEPfY/ALnbAnBDkb31fX5X5uCPuyWuvmFDwYw5RHtDJ+Z5vdVDRcnPEtUkjgoV8q7BJJmTdoNLuaeVoNZhMTVEeEOfUDQqi1xGIiIoHEhvXWLoDaZ9y0532R73hoaEzeEaikF0XoV7HWIhGvHohw9ciz7qmHZNKirE04VEifo94+s3DAYWMaXMOGP3pawMDj48sEhLQO5Efdl1OIcNeKq0X0A2IIy+ESMomTxa4XPotfE9DwCM7JPUetAw88lI62nRa04HI3oLzFcLQE/tclcEfsSDjfLlvzmnYi7yGtAfdmTxVlxX5tU42iFx0zQOv5cDULaAjXidX/lFNSQ6JESO10I7inIMFpaIoo2peQ2mbW3JES3PicNQehkBbG3gjK2bZGEhFqn5bv5W9dHoYjB2ux0WHZRcjDxeC0QXVLdIi9ooT0hASYPOimf3kLKZbRMYNO+25M7Jy50By2RO3K3yK8pkgYAIgJ49F6VYCS1Wf6gMeEllLLcWYW6O2JTG+pbZMeBaf1KCA7EHlo5VyLjblFk2ugvXZECe7CRbgiVSLUYZ4peP9za/1CAFqXXc8sBbUZ7BZhqliElYxn5gTmNyAGvZ6AHLFasPS7NMnXsz1g==
Variant 3
DifficultyLevel
663
Question
A standard six-sided dice is rolled once.
What is the probability that the number on the top face is a factor of 4?
Worked Solution
Factors of 4 are: 4, 1, 2
∴ P(rolling a factor of 4)
|
|
|
= 63 |
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A standard six-sided dice is rolled once.
What is the probability that the number on the top face is a factor of 4? |
workedSolution | Factors of 4 are: 4, 1, 2
sm_nogap $\therefore$ P(rolling a factor of 4)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{3}{6}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19+TTgXhh/Jkvx4FvPI8X3YDY0JtaGgf9CylF5hXh/GR67CHMIEhRJ7/4OARgqQSElxqmxmTWPwbADBdudoOe/qddD7wtbq/r2cyHZbBZUtORvPb/9sS9jWvmwr/PXmhWK9sr6knJbzA+qWTUxWvxIveXogj6EjvfdWyUTdyKesQE2d6wVmrfkSINtSKPo1ZPGh1jZ7NdvbhGl2rcgACcHpsDGC6n1vhKFUxDaRNKAVQnml7BzIurmUq9b5+YoIAZ+UR3wANoVP9qRs/ZUJOX4sCvGY1116TmxrgN2pqedTdio6+qvawFR9lVywXkkXTNuJxGvkbOT5a1vWarC6ezhDRTyLhDfJ17bzvxxDgOkQtNWuv4rfdASQFdFXmACjRS7mvyHAbX2zSRSQVKY4btbuRCS4HQzoV6Wkc9lVMhT+yHZ2XqtNlN1JlZY20qf/OdhBIX6uob1wReKZBBf/Hi9UHYvHzrBenQ3MR9536p3kRTKNNq1cWXqCxnOBOYEtX8lsEBNn74SRaCV5SVBLvQixyKiH3kOEsUVKPQjIpc9GDJlVjCxQWiSpeLpw+2j5OfuKWmgV70iU3Pt/pe18o7Qi++DfjToHXHbzS9D2EVE+9SWsJiTh6tAJgJzAlpRj3FfbBb8w2JqKikAf8MFw7lVplqaIAH8SukSErz2fJqxdnLScIZo2t4MUhKZs9upsS5eoZ77BWnv9+/iDkxwZYrROgPi96/h+geE1Ap447FEklhpjmyNJRdhLsCqFM0vRuL+MFabXCn8uXRRk/Qxm0V54HYV++RDaerD4PyxSJ203SoQGm0X48BZ/KPrPWevmgA5WyGEsCVnFlB87UHdlBf5LJf1HP942Eis7rZgwNaalJ153zJfhDutiKoJDD2kmFdVg3ItiTiZHnuCAtC2r3CHax+PVhmPDsywT+GlSUmXGaF+UL41HbPJyiBviRt20sgpEnL4oAm0DHeF9hLRlIzIz5FccWDRKkL+N+L3nvXsEZKMq18M2VQdNxTkqs8VrIUdPxF8Yh2hmdoEGXn24xTceVdMANCMhocuRE/oysrabbx7ompuxQZ9bNJSZ5+qpluNcKHGHsWXdHASUxyvVsddTDHGsiyyg0/+IhYBXh0ph9mnaN5L0SKe3LrsdzfYaaZYdOrKOledjO/cvc57lbzgZ+WMHZjm7Osn694lfUDgbwX93UNz+9pTh5xIeUUnrgR1pHQS5lWlFQPHVC7TUPEXJiJIjEWZrF1oOk1iH1XzRcR57Ax8fux9E2T/vdAfujFpwxo8QrXA1TPrGtqTeGFaFLPwfw6Oo8vFmgFjqjiCLJ3yvApT0wNN5/LS8qgrdcEIRkjTr69K0PjtX3BsClkl+r/FZrm6qpFznGY5XFRndw15O1P7h7oSXfMINI2i9uwPEPw6uOSqWZFs4WHPgs7QoOfM0V60RTbt7vludhmYda5TKoCKCD7T0fmNqHHYzTZ+oFDgKLCFTk+7U9KYW6WO7jOklo0oYB/51l1UJz1R/Pno76AWfo7eApe6DM06xmtUsEyoIxqakqmdhbwN9lQgImE4MJzXmxavRBwwGsOmCrpnGwoRv6KbAu1VYrFYrnEyp2lJmsCuD0tcikxTAihBXCRFxKWkyBBU0TJWv6cmgq0S3LHG68yIvBXdXgRhYo0VeWm85yWdgiiBc16A7oG9VzVG0b8K4hnlk7g9kgKy1/iRX6w4houbxVNic6U6hhv11xJgwj7NR+GZR4+40Y1CNrHnugufvkaoumu1CXSHAJYPrGM83vA2TBsk4RQpnpyKKA8FcRrq556lkeudLmnOSehhSbrucR9z7soWEGaMeEvPKtxiPOntZZmgpz238LySvdTIt0KXh90vmznXrEdOy3MeLO/O+7Sq1rfH5aXt/P+v8UrT+xS2/F8ClOjD0QCrx9BMwDNHpU3CKAZNN/G9EaqV8UZhfP3FD9FqrGUHIEIocr0edMaMGDnSG0aCX7a47U4TZ/hNmbK5AQaOpWD+bFWZSXVBQVu/VSyNi1Fip/cpMp16tmL91rH22p2smH7MP/n83NdCUQJh3xGUNx1TkUVdU3okZYMG6IHtW4HzoT7Ikt6w26Abx2/YrVkEBmBi76Y58fLdEbVj8I00XfvO1y6U4NE+Zr9fTE0vViwg387Rx8EuFvdbEocpVPEkfq90fj2ILddUWc6XaDPnbdm1bzId/qrr3w+FNkk3/iGQgLhYRKzd9y91nR0FWNmDTrtZJOhh+1bJUh/Ivd8IjkYgEn8bXFgdQxatAxUvuWWF1D84tTvNNymtfg1+iDnnNWupl74wnvbyFSeSbOC8PfetwgqUzRm+1TkQ2qlwnGk8FjPd3yn0JhdXQEbBuQd92/E147uvCERYZ28zrzsKtfy6FL6mqYgS1SYlTRhR3WpoSHEsm1tpSQoIevj+s3aIbm8R7qVTDJerxn4ob5igh3jrKSaxqoiZd7WJ86IZbx/bkECepxLZLqLk9qjA/nMF/gZRqAlSknxtVEBvHOxy/3DTg2RO4mg8CLwjJnPf/Pqa5KaEfjb6K0r67NGeDAqiPsVJ3Vhw+W3FGB7kZRF6qxoVpvBxw6yDB0YSfUOlm0A7WP3xK7p6zATgI39oiVuDsaNyRNAc+jeIt0Lsokv83a1E5shAXtE5tEvX2cze5HAsSZsZSnqgPUzFZNgEU3zLE2Nv3Av3dDPqHOdQXh+P932TfBNHuPqa9xCAsnJaos9OPbYzhHm7RAIEMKar62QWZJCqTESba0QwUc9oBUxtfi4fX1h4Znp32yZ3h3LJEPuRp9WgHGuBTT5mPEPcDPpcPjVZOLNrDGi2aqxhUaI8TQYJfUnL59q/JZdHlheraW/vttdmyWEuxI41f9BegxCrhan+FtIbr3bTziHUVob1JGkNVVM7nbGsOsXhiT1nPRFppYalAchuResl29Haf0tjZboqDV0UkJ82Uovae5qCli75lQU8MagC1jk58Cp7m6Q6O7FCdDbe7nhaEkxFrXnbssCj0c5mXnnV7qJni70iIzuxMr+yapV23LMaWtA4kU1fNgnutxKd8hJwvFAvlUKdDJSAo2TBck3HvugF3THBRfbfcQ2dNVnVTetYA/q/oZSkWg1YahKSAONL0HtJzo2+EjQrpWppnEvQDmC4BNSLUyfZCqzDxcevHhSpIjHcBwbJKq2uxIUcO+4N7jSeVdgDpK7kDzjvIaomCiUGRNnyQ6YXU8JUOU/Lx7y68W2NKaCRhQeWeLqhWX0N9OvsRzEV7IsU5Q8jXRsc5Zjpdu8cPYsgFj0Wi57SaSC3jJk9kjYxz2J/kxjarY0nWhHU3nFjt/jNQstUyhK/AmJ3oDji+/4BOgq1RPvWpvYkK4Ak7wx8DjQIBIR//fbqnH3xjcIJcURmICL4Aws2DdCN+06uxBGvNDOpS5kCDDZQt12oD7HCTa/LmmwszKaa2eTPTR/AV9+SkpysRGtysSZixMWN3s/rQLM1C5Lqg35ds8QxrDntmeE+VB0QlxRSw1HiGX0fZVWLZ0lDsuWONbwgsCftYk/h7LKWa/5agTmpxM32xKPpu3fE7VgpJx/61vCErwpcJXCrBBRTHn3VVK2cJZsT5AW23WL+SMmpU/2pvcv+LCIqR5fifgi7TWymhwrO+laQLgsjlgmzitf+02RV8utvw/Ij0FdcCwqP8CXJ+Fa3bKLmum2pdN5ikZ950azMCMmUhmT1a1g2azX8DSZQf1H512DRKbuFV5XLlj+cjdoRetkFI+T71RegCtmbzxzZU8oSzXDRbC6odS1kVnA6GjEz0XeofoF1ubPvWaLX66eENG4k3KWNBxK+Dx4FxiRZINWQqfS8fd6NBVDzB80YIuo3PHX1CN3rDjU126rziBURLC4QuDIzHIRAbLjd2THsIKdTVZyQUqM94gT7EB3loXiamp2AZxZvfBGeJ3uo4McE5ntjNfl3O/2oM2h8gQxhKWegqBO5UM8DLFMJWqnSO6PXlyfhZxiCWPfoE9lV/wZXYiGBaAQJHIS9+SM45hTIVPao3eG491Sl+/gggQEuGoPmFAqqWVsO8TmK2zxFtkF0OaYnghqMgPrkfIzEU8FnQgOsyLgUM4CXUk+TUaSY8J8IjSt3bicjm2YGcTOOUF7c0OpFAxNRYpytnBXOn7qabSLQFWgHIyHcSONJSR9YpQZeNVYDlcskxdZwP9hWMyzyjnBjOlMlm3eJg2mymMp9Mn9OAjzWk6q0WQsPDxbqpW7olhW4K6AHss5GKS+uYled2hd9or15+e1L8n8lzuT+xARaixL9A+2d/LgZpa9Wa4Zsbd2UaHtW4iJINGUTVjvxiiV86R/y1iQsAP3UP9NStM08r8VMnxUss9vXUai2LBeK7cgNcXaW9jpkCj2fWbRM7kuqj/loH40ACYj5y1NNoE6sGkAmCOUTKrIEI27XFgB4AFX+FNx+DCuc3PZlqvDlk3L35tg9Tyi9vJSXpQjax98MeKa1drt3ByLD6JNa5GQlnB0K41L6rycmmFKIhhQKE+i94Ari7ZwAZaQYGrQLerlnuvLJNTo2e0Lg/D3wPTASHCw/ZLcLc9z2kEGHfzlaSx2DvrFV2gJVk5oYU/EMETFKCEWtoiBrCqXOqPnuEYHQb6wukGiBsgRmBcRGnH/5wC647PTBx9bTs06rntofI/HkiirUyeILKKNftHY/ZE5ZcJSsQ4uebmZM3cE/eH9Si/7pRz1ND3hIb3owRK97OGTKNklP5r4T0v2b92zRyfPR6N3D9zdYdFFpWi645E720xEr4juXrW0IxBZl54aZOTJLgeyc1QAxfAbndJN47K+5EStlrOoFhB36g0+8SgZ3noyWPghjrLL3AagV/YRA4GdXPINkqFX3eQ9Oz3RkOPTPd9LKqgRvcU3RBa6pMnu21fMY6IyImVa/91XocLH8jwXG3aALaGvbG3ZFyOKn5YRO5D5xy4y2RElp/D2GthZL1bXVLj+febdgS8RBLj6awlAEqj82hYXgV06FStEU+bvSyXLmlAop72+CNmhQd1EJTO9YGSCgNw/hwSFMZudzo2N0Map5DDj4HMBEnnetswqsfp0GaGdKOP8yikQ65iuERe3x2ReUAPg2gx2NBAFAeMH8qGoEFYFAILqW2pBBqmLTrq7M+WGwWVrf6PhaxCpH8/nDy02rwiNNHjQeo88fZ5M5htx+tJZl28CvTZdFx2MnDF9L2WtKeuhcmVGFqV+m1Xjhm9fIgrw0wSATYI+yOxZn7sqhFZLepDJdMZEWY0mh2G26+RP3dfPTyREC1GQTtlTrTg27iW69+KsMP2aPsznFNeoFnKZSXwx3gCsZW+V1OBHCDR5c0bXxhjAZAz3etFvvz71TgW9zXrUNxn/UYdwGu3KG6RcZTH2Un32twdkKhuqK4X4HAThO+AEcMzAmD/KyxhLQbg2qNZBHJqx2/+uPIdHit8ZnWMsbf9EaGGwg5HUTC0KWCgbvOBKtIL3/QD3O2AJDKL9x7IA6RezbqDTWtpy9h176QOm7x32cvxLrxewNsW0tRI9W4KTZjmTLhlwKOYI3m5mJtBHTM+xlCnSLq1J8hGgIKMjNhz1oThv6Uh026Ji9R9Eh6GhbxlhvlXhfYBvGnShoYwjaXTBIyhe0jkUiMYeUPB2KFeCX5api5KudOAfl+psUxi3g7XinhshkBl4Ie0BlYR/bG3W+M22bbnS0yAPJxclS5EF4Lj2PsSN338HBxLwADNka6Vu+fzLxghN3pTDhJc+OWF9DlZHGPy8hqdJ01Bhm/JzcF4CDFM7d+v6V3a6CEATGMhTLW7Neewcw58poFe3lKKj/SjqQuJzwzLXoryl49/UnH5l6O0r8vl6NtYa7qWA6b3CT57uoU5N4HdIcmQ2XonQ96Izi+Z3c6uZ9eLOzBOA0vCIWyBMUZC4xpJkpkFORshOfjoz0FQj2G1DNANFYWFaoKhw9+fhatD6KDUYf6dMCBnBTDJ4Ogs7vxwmlEvsFRikNBnNDDUe4bSQiNTg4TXj1OLObrAgRTVQBNCo+MRTO74jCqQvCY2q4hTw3fUeKHTvyFTIvjlo8vYw46N5cVcDzG5mUSXf8M2u3eOp80vYOTCf2oJMzQcDkA6R3R/17YdfzZg8lyqsMT1rq/INd7bVL5FatIXEKi/JHQTdAdEiTmgDFWxKTlNF/4apq2d/ZGvRNJ4V/u49JEx6ZnXBTRR5cKde6mAR70TxctUEv+su3BMrqOzecALl0uhG99qK+9S9yh9CnHmdRBR/qtT7W2b4ZtB/62gcqKQL+/R9hosAKoXjtRRK+p8uqrGLI9J9aMQyVQ9ZU5e5LCMe+3eMfJP3HNNEbuTsFT9zZPuLTxZNOsod1qnzZ0QKQ2iFG5Uq5eP0QpMt9cyNnLeaY4FcKCSeq2LL/GKIcumgbsAAlHoO9r3Q6y7GVy+bRiEdSKWmSshgv2BcZ7vo3vu5RBlsqfFyGNO55NKAXwK89JuYbSp8kTYA0VegQe9wDV7d1oAEhGmp5jHHdgytnHFfXmVIImlrKtae6mHrLkb7GLtmyImInv86DmbV5xGVI9VYrYOP0ClNZLMOWXJ6SqmqA2H3eyAgqrdPs4GUEaR+mnvcTGqCl+OzbbwzJKVmtnICG4tFj4dl0kxaE86/OPJ26QzRS/QXKrB3LRGm6Po4OvAjUTDrHBlgaSvSe+wFQ9NhLf5Js1iqdQC0n1NZ47vV8PNKmVl0RVF2DaSOBHML+uRlLqRSv+zal1J2Ap4llsbEf6iq09IW9He7VzQymAUA6hMxUHfI14h19RJ27pax+D4YG4OPNfvUkTF5Llx+z0RoTRa0vSebmUY8gmc6MK2y4N3afwDYvl7UNUyQey6h9u0p4gs+5adXt0yOoksTyTFJTC5gPIDmb74dYmljhRgUscZ4XXOJlPpf76nBYt41grhsBr9qxOfd9koTK5BHS3Jlw/iineu+Z8WjvR6J9YhrhLoilCaAqxZm1YQkRh8hcHtphkWkpaGAwXEfxiv2IIyqVhhmXU6bmw6SzK9TcQoIcWq2dCiZ5z5b3+dxEelSGsKKi3aULxpCoBOX4bvq0/a2XYlfI3iMXi2mRaJbvuomIOhETOLpgxn3hWneV3tNSYosXKl5REZxp6RbzLBhHPfEqEDCAbxhr52iEzzLD9C56kKxaMpQrablClvQCcTvtmZgvWDIFkxTBRonssFuYw5Ekb28z7BFLQuFZI9lgOlRqXyoZcgzWxMKzKG8iMibbudtrJGkytsOJg3IgwwWTtQMJVHqo6q6S4eAFSJpuxxZRiRm23lzGtzzNeuPFH8PtWbDcgXgj1OinWOMeCcBgEsEp99f3/utQs0fC35Vu6TiuQZgCUe6ji1LLIFPWUN4Dj+AUFNqSXdioJfOFLrKc09RFmktsEFhfaIdgfAUFpPW2fIFHGER6mS8IJlRZNOsb7Yt33hwfOB6f/Aez2T/EzYe/Hpv96gD4ZnU/VXiuo6rlTgzsZSt461vynGwlrS8YXXRqxm+RsiSZ0EJefD392MoQbLzxLnJJiMIsuLcKkZkitd9vEE1tGRVCYzUQqVZTIhfzsjtOj1SkQl1HWW5V2yGQ/8z9lWfClOFCWVeuOnod7WKRA4Thi9k0/ZeDANHk8YcdmeVXFZeeH6RfhgdVTmCy44/4olKINonKomj+9s0tBAVsGqhDTwU7bS0xDkq6LiWqcgA/aUI8PP0XB/3FAIYon3MIWByAkz8C2KnCl4YscTQmqDjLdin+cmDopOB9LkAsWl2CjU837Cq9Y2TDW3L519YpHmhZEVHwxCOGKqPW0po/wtz4O4cc2aT9ySarfSl4e1A2IH1H+3Eu/jsQCuvuFSEzZ9m+x83kT2/i7uImgoROQGPF9oYvNdeKUp7yhVpBg+lbx7fjlb/KBJm3mTqoGpYux0kfAwOpY+cUgURpt8TznfQ2S9hfYRAOMQTYdwTQj0WcFjwLNMzzPQa4E9YuTFhxn1PG5MOluHnDSoKouOjoRLQ5W3+UzN7/2yUlaljrNNslmCC0j/Ca2D/veBWeOdJ6h3DtMT2XXqx6T7dxXCrhBQ8Bu2O/VARWe7vMQ9wPsYCzxLKpdKRja/JXLR7UIwPa1OV9j73KRmIGamSnAh48cfozjT/+Ahu+m3DefNgc5QJbvJeSXlPSQnFJdzma+Kru6JUdqir2ek0sruJLCwJ+itpb15eIVjl2kw15MRwME0j/konfs8zB4TfOdcf0mjs5EYJNv0EEpsTMWByrFVR4BvLmv/gu8bhGNoaXIS8wlZ6Qv0n0ekyFnCivhUdBgrJgEvNpmZ9f5/gcZzwkL/P7C5PYQispU83v8XwwriPM1bZEtxcGwLWIggThTHqhmmi+R2csDryjGr7IAdvHHILosJJNJXRRJlnrKyu9WFtQxvzvx6gXAyig/gbssMUyDpFZ08lKSsvIHFaZfeg9+9mtDFX1DpUrXgwRakIP1FrfxCh2TNKkbkj/l+qCipVX9dNEn4GqftkQ1LV0nu0NQlQCWaHSOmP0X5qvheaipPeVbcn0UjUtHqFOLku50EWY3QOwth3wQ+7+L+irJ/7mhXsmRpgjqwUrSfA/4yAYgXWx6ZSYrAtQnQEknpIDbko/apyzYgfkiV0T+w8fnioGAKXuuaQBb4CBQEdsi8OsrMfsqOTw8/GqZBbygju9/L7iONfA3MssUvDJjVoFGMPiNNNVLTG79ajNapPsZCr+sZVLhzEUv2OGuiQTjVMe6I6HINmAODyq5GiC2lhvcEEFeNrQGDstBv42X6zAcVtQ7pIsYsVBW7Zcd5DODdCqyBvxpFuuOYvs/28HkQZ/DCnLnWAHJbtFX65o4UTPtNfmnxCsq/PmG2U+UgxStvdZQZ0c4nlqwBUNsX477gWr1eNo2ezabILEyyHlYuY+OQVCo92kBEVumNDTfeuR8SEyDdoeYbHkn1ZmaHj6Rta3BWoZyET/TP+via5Mm0HsfMCoNKpYqa5Cj1Q3zEqfpUl7O5gKGPtpTKp1HRbwxu/QDFEWcqX71h3ZKJ1S10klJ0m9wENvQgZq/4A2tIaMYC+aOvUjFTUN34Z4vVngL93l3po59QvJ9tnJU6ef23mhi/t5k5D6aX3o25Xt2m2Sd6IZc62+Nngo5X4ilbsSzP8QAHO1Zr7aS7ZxEOkBvFC0nwrZych8p+37+4MQ1/u+TfwUQusHYjuTdfagqckzeWmTYstA4UYOfxoknio2hEmECJC/x/O9t8NYBTJ24YOTb/9kDWRT4W/DDNN8LwqFP/gPqpt2wXY3c8QJYAdyLOw7720Em+NcumYD4Y+RdidOnOV/cFvZm4UK8SJLcSSo0t7EsflLQ/Bdi6/NpiaQORa2dEg9WJi+qq9IriXj/2d5HutQPl9MAf/ojHO/qAxK3lYVscbCxODjW1wAjPok1XYgJUjtqYpKjOgi73SeTGxCFBGyBjCCnnGvNWo8Xu6q3TkLep+4YN47qdLMuTcuundB62tnbCowZtqj1pOmZDY/qwmZRHTFl4nekeJDWy9bkpTJLX7ojadzrwkf/SngkG5i0ALYx898/wcrU9o8woKcREFyqXjjdm6Fm5iNowSIpSqpMbDQGzAQiobW/vrdJQ6WIo2ljHnKY8vmaLwfwlHjjWDgCkQRoV7IcNrqiLP6UBoHxyOXa59FzznchhAwauNDKMLT2amZuD5JD7fNkDjjJ2wFAcwmoZYuUdLiY8NueDCqAmdQT6DsqIZSJVAXEql3i28p9tuzdby6L5zt0NCA/+7bDyHWw5sIVOgPF9XsqFpUlgvcvKuKPcqobFCzJWig7eoID6MIcuEslO6iyu6pmNSpwDAiNyezVfdetO7YK+Hqm5vXUEH21DkRFf6UH9FatZv4njchUCq35u+4gt5TNbUCcBaMghPefD4tiYxJ42vJcWj4sh0H0bdtPt7Hi1XLwuwbQCJ3H/5f4QyFOPdk5fw5XazxqtZWxqSOe3htAGnoeU9Jd835jd5lEe+eS+WYxvH9FYHBat39j+DjYRFO/aAF2C47CQhSKO2TJAZm39rDdCj6UNQxGX/3ylZVi1jmEHGssQ2wZ2l25mVZpS/PoolOz6y5nkGn14K7cRy/54t+4rfvjwh2fnVOYLt8GV0qpG4Pt6z2fZwyU6herFQDBjFkwOZXIoePbm983m/QFAnlOUdnSdebga1SVFlRJA0MW8rU9rMb0sRn4dvIX/78/Go/1PYSSvi8esR7pswFKsBGILuGh5CSjTbEFnWDT/Sqjms96pAYa9/KTpniFcF9RzNjOnpXV5TpeeXkCkXRA6gREub3dis213PWsKeXKKMa4CrS4PbrQAqvAoEeMQJWjARwBVgAPK/5zYnNJhVxvEi/436v8D2mUPFPW/IRsUoAM2av37oA3LjwRhbFPdSc16iSo/FQyi5ZzhR+l6uFINwZXimYHQbUnjHD42SHYCc06xtj0JHRmatpRq43O25I+wpybc03shPUpVgYjsuM3tEM32FXstOmZXTmsR2VvSl1KJNkCoG8yJoYgBaJJOhcaSc4au7+4fOAZ1J2q4643vDRoIhvckVMjpEzBebmtJnDfZw7Q/xpSNds/9rp1bAwH10FIYlvYegImi6fR5aOCMULPCd7k7gpBUEEixtEyt8vnqpSdaRX+SKbfhIaYg4opUyRf25jgYO+CHvNkGBDcEYr9dSe+tTOHu4X9goiRnBE4qub7SA0N0j6qjg74MgS0kUnjrme9HC3GwJsNV6k/rBHmDSnnWM4EyhtvPH0UseAik8stFGJy6zTRZ2vT0NFGINYUM+RKDUtclDKmkhgDWO8F2LayRQwLNT0eVBW/5GbskHOzYdv3Jk88kkSpmoC1Nk9fWFBcbkKuVmwHvD3zDdmXJvW3A0+BVe089sQrWHS5oleIA2qbTU/gSBNaKodv0XByx2eqHG1DXulokcP12YeCKh5HvSGxGnhkk1RDOSOLeYTQExtjXVfsDn5vWukWx1ohU3jE6s9m63iXkdFMVJIKSXftexNYkmDXec3bzl4g7EqwarYVvKg3DNBa3QWUbp3xlc7yRwe01RHGfT5dEzh5ClV8daARfXXB31CHDCey8OFayKdTtOmm02B/aBZ7grL7VzVwUXbRCpGRvcLxFiD4eMuvLeN1pmzRIhZZYiw2Vh7aI+MvHShHXzUExYQZEVkFdbVTK//LwX3nXmcauRqJfFqsLGJaEjbAGkgYOo6b/nqahlb+OFMbgOdpPZRyWIxEGy4r/XaNjY9+JL/qEDCFF4Oqh/uVG0M7GmBY+xTI3/QcpBrL6VsbAoODE8qFgXNE0vvsjHYISF9zGmzzaE4ReV4gLsI5z4z3J0IUxhyLDET8nvmlm5DcdFqBVIV4Qcs3u7YAbCYtOYAnDmqN7sMMHbLq4xmB+ihUllqnL1SCUehiCuLxDU4NMLna2Ro5hqFrCY4lVVVoJxmgVEDq2EfiTcr+Cj6gmBvJdrhai3x8cMuMjnv1M/6GZf/E0DZTlwYvhRIj6TvHtXAqhgU5aqH9Ru6Nih1MFElQkeLHG/m5Q0nhiDkPdc2I2N8sJgRKujbRK7Lb+rE5/YxnRDKyGJPjosT4qI8LOQIo/BZXMcnBvYTvzJYsvMECTTz9Eld+2P+6wsWZpdcoVoiHiYqoFxHW0EB52WUdfjd1yUI449TG5gQDFXs1VazvgtetwUIf2SJCdlMqfS2BQKYdD2btC44E5o4SOOzXXgx8lafNIxm03KVIoehgQtbQZ9+i7ZmVR0wIxDtaNQOM5uc2kzc0Lt3Nflqegeh1quvF2Hzu4HGGF5mve6FPEQdcqZl6mVM6QcBXQY93TITfIFzehMucgRLq69f4rfSiHRh8jtDd46IgT3yGrpJh0leJvh2t1TlMwfCSXI6Kr8IXmXB4vysM8h+H3gUw6L2YQTov/LA4fK+KOKUkxOgvkEKKqSYGDAaUYjNzth6jax7thASFX6qUqZIxjwRYDyAKwPmrlfn+qzAlpIS36UUU98RvQs+PZDmAgtk/A27KJpz2oo0JcceXloKw2OP6eqi7KLe7MTkEgLtcAOyAWianA6YcyZCAi+fKct1s0Fo/VvkCBL2lAgEas6vvhzjnjLuovbJS2O3WhQsnpwJ7VJDaBkypSqBn9UJFH12QuUQp2jkXzsiUi/XMJ+1Ih3ph99hMFnxd3EbVJkZ9LPqF0n1IC6adV7PV6+GfzSu1y/FZAGoRvMAaUJT0wucSiC8c8aSKHmv1f417zLcfiUUFjORax6Mh8THgpyJOqIPseSRa1NI51yD0SudgH92jMhPjGkXdoVkS806IWZeGvg7SL1EBg38GsIvzfrIivb8aN9w2O3xVmOVD5bSajdZUPYZSPnyqHSIYGg12Rgv5P3iBviRuiL2RypZzYwP51WbMVaZHhtBf+ebUWfI6gvuk7/954OINRsj0dcHgptP50339oe6MCOrvHjBUFpt8bza5XmUWu7l8l6ksVfG38NQZc52Pnh2kw2uk84W5J9RVx11EPkPlWNPRxnKduWzBychN0XBRcPvwc+Xm7xDtBw8G0Xw5LAjKNKJiMWiKLYJgQRvXguUjVSlHC2/QPXqT7rFnnM5ZVN4ZigettJ7Dj8PbAKLpBHMMC48oyG9xR0xpQDZYJjKodSYp1Pdowq8lw5HwO/W2G/wvhdn1wsXessErTmjh9i8jELOJwg7IyvG1ETUVKc/GeOkNsrIHjtxBTC0uA7STFHHKnSPLXcCA2ctiotSjO3zvy/ioZ8BYelWMrv79S0hBubJ+RExNeTQPVnQoAWd/nTwtcf3q1roLSD/VQ76Iw6r4yBzplohVFACkUdTEEQEpAZt6D73dCF8ntdGASWgjobkt6CKGHKUVfnCwLH4w489lCczHJI1OZRJNZm6JmCDLNJw1biKi6AzhC70RVoBhf2/4loL2cihtgN1im7ltT7+mASDM9Nz+TWiQMpcPth1yl/JqVS1Owxve8rH19QTC5y6lkgE4KifvaF905C2Aa3yMwtAArU+W99NOz0qi77Ge4G40Ww+WjMyCvaIilUUIgEFdQ6gZ/V+RHtvj7tzZQCxOU5DpFCFSl5wgqXBOjzjFuvPrk/2YVCIQFlnSYyFT1XAeMa4o/O6K5i6mp30DQJ7Mc8zGGPUuL9Gc4WOo8LEpmqy2+Y2cHYadWgqbsSZl6aEecIR5YtRI082kYB/+VuAL7RwIuyd8b4Nrk7NLKQw9jIk233VfqnOutyqohDayjK9t0S3UG/JeRjmMnEViqRc/XsgczTJ49qO1oJlfwkjtSHpP6DXwZn6Tcg0+qUKShxkdvn3wnabLZRtP/SOku4gYM4LvTBVkk9on/sl8YwMBz2qT6uMflIcO0coL2PbiuSOIHsAMMS67VCvB4Hpc7BDRs4dHpWv5vDz+1Dv2qmO+MR/Me1uAgv2zcwnOMZFqIJI=
Variant 4
DifficultyLevel
673
Question
Bobby has 10 discs in a bag that are numbered 1 to 10.
