20093
Question
Boston is reading the outside temperature during winter in his hometown.
What is the value of the point marked P on this temperature scale?
Worked Solution
Each increment = 0.2°C
|
|
Value of P |
= −3+(4× 0.2) |
|
= −3+0.8 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+z1NYJlNReKygdmwuZTgeNiQQ6bd5zrPkP/+OCfh1VI4pAYKsVcdw+mahBEIlk7EPmJNL1pRpMktKfDSvXraTSWKcCSSMCZJZIm01jSEfBj9ozU/+GnEi44xhVK5+rYU4VIv1cQSSJIMqQW9wDb0sGGVYRTkuphHUpGIX5ST+D8N/s9FmlzOSfJA7XKjCRCAwyZXRiopnARWks1lUg5RFh4BLq9GHE25Wb3F42NF0vPoVfKroYZ7MfFLI0NT+70XKAi/CJ7hQLThsWTRywNdxiAZS6YD9ASaBDWgMYNFQ7rF7TFpgaHUqn/1E5s5lMJSeaGzlbG19LcaIfy3Vlrp4VQ1OImj7jAHpC/XMxUiWn+O9Vd8nIoqZoiaO2itEluLaBxLNE8FmWDsTqLc+F1kxDLNtviq04uNvfysczFB4EvmtCFfl1mVP8SAHboqdNix+4JzkH/PMZLPRQkYQD/PJmJdrO+if6Ag0ZZPMLSiwf+ECND77ymYGMLm49dBUx9hayb5TII3TqTJZyRJf9EhaMukYJ4ietvmhC6/jphTM6JWGNXIraHtTp8bUYHWzLiKERkaMYGr5zX1bxvKByfGEzVKTP0MmWN4nNYqoymtL8KfU0a/uDDKZ7aD5D1HRv88Bm45hlQ0Y3NdThGSgo9b0MxI5TUaRrXVKNfIs8hO+kM7QaqMdEAe40Kq41bhHrDMDjEqfl3o3AAEFW1HFiamLD75SXFzOd789nsc+X3COQ4jGrBJxoSpQQl34KV751pkLqHI1xezCE59sL+uUUJrJeQhoWZUiBv+kKoYxpkl3WLPc2vQFMr8hmNt1ZSOQWvPOLEFUZ36fJzEBWFsnv6AC5fsadUZ7IDhvOoYOn3oniNHzIfdXZTq1xuhGN8up79g3ZMsrr8h2SUulk3Mhz7b4HZUu56AE1Un0DeQrxsmN606+i7p0Fj2hM0J85rP6UIrooOReiK6+1U0LkkzHGyvLug5P9Jwg0vs9zAi3gUJjsnKKtcg+R/DEZTl758MiHShNj9jo4YPM+d7257UTxy0nYHt0Nha2nSFKZrG5cn42f7E89U/UnaZm2MYjBa+CY1f7zEBUaX0Z7taSD+x2m/9YhajSFDNmTwbgNKSGCjQyNCcu2D/rVKqskiW9o2I5JD5e7Vh3Y6CJix8G8xP63aP0h71mG5jEpwbfD7pVB+RpmbKgut0BEqrjXNBpOHejZtGasdN/TOEdLOssO+LSm1q1sQaclQ+veKio8FsVTMF2Rm7D5H7BB/a3x0hzRfTI6i2wggEZklMknlLXLFFW+ARGW84jactkh93W+fneHLhr18PHVVCx/uFA/JDTVY2M+i7zQqQz5jWN2eoRbgRLryvYNCIulEfcTW4S+dYrQ9aZ4nHIvy/Sp/Y0yiGTdydrS6jEjxqeSRvu6ApmAaJpcU+sHlM9GZ+YgjoOU1VwOm7eE83f7ywiQnbr+IhGBlq860X18EoPfVjzYK7//NiU1Xg9PDFNt9d9IuFQ6iTH/5xtap8BV8dj+ESmlcFD62Y4s30na/Ep6j0LxW25ez2VXUffgKeC6Xi8wIObX/wQ8dPvd6iTmlpsz8WpW5Y3/DzlmVmxRqVGBQb+ED6D/W8lHlBe5Om6tsGOWewEKPWKAZol3hVRhgXczB25DhkjpyImS8RIrcXlXPiNFamo4hfSA1GQ4MDis06AZFiw67eLcXIMT98QWEpvDDKKKwg2F87aV5d/6SCZjGN/bLYKWjnAjAfS9cbL/s1nq5u7zUYDinPngowjIyEFDGKunmQ2vkcgTBh+gGrX0d19aTcZr466YnsDlsz45nhMAr30+CuVDSoYiHeFPkbtoVQOOaFG0nA5KW4QXIAdYWO0ABcmns8RfbrT438DMkx1KAhpnITm5Qe6gxDZEqF2L3h6l/WGc4pu2XmYifrX8skBdfkIgx4YNnTZySX5QwcN3ft7xwq7e8IKzwmX85pGUeRTHSZItmucfiadOfuOeclMbma7yotXdY2Oom8CE/C00FEtexs+dFxirXkw4/JE3BLUC0TPuL7qn0b15crjqW8hjB0wzZjq1drViWnf0HirBwodPrtrhXvlcc2NBS8dYYwKw5k68diExXPRFNvc4UbxPhJJMJO7BrLiTULoXlRdwAExjqKLuNlfNGzS++TrI3K3UTGHcmjfyZhDwTUxzdHJtrSuN+W6NiweiC49MFrsHcWuz81E9asQ9JRxUzG1S92uVpJ3tJ8cHn59pYwoluduEGnKHBDlMM8hNEidvbe9va5DC/+4VUPXwL6zos4aj6fcSVtsUBK3/M4B/YK6s9hekpD7xi/COZeIV90T53wepB6ddLmyG/psiPKt7Cxd8oDn2j+3Scry5DofXAbO5UEF1TEvT1eFugqHQWGrpH2CvI3qTYWo6nJTOcl2pccDfbQxg897dJTgvjt47RFn9kCluyCw1FYby5jJIpDmikkdG5BbyDR6PLRMm43yLhhxUhhh2XEslzjFSL3C2l9jaEjFsbq6BcsAseBbYH5bCRkfjsIHDPfBgX1QhifOrpgpGcFeW40AKMXapoqItBMY14s2+Fg6d0sCqvTrI01f6uHbYDBZJ2xzm8n4bSa+2emLlJkinVRZ9beQQrbqENhJaWZXZ+6Gz2EwFiuFvxIGZsZiNgDZn1X8QvVyoF4Scr4cwiEQz/egD9khjKY3QzD8USpYheQfkpFQneqqCph50FfM9GnlTQJNPkhp7puAA49LJhBzawXdewWm+lqCccnHhscMyx3kelDNgcK7vbAnv12+AR2f3iCSunmby6H/wXfMAvoYyIkyiq1U+iuwR4OpOHmlJMBj4eOgKEeJPDoQ9h5V3OpyRJOJoBhfdcSjj4uU8Qmf5VgdlUUrjk4cFiZjZvv6TKh2amxBkB/nZMeNtoXU9US2k43eUHVVpAsje6TpC3cVPE/qKV8FDd1DSnAzI4qpSCRaVRc21CXfw8v0PyebTnn0N3hf94e1m9AxR9lOFElR5iG5Y41f9AjEwcxLMR4/CDeKUJ+QOuhESDojqv10haU6yqXwvEQYtCZvY3TOmq1irHqqnfkPoCPCBYvAVpa5LPsh27mlO2w+FWQ/5nq/yXeXojr03iZvBxCsob2KzY/yGuO4r+8iQBXL1ZETBn0hgB4DEA0rfxC6tD+sX5uReUXth0AA7XSd8pYdhnvBP6WoObXke+l0DV6KOEouBMHMoyOfTl34hhRb42iTKyAW5a3cB5ZLHghGVQAwm526XUu0Zz7zWSxDNbBj4v5/GUnlYHXP2WLadg6cleAex2d2JvUXjyySLQuS/XFC9sIGVJWFdY0aktwxRkqvQ7CAEi8b9CBb1wnSgzFeBfArxaZH4KkMl0fVkh6aKYBhqU9ajyRJwgW9+JuU07fP2NxFzHxB7RgPmwUZHbmnUgyFeCX2t2YMnRcJv4vWf7HWEjdEZNY5/9UiryEjHmF7hcsDLpiMdYMnLULqiAbcvb29+0zJULGYlytZOo6TsRm1ZO/T9KqRQNp9rplGyQiKz/827FEVax1WpUXVKK/cLbXnbV4wm7piiYbB0Mq3gEn7wlToLYY/dFyEatDu9VRDmTKCMskqfofB8prA9YwwJzKDairsadIJzDeqBdDAYlgDymnXFIJhutJZUhylAFfsv+aKQcfwjJkzE7H1jdHvJLlN2sKRh34kRpA3JbjWESMTizImfRc3cwaPfJEtuWlb5GGO8keLliWUreuEO+bgfH635H7aYKryvx31wR7uDtmsEhiypzmOXPXvRjT49HzRX8rzvNJ46RxgngOljuXVJqJhvDfDr3JeU2WeRicB7xXBUVpPwtsNkRk7JdeMatrGUWJafxvus81VLRzgRcIz3+z1ypn5CIisSg/f5w/LZfOspAdzXbr0B7+Lwa3GMD7nVa7omCXaKPEt6lVfz5Nu2dCXMhj3t/MuKXPnchw0UdwfsWHmUrFeAMTOSNLIpYD1qh0DYP5iYYcaZPvRa/njvOeokiP0slMDK1NvYlh04TRlSjsAX+vkqL24w92tcfhRfOyLdI94SZ32NLk1f4aPiT08ggbPNRsuJSQ5bKDZoIYAgkVyjY+CWZSty4kSCwnkO5SePTCO2hlAxsG3tScXMmENJIUa2a1nnaZLgsqoSxhrNtTALgaLWIsHMRxfQY+NDFqg9QKY+Z9AdlI7naKeKCrFwgI/8mU14cpqoAa6xAY6qRNz4HIXXbNKFQV2LU+Ie9i//N7FC/Yu1og5D/i5TrA8kGiUCM/XBDq2FopwkMbkwViKFuyiRm4evBo01fIpUzBF9Jb+DERRxQIIkqxWdaqAPwWXEu6dYotgB7/c+q3/3ZO/FCqew5vVcl/3vbnrOjPps3ApHRt0uaFNgFzEBhWcPfAm1IZSlLsrqfusnJkNRaD+FWItxE3bulmPUt608sFqgNIwias+mYRxMyRzSjP9FZY40IogxyiwDtoHd7Kopn2PsJIp4c7ZH+DWVQn+ls13gjYq98QGGjz7r+jnHuzGrgPCsmH9Vwmt5pwFME0oybF5QjyPkzzojHqBXr3xrA9qgYh2mNtLew1xGdwNFA1kYxvwX+Nnw8QOdNdnBGTr2nUzKx54MLElNCZ96MJJ1ohUlQVevV/48FbwSpHG9SOo0sBsu0BqxLjFhkIPAxN/DPuOZTQjL8D4RnbtB4nipYrm3eVsF8V2NuK12akvp9w3rliJ+lDKQ8vFsbgpQz3/yGeRP40F4ot84DnWg9AmM7f8Upaf1LchJ8AnrPVEtR0S43h19myg/hMlcYq8Bm6ZNO/NVmb6ZrZzarAMrI4pg0pKeUKsrJXA7iLWjYJRtTN9yKYH1QVz180SaVtj/oLYS0lehHzVuGsK5rwk5KcbINfgPl489gZ8HTCJukp9zPsSvvUMFgbWlNvBDvPM5ryaiT00QlgSmxV6BJy+5iNUNxrK63yVqJLG1AOLIa2fVrfVYrgMsjWgVNQm1cpbeWLZATzD5St8vu+IRJ3Q9rtmlYeokGCzGkd1kdpbgmSLSVkQMgl4Jok/yxN1H7yXoLdYkaZrFQrymYm9AVORG0A+io/TY7AoOCLd0R3sJzfJc2H050cZa4tCU+3oagKJ7kTvPn/pD721LOY29gz/K2H2ju/b08UDU19HK9upPgZmUjE5dH/1QszPW28nmsfgc7YbdtjC9lj0/K9KJNFvn0nigWo6vi1jVCBkb7MidC23i6RQ4NHw+OKs9a9WF1Z1mfGrEd2xGXp44xcaEnV0BFwXuTB1+foehd9Ka5F1WU/bXmS+CZNZZLhXA8UdQYCKvWuPUj2QHqj+kC9UcOHjKkU2oX9Uz8CqJ65aHCDQJwfQrbRul744Q0zO35LFOqLMgIrlMAjvOtEFhqjwbi51BsmefHARmkAu95P7qit46CjFkcTdWwdhptvhyEWPX7LBYBPFvE+ANuM9FThyrbb4jQ90Jl8/fiKaWSlrO6RfpkeIbxSYSHVQYaCxUBCnPNhY1DWhat/mqrGe4lmgXkhfWOTrzWcvAMBZSaL/sFYqtiw6lxGP9Ig4aPTrhLgv7D3LdhpP2iA6jkLwoqh9q+QX/a1/YJeQJ6GY16HeI1CNSMxw6af+ZTWl+W0lT7ch69izwLmKegVcWnuYHIP/QTPxwSILrUP8ENea3usGUBhh5WrZUQ1gopPhLNHuMOe4pfrYxf3T7rP93V3ZCiG11FUOJPmavbYF0SbV+T/zpoQ7T9KXgg9CQx2xcEpxZyb2+HFPuOl0EyaE18kDzM2VQ6P8zUjli7FZc9Nk5eZf0VR6iTMeGNOTPbO8NKS2o0Wb68buPJcmphh1JcvXU6Ccero5gmvEPynMr7Q5e2bvNMKdiodnmm6OjoBMfQm00/eaAnP9jEJbnO0ApXhIM5R+yIMbHo5YPYscXyNMGMoXHzYB6lR4NHvcG8M6dQy5HaMQdAXQbNj7WZDncVWCIYkkkWPu3HkNCf8u6Vw8vvTQCipG5w6BJZ/szk3YE7cFi7EcesGrC1+YUFHXaYR3lid1cYfF/k5wEq1T4AWNYurTjfqeAy4dZv9oEJK1aNGX089IPSc8YggCL9fG1iZDEao0+B5IjEfsKeAef5gxyDgRUI+VIhajm+osVW434bIvxDIBzg64/sOkRIiFAQFBvYEx2TEcmsFuOpxC8OSkim0uFUOf4xAIdGzrHKbbq0Qcy6goT9WfSg/EsKP+9xQanZC9w+k2dWPfEf7/RchWUPMdgy1DT7UMPimHmvnKE0DQ4mner5P0MrX/FCu5HkdZPAEGEkUbk2rIFmN17+oWmyMzNaGwfOhHR+whAx4bNhnyYMekS8Erx6a9dzf8T7RWcimiH6DrU6uNHZt22/3hozIvWfu/1chLqQiZEzKQxVsJvQXoZ4vOION0z0DpB+sU2eR4tkbyQO/ck7/Mke039wD4URsA45lUPUkKD4uY9Hu3fg7e3rIhaIrJyHwmKyjUtgGF1vBYsQ9E3Ff20VHHnsrMSGO8Hl2ermoibqp52ju8C1znjFo2QoJBIOrrarDhwvv2/0FBC6+KhevpafNqr02wegovY9cB/Dpm0vRenPCo0kMvkTCNBne5TEgveQG8StSjXtdLx9jMN0GvZiMR9pBNT2PPVTn7/x8xdLRUeuB9gSTRjVuXsqysY7QsErXnoDHR+9fqpHzEN5RqnjRJ/7xO7fA169Q29PkFvizYgqJ86y/rbeuszwhVHWJpAC/SsKfXO1dZufwmmicPc814PQIzPQExkr/RUUWHrsMWEDrDlwhCAQ7ymn136tMuCjyb5DQ4eADrLNJ+SZSvOnbN6RTNIm26y+kQg6CJP3qYF2yt4Lu4Yj8atIOV5GtUYeQD9NaMDSZJ1hDfUV7Wy3jg7vW71NQhOfpnFHvW9cj1xlh+0/3EMhZw/NBVKLYMJgtELOlNAeNk+gMOXNvyV+i71PQeiHLfAhmAKBg/FrcHQEO8a9Qt7SiVjThwKqjBvGV0Nc7uxMO3T8Ph1XATQsIe90JlyP45vIMiZbcxT/wP6KKSZ5lJCNH/Z/M/eVxM46hRdi78eG5kfdJntRFRiKu1A+XMlQL1GqSIXeJwdSSdL1TMyQePNwrro0zAqu/cLy34Mztl7gk21bf5xV/UrrG8Z/EVUthR0EqM9wTnFHiRASr47E3lTMFi1vncicbUzNY6G14YgwKauMetlOlUTpwRy3fey4Ucepg21AoTUsxCSZGyq3isdaHr0JhEQSUpaB5GpuMJwNSCaa3tlexiK+0a9QeMsqdA6O0NWKdZKfNz0dUBkZlKJmeW3U1cO21S7I7j8Jv3I0UPZJZX1OCqMUV8s8BncXXqhJrx0VQXOVIwdRF4kwN05qOPPd0KZTgHUE8VsYW/mcykgvcXYEOFIYpQyyvKM641ndwBQTQtj4rgZUkRX/W+KUGlq0w8hfUfMOiEjEMzjBGrp5PyDdG6kVzeCRszy5P02g7r60cpwG1xxTYnGDlqmbYuT75vnVBdvLRxonf+Dd9TGbeojxSSRt7GvlgxK1qesQ2HoceA3J8xyWAhAUMt9zAJAV1lasqNuR2/q0zySMpK28WnY2BxW10PXLpXRjJonfFPyVMU6hHjZ/K8psZNUPp4HWNueI9Ijv5bzhDIlhoscgRWazVWDQ1B1sRgD61IuinViKmhEo03sdinV4XrFVR59f6Q3mfMRvXwqwH7G29wzJkUPeo+jEUINaOUYNXC5qSyZxAJD+es535aFCgqcaFKD28kATGkzmgO7ugR2kHv69muJKjFLOrkVyg+9TH+giJyCLQwcuAVJJCRC6TDOe/wdWZxfjGoQKLPBDH/0+sNZCWRcMqcWehmxvV2O997+w1mPb7i1vlv6InPs3fV4vMlIr4Mj8HbPK/HdpaQlS/mvO9EAyLzEZqMVvASN5QJuVulG63Lqn6t+bA+Wh17sdelL6eskQ4qIKM7wOkvfu30vPz4qF5miJIMjISiMjRUFqqJhp/JlkIsQ8esoaOt+VwPgLpo+B7WCd9rXtvEGyO07Imlu4yJgJ0dhhbHshI/DbifKXECKOOv6EdIIc88KzEsS3v2F5WPAIk/lOInu7rAfKp+oA6fGwxI8w36nbKooX2JHW/pDaW7qwbL37ztaiL/ikpL9spWjTnl50csc+P6zICGCaPdb9oiuMUHcUMst6X3m1B9a6CRE95zS8NdGpco7bd5clK9RemUgv9JpYSTNfLOnoV4FChQnZVl9X1LyMlY2LIajw0j5z0kRlldt8FJqZZCFhGz9LcCf2U9a89FIG4MKM8lfsuxxBR0DRrSekYTGviEtvwRmIaIRn8N7wZHv029qtj5l7CJFF4d3Pcwt3JguzteUzlBbPEe8BITwbdl5hbHrtWKzSHdZBJc8Qz1KsOTBzo/sdbWdngGqXmUcbUYgCmICdtIoJubxlHoxo0BiiFwg/zPmQVZaWZymJtvpl0sjnpcwHoutiY7j+DaLDD8zUQELo4X6IKKS1Dyr/xY9SYf4nulajrTvxSJlIIS2a4YBl1SL7WFafjBv5xpgLvdUZaClygN5vjoyAl7UD7kFOZ+E0Jju+x