Geometry, NAPX-F4-NC06
U2FsdGVkX1/mIyqePKqL6gHY9YiaFML+nvD/038SPcNo3CbXsY2/Octn+FCxMQI5lub4D+BoKoyz77HGqaIeY+TcJl9TESoCOxladgVSJkZ/LJqo3muc9xNwemaLG2ZjtOXobhWMqJQB41dHotIphX2Kr2/QF0c4bWR7rtXLJBCtnNyKZYLynHZrnk00BuV292tKIBwkhIc4KGDjVpQu0ql/bNOcb+MpcHFx94PEikDTgWVU8XFs5kqgvFIFskKrLM+eCkwsvWazGM3kAxPK/kcAMIT4CUy3yR1vRLKkZi29T1S9F/dxHBhmwQr83H37dOO0i/8nUtUVS+AuQUfyqDnN1RULdkwle8h8IJTM9MOCRBZz2c02GL0Q9oc9MYb/cw3s1hUrVuZSCYociq3PZHZjEJaJ0vCQBPiaCm4XSPDk9MEUU5esi7MNGLz3rkD6Oz3yIaqUY0c5ZyFeGwWASQ8WqWhmz3zQEqQsKtAdXqNZMUgzscsFxTmIih0JZqK1q+Q3skqFhpwzhetglwjRCybbZ4MqP4UqpD3s4stwCWrGzoXA/7ickwdOKALHF8PCIjzgc978BWzoktLW+9ZqG3x/plMI9HEuwBIcF2u/OdnWxO2wgzEsPjfFJveDQiy+GD3cXYYCys843gfiuXJIyf/JMkyjMFDImEeKrDRsmCFJR5hiiOK8olS/22UE3EC4mD0w5Q5Vn5LWcGEF/B5ZqdfmP/KlpbO9RgeFzsP849pWKFKY7/ugbNC70G7s+chZcP6bdKDpX79oo+uG3DZEU/dnyI1glfzajLAaqTRFEQ8Jwcb88VFlvVZRRHhV+56WB85oDZV1aCcAS11FnN6/JJC14B8/WOCTKWpxQ53d1HRwJfv2l6Ou6YKaOKxOPBRxFs5eyE9xD8KyM+H4MT8TdW2RFPWpYWW/bSBh0TGMYsTW0YA1rny/YNwPFmThPpkN8hMnvqBFphDmA1xLVWA3AqjZvyXDjNCaL3t8Fr66sA20Gs3ucupkXDsSvEV5FFFk+tad699KX1GKnQOm4JU8XNY/13N4bi+omf7D28kKtPpYrwIUGaA7aXNBF5W3BCO+Q7W2WJwUbHj76JeoxDI7yu/a2wSHAixtiiaFAyrMLJnfw4YpXZhEBr/au46MAXL0AmaFybt/HKUtwMh/6P0/WCUnf72yvzVuGW4GcYHNgNZ29rNGHspFNPhjJ0taUdrSAnoevDoBQbPj7gDD2oti1UqBreAJJbRP0nzWT8zldOTGpaiQnIYUsWka9MoFoL/YWfkAn4kdqgnGkQHSg5CZ2pp4lI90mEmvvAfH9I64YHKrXuArKygve5RieIQzNQrRwnewoPuPwOlR0Sv6QuwLl+MmUmtdYzBTvh+O8gRD7UaOCZzipY7qCG1Qcy7kbEMAYBZ35U7dLwJalTpMvgQiVAxnJv0XCaPEbWrAozDVt1U2qx1mJWfuyProY8uhThVmeLDNJ14DSqWQgNl6qO1mOyRKy9r0R7Pttk1Zu53ieaQeYapNJAmSW4ZPwnXiaLYDRzas/EmZMJwVKeQdcjnkQwbXc0waCkezMzimDrd3P2RTCcB4SFURFkvvtt7w6TsJBgmNL9Uh3472snLkWqp3PY5Tqeg9jN7txure0BtCgISLELI1WpfaC3WMavU3dt//Rjk/dn73WK0PZoyxaZl3RjFcFcmHKJTpg9rwRQuQy8Y4+tDC6OIfy63wEcWR75GbMDSlsb/5tSvDr4G3UtmqkffG5B+KkJ1h6ON5Kvt3D1k/HV/QLiOWlG/h3Fi3u4VRs9u9iXo1OYleFS3ifHxzoIHk2iBQBBSHnryNbsVJD7+wOEcNJn7es7/WdZXlUjRjiwW1ZThWbjhEMde31mtzxVraKRayZgH0PrTtbNA5wehjh0DhiDeB7U68jZDI/ssNpzmRmFdc7ijvV0j7KDRobnjAOsBugLvV9oOX/BCNDq1WEzY18opDLDkEO/xTdeynirpUefCcF6EqvT8LzRRNj8g+03WdhI8cRn5QEEOG/WsNu9G7bjDtUQnAFMwfRZdZP/octrXjsy5cZHla/T/Wcjk030w6cgBCBIBqNr1yhz3b6GUvlddL8yJXk6UVVisOpZCL81CNCUovjg6WkEWd3gT083fZRBjD0Fip7N8B1KV6kLg3xfS6w3LztJBkOCpzjpGPBcvjx7kNDGUeg7rYoFb0klvVShOtZn+x+BYpY2B5qvKXb1Dy8t8YedCzlixBvUDVhTXg7wfmb+Dt7Gk+9AGRcsfFdqKZmiv1pt4O2TtjS3mcLabM4fAkbmjHurR0nS32u8JuHJ7eX5c/f8jZVD6flisZsmNc93R1ojpvqz/DAjFznzYePGtkTtK1Pr2RUxgxAnN3whzKpI/FTDvfUkP7585FRWQylNWZFuNdZ11LDN3sOeaXSp/Zl6OZV2ZblExJ2JqabDQRIVWWjj0rZ/3sJeMhSW6NiZo78CZPjV4w6ptev3z4mq5St/K2d2NXiRx4YIBwZ8w2yRiCPN6Nv5gk8FSmbLl86w+1SeC65mZtGOHLeY0mrStl1LHh4QhK+Ys2v0PIGSFcN7jT5fmA1XGaSKK3m3ShWUZneBqknQri7Tc2HzDCx3OJfwhliKwyboRd/oLBgO1rqT7lYq3gexWOLPojexvBSXcQdWV4c1WhVB6mSecMZac5f2gEIie0M7FjnCLPlI2uU9VG2CQp+7VGXjo8elv35m72amk3VVvJ4fePpc4qhtD5pF942qEsLJ+XTTDtBWfHvCHdi0UXWktB5mgt8CuJ/GXWSWc6A6qtP3khqL4iiQwWbeh3LomRtnYuHp0ZjjbOKLvK0Tqj9V/zjCDHkVd0J7g9e1FAoFabGP2bQYNMYd8F73vIYaqvN8pN9W1lQAkH/bGOgN43p+XNJBKjpFwt6izR8ggagtIB420fCtmhv9oPaQ6eqFEp97KRkgrGL7KUEPym/adTsKOxDrftbyK9dAwofu7hJAwLcv9s2WTvnBbvlrEmRXnXkwpJcMDBTs48L+lu18UVo8ufRi8/Pk82hp0n99g7sylgtyDW0bgtuThodj3yr7fySt/xeIx/j3vjqj7TDk5hTEvLTKLGj4fiuRSOFtFxQ+5uavxUrV1+EVhvIg+MY6LTSO5L7d/dpG8gyApkzc9vWdKKDW0QJneYFsH/wo4iz+TwrnHRiFnOS2qgQzXpXuS4cLQmvZufVuVSkIzyD7C+++6htHtpsLQrRyQfTyGQEoo/eWanUCszTPt1ah2+nk6zt5XXaJ4BCHm8IRaKUNpw+uhn2B5Hfcs6I7ucDQzoD78QZcn46S73+APvbdI/1mO0rTBZbbsTTTI/CGDSOCF2G8lzygCzcQPc8MeOyalUPFospOlT7VkXOXlmhuar0WpgNjOEQkk/kYE8qFxfa71O8MYfZBDFn12LQ+6KWT0rQQ146GX7KUYRIf11vmxgmPyVprGgJuIgLnShAZKifNtbSPIWBCPqAQNDNWANjndYtopdzBgrxIo6286TCSFZ5JuKxFuLHGxBN17mrRwWQsNXOI7FbRJkz8z6cJnc10CQg8hZa9GNQsv2j+AGid825mu5q0cHLT9EYIejnjlSjtol6V3WGT080q2e38BPEnBcEM2EmqVQWrXQIBQatGfWj7/vCFLs3XWoH7EZaYQthjLNOf230kNXPLWCrKehVJkN4A51ZnBZoxv73/yiV4jw7s/XG17MWsy4UOgPdBb3AFm1B28lIGv3peVR+cY6KojJdebIYXfhfbkGLEoS6bpdbTKYtJpmnDT/f6IkWwkqRL4X7VDZP28PPD9lXle8BkUw/98wtEwG3OJFz6O9sB1ShzIYz6yE3BQGEmwZKqifk+KzBobZV6hw1cYjZeuG55RHEh32xKI1rM0IDOG2PrsQI37AydvKE1GUDRZraylOJQzefXC67/GQjbKy9Uojnzv94QM/+Ahw9PkI+mP/QlhV8k9NgFZiTTE5UUI8Au2bLYcL5D8iEkGmFERcFCTpwBd/TJGqEuvBvN1cfkvUS5cfCWmbO7shKnUQS/kHzAto5tLlq16dOeRofmLQu/k5EYW0wYBI9/XIfJJlGRkE2p7DgtsQu9ddJAiEOuaAGWI7c57j+JwveE3kgUykgDc3lclHsq9zOnOrOdVgl1ZqAW7ADXiQ0Dg3JGZPPTqZPDnsYuqpAe0BObtg8Fw+oqP7pjy4VRkjNs+Qeo06M1847tYzKGupdjdtdk9aKL0G3ts8eV0yWBAy7XlLemedhLisxrZpxwogj1K0ejb/upbFEkT5M/1+8EDR3qgjNXjlk4qatPgx2qrJU/mjaEBLtcrc3J4Cdh1U65cEVusYO9C8uggeqO4nmqiu4lCIV8vceLUZ0ZN3ZAGxTEoW92GAoCWkamJ3xBmLxGKat4g+uagb3xXJpFfEFCAXyTjxnqq8DUjyS5GzhrIbJsmL7nA0NS4tAd4tJy1sXchPlyXCrL+NWL932vSbPBBnuakJJg6XUQEeAr+7eQ9eDhvWQqXf66tznlLSFDQgzETQGkKZcsS+AFuxDdCn5iOrPpS6OCmxhsdssptPALhdg1TLerh33YAkX1eG4w1YFd2HTI3cJZrCBmbrKnTURrVo05KeCf9JLfUjwWK7kIwuneKl6wQ+kiqrFBO8OSgHUE5x41DbzGuyS7fhVPh3w1fYCxcrZmrfglDJvJefDKWrcdz+jMF1LLujSQG9majD2x1Qh1546SRUln00tx1ICW5ZOz/9xykJO0rMTwDH5P9W+r052EoGGAWIFtyanMaBQeb+vtgRzyHFunB/tfgIQhtM7St+YWlk1jYynDWArCY0KJFmJhcKhrJRk7y0OUdjlZlLoaukr9OL2lZed0KeSTDQlxznb/kl2+7CR+NpsFlR38rRiktlT0h1jt+eywHoGsGf9iQxv31OsUaFdQiObaVZCDCNU1SwJsMwbAWbCQICvBNeCOK4HA5PTiDoB5PM+KD0c9Kb2FcakKa0onKwrQ0+5WUg08sEulQUHf/yUVyBgtKRwryF9rpKxufFpgggnNeZLuJ++7jY0F/+c+wTAr1Hy0Qef19Dme1zpCzGdhnn538KdCBQonk+Y8Z0Uj1m0lKH89oZjENvQtzYnHT1nMN412vuFNf01wdHrhczqhDyN4Z93aAElYqfUI2Gjc6OqiRIXq7Y2GnnPAzU9UINYmtYJVljSgnXAZCHXIiv9m/5w2lAdJMrAXG7QsXT9EDB4qYeNkqhHIUqlwxOOW9zReYYcF+UmvZIESewIPeNahQhxyWNCh3l5z0QVLChslmILpj22HZtFReBOpeZ9jWPs5aj8quagZj8ocAs2fZU7mZVQDFSgMzBZcIwM9PrEVkuV+owUlUdzWpdu923F+qJ1C89ujC0ZrKNQDpWEZNtparI6j/0UOglsAuHutf0SsvQ9z+AfOGGl4ZitFD32hI6GZyjQnE0zvZpdEFoKCQFrSpwG/CbPMgNtJWQp+YAzebwDt/6KPS7421/HDTxof2kw0vwvucErfq1pW1U7YorLhJEfPr0S+XG37L8T/+yV+goB+5aren2w90T43TYfG6/tkUM+QJZ7K0U8T3SsCFfdTquynJq1rO4tBwuzNUJYOJ6XqID7yJ6J/LuwuY5mZPf4Woa9P9qyJCZAoYpRGAulumPvlq1RRGWOBMSMPh3pixiiYfkTd5pLNV8YMtM5x+xuDKRHQa9cEJNKVtW1F76d/85Po8hl9V+oWxAIfmuJMvpaJu/xWF/y7fSJkXHDvAVQWlYz6gsfHUt8WGCpQggqiIq6GQWalqDNax0XIDv81U5fxeHfnivQx5Z4Gj+N7To5KyCMelWzbPyhGitOGB6TItJUooWS0qPlhnOX4OOIJJuvSO5aUlJ63c4CrjVufumQHjVHrDmOHTnf6DpeQ4ngPsy0q0vg7wECTcvHFLdx4A1Jcs5u/Ph3MJ7BvyxcibHMQD4ecbuarZPAbddD0HThnq+NDBR7fDcvWoaxfqhcvL/LsS4kHRoWXDktTqlTS5zZ2Pl8mxCibDlHMQy/x6yO5fobEM434L3+zZTFTmesSYAL5eOX8sMFNSq/OlzqJp9+yTO+KgNVZ7GL