He picks one of the discs out of the bag without looking.
What is the probability that the button is a factor of 6?
Worked Solution
Factors of 6 are: 6, 1, 2
3
∴ P(choosing a factor of 6)
|
|
|
= 104 |
|
|
|
= 52 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bobby has 10 discs in a bag that are numbered 1 to 10.
He picks one of the discs out of the bag without looking.
What is the probability that the button is a factor of 6? |
workedSolution | Factors of 6 are: 6, 1, 2
3
sm_nogap $\therefore$ P(choosing a factor of 6)
>| | |
| ------------- | ---------- |
||= $\dfrac{4}{10}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18kD2xTTCCyDEF4ZqitWmBVHdpQOZL05StlcQRmLMkQVubAVbBA5eaTgQDG5hER/CtDypp6tVvQLeR5bV5Un6ECe7uxoens/oR56GyoCow7tSgpTRa286mHSXtTSGure4WV0JAlx0s5VacnCBy2PuzL7QYxtrPvF60C1Hepfc+PjugoG7n5bVs+ZyL7KJd6mOzvQrBE5Rlb06I2yX39vdIju29EDeCpBOEq9FnfFzY7IZ93UOwkMUDIB63TviNNtZ/M409exQpRyOzwEdg/dbXgltT48LREW+8CTx/1g9FpSYfcuqaQAqhnkq0tg8/wOL0IKN/rAu6bd/VppD9mJoic+2sztMZ1b6tdVkIQ1It598wo1u76ic241D9AAXIKVgkpQX3WKHi1OxU587LM6iEPb4eMQXlZB1BvUx1R+MA2b7wsHJCCY74X4whYdhrLPYvnJTfpEd2YVIApqftMRvWIAmhNnzScGl6ygDg5LaMIZSbN3ak77TgJYy4FY6XevF5LVUK/zoXJr7IcjpO0j+yZ1ppRJqmrfSnJ9vdySkUfpvVylPC1tdgxXzjPp52kP0ZG+bchZGaFK4WrJY2GCxzhIK1jFe2j8Fdp6rxKuSVaelaqFVzzTW5UgKhbPN9Rfe56atnvpyC1lmO+jid6p5Ziw5n5NhnpPA36bvhUcBZsCnN2uAK3u0yyxw/TemyNIB52KVB+yikAvHwNRG5HqWIqPepeGJixNVnhMFrbhOXPpEx4n6hzlrDTNUB+1vdJuEJoFgwuDGBPmY4lLh0DMJ+QSoKtBTGZv1fEl2Wmm+vcOV19mCK81jPuKQ2Y0+EORKBANT9bKOGP6+YyFujQsLh9lVPTS7ap1E9UWLolDsK1eCjk0vugmYeemIj6fJuFZGnpzYMq0ScByXklkE0tP0ZIcRpmbNsiWDPWX7/CUqtcjens55KnrgGxpoVTzzHCIKj7gPMci3anoOdy8UsWzBjyujeoPHH/whnJDs48AzY2VXt7UO4fmHNRpI54plkRyHzcoDdOFMk7hjAuHvPa313muzmJPGPUZuH8duz5mZhfsxloaEmtxINaVN/6heWwfZxRsSGl1t8fusYMQ4WV04jmAMYoP0FpO1ssw3HZkv8iw5IPU1INWp4w33bLWgILKb8rsRfn3sZFFdNliDO57z/Gtx8aTkkw+B9Moz/Ko9Pe4o94EC5MMp7EAvxunHTvLe/qh3HPZ2YupV/OGyEeAYKI8d7y4s7Z0cZWPLN6Ijn8HQlPBTBtQTsZSzds4xKCcHRQ7bqOAZbqRMHVPuchUe+J+nvfyseBkiF4QWgf5buoGYqPcxu4ITO627CWSPhHt4DiOKzAbLroXUejtYqzp9qpes0jZlBMJol+RWLQw5CSvm64W4t+6HNhqNcD3HkyyUxadcJfnawiD4rzzUNx5QUS/uOCqvcVALx6VfFYWfW10uJN9ykFqJ0bAE2KPUO/0Acy3VurCTWmDjn/T0MoVTiZmdoSB4Y0tUTippuSR+yEuzG2llpM6RJgb0Y3KS1jZwPo6EJY9YDvTxCkB6qMrgwsh382gE2o+ZIw82/ohgH3jfZ3OBbkxMYgMhoejIN5Pi3b+BAljUSHrQr4OeTejcVYehmPaUhyryK0aexk0VYd73+JSva9ENzbMvyKfkZhpta92fUCh6TIEe+xAowtOigCMN81W2vjcV4eVQadCcXrgA6C5WJS0jJRGWQPHssDPD9RFCxbyCRIPrJ73SZhKdrckdSyi5iZZBhhjVJ0Pcprkw/yAUzP2noXeatbZHRzGfo7Hx/zefTGnI9pkpHraMS1ztq7he17uvmf5LmxGoBR8ohxVAudHTr2R8A37AreGzYsksMJWQeb2iMA2LapUVTX9UKzWexowEkEZ6lIYgqRpx5adccRNg4mYuRqZMpFYcCMBfNjeoJ5ilsuJREbbV0r5lw1Om6lIOiMznTfeTsR+bBvmsr/+lkRf41VlklsfXZCfSs9bZnoZuMJH+B3ep5CvU9rb9wDep3XAm7fWZ2wxXESZW77LiWUqjsoTLNqWajXtZinkCrMDU2MTmoumeChinnOVhQPT35REE884UvFFTQJg1u+nMKvqPaReEg98XSXCHMdCeKksrwRAeHoDYT/vuGMnpDHyDMFNfCBFio17iGIZkrgsNmprZCX4LRJMi6NgCOoI1i9ZzSXbZxtuTFbIxnL1cHD2NQj5mmhLbqU60WJvSfosD0WgMqH+qkjrz5CoGjtkPWc9hBUmQtGB4KE7Spq4r5CK1o9fHL2ZwFVO7FpOd/Jdwz8wfdS3CNGP1SCua0GTjH2X0U9myldYHRvlHmQsXSpUJ656AV9wQwOwTv1e4Z9/vh3ttc5z0LI6SRgujNtV5jI9jPZD5n87LyN8+/JBOuhaLuiv0oaU1PnIZo6OVls7XnU6LyuXvOIZyFDzOk0+WN3VnDKLIi41XL9hvlpNhP3mXFInwUqoDj6+//1fu2JUIjJcTqIVOj+v9sGoVO8ivlVA5rO5jKuIUuM/0W5oVd1YbEyWOJrBw1EA0AfL9DrEGLyduLQHnEOiaZwM6uQ38EMXmgVOyAHTKccZmTlVimi7INjB6CZMCUea3+RIOAC+losijQFLcnKR90+CAK+DHmdzUNDHMUq32VfD4vHNOCPrNlbCAwUiisXK/gb3ja9B7+KhexqxilB1k7Gid/XlQRZlKLZvZpQrGvphJfL/tbTj1SPxTUn78kKPNdnGcdbDRGeIJL71OByZuwxVaq4d8NqTOXp7Sp20+J8l7+/dGc2sGhoma9tcC1+oXTz88n++54dMDBPZxikNybGEpd0PGGFXfaV3hyi1PDLrxlATAT4rqAEuHj/uYPy5utWhtw8JYMcmDIdQ9hLxY6AsIgBMSBOiy7obNwaKlsDoIGLYiLac01XCtv8uhTvJILNyAz9ac4ZGYNN3E3MygyrHI8Mxl+tQnQAyWtX/VqvDB+2ajfOT47WgQIsrvDz2+pwa+huAxIuySdI3YH0bHwDGKTS6wL/muEMCe6nMKowkchg8w6kIBKFYkBj2Y981y/lKO7gHm1xBGYsI2