7RVyaH0Av6S1V4diqQ41dipkvY596WfvVhfWARCLvy4ZoLKNooeaayFYPO57VRSUXDdo1CiNTvboQEEXt+1GaUmzKCrHCHF2RNZcwNRbncy/OArXl4N/ofPvatdz6ptZanJa8UZX7WrjKdrkelvpvmm6tJ4tMFvOCsoGJWFRcXq5hnNrAVg/8riGUPGXB7oxg0M5gxcCGMYiQZuRKqTW5XhVSjv7NmJ60ZuR/XJ3KwJZC1h6Ki6LI/KvRIGwZfqYEblfmJVu8G4LZgeppEVw0x0R4PRqOxkLjUVuCHiCBYlWx+jbyuQKpPgqb9v9cWMFVLOqywesyc2jMiOV4MdujWQvoRnQUbWvuaZ4+kTwmAmLtBp9PUq6AIeeNRyyhyspEiIWV7tFjjPoZjrur4OdTrPAh/XVP74ZdXmPJPSbQrwNEmE0gBeLRRNwNPrGxiiBKLWdejBNzSOE3WMrbbsIkIKWnaggpCEVfZKWdjz9F6yLCran7nw0zSNbBF8p3L3VBtPpVAnUZjFTEfltlSU7CwHW52Vk5pEWT+lvI7xOrE9NP6BbAkEnN95y35Fir3Bu5CiYDu6zjNpHtM+3cJsgRSZvebM/Ux6O3pNWNnGytqpGjucKc47k/KwzXBHFiuxYJCWiG7DY8w76jUKQFA2Ly2Ud3EIos9CP+UbpZ+0yFD7APeTVVdGxVfoO8/FBvvcEkyBnOFkKct5iJHzvyit0OE1NzM2lwhg+VdFyS6ghjjYaETCpqLTaJ7hfFSQxD6tNN761jKBPzmMxu5auZIxxkqpbJStK5Tfc26Gk4UwwDsFNMajldliu0Mv4grPcQlcPkHjHkqLo3l8iSUbFHXIcgQisWy+CkuLgTwNKJLKvnwXuJYR5zIY2DpJl6+SEDdhA9qwr+/+FN+peEszDSYGvodbelr1L+UhsyVJxWBYXT5hf0jgzsRzxx5CKZe/I7DpCtHNNeqx6vZ/PSl4HDsJBbLgvEMNsdqf53meDV+Z9F2xxHMw3fvain/ivGc2Iu7bohkKF9SYJBtj7MnEM8ac9EdG+/EScfprdLluHRL6anvRdh+TWt1Zew4Cqwtcdxa82kfL2jDHQreUxt0IHpMMZLXAvXMJ6be2sMFsQ3SsuSs1sihbANLDletsR2azbuXxUKnIb3ekStgKr1/n63e8GQxjsvO8Zb4Lz88Xkv+qbWv4H4qDdQyLNG8ANrYrVjy5Vb4WRJRYjLTqm6JSLInHvES13Jvy3sRC+KBdeRwbhiCiFukVVt9kJRiL8Elfw5tl/5IHx1uaSKdsW2PX1D4ipTpmWU14kyarHryLXffZ9WmYpNH7dm+NGh7Ad11BDBZadZhno8yJpG4KYeyWmaGcBy4EC7aGgIwK84+QDwzelA40Q==
Variant 0
DifficultyLevel
550
Question
Boston is reading the outside temperature during winter in his hometown.
What is the value of the point marked P on this temperature scale?
Worked Solution
Each increment = 0.2°C
|
|
Value of P |
= −3+(4× 0.2) |
|
= −3+0.8 |
|
= −2.2°C |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −3.4°C |
x | −3.8°C |
x | −2.1°C |
✓ | −2.2°C |