2r+UKRm2BQ4oi0U7iD2Sx/O36gewQrArcmzOArE4rNutbJpitZJcfnLRHh209UkR8pNe7R3P1YL7MlB5ib5V42ffCchoD8eU8DeMqDMLDEO50/z1/PpvJE0cdMCUlXQlB0Z/fWVIe2q/Kp5XtYzP6+84vm917W2iDsHpawthyV5fZAXJ/A+N6y2FTvs0SuS64zmHqRehm57QhvkDFnXj5tgaVAK4UlDpYtknBC6/mOCOVQAgVz7hzx4YYDJ3XAEYxIzEVG60mAKSZrXG/egXS7I2NR+PmqndJ9INzJs7ToEeE1u9zO3+NkCjbMZ0OPAT0vivbOtSJoQ4ZgV9AzwN/feGdwMegihFut59CeDL4PYyFralRJq+/h+rpfAVJF6sHrThhHq2ZOXoZ9oUlE3ygMQ5jtboqMY1OIDzV2Qupgem2C1NmOOJIkDcZvE75DZLEijfGLT89wV+L88qxQWRpK7EgwPzcmiTeVp7toUzNelrJ1ycVliCd869Zwg4Hp9snpzBMTH2UGMV2zhgccCUwzZIz6xYvKyDNJdG+dyrr9F6nwZZ4LlkNBasd2TlaBu16GQsvB9Jqai77rpxgS1dQhMf/YuyoDdpGVbrpf9LqqX9/QYG4DxFkE5RVpuupg4ESM4nxqyhz94ZXRxG06Kv1FVVWVSQBHdpPAwrvRVdu6/1R4XYvLVAGARBwBMlWdDRMIkRgGvspzzQFGmLTaFB4e6twD3oh85bxmnG6HcGXBpWUQ3CgEDMjDdw7Y+trlBaHVb/YwSnaMCHBHbSbCCoUybMkE3nS3ejLnN0tLe31HfHICFFXutf9TcQ166SxppDzFXIuSHezDNg40pdwKKCXsPkSYzuzvjOMDST205lBWSMyIlX8KKniTEr1/7GTC9KcKGcbzAFHNAzSJqZrMXcrY/S6SSjkI+iIrtA8K5TcjRoS4Ru/+GECbpjMhBtvpjktKYe5p/Xgaoe9PLG43IUvmlPsqqOReyzdRdQNdbUeMVj6iPiL/+7eFHenB3pdjZg9ZLlya6x3Dvt0fPsAmCIWffPwztzKBzola2+zmV+JKwsGGwkKsRiozibySDV3J2BAZXr+6Gc7bUIr8pw1wCMYpoKs/kud6rk/LECfTpdl4nzaJp9JoTwIk/AlZK47JjyC++7lk3P/SBYafIVJG8G8/TYp+10QFYjyPUZ2VzXUUHhCGmcTd0/LpjQyv/re/Np3gmf6TY0xrNDotw46Sy9DHA1BmiomkfSI/ZKQ0APT1UBs7+zvqCss9+aWKY+yhjA9vgPXYR9K4aMlkY23DJqxXxsiwFAhLf98uWhBnt8oAWFQ3roeZBf+M5RvG4iqIfqk+uWoAKlzm5yGwxToQL2GEXb4Au7Et4aYopCOvpDTTo+v642E92Nrdkxg7cnAJTThTtVgqs79jxiXQcmauM/ud1sSn8MAUN0TRPqOzP2yteJMKdzB7C6YvTmEK6t2pIPMYxfMBZOSxmthJ4XwSy6OgczbNDfF1PmSAimkyEyQBNSlLskMutI7wQDQnfCWRT/JyAsP3r+Rfpd0QGCo1NvNBiHCorTxycK7GvAaDzwto1lzipEnIXv1Ofwmc4vlLyNc6/yIm0OA==
Variant 0
DifficultyLevel
528
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-NC06.svg 240 indent vpad
|
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1+Zq5vgjIkQaBOiSAU3c8aGVmlPNL5xwb+INkYtI0j7x6cUXt1Sv3wuWDuMn1EtgdBZmEfMmbw6EO4x7a6Pr3K0MHgL5FCD2GnqlaRFa+EcMaKdYhqIRVEYSwYfzNAOP8cl7wkTmjQxpC71gd+QopDpIYY8TjeV+mUzbQpYIK1+7nnLPGk61G04NZEWuDu+VWJ/4OMQjO97xdpNBbsngfWt/v+hsxqK7tOalCwgRytvmXQa2pM8q/Ih5sInEap2Uvkf41B7tyyw1SiATJBUhEJM7RAIy+ou3F1VvtQf5fK+oCkg9CwKyueVb/8vPhbswOzlmcPPyOv868XZ/awKc01+RuDqzqsHQKkQXuY8biXhRksLGvU8ACK6NN0PKk9sXoNZWt/ciWVMDK9SN/+oSnA+cSith4y5KOfbfX1NsK8NKpynrHfCChNmGlCtm15QmoXUa8d9Ktg1XqWlpO+MYOMU9+2LCmIyQjt0+v2Fi9G6HZ4l77lPLIf3XRfB7Y3MDuGb/t8H/01//SV0X3cse6JL51NTjCB2YVS+sU/cDj4dsuhvgUU6OvDody26WDG/u1dYE587XkPHCYlWtQWqCcI2DgMgc/fLytX4nv4r4S11g5K5H/vFAl4EI1GHRmLY1pwC4z3OOOTyEkxDOdRhFM8M5g5RjSdvGvbYZuKOEeJxb4LJP72s/dJAA2R+KzBk/dIVBR/yqVqmVZE+epaIAnInqG9XrTX5l1lHCtJNddXIs+/U0bCcavOKrYftI07Zwn0QPFFhQNjDw2lG2SsZP+PzEyurz2g+HtrnLpobtvlUXVp3kTYRV4Rzs0xat42PupSp09PG6+zbC0db/RRl9YC+Jzy7bUgXOGesKIEKS+Ie2P60pHgXBoBj3xTNHi6gitPuveBaf0v1mItv+C2s5p8EVen8bzOQ8yANrm2Md9uxnCcCXgb/m67BBl1uBrtPOEInSlVd5PVMGE1MavexkLSfJP6nF0BuWz8vkk+PNzR0BrAllEtXws9qPGBNX9hWMgnG3iK9W6ATxlKrphc5uaJxSonnH2FXHu8wWCDpuNcfuHIPiehSu6Cz6U9DnKMwDGNdaeL4IODwe9hXhVw5ywmnZiCE+BYYSTxBOUN0SJ2c3yaIc03AxphKYQ5LD/o0kPcOCxO9cZsWvZqmfze/HM3AvfnsGtV/X5o2MehAODZWFZnE6bJKwySmOYPlellJqrbWL1jLZ2ccdDxcGTNA8yKMBdDtcTpuTbkhuDXUDKEOQOah3h1a+A5H1dFL4AsIo1fl3Jyu5WpmxYxp72wO5ERUkM/Y635yfm29bh3U172DyUt/Hyk0DtHCXF9udJWGoFikhFtBGjjQyl7bmt1921/wLmkC9btRaQzC4gG3Qe+iAlCI9TnqwuXSSisHFT9iIGEn9GgAc1rrHSl2y0neeLpnmZHHnk0gsbX+YloYUKOSwKUeQC9d8Jm12lvo1OOL1wARHkOsMHwwdKJcoE5QpDE0/mC1EIHje8Gxyt9ZtjX2RJ9xCFomqIcE9kLBw1oTY6Kf/I8h1C95lNYXulfRzCAAZvhhJVEUMRjWONM1hqexz6eO3NIKRpn2JZ2i9O009kuXS8a29rQ3qO8rb30us1IinBQhKgCkutLtjXvSg+W/stPDpaEPc86EWOymlMDkchtFBBi7FrX1nXloPtz3cad4Fuyu9MF7Pk65tRZ/cWM7EIKRtsCB9+cIPxAbzBBtyCsTotb2cS0KXoVbVtxSgrDQGDJBIAvHpEoKzePe+py5as7ZYykzTeUkDzCmOSFybwY4HriVFNm/SvjlyCvdW/exltVgCZX/k585IUghejG55oQQVJ+vovKh0vbyKMoCgsTWLhkXChfVuUF8q+usRPRdNNvOfdyvcMoeMyQEM3jZgeEOn3/Yk7oW/bjhWETSWmp6pJxUvHPN2tb18k+S6tVfxMzQJEH9tbNqfniN9gJo62cnHIHCi/i41iAoKkNIkJQL+TPwr6dBnysjAQrOL5AmcVqLJZHFMzPGD/kNw3/znYAuGXLkiYsS1KYu7zWm2XKGZhQJeNdv5XbvI/udam7V1tlvRlFnlACxG9MblzMSVCUybIhS+HcMKYpywAoxRIQf2Gx92l9UOahPzuTeZO1iAVX4ocv5RqcqOb3Hyv7eqW1GNBwQNQ26WTVgJ3D5Qr7eXrtbGFRtzlDcDxmB/Zt5Vk5m6/s/kiFWQHM3Wu0YTIdmnVc+Wf+3d4DUI2hxqdeG7wLl6OjRJdLgFHhbCCom49VIOJwNqd0ctvXL6eg5rSNB7di5XdJ529hFwk4xF0JumKFMEMBC+1iX/Brj9KI7Gtkl8GNutTI+0zwId1X897Nag3HaeQ8pKSeh4opcspq/+vZhYcioo53PKhb4L0ggC08c8RSyNhSZHUKnKNV1avJl0vj7E1behjWObuhI+M4sfhmV3s354GHVQYig2/ilmCCGdasA0UK3bmGtMLBFL/t2NzO3yshr5qoBdEJq3axO8233DFNSoRJQkCo9N4dskalSBX7uWTScKjH3HwZ8YenYh9MjtspCvHvO0FFFf6lKLmobKVEgzOsmo5sJKvQdoCPoofLKZt8FKGamB105jIoj5dfA4aQyPHQIdC1o4CCblqsfKVkM1KOa833eAExEIloMzONUaNW59ZjSm3cTzFuYdGqabFncDbdb7xTf44FU18ThYV20/7mhwTUHNRRGTNSy+lP8V6t8ivNNOxTMD2ymwhMJI+XlLfJBIlUzW3z1nPMRcJXD3xBalpuXjkdJEqB7X8msMzcTJfM8bavqZRGM6ainAzeMki/EPKOfsfbJ4Y+XTIo7jGCHSxaDT96mSiT69QZ0PGHfSAgtwtzbMM267JDvjnLTD4tx6Pi0vZqQ/mRYBZZAUyoyB9a0eidjWIvCGuGEkGgHrKAgmaWnr/4SGTQ02grzepvXLy/AxG3OpQA/MR/XOjz6V2rWTX34S84BgCU0Po3RfnkRGP9b4hjTi2pbcd2wRw3cEVpm73eFxe0cnNFXdq1+jI92oz+zIIEPiIdgPeukl6EBVYMi0ONKdNrAa2bAWbwzBaUbCIA8XTqcrLTIKv9M0sh1BfF9Gbl5+JiYj0kgZh7CtyEz6Fg6Txn22GTP8S+AgNH+5kbqTRy8XcxNgCxYUbGMdnl6a1CybVG1aC5vTmUqdkKgA/C3NBpHYCRWs8d1PzFMCDowp7SCYpTnA9r6m9SmNYeAsUZAa8LjmNg7paHiuk3a5zDwSMSbXHi7stVOhs04HqNiprOjYlsyfmpeO7m/1Qh23C0zunRQUnuQw1hNpV9b1RxQL1GUi36atG/OeZTvBPnsWURiOYNRlbopDMBumWl/A5/iXyCX6VfLdCfDlJq3n/IiRO1wOe2tmpxp4NUxQI4n1S/H13ZBAep+2XkI79+P+4Rar//LSwIL7aG4BqnS3QGUp1i6SnIJt/9ECS5Fjhb0VUE4FEI61gENCF69saXZ5y8wzyh46w78ifza5JTNaT56sk1wT0iIdoHP74B2cRf7+n6Cs9alEpAKYlk9Xt6YYGnEti2D/ymGINN17HMmrTdsxLf4tFEP0G2Rsxfyc1doxw4kJhvGcEKvfjqQy4yTQxxoM/z4VuTUpaC58DqwLQCcqopWRDpI4P+DxzDyxAkQleJb/HapEpaCNIRTcDKHUisKFPcKnte8CWbmLiuIg4XW12p/xtFF8ETC/enFJJUWe+jFqGg4tp7Iu6YSWMOce+vSrHezr0MQcgODjc93lPjakB9BckKBVRrxWLm8lPIHjYG+D4+740+WiWP9GpXpLVStdU0ZUa0wM8jl+ji1FeClZ6o5YITF+VmwPxIC3UxPi2n4LoURdDN0piE24DNgSy6s0HkoW98szZeNPX1LvW/Kcim7PKiDgVl1u2u1IR+a9Dzrfnw8QNL++NtAtbOdXjgSPtVUYdx0YmqeEZ9zpmDNgkWnvvGT+3LlKee/06t9O4xb2nwXnh8WLavWjPSx6ZcfNdj0NfaKMvlAsfdEP8d4+Umwdm4yvWF9mocVieIiHVSVOAKmyWf+nw04cghC00TfmRwWeo9+y9JitE1neX7DfwRN1eyeIjfvPqE/UQnDZCCDnTF0oGNYSfibOjaU1549eydh+WKG+nyi5I1+ElNSq9cysUPynYJLHTBmYySbA1FOETR1e+zBg3HCyiRugvArTyafeUg3AdqQD0RVMSdQWuSM9pkyEyd0xyRiC2z81+j2YluaC4ZSEqkyCzfw/P+VKY2KMQub+XDUVs5NG+92CwZsKr0EVTgDmi+VEWGh8Fam+i4F5/m9gXDOWckhy2R9warFb3oG1uvFl6HdHbmhO5fpPp4NKOclmJKHDER3P97DbLsjKb8HLtdBvEEcbYwAiO99iF1RFZffSDJP/agHVnhc56zX6V1Z7mW1NtBcqihFh6YYme4eZROB6kwig8Ib4Q90iIMqIpt0n8rFvLpt3bFlZtAHT4dVm7yEwimq8VR61rBDKbj2yR3d4WmQgiPONUJYbEcelmiyr7mRonMSMYN9LBtujnl0zlvrMIKRPytB08WeDmg/6siTn43wTqm0XyxPWqLYDdSn3Rrsg6xsu+rVmBc33E7AaW0irE/Gcer3jmOvV8+/Et2c82Uj+latuknrfAKUpfuTB82jYiTrCRv5jZ9n4FNz6Y22+v1Bx6buo5s+OnnUn00xFoPEHYHRhEQAWeQpB/ZmdqczTIyqaBgK6i2ZKQMWsUbGPSbW4cMN6QKpqRNdQx7RDT2X8a9WtZeQOwt+bKJgyUjxmeTrUP929dVb09pTZxz3dV45Q2v5Z9EIumiSJ7GL1xNXFe6IGVuwH8TB7U/W43If0BRWSzV/hBKO66MK78VYx6B43irKkaOHhYVyq/8ktGc3dQZbDz7PzW2ElnTdtI5TJZJdxL3c7w5JWxcovpdBGVH2ZsxjvwMVZ88b5xnzoNPtJalgz6FkXB7eBcjVlymXqXskBTShaTJwx7OB4CU9nvJE4/a9dqpCO5QvTDPWUOgGhM6H9IUTITLEqF4a6rrLK6CdlkxXtSbTBYG9ZG/crbX9Tk4haqhOnP54YCgf+DWhuiriFJhcGAIYJGZOP37SmpKZrxK4RHNjjqdF7xj/bm9S289lHSKJEbcNX3MR7k3VXhb0W71/fxntDSHjg7AjyXLOzz+w7l3Ql9ULEiKVJbs+hPwkE78cXzL5YMS8dZisO+DBjWba3LOszuxNUzxB4My3Y/oEQL/1Wxsm6WBLVFk3wIE5nxew+/y1lo1ljvMCmHdojtLORuzuDL0uxB5TUXLI/g53G5Ev1Bu+Q8tEsaBEQFCyWUNmAePCa4jDCypEmk1mvsAq+YJtCdN04e91/UVCxMS/PavGjAA32TfD5iRts2LeAO+tXuYVETTUx/j9D8aB+tTC9T/c6B4BqrOeSi2zypVMGSk48XjHneIduFiYAn2vNjetA1669hJIe4txFluMMrwP7MBwNw9jjPfn49nv+iJ6iE6L5JD+jnoLCXHWbXiiHobl2yPaq0mM7Qah1VU7/AMLAKfuUd6lZtYlAhPnQvKOCxCHrCvQ7SGgsyMckV3t0XHS+zG4vSvZ0sZP0Jx/9yzaEUjKWWNkhxZGS6sI4AkJquAibxyH96hhgrcdfatTNhT4EMEBtoXaCS2LaHjldWmmwLGOZM8BxJAUVJKY7xPOgqHfR9uv/Mp99mhZNFgYqY5iw008KbA3UwQU0fhHPob/CxEzj6xNz5G5S34MoG0Pc1gPkHWXxAa78iO+eqON4kRHyBQHVy0+NkM1gsAL3JyYhCaL9pPcaQhmbpefj12oL2iEfvJTXxrb4rymv3OY6dAo4wD2ur11PpMOZH5RG7/HdSXheF9yCdco36lwUOiB3xSewfpjJI9RJlUKFKC+izabU1/0aA5frZfStCQPANbYyR4qnqF8IP1YKE3ZM6Ybuh3HdAWWnfd+edfCDrTzhXy5NhU1VnGmqHQgGG6EJpWVR1NgQ2sMyoTI/rWCXGvaQ8bQYXM+3+krPE0plDPWWf9XBmVdEIdAm9UmO6991XMAhSJ1scMxRM/17K8PLEVApXUDNQv5s+V4d1EE4JpQDF6rJEvzIGyh7/3LOoRcdtSyun2KnWsxqsOFGB6tz28+tTEoTVQsGgo5e3F522eHXU8n9ao7fnqCY9ziHtl2sJDYnnw5hjBfFbaU7rtG+nj8KAsTs7trEtuQYpOHYaSgHeQPeCfxcgs0sUmDTMsQNZ0KPkgnqALCi2w2eBR0urQDIxinUpFlEszDQt07olmd5x5vV7d8aW4rpP4LFj023U41DoFWNX2aihGkRp/ELYf3ZGxoys+MNBVqTZJ4AFf9kenVqAQ5lT2bF7HtGdURfVAl6KiTYwGCqVvaZDv81hQjFSNlB7wRUrMQ3OD+mGbcFOYfIDLSf+4JZfLp7LI8mF9zPIvPz1Cr0oVQw8LxyNPfrzKJafzFGyie1iOPAx4w9K39pTYOPLw86Al/LBCwihb1gUH5CDX9eUxp9PBemKksVrM+sBSEcd1ftPwkWfbO+WB47C4HzXBePfS46+yqh+C6jZFO7aWdG3rfkAS2Woo869qiJ4DnOl76URIcu3DS7f+30SZ6SwKreU6dF2O7ipnePTo2uMY72Egh2deYiyDvJzQyhEeBTFwsl4kUTDYyW1QC9aFxMNwjIfDuH89R1IpoDFTcGcIUto5hoqtemWXQKN/1JdAXpNUAwIyilHHgOyjjY+TzJa9wMJ6E4zM4IWWPDRCaN8Ei9tbDFBIM4WABVm319U8raOArhH4Dy73Vi1A2viqnDCJcJ9cACzz1YB6bn+iPZ2kQjTyFH+nCE2S7OBS1pDi1PLwlMQuwIaW88EmydDZRSRupinoL4cWhLNqj452OPPCBiYDNCiLdsRSuuSKEpU9JHC06KNWwpmXP0/GNOzcDKb+6wn9IE9BQcaj+JaMvITuefD1YJk0WBAHFFW36/rQyI0yTE4O32QWZ7FKjKNIhTLCTCrJV6iz2GApKznKL8Y8xOY59zVGOM6Qc6/nZwmutBkyDsfFpyWoy1g/YUzDUiXtts7pJ4ASeyxRz81Nl4xs6Ggby8a68x0CUqHytYwYkuEpRb6lmBvzv4x5oKuoOk++GGw/ZHNFUIZgfqr6vF/kCnmPMdrbHkbOVgSXCb0iyXzItD4WpZwPrgtoIVV2u33M4ksoPjmQywiSkPhFur9muTsMO53b5lQh5VZSFGZ7YTpLTrbOqTZ3wcS0Av5PM8hHlJyz6CTSVblu+ZoxMrqfcxMN+ysMVeiJfH/NIN7LoBmDHI4lD4HXb/VG5eSVLpVzBCgULoQWfy2vfmZm5cabgq+pZR96j2AwA1NIX+gT1iY+v9iE7S03p09Upy5xC4b1f+4+ECxdFenGRFPD5/v0Jg8j0Tsdq1uMf9HXdKrqK9IXTIbM3ccRIcMDm0rEnOEVdu3MsoQYHs5tbcIr0k2tBukblvDTqvduXP+TG2dWOatU75K/hYuBFgpWKI6EFOZTN/G6I56zHno21R+i27n1yllAxnKYK16HW3hHfw5n94GGceGcZZPnwmzJ6qxe4fbxL6Y9CWKdWO48GXK3nJzvbD4LD9MHmXk9nGXGj0wKQqAVSrVmt08uGkD0Te8x0JHw0YN74zRbLSpqe3uVntig4mFeDIgrS9SPHqJ9FiOCqqw2k5mmn3ZvHRKkQyPYcEUCZXT+2bF42C1Lt26MsOTTDqbDRQo4p3t+kJ4Ot7rki50nCnw24wmRtKKnbrbQ+AeDWFFicR7Uym8trTAFfPt7SUcemDLz3Q8UdPfkl41uknfIXZGD0nQFfDGFdLc821ert48pHq7DstJ0nGnf7NkmWerai+8RYvreBDiggPKZX5tarov4HTB+UTGXH2g==
Variant 1
DifficultyLevel
530
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-NC06_v1.svg 200 indent vpad
|
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1+DQPJrVf8c60nw1TMaZxan3V49M9JZikIWOgnygxZAzmoEnc8wECaJRerTIO1disAQcXG0WjHSPa7xpHL8UafKJO8lOaWJ6oqtfK1hypl0z2NjdLNXQjgX1vYKQ1CEE9vVcGyr9q0aWJlfDTdn7uZ8mwrk6pnXCqMTSCoJYBozECTgugpxgZwd1mHx8Ag7OMi0HN9/pPrXt3rNRh1pmUnfba42aie6AsCQ8dpF54/pkvBT3jj4uuA7eQ4LctHW6poPyKrZNkVEpVrJdu1eeasw/wX3nBdF/545o0E4PRh22ZL9RtX1XyDMDqUt91qeZU5coWjd9ZhHN3wBs0L8rFtpqGuQc0L3IPZkLYll1GRQPDYspYuYuP/MZFkJC0VfBDjBihZnAhsowcqZz8UpSQ354D7XpBdnRTej5qtpyGkK1c/jN5RlbAS1gNEjLJurlEe0OMs/iv3IJPCkEsPQFCgkbSZd/5J+26GYIjnV01xyY8mcp2UexUDESeVC9Mkzc94abYWgiazsQ77K4tkNay2fJ2ZlOaZRLDNpcWWFVtXkwUuEISh39/GWatUumdXv3TPHgH6gRPQovd1D+iHvs6j18apOIpHsgppyXvVvRStWqKZuaTZxG+kkX5gRQI2lnxrBlRN4xNWn8hMb1yhwQB0veL3YWCFtNdhPtu6qy4uj/TPDnbXPwO7mzk+KNQbb/5zl9GhRQR6ZblHKLANseqE1GruFYePK8Goz2bbetvcoV9helul0VtD/XnmddbEi3sPy3rp5G3uqosW/gLOqAEwOmXagLCxyLIyBuc23xRF4fY+pY4+FXrINA+aetWIPDCmtMaO5ep9BpJq7rY52ZkszDh99mGqeeUx0tercIy/HWf068XH8HlO2MYq6DIHm+elNfW6TuoxTDkltyF1LUK/M3ZnTEfX2fDvpvO3Vl85gQ+4j15JGYsvZ7crjH/52NIVNOf0/FbIytr60l7fIpuqHqqnUU23lXGlE3/FcuKGerURkf9aLOt836iQLaXpuZ8N/HuJXJkCOikOK6KtwJ0HANpTxwoA1K7Vb2qu7hcwRHO8qQAPnMo4h0H/9v4zyIg3aFSn0UmyI7Ru0tFa/dUhcFT/CmYZe5W/8syKSKv/86eAZhqAUusQa6qgr+/B5X2DC5OmQ/73ESzyOzbhzd53GgxDn4wSqsF2CecieqiZ3r7Y7U2d82611v9w2JCEbWHUhGnYEk0b83GtiWAeRhlNioQ9VEi9L/gT1JRGiwwjsHCFV2v0UDI5ARM1QcCCvcrgMqo15fhqQYSTlBkmG/dpn5vP9oqx4EjGOEOLQrIirD0C10gLcfg0sSmc3+iykk2XAZXOXRx+l70KE00U2Jz4pvGEauSXUAHPRBxGHtRYgdOIdq20FP2502oFzOAKdqbMP6nP+6mN8yrvTpUzDu1wl5YY0ZB8xn+9HJnVpkPBgz9XJr+5uPyOtPXu7Qj3CFJ0EezUI/AD+9EtNIXKG6CSALWDJU0kIqcdePrwt5ZKMcfvAYyFDabv/dvegcJgIMTxa8Uvv6hUu62YhriW84j4NUMWV7u8Uz6mBJoP+DOVP0fTuZrTS3ugj+ghGk+jhRXevWsEER+h5ptTPkjWuXgblsF5a++hJ2BbpsLOs6MPJW0JaejPMhzuM9I1gETWxd0btmgyPygJpav9zCqmRPVo9S2P4D2ayYSV73x5nxU4YN00BWkwWsFgpqUb98T3YHWzUmIiDgg6eQvbiGPXqKXvnmH8zrnBDHevRGlHfEhIMKEf2pNp/wuCHD2Jr0TuIkk8cw3XI8k7yzhIu380hVPs94TTN8HGo6ezUEnu0Gsso/RFqLTMNotzFUqaF6WRJoe8wRGGSpAzaCcaUKJ8SvV3XcZnQk928+pCGe8DPAYbPbqLvRYqS1mbEioe0ZD/2ZcUd4uDFR0Ydl85XI+fP3Q5hACSLxcDLH7Z5qdwLAMn6O9pa7GY54sAma3FKIXzWBX5LiGic1G9fy5zE/m5zbN2dpPftaZvXhWhF9OBo7IeqyhMOp3rjHnDO6zJOIv+w3I1GwjrRDfDdL/91s2hcuibfPf2w7lXtf6YxlG1jZe5XGR1U8ow2RI2buMVsHJTBsMzbRpjf1WtrN/QBO3UWcjF2rTfbzNTMBS9NA2v3D3ruKL97HSko+xNNJ+zt6yQGPaEd0qKE8ZDWEbF85nkxc5KvSSxiuYJHIOGMbGjO6ftafQ556MX8pQs39bj8LbjoKgEMMk6Ic8uCFb77bVFds0RXPjq9gMf0qnQzvU+TYID4VH6xdvq4ibXLKFAQ4L/aIS+OrlT698Lnj+RRXiWeRE23vB7z9iDiTEdcY3UXA2LKULXW+arEyXzfXgR4juOKm/5EiRcKC71M46+0n/BsC51020vnj0tbwfnbxyK2b1yldD+PlLWy5uno35rYxBUBxNQeWPSh8H6W7OhUCWbKRznppo0y6I/nNUjOoOl1ggpteXDvC/13mBFvB+Yh1wumSSupuBo/lTUYwZxEajvYId0UH5r1CxiKMdX2R+A6wb7DTBwMO79pCdYwsbZb/zz/EjsVqVg2PtvOfMIcPQBBs7VOE1ZV0GAJA4skcqWrSgawUS9MW7DkKyFEdkAOsOoDj9fWgWaKZeMRj5kzlsThD9TMMzd6Z7lhzETly1vJGW3jOdVy+X3xQqEIcKyOPhB7EGeh242XPYTuDQoU1+4kHSfzxeocCfbl6QXk4b0LI3R5Nf6O8ykpzoJX+IPvED9WXfOKrkrX9MJvtpz/UdtbNm9JU1ibuMvZI8C5A7ngxt2J9oYBkvlM1JfSAf3bwmRhbupzSxuErbF0NKTk5QayYmvJF8NYH17bqNMJqmU5FIaCwyrDne81OVlGepNzKj5XIFPMHUtMqoQ1iZFebaoeQ4CO24Uvw96RWA5+hdxb3vxyltHCTTY+msco+nHvv+VUeohWn7zJ9fwOfZdd5Nk9xYGBhdh7hKfsQl/4TDZlWvsjf9vO0uq/YntFBV49AME0/GA8OInCwfR3llusBhm0ToFQpBuh2wBFlnlpquuaFuvU6vYbiEtGg8iS70+BBrFRDqywhcRO3F5ZUO+iLQLxJLjY78AYYrOlKlb75o7zK6NulbjHUoY/BWfeBkj2JY4btNXGRIs6UQrGenpK4Tt6pAk7IIfwYxKTjixG/sOApM2RXdxQRwBUlqCzZVz5Zr5jv+EgLxpULU3VBPAxKjspm0C+pITFJ4LxfV3dpREy8BdtimfflXSRsOPmn0QgRFo/jGTbAp3bpOGN7GZDw9c4c72EUey9EpbxUkfiH/otl9xrJuiXkZRfankClHlb8qiHpZK1efPyADcm1yOJ19xYDkBJiiSzZQ3wwSDk9Ky6k4jHrJA1mxrfFy18nOu9sd8aLYC6E0bhJjlFK5muaSR/lJoAwmikgmXlDoZGy9aYJnZrL2lYIVE9kWFrHPFD0qvKP3gPpraM9fsnH0Dq2xVsJxg+BGeiayeNXOcE/xBoixD61wRtY1P0YCOIS+OqFmYgIUqsD9ZwsGwhyfA2pJ+t1/JEq+8mJSFZvsP4a/hkk6xW+LQHGgiaUaqLGmIuDLAtjeO+NWnvKOmRKy7lMWtQ4AlLOLx5fJA7MnTlf6hNOuu8mVg80MH/HEhfoBm7085Ds9M+grnCBIPiC1ZeT+915oRg1fV/7Qy8QDcj9SEuPDnOJOpFc17Un7GApOTT9+ei6DAfAGxDDTcroMt6R8/8N/p5QXnkfb+ldwI5cnkqIe50CjtbyFVtDROv250C0/ANRHymsepWnYrvlKw1TClrnQ2RBlhcOkYyLYjwstxh1Z3D4VXrgWBAbp2cK3JulCQClgEjtrXs5N1oL1h+7BJVxkFvopkROR+Q2JkjJcCSi5NSYHrm5AfnZeq24BkKcYvThN69m0YdtpHPbEhLol8pUPd4fbLt8F6zf63URbJtvDXoW7S49ulESvU11MOBag1jD2+37ABgYpFNtdE4RbcWw8H0gBA5n3inBVfMfy/xg10L3SExQsK/ny8cep3B1zn4NWMmt+ne/lBN4yv4lZTC5AnMbGl+wUcdG/9wtgUjtaW7npGMncoeCh81Axi/QMgsSe+jTJU2ezYpBjAwylN4GPfL6Tn7j0cNppLC3Gb72nbW9YXUmJFe85Y3K5yE0XtqFp7aBx6a13WVavYtxho6HjkE94fZNI/sLI5nkMMPJ40YH01v7G/EmDU1i21O/J8sVaQixq/gjlc0W0mGnE/9XpFlY4ouUamZQ+a3pW58lRbMJK5jD0n7UNgEbpuSiPPyd6co+Z3VUT+IWi28aqQl9hS34QAYuAUGSwsAqnWavU1T7M1HJSDLscH87CtMSVaYw0gwmkYypTpqpkkeTkp0SY8g61KFi9sroSsF9aeBZ/+4w4B4gDziono/D4x6G3F72Us5W7EOzRJ0rFVkrB6QVDtodRukPCUZDHyTTgUobu9rvktlyPMbNqN0zmspbX2OhNe74MPo31MhJB5nkvnwWCX9c8pa/LefX5o9+g/4guX/PmjoqmTznR68+gv50f7YSriH68mcF7PpVRp1kKLQDme4JfLC4SIDVkRmBq/naU3yXWRRerOnMk0GPQOl0W8LgA3UzDTTVhnjnyes0E1s4ppUxmV45GQm5JGrgAJU20/axO09XhpM8cAEKKxRuC2vZ10SIr6iIdWC8ToJpsrA/VTa/iV6uVcTStTc08VxPt1d4WpiNCPDMIaRtbl7uKCH+xuxcZApBAEDZ/dwqjEGu18XGhm9eGp3jqQyYOBFedOThgiqijJ8QnBZVqfQivb0HodW9ZvCWsgrT3Sw0qtJaY7SZ29r3XicMivJl6Hn+s/skW4pD1/bo+VhBJhEPp8OKtBPnV3hGTGEiKhnx1Bm+yYgTqC0ZBPf8piY/m06ncRTP7AaHKvYcbQZrF5L48/eMh96YHTqwx5eXVzk5uZq2L59H2p6maD3S/a2GnPtmOHsRanXMsAbnFA0/5OI1PoBLFBQQwjcpO9KvkwRkj0fhibKeRv+qm86yNXvJCDANqAJuoh/7aGZDGexm1QAjxv7ISzvUunOuEZE2FYNf7EHnB+5bPundrJMocezhj6srJFl8TSvXKoPmprKPJt7GoYQVoyCj8TbelfX8oh0YNimksqTnOvEw+VDeCccLFBCExSJUxTbELvsGrBN0BTqJduylbA3ZwJoPaJSNsLgjPHMPQ9JhQn9Hcqn1RvydjugVbDZEeNOpNiZUmSfcHc01nD3Y2pO7ut0HMFT301udnZA8Ag36gil1I7J95fx+eLp6DL6Eqwj0t9fWCZ+vHTIE1JO2OduKGLY42hcV1qsmg9CaRH2C59sMwzOW2lO9vq2fHotyeM60IuZnAGmCiXQcbxbcvcU2MtU9VWgah/x0YntVG6lZrbUW1vxDJEf2SSAv4TU533V3GkxQDc1c7qVF4lAnr9iDtIdnKXFjPCD6rUtnFvAL550JDQW7s7BD37z1PFhN/Das9hmbtQ1P07MZE4/Cpmeo1+0UQjxvh8XKTXxCYU5b+UxYoTdY8nfIn1+y6hknshHD0+BK1zN0uKLUxdNwa332SwUYe+Xf62j8u3wddOeLqFAbygoY1h7JC8pW9HgjccdwWcUZhrgVVvPteWpr0gxrG+EN1j4qskXniGV3csy3eHW84OG4cqyI7Ktr53jLr2la6erPR+NIoDlOFQw4nYrlOe9cyAsRUGfz+dzZ0rJL3xcIGlLWUavvRFdJa2RTlpOLp0m0Ce8VqyAYwB07hrafKdrbVMpTzUhApVCXmu2A0B148rbe372FxL8PM5mSlvRFJjMRwr24UpfVP4Uh74HwoWdEkoIVz3Nuw6G5zMlrfDo83xhZ/dEceq3DYqMlRrlakREDXiBtTKyr+Ih4GG2fN1btZ2zZ+JMMJ7SotECtIKr4E9Wc6hItvjXfRIuh/p3HXw6iuY9ag25jSvhTdZtLw/GCY6UztcYhPC20iUeZ9x8QrlyGQIOM6GO542cxVB1y3ndixj17Zzm89ttUOucEAqDAKXiFkKPtkzkXiuOMjBKV1M5XxjAPH6fNFQuAE914SGmS3mis0TMmSLdeHvRcs+GSVzI1BN3vx3fkaqPr3SZ1aW64rytRRPf/UrSknJdJxFfHC0rm7gVIoE/BwPhp2oFemvQCyC2Hc3PfZRqEhqd2MuKVCURKSM+w/mjMudsSI5L+urW9aRSiOSrwdxjRbWGhVlOylf1SfFpJ97Gw6/g2qzknD8XL/ZWgV4Vno4ww/n9hJTvySRCnXBawTAv02tN1nAUvdgCVuc+eP/QhRuGPDfb2PG3RN9qTLyXm60z2ht7Ebi2TrypBuyt9is2cdDxfzvxfh1CjzR2jkkDrIkjjPxFy4rLzBPoRHJ2zqymtjPgrQI7wjbSVtz9Oq+uVF+xMOxnYAQNe2UHMKLiCvaSne/+bCxoFiite0/VQPQh8aGWX27OmWJUWSgH0hMLJ8ZrSfChgGLYOW6Qm35p0Ek2pRQy96dorxqFdZ5xtAQ46JsM2k4cwq17Hla1QuoMwKqGHBdfrSw9r12SZvmEHbiwVuBdlNGYHEsUVO7Edv3HplRLXlJNgczreclP+O+Sub4tXJXAJfu5uzthWmVOIFwro/WdgI7r8o1yoehCaGnMX5SgUo1sWDAj2DQ/Ftho8aRRXU9bYyyWXx8OR1Dq+CW3FKGL9k1KZ4E+4MI/5ZEUcbd/TqxcWRtDEtQakeuLi+0eES0MKU4Ce2j50ZVvG3IgkqgZhgwHD3sF4YkWdbFXwUxKesjBjVZdNYHB7l18Y3382Z9on/ruFCAkF7fRJn9UF7Ox/dljV/6CdgRxOgOvhGUvONu1L0LiOH4Z4Z/2UDG6T5sdRdYghSgwgtPcJtvPb37bVg+Bpf9yAmNxKgr/spVnmgw73iR8L2GeFjC53T3tOCZec/gA3wNbZX0BhdpUqjmoin7RQbrZ9NaHQdM7YKTRgXp3+6qwO4i0nQ4V/6db8Ud2hz6VU52o9eQ8UtS0Lha6bPxRkDEv3yUYGGq1y4ht0dX5Pxgk9SAex4Sa/AyfGlAqqyOgiUiog0sMORaLwkMHJgW2N17Po/QX93mWjgvuelp2Rsa8ujngs+GSQcoYuKSY61FLq5ExxeqgMlH0Y6FaEZqdsHw56ZcY7wuE9OUY7gMJmxSa64ed7J8XIGmLKiw1s8CuDPmOCjoVOvgX4neeYpmU11Ex6hZKzJOGthgl4D/CQksH7ZrD4RnG+IboXTA3bfDlf+OdGldLTrXugWm2Cle3gKC2rBdHmR9/hluH9JdTVmzyx7QL6CgaBmJgMa5YS2fiw+EHuCippb+xT1cXjlCYLd6tvl8uBCexOioqioX6AlfceqebsuURmgexNUuOwLVApBAxHyzMOUagxwYcJ01gsaCeNv0e9JpsVUFCuO52E2cv0j9bTA0fXvUOrmPY3w+Y99Mi5o7yhxF0VyvJ/aB7wuY7ET8WJCHgHXFUd/q2T8/cClxdx8HQxT1deBdbHUu2SpvoRmceHy7HqxgJIDdF1LOn1zd0GIYej8FPHVt/tpEw3ZwaQUC8wm8CpRIC2bXfK+H+w/Nx1PZ2ryJsRJrsOECUX+Ekc+nsGmyqXQvzx0NfHwdzXsz+5oLQwxtWTrS+vXZDQZ79YShlLtajY/hicFVZSGwmwq5UyMILeS20HEPrIbN6VUfNG/6NGFo2soDGa35xiIBGyLti2EAs+W5vhjpOv0m/f8mup0fxI8h00w+LYcmNohWru0z6rHqTF9kvvmrFhTx7NRS5b+IqCk8akdgg0JqulQF08NqAcx1Qb3m/zz/NWMmYxLnqV08EVvSAGf9obRchB1VSrCwwuUMu50JnkLPLKzv6fiL/9LbWJy5vbVTL7tJJjZKiIc4Pb8XGl5FdPh0HYV63x1OeU+8/jomEOt7brGGAUxmMT15ZtDtRxeTFMpu64ozqdV7tMEKw9+ht+S8GmYiFOB4t4K291rGEEijqtSWS9R6512PuJBrRILERH6Ik5ACUFUA3jB6+CIdFjfYu56pIIyt67URvo+/Ulx9y/YAXsymUnUSUTqfHaDx5/P714B0SF5P5KCvJ/MUxKbsYHVsNvv6sdh4=
Variant 2
DifficultyLevel
532
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-NC06_v3.svg 220 indent vpad |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX18/1GnjmXivwpsPjp+dvsfpjhmnIgF3KUjMvvFOGX93n09mNhzowTriqE/2rFLvZx4ejOGnSATsTWKW6dm9+AnnEd4qShwTrST+V9TmuTj3sEbBpsmUCIAR19DCw1qYqEkBuwR601xQSBeoKb1a57h/w0x8Zkx2F3t+5cDjFc4dotMI4nD/C500Z77U2qu3Bs9isE7+EQSszdnDafFbjDASUYMeDZmSmx+FM5YXTZP5yt8ch4m6nrOJ2F76IqRr50YNBRH+/KZrYvn7mqtKixVEKwW7qkdNO7mKgIl2SdLuMj1N9z9g+FUrCY7wHmEgCH1Rk8Kedz0+NFyicwNEroMhzzduA5QUW+7ELY6S547es3n9RSfJNMy91Ib9hw82epEYB14mrmRbw5F8/gGKtwZOYHi7aARxSkZFoy5dVDr8mCm0oVdPvxQz3ry8PKyGrXYcGU6qs5NovDRh+EpBj6ptisMVldowXFOQJRotALp5o3Cl3/yxD80PWqNZAtUmmn/gZRAMvHrQI90TcmHmA+KGZzqHTAjU9aOd4aPP/oVonjhsT5DtfJk1d+6aD6ri+CDMk0ENvSCwUejrX9veWATjtFukow7XkXF7s8lcZL0L9sZpjaEphp1L65TP2WRFD/SrZsnuaYakRsFlFKUv+Ylo4mvhbS0OOFPKyakhBIzWGTjEWJ7Gqcf/UU3xrdD6vhDkjo5SkxrXSKWHvHZpR41XKBz6zps63SMApdiksDWqPTVCp3mbLSBKJ2jQCAB0UsFJ8VUnDP1nmIIm1OzPgvg/sU6ifjPxmiQqEDJiuNf4BX19xMG3uI8I8vRf2Nk0sHi1UG9a0318OZf3MqnaTQubVTp7WMU/kdh120uhuR/cHG2gijf4j0c7q5GnmE7OKCtv3/cz4mOvyDl4CIGk3ECrTKvVD9k9exnCV+zm3kjSBqoalldtz2JYDpYV/yD/H2F9199hAsNtj8tlHJZ6Q6yOMgyUqAWrX9GlFjwzHY/UPTFNLZitazejy40/mTGQ6QOzcRDLjals5TB3z9/LPY68Aj1OfkeuRGNU1g5AvqPeaCEaXYaDtLBbhB4MbUbQ+EqiV2tI6dN/xGB/GFCRdfGdoe2KX7Qz4OE/U4zL2RAz1uu6DZPsWQ0E+3vsYUoTAccGVlfcbk1EqHUnAB6xx4/JBiwe3zZrnfqCQ9+vsp4wBFTyXyg8fa2OIDn2hV5NQSxy4EsBFNeod+Ny7qVlOxCE6PqNRt3s4hzsjNheSyi3AUvFEOA92NFRMbWWvj06o8USoicIcMpvAF396EvWRVP2cbno2lNtbfd+ngCbh39mhPpMhluyJ0Wb4dTPSeIGG3U0GF77gXfS6OjuFC3HRRDN9/BHx4JokeLge54PwLeFxG/QCmfMGFFgSbnMBDYrGewkwbqkOWDsMlyqnH8vOGTabG3rWzfLQ6UyTYtJPW1G5AyfvgkDlkki+jZySkIQoayAZ5czvIOL3lOc5tvM3i+vK6wHYTnhyxDUzD1Vyrx+QZLg5FJ2uUiOPqozOTNX7VlTtgBTrOtlBgH795lKyLcdOHsfqcn6tV+f3dujL5kLCfltgcFB1a23Ws+oZAUT5J8q2z6TIW3VxnvUcNvRXEzKPx6ljA9/8r++ZTSfHxy+dNM92NzVxzfXPxGRVeHTO585H8PygPS4yDgyi6oPCeAAvUUdwCdTKrEzWkafZLnGnPtcbMZ66RNUdjBtrVD9mNDlPifPAvDrgaQx053vyO61imuFtC4ps2zNWSxZhydP6FAW3hLal6kNC2VV86UMr24D+l5OjRN4sEG+uD5xBolOEAq4YSrrKH+q5BU/AL8M/+N13lnB+zRWw4Y+kXZcRAvHiBRY5KXqAG87lUCBB8Zi9Y9Hs3PCP6x584Yq1MS7YHBD0wbgsAaeqDG5ej/n8nDw0qTVFzeqRBYt0Rnb32FZnTHhRWemQt3/98F86H+nwUs4PEeaUiRcc+xOnEhJYOHop+4JtYERQEVaa3xX0/X9jUz38xRCAPCDEUc7SOp3n5HElAQFXIr9rY9hhi2cga63Jfntb35vtFadP6qVo197FJlZbo2PRSJK+Wo/AvG8+FKlrnDtwHsnfuZ+0wwp/5ZtKEtFUKsaRolNXIHbAwr/XIYa3RgdD7WATzYq43CJvy8HmBmrt+IBrDZEFaCdQsGUN2CXd5BH3T2WiVB1VPExc/4VQjFJzvK3TRHsAB4EsckRE9oEAPSHrgulv46VpFwgt0bNEjJBRlGFJYfmzHkYirWSMS2PPipc2QOZtS4BnI4UoVKJPc3IA01HHcTLsEbaB63Tt6Qki5+vsI+E9yqHyOhJV0PIAO3ajHJR5L4RaE82rE138xcXixj7GoebQjD5JAiyDn7UvBqOvxmXOBLbJTUnd0i34lA2YQN4D3MHA/cLTwRA2gI1tV7D2m4ZgGj3aKL7jBNay2p0tBQNo+PcRvYbdiDaXwjL4Odlvww9JSzrN3nxFxZLBiP625gdnilX7vUJUT3MnPoMtk5OU940f0vNxKCibdmpTZq+7X0P0rZSqstbXska2amgI0U67N0BMp5goJOc/4/nLl4/+/TPVlhydZwnyvTzUL1Tdy0fZUqRQ1oDK5gumzfhrZ1uJxjyRAp5sLN10LWdnLhGf7uVjvcLwe+pRVdu9gdTk82QSEAPNz1UjGt5W87L7Is3LHuRwd8W5GQqjQJFGXi8vEzQSkmveV3cBNH23CIyBWrW2F12hJFMOks01OGUHUgY81coHA5O5M9U0+qkau9tP+FJzuVopI9jJk5N04brVSoU/U+EiHxxzZDIVSrLsZMSki5IhPNHvUZ0wwWf6eammTkqEsAVUSORqGgTcyv/frfBtn+hT8Yakfo0oI+MY8brb03lbh5v03aoiuPg396Z66anRoi658YWxSHPYrjLUOGRrm7mxtLqM9SlWFmCB/HRBLetnlXCMDWJEGx30tXUPSMgX/Tm4GjktXfZvTNc46czi3xJQHx0MNWlLEKKy3JGHqcxM5SRCi2WiiLpSAodxRaWr/Q2vYrHSSq8dilnD2OM3eKuR2jD7A4elNTz6NQrju2f7JreGNF3wQUMnaYOXth93RT445m+xzKi5H/8M2AeSJdijXs+ETDvdW/8wVJ2dsZScJWCcM8R1FLHZOtFAIeOCNpMvNEfEc02ZD31nxQyONv2rIu64DOL8ihBPbHqFu2LAgPWe5cmMt848cWsmTAAaeLNLhUmrssO+QjzuGpxo9gDHR0Wo0ta37OLfSwkOwrgDtU8SJ6lY6o216SUiWhMUQAYSIiE4cJaoeTNfzR94YKb8UqSkNLKq3OrmeSvVwtohDY+KBmhi1lwsglXnLqPJmNRzeB15QKLcgOu7YVmGWCpaNDc/dHyUP4fQydEYbl7KEfAsMck0V87brQmr8nsnyu2/anOPvVv+zWmKLTaRXEmLUgLfMgLxx1SszhogNL0puRnFtaQKgAfUCDB8/1kRoyY1XRXZSVbyZTPlzo7Nch6aZpmkAj12lPN3kKO6nmp6H+J3Tj+8Ci7D2rKNOmFAsrHV1f9/e6lzb/NupzseoTKfyfRIN3WdUiBPoSZwATFxp23iA1N8y+NQh29UsRX0EZYNySLoQWzvyyHs6ABqzgXmxmg+7LAxNMLI8fQPTEHNKr6iH/9NKtfW4SkK8+Pzypt5JVdJZiK8nENWa9RKGxrdDh/Zwl9GqH3VozjK2/HTFTVBXghyla05F6td5WtHdkTWeWNZ1TLARZ4gGrnMZTe5Kkh9DTg6mhwO1WzEMd25P0GVpkpYMHuwxl5SHLhI8lYPTH5DS8kzTGuhKOPJ9SxiunHb+hRln+XPffcN9D78nxf5KCrbT7N7NWZEo08Y00h4jtZRSvwJ0tkl4kigHfYr+i+Tsw79OG07gkfUlhYcTyKSitATJJTnONx5JXf0HWXEShZ+P/WwHNM45s5yXJl+6FQKpYWlKW0o/Y93wqr9x7+55PLZ5toa46lD3Yg7wwYtp+tyXDkIJYLpGY2ApKE/UsWYMpLmj4Ul0bJYdV8D4AOJKAFCVQ8q1l3emARdXqp9XmX/T9ukVnC1jyxoRBjYBmLLcPouv44NEnV3lg6YO/UwgjeE+AV8Elw3SM5IHS4LWMxwxUP+y5ZB33gtdL+G/h66IZjyvqScpsQ4NNX2HPCZ7wnbpjX84SMHNzqB53pYBNLnYVjvy2JyE04XB0Ql73pjN1yDCG56XKPK+bBqSQhiMBAqkcOf0dI7uzs/1aRo7cMobB/NlrOA1AQsgRCcviLUCZQrDWtWzj8aiOEGMeH4/u0qQ9xemgJfmZCd8wBdmVNlWWFDJYnCt24TGUnqFZ+wk0SrgjKSW9oZtn2fbnDEh+T4mEygXOiR35A3vUgWHBwXlyQjb8zBovi83DF7efi64tEsgWAvW6QMFrXZwFVa1YFo4CJubOgu5znpQrBmjT8ETzfLhhGZzTNZO8RQCBzyZlD/G2hmTRWsZ3z2njK6Y4bmELX3mlqp7IN7KYpcu9dBMBDSy2mkfGVf3uAryTWUhCZripq4pt7pEshe+sfSSFpYQbI6OFYeMfr2TjdOCE6K7mNJsQrlpafhv+V82jSxv3uXPeuDgxU3pnpMN9q9VYVgKepBdJf9g+FWp8m3syJ0Udd9DSAUaFqBsX59l7scN2HyLEyw70d3Sutre7xibHk6C7hRFmbLd23r3F2GcsfPUEAFtOV7b3tdYGezBbMee2SYdr/3aVbzGVfw0sdo9dbqoTXwsVglQXZs5md4BPBZ/Oe+68kNguzg0aQQLoXksy/kX3al0Jwomc0E4LIVaywCadQSsbGAP+74r4l/opUgK6RWZl/bl/0crA2KjBrH1vnSBBvdhkIsfuN0MKih4Wx6ABNWlqtmYc+hONP8suY5St29kd//gpiRNM4v3co6po1F/8iyJekoBuISV2X4StJMOeL+JuC9AiHTpHTX3KI17epdvhOMp5q9qK33GaxQgg2kGZ8f1ntYYQuQgeHzfGXUr6msAd1tC/ys3W05wuRhxn08lbJxpexaVPEtKqnSWw8FmFbOT5srBF55p5/gpfbgLzFP5wV2VoOyqWIeP+7ernPWtsXYDYydwL50Cle1nrbSbJmbPkSooreZfyVS3DXa7zDulVmpEQW0AHn35Iw2nDlRVCBtHjSy5B58X4WmkwKbAohkoYFa0iODspfYlll3DH14ER3SXVae0MdufXJv/z2r8VP7N9RullPMehize3xnRe0ERUbfwTYuFpeSO709STeSKpH8wXoMQM05zxEQORGEVMaYayPy6U5hsPOl4UNK7Kr8x01zHkxGcvvAviiqglP7srWB2XTEVwLwZwt6W+bdrpedkptfCoOAA9BgnRVGw1GhHDM+rUQnaaCrX2rR8AXv76xRt8r+r1vByNvdsFHlsJ72r5JyKA1iOw3PQSPenQNaAfu8NK7eEtn7Ki7Ko/4mrW/gA8e62pGGTPFQs+7sHla9Z+IVWwAUJ3vl1cDIKfKybvIzraN8Ok0zio2D2xGijgOFKGU01QxzbOL9ElcPMfB68U5LiJWcIJwhXVL9BADIw6lQi2BgFAzOb2rMjFpgRtmUc89PkAZJVS3iVmyB+R1y8N8vTYs4fmz1868QGq6wzhBUJWeAg9s9pNk+UN0aFiSEYNqsvF+Wn1Hn8wAwDjb85ZbJsRbZZk+HTGLU9TZP9cqkDq2gHwlZV11TJY0yLfCL/5Deh9bFeqcTJOTgs32W1gFG3dAUkl2StOvC/66v2LZr69oZY9fQiQ4ubx7NatK/GLb/nVDIqHvM1NuSCs2UzVKdLKiuCtmYwV9AM3mXKq+g9OWNKB3rtSoxDXoabZaG5YwD6SS7p7xKxrjFuLOGWc+gbQ1LYXWN2xn7CO4pSO/2k1ToIuZdvvbR4vfKsY8bdZXeHvI2G4RMRNIxnvX9PrsMkEHymEdASfym+RNovolYKJoxokRRkIcdVOOkoCkyWziObWvExP02UBIfhR42aAgkvtN+5kNY5apVq6m5zvqeOOC32sjHOFm1BUXH9ZVYItdBoyZphUFWCgFDq7yYS8OvR+4l6HX04AYror9E895gyxjKJ8pSIjsGSPbrepJ74bTEjKyFWmYBRt5s8CVw7psTNU311QISBpJefYxtccOOj/OvGbqN9aFzFN+5N6OHU3xzf675aqWP1XGtjE1WfG900Dad0LVXWbs6ADlkXWwqqsFEn1t2buiKHWSzZsboG1Cd3EMxwfAqwECEZCx1bJQhJOBa9Z3HEZFZkW6zSPweiq5Mfs1ytAInZf376H6zjOz2rtd8ZshueCpxEiJtmnnnvNrZIKw/CcHXfdPFq/qu3VWwOJr0KOmDVmc8OwmEQ16BBXU5cRKgSeXsIvHLC4H4BWC0/0GAFthOEOPHTKcvLvRLlAgRyHRTL+TWZRQTcUZ4iU3B/x8cre5iUwRYOqcPWnRXjf3Co9tshtxbmX51SoA+guPWrkXUdqxWISk7Xi9bN2DIoiyB37Romv8F7eXi3HoMtGli8T5Vsd4ISVe5dyi1Yh9Gd/1me9vdGvAef0o9nUXAFkU2Ipcg2fzRN0LDpBCp4KZjxO3ia/+AulJHoiTuAXRgy7pSYvsdvDR5tCfekHGdNT1FP7ossqvvlPrAle6Gyj07p2oQaDqqLus3EwepLw46X3X7Jgm2iH0VMh3zjEb/HbVn4KCsm8/8B3V1hwZpUrWpqhw0xm65kRhVxj4ufU3exUTSnCxrLLCVvKR0ADYuvONla886cVydrCo5zBgFOjBARU5mLhPIemwlUcePTbTqDCiJ+0lm+gxxDphQelLd1ARRPk8Oa7MJaGf/CgKOMVSsEPoGFD+VEYL3bM2JWMOeApEcCMnBalVbLuP8OuLIRDZLF6PIkP9CORNIYqymdzFTHiybmOXRXgha51whfpzR3AsUmhPgKyPZi7i5mQ+hufsjmYu2eaOyjv1xHB7v6vbIpJmrMkKfo/O8m6kFjQfTonLu52QFnHr3jLp1obGs5YgtXuY7fj3RUA+vUajaBueGqV7tMkB2uWDqQdIlcs1Q8t65YE3A72FSBhaCRI6/lFS8BM5v6d3mmiMMuoKv5LHbXK3BsL7tTcABUGmbZk7NsWhazj+VO0tr1F9vG67tIsuwU/He3zAswO/KZCRAW6UQQ9Tiq30BxTQPeOqxqXXWQh792HTQrZGtTQaATYM0ZjkGlRzta9Vyr/NOXBhu7NmouthH5Gj6S30AyZp+LBLycDKUoOAvDlfT8sdzlS9z+LG1g7tgADPRPe2dQ6W3UeKCIYtMfmE2JQu7/CN1rOoXyFm5WjK8ef7V5vU3iEwSilAjnOQ09kbnsnm2ouStfHAo2a3iwYx9dZhZe8CW1hYiwxG3oR2tzGDytYBL6S/qZK8a9KZMsWefhOBgZ3XGlkJtF0q1sfvMmJuTb6utxYf6pUpVWTcB5+nBLb79rClfsW2t3RPr3u0qge5SftK7yKRz2agSIw/aMryGsve3nDbvO6TXzHYhcRd9FKfsDII29SKk/8yCUCS0AmWqL8xiPeRBfwqBJbcFscfdh8AeaLQtqwOlDIg56sWxvGwCbV2qFxjkwAZ/AxqAChmf68rnaMPQL3XC0MNIM4pg6Ctbf6a+l0oLzXZzRpqHT9BgYTsVKOSqyyS7x0T5YUqqnXJHgSZe+R/dJlAba2pne/lRDnDudfL7R5IttrPJMg2PU2kpH+HGbr5FzdNCCj8A5TOPJMujLAbSE3G2OpfP2xMGoneFc5GuXro4S0Nen/C4CRKtc9H+sS4Q8Y3OCKt0epPUVWaLdlOJ9C5Fa6uBlxnN5gCftDWw3c2MsbH8K29b4yv3qJrjlRvH0Z98S45hBl9HwnhL8AQMLcFtohs7uKv5Ep0DPCES1I6yJluWntCWDfa/VE+Yhk9+R4b9Mh6v8buSt3i1B49WvZuLHuRyHuqOSMBU9hpz5VO+s9cw/63n96rGMLi31oTh0CEncguLNsLOOx1FoQcxzDazEN/FjwyrSkLPWi2Vw==
Variant 3
DifficultyLevel
534
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-NC06_v5.svg 220 indent vpad |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1+2kLZBCW8ucO+vBulRw2PTc8nhgNrvUvlXXCGeKRvR9uD3HLb9dVnLj8rLZjbJXrOXxGP5JMrOfDWet6sic9d5XXV4vf9LhUW9uG+bhpCRKsxKvRqGVb1K63ev+SgH8X9ILtrNcfti4EW9P3TvQ5mwa8ik+Uv/fVEsDFWrkPKVMzjjwZfR/HtNon0GvFfASzwusNBwMkHmMpaRHI20pHfDxsZ4wbQzheBJseN1P0gbKchdQ1pRZsLMN6o6wIj2nZ8/tXjTDP6n204BRzqUrvZkTSDSLSL95Ay/RqF6k0z0pWMUPf4uA7MYKFxa3f3JQeiVocVD5C0nSAwkXMF0eEczNdAvAE7c3Ytq876sclPNUsv3FBSQBEZeV4fHKRmi0uSzCuenzWRhfuPd7tvppOtkHy8E6m7R6qgPxR/XrMU6uJZ72h2Etx/VnS/aImW9n75jRcVMHscdgcJmlywpRtsMwDXJpxysHTpRKqx+AuqVqS1hBkB5c6zBzewkOiI5BxXJGnCiKy+WFXSJfhBRx2qoGXU8oCz/Yx38gB24EMaRH8tNfvFNXBCtSjKCiCr961I0jrzERikZp/DGvbRw4oURWZ0fvlCYuEGFrxl6rtUsgG1BR2eMRWZnYajdpQOTyxoCq5kaRU5dOKHz3ghzAZs9rdHRbsF7KHQ9x21rZEaRIQFqXkQBTfbq7jpNrYJMULZpHnjSxFBUYBZyI5lTBk2zElibspGHDEoi/lEFfvFjwSOvsdfPaIS2e0fcBo89IPGWlbfJ4gHDB+ZXKHtFTOxPee5Ar7NEx7vDzPQhWaNmXI0EvqjP5qE4+45M/o7qlX6ij7bop6+hp0HPw/f9ZLGQ24otdEP2vBPE3wuCI/3w9Rk5AG9gLFSy2IRrdFmBvQieGbEGP+SJMXody2XSoXXjnyRrOPV993j64htgaPBpFeVjI3LGIl/JdtnBVq4LN1OpUQDKyL19W5hQspSa1ZDbARAeQSW1WalLl0jd5sTuNt/H7/1cu/sR7iu/ubmIY75OC/EhilPafoVjbnhzB2nGC30lw8JSBIektK/29edbdT746TIBm7Gj+SAr2yQ/sdefZZmrduWi8DixslSNrxiYRu9BV3g37n0O3+vE6xsHpcC5/pXu4ElAZwUGQptbwrH7y3FOZDiyMBfQ8X5q663OnotCam3nG7xXeBE8ZJ44odT02SASdz/JUWCDUu767iZf25eo9vxZqKwtaPbShczqkI2EFYdjikmSCAx69ga+akwB4kixs85bxb07NFcAe4lsf53aHsBz9zqt9lDsasqrolNlkWpZXMqckxYyZGlFg168AbRkz6iS9aEzTNLT83lQw+EKDmIhoa76Drl91RqD/pWcKC8RkTu9A/qPiLOH3yo7hWo8xyehKtXvh2c6SS/jSqSO7WDQwuUdLxKUISp0hIcXrqc6svdHmx0Okb24vXvM2UATT1OcSBECLUDuL1wPlrb65Yligc4aDXHDD4r3rUvSZ/1G224ixKNpIuPpfLpNi8OMUFgFa9GrFnPBa/WdVKYYULuLAUTgI/Pm+TVgBLRU+ayezNf4j799MkI7IWElviOkqkwMwJqx2zYdE0I2da/bSJtsohTmdwyLaBWgBWc9SxDSC4wC3vMz0yZO5P0wTltwkrHklVoQGdtOGRgFQCKmEUnKLdDerXTGHsFtRe6Lc6wIxwApmO3x4xJLJxyrScA42/VWaVoYOuSbGmnCoeaoIBQvWg8tfm3BaIikIFAjesBCM+dosRZqdwvdawj2a2TW300eF0DzxtP3D+4V6Bgxr7HgMkc9HXKtsHow0g/kDOnbDhYy0no6iajxRyK8x+AMRLecPE4hXq61WzD9BeXV6eBQG4hGimA/asmQ2zf0S6Cib4EYD7cbC537yAS9VqsnlGv1Ng3oMV8xVNxV5dcfHEdq3fdQZpfCJb3hy/VEcyRdFFXZYPgCfBFxEyX+GY17JcHQ+RXIfrhyGen6qifIf4y9xbifJq6H010BXKaFSgKWegRchqdcKuzLCIVisFy1B9p+C5bYAnu9p66iz2f5CPt0AmyQ+affa+nayWnTxLLbFQo8ejuWh9X26dDge/E60jqnCCwfmz6QQR7TbmOmAb0dE+XvaRSvWlZzKvKFXFDFyqXiOcYi95ToKhkW/CApevNdi+Rv86aJwFtn1s/NMpdBwSiZD59bJBzdqcbOn6gT9gQVBh/N5f2NyxSUYd1vbyQ7L5oW0oSAxD/71kkEYx06MowwYJ7nnJUqm+MXl0gcQ4X2L9b1OKDnCD9ptLm/ktvH+gWkIxv32vGeXEVcTRtDU0SYMmfVcDtq1y4SzIaugJdtmbq2s1ozSIG+fcOOBTsBCzpPWUkZxQctHYebFWtZUqT5waoRi/SmEC+A+FTeoDNoQPt08VZUws8nn1ACnScM0egtzbmeyN5+BzJu/ukZaY5efDONW8LvkRZc3cNyGy/6yRdlEDgQZgLB+jiFmHa7hehDVGcnNYDmvo8i6XxeOhZB/UKen1spweMiZ3aZyq6XV0y638YBUJQbiwavgO5rBwBs/cbjr1GooKwCNoHvPvkHab92mjo2BsJ+qYKAK4Y0EXqRQ+QCel2xqb3Q7V6x+vyRuJ1+Ad6UtBUY/QVV1RXlFT0ged2SCh1ltyXWSz74aKxrFRS72v8RFc++q8PXKDge+N599vU6wboM6LGK/v030qUrG5Sfk6LYApvOIQUQsF1a4Kmom1pxJZSPHAp0HVPxR/HPPCVhgbujLAswxIupEg9QorgNZRUyVN0PcnjJxXQueuAnrUMl7cnztNmRjq4WFZW5FtGF4BBVpIrq1OpOXdQHy9QalTVkMLjLWrmIl6uLLa5nWyP4PYOHOg7vjaAZX/efpKU1tW7srhC5fsUoA25ABG3o9gSzRGFiN08R+qoosE7MiHnJIoQwEIZWhho7kEecF+H/BU0AZMNpo/Hc85p8ND9x2ARmvQeJXI17xRqHoWk7MmywNWG9SqFOh84C+Zg9Ye96tJSjgkl6jFo12TnSzSoNw7SIVn+by2rozZn0nC8ZUBW8JpEdM+Qw4+Wio3LQNHVb8ilHHeIOJN9re9xc10AKfLtZWfrGDl5U8tbgySxJYqIKKVKXaAlpv/2aKhs+R3JfkU8AiGGu26hg/crTFFf30WqxO/4DgzwZWBxs+0gFnV4DAO+ABiiCDkVWMG9Ck0Q1i/8XmZBJSh7z18jBM1HCn4CbeJhSiVBYMvwxtlYnmIy+Y+SO0d78pGo9Ud5sGkm3UKWy8n+xSMCoVXqkhoM5A6dZLvFtssrI+17Mq0VvUbS79hYHczCqQlJJBzm6CtsCabVf38vvMh2/G2bRti4F0Yh62wE9BPVQC/FETCdrznJFsXTLTmVUUzy1yNDwBnOkqYA6Y03l46Rw/9ZoZLQ73foSREDfn7lQ7rOV9/MCQRh2/MO7zmJKuyxEcR94iWIAdriYGxAlSRlBVeioJDQwj4iZidYkMiOwzoujJhEuCBbXVmcqFXs7oKy3IAPvjjr5QQE7Ytygii59JQEveBOMRPeZGFkjGvdfdM0+oOnqql7n9dB1SbWIURl30ysx2iVgktuCwVZd1NmHRYc55VgQR7SVamJWtOZgoUPWQMaBqYaoZHIxv0PolUEE+nQfLdK6Ytj3UthTQWaYCo/lXY2OUcU2nbgFT1Lcu1rMn7npEDp/5LZTLN70wDAjpPj/skv/KdhZBgoEoFWWh+NxStzjG7DX99CrZtCkqvvqoKZc3KipXq2qq8uLz+0dSzKFX6wbbNjs/gqafXZvweMssdQex7UtLRnLryezABevG0K7j7O2m/KxcV/obiC+lOGcJdhvB7twNUO6CZiQ1VuFkwDExRikROWj9LTfP+SdZAeEWw/s0ikDUwP+VFNz4hwxylBffwDLmhl82Xbl66vWq0SeI3g4PzWK2SUaQbimVxc1haq4s4PUUqpkQCkWh3FXmckaK4RjB5pgceCGFWGhvGJtw6AwgUns8i+ot00FLYrlcUIbscoWMh3W8N21M3ksIOBgvgQJu1dawjSbz988E6tTVUybBJtJpgvcUyy95YNgoyO4dlJm/aVJftOkd2M+i6tY1W6N0rtDc93XStCcINHcAVZK4nVSl+H2oF3VlN336MFb3bt7aDTxnnBa86Pp/8JrBF+fRAp4GR5pDioOvJ/UCEfDOdfETIjFcQAdtYTZ7f1R2HLj42NPTivfaV+4pWY6ySKXmdze1YXoz2P0qvSCFcJ0gITZqD3sfhJaG9KvXCCBZw3tuCzUnWKi09Ykw2wfgcH7sn1ffI6rP5saJ81xq3oVC5U5gGq7X8A7OQi4+qlvmIvO/DSaqRC8UemYLYJ7xGKur2Bf4Kh88uVSS83OR3Zg30ehTak20nHZ5Aa5zAwoPPDNkKkMDnkFtlDcAfH50NefN2Nob+5HyItQcE4NCFrcHScrcuS1qPSIER5a7AAlZw6A/0jUSoxQuAIWwgmEHk2YfFAHVzst6GOSPZ8vrOWPsZTLkOLnKgdFZIckbgFrNjv8r3awtOCUpdmDNcS5uG0rLqyf2eNO+gu/b9j4Zbp/qRzJ0j5/05VXrz/4FwJcSuNW+zVp3hbBcc4RRItx5j4XhzXxESOxbmnXeI4VXNqjw35Y0Nh3yfXZo1hHgaLJ//Ya34FjDELpctIXl7qPNuinIPjjz3kOzF8br71jBiX/a/HPcMb641eFOB9Ylt5iVPsNFMNA2QcZlXGfMK0+vukns/oGzHBPlP+z3ixHMPUZSmIs8esmUb4gJza37rnV8nMZo5fj2tmJZXuE70fjdud9c8RRIbwL9Fmd66t5rnof9NtEP8xmruIw/54tQqZdmykuznqSqHaceEYbMcErK4G4//LN1ATzmQNcMY3uCc1S43iwpnQtzAD1Tii4diNnYG2NN0kf9Nsq1lahF5/mUMkFSc2G41rM5taVosKsmUL6HUiJ4/6P9Td3KXSqLj6LTH69Mp1ikLq0DCFnM3dk1ASF4mFROdao7f6D188jRoGkdYUHlRzaNRfozQiHwPwdppIXXoIvZmn1CM5XG5gxyc8DraXxZxHsmxECnZtoSIBhkAGCsyywRSmdruYmi1/3NjsVRhG4AEaZVkus3WsX8d/ye0sYBN3o7FLdfIjsO9WsDQl7Vf/tXEsnpvHrDTs8uLvQWXsqjLvW72MX1LtWaxI/r5jKLPqJHvp6PgLNP4hTZP60xxbxleolVsGBggX425fodz60nPfzXtHjaOy4h8m80AzmlkP0Vy2Pxscuibdrle86o5/aiaHVE6YrL5K88/+gRskPn3CQ0wleVoW8+r2WD/+Xgz8cuQo21sG2oNbZaDbvd9HXyubZvEacaElrDs50rKgIzbZ0IqrDQwcEV++Vqij/nz/QnR5OHe88vhi/MqbnUhU6JngQFTFEuq6pSif1dRvi2Z9+trq+hMqq73JB300CWoJYbkiw+G4kC7bKDtGmWySjF3Um6Q1FFzbFOB+jlPcYSq3CJxFQ3hI5igHZKHhj0Yo2e6asnPWIELdU2JXT1ttD5L4nBxQIf3XcjLifj5/C3k9qmiwaMAeQR6pXT3SCeFzJlZK0fRqmG/by2iMEW/p8qOUchaMZeeLGj5tQJQl1Lj4wv1IXXbGJmX1jb8duoYMcSleBFABOzrQXcsaRfhopdslBYlVP9FfDAerwOro/UNzfwXiVe/C/dh32BZgLz5mwhbGZ1AzS5iriGpXipGJeOzrUOYUium6L5XE+OQg26+DooMnktX7F6aUJtu3uzTV2uZZvZ58EMd0AF8/6M7YILmghVnpMSoeO1TVX5iRG0o3AsYrpa1Hi6mdUpG+ebEtKKe7to9MFyP0Whglmpst7G7LR4ttsT+sh7bHSJB/LwLlV3mkLlEnKGbHGpPHiMnojnqqw2smL5QcwBOBO3F7U9U1d8YlQ1apeitRvA4TfHXa2QAQDNatRrir5EcD700dvrV2WZGrbpEz2JUrznkB447al1xjrefgwU66PAJwqS8CjbmP3p1I1IB2hi7kMnDwV2qwxiPK/RlvRJNg4XQqRVw/Om1UGkeuW8RsNhqXjPOjNAHlNt0tNr5gziIOnnc5PNZfM4zHGN2W5hpT8YlMEmkCa8DjwgVqvb/xcFD6aIvCY4mDOHolGGDhEWiBmwN4r4/dy4rx16inEqOWj+x+bCIj9IOT3h44pr89KWYM4DjkypQxvBxvLa3ys0qMc82mQYulc20p1E5YxbkjLJlCWcKJy77rnsQ88utO1Iov9tFliVzFdTMiv5KgBBAe7iT5GxhIT4amf1yOtcqsZfAIMsfpnawTAV3WLeNfZTdhdmi4wNIWtVVVG22F5pdaqUHcpNNosc7kGSzSZG8Ickd4oJMJbaf07Y0wbNQmdknrZTCymVt1rxHRtwEpcQQFEaJT0yg3N29EFdCIBzxXgZKyAaXdZFuoFa+a/9hoXuc1+Szwe77sStVSrJxjR5I+hZzEe/kZCQbjKlizAc4cAHBvE0NrCDF8FEWkHZDPt73YzqFXXHul9hfe0/TAhTnE4eV3XHAYwzxAZ15jFkiA9Rs44w3p+K1fdOdngyHGLkmxG5Tb0MB0FMYCRgZb5tDS4CxTNJ0jyB1xGsrE86UtsuTQkrV5dI6JAQqTTumdbWthZEjPui79tgNIPT8UHtv+ZMp3kbXyDBAikzoBFmSEaheHiPAgpj5zUMRuc4fENyEdvNdLLLI/HtRF/WEfvXQXZaI/X+Bl28FyUGRM+vUGXOabbGdRu94UyKTV+CHd6dQjzi5VVsREcIvj6BsoWMF06GeLLOI5fs+g2hmbAseiDxOWIQ6tmPxqpKPayCdrvlTjIqnT9ToISr61EA97l8kdChKlflCNJzCctPsa838gxe/uk7dozFug29kVdyj9gsaTMpwV7TFFVz5o7ckbJkBwGPEAKAI691Kmk7eYhdh9Q5+LEmX/HsOktJBwKdlculsUO4NtbSLF1ufGn5fqilryfESjY5T1nd6u5chnE+jAB/kWOk6O2zF01271AkJ/fMi9OQgB/lFwO0vn+dF4o5b/m/lcE0Gd0q7PmNk4e2HFd2VYTwRTdtUsonMXS5ZsgBufTkldaJMylMx3uR7mX8tzS9yHvKpxSytkruKtH0FxnMwJmK6jL3x7YM2WAFb2bn6mqjG4w7qlbevYPddo4pT751ODUo5GH192psnowvkabAPsi/OLVBlcksJLSdLebRbgPMQ37pQnQ8UvH8jD1P0eA3w54cVRHbn4QIWAavXgajL/USZSV8DVszT94lwf8DN2PR4mZ9XgozcaOl+QHgYeoT8BS9VXdFfkIYdg9FlvnAk6oRsZSbTfRuuUF+4JqPj8Q8mXzUC/M6XmdBFluqmUJG0MgCkzJBx/IZG61bKeKVb0ayQ4ruUAaUWdTfpIDOf1yLhLuUCOwbPgncGutHG8QHS0MJdaS3heKf8z5Air538vv0GV+vWlYunEWqzsefpDp9gvZTBg6+4XbYuYW78/TQeuqGFznmmBbEM+8gHsX8RWzOGitMSUaKukL84MnRubKYSKcBzzjJ7UEiGEcycNoVhmNTM/JYJ9ChMxTwnZrzONCOOhedjBkZbMCa5oOsr1g+r9+hE3bC89Jly7VrsNDDCHJcfU+CUX8x7b6TkYXoTWEWczro6FDmB/paqrZNRoNSF/g3X8mkm5WiMwIyX2LfYBJG6mZkGlwwEeZGovoqGHrestJbD/hFAteMEGCwasA814ocLIBTjPKs6uUcf/kHwy2+UNsNYv1kj7R8BOMVcZNv/iZmszl7saeQv7t7rbfUeiHcNWVrWBv0aO8VaJSuQgvqlUNFiAnVafR6PkBhzn1prNJrtVn7pAoxpeKoVxi
Variant 4
DifficultyLevel
536
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-NC06_v4A.svg 220 indent vpad |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX19l2LUSEa3R9NuGzTEc3vX8CfmWva1HJcef7VHVXdjWSk3/Jm8Ofv4bZpkiX1SExq0VSBxWD+0PMZR0zIfFRdDNTWo4BNL5yLAR+wg1uDuXyNLnLyJAvSh2as3BwuyLBMc06/FYfvSscdlNW182/2ZLMO5rpQ4IdUzZ+ST63zCSXHr/Va33uJ1Kx+n2XbpvnOHS4lQObnPof7nWpufdDsCV8SSvYiJGXnLWbvUK+nVdZAiu69ESXziwmNPetRndL33dmCmOhNdGu2uwdwN+Of1xfBVCbbJKKljsqRUDC6KpC25gqhT5LwNiLDhX/5CDGDaA5Gt+mXADxDqA/2x4c8lnAqOOnwjsz+bYwMybrqv7tJyXoUg/uyoPEppRH6VktbF+bCZTUDBWU2szhPVJEBZDgWmpYx4RdeE06tGYrHTGd6YflWhZIiMAJR+k6TnrlUNGi7NNMxcTVorTqY6q5aAbqQWfjvPFGTjJllqgiAXzEfu50ntNPwVmQOsNVnKLo8dqtcgLGRR7q59+ZvkWpRp1UvKCMpwVMWm0DeR2Mcr/Qaz8rpDCef7urdJIgVnX6HoJ6hU6Le8Qgr4K8oDsd4vluLnvV0G6fHHlwGVsuIL9+K2cp1eC7LIxcCRIeh3meJvKeU0iRntEI6QPtKlt0GhSo2LFx/KjjWq+ihbsoW61YDi7qXDjpyBA4HHVjT9Sy2Qm32GFy/9nArk7HhO7AAMakupEuTqUv+2R7peo+EMB5ciSQEQtvX3ka1vO+tifmW9pVwo9vmtLRRfilgRSbsR8WA8gnHfY9QEndgaFrgP1mw507yLrTAK71VrO7EK2J6ONl99l8y4O63vWWkNu4VF+S58SfvkG062YfrBUnrv4EuRFJ+ZYJEsbui4NCU034VNw4VrcazM0gLIYKo6tX2KrOnpJe3iaWqvlMiYLztfMqqzDNORumIx30360B+uOqEzVaM/e3aRqXvGThOfFoZH8MbbrycqvStVasLQKIvNsWKSXC/DvqHlDfEdw2yEE7O9hHYZsjAexICZEsOFDasTZwmdPQx27OS+5qpKxqkIQD4JntBRRjUU18AAJtTGE6xD/Sn/W8UrhCeI/0dkNrpKT3v0M0WqAhgU6vUe6BEa1XSZ/7Lc42aeRfRlY+znaTPi/x+a6kBYYosBRNlUdlvNCgRMBopVJ2GT+BfEyA5XjH61lkqCP1u6wrbWh58uwnmndMTT/TOEctJiIKXuBYr8gZMw5yNC3GFa5fN6wSSqhQkdhcPFhYYqFay10s2sYVl1cndEuR50ppOoKbzRHPJRXSJZW9pNpk4cQzqVK8Z/V9wfTWvHEt6I3e2swTArfJAY2jzjNCCxfrTV2nuried5cVSf4eDuYujj8srFZNgYCA5sf5kEXCD+YhwqVaghkQuGPnC4X6vLPn9bCcBKGDknSB9X7VKUOq/cNXg+AgU1hbQ1vybEIFv62xrbBL/LjVtS4yhlY/DofadXMNYvd+TsK9obyM3vYmpQbZG3nI8qfE6BMcxbP3sHJPinbriW5N5oKyINMtTxSMwgiUrm24SnV0mdzD5hF56jwZDZGvBvx9hswsC6UXHNo61T4lYdWYCHHYXJN5qqqRSbEvV0jZeYrVSbXh5Yr2o+VkLiUHVpkaqK8tbOyfTYJZguUKgmnUAkxypGt6st9fqrzS4uP4ubthDWzb19eYMAHS0QCYvz2saWCumUndDJ6slD65u1ln9ZhMWzHKg/MLOc3WJJMRs9Iw4FwbpM3qd2SDLBf3bSy1N2owZImXMtd0DLafF9FbTZfRIM7a8Np/qKgWBSuWMQ+s29CKYnpRYys/BBtI6Wr1UoVqEQC5RbKkWUyXKPoqmhD1plhGE9Z6lVC6TmSfouNNfCvHjzdw2CNZ4DeV9YqVaBS6XJxpLjd12oyFa7df9jq+DbUsJAxMPU43ntvrk+EeF2++GZptEZJAv5ShLWJocoAaB6VS5BH15vMKItl/NUOy7WOqzd12XHEegGDhi91x6nuLRCVM52cUjbN4bxmsK5zprS1xmg7wRwnB5uuucIaRYBayB8Gt4jsHCSbmyBeiW4pWnyzVo/ToOw5MHGyRKH78I4ZdnFrsHqYxonJhKrZwRcufbnHivRw6ScQMK6MO+4FlhKGQPaPGOoqlIly0Y9y9CrTCCCiQlKZJDlDLc8O2QUNCrquc9aWsP6sUpym9X2gODtgjV9mS2605dzjYvbaj1xsKEP4+NN5sUHWwXrAlug7a3+ShLS9jJIoi6pIayydB/Yhpjo9NrieKKy6wc41IYbE/6kti4WmSBE1LWfBwn7ZL6sWg1AHCsMLZY1dq9ujSuKad8j80s0q3gG42cnhXQAme3O+qYzKw5yQaZTU6GOo3LdgCfjo8X12KKF9izHMkm4hwJvX37J95VD7Kri9OUSGNjbr+iIuBTvk59JpD1rBx9GgjyTACgbwkeX36ZuKPTfq/eEcr6mj/2hv58sw9AiMVZAXJVwMe9kGEb3Kgp1nfTAYYmnwTv1/z+0aD9L9J7gQBsUBbka27fAkX4r+UBF33qV5cqCgtKxgboA7yBluVAbRanZsOGH/HA7SgkSXCLHM4bagjhnQ1leGDOxrNhUr7x1jhAVJB7O1e/p/Yoa34NYAXtYzv8JHl+9d79XgdoBExh1oIVAAe6Rn7QK/svYsLC0f1eLOWtpxxesHIYHT5AZWLBlRNvbYtp4gTlAnVNBniE0GElp5ZV2iNtKb1soN89ND5bOGYISti6u53TwgiK0+HCtyL4rA0p9iZW8LcqmJb1mZi+rAKP4+kpcHh3mU/+M9oixd8WWe99NC36pCMBvf9slj2aYFGbAEoKnoOFIiks/9UZkJNMLxhSpPQUJyz1tlvQalPA1z8ypxJRyCpkY09SWExo44WbYCMkeUtilyvRYiC2skOk+XBnJY62iyHaYwUoaUDbAuqlHIgfe2RCVB/xR/NLK4SmYnQSJjRlmkZM2MbuRux1JGNpm2mSVNhPG9AcWUdhwO3cssZyUBLM/oENcTTto4GLZBem/VJYcrYzMJlyZSXt8WNypM5eZ9+l4gTXa3nAEtpaWwd4zFtnqr3RpqREQx8Tm/Nt43OoAQbb52sQHqzgXc64P23PK67LnNgIzA94QmpVY1e90/5Mlu1HlubZOOCo6F5iLSW7iaO05Hb5JS5EufoARvtj+h0ElCMxT+KD44khH8eqQlgS1/HjzFI4PBKvW4e5nOLsapFKlUS0Jm8VwWj/ii7iwMW+WwQYM149MW0Y+btvYqnP0nFp0PLsPcwjUVKIS+EPFgj1SDCaVz0SxsSke7mFAWti0oNZGlmtTru0Ao1NzMvVWN9HHjbLn6m1kxchp5djIwApv5R5mBNQjviesgoMxB6k8BylADbZXcqwygxNIreMMfY9AQ+n6JxdTnpDGDYrIqre/kdS5OPnCHe/8nplvVuojnuMdzND9GOHFzTcQvSulAbWjmfc7FnxoIc7hp4GsEg5zWrFcAxgqjKPwOCneW/B3iD5k43gRd8YT9oa/+j5KuiRkd9c4KNQMhl208Flfg0nt8w0PVJaGcVIrKE7hXv9wfGYTCEObDOYMw5FBVCixyevJ5rOEaXO5r09vFIpdIhcJxrM+L0UVVjXTbulHPQZY7/cvMT1NFVz3pTeylAKbq73mmShWo0VIlcoNEgNfUp+QNRuTejufTgu63B4Y6cEXvBOQ0O23GtJF4j05UykGlL6b8bgofO6sw/gMrrz3jfe/382BC7tG3+feoDKuUYE0KUWHiN+wxlVZyZDkC/NctNa0qrWW0Zsclu2oX5fFW1y809eLHj8Y8/b8Nt66Ea5PPvGjkEEHJ2muq1kMCg1QC674nuYq4uLZwKMSM8Kw9DCUT4KptRSkjdFZ5fkiPgjjvJGyYJ8fdy8vy55NLtxG4ffIuG69gRg4Ak2q1iPjN/W5q/O+2IaQbgKowhl38kiQbYRWZg29uw4DStJdffP4rAVPK2OcWotyvrdRBQnCwiipj4brbknLj+e7vMch8+DHv+RmuZGUO0O023eBrPSFs2WTISfYIyc6wnPXIex6F91yrcwnhW4OtBe012GZv5yuYkQIDPYKq8QTgdhX/Vj+9ODVnFG/XR0B1e6t+CoDQTS+jX2vZW9w/dVBmF3uLtnNcjsTzGjZOvCyao+aGaF59gi8I7rlxlII/QibVtiDw2SCDdAO551jxn6gv0T4sWTtiRxZmSfcxRxYgp956OYTvuJKV2MeWHDYd3QILaow9b3FY8QmMGLJkZFpo2LBTGQfDKMc7ZmQAvSDtpqJaBno8bCpIhjNHd10+TT/21Rq7RCyu4wqPfgLCoWGg2FBr9GcwgbpQlWEnAyPSR4aDc6/RAmXeMf5SrMKhQXpgVKJjhUJ6QtGedExmGpWTZtRL1/d2t1tDovF+L/BqMdIrHRiEDjMEbrWYpyRDSepD1t6yZUbOC6URORRcKihbjv8obEsMp3SXSeXFVpufuFMohkH/7KM+RvXz/fpSBnNeqJsj8LRsEwDm4Onde+dH/tDbQMHKcH0IgMg3AUtKtPVY+xyNTLOmzvK42jg26OVaILBHRgB80XxdsqxAWacDoA+ZcvVoPju+s7MMX8Jh0GNGTWuTKFKcW3e3PmnIFmNTV+3FswDnKHSVv0bxb5cd8DjP2lq2fh06nO7CfY/XLsXnolbOEPtOK4O6qits9Gl/7KDac/G78SPPw+NR6R/T0M+Jk/R9Ik3uHJHmy/S4/V/KHzK6XT2vV/e8xK4ZDPfrX6xyd1ewjSdZfopdFAQ9Mr3zuqU8zZf9joXWOUPzjeXzYTWDJGRyLlVdjb52WJNfzK6D7FjDKHGI9o1IyrH2iexKfVmKyzMeDZEM+wPxZ7/lIu39TSUTYqFooPj5GQYzmgWfski2kwqNPwyMPtaetnrbtVxts/DFFNQqe1yidMHsLtnA3XmWiPRU34mOLRtLoCWbbFqRPQIzBTJ6cswDcKmA9CHxKcce+iZIWhssSFdVZPy2m6B+ny2z/Aw79rDUglR0ZV0OcXsS66HsV7+S4p0DLq4Zyn2qExlbhDHJeVv2u5/hNmO6RxT1xH8TDhjRbNo8vV6qluPYBBTP5Gn3jJcVYkeQLz6OJn82CAblNUp7qJtSmAyr7mVEzIjg8X7HTmTFRfsmVWZk0nU39kN0uLmaSz4aNw9ESnZmuQASH6fzAc85ff2JzvcMLw6/673a44HJNKw581o4g/boU1x/UdeRdprRmgfErvxxz0lqIcqhxniwYubet9XIFRI5OkF57gKQ+px3EJDn/RQ7P5vWTipbzujmIUyjWrVe22keXN7Pcd1rA+mxkcyWmQmqXVKg8mq5HC+SrGPUaW3IIzf54d4yJZgCSWS30lAub+H7mi1wEpyEOEdb2B2nLmb5K/xvZh3cvzVtPvOpw6jJ9aRoAdV6pq43jFkmaPVBgjAhhDfCDKbvjJ8bf70ZYPiWykVV8CmES2GPdS+/j55M5ziCuB0/KpMYzZf3LcMHiXNjfWtBT37CI+GNBCd90NrOIqYAGrU/yhYZJJo5aEyBAQ9vh/c0ap4f+OMqPuleUpvordbCpcbgNsfc7f60pPXjzxrVXXIu1JQcqEZ5LPV9b12e/qDw/FPz+JUdoTiJwyWD2YezqcXiUruMW0ZbcCi5GeHBek6T8Hlv+WRQP0Ngzck1tAwBU3xSb9e3upp+COt+ZM1MfaQ5vPmCm4Y0AVVdqJudB+Bmkl4+1pmyqxKDelE1NSpNEjIfZdvqRKK3dMiokGZ1OICryQ+gdswOo7TFkVX/ql3D1bANDMgWS8rxqZ0wbRjNi5wJZif1XWlEOybu5YjX4gFSuO6yVxNSRv3Esp49EfipZ5GHFn2254tiZhZykAOIQ7zPObY/hOKfxZZZnaDmgclD1YSsjaI8bP0OrARQrA/ArmRiZFxZo0ueUzXYZilMnbEyjLkCHvjPfP94oyKG57vpOq/RnBMRs4rzDSzMGNZHrU4LkCMG9cbwLFnjj5xesFtSHT+a2eGCT8Valm+qh/fhHT6zec1zDBYl4R4jYyEl8/0a6nBN0wP+za3sWtlC5LPykXxo+BvfeZoJiX78siavC4aJ4j+aLvf3fXkbvvnfqoKyZ7lh2NsbrYyb6p2CXJQK7eGaAQlsU3XfXX0YpVkYFKtMAkPIo9/zenwO75qRsn8sz3zLGgk2f6p6my5URe/G1mcHFSfYzKEjW4BvPzl4ue+9McMFRGBsYM3jVIUYaKhuhauHq2iM9Q5Y86g0IwpQBe8FDFd2+h74e/H349OOG1M8LkQa6NMBkQjKj3JCek1vkW31wMQXl+/S7ngOK6VjaRpcvyvqqRmYqtPrP+TdvKTqToxLoURrho62GYZ4a42Ufllwe5XCR4LdvgwLvocyrmG7TGjNstDK+Iqcoo6XsHJ1YFyAJEKiYw6lL1KRVWjNXaciHwTjpsD+KlNlYp1H4AlLjommKsnovMTHWOBwo5VkqcZrHjogAVBHkxMPdXJ1Vey9mqVIen1CMjnxkt3va3YuAG2YwShYxbG9fsZ7makmew3JBWen5sHHxbJwvlkXY31VyXlQaDQsbYEWCpxd5CieE4bw3Z/WKCSSyn/ngLcd2eWoQ7evqTYWrDQtQJ6onUVqVaoLouXkfjXaK+u5XzDZyV4TdLaP/NfU6Q+YOZJCwjONAooCOf3Qs46StZ7WEY8ImJk5CuDuB9+zNHWI++CvypG7vy1I0YlT5wDFHKlwsx6og9EtytEWX78y9FV4FVs9kmWsJJ2ekwrzPTFiZhVqnBEeRxqXmzNAhyWa4t6w85PxshC6zhKY2v7H99Neu93XE98jawTsPzAda+LQXlRS6pIvsL54uCB0BykvyleJAV5aIpVlbyP006iAawuyYUlnxp7P+3L5uPDetnFqr2NtlIv8v3G2AC7eaiAKH9F8M/+5c8atV7TEXdAfkdobFFS8S7PAP/NdNOKEVzEvzegpUi1aX66pZCHTXuWeXbvGJdCIeFnbZpmuuK286/ECh4BA3TLU2B492ObZe0FEKmXCGsYscIPvMrDuqBKzUREB1W0RbVp1oRSUVmjA0C3hG3STTeC4oI3u0GWD5CSpnj/okdkbYy4P0ADXEpLjy4fhCtXz0OyMbParM6kRHwXQ1OvOAjjuM7a6kl/MfPcnLeUhxNBLRMfOSvI0A9yzxU+OXFDe18lBo+295ONdq9b4CC1wPq55uM/8x44HMN1dEVpmtlHEwdMTo6qE5IoNGvq7DT78GJMADpE2ztzggGHbMvJ3WQPh33SXbWFGmUqent4TwCMbAIX3LqOdDl+JH4c3fxt6naXJhGC7JVItRpcajlvnOmSml2CIfq72rIP8xRDQ+6H1x4R6cbLp7EMTAl/6mLsoCnNxU5S5uC+dCTy7nc+c/OijvQwHJX7JhUsi8Bl1JM+ADraVjvozXcKj9ODVcOqynSe7tZ+Wf4t11xbX8v0vCU4RDTYgeA1Z/V1cWRHdR3E9eIiCpRTKGQiGrWJcFI5m0RwTh/Yg+IJ/JIxDPxThelVf+1ExXOMGj4DsmhcfAa9zRJCdRI8M7HQV3oukF4H+RGyogbq0vSSq5aofjO5dI2192+fh+wbwnAa/znu9CL1nLHw9qdFXx7URgs47TDw7HAyhtlf2wlrI7JWPzZUJ4YtcBYEevcThQwSDeGAJkWEmPRiqnYoQLzjdXxPpNERPIwfjiXRMXHLdwVHS3WbcNpt4O3ndkMS5s1v+DIyZCe7FtQXVqZxdPZGDsww4/W7BUfX1T5i25X7gg3y85+5d5uD3a3cV19qEcRsXT516KompMlvUHeirwCTnerqlLGvbAcscdXExeFijlkL8ZMJoLfTO8NbyNP8WoGERK8LqbJKwF3H9EtPUH8aWr+IVYk4Oqih9EJ7ifFpDmhbYy47jYOotQHWvr7S0WqkRObQOyILq6CRfQ7VsuQqIhvGjAQPzdW7D3M1+4Xqz0rX+z5qwNFVPUxB1ZihWlhLxM7QuXztMagSd26hsqC7cg038qYz6nHRSoxFoNq3YVezlU6+7tFQBy5dI1flmvCxg/l11sqxC/qja6/tYvG/UN6erbKFhmlhHstbkaCv70/UEFvPJYla0XQ9YdQEsLhuE5ERFz5ICbSA4T/63GpyQhSygm1zMnZ/GcCdZGhrWtMNkoo/O5nC788CQZRoZGWuZ
Variant 5
DifficultyLevel
538
Question
Which two lines below are lines of symmetry?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which two lines below are lines of symmetry?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-F4-NC06_v5-1.svg 220 indent vpad |
workedSolution | |
correctAnswer | |
Answers