UuO1w/MXxZSAmu3aj9KbgsR6VSIEMH03OItKj2ai/pUFjF8HlzfonDKm67fgCAHwpByXhF4Q4qLh0fiQP/ERr060ClPHcAdeCGMdGmUrexV3b/vSqSDWmEWvZrLTGJ6H0oclXP7069Y9ZbyW2quJLn5A8k70NoTnEerQvWT2xMxYNTjjwIsOcAdBfmr7rxCr47d4HcEKxExXK2GypN13DnfqtBYXdisZJfDHnZdJkewAtuU3IkclMCM8ulvRQlkWvQGImpuA2eVh6h5gi7rGnB7fUt7vibZjY2jGRuomvVq4YD5RnIdPFTFpLlXTO5p5s8BaLZqEzX4vjuREPFo4908YypWa2m7EifC6BcIhwxd20xoXukweymShCbYuBICt4RaQpXXbe0ISP+WN1XJsViP4rmWdBtmAkOsS88CKT5XoTOymFXDVJdozHYhOYRYL6fhkcCVQvbmG/pHyaMXU47+uh+KSsiPGDiEApLTZOFx/iPpVQJZ9MKadDaCb9S+Al39s9dcx2My3VHuMhGw1ytEYsbeor7C/QigZp5N07mWHbLbIwJ7cz58hbTKi12sPRWSZgjZc6hizO+28+ll79bNs9bv5Q3Qy9gg+ZoWw1CQc/3fllWYz+iCSOYAE65hSlC5KX63Ku4jQRgLtuMREhHl2KlbX7p9j8ZHnf5Ydx3bQC09+rG/9xLKmRMsFIgNi0EzYL6I7iypFNOaHwBIaWOojTFL+XUkmAtX/mtIu4B4H5YskrX/tLq5OnWXsgVFO1zeI5KVHZtuuYX7w0KuDWpsq48eZ2jZ5nlRB4OtffntSo622NK5zWgNwMl7fwn4rvv/1mAhVa+GDjxt5BoeaweUkolMaa88d0NwHCpvWYWlo/FcLTFqpsSiQD0eojPqauIF/WTV9y5FTXTh0UXc7R3unOoBSdd/rfIsuFksgMvfFkPuoLzAytHoiXCFa2NP1uFqWD5tzXE457TEjcL9Ny7/olmTtJjWNoxt4JeNFmRT63bpINCEqH7hjkoZQqrVGSOJlOBWYBH6fF0YuVS1yZh88AI4ULlJURrIq+tMFzGRBnxm4zJ9iThtau08KO5A9hnbSdQy8o7o2jGRsodw6wmwVFGlUcViQldsj3eaMRmF4uOa3a3w5IlSPg+WDFVo6QGnzSEdKiBMd1O5mHrAX3BxAp2K8aii/VR1R9X2yPNtNlFMKux9HAPj8J3Ou1KBVuegJ8hhmVKmajOHS+p6oBoCYhwblhnK1DZUlJ5+4zYAzuER0gH80DyA0eVtRtoACwzJVJZq/f8WVEH8ODD2otge1usIFNJbHP+zXCEqT3O1+X4DJFfJNo5ei6CRVA2DcKvO6medZmbE3Rp30t/c1qRsPy5j4Mek8FMOy2E0qRuawBj/KXjIo3eHlmDtR5mafRyLjjLTOpnBaGeVxOSQ9XZ4U6Oqj6bSxpXHZAx61Y05Z7Pc1bxHaRZgGLPQywbSwCmkKamivfajuhsAKE7iiqpv0K22ju1/gpPrbRxNVaeDh8NLu1c4Em8CTEf35EGvBT+CFJ70Ctqcu0M4BDtDNTme2h9uA27XTiFWjsi2mMGPdfrPA7KqOaSD5NViYY/gwn/Zoy9r0IdlagNVWjJfiqh13pga8HVWyHiFk+8Rphde0s7nfmfDfHrmDuz/HhEQxdLcqDTCZUGtU0joDqWM1Ld3Ai40hBQ+LX/vevsr2swP6XwSu98iylcwKXU66yW893jM8zccP7UqSr0Q22JALYqcJycOAh12QzNY0eGM9AUtcQ0Ei5JsAGoY7VJ66yBFnq21iFfNiNe18nDJ0CciR7+PloIkC7To60AD9+17/ThBwFcVbDkVuQK2W7u8q6kFS8pM30A2Fd1e+LGm/IzfXK+oQPiW6GvIWy2X5TSLpUdXj5XxWTTGPvh27gtA9bPZQZYjMdjZM69/Fwvhk/svMqb0pdjSj3vsOcRxyXJ1PlvmsLsuQ0dVtzFigZc2stFxtVtNKd0R3SPM1DjanPtXzmOwOr8XqVCiDGtGj4FD8a1+Ma25QRPfNQ2FsURcEwUAy3iclfnFZKctO4PZxE5E1Yursc/4AYYJCSKziqvB8/XD7IaGwyU5XJUvqJ2JKGxIqm4rYvCUS1Nsi4WvK4AsPa2DsxWbrsebDZJKm2cBTlqBdxxsUAgU9RxYKBGpt7blEowKeqNzdlj3OrWcWun7kg3aQT4RtmeUDdikmLXLincrMuZx8eWDCcV9yPe2fjhzMhIX1yAWDnoAjaHPyPhgp8Fit/M+ukxWRrDJ/YLYFmFjsZg0akWRzUv5Y6/gwfn9QZhOmaDu7lRvZw/MvYGvGkreT2mxlVUq9q4bhzkFvGT3UPd+W5a0irvr6cCwGm4Q+LZF8Au5HIv+CLXlB7tulJNjIU6TXlw6Qaf36p//FfyGMbu7567gYA+5CSFFlkePCkA68EATf0iTU46J6KkllBtwkILPyFwrmBc51IzjcpYRlOoU8cMZS8h6RJbs8AwBH2qe9g4LfuLcdHYL8PV7KY/a5UvO5OtbpOp4n9aLiRFi6DjVvrpBEU8Dq+M7pEupgHaeF1Vw/NgqDdAGnYDT8Ry/VPHViuuH3l0d03ikkyHVYNfc7l+XnHSxKOaJ1Mf+PJW6YYyK6b7LpokeKvdMkd1XdPPWT/7alqVsTLfuPyq0iVPvckz2hTBVMEdq+utDnLQBAeZORynlu/nCm9Y51pdYS5dtsbCGDBziyIFjQbGmPmkyMLqou1Y6g9sDh+ViUrFT4IbZ5uBMz9R7QJJ5grB+DLs+lkfECdNW8Sqe+eWrxkJPHthPdrwBvhf5Zz0WwfryLZrf5jwrmlE0LNp+cy+CvUXsv9sPJ9thjgIC0k7vXznphwe0VKO9/oorBZcOn3AEROdwSz/ipg0kuqlR0FTFyRswPZTOF+7i2cFMyXDjEV0Ya+hIKAz737qtFeogTlviY9YOBID1BlP51rDq9hfVLw4X1txsBUOw2S5C7CHXw971NGrvF9JntAr8YhHt5wAHpGGGBN6iVvj+USaDPsqT9jJ88NdNi9KloYkDmx79rOSRU7QMlr3Y3UYV/lzDQP4Li4r0z0jD3mxqiLOtZXe5hr+SVpAppgtuzT00CzH3AUV97xZwJrEpQjV/JcenBVzodjuryZvQlgkgrLEggkY2HPz+88QEjnQyrrHEwroGk362E4pRsQiwe+jKPTINoZig4lFYNN7YB18LfUGOIeCTkVY6Jy3VA+lXelQS0SQC1Fd2NytQkXDi6eishvQ8EfvR8AWehEcIEmh4dHD/B8XcSyh6cS4MQh/LA6i7fhRGpkHWtpmBs9qGWNzfVn7xi458Xmy3DakDXPK7YqURQ86OPgwyiqYTmzwWu2oGi2Qwz4aX0NhM104SGg2oo67AQU5mRE6BcrsWcqZ4gqJcw9Q2BbYa4MiZGZt/SgJjVdFqP5sbp6nioLaYR+wD2T/JA33dZllzQKMQ3Mmtjz8VIGM1G6lRmEUCpwhmAy4bcA2S8eszeqg49bIh1tlTbMzuFnsICgTuQK1nim54LCRqU7QwKRetqnYOD1HVfw5zkMnoQ+imwuxkI+T7uA8f13kdMgQlvAbVOo0JLdHarZS6tN9F/VVRqKV0CrzUE+O18H29A6KOgtDQ/mmjCRLDE0MhCaXdTvYVVdHMP/KBFaMT6EOwZZ3GvgBwZjdS9oyktbC7loav/ghstGBsT/SKiQ8le/ZaDgKytICs2xwEuVBNR85Laajc52nT1XTNG/KkNLW0PiYdEioaZFzhQtAH9uUfOpv90us5IeCFUJroxDxTgdsHmxf219JemTvpFlBHIq3OSvK5rVKnYzkd2xNvou3PO/HNt/OqGCBl46K2PeYkyBXOz7Yyh1oO0BgLzpr3/qFrOS/QGFXqutaX5/7YO90rIsyYYTMfnB8aC5nSzlqOv8XeBEOpyAA3kv6lz/nKL9jz+bAGFTDD7556PsyTEG5sHN9VoCpAD5gGrb+bcQz9tvLOA2nHu/qhqjSWkry2ce63ytm9qzphFn5+uicM7C6EXTQyAoRS8W89l42H/jgCGV+jOuB1GtEo4lOFC3eAyREBLRpnMU1qLqGcy/FZ7qF9iQ6BGZ3TDEIXkgQm7FKYXrJ1ImM5Sl/Ul21/sQOFuHQnEB7cV1ib91m433N0tEvGmhYAY2wBUAyCHePWQ2UsnB7XyhA+67Y2VTC1OAT0p67FZs/9KBNUUCKv0jJJUX691upJQnBDH00HNEGVdfPqXdoOm7pP3xnLnAqWIZ40glnrdl4a9R3q+zLjHkFlLbmAWraopQnxzIVQmWG8hP6AOOFvHGtCkEJEsntJ19Q8diqV98awy/10Z5PAhevH5kjCXG02jari+2ESqs280Zj58898HKgMc0xYJS0s9du2Hp/YGzeZaMkn391It4CNRYmUcj0PbbwgkMAZC0LorDblIsTn7scaaeoxrcnbpb/eBjVYE2kzb7ARQqYuLegHky/FkPH8tED79hZH0NbhL4jRjZ7eEcNoxz7uGloCR7V7pseNqASxId/IIa3D3Kh4iuTliLe/ME8oILTadiy8DwhMjsbqwoFtmAwBY/Muyp09Owe8vJZUQFOUW1zZfGpCbQlYaJQwqQ+I4rPiIEQb6XjR5Q+0dnJhBDo0laCGWvrmH/LMeYFJjDQ6D7r7f/Jikvzb2daQl0Iq0lVDo1fzJOMAV2RMRkIkrY/zq2D00Ax4jGP4nYM+aDRkoE4WZvO4k/YgZvqUNJmH+Uos93VxiE4/tw2iXpRh2PErjWaeyMK3XS9TbVSfF/OsTe0/w6Jlugs7+7hf44Ae8jO34Fpja1UWTjwAGrWrIPv1aTKYIRPH1ya0z+TyUHahR+0QATlZNQUeCF+hKWRahYiDmUsyEnIwu+oYjFqoiC9in7FXe5S+8QfSCa/D3wFG0I07jm3h/mvtMkUsgxjHOQRgv0puLlWodqYv890d7r6F6bp8MRfUHEm1oMXeN9estbnVlSGKgKbx5WahT/zoJUxHI/qr84V2m9Blp6xj+5Z9PogvFCPiKpoLALBHeuhnX2QRGrh1mqEtQB60R7IHCbcWs6zeC0andpfRoYZjB769RqtQAHuZ5FXCZkOye7YkZQ4W6UeJWhefhyhgtONYiBZHQFz77gurAwAnYjZ4k401XwL9qyR9/f7CS0OCjkIHRRbtFCWIyt0WsggVB0T9m7PyxtIsb04k84t1GeqV5Pf1vWC4bo/c2oKwFdFf/fh+6rpXUs6BXd19YEs6uSJhQKomL/qQRm0Ann/C1eFACZGeAUUHLRHWrJmNx/vuRZ9p36pntVBi5FCKg7lUmCNloRI/BZ06NmPScJJKCl0uTX2WyX70PltnhB6Xjyn8raCX1ypdZug3sD82/3K3NtUHXzsgW8lXHvEeLAIv2di9vFMRwiiT61RJnONiD0bK09uSje/jCFokGYKxmf5/XHs3F2RNvo+824uXhy9KdfH8i2z9eEWUm2KgCUd8dJi8Mb2EfzV/41a69rKmWOrpeNlh+buH6i3lu+j5Ff/rfI68tBuVHwzM4lzMahQTOYeU2DlNTUbaXLVwVkiyDukPq7LHcQOURs7x9UJxWMFj21isnVVao63QGL3n6OuNkorNNCAY2WZzP4BRlycfKv2pk3Ey78naUUFhUBJfHKfQ0HDDGpHchXGJLCpIj28wLzkucy6RzvUOrRpUW3Hf3m9MIYRsaOqNBzTJyYLHnE05k+GP2eqaS/GdLoPhpyH8r5C9setyL/XlHJmUwBBqiFCKpGwi9MVJWAEd3YwSpEeP+sozJR/HHJhbUKtOwu41x7cEtenVGJzDZeMkqb/v/cBFzatYPsCqBXFu/8RdDZwM1IRtIQNQMNcfM5YBjgt/vJz1Jsljn5vVGqjoimBXDhWE3g3mCYoLh0LTkyOgke8BoriC2SCVpMqxrw17kqq111dtky/LSdAJ/ye+F1IH45SDjsBWTQChe1GIQmrVe8EqNHjcIhNNDZCoJJSDp1r0a52SuIlwJflW7x/GfxeE9YiiB+2CnU9Sdkbsy7iosTGIwuYTMNWsj/U95KrQd735ov1SrTIam/e87BxFEQSmI05+Bi5nIOMCQZzWIO7zemqkpCuJbmvKbl0GCXiZ0RCm0RzOa1avI1YlfyY3dL5/wtiMxNjDe8NqIKh3cOHGbgXoAJOrABeNA0kwHYHXWIcSdSntXasUHrrWxQOmFyrDP/44v7PAdewSF+c8XecqZt7K6hF+am640w/kDq61y1f0z+tUukkGj012vt7al1U1ynUSQj+U6uXGUXg9O23AmeeMu7ZdC81TwdXthXwlH09SlcffKpQ0nIWkjMpyk3KafEobvLZHDeTFWaHvznWSOnXsz4f4Z5ytL1FycFmnM4mHixZVehTfX8pWQdvG7cC+hAlxoso6+980JvylDiZt5ht1kKTOrDcM4F2/dH1awc9xHQAaolCePPE8fzHlCCX/Z60qgY9i2zuBSw0oBYoWUgjNbMDNlcXxkzIOX0rS9ODxLeZqGV5NHrQW+0fNS4fKvGVXNDpGnl3Q1YSdumD4+2zoHGWiunJqxHVhYQIpHw8rjiHrkKqkq4KcCtldOSlSQstU2PkCGYcXL6sIhU1LfOMKdwmXClJTOTDnyp/DFc36gQpbQ6LdFLvCXF6umZzWKK4+RBQmoLmlTu3pc1JOgNVkUum+aezaBMgv3xVTbT57GaV/XeIeeb3OssgikRWwfux14dvCq1rTiTm9Pva3JPkawSzsYxcSGm382hkRbAS7GZTzyTHq3+aq0kH2EIfPQaT1/4N22NG1E8HsvWP0kZJKx0Vx+yUMgX6uzMWSO5WIvnnObR28siELxOblLEDc4OM35iuvxJ6G7AKLwyh6qRhkED8/7qEUzM5iwt4t1PHORBAcsq5hu/QNjzTv/aJcoPMuUEGoZphqDYkKsxBSxvsKLkA9sbfeaI/pB7KxxPGSRExuGyKqLPRhMNTsDfwLNwzRvcMRp/cOZ768Qam7vLAV/opGE3v29YRiyAsHIqahlCl8moaq2M27Tscrq6bnuznxCn60cSCJwY8trQe0oYtW5cdB72sXgfIRR0ls4KsgbX7NIxy9HTW6YHygeCJ5UOFIUng/ew5ohWW/uRyJ2zFwK1RBCYY8B2khPpsS6iayiBasyNiCeVRU3Z1ucF/R/9DLIc+Od8iFizkN91la1lnxyuCpzPy8aYenvXP3HWzRo1iyjRDngwsi10i75PpXutQPtcLo0s/JuRyp/VflgBU5+prjxYMJqUbpvU8DgoI1qBeTseZz4V6sV07IKTdAvE1nkTRQHtyqq3bWtD4V/z4Vy6iYZQqGCw6UTXca28Cx5YR+RQcw8SsLMwlqtAT1z2jvHI44DsTfU4hRwRzwDRaaT4RFvwd/pwjuWpHTXlm38aLRO4xLz9usF0h0YCVm5hLMLDr1+zWFte76ahAbHLt5ghP2ScpbegecwQjlXx8OE//YENI/tQNoi5sfE4vmEOWwQBh29WtxKdFVWCHe08P/7u+vqfkt7Jj2LITeifWr2Hdajr3ECH9W13c9ZSvLKK/UNESPnf1FXc+y/FQWrT7QkbULp4Q4pKCRKBqMdx6Vh5W3izu1F4z5Z9rZYiqDKY8kzkbYygkGmLLhjh1RMeq/DLzlVm6n7MBshYrrNXA+N/jvV/i1lJZN50aizZfIYM9AiJFPwmUyMxSthqEuiEAjNTaUHKBzkS/6/wPt5g+0+UUKiZKcBflZpp0ad/KoprabNnOnx9LuU8kGJ6542mc50C9bJLcLAmctAhh9g3EoPzzluA2xc0mqKeO1TznttMKPK4JnhkvEXfY8e/FjmXKeQoDMTVM+hU1LYMBkDHGymhYJ1Hz2ruU8ijxCcPFus2e6dVYly7pdEKUOMi+n9hA5tcHh25OoRazI30mIVzQ3F+Bmh1sYK3V3vwTvt3P/kXt0/I6kquWMrxdoxbVSFfZQi5b5zMCg1Mu+Su4eSWT2Aqewz3hG+lOkcgd8ozl7ZPlsR42QUIvQjLh002Hgaif0i84weGu8K2RvF+7RgBOcX8XSX3eWq0LDrKDxD2vjK2Uvm07/xLBdqHs6zSMOvEq/ndMhS0c9inOJmzKR/DIjYPHgqDydOrGmFogI+xihzoRwguma2jq905g6K3Z8IQcJ6vl0XhtmGCpCdvGiEFTBeV6CxI43Kb/RZUNsEdCeUd2k7I7rRd/rr4hg/YtOOsZLPH5AkK5y1bx8kYpJztI0ptxya/AaRuvY7PzZMu87vOtM/bnWkUxdtyw5mlPRGCGZ75x8Jo0uDV8ytuQQ5RGQp1Mh/v6OEZQiDzLo48333DbUzUktFd88wrrmJSt7mmofRR79CKT5+hiU9xL7/Lg0byXTdW8rOR6+6PhNo/Ss3VIa8BthyPXwrqoscMyMgrWhp7my1LMUh4FoWCHnOjwDBVjjbhMbSXZop10gWuqHBuAuy5moeqwr40bh3Owl6o9R5hdhHik/tRFfMb6ZD86p+lPyy7IG0HkLDAZUSVxvqYPe3FW75pW0XzVjZduJkxtitnqVEbhb2fnRsc/PoxyHSjq9unThk8F36y0epKBUNlh7WqmvRI3ofh7LDS6nFF3l9EQRN4gA4HkwIu0hVB5Axsv2Iu3EO3NtStS3AlKlq8nd8REtPhSKAdWv8lcKKfpv9z+vfA1PoV9HkpMU2GVciozrE3jrlaoFMJ7GXaxyKa27MB6PMP89g94H/Kj19E+/qSljg8mxeAwgr7LzQZl3zpJU3YqWYab//9BdJ8IC/te9Qku8wpJt2oeb5ARjfxC/ay8iIk/o5vGlDs2sggLqDFJDHKlmByWkOnS0PJj8fGyEz7Q/iZgBP//9k29s3NZFsKTYFnQidq0Purfc0MuqB86IQgh/FBYmeInQYn4cy2Dlo7QModkae62v91V5OlPY4645Ud9z7DeDCjSRqQRCTBLnJ8hWQTPnJCqlT36tka5SwOen+25tsEO1+y2kGRm/l8Ce4wvGTh/emeNrhKYDJxJJjYaPFfFla63PvcqFnLjjofvH2PpMxx+WQet5wQCp6vomkJ6HVsjikaf78Q6GtegTvGBBgAA3y1tADekGM4QfUXJ978HghesR9p/Bz45iGKxYKn8wDIgbW/fmnkc/KwvU+QteIjrSmfw0SJK8XEtM4zgkn/aUOpFAhnD+HSPGKrK/IO62zL3rmBh3yJQd1vfIC7VdxQnYvEmSQ2VmQcBWbEYkLYs1UGu/i4OhrlAaCZhA1qk89CQgEkJkhVq3YOWQaGFL4xyOkaqmAc/irAMlBy66UDXU838vImlZb2IgjDzy+IB+mj9p162aSCX+Y1YFwnBGt8UBvjpe43YeioUXLoJp63a0BpXnlGmVGYXk7kp90al5BlnEFDpeRJjCknXCWiY+zPlxyuKNW070Q1xkkygLUx6VTbSpxTp4ZDY447MnRNJ1pbGvhKpGBpy++l0SBBJXKPQ+QJ+Lo6xg5NXtq4yqLpbSOx5betTMkzpEfk54eQ8rw35MW+tP1yXLaANp8IJjP8LTVQG0/3KvL4PArjlOkYcZJ+H78jBnuS0ctU6leZtNmOR7ixXd+G6J8f8nmlK0NtFPuo0GEo3ATy5WBFnMrE6WAZR9JVcdIwKHzgL6PIaf72e1ad6MFuIu61pwvZBUw4u7lQyMVzs3A3FkkpnH89PN9vc8SVCMWasbkM0RNuU5pBddcufTsqYpgBWTVbwzOlbGsfoSCjtD+GMV+IsSLfCiq+CJCOERo6QgHlmrjnCpFZMtPCUeyFNhpvpkwWL4Ix7mQ4d9OG5mj6xiPVSp6m3wBcdFYr58iVbdJlHSqyE2+LEi5elAJdGheWt4+pGkTTSAW9iJl8xRlnOy5guhgT+YzMB96ME+d03lTL+LyntryIrGh87WJtIQXhN0NI0hagBI9UKXUzojcUlj72AwiB/bYrbPPSnQoG9+guleac6VvsFIiVarj2s8YGDay61ENxbyAgne3EI7hAuUt/mee6u4fQC5urifMThJhU0Fp1HQWEidrA3xpIilEbh+aqdiOoLx7oMlX3PU3YdlVygmxU7HPSsB6sSxi9VRX11NGfHhK4BWuG4IPglGs+SBG6F/zSlvjEtrQEVJLxZIFpqH32QDmw9dZyu+m4nbd1+C4pHll7Cv8SkmF9TRsTqTvlPl43u/111pLiIEPf+A8k8W2a6VEg5ZU+emLyxphLop6z28xCN9LHEHipBDyqFFYiN/i5H2729MgXqw3QdGWJnf9KKVRJZV+/SWy3ll5Xkxfi0DsBEzIUVM3dUf9bo696ANU+uG6iLANO2fonQL59/xoUzL0mhCY8+FmOk3SJNSZQBTUb6hqAyvpJAXMg+bXvQekWpYCdY
Variant 5
DifficultyLevel
676
Question
Veronique has 10 discs in a bag that are numbered 1 to 10.
She picks one of the discs out of the bag without looking.
What is the probability that the button is a factor of 12?
Worked Solution
Factors of 12 are: 12, 1, 6, 2, 4,
3
∴ P(choosing a factor of 6)
|
|
|
= 105 |
|
|
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Veronique has 10 discs in a bag that are numbered 1 to 10.
She picks one of the discs out of the bag without looking.
What is the probability that the button is a factor of 12? |
workedSolution | Factors of 12 are: 12, 1, 6, 2, 4,
3
sm_nogap $\therefore$ P(choosing a factor of 6)
>| | |
| ------------- | ---------- |
||= $\dfrac{5}{10}$ |
|||
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers