Geometry, NAPX-I3-CA26 SA
U2FsdGVkX18eHEQbMW4RmAjhKZ6S4dXLoYSG/13EiZC8po+0UBfNrkWN5ivM0IJ1Ddx19qA3OV54N3nfYUrS2QlxS9wEWUc6vNFlsGy8sPhLb+DeKgeyzAJS+WWS9dCGYdzYmt1TrO+oAixNbAPcQwZAYdXI6ZsEPLjY4W3GgiVxW5dEXnvI0585IyP6fWIm6RjUwchKJgzVIvEgTfEZ+VGGbyPEmJE//uiCJtBhh7qbYx1P5vUC82WEXCp9Lt7l2sTElBx3Xk5JaDZEOSAYwSD/5rNPXkwBtQvl7ttpXuI5rdlYwKwoX/ynfZPdL3aoKDvEYgXfHYPzMYnn5HHDm2q9JcfqrP0f19zBR+vQnep4T7bL6m9BsOeGVccO0GWQh1YtEOaLYUg8750L+4qXWSzPUfrea26ksHIAOyiZF9Ghuq1wKPInDLKeZ147QX5XAbkylXNWHwLMEq88rH2KhAEw9WrA8rLDBDzO17iz/bW1naBWS7Qzcvrguu2MEUePG5P2/MhZMqdu1IEVYu8fCsAU6FmeXsvsJr66XG/7IYUS6S+6/7treDfcaW+gyuPisQb8BKtVTk6ajRKCHQjc3DYNXi37wwbnlFkDxpkHOjKfXmpnBVFdJ52+p3lghgwJmDtFAQlN9C1iahqxdCdUN9+CnRhjJa8d0IUwHssvF1WcQlUv2xt6tjs7lzkwqBXhC5irIf4FkSp9nS9yWyXQSt04em/uLIvL7fOTcwQoCpMvVTEEbisvgswB1cF5Mi0NuzMhHMnTVJ2F5gPPZWBiG03+mAn/bEesMo/qfv/8jN544UMxJkF26YCd0k4ZX1+ueVvyZdrOK1SsGh08o+/mwhwUsS7Kz/yUOOIRnpmVwaJr8Fid0UKylrTyfo/HHju/bgaiM77pM2ZdebSb6AXyHMCwQVyKYTmGrNGwBLoAMK5xd9Ov60k+IVmSWuSsCc5co4fF+TOXf8AFah6PlOlLEEgZGzkB21TiSmkvkX6uQXX1iYxP+B9EccX+Pvlnopa89f5bbgpJ/cbpFu6KAKUy75LCyInspK2OzaOVX7E0sYpMisjN04415H2TqT4WI7kYMtyxmNW9Wwp6dUOKBdYpbU74k0wG+6wmGY/5xENLYimmaDxxCcWL6aBukuSNkYQUFR2wAyBX9ildmNfboeypVkfXgoOhNFxuQBj+SrGFYv6oC/bULzMR+l2ufnr3zn230X6eFCBXwlk3gxmknIgO0UX8xM41BWrJqC4hkGrpm75IDBPLWWuVfAKP+4AeuuuuRfslvvU+PFvQGPqsoU31Qu0fJPBWgwql3h0C+nBYIp1676PLSzf8zyifpvwakOKo1EfEdW/OUbLYdJ1/haeDwJVNpECYNdmHsNWTtglTIz6vuVKU48hqGq9cPpGfnrYH1jDAtSUv9HQKRMWXCb65Cq+8nFHwQtVmW5nCoFCfIK/RkIHOGlCdQ9NNxrgEd8WMLa2Q9mOYXgOn2PUbj4Dlt/5LsTPCJct54CkAElbKf+CCyt7R107aTBF9jvgwu9Lb43n2e8deYWow14nS1cRTUFsGLr//04vmKP5Cj8k93fMpGWrVjU5OGExWVFqkkKMEKm5sZY9Mz5q3Ye+3BjcuVpHMw38zKoN1LQMd5eUe0PryY2L24CzUHa61fywy8yhxo7j1hG0xZEdY1/54PrfUbKmSVJBz8URX50ytsSom/VaWXCgqC6DH2RdYq9XzwVyA/w5xVJr2f0uN8ipQhsV7izXTneUdCbJFu43benGK9RJhAWAXbmYqrb1kO4ZTlyWOBLnjyRAfrcGV6S9OgEIam6OtzbZD1qr42Rcpfv0ZGcNuU75RVSP1COfw7t5CfJu+nnDuYsLuUhengJJqnSdN4i0BOds+WlP+D6TXWoWyEaHlAKGpNwmJwidbEhibjL1jenr9iXp5yStcW9SKY9ZzSWHB0RUrrh1qqOGZlz+JTuhZucVMvslcd4ok5MTQgywAWXFcIimZBL3BtzJCX3FmIv+P5QCq07wiPO1+Xi16I/uy41nJ8MEfc5rmN2tYY3knSF+j9bl9EvrsTjrLbiVoZbjEt8nhIOvOth0HuEKeopl3pF7iNUftm8o42HccbI996pGjYkvah8xi53p+vUrrErrDkReN37F3wM0PylQx/+ByiDCKldgm4GpcGvEdc8KzA+Q6AD5d2G1FXTKBD5quFJ/2tgMidwBX243i7S+OBukAv48JRjoEnT/MVj/yEsc2r1925nP3tHAurCzV2j1T6XibP1BWWZKh03EpXr7fd+szn6O0eOwuzTUxQN1NAEuNrAtZC3MfhAFJTXJobLI3wdKlSJB5KK0XCikaHI6h9UNW2vcijDllOVhLRFBYQeeO9dJB66foTMUgJaS7A3s9imfc8biEvM5sIxzbiLyitP6PgOqJnCaJtQFSFtJ1C4gNUs3/rLHVLTpB8U1BoGpMeO3RgeVbEQdeVfsphXNE0BDqM3nAJlWz5BYIGnT5kssWSz8Vh4vbkean+A4JCM9ymYc1d0VSdKoRrKiGXZUsgwDFGXwIY/99Tt8V/mjw2Q7KPYBNKa2UZu6LvfMfxwHpCXi60wTPxn3rvpQX5emAEt89geHKU/DODTL8vo8T8RtuV21dFVqQtan+m9BVq2pUL8hvnPAmnv3TnoAng9DtMHzaOaQm5ytZwtdROyjwS4OHTSuUMMwpnpri7RDmIRcJ2SAJfQzWGJYqGKpp0AfzLFTFfcRHwf3LVbVTGi5Cnnts+SqA7TPA4M77Uw1UiNc9VzYxYQYKTLeriZQDemZHG33esSDIBr6ltHsM/pb++ofHd6LYOfX0teY60ienC3ZAye9k3+QN2UL10HRp35535j4nvtu0rFMfkmeialQdUHti+4ZujQvIRF2Ax1ud//oEI/3A+Ns63WBhsH/1+fhamJb8ypwXw7AOB5jkyxG8I43IS0zR9ydxGKXTLC00P3H5LxmOmUum7d5qmfQfX8fDm574X0SSJwWC5NkPvOhUhZlsvF4t1QTCE2ra1BOU6PRtByrlLxvv93JekZeY66xYfy+qGCBeEvDG+l0YWwA+K/qva0asviHgOD+Qt34zhG2l+VfnBf3jyJLKaKqs5uEruqHzkwhOAzzBFWhDp0S4GjV8AQuIzIJ+e3E+KofRS7Zr6Uxmlq4/ZUhOv04Z4L1kbj4jZ/6Sn5ONgRheVN1fcCQ+IxkQwIvXz6NwEcpL3KaVx6eCrYgyhL0UgeoT9El/ihL5jkdr7ZKfYw17oWnyFHn25gxxB9cOMAoIh6VzmRofUhRZpFg81ldbDrAwijOd1NYp8O1JtzzfS/bm1o+AFDXsAaPcd4xImcalVHmM1uCRdobjExuk+jwhp2Sbwpx5b0c0NPAZPA1WyUH8yutsrJHC1F2wyVhGEFImDDNOGRzfgmhOvZUQU/na91m5S07PmtooQXQcIbOnV5FWfGnXdT6lcy3WjdoX2CNKQwn7yH0IEEJVYoQYgnkkciRm5wM9XxofF33+rIXF0oVQs0DH7V7Rnui4fXCN93j4SLvnndo6oVOr6lOTtUB3LXLmWIV8HQCrlb0nU0FKKK5FJd1r3tUid+3usfH5xD5Zjsk6I2kv0yotASeFuF5FRYzDEgpmf9jPkrRknQwG0TPGLE5zWGYC/10OLA+wewZlLpv9/prpKL5+6OnBbvrhfHRqPQ2nC80UGoei4dnLhjU+zNVkP/G0G8y4B7Q5htflBqcDkJ/PZoelj5PbtZT/M4/aZrt8dYuixmQjC4kVsNL3CIO9Byg8J29SIGi+VfCOlUqR5rhv5DXCDCSDBf+PwfRSrlhT93Wa06jozXfV6/x/igZnyAJMpZTSvFOC7PkPoprqKu2t6Aiu5lg129RY3oHKrBleqvid6QkHStmkNf7UGGFmjsb0AlSJ6YD+MIMC4I6pLz2kv58s6NJfzCVXVosEFkdvhJYSYz5xYcZQoWLBGoSsazTRHC7p+VuwFaNEhwj5wr1WeaTLCWo0VvFfkSZnSxJN+5j/28Q1eNt0mQEPjXvWuhdozpHeEzkfCITy1zgPLHYE9JW8QwojUDsxYN7uPa910Js3TKg/aNUF9N5o3oJ+HFNUfh2CRV9XTtD+G7FG31DnAQqgLUt4ZLN/yxxNnttdHV8loGvFb0AYBi7t9fqtslQLt1pS1CciMssE9CTtO+yIEAdh0HLqju9VSE7sEVZwRiq4Tm4/oKpXXS5hS7tdI8Vh9hoPjMnZ96bZZj/YKaDP0JYrqXC1yGMqp51TuDXbZa4tk1MXUj9oXw3TIfAHN4wqKNJOV/sjvDrG6PsHkhpdDv3BddGdOR1Og6X/O9uTSs5f8N+Wl0EYRtzijnU2BAuGZjvWF7qaaHwJLc8LyWa/wDepA5D7Y512TYVZPEBhGPQm6BOFmOcX76WQ0CHGg9MYOGfvum6gFBOrpdM8hBDd0OF/I0ppOuiRmiWCrF7jyV9gsN5P3Nshv2iuQN3QkObXFUgrOVgrt+QAtgtykbmpx3KJO/AKe1qSQVa6hwa83texe+ctv03/JhKqfuZWd7jpzUOGnWmvXKcEpBF6q1wBm0BBeOT1HeSA1qDUpT6UOq0SzYTTZTBuI8US0IZORVWJd08lUosqOlDotpwKC+I9WlnF/Pyyw1VYDzgEIEXOduCsqJURtEmlBF8/BONvhe/qyJYjcB9kRnXau2E+ROOuwvQ1VaVxci2429j2WTRslEaYteNYNHBpLBhWNc1F7BeyZesvaEeZh0iONcC1ru6+3c3EHyg2hg+ZOW6cGmHHUVzUzX6HuZaTHIlz5zEM3EYfyflZFWC277CyVk0Xu3j3f8LB9Yz2z2EmmceHnGr2OAkP73iRfBxClauaduwGXPQeL4xQBx+u7NM9D9WA2eXOn5xNOaSwvO+sPS4y9SYIAQgYpEGGCisOBtUZHjCh5IeoV4IyRFJOtKLCscnarpFdHTpAH5nQqxnV0V4FttFD6igp6lg7QlYmx0S3LLMas0cj+G7UhyYT3QySQgUAqNFj0Rk7ewwJbIw/ZagUX9FG9oXZdiq5dZhy67xbEHFAeXIbjb2/1yRdWZUI7o968zDm+VVbx3LEEkdMxKJR0uZPVrlu3ybCrnBCXvR0YSeAVZmjjYmaNybYAsQXuCul+IcyBvRKfJIPBv91ibNnsgglP041m8cSXWEzLFhlfL2gbJTy/9gGov+5iL9nHDG02nsiDgzzbNtX/gpEG/LN8kH6dAOmKuAyPxjpX9lU4ievvhDJZlylasUszFq/MRhWOf/BiVtY8gULUjdKNdT9sCSkyJzPjSktfeaI2z7T8A2+4HnQ02Fb34naf1NSy5JRJ2L86DeBGdCWwvz7Luk8i/pcf2NjkBova9pDegqI+Ug2oh+RHXNZ3cgobK5JeSDCnyZ59oKk/mS4ne4e4vP/BwOrzExjGNuuwAfBE9d11wcboPCxgCIkv8Cc8mHISj+FrPFk4QolRQtDw3CUM29zKEYohpgnxZGKnxnjC/WAj0kAXpR6nXmLhc7iNIlSYjLoQe41+r8bhfCLhRkrJhjr0kST8TLLgkt/PCu512BvzKBmp68sOp7pZNyzl3VtT/0+h0fmCo+DnCv1WuQ8Fh4DHeqGHg0kE0w4avKmXZlZcumIy/wpbqsK7cnxikIqYXSmLsmIr5HarIHVrOxHXFWYnUHUseX21g5aCBe/vKJmkNzUp7jfUebXE83sGt0KJ+/+zJ5TwvNPPGcFs2QELsBEyXW8c51lsrITZUTlfHHIhUJ0ihh4+0CFKw56faOctbnb7NZhKV4iAPXpQ0WoPCXtK0iwvxnTK3KtEsXymWH0UQ8x8manqr0nA2yZ9WmQ/lo599hG6X9Zyy7oyktXxi9hraXDm32aiV+yKlab2cgqi9PpC1PJnjwP0+C/GBcC0gwpjJWWNXKFW5oUluA99lFLyllXwg8hQjJBpsTb9541pd5D72uKYHVGEDEnNbBmPmcao9vMe3Zms0E571puAwOe+8kXzTbEeJEwfmM7BQ/EUyx/2r2P07Th0R2FbJo6F1WTOYF+PtdNeNG18cYZa7cwZX/q/0kMaRlsd3lRL2bPSpQrq0VdTXLJQizE9+YfaJkdnqYNX/8QoxDYBT2tFS1Jyhz/OgMNTYbVt2HeSXwJalOVHUQprmbK/WRY5xotWbXVfOCMg6+c6l8RC3WXLNus/cKVjCIV0TuTujvbsc2m1YKzX0+Ph9k9yxRcwcux4L7riwzdBZBzVO5AblilruCsmJZ2zzT6ht7Pn/n1YtqVHX8E9gA53G0P2VdbFEHy4fci0+AnYqWZ129WhOJ1wvsSKzK52woopSMUZUuH4WoYmUDxMjo+yyYNWhPaF+mT1Zof6/bYkKCEXtzfT9kUQYIYMRK0nXmetp7Hw/ThICFj8MRkD5I0GtRu3JVAfieJY/Q3KWLjp5R+4eMXZ4ZHYuoh4GRWSvuIYhGiFpPTjiyM4xPsVXsH4OxMBHXUOKB5RmCrHy8LJIGzAszchGSCBaGgbvrmhkvKz6Li1M7f6s4o1AtuNMpt81LENjZp2cTRxyQchrbg8Ovje/U71CoBGiHGVWK2ME7kTTtGPgbAUuKVPmWJ+Jx8js079U9FcH7O1hVw0lT+6FtbWVGPJhcDNmvpao1udjMVVhmLULqhcjhu43332/KTUmfD5DUUeHB/CU2idemMfJD8WPhqfUo6fhVXdGdxDLLMetcQWL0teWl70Mayr5a/dlO1Z5Dy7haLY3EqxSXuuQDh4vhgcS4PICe5DfXumCK9kn7XzwXEZX04IWfQMko3sz1w3tbM9CKq1Oxn9Z2iH7NG8XxZjyJnQ0T1e+b0o/5pob6Ot9yhpJS7F3gVgLZQIgc26fWKXeKw/9cb58UoRE4bb6ZyopMieE3PWDg0KrNj/YsYGXZFgCc2JJ/hCAM8CD0pIL8iqh3EEXMLpvllRXNVeY54XhLmLG2++hmLBwr6M5/rEKryyrCl8rCj7a3XNqTAhgL276ELPyKRHMcNK8Movts10dXCk+v9vM1d76Fq8F9/qAt8jS+e3sLsWyUOBagUz1izwQxzLxQkSkQfp/17eD/M+mhQhrdzpTvntq663/3kHmPumsgNq0FyXkOcMsh2CEimyS03ctwfuTF2VUAWWQ+VIOnI3F8bVio+Fs5AUtIgp1ksekHMOQlnEkYaf0bk7Os7T39Ryz/EECEHQ01ksW3zLicwT8E9ClFMM9/nh4H/uUH4fCdWSId+RBIAX+uWasP5AAsNnBf7f0pmfsCXvowX3THrHSoYPWGvFjeHZbt7Lpc5EjX+4I3hQTOi2FQWt9JZPdD8g3gyBr9sL9vGESSLAco1zsj/o7eoixRJKaWI76rq0Mhr4eEb6Qe3/PtcTBFyiGrALQPDuUMa6RgvDOetpzaPwWSvKvWZfvtnWtRxfmdzD5qiI5QvQzjTHSMD3F5fO2RSuGHqaata5iJwf3GKvUmiqBlxUXbVTi7QCtxcJ2uR9KZPacXGGhPHPlFtEx93f7M+ecvCP/k7R62qaOnd48tI89lPJAC9XrMO5forhdx2EXAX2tMgMDfcdmnH6ksFcvcBT9evYUfbgi0X39Vu1WQtDlD3jIyH3OK0xBjA9ho+BghIF7PH4/BKwhrEZuYoTJXzZ2cmTsZImCAf+AQcRLQjn/3X/UeWrX6Z85384Rrcw/noPVlxjKVKFmChXRTYgQB5kVNth9ZaeDEQoGtomaiUoh/uVpwOKXOWGmvb0A2FZwFC53eesB3vynvv1H/NzgxBRfVDlbI3R/ISiNiLFOHcAIwTkVgLSqoWxxfEO+I523Xrv9c5fDDNvroDo9CHexDr4H1rRDuGEyDktBkd6abywzGt1z+X/PvDM4LFO+pE4V7Mi/pvMc9Ea3CdGiVUZC/2muvyiU2Fays8xszRe2tD/fhYMwwlxtmXxcjYFqq1myZkwZXtVU5M7XVwJcCapjPynI05gU73o4Cq3GjAPOf+WCAgTeV06QNlShabCofy1rgkUfsPV9uswYhMFLvMHjq0OX4rImjcoqSV/b1eM8z3b6l8ZWdzgUyh/GrBQI9Z7xM6TjJy7AYnGKCH0pltpbYN+4a9kkjG2eSHSJyB7fn6FIzMCr57oh2evl/9AOrBZHUaRdKLqCunIkgCUdCiqE1BegURNQW+6NRWCqBcrvcPahUAqkVxqGHjLklupJSRDzHQIZTdvYyACTtEVXbsoGtAvda9AmR6OmLe7Au8M3A1Z+RQ/41VBzhYXwjJcKFzhaLx+xhMak5cU6GA39InOh8Z5OvGRDs2EJm6YPoz12IC30lhSiMhJgjZJBVfY7f3clMKi56oO5M2dBapxPSksw0t7q1SODNA5c2c9k+uECDDyxkgYxhGZF0hpy3Qjo23fRqXAciSSp/0EiGF0hNRrBB9hDzdcov46saRlp84ZwjgouUWkWk4gcAowJwOS+gDjHzwAqV5yUctH3G1cH+nu6JIInc2ke/8AduFWFrgqXlVjo14cWooH/kVCugz65wYPnmDgOHwvwPBvBS2JjweVsF9BfcgTaAzCkoHyI1Sj+aaqQl+dFq+ddjaxFsck3c2er6sZLXkFR56qgz9C760wSIRs/Q5x2t8GwOxcA2CaNff2Dx4SsGLru8bfbj2oPfcagBeF9DZkWDG7ESICxtKikLz4GjH6Sp2MhCTseaTHT7F5szA3cuis/0spvNKCjTGznOb5N/CTBR6Ry+ssaSoGPoSfPWet9qqZ9RU+NRYyLkeQgRCPs5O1wznkMXG+QqUnRzWYr4VNSe//b65UzBDGRXm03kg3PO+5PuDe5QTiwkPvzHUBSi0y8P95y3u55BlVSFGc9k/IDAbtys3ENnn/Af1itgyHkj43gFS/X2ZZIWSyu3m8sj8mJH0DwDkjO8NEzYwxCrKgMg8KutrW9tno0kDYhZi0PUBlINFFclF+YW7GQPzNmARoCDDqS3K69GzdF7qQBZQW9BoAR1DuER176ng9Lkrb4F8W2djSer6inywWl7/xeXZ8+gRI7pXgKjf44zcJXfFa2y2eIDhsQJM//uE9XFiyFtHGpa69xOZz5Q4m8sK9EOfsmFyU2xI1WPTkWSgGwZy5B15yAVQkb/b7i8ah2yuVYE0v5TVbo0XPBe6Et3aaqjX0L9Py87aBWtueoAIgxjUrRr1qdpCWncvPPe4J6uB2YxYfUHzulR0eul80rNiUAN07CybZWHwRQqdQQbf1A8/s2hGkAteMZgOfshutlYdq9GxnicvGjtOqG8bPNHc2Sud90wPRSZBAD0dL9x8mtYhpI0oqKkEJd9KJQIljq0GXQCOwHQ388oGsIabyDtFm1ynEbipgOXQ5mLukCMrE9Kmo+HDk2nQRRtgwTboufSBglwCyUdUmVB/UhbyikBZXqQ1ZmgJA3G6949xBG8mHlkTdOzi+rk2y30MfnQ/9G6rNRDVeWd/Oo3iL3RMa32h5kv0gD+Zy/QYqzJ3LHfjVhPYJEr37u6xyuGVYYh3eHuFEghNtP01fbIEMWipy1dGMjbxBPzdSNbwK6qxRz96+cIa5s+IF56cLsad2w3QmC6er/3E3cQ9Vd20reRVNobpwJ7TQUYG02D1z+RDL3clWzx8oZSPwHswmYDJ8UQQPyGf3Wb+cNI04477tOysU83n/QvStb7fb4NMjJTZW2SE32r1Z/mfeufaEcwE5q2KZD6q5P9+md9HCbEKX308MTbJ0iNwfp9lXYANGI8Tyq1klLiD3KcAiCr5xtVKYIPniI2sGgUPkf4uVM1nZI0j/OFTWQM1YBTLhdwjj5ARqTqQIwcdhJkMf63nR76TdEZhxwyxZ0eYK1pQdGKi9qyDou4gejVJt4BsZzQKsg7r19TII0Fs+Br+sqnNow5tjlw16OmPLPriNa878AwNt6AxxdNp1dZZJwCUbNmUXUtI/jj5XZqTUgjONHT8n8g6J+7OVHo3dPRFhTtC+UJze5nTbnruMkx+o7tWlYaapfIcO4cjVWHt5cW2qH53kP81vFCs0dCWFpW1CJj3P6ZWoqt9K6Axvl9+W8BVIG5rDO/+uBkUd+tDfFK3nsHMSOzIxPsH0yGuB4+RHgajUgqm5lg5MTBMvlf2Ezu9OAB0fF/j1aFpjXlrtuihMujuATciFyKAto0tP8922oP1a6G2OWdREachl79elOyjK8PE4HUITih9qWABMNwmb2tJcgHPJr5zDPbko7tjaTKw8wuikqDdvdSLgsp8RawBoq+B9G3U4smvq8q5N+Ijie37a0AxTMKuMll2KFBo/CKpPaOLwoZEfkqdb1t4KwMTjrF/n6nMEHGS6hGPkAKez4br2kHBNL6b5bAefGNNejRRs3OYU4iWyphOb0O5c7pYuoG+a+r2sDGG3t9WJGadmPQjokjv0yCR3OhRSfDo8OmclgkVWBQerH00fKK5PopVHdFSG+5wKlEGbWOUo3/2SBgOEQyslgYCD/LPoDa6xIRgWKoKuHlYzuaUmLX1sIJr0UF95ZNxcevAMURWdYKpZB7dHPairZ8dYDjv47gqMM9j/yVJ57zWl8cuI4VsNxUiWGnxnrVZEdu5iK0JNXAV0ZOgUwEN63yVTCzbV/Zj4ScnCyq7gkmkaDmkiB68Y7bx6R6I1tlJ+hWAS5CpY77bO9ub5tEPfzaHV16izrkGScqXiX1kJji9Ywti9dSZORWoHp/7jeBpRFrbSVhz4uTZNNZbBBwN3/a1l0lHQyjWn+MZ/nby48bIH5/gUJRzme31vLGdMQ4L4Xn/F8PdnXVAGdW5Wcu/wfsfr89vizkMdIYYKI4RA2iULTksdBJluOIFhatiWCuYWr73Ppno1eZAXuu3HiJT88TUc/73naMmjf2SY1AxXzUMTalEp4F43ky7kqC0rejl2w0AiCnfC/8PjgazU04TjB6fyMLba3z4GxZEfSlk5xVMGnnYwZd9ZqI9EfY1O6kMrfzVxycfaD7oFBLzherc+Mp4WdQ0QBx+gkxyxA1G8Vn70BH8Yr68I/p+JFq+mQhtC1Pv9dW/swQWKI66x8L/E0GC2POjpPc/z2Pv6LnegprahgJ8jcyLHZ17qHkMOzfTdbtMX3xIGw87EJDHUVxYw/Nkw7NEPpFEnM4oAQUfkoRJMCg8ggfToXwE+r+jsMdygNsjyJ50mL6PTRwcTr+qKFaiVojCdZTG4+5I8NBlSE2AidQbNrLyn/CUgSXqSazmyonylFsqxtCYBRd8FrndIih39UmGqu92efWHRNxPtrWjCTpY9W/WqlcVdFNQ410MM2twqbEajQbMh7EzVvSyLHu7SoQn7nKOBL/Fzrjol6hkP/lfO+jTZOdDbfmXToIGESo2bJV62vcD45cTAqQ1dB2+kuuOxAUMUN1FSz1IkV1buQpRBi1+API5+QyEn1AuHYtnsGCKl0l+
Variant 0
DifficultyLevel
633
Question
Rob creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle x°?
Worked Solution
Base angles of isosceles triangle = 30°
Since 180° in a straight line:
|
|
a° |
= 180−(90+30) |
|
= 60° |
|
|
∴x |
= 180−60 |
|
= 120° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Rob creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-I3-CA26-SA.svg 280 indent3 vpad
What is the size of angle $\large x \degree$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-I3-CA26-SA-Answer.svg 280 indent3 vpad
Base angles of isosceles triangle = 30$\degree$
Since 180$\degree$ in a straight line:
|||
|-|-|
|$\large a$$\degree$|= $180 - (90 + 30)$|
||= 60$\degree$|
|||
|-|-|
|$\therefore \large x$|= $180 - 60$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 120 | |
U2FsdGVkX18gsYAIpmL7DZ9ttwTB2gJBBba654ZeTD3xvp/7VwvEGMRDdxxR2yq7vpVrR28ntobWvgF6BjWjR6bG+TDebLD1MAoXNEB5hx6DKUmbWC32g15IKxac0pF9QwiWVZFz+lfKo0rAQFjb95EG2Elv1rSAKQ7FjtdWAfGi20Rcqe6yXluo32VKofkLHociEIJlgoFLV7wLkGhh7x3Iu6usmQe2wmYz994Buhloie5wlheE8MVVSBKIY+mYUBFJHxlPVGNFX+Noy6FdqlDOJ5pvWpmnKIRwcLVN02YFqLFnzfaF/JsxkAqn7+NVcCnxWXk7EYt54Jyr/pc2oqEv8IC7KCsKkW2r+NggsZIw9rQ6kkTTyw9QmmDkaR+pUvbWHLgN8ZbEqNrgoKDhTG6jxD1HZJNvX7Y5/vd+AoSM6iW0DrikjEXM9C1U+zdHP67Rv+gidhvU6ogTEr7f1POcg92yQHDUEyXfJDfndlmq+dC72Ig3EKGD1B1W5+WWHmfGh+NNi9/wRPIckEXjGYVgoqnOAloTXexPmNu9n3Q93Z5rAZQZbjI3bz8ubluNisJlL22hU3u2RHKKZI5bMbcPgJBX2JxCE8XFiVwtEG7MJ0rE9iW/AQE6EU1FQ681Nf/9TCMuvWGHKEwMP3u48i529w3BukJzSpL0xxVbAsYStA/bHpXLG/sB78GYV4S+0eLhSitP2n+bNLLHc+d+9PcQka41cl/W0retcxdV7J0yVEg1PYbOm2M1MdjsSqGGhE/ZuAUJuxkD0/rzo3ibSrIqYsno/hqlZ2OktQYnRnRRhVyL/LceE6id8jm13f0jEHc0LyU7N7hD8tEU8pzubpRiruEWjZ+1EneX2Zjj3HnLvHxKcCXvSPAMSs6QlBY2t4j3pQY7dsc1r9AhKo5YLIbI8wDZHf/QYgA8Xat8FLz8ZOYidTly7LDHy7cPxYXsOuOMDivrog+zpkSXcLtFNjexHaTYpeZTxP10BH9oAb6Fyvl1m83cC18Iy1naNtPMIw1Y2YOKU+QrbE4h9cVC6Nff7txn7y3Beqsf7gKiFUkI4SvrjDcADrQMAVMbSFP2G/M+4/r1nSH7UDFK0p6u47s8/RSkEKFGRJvybjeSFSzskLKU2ewAyXGcsHCionsJ1suVCuCgedodVySrpoLVDU6t5cfvOXK0ScmSgBjz7B6atMGQaP+naWmWHH4LTGOL6AxSbXuZY/PgCnFOmlu3SLjJ6i1jV3l+yXcR//XOJLOeToMjN7uGy2C2NShdLCUcRVeRJ9tPz5TbW8ZUaT8XfAND2QSbprFskBXpbvw+BI6qPaAUdtKq03TPA0yigUUMWO6TY4cZQF5eFNPQVt/R2lC7+KV5SpW74jRxUumZKx2t3ZLc8QzPXHJG+yNVDPwAXhtadNBmvCnvBWVNi0cmMNZXoSBLGKstqxWcQ2SivKR847su8N3owq5gt+mU8cboEm8+gn7+lkGpi7M8mg+aIL0Z4aiRbY+8l5Kmdp7Elq6xXExF6zdLBpIQc0+3/+4FVjLmQrwALmpHU1nh9Z9tww2JtCP+VZrK5oJ8VmxOpTTWAK+OCKlszL5IgHpmYp4d7xbHgd5rNFlqq2rpJRAcxZUuQhxiBKKBWP1Wvs3PJxo9DVb/pG4/QyMyF3tcVtiY7ZvM4SB/pu3l1LmXYK37LF6NLyFpdj7apu5Cck9k5RvznXRo127WZjmmapP07OHWnAMcjdEHuC8qWjWUK/jmx1FbsULQQr4iq0FCLFLbO7BYZEdbncIbG2PcEayo0BUQ3HqAL8Q2dVh05AlEal+ncjOTnx2LtGcjLxhrtJYJPot8uZo/oLdL4YIdTpejWbctELaKzHqSus9WKxBATD5ShWf/0q/qgWYxcyC9Z86mGoYrzuK+xx2yH4/UTo0KiFIGKVaCOkKx4VslcOn2Cx0+8RIOE+ZBl9xxEyHuiB7DJTycx/KosZknWis6wxsWNyUUcvnJghH7Z0jUIV9cGQUkshTEpGaQ3vKRQ6Bm9dZpvPT1sOf8tSOrLDaxj2OENphlYfNa7BMlz4R4oOKqT01Ga9GHk8/JbD2DQY8dvmNDQFXmn8J3eZkSXrxJ5iQrS7H073QV4PMvBsVHZX6lmfnYbv3FpRt8PpbZYIfeEqb6NyQwdsBc+hu/Sf+2wpb4nHPjnUVd/l80GtfJBpwEI20M1Z/Gqntus1oTzqlZubrZtGDv8+TjEpAkyao9q2VeCveo4mYTDpxhdNzHJvzvyzhQ+cYMsTsWDtx8JL4yA2KK5LXiZMv5J4rm2W1i2Pcm69JxIzAQg7ntExf+itTTIEtRrjCSgLHjWpCkYAeFLyfAM+8zuG2ydolu9rVsj6HhKmlBToQK5J20QPdk3LylWdkatB1VjdmayZewGGEX2dr+zWRuwsF5ipB+LVKPlVfD/grtZvXnz4L4Y4E9PNq8HQso/p9RyWGbBFGIVbVjOrsqjWTpXXXC0zvTWqJtXduxFIVoyFX8rHzms9RQsksPokVqNCR6baqI2cxaAdWoDTvMxO6A7ZVLjKD1ViS61SbEBmN7LcSKp7PGJA4WsYASEvytivvEJzU149HokJNvXVqhJnmMNc6JbQCZTyELr3sHJtSH8DDQvxb5AAuYJZnlMKQV8WqqrLLPsedM3bIg3/13KOUr0y4SzV+G0kmMOhHIi83GLg6reG6STE+dzfla/cwgRjJi1YJmeGe3BEixV9ytEbcfgF5OkJcLpiBNeJBBvNxtN3SASKyxF86XvOYhd3cyd88SlHmcMCm/Wli+1S5XGHKec0aJ/e+RCLqgCP9YgTOlRKYisDhb2a4gAjWPYnfWmQavbjA6IR8Lgr5nl09L7DMpA85/HvThrDYb2HyKYZqWWbsBIIV5oSmFacwiTfgqQl4fQw0BLlcEOvkgYcZZVtBKrM1zvbOdIjY1gFYbRH4OlG64jCRf44w+Ps4+lZv4Y2dIMZp72OJOEfJixexIoZBHrqiznnitHjMgws1IdoIbfpe+KPf9obLJy+YsPgVkAF/FlpeF8kEM0sbYyCKflDAlSs97Jex+AbNL+/2RBDqa/ElaqnPwSPhMKULPmqUG3uV4O8+kUu07edIQRbLwdxkvyF74la7j+CyD5WkzNHVYsEUrhCVHoRryKd1xw1MNUy4E1Vj8BeR7HeSsLFPAx+qFeNGzoyGNuwzrRYYhwkJ5LvNEt72+hboL2ETVbZuaWkJIbQWZDraJocxEGURbWsWjMUyQ+aI2ZEsf1w4R3EuE+/boBkGQuxT8BOh/T556lr+e7J6PvpC+G7nSOk0rp7aWb7qxl7mz7qh4S3/G3W7ORR3KUWJ3K1CP5EKwyM94e+lVuOTdTVJ5uG+UcjERWbOlZVpi/E8bQAPgp4B3wpSmKLTg7lD96qXPopn8QhNYu81knue3OME0sgIzfJo4AROQMk+ddqdHMWMGddvQegonBmwGWNldIlGeeU9oVun0bcIVJz9eDNi3DBCvj2lJOcsuwd24Q8eA3usdZl5h1mSWpP5r7+gNWUrRBDig2MFe9ayEfs7Zmo5shJYvFDPUuFi/tiazJNaAspjWGw2xUQ4Xsv0y4SzpGnaeKKSUW+FPk9zT7l15BXB5o0mfYx7gYoHqledLtet+NRmaaVhwAjftj/rmxrXbUciAbwzHykC/BNCoV7KWUGBcQLhvpVGjkq3/+xesSOpwVGCwVHMplbmk7nZzwhN+JNY551XHMkfPQEkoS8+kxIf9jh8wxgge385LOvzaUToYX7AKrt+gVENtYaUJefzpS9orbwHDjRnkQWjT9+n4Ij1jy8gi/Qh5pRn3UJ32uDfBeg7hZHJlZjdkokS+u1/ilzRdtSQd8u5KZ8AVG+yEwQw4DgHUTMdm5Lhlmq5Z7P4dKJXV5v5v3J6g9YJskaIORV2SkFEhZu39vP1PLDL2lxN4yLbGUqtulk45xGQOzIeAYVqYcZXlwMP2YqQWnmBcqEsVzuncxgc+yDGFxXH3n8vZq4LhruwBvxqkRLfx2Kkn0MoScTCp7P2Vxo5acp3IyjZbEiiyLD0KClWqVrFZladCzlLcHUqOf2Q3eSJa2rCnfAC6jv4pyeYv2ZgJxF9KW8E1PVcRltqZTdr4S2UugPyhl+j8dE7Wl76XtP1MGnNMgneMBO4tf9Jezbc14oXddjkNqswB8GuqUrh/Smep+Wz+G741EbVUTTHp8etR4mVvO7WpdzsGhyE6QhY+ffyWS1Lj0uUHE0EOb9BWY1luaVIQz+inilQoCKFztrRax6aX293t5uW+VVfZNv1yeffHfUr++l3Jq8Ve+onmTTCvUjYGffJQlN9A0e1GQW5/yWIkrbnlAeBEDRfWpYpHvadWwNa9EaQFK1jGpM9fRdcdgKNpeh2Ls3mUh6qGaPiEMAIyZa1jAvceGDB/ElfPK5mwCiXKgqEbC67hg7yVuRTmrdqGR7CzS6I0pGNjy0wPbbvm3WAyT6Js8N0Vw9aqzF8bw1+tsdCRkLI7Bem4fl2XZ1ec/8cC8q5dk2cDBiSAXaQBvleExUeXjyeQaQd2WzRsmwLx2CFruBQaPm4+XJuiB4DejifJ5Hw/xnpu7ij5swUAx7XyN5Dm+lhPORh58f6xLmVIYP5tf75dZoWmuA/suxEGfvGx+Z0OkriFl4d/+nO9FXrUfI7Uri8622ERxB7WkNyhzJcBL6qil4G1+Wy7AiJACpok9sw9sNKgdNStg5r9BjuZXpW43ZZ0JM9RVS4ov9ufoGE9k4qsR8P8eyiF3R41jA/aLdqE64DhE8l+1BsyA+Ow0N4wsNQiAE8UW7/bsu7noi6Z2+41dLLIJows607C29hXJL2GwH6zmAnUI+1iryskhWgjoa9giIOlKPzjVADqMEd8VfKBLqaKxtM985QXd9f0xxUBHsuEkxJCGaOIEf4kKFwLziRIjKIpHbmVtCFUjvkiQp1Mo0w6doZTI9VbWjUrLyaUqmJUZJTy14VWdw9Nx7m98RGg/2tv7vylNCxM+ljyYH1+REKqSslG+ZE/3klbFVAaGjSMvSaY180jN4NUuagBP5lPvjH/OSD8sD+TLwY/biljab0FXWjcctabOqyAB6lJwAM4sTQN6gpGKwVRGk4GLmdmTvoVpqIG70uCq0DnoomQnBX5yQBJ9KUzLO76L9RJSgrp4gLB+ls8Ven56zi61vZKqcIho4Z7YDi1ZZY4TDNY7N87uOiO48Ts+CzkGuOsPcllrcL2hRt/6Rn8tL1TGjC+ioXnKkIG8xUN9PyB/mU3yxMyyBf4TNtL0ah5c7v+aUGdrdEGuO0HtC/O3xBlDcVG+LjoyqTF97iMU4+6TxwtaRcF+qK8uIOWCsrS58wR/QERdD1h4NYx3AarwBZ/IlgmPT2wwS7HQRAOpnjEJOuIq3l7DlXEAXcoEdw1Y5NWgVs1Uj1Aj6MLzm3JOrAXRLo+46E6VI+I5RGDTDYH4nxpIQdClu7fvFW6OvFnOGB6/e5DF7ftMAScQo69xYyj1TniHJBILbHOiFqrTIuJB50UkuWjUHheJs2n9KSjC2QFLUZ3voe3RjXII7NgYZfx22TT4p1COACJh2IZC91UAjEZCRzO3orTzXfNABp9WBF7wDS9NNuHir7XoWHYwEoMiA/ybtG0Ajx7rJrCitSFcFOFIJNe+N4QsIsE1dv9cMw8Ec8FIDXXpHEcd8LMySM5yFFSUteRPTBCev5zwtKLfiBAaJrKY5EfE/8OHs7TlAjuPzdrep5YWjqbIAz0Dub/KIFJLjxmCN9IjSqQKoe3Rcb/2oopWA/uGGzEDimdqy23pmp35amhj/mzHtUTDM3JRBk5JtwwKiJ4AN01rSyKla2U46Fyq1z2LebwXh94TCXiQARQylQ5tqkejEAVdQJM7W28anycHWNnvzYaFf0Yfpo8BObWkPl6tItjwx3IxBlHCHgfWJb6QlTZgR/YR1rV018l/fLl7k/lOldd0D68DXV2GRItVao2VD9gMfrXgTD7QLz1kHdntTupzubRwdw9bzEo09/xkbIuw2VMCaTrqeqGHBMZDWrOGoWPm5/k8Y/Z2Ul3SrcqLMg3ycgUXD82EP433bVUObz6DICK7/+7WFUZ2MTdvtSeYE48zX1Wj7vQSJBPdnQqQ3riKwmAAjJ5IBmb78ng4m7CxH5PbvkGKboh3TuajXZia9rHvIti2eiXXqbWq4pNXKVp9gB0hVbUWU/6CifDRt6OMGJaREHTFBykd2S2jk3SLGYLI62sZ0XLdzdab9RLidzX67PCV6m0IWJYdGy4qrlt9/aAI02I7dHoei4i4axvtyRi5dyr5ran57eybRLS846Pnl0xvIFCRb3Qz0QXOIqJqkOSRi+oW60TtcZV0cjcldCXd2aztSlGXnviSnDAY4T+laxSuq9wsyYJpp0vWJerd4IfMfjQJgC+KBTsrfQoEm/Yvqc6N+ENEgkpZyrr/jEY1ZqO0TKkBN2lRrQIUl5E2AbGygO0uItVr2SmJg2J6aIC0SIZt/bFwJcFwS/3i+4Aq+X2eG5h8hfAIH1VLuB6SKvPz+tNkfSA/dv2KITBJEc2kdCylplEce2OpNUZ8SU/mZOwDiZTcSUJHzNxjzE+i/GlYQL1PsTKTbpqjD00sTmAFOSBNlFHymgKhwnLjvCwSuaeMBkaVelttz0hEnlgWlJOiS6aIf06/BW3tJ7IULxwAtvZ+6cP5dyapmVp5PZEFN0uPc0QVP8L0AEsIYRZYh9dLIjlGINNcePWLygjjshYupbBAW4N5CAiikXdU4W6CiuXXBZV1jC41c7Pta6sR/WpOWHRJaifv566/U5BVxH/LlYlH8WaOP/VBTI7N72Soa+q8aCqa0S8+IZJxYFaWhvPRVO3NsA4ADaUGi2CWRnofCPEa2zp1KSuuIyXe2FqSIrwvCDTimfCL34xjJVa/ihzPn8z12pyjmX4IOPwwHWzHjJxjioVn95f38aqWel5ba2mJQCK79QpicBuP10Cr1HHc4mS7zOHbGtPupIp7yPEdiOYKwhltqLPb8uLhOPR1l9umL3oiDW5TEnWFpVNrbPiuCKPLCmQBOTjNJBzj2DtWobFqjqnwM8L1DDcBf2wza4+LsyuzvSWBUMrVSMvB2sFlwlI7SU6rn7jCdfG9D/7821LJRuGmQ15MUtAnmm4uyfFayjrvVyDf9LInsHVjpkh5IDltsrpMRWMlmFH55iGcn8HPCLpWcM3+C5WFTFOQWs1S/OsoGCpoamtII5HuFfI5trf1FDFay9+XffAVnZfUxwgURLVDdL2l5JRQicoh3Ejl+ebQM8NVoDYN5ALYdO92IyrCKEWeXEp8jkWA4kXvJaJPZ9+cjsfuqM+rqAdKO15U6l11vXwRHuXuUF5SToMqZ07xt8+JMMINYxlLM/dRT5EAkU66GgTUx8d0v/0vIKgM9NacXmYtmlOhJH7KfHicIBbXk5EjWSQ/A5oqXCIghlAZqAk2v3zH1t0+TkBa57LO9iuWh+dODgS810DRGh/jL+O83ucHDi9Qw8oguSj9SnVhJ+RIB+wNgk3DSENphCBxgUcxW4lySiqnVVz2Y1b1ymzJ8KmAu+mEUgqrasgBOnUbz9brFzdQPCeyHYTDvIh8/Keyp/7geH4ivFPcmG3qBnpbBUoZSS7E2ShLMnyIF+jvZHUfqjtz7MGiTsfKrDtK8kdw2/fufvHAUNwrYMT8hjl54mlPxnntzGfzUDXK1IRcAglalqPyLS0mNCsrFBjQmQ+6ltEkccZxF6DeM3roRx5NQiwSTw39TroV5uf18f6OUxvFr4vUCzhTZMRHGepzfcAkTWDhHGietxxrdy8Lt5K7Ty/sDWvhYbdTQrWLv8MJH/qUpxvixGcTQA8Kk5VOAILHSQjDXEv1DFg+bag//o9Bmi8HhxtLwBoErCGGczB/i21t+u5q9xE5Rr20sfsB6uRydxv55CLGvr5TxMP96xJDFhEEvPqihLRF4xUi8B2WyeXbzdtNARD2ltt6F181IKguPAG+o9/UbygnkCxG0qHgHCo2EEyP0FIvRW75+GZW5PEBqGNm85BOto936/MswF4x+PPE6mLRXHL419AXQcjmtaDd7qJP2H71GfgqPifo6+eNe1lMRtnbBflNiTrp6DD7m0i2zxDLAhhu+G/53ubYKYgT96j+nD/D2voYmJpaXNbiUMUTyHYVDuJI5Yn6q6QIP7ebhMld3JFVQQ8N1zdtajOWrq0zRIQyqfTw09ZhSqUTlCa1q1Gf4ao0cziTu6G4GElXL8wZllNtS2+ywNtwFXmSzmnt+efEV0P9h0jSAt0RBT5G2mogK5qT6FwvUoM/YxOJH8soBUlxaY0S3pbCBZRgmLMpinxKmBJJSBAEqu4/ovl++RypsF99d1E9kd+wc7ZeMj+zn9jl5XfmF9t5eKfZzz6/FkSErY0rIn65fbiit6mPNY3zze1P9NWy9HoNoUsJwjxJwJ9ukqu5e8VQvZTDyny1EQykLL9IMQ5byip7gfHRBmJekDPW48JeIBvfI/2SAwgIbBUD0qPuVJi+cge0eWO1duMtsfnAy7tJf1WsNOnCel8h2j8hmhVG43ixG1c5IOsHs8mw/UNq+D8SIgB5peelVWQk9GNBuMTElio/IsW00s0Gi3oaIyhco5gv3Asmvnk7DttgEyOZ3Ny4W6N3NpEGZkJZbLIZ4TliiAli+DobtxUOqwG49VIL91taOCjmCVbeYBq1JzsPZfKz7jMiHLT0fL+ndfbo6yzPtSyVFD7BqmE/5fe0MWMpclBS3JR5vmaSvhFiHsPschEp2KxoYfZ1zdVqirO8YLYYQKBDJFkiRMkyZy5ZLAa/JZ38qnEZzeZHYtE4r8leqPoyFIfF17N/+g3bczWwG4wcPw5tQsjdqa38dlIGpJHGmuYyEvK2QD9yj4ss+/Y7AFGJJUJUR6riuQPTZUlbd/IxoJhl4gma9Y7KyKsu8/AZH7zHEIU9s1pOrAFR8B+SXGYEOSH/dZpg2MQ+t0LbEgocqqIl8HCzl9J6XAYTn881TU4DOI997kuLOMaJGZtkeIYAlgB9MpMJYQer3YjgNvqDxESDaQEDzpvdozhPmmME/G30huKjI3xxZjXgkfFaNc227nHSiW3YWKzl6U5DEMfp8xujqkBOClUUW/GVMjFcEp/vAYXzEKg580aYWUP6II1lrTUFlOzYNg1+HoDdRe+mo89l6laMZXBt2U1RG3AUt71fxO4UUjv95fGiT8lvVR20sbREOiHKlH6TJOeUIcKztq8lm9Rm+XRFs+FpDYaWp0urHXFcGFzH6fER/561EQglw0Ibszl6CCiayAHAbaROI7Rdw3ku5bOvXZoJmvNigNmnJEDwBDltZj2Z+1Ltt6wgeNoRbgal6UVRl4KVlWfpDgyUJBMq3Tc/JnBR48i79Wye3cauNb59apc1t+oIid1eaEh9j10ufwZY38natvn7Jf6q/VcS6hlBuQDtJVVMH5F189m/JNZiJp78dy0ZiF1O/DJp7nx+A2AQIK2dIeBUUjCG86c+Z02wr1hf9wyG79Rns5oVqWpPN1F9SjtzK090712Ukeh0tgD2Sd95R6X6GT2lJ/BMaGWoEPoSxVOdWkOB2p3ktoTr+QgDtzI5s1z9Tc+Ja53MzDNYF/u1nLi+25/BuLwXytGJ9+WGmabzv9y6aM8sb61TUV3CgSxapN+R+MvzMG1XTefgOK090FrkHWOgIAZF0w/RAUu4cumD3YfWPdvxtQ6xxD1YOxLXJM63qHBpQSxri/BCOoA8sBFVigDhlbFC+wgw5L89B1Ekm5AcQa+wD/dzyzhO+gvvnrSMxFJkpu6v4F8PlXGpM0EuCQRw05sn3bAtffOl6w8L9MP+lp0Z2tapiayTHYb8KhGXMwjwVk/M/XBvYTTqv4y9SCnv/wVQMn96zl1rU+6h/0kSiMSkX0oYJn1yGRxTpRjO1tlPjFxbXB6kasnmkSV9MOgeDB6NwxVv3+uO+Zsm8cXEV0i3BF1ZUkenoSoILUN5rEmsiveXkPNMTjFRdKGPBNmXoMrzzxaK/9G0I18omsVI4FCquoBSy7Kqjd08FBK3DCs11/uRr+PRq7Vr8WkEkohZj04G2aw3MfRvo9pMdq3m/j/jyxPPsxRGorC5xAgLmkePm7LobEIs9Yjnp32bJRBiG2AXRjGfv50x85T2A5eQvblIcc4fSpGl+dvk/S7jGnyuVwLUGH7GWrtSa6aXnI+WS+f1/DHbILMQqjG5Q26fPB4m9ttfTT5LYNdGivjcqJ5ZnDFJ5NeJJTQf3OPfwNC2ryoEGw2aUZxmtmiHbNUs6P7ilptJWVv1UJY4qd8GzXHxX/20wobu2NU0uYzT6/6qI0d4j1AY3zxgedCv8uJsbLseRfqDIqyDT9bqe0hJn9IajoT5zf9vfFUCugZCRYgb6b44/Zj2EHV/h9WbDSE48FBwrgokZ9FzB+dN/umW5kFt0Go15/puXL33RKFZefbXNnK/PWsAFd0sAvSbvtUID1tZqHeF0faMP2tnJfsQ1YqOq9CE3IRyo9VvYB6xToiUdYj+xGYmOlxDdbh0dZcjtpk9acxqpDU7Er+I0EQbGatT0pCdx3cNcJ/eBg+EZ5CBMAKExql2US9q6wBDfI54taK8MwHiKHoIPXo34/2Rf4DWFNfsS/xg5+q8Yea923nJ8RueovfagHz+sGwO+qIJkiNpoxaib71cWqHnYrLbq7d7LFc3C8TidcJDhZwFq0lteG+TUIqmeViwD2UrjxrLAFPPb0B5eW97GjE8vGg/Emi6Xjht0nYLCvboybRsudaFmZrZvUBOyBx2psrVC6r2Ylf2BrvG4lIR0xPRrs93AZs0U4YSY3MzthYRMrh0/y6+GJb/4O5XWb9TodDPsOerRmexMXq0e1J+2f+CO5elAM1g4LmycX0rnfd6IsZ31ztw103FBA3QlPnpSA9yrUItBgAMYGwUN6UNSTk3JeZUthhAa53I7vMcvtpa9zSXxmFDtYr3vVtT3O+p+AZBO9ryL3bUy43YGIGdT1PxR8A8hyJsUaCW65a/WbRjQzauoQKK84+zSXShozmLObDfqNQTeRkQIvgjs3bRiFPfWrmn64mdwHHLB7uuooa3RQ1LvzJ8rnZTrBseCqGfz9bbLMhw8lNBR7u2bHpx6D5oOxvRAqE7F/RHoOeZhTqGClE534G6j4b/vVy+a+8YDz5DM9/3+zejt7oK1UDKdzMu0kNZUSm5QuBYiakrvPPiy8kqskrJ4hPYBXCpwm0zvzIB3FTuLtAw+gqGyCg06X5kpClELr83hUkJQpXD8dHq9ILV+sS1uiSycJG6MqRLkUbv9p1Cj0804Hi32C8yAgsZ+z5txifjtPMXZCzGVwJaQRkoRfdn8ebTY+HH0NxygEyLqlotl70e4zyUJ5u0sa0OjglGC4cY66yFZVmw6Jq45+2BFrWcnHK2/rlVLa+Mq7sHBVjD/2t7RP5AVgW7vShcFwM0svGaA==
Variant 1
DifficultyLevel
634
Question
Chloe creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle x°?
Worked Solution
Base angles of isosceles triangle = 55°
Since 180° in a straight line:
|
|
a° |
= 180−(90+55) |
|
= 35° |
|
|
∴x |
= 180−35 |
|
= 145° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Chloe creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v1.svg 240 indent3 vpad
What is the size of angle $\large x \degree$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v1_ws.svg 260 indent3 vpad
Base angles of isosceles triangle = 55$\degree$
Since 180$\degree$ in a straight line:
|||
|-|-|
|$\large a$$\degree$|= $180 - (90 + 55)$|
||= 35$\degree$|
|||
|-|-|
|$\therefore \large x$|= $180 - 35$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 145 | |
U2FsdGVkX1/DL3PVSjjhGfXMUjxcoWn8wqNV+LqVs6L5ctpphVIbkvAh86muo7/PFubqPEUA6v4TJw2NKHUSLvSMY8lRJKADM+uvu2z5mwX+j15meflYIXZ2D/KWjTTdIE5l+ws7mJx9IcxbPs5iRQHnnn1+T5FT5ig9wJz9iYInNI7tSZtjG9h+px9TAmeG4Py+La6n+CZ2szaVCAMzvB6ik1SWbibJF0t4S+eFUt7mK+1t7Yl7UZag6M53iYDcdFC831L6yiMAamjnbEKtTX6Cy5QCmXw+X2SW5Bv6y0ks6LYJ+pvEo9itHSTEv+pWsaVFvCioQwcH9ttxiHHtmLWGYYUGUADvNJr20aTyu4lQ1bazFWLGrs6SLQfJDJKs3RTNKiWq7Nrto4Px67QIpRTBOMuiiUWY7m97i9E03Kgu6gpusNb2wLbiAFyyOIO+Od4pwPnuBFSu5xX9Xqi2v8J59z7cwW0qi0wExD0uXTRz3uHxdQdpiKjs0DIA98aAvwLv9F6HO5zGc5myA51YPEm9VBZNsmAOMYACyipc0g0YUeXdj+CnyyYRHWL0pqZW/8yoGwr39R8A7XyKQL/+PA0CRS4dLuPJ53YUT4nzFr9CTC7J9+THiDbettsB1/ZBZ1ga5Uv3mypo+o1obzs1sjtzLSxxNZaQVCls/IHJ2S/HsEZfwu3l7Un4kyQZTOWxgmx0h76IMPJspn1k0mCeccEW67YwTYrn3J4SsVQusJ6tDele7C0ZmmYH729hKMqgA/90ZVWlRzBBUhTUwckU9cX4sSRV9fc6/25bWoRzsQme+mAkEeITK1knSq84UL1d8H/0MWK1F8TqxNQN2PX7bf6ryFV9WbIrm2BKRWdczVW1ajr4a1gXbs+Kq+WCqj6pXS+pfJUwDBA8s4a29oFdbmCf1E1Qafdt5BfrWJbOkvxrsxtbcBgMENjVjBF6lEwSBEv1r9/JCY6Kz3EyZj7IXwJZ2krA/usAaVvkcdPoFz6NYdqD9sSyAGKayU929M4XNLagwTDLhbe2to+HnryvwcJ0W+xMwfLUNTRFDCniV36eTM/CHdiDtE8OGqsjY782dGvBGDAHoE7KeEaUP0a1gbDxqT2pVn804H2ERk0PF0DKB06B4Wv3t5enNxd8CE2mg8hrRD1TQgtN7I32hwa7ozrqwNxPT8MHk2CV+BfUX4TKxFdDk6XTfIFzYM/F8PjfrpVaRTcwQYIgrR9I1YQO0t5Vkmspp/pJBpr20RRd8HfWvvjH07KgE8S1WRIji2KfRMbLJJJT8MX0U3YvQ2Zn3/zB7D6ZBVYBffBNZLr1bpwbRJ3eWpZNFB2KJiePjc4gZgk3vlu2/F9W+Kd7n04GdEsmcmtzIMiaXM+ybpTicdgKMYhiHR4pi7Ut/JMfaAOw14sggQ8hqQ0UBb+Slw8Dgeh9CgrNNyQ/e42uTy6PedZd/UtrNIiTeaD2mDsxjj1IGqWUo/F++bep/V+O/DJcGq1q0dGVYsYSNoEQiRBe9nhmHEOtx0K9ghUT+CSGts044Qqt5RvWcSzP8M6qhKyXUr2Vex+8et4/l911UguZQtnFBR3I5takJ0ssO84vnvXhBuI3/PyhjVwPvLaIECLyFjr9Jze+++YBQqL01cxeI+jKnlJTk/6R//Yv+XsMlRBdwxlHe4svgZIWQ+q9zqdfmcdwMTpyAOeYgTPXiExvamp96k/t5XcmQeVO51FwfiKq1VGXy2a3rIH3mHNag8BNi5lASvK0Ogn5LRfUz+ZtquexoERkwopPX7eBmGnfigeQBHwy6+KSKeNlOKKWigFVyf/8miZqQH/B33bJfwo2SxYZ7LaSK9GVaf/x95GXUXTNkuXWgS7oYOpoc1m81fxYJx5E4Stle//xS56yOsBEXXYct41PdB/vr6Y8ZFhqwMQeFJN7ln1SGUfFfAtz2rjh0mjFpIKV/lt2r8GdItU4sYF9Tk+1evD9/hOTAYYEGGZ64Iur98ii3P1xUAWgOs+XnCxBpylc9IVYyBbtUXkjmgOjeWiqUvcoxqyXDd+O1oOJ7+Y8jnjkuStgr1h3w3UIMJm9xvROBSE4J7el+Yt/Q5v6mqTaqCRw3OPzsUQoGDyPeRn21+tcwYF/lKXg2dUsk8oom7jVX3AJqOyDlj01dks6Tcfv7I6K7c6oEdIFQMQfZ7cxrO0dNuMGxh4ymqyMsOa+1m74IU99+E9DMHg/0UKT9kc22sMDTiyTGCBLXhhsFveo/qgnY/j/7SCZGm96NZVWLve/Nm8G6UsevTeS2ltxlgaxH9fpwNtyYl3sW69kN7eHZ2uwGWnszMTKtMlcBaD7LWr7zHHSxxH6Zk+Ex0C2bSWQ5U47mbsa8WcsF+NVqOxeVVq1/JxsgKCOoqzvsMJT/gRCo948AQzIgocqruGurcewwaJu16L6i1sG8DU8j5xzKgAZ2UnvlHp/6tFPF2Byi8shAkH0t84YTVB6KY0klXDKeMfy1MUSj3kFUNjKJGq8ehirI8M6IkQE9anTyzqBaM4QFbL+yjnK3X2PcXLX46FtbV0NXYdBzqgw7uMRKl44qG1SjmNHVSb4J3BSwN5FMPnKGsDUrAtGkLnTVlr5xG27f99Z7BEka6tDeWhJUXj/bcAenbb7/vlkeRMo9NuFy3tDMFq6M3zZfn4snIOFGbyY+9qBXWcF1i6oYQBj73UpAXTq+7GIlJL14FgPJqkPSn8tKkiVEk+c/l4HhQPHo5/WusiPPE7kn9fy/gNsIpCg6OhBj5TwCj0Fl7jvjhiHEtdi7FGZuD/qQHd8toiWj8Yk/sm0UO6bbAmvht+ynb9oDFMYCHy8KdA226dN4V72pk7vTeX6Lyyydm9P0PLp6mZGrBPg68LmtfbREhrcdmT0FrN4V5sGrDzg2ZOi1KEHRPyJbJjjRtZykWKEtH0giqty7jMlLpfr02mDWlethDbk0GTvkXUJlMZsV2iRLu1j/G4QDXAGdgrmxThCPLmrvNNO4QnsCIzKX2c6UkpW2lUVSAaQLTb/Q1dVmzk6099WdDPTZ0WYV08G7ladRMLNXWXJRlZgGXfHfEFRqMcIZhaxkrCMc3Iw2qQggcaXYDrk965sYvd60Uf5iJ8pyp7Nu1NfXYd7MHUytVkv8waa1Bs+wEua8xuQvPKsu1AZ1ovBzVwtvlbST5RPv4M3Lg5nDTQiZlTI4ekl4LMicJvGKgxlCETg7eddNGMctOIVjusTsPGwMvtWABut9TJWWvpIVAR7LzZSAahnnSoJyeawXagUWxdq85i+YPGBqFYEsfY3zPGzm5KoO4PqqvAT+GQsquVn9/NuzMzVoGQjTDR4soFjQMsFwATtPxDRRLaA0QEjoR6bnLjl3cCOAoT8lUUVUYELFhAe4O4Zt4mGp3g/+gJgyu1c48Yt1Jq2QObgsibY5Imhj/97cic9R8wE7w6Q/DOBaM5Ep2A3WDYGKdCE//5JHh/5U5b7lCZX3DkmUBRf4l6mDjL1A+Mwf5jYWEqtYpCZRRFh3bdx/u71YyT9W8nEV2gLI3I7+2eX++eUrlI/P0ceRA9Gk6V1itZdvFVt/OxD0NXFiUqb5PvfZJPLkuowIL7aeATSs9PpsVJWUtoEYyCErphYijn56mDRfc7zG39qNXK8UvdzgycTv5dG3lTV1VsaqfBgs8uyIDwcf4wrG3NdFZSond8SWk7BJNCdcrJ78QJ2U7tCWjQ1osQ8ZHvdQzBIgKmvN51LBZ1Gl0Zfxv10tzM9ZODGfNLuRcypg50WVbnaOkF0bBOSmucvIkBYggU5ah6cBbDBWHcOqzC81gaX8gRinJv+WPlaauDwfUykVk53J0TLnaKUI772cp54LYaeSVXRWAU2mtFHOOWEcF6GNUTBvmKIX6Wh0s7sE6nJarMhm66DksTNhInGat+AQK1dvFoqh7duEC+mt3gMO7p1v3SyJsR120vlmI3eef1x27DwDBsL04I2JNXWv38VzoV2KJ+fa/lhdCg8O2wm4shpRN6YueDguzpl9G6tX/dMfY3wlMfAHsreg+GPAGGzV9pjaZVur6QOpoUESHX0YhmGOhuM95+R4Rw4M23tiVm2Byak3SvqHowfqtGLJdf0/N2QLgnzL9NSBr5wI2jo3JBcjCWYEPUOXeVi+wDkq2+ZipzE6R56s+O6e+qsTNg4R99K9q8wrHnnr5WQlHpsMRXsJhaF7YwSUE4lA1G2VP39xJtxS0YCIH2LRyk0Pub1VnF89GOpdSItk54xIf5XJIJMPnjwEpfWdCpIRGZSVizbdJDcDJ2yIq6UaLRjhsxl04LtyEif6b0o+OfBmYaG3B+xIgXIKJG90FkMUtNwPkMR8xS/jItk0b/6nmWYUH7jEoA+bg9a5rIYycihdKRnpG0NKm1GuOqVJ/JICfudDM78mRzq5woiE1MvL7UdFVhqcjAYxLmi+8O6mnWWFQ2H5kJooOAghOLYxJhc2qjAvkDpKQrr9LyPCVIl3BN8EH5+v2vbtC4IAl75EA/HJvYnrUO7UrbN5WXtxFizdc66J4ysRUkin3Od9FleoEE7J8oq0y/U0N5ppEYbHV8WjzWxoe4lFA6ousj2GPQ2SRiMlPwMchAqPxtmJEXwhcsakbhlb0dMs64ZSgWytd/VFinLezctCGl3sHBytQwcOd/bI7eY7AlVhYCcr/pC19KvnkmzISZK0Yg6zTP5D9BRAXteyDKbz2WnMXI1oOhiGZyxQ2ON8Y1UgZW815X3w6lcVkFGNPOOGSpepJiM3GG7trEFyvr81biwwguCmypK+uUOqo2sVuJSrXs0f25sl4pTCQnpLdBVm+a76XQOeHt8iQw/nAuhM5sHkBNHnwElgLfG1ZRvu+82zYjA8jHRI9kkfaGOx/gZ0Jel6ljp5Jm5efpf+6dSa/yMD8bTD51nFmwLT8VZJ6IypmD2Zb5TUgNfFmYAlCwg9xi3PwCJ8y3GGQVuQv/PaPqNS7s7IdrhyKBlTzn0/7yy+MgTcfSn5WtuHOwCOLP84gRrhxDGPVSU3LE+XonD8DW4lvJFJLr2Lpcoq07B/5e4GKmSMoBYo5uH6jb6l/RfXNpgk/gqRcChlka3RXd4haknUoCf6z0Qu715TgHyx7dBKVxlz0p7Z6W0WKPj+4C8ATGDEmEflyrDAcPFk9+R4cgS33UDECIR2spSI8NXLEKPW5oE8X9gHx5Bj8pCLKxy20wB6UKBMhXaIeIJVOP3czSaQ/oPbkw7zWys+ztfQOcsVvQT14Y54/G5zwubhW3KBD+LvQ9OiHzbSObmteFWfKuu5rKZK7IDN06vcuzzG1mrUYe99qIYxABmyM6lREteMaOoY3voqKH+e3Gux+OJJ0CQMQXCubT4/2tbe1uSfPh+sXgggwRVpMEr+1PaA10CArLoHEAfc0OMMnkZtxKzLQx9nOZaQ1bfP/MArSbcmi6cU0uGn7AoKp5dlAhM8+FhHWJmAWTjM+8gw/Hg2A30SMI75fvHTuhoWHTT5gS+LYeiZM5tICoXZEXba2dXEq9iREWKy0yqrvGj7Cet9y5JjFuDAVzbHwojTAfeuCZlwwc/UI2yGRhWUYUgFBxwVJee/W3nX1oWO4dL9wsSQmVaDdVb42+GxNhXBVaRDrpZZoSiKljDdLmwiZLTY/6hAZQkfYL3EeBAWcWpHzGHLrbCS++gXbSHmgQd7lY5Xc7kG0jQ3Q5AgNQARIGv6+pb+vvJXiHo55oM0g/GPQC4Hunc1G2LPEg/54yvNB3/mb5PHKPF3PUNbg5OwbKGhVaJ+UiqM1OSaRKj+FQ36KEWmaCDXXZwvbCBB+9baDGawLaFhTBtGAUig885rkq3UGiHDYs+KVo0hjnaduvddIqFwEpH0dIQ98ZIKnR9KcRXxTpDDcG3d/F3Sejv0I4laiLZju2cwzFqgC36KzQfvOtqO0z8A3USqdT3EfsBITq2IwnA/A6ntv3oll24iX10sKau9BYtL1gwD8bZ3t/F0Oh3QsX5X+2pbAcE6QeybjpnzjGOnCcz7h2q0sEBp3xjVPDplyJtTh0sH09ohc37VJHu7ChWtB3GqL7jMR+TBJclJlVMXoFPuckOIqmxDb5OknbvLTblkAKzH0rQzQu5T42qnGZY+fAPOrj9dF1XHrEXrlTduO5WoUJrgMOWlW8TpoBCEfwgnbPFOM2N7CYQtjfaHInECfprAsfhl1wB2yNPTfnzSjUigf82Nl5BtZjRHBh8uHOaRZbfL9T6gfSRjnd9BtPA4SdokebLScOs0z9jLyooFdS9hDKAFI9kX+2hqkVi5WSx1J4Zugvj2/00Two6ID40TZ91FNb854pH5lAXfH99ETTWr+slPegZUnPfsd8fi52N5mrRIQX3OywDqNfYn2CAyrd6VAfopyqWW8h/MTEnG29akAwitzKCnyYif2/Mm44UiOkZThQ5/RA+c7wf7f9316UPc6iCv1OEnkA/jvlkQnnmWcUQyynuiU5GNLZpRpx9foNBwgRVmOTxxGBE/kyWDLV5lTEE9h5ejRggquXLBhIqtXj0jpU9oZMAW/7hxGn8v6fz6+E+5uWsOK+5EM2j6NV993PgPNg5KQK3S7d7kAv55atGHlweBT5lJ9PeKVHuzu7CZ4Tr22z1z0oW7qjc3FkYxR2qz5BlirqdZqq7E67D4DKT2bs624bfFEmbUvazHnRWZM+HDjri1D5YZdzeFzVRTzFFuANCEu3pa4BlwAiJN1xFZVJBKwQv5KtpFzOhOZ3U2wjF3ilk/rqpGRvlyNls8RTxvFBYWqqLVpXph2cqiNyt9GKxyIDcnT6flgHtPmlbKF8KXxZ2GwMJyAMyGHrVrlFEdkeX9H9ku/ewslHIHxSJySk09VMKLhhRliB1jpRlHXq8yIHPk2UTqW8LuTt0E75H+cnzJqoY5doB96CDZfqxCx821fXOVmHLewSILOR4dF8tQ2hVTX7wnvvfEG3BupwJNf+iCwKivxXN4PYxZVslaHA5kRTqCrlfBWcupjXQX/lFwNft2efinBuM4L5khhzKwg9veeHri8YazYZNqcsYZMIqlVOwBmuTpFDvIohRTeRW3NUw0FjZ8znRWSnDsotAZhhKWO7IW/USn3NiWunWx3oAi3K0RlkOp03iZhzB6c3MpxfH7KLhcPZ5fDc0djxMBt1ZPEuOmDy5f9L2vqwXY5YWx9RKjXiKm3BCs16GdgiKMu165XZoxn7jawD8g10Gu87vDQm8r/wm/ScWCGsnlI0J3snQqNHIvoQ2G6a9DfUMITpk3SHRu1p+NbtSiEao7Uey88IBhhqQSbs5NfjqelSlYOmSQig05d+9+Tu2s1QCXp1FFNORykq2r6vb628Rz+8fCrfitxgu3Iaz7tBlNunrgGZ0GhuUDOctToQknczodpoM+lw1kqH4pKohgVPmVd8I4OaEIl/nc2Ce9iGt/Qec+i55dxZAte+FKyh/VAMLpiEriVAoo/ZNUUjpGSy6+Hp6ws9BKkRjJdNGDO/QMlfrHoTo7vs1T9torsY5PigHlQ3yvDMDEpM1egAZReoWgRteo8UJin1/kAPF9lTwCXJaXsyC7ATmBvl7wMECf6CdGFohjnAo8oFO/wqobsYLHv5JDmmFjPzG8RimuVY+FwRa+3DqcsntiOEgMFD7RphxK21MbNQBjU1zzFtVaEehKHx+bPh44NR5ZD7CrmoRj+6CdiMuDvIS1G90jTV1iipUDOA63AzbfDP4PWLT4kBFX3/7ku2eyeclR7SXzuJFDNNLF4Qxr5GTCcAjhxEH2oOk+cTGOSe0CTFpjrKgfT8qMcBEnojmavo1QTtKtV5omORXgX4za/MOGqrvHcmqX+CktZmN86bDoEYzBmdO8wD81sTOzNqvyQXzsuYLHXgniA6I3iP8FZvf73CIP4gpKAbddqYFMEXPem2o0xRfwSZnD0jgF4uwU2PyirLjXTAXmvwNj+cgs4Npg8ZcHEOnWUCrZHKU9nLZBPts6KQOaZWOr/GIiXYatU6cTtcRP6n378gR5zbqUwXCs+5K5i2EHi/qtUTTfWtu1iHT3ca5y/wqqLWfyqaFlDXfoDf2pjRECsYCYrYxG9oAu+YZurCGMguuH6HEpVWZRNoRXReR5mD0gRFDR9JlR3UGhXGMJ3s+E4AUorz4GU88PrL+sJ0BC2+ysNGyoE2+ygu7vJUcmmiUzvrnJfdN25OH/M8KkCtw+3SI44kwU14ShdU5BYMCbu8O8PZU2Au3nhIYCO9fP7VErujjeA41RvkFM7HiDzOJSgGEoJMvZq6xg7IBb8HURFf88cXsM5DJwaZ/9D76AhG6H+vkMgE+DHtCN81DegE95gPD6GPH+uILL22xXqWJL3lJ8TAcIVT9wK+S5+mJjx/ZUIDfsAj5XgX6+veNkcVBq3pZRalJQjUt98RXfLzbrlbnqacNNxQ4iNEOdTynVmmHVDUgfJZezAKRPuwM7gD/2mQzsqzqtbh59Gp2O4J12yPXMjPEAu3rKnW7AqYbdgEG4nvnEOQfxjTTQ7eLbVVvq97RKB1tcGNl6ZXV1FpIejOwhXiigmxo9B4QjqTRikM0c6ZmXQmxqGPO0P9vFTD6ExDeDp1vISAgHldcVJpKIagphf2kHFTMbLmdyQHL6zPuZ0pkZIn9Y/WMjfGb1Mi1C3NgB3DD42IQoSh4IEmDeW6z6XU4VtCawEksxp1LzjIMHKsGMy3pasevHkutmyFw4Ep3Zgm33kzQCodtYlMLU+t6kx6+LXSuPunfDk8XIPx2vq26EdPg8ZUOIRs6vDFrh98AhE6unaUy62qxziONdosVpyDdsIraJg+fQkkf8vicbPbedBWJoFQobciyBxA8/mghGMBwp94WTYinxFFyKE9gIYAzoPT/BWiBByT3Mo1XF2MuZEVZk/DL07yA2TOKK2NZFQ/D4ttOfE65hfC7Ce6P/5vh5cZgUVdJOmCSOGBXLReAmUrCF6UEsDI6SXw15eWKtXkv55iO+E9mTs0GBmGo4Nuz/9hHSktDPY4FVf5i8jppZ4f8soSmS9GZ4cZ305F3Ii/vgyoLQZFJ3ad9T4CSBRIVm/YkhcwPyBdDC/EcWJ4/42BgOunZrnzx3MOcMyai68sM6oN7sk5u9sQZuPNthpvjur31su1p69opkaXm80610VHdW0ekd6O689lAm99mi77Ka5CgyOVJD97c3UWhpT9J6DRfTqiNNz2ohYiISUfE339oSyyB3v8qAU1xWUMc06cJHjTK3Dz2l7MeUA2VkFaOlBqM1VRnJLxzy92njCR6k+KSwU30JVTs3YiVewTzxrtvlUOE3h+dv5rUrl526q6DWhBjVxSLLdSNQuf1VQeDyu2r1cCx2Y01nCQJRDP8NU74aWGQvgS4vQra82Znm2IJ1a9hdkUG6PssxPEzQSoovcyxW2i/J1zhhRJoxlYrSy5CDR5/gF1oE9aE3p5bxjiq99NT/rFXL4+NzkKsSpKcpyE8pQRY3WCZS7G7aacHhifnvKsGuYNDG9Mi8Hke0j4xpW8RovV03j/9X9sAN2x6JiuV6KLeH3nDzBQWfXmXt8EQZRQC3Tj5XlELVSe7spUdkFQRMG6QITRodZbOQK56VOqJqhwtPwuw24inb2hN9rI+KRHs8+cko9gYS81ed38rANCywV38wtY36ti2HABTmfWr9hcnwMHhtNQ3mVTu/g7exxCPEjyOHVqbZhHear4eaflxguYDKm2VClBz6Abo6B7X3JZAR2HwU4B8LtpT+3k0Qes8EHV0dzRnFIOz+kBjpMac3XhW21Kz8Iq1bcYv0sm2YbE2MzmQLhRUcHkv58AeWb8eqad9hyFRrisc9XYu5BucjYIxUa9HKnf8eIxBo5/0i6HVhKR7t3eV7uTrCR6vp6Fcmvpu/LwISsseNQOnK7eb5dbgYPXVY5rvc0nAnT1RRurMAW+X8/jK3JDaVCCeffY2efHb6aS2Cb/SjO24VjcjfUE7kSLwb+g4Ik3pZBFPP613gEb1z1UQ+g6oIhf75ZbSbnx/V8v/RfYjHTyLe+UAC1NzKe3hnqSLxfzwlJmvVtXOLyUYV5nG9Ni9SiinuFkeRRr4ner7cMv4WstGPRVq5VxDNI5WlleAQ6pr4m1xdDuLBOIPl8/G1MtiTjwjBB9geOOeUx8GSHtXXxQ/8wuvZUsBj+d0lL0ydn5uwPWikLMKSnxkQZt922bNrGNQLZu9+pTgk8kuMT3tLa9VvjqKBM+7sotAe/CLj1mnXTbhOxndTqfVWyTFWapqFIXu9WIljdtWGEOOp5fzgJTUN4meVyeGQy37UHMZAcdIj3GuyjN9a97u91ee514t6eEh/HEA9ABGmopOvdwS/9PkHhdDTO9tBfa1YocuV5CikzTr9PO93ff4GJ/H+wjizS7COFGzlY9MSWmddAwrxhZ4fJlzFLC2cXnIqy97aCiEWAwGtIsSjSMHQTtpBQpt3NJEvvsxunEIYAMtDbUTm6p96gktW+/irgCA/vU/bF5GTG2MxqSv1WFNqtxylc/UEQlVKl88QtruJCAP8xAorNm3ZU8VOHICq+FzX8/OQKPxxhktIe12oYjZmgt1b45uvyRmo/ogOwV9iWHT7R6ubjtx3MyqVTobyohhu3HDe2RHk02hM2byf9yer8wnkXA9b9MfZYxC+DsNHfG8Pj5D7tIl35QrVN4G/BZayLAfqop2taAGLfO/EVrjb8MkxGpp3iiYrxmhvWmWYg1mJtLpD7VT9ur1L8pBl5h6TsTUb9gfSB9Z027NeXLdPq1tKgf+0v0jYBQH7ec0M4h5JEjYS4FPVdNhwRj9Qe015cEIoBis9AcjSRkN0cCKKAp35tprwPlS8VCfzlzg7DRXLHn76Ach1G3iiaBl3Nf8V6/hUhxBKjL8FzTx5RfMphk5uyAlN7bFelk+ohp8XSYzKJMytL2lAis42VpDEjmeY8paUSbH2NjfKvols53yVB1ChgEuzWoZ9gCxea5qfCSb7C224KAGmlMprCyHbMwNXK//voRqO7HasTKv/gPQ50sKx3XAPg1R9O1JLyEsOrEyzrRYb0c0kuaCNJX4ZeQcyAkoJDZ7k74+Jag5zx5VaKUDwwkyQ3FMtHSjrpKErUGq1TMT7PnKAd4RZgeYKYRt86ye75gxWlKV6lqZwRcPPMZJoELmdgbNyX1ZNvYWFHWdgdIW93bL3025eeo+dy6mcsFZXgnYtfeiBVSfYtpiVL5krjwRw8EF3Cd/ggXp+hEG3ezCeTx20sQtT3kJT1r4wceSjl1IaMJ2dLrSE2nLIY/Q1FYkGZm3NkbreKmXtEcQXJ3+9AIX4D9hC5BhHie7TvAKx2E0jVuOqQQy+wJlRKNWFFA6nl/bZ+l0/kDiOgNXFzhOd3pGkpBt+W71nwuDvLnFQv/nwwlSliEs46wfX0Or+D3EctMQL0LC7ti/TJ0bBXM8UpUbJLSnq19knqS7xMipS3P54Yl5PsZ73UOWlNyTLsi/f4p2camTWpHyYBC9CvmEgmXKDExddhx9UckdzlqFi9JjKY/nnaVObx4rRRc/JCTfoAZc5325JK6iE8Uz/ZzOAj+i5/Xf550u9ttfI2JPFkZhm8iZMGse8SZKRG0AVCsNPK5QV7V9aTPtx40uCFk6i0rztHUHoIi9TQ0V6vP67yhjfcFAYSaSxcGuyck2BzcIDziwdIfLsh7YXNVRZAaWl+KwLOv28xM3R4NM6e7EDLEtj9VtY9Me8x4TE2jnUkVvPM4eH3Ogh7NA6NPYd1ezS2r3nVl9FZjZ68BLCw7b0+jAfA7FCoGqdNWCyWZKz3V73nK4a06Lx7k5pM1Q8KDF+jHKKTExF2fgzioiiUQebj13nyko7uGnggMGjkMnk2IDS2LE8sMTMGM/b13Gmc56ve5VPv/R6JsWBi7CtqAyELpKgucDZlPR1DCy6o+MmI3r96PGvUM6y8Hw58DRAOaOL1yOq4cEBdIElE98WNj4fxgo6OmHYLQdKli3Q3/ok+l1WpDgvLUPZDh69XYXeOfUBEi5XzVq6JOKz2PsbmrIQJna1q0eoxpLT9Aozb6tPUWRmGdq+XqKZGoMYLGWDxtZN649JfHVOw69Nphx+kD+hxWT/YA=
Variant 2
DifficultyLevel
632
Question
Dudley creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle x°?
Worked Solution
Base angles of isosceles triangle = 45°
Since 180° in a straight line:
|
|
a° |
= 180−(90+45) |
|
= 45° |
|
|
∴x° |
= 180−45 |
|
= 135° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Dudley creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v2a.svg 220 indent3 vpad
What is the size of angle $\large x \degree$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v2a_ws.svg 220 indent3 vpad
Base angles of isosceles triangle = 45$\degree$
Since 180$\degree$ in a straight line:
|||
|-|-|
|$\large a$$\degree$|= $180 - (90 + 45)$|
||= 45$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 45$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 135 | |
U2FsdGVkX19NJmvXolt8foFIZUGoU1S5aEo/SsXyEndQF/hKmB4rkwU2ZiFLzZ43lx4j5fUbnKlxhNkwk/szywV81p6f0TJYuLGsUqCzOKWIt6a+eavJQc/A6plX2j0irv9fRP5oNzciW/Hqdd1GYbkHK7W/GvOnmsvVivlWBZAsyEND0/uj33qvFMfeaO2AWKUw1ObSIUNscKOgiWdn0eTDXh79Tkb6ayLDQYhgVsQOVlxh+mpn4SvJ7m0ismBlTaWKHnntfRAT9oQbKq2nIXhJrOCo/V0FsF2oWD5Fsk5NhLzk/C3sS+XtUhsOLkgqUJJ4xH8+raoGXqmuABOXx5YqDA1jAqmOfgEbFk6SxSO3VeHkHm4+YJDhqL43GL6mWOLIFdHG/DC0GcdJ83zRPbMA0LXKk3BV09Ue2x7Gncx6VP/ZzkBftQ5EwQzm/toas/teOUPSpsj22ZdT5UVbdn+0pN90VWYA45o/PYZzgr735KOk2QNcmMJMwbSqrrrO/s6rR7PdCt7f5yQkwm6RNZCBkW5bpgt3EbjoR7KE4UMdcjKVq7vkWHlzJHp8FWEGzPX+02TAKYvwT9TAmGpJkHUg4oK0dkUn4W+z6zh1skcSU0cFK/9AsUcTsaw49ExTP7iXVEmImsZfjhhZjNd88canyF4qO6i2ztRxuoX2uF/nkLl/RuSawExLuq2nGSS6N3YoG4qMS7OGwq1LGKhI9ewrT9/Tv/MYPcmi7odHoEmS7y3VHLvFvPf/aS02JbRfZYTY9RFGi7Qwb10E905VdTmJ5SHSSymAMgo2Hot2A5mkt98fHhvY6Qt9VZaGdjj0u1WdrMIMyyPIJCspWQNcWKbmOdp6VH2d9QGbzBS4H2vPuyKz4hidQGbF0nO9e6fkKF74O/3qY3lenprHdsBytPoHp9hmWkCEP+muvje8H4bnWtlWXpi3/R/KFY0WKJnEh6zKDYb3U4yeBsi07YpD92XOkZ42Zt0LhqhdlH3Zrviis3gOG6RPxA5QDCF08VpncZvetiN+uUTM+PV13Bk0T5O5XrtwxW3/f+OLUSr2jVTE6RTa7je7Nf8Ygle5LKE/R2ntUsdacfmfLZR6aYcO2HzM5bAE2lkSsS9ypXKw+2isLZnUwUosqZucnY+6fLi8tzoQ+2lSaodN4vSBnmHKhLX4y01jnKbAHT6gUY/ujr5mKIjRM8T8coOgWNhGFvX7PGC681NMBOiGD1qxjAgepxnhvm1AtpbA2dhyeqFYeCqEYd/NpXivAZMdfcWyorpGZR0912NxtLIDKqQekUB9WQbM1PN562AaJvhRt7bMeqM28kVEIPrcQx3c1EGBSrOBLrKRnBtA2hgebq9vx1mEs75OwUwsaql5lqYd8bV8YrDsjAeLHApZKupSymQbgguZz+tW0rCCp0n/JzKS/sUJ8HyTBERkVdMAmM0sBAB5Y6YF3vqvypNJ+NPWLntlMR6UZymNUCGVXnyhN+1RHaBk1BE6pTkkongo1ZaMUHI6Mj2VANThw5kq4rZtfyESVsT+u8eHJaLf9ykSYgfkoivSn0u2Tf3H13y5KUV1s4FRmgNAzaLT++Kc4GjJqu4XxXKp/0/B6sbgiAD3UUITlZRpdHtD1VXLfJMP90XPlDRGvr9CHfaw4N+EoAsBTEedrNmRo7kIfnht0BpGqxR5peEeN2jyHbhlVzBazgo6kaBGqNB4h4RL+U/l3PflwCbfxyp3iWjXCH6g2eOD0kRXs2fR+Wsa8k99W8xzeEwoLvsdp20flvTrJgi+zBvPeEsRy2NLPv0E7d0CJXQWRM9PeD7yHsivPLm6VXxEnSEPinfSnWDzumEJsUcjw4iZrNLNpPuLUMUkuLN8Y2PzThPXrVrygrHFDmV5hC2rQ6ZLNonUTB7IvUzoHLyrreGSDHPG+I53SKarpp0sU+iyBC8Z8BYafTjWmf6D14uWmmhcGb+5DtbSkaab5x8daTQ7N5LuXkGotioozf7JV7qgUxDIvrqnIBNBOwhE2BKty1e9+Gbi8iNhnvHsun4Wrrf71bmGsIGBHopDZoH/MsuLt7JPpBJ0OF+3MCNh4/geAwF7ZUHpazfhgMzNsbzSFUbzZ7h+/b4NPVaunjrL1PubuA64B1Opn9ex5lW6WIf3rLIV4/bw1+f7uBiCvo5ZI3SQ2+zrngWfI/46pROph9F+w552ENYJO5XnCKR4lykpTISuNYpJiUNXfScopddzpY0uHTl09yK6ZZkeI2R1Vd/L29GvFWUnpy+na5NOdTGSdVYmExos3iQDcaaL+02EX5KSOiasDMrnZrY2CQECr37aonqdnax8vc9xVE2PNTqU32u9I6mP4EShSbautX3XKUCAFQri91Zcg/IILQT5iwIFCHAVoc1UjYyLTHZvxniesu3fM8sqdWfOuCU/t/JJKTXdP+OqRrpfzp1fYcd2v/xogILKCTO4OZyyOo+xiAaFh010rMz+Lz7wlL1uX8iOgnjEi5kJFd2By3XdSW5jim0hO7Go4E14j6Wzwtx5c6PFA9p69Ch2gKVtx++oyF9Pixmzw4yIcOeqzd3/FLl5j0uA+H7me9Kpiqi8Yv5vt9D3SZxbx2J9x1eh1u3uQ0Z5azbDQWbjChYPmG7o6nTDJ1ApKjhQaIv2kkAJAspHaAAhZaxgi7k0xxvWQotnxQzOaRPKzlz7LtIo/KIq3H5B2FU+DuxD5zvufaboEq7sYwhsmPF3vXnXiNvIses3jgbas63oym6pCCmJaE/5dZcWb/i/NKzEXpqYV0qxlnE/XPfmZRQ6120/t2ao00ulAVxK/MHBWxzmz/Z+5/oLtgLQ+KJoAZcjCeCyId2MYIW+DQVQuDdNzqE2M1FdiZ8JuQDJGvcnZZI9WKS8I7t2oladHQa/Bi1HLH5BQczew9YyGDEL8lkWA4J7z735ET0q60BFaJ6apaw6GM0xY5gq7eoRe5OR/H6rDCDr0YDx9DDo8HQucuOyd2Rf6SN13g+ilccdW+4omTf3kyK+WXgQ/8Pirx9kt/GrNpZ3OVviumBGNzs371YoGRpqZQKTqzZZK+iDzBGUMwMpqpfruCW3xngyY4KUN9qMTBJ9Q2xL0bZodtzk5HMVkKzRwLkyO/FssqEh7MP/o8n4VNsxDMXh4Av+Bf+m0HsL5gZNF2gqokhVSF4vcpltkJwcGIHiqR1vpTs1QdGbUSfknxkuyFWRKyNirNqIlQ1iOzMHxi+SR435uo+gqTjAbQvZuLYouq5FVq2ygN133eYx6SsNm7RnLKulJkHJIiXEFvt9OEHtGIB+jmNn0XIM58pWm7uxyB7NlSPDMfieyXg0k0TSB3ENIfztKA8wBLcxhaj29DLSAirMseG4riymYsO1Cs5JcND9hLcoqJqy/E5OrEbx1JE0sLQuGOTqdiiA23E1bubNWcs2naIHdbO916tSlM21III1z7M5GvqtWhFZR+I2ocUX1U7ewNxGCNFiuZdoL01KzsYSaGpjsmnsRTNk8SkZvV8QbHp8oISkUX1LW6jBhX03RrewE6PpDTfiiEuyBZbbwFchm8nuWmeK6PocVWgkP6yOh0wuhrWltTIIJo6+B4YQdwUg0dBO+3l2Wp8dPtoC2ip81GyfrgtMGvI1h7ejy0wLt5OeHmY+BeEAyzChYYSu3gnu1THODiLADltrHFhHzMoLSuMnyBSOqvxwRkMTaLMFRJoHVP1vMix2/v9aUs5gCiy2/DUdEHfqz37OC3nb3ZnpX6xLDsUrP96/f8b+liybfeDwQFx3HYM7TmPU1qXKjvXiaWDteFQ+NuCVkVphFoNgboU1pgVaaPLgYUEK3RRuwhIy4snryLZ20cuBsGl+hNXYY5xymRglHlITKlDHMBpFKr9XstEfPv/4GrfTLroaf/JnqZr/DpoxibluK6PxlKPExI1U1Q+wSx6xQ51lzXFaM6PnIa7re0FF3rUEKU7XAuhQrxUlUjfeaDr8fB1/sXb/0V3ZoSKRupqsuB2HuJ+dS7Y+oq9dTKNZ9HIKys3s93npfxv/lc82B7oj5aoGCETuEA8Jw3jx/CU8ODaTaLUkMm3SijIvN+6FabAJiS3cMQABq6sZ0XCoLxSEUroOmp2KQW71IjOnbBet6V3EQcKlddJwGBY8KwXUlCRT4W8OS0SkZK45AMt+1ak8sIe9D7J6cjmEttbJIuzCsitqqeZbYSigFd4UHozoT9KOOT4c6EDyuKUOApxdcqyzyiIsuWB93nc15wkWEexJnzHkbbY1peWUU7ndWv+PMXxkwealIlBdhgFjToADfFKSDRtR15XN6j9bXUtj/3D9uYofsARwUHMVndpXLjRVKAYdOJ9PdJnwSP0k2E8Lnu0vGHNcdB0e2Rfa86SOnVNmDVCitJkwLJhdSWhLXcVPLBO5ZK5iZDxRWrWLPpLjrU7aC3aJ2dSJblai88vYHi4gkaLjicDkHwg+f0OaP4XOnOjH3xsIxR+HxTG4IvolJOBwFX7xPt1xuZo+SAelUxPRp3notYyj/Ysig9O/7YJ+meJlPCmsfadNsCJwaKE5nVxEjC07KO1vdtG2LKq1QYOEoCoeOA1C8MWC1btTGWD11S2BB0oKMxFrOCyW5fNflZiLJnZhJnUttcSnZohFjh6XqWtXWdN8zl2iBI0mqZzQ5AKeSVDnEVrArJ6CR0PJciKiuovhihLs6o6u7l4c8Zrj+W2rC9K7OcjD09/OGw/oUNQbJ7rur+ktDt3WR+0xliJUlFa2HCl/2A7DTtvj8BtjSpQYdOUg8MuB7Fp1/ncz429Pj6xiRRp9MelGTlJYZ0860z9Yn7V3VIcfu/Ylh7z1VPCdDUxZdrxQjJ9Ii25x6q1nAvEa+fL6YzUo/+Gh5Mt8gQJslO9y3smPwelJfLxaX20GLjXQ1Mkh6FaBS726E9SNLrnmW4AQWotxvlGb8XY4HaJ132SSKi36dKeBCKecP0spIoa1wLbnRh24R90FzvYGeKtzrihlkaXjJAz4uZzgykjJio8+PuBqPJgxTUYUAX/hmJTQF2BuU1EiUgDDJkVwBT1mOPtpqH1SNODvyKpw9oKBoTuQfD5pqd7TURV6/BHT0cAqPRcS78xrkq+GaORlfzbv9PR6+RoXwF5q4tpcqfOE+6e7q38HDnHJcpWtDZWj6NWBgiu2cJkqAYq6hOgbden2FOBpWUraICzsMOTBZBGNOvx1Z0Dkq4qnmlX0REpW0F/4KNA5J5qoRXlhGcCjL1NSM8IMzp/9pAfSbMQQRc+GqgIq8Y72Y+VD8chlqdBNff1BA/BtILz1CcCNDpEUeRrYWCFG/v9erpDNnuCsK/qOvdQ1VgTwzd2KAIvjyIzWyN1DN09kL5EaVDAT9Bj3JBl+NBz+W6oUITD3iHzriSxoyaBPY0OpK6UOzoOBSJtKm28JokdW8d1mhXOlbOSOkBsdQwaICLKHvCay5vzaG8tqkkPSsCQAP7ChzdTpLPoi0Cp8R6L0pV1Iwnxs3sl5rAwsrda5tpmfEy0X/F30rzwm3hAiGe0wl9Nd2+vcHwv9WXYf3PZqnj2MuYtihP4i2/1txG6MKrQXpeCSzVbFbnGydgI+RLMQhvBgLfA+t4UK3xnOcidCboXzqZqyNoRcz6RQc4kL7MHC6OJEkRDRqFT+TfxrqZW5joREwv+rkC7UzsQ+dBASWsggMHe2A/0cy8OWEQdfmF0C+J2qriQVqLWadaaCiGGvx4PQJdnoQk6k1Yv9UgjYlMXeUZXPeqclOv7I6dSWneVGeF4/v6YVdiAxDaRexTSL3F5q5aCPeaKcobrcNNx/vBm6QnvROZZdgmRKih/u1+dDNt72OL9E8B1VDIK1OapjsLtbE2CaYTJ8L9NzpU7kaN3HHNtxk0zgBZ3jXD+YJSF2nCfZORCYxEhnp3EUTgqpIjj4+zVaeRcV7SHQJM7OSO6ujxcZeRUvCH+58Vzd83383OHjg81ogOWMwNYtpfCzP85POiLGDyY8YY0ZshMLDbiXWhh3NJmXpTOC78JZBJUFS4SOiI8WCGLWlVyJLZU7un4p7hBS19otKQRLiQKfSH7zNxQ2a013T3sEsMmg+f5YDaNdIJoB4FKVxM6m65IYAE+hXIsqL9npZJwFGXCp5jGpSG4EADQVSEyDH8wSV3wpT9UrSoAAxc4l+5jugNFBcbw5Oay66qzrywXdln1rbgQDtV2ph6GLPZeOmdjY7swEf2giBbI1NiVO8lpO7+ytEgO2/r7wE2HPlzZLiEEJ0qjEtyn3yo3n13HUd5mM60zZP4SWiJI0cInXkfWDTaBzLRk7uaxpP0qGBjZPwe5Zz8OdUqRWZbC/fvFT//YN8PuGbOGJYQ2euMleVHNO9P6MJxT984c8+HrrUcPARnIB8+KpkzvuKttxs1oaK9I9xSgN4fuQmZMoOY4Zla5WSUEPH6OlNaJjj0uP0m1JZjm58vIouyYQO64iNPI90w91MbOBy70yqL7tyq+06nM6E7AY9IToPrd+A9hheKHBk2aBrhMzYS53knA+7bEBDKy0RhL8OpU+q6hKVAktp4C7ckhV2ZWdwuOWbTkL/7XlTKGcQMgXgnPiyCd+r4EeTJ7S9n3HBOODW2vihnV4b504Mx+6wY6+DmanLJtJV7BhqtNOUFjOeJq8l8YRUh9imCF9jy81O2XKTzd4gAUW14aIHc9gre/67UMEP6SqLsLLPHbV/F4ZSV34MuDMwhlw6v+mAIuDwnOrBwsBRo5F8PMKpwBB7M9Tj/UFMXLFTa3vZKUw/VzwrMork06FPAIdncGl8rzTfd1muMYk5eJ5uEzcX0v7jGISV3gPV8s6cvCFp4zqxGBSNqeCR/uvBnwP4G/EmHiCY+m6d2dZ9na5kIUrvkHhE0jim3lBF7L5/04wDZGdXAYVAL5svWRlaEMf9L9Qhbb7431dM4CMmYAdDy3UhlUiBOVauOHlJuJmUfn20ymWO0qZLIcpBUkuZ/fLZVETJkx9S1dcJz1ObGlHr5jL6S2lYLY3eP4elUNr+CnUS1QbNHbJpGVPQCuifiWc34iqKKP4DO6+EsQt4cmlFDPPPhasP1QFJFZfe7fecROCD8LxUszg+PuctuLm+BVC72O6/H/VS06pvvSwfK9By5s8XPPtsPdaoUg9Vs45KYae67ZABab9C7YkIM0xjc06CIWSgcerB7wia+VQWHNGreSlpOSP7V4slU70T8th9ffpheZy5T48j4bLHPT68VIhlywEcZRNlN90O0jdQBEjcGcBP3BzGLLSAXyxni25A7VrEw4EeCosxIP7qLMP0GECSH1prvomedpNOwjlrkPd9U1Of/0Pbh1q10jCb3B7mDumNu8V3F1X+jaC2QrBauwa7cqFqRY/YR+YhHvYZVUhi2cfkFAYivzQekCSNAUWsVKCniuG/g5/apsdVEd16M2O24tW9DCLLonGbyxCI0qpM43WCc5tq582Q8StOLKpEc2SURcfIcIyuCiNJiRDzE9OvCQ1/2j3VCr8XYoojn8yvCOK01L3ZR8X/bxUGM02xcrpHjjQ8JiQNGpWEpEu16a4Ilkp+jcFY87jOAGY9gQWHf/QKGQU9ubi9KMHs8U0KlYMTr70Zk1+rJZBalbmownAafuLO5FUwggCJvHUvRaW+OztuXiL/1zpwEmuQC8/j9Zos1V2qYb2nByTeD5qa2pIukCS1syR7oz8I74x/IT/JGTfAkRnLeCvaH+CsMQT3tcdsed2hagocDwdkN6PoT0hge2qbW1AWh8qF5sGPOBvN5ETwcEJgcpu4uyDintztLxyGW+9dkNbIC9I4vXSKxN02U+jAgjd9NWsuZuE+kl8/jmu0un4/v27tu0XWUkn40VRghif7ZbiEWKbx+PvVykQyTIF4uh4hSRnlx9kg2BgBUETc4T72raq840PLSDzPD//EmR7+RqeKN06F4hkm+4ME6XvhNlv+uKY1cyr1UpAdG2tUZggyDhL5joah249mrQi4LJCVILKxilAejQIdsqgqq0ZxyjQc6nfS3BMLVOopOQY29nBmeY1I6kDeA9KBTMJEZJ3XxVa9W5zXaPp5ffMIcx7aRBU95vsOt3fNgULDnpSC2Ace9+X+P8w/1sD7f/LhhzsCruE+MnRm6kvDM6ShmMmOvMvZmDPgkY7n5QOVQSv399HkCunhDB/S08mlCXKJc+DfK5JtFAb7TIaXojqUeT7bESUKKWUZA10S455gma81SN8XhZzXFXK0nM6CnsgdupYbvcN486/vazW+lS46ogaeLxjyl5fQi70U3zDWjwl8SDcXlB0VgBYEkLFI6oqhGkzjIzwXaelT9u28iJNmoUH7EPEB+bY2gG2shxsmrIt0xac6LSHKBpO8CEoO3/H7OW/WSIRUf5K0jvx8/6vjsImtvp61z64J1OXlqnaOn+fmxy7t/+mxNyviN1cDf0rCYy/fuyWTJzF1Ek6TVcyvHNWcACkB3PJYsdaAjYT08r32r6JbBfkuv376Ccee8WtDJEZaoEQ0gVH/4wz1crwp47zv5WD2YdkkzS1Mb6Qmfm/uMmyoenrUtZcnO0qpB6IP1qUjR5F0UutlX+h6o40998eXynUeVLcGkEPOk8xCTG0Tqs7ub5QvgRy5BjmHhUzXUnB3dqAHzIH7L43CiSM0S2xMNR9uJU6z+D33wSoCWF+wQal2Pso/NokiI+PcYztdFvWF/6VGL2EzfTJTCYygmZDXs8+oAOwcuj3AxmcmeH2px2jDGtWMsjfg+VPw3xed9DQiYa86XF4iL7fb3VZZnKtTKdkgcwJ7S+gRirwkd4EcAe+cg56cTPYJopaVf8OHwDobkbRIGqmWqMmSkRQMTdlV0+rNSx6qXd326sV+VZxDd88CknPeizqdQYFQIgH4UVforjd5nbmQIgcWQn9Iejd8xTRck7l9pAlG01lj1rgyi/cqOYQeve6eg5TsByWCaLUkJu+FM/RlflKhNv7VCUbKMN46+d/9VYjkGRr+JdzAOqXKkSCSTR+Hl7mI4j8AOMLmZtxPa+X6LlWTTMasXzZqvT6HavRCm4ttKnEHhJQjhgQo5dpU7wOpDrhLFIAc5x7x17OaaO1FXxIAVpoZ8Zi5DH3nH/aoMtmxYSLLsq6NAhYkxlf/NydJe/EtPR5helpzLY8CxFYofLf3sMpeKNjCT/ztvwRsbgqZl+JVA0V+xV3GCXNMYdY+Um/aeQbWfnj4pWDo7PzHPfGvWUY7a2rwkJ+fgPTxcnBkhnyfsXe+fioBCDUIqTcjCWMgMiJ024B3suu9uxTNLtcGIngYoOfrhv4szm7HWJOXFl8PzGmsZ686zFXGqvu4h/12SwB5i4+4Qr2QtTiZkP4fgCLkFFc2FMNVvdTh4X3vrVcnNItznB5lBk0GGP13AylsL/sM3BwiASjbVpd8ucdwLTWHtXI9xcw59czoWQIPUMZNRXD4DTkEPnIt6Vrf58iKQE+VQ2MK3NbPtrT3ntbHqQgx+2nJQYUC9bDvaFys2qt3nmT+P8TzDXIg0yjMLmrbSo0Y+gfqz3L/0vWKO9b5VJuH099NZS9If4gXT24RPCPpAi678TfuRUSnGvBikRaUL3LZ1kLfNYxl6jbtAo0bjX8cPLVw99BQxFo1YdorRDmxkSAHP3e3XTNp02WvG/Kw6ZjJeySENu+7VF4QLDa03xh7naT6GzDHQcVH+eCCtCILYxB6CTZovV4G4pli9SyDKDrH4AzgxeWb1I9MFljL7ErqaxzuKxavqCc0sYVxOTpZo8mpHXkro4kEpYV7CItN5Mp/ONgI5peqCDbXe4sCI3iNWLE6BIt2ME2CnzoGj71ipIco946dsUcynthu4M15ottMFhZQDL0LOwx5bl59247KHb/AMyiVbMIuzR7XG1h/BatV6fr/ouldqHIpJizSVXfotakfkI72ITfEB72vmfHc5/1krePrUnKj+OJU+0gIP/nSW+kVoAv2bQn+WmrWFD0O3fQdWi/Yc3QpLSMhwy5E9L3MIVUc3s/cpfpbi+Bh/fkeAa7nBgmNaO6qfcdKnniq7mgQEuYmT0HaEQUm+ZNYs9MHbnJhYyesaA3Eh34tAOUdXtk4+DtrgHezCuLHyOfoAa7PTfCIf72QD/mUjUK48aSWyJiZo3SGvf6KQmgXBgV4Kmubpi/HpSXVmPQ+yXdARTmFErYakc0Ntwo2CQLcq2gShPuHR9cjvezpDn9YgrSM0/dVoSTRrkyjtSsue/ShoujxAFrnFeDGi/gjYfzFWFuSetiuHkzUTdjDFFG1sGhraVSiiz6hEfkzu7OGGKdTQVWmuSYgFAs+xZQM39lKQ6gqXWahs6HjZBUc9gwVbvE5+rTeVgftn28ZrDnmhWQGzLfd4dztuBs8QjwuP03IsvQ6xTbLHNIICmKrJl11oRZpQ9DfYKon0AokPxyApnaGN1V44ttDBD9xbRZRos6XyOBQ7lwSHCpCLhbjKkgZiD8GUS9GGeS8pYIsBc6OKQlCxIYTKbpzWNychJxUgnZ832Qe3gOggUsVUNt3g5R6/NP/JVBpWZw8f/EU5/mZsmEXWCOe/Vs9XuR764Nzr8oe97WazNhyDiuGH7cVCq3BY7kLq1/9pBexcA+SS3Dr5InUu/ogT2tpRWss4Got+4Kr4dngEKrvW2sh04yCm/xfYv9+y75zh4OcY2HaErWAAx3cy3j8V9YCC8Om36fpQRzKW/UQZpM2xwTyUOtRIlPjCPOHgRKeCWLc/C+pz/E3K4dJRo7dTkQPBup99x6GyWsNPQIFjGVk7RC+ztYvcdoJ7rAGjv6qHPn54Rq1jD2mp2+kRU3LDY8binpcmi+g2X12RahNUhZEbRdkhZ5TV9/oYrPJtenJ5YR/6xyj+8hT0DCvBXY4hfrHvY8kGs+JtjV2Q4hPQD7WIEoHWw9v7wslmJWgymLPYs6wZO0pUMndQK40qgdwBFLcU3ZqT++LkZgK1bV/7r3Fs7xkfF8oPy2U2BQ9Ou/oXiwDB/LgLOp0u7t+f+zkx4nDhXA3Ojen1edn846VtrOJc61W00juWAmYDYGV8hPcVmTbeHqwzENxGGnAXHfNJnfm7T75EIn0o8SkHgNOP+ZUmfcJjdQ2bKlZ8Ob1dqzbU92CZ+8XYwaA7jsBFSxD5GXggyCCigbLlE1lAQvjIVkFaVGm4l7FyO9KhdEOnO6Jyupn/woKdWHYWVFKSE9M3I9d0UEveY08LsWY4zm3EOegqKQVl973EqvvnemBswE/IMQ3i+L3+D/Jfaxgrt2xPFAbi+lYfsYNejgk2+VJGejZwVcEZ4lRE/EMtGEo70xWo6Tl9N+tSDPWi0cv6OIL52eQI+FxVMizPdadAekv8pG7VfesxjBFOz0qeL+9cEtNaNqaClYvuTHZQ70S4eKgWxBaXinjHwewoj9q8uaIILMTXIxPwWH2u7sFmp5v96phqPtcV5UHBX9euqzwCnTniPVMnCQPArTHQePLDHCUvypOR9x9hCLquy1JXDzWzY4yGfXLp4LZxnyF7LZyf5tcfBK/nj05Zqx0uf64+OphgBAUA2dytPhvaoyk5hxQtyIAoLZV0qHvzchQTCmdi+Db2xRx38kI6271zqkluZGtcxGfU4GTNflQhooExGYuDGcJZpQcjDPLd0I8qNzxRkSUbXklfE1Y2D0gfHReX9ve5MeU/J8XQdlgWC+2xRo45BSkgyuCfGhV9Gkx8s68D7zp2//GpjWpSuL/6tRhpNDGoS5RvHwXucCdAdW796JgRE2rOqZjXoJLWWqlB7RaFhZPle3FFeix5b347vnGBjhpKIx+eBy5TVoPgDN1/ViN1+T8iFIOmrad4IgF8PWRoB/kPYn4HrrZzzJ3/J/YB0WckGu0BS6qmFt67NFZLxvKCG5qONJR9czeIWzwP07vPYpwnZmjZAMxoligCqPsDQZomb/jitHsx5RMffGHyblD9naNhLwqrxaXJxurXUFBlWsSfO+bB8lE2pxt4RXFhsL0lK61DFizuYie3hKWFbnIMZmcEe5eUsrBfQPB3HMI8fFhx3LrAROoNGKyxTvmFHGlhT1+D1ciEjSrA83BWvOveIXhzOOVebc8pi2Es0NxE0bzOQKX/YmaGg=
Variant 3
DifficultyLevel
635
Question
Lidija creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle x°?
Worked Solution
Base angles of isosceles triangle = 51°
Since 180° in a straight line:
|
|
a° |
= 180−(90+51) |
|
= 39° |
|
|
∴x° |
= 180−39 |
|
= 141° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Lidija creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v3.svg 260 indent3 vpad
What is the size of angle $\large x \degree$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v3_ws.svg 260 indent3 vpad
Base angles of isosceles triangle = 51$\degree$
Since 180$\degree$ in a straight line:
|||
|-|-|
|$\large a$$\degree$|= $180 - (90 + 51)$|
||= 39$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 39$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 141 | |
U2FsdGVkX19BxN+o3fQZzellgk4fqSnwtcig1pJQxB1ogUV+Ijkfeys/Ox48WTfXA326UeomnQ1WK+tIQvwGBLE3Nqd/SYcTYbzr3l+dINk1D2+NxiTIri7Iy+6cTXLr5Fl74Oa16oU0GJoiXWFPXlLQ3gIAcy0xeGzc+tJvCF7Dea1RJo9i9wJ5oP7uyNOIkcoi3Ra+zmdvLTK4srhXv55O1h5e8VXLGUInUaCswb9vI6XmnzoVt1MX/rHTng+2HvabjrDZnsGEVPnDPsTW5ODF9UcqYIeBJ8Iz3MfE2qXe0lQym6MX393ZnMQK2yKscaMHB1OAljE+OoBPdtBtVdhyc/RMm8OeucnQVvNGrlkTLXBaY8r7K8dS4OkcbAzaRkszfHayKjdHWvM9uEFmX2j4WCuodu2HlGgBD8imLjgW9UFzXgiOfVmBpoOblCsak2PiQEMbhvoQarUenvnyrvY247Ok7DNmT3+zuJ7SBDxOI9fYjVzUnS+mQkkhGrr86JnjXpHkRRcD/6DFki38hX+72qxfNH9FD94gU5VlEe8MBHy7V7740g+X8kf+UO+w09YGLoNSovFcZ8Q/UBB6+CJfjRD4Cnfg5r8AdkWlq4jBWpfEREkrTmf2vLKx/K1YJFZbJcHkWtUAAFeI5oCyoVklen7htGOzXGlPGXvKjgxtMmWJRU7wPmGFNMFWEIF7bQn8LvJ86zC36PJpV/lj55TjNBomQwoiHM5IjHKevhd6zFetaMQeP2Pn0uGWDzOV40C59bOpZ7jW7MnT9Z3b0q55KedKfjAhXCTL4fg8FL7TqTg6N/A8r4NiJFiEvgdnNxBTjcbX6DbRnm/LkfmDca4z4qL/By6nUrfQFx8cKjiArGZc5AS8re9fKgXX4Tg3jocIVFXP2dWUWlKM3tHO3VN0PBTsZtJXfrg4gokMelxjIZlDS1hn0qLJbjSPWahzJRLw7y0y/X/CsUY2piHgxyoeQxdLk70UXWOHPvS40sFiBaiaXXt3ypiBjs/Y3fdWb19c1v+3Pntt+G1NoMZaCI8hGCxStp4sLARLAhmcKD8asCOO08KcDEJ91QnBDRdPb1vPk/ko4SF+1MOWrMabVKKdWPQzXdjbx+kURSbq77jBgauB9mNlcqbv2RVvcJWxUFIfBfOWRef8fz9dHGf8ywMkN092rfBZ2wc52yLqZqgoGlwGp/1UV6crRulJ1D77ywFr5gLOQXy0D1uSkCzznYeJRwAtsndV6S/qY9rVPeCOq/5BZK4PkU2n6szHWcX+QKBs3+Aj+LFCiIGHxtk6QzahUKMCyTdT1lJpaLNgOcUIG329/4AytQbAX3TIwreNa1BPI3DhfpJxQb+FEwFIR8Act84KQqVk69LyMCw+DtUO8MPhdFAYFSQ2mCznEzlgMJ/rLIxZCeua1x634OLrt7SzdngRZ8owP7RoIwJpzUJOtcnnA/dYIF2Q74B0r+cyDQzQc6vkbz0a148uUDCEM4oxMRS3/a44sC/TZDx11lthQfQY8mWFZkOIM7g+Yym692fnawB6xlp6D6B0W7T35Um1ad+XhivzWTX2fv8OdT8eStweVNZz+cW5zdNeeMT7Mo51jGh6Q+uyRj7AI+7gHe4McBuR+L8zrvsjKEMeHGZMMVn1de++hpivIMwE21tjxzL/Ro0WDUHWeNp7oRknXwSyxuSzCbMRPUbDNXA8sK/714Qvy2hlzD/XqqrFBybzJp0V5/39CzfNqvUM9RhZ0JznjrpmgZfEUd12Y6An949syDIMKJqPp7G+oHNbjKr7a3an5oRlZvO6JzfWm6sJXNIRBJRxRCxeMomk5OM3ZU1zUCyOoU5Xw0BsZ/HVeQ/9YxSwlSbuPehuY3+hPMMpI7Paak1S8IKEoGNFOZlS5O2DaqMCDBeYpEsokUbTsAyDkyVairMlD8D6kOWbT7bkt7t44q7+MKHIlwMPREW6nBE9W2Prl/vYfRR2frKFPG0eoNKWqLbU4aDZi7zrdHjzGLFXsWDL7dDo1KSoqKd8u6FCblcGX5ejBvDsVcU0v4BPlUd+8+cLdnWKIixMCrtV+ZxOptRXdwPpQB6MGAuV/CPGaW/c84+UWjN9n20UPYUAzEjttcvp93qSr+LJoowj4aVx1OhG7Lgf/8tJ5aHpEXhtEe2ELjh0lSRMqeQH2qQaD2zfreDKuUo7avyOcUPFBcJ/VQ1taukODamyuVMUnHK7F3ZDu7Uun8j51qOoui8blKy2dW4Z//ASpC2fhxN4t7II1lrH86XNagPh3pqMAKB0ocyXSboBWIQys0YHF9lFr6F1vDi9fZWpmO8NuWYvCP85pReEeqdiaAOJANlMeWLb9Es18wAyZbTbSOt+RaVW1tv0Jdd/jpfU3sohkaNQ/Qk636I+YsH0OllBE6S/y7x+8j1J8owvad1pcKmA9uDL3hRFP4r8MUyu0tBq1SSsNCTk4unP4t5EkLYEohRTnw7+zV1ZIPc4FGWSZLn8oA4bqGpepg1PKHnm5iM6VCwC3gAVcJ3ylY8aarvWfLbK840f/jw+D62OXVqZBRfiwPTmWnODF2DXeY1Rd6daVLjSSiZz72tPPVE4BiO+jWetbYj1Q/cTNLuqzViR1RzSRAOcwMgbC8YNxZx43EzmThzasE3IwaNAVs0N5Cd11xl+iFbhuzqJIWot5FEqc9yzZjNlWXGh/Ldon0u4WWxPrEVO1jnUbqEpdAR2F5+ilsUZrXrUy/9T4rd/uL5DhnDD+XOZkIBMUnJ6jExsT5xY4IGSYMu/n5lEDdDhR8qeW2g4GWPSIat0dI1DkFWA/NgsNrPceHgb1aQiCXbz8cU3tgItDgVF+rBVgFl/hWr8n14Wth+gh8v5OYe4/VimNIQDah98m7dF5NJ1p+PjPb/et6nvS18Y/mLkfN1pogXUKARYuyT+LqoYfpm0D0CysFbesddp06Ovlc0ykv/ygMJX+TefEuM7QDwlnTQ7KiLr9QocU2OiwLVufpK06qRHo+zVEOC6eAkT6KasExH/eKwIStUkILDC+ri7nmwBE2lbJn06bM1PUUpA+oXUpM9OvP2ZkJZBQashRhjEE52tIMTbksfNnBv8aWZGpZtZEosJq+KciA6BRLDUxVxb8U6OKZDvkfJzDo8BZZwdwJqJ+OLB0r52aJvOHOeE5kuwwrAkaYWa2bTqJyuaDpO/gf6RGNdpb7UAD02ZxoB1mNM8pHPz4QsL2WSizsWrsrJMJUDf6pqPE7su2DDX9WzPgXR5DGjkeEMQJeSAXlyaoBUjYOkt8hITdTHOqUinFA/ETdMsAyexSR0QrIdEHgv8Z6/3oJdTXXcDDrZ8euv2POiVvBbmxb+n+FHhWTYimaoGvXyAJi5lfk+SocDI5OKs/kvAGevcCoYbAa5r0ORINAznu3PosSuwgArQrB4SiXAXUJBEZVs3M6gzTyQo1ime4F7k7iFETWvhyjUXQKr9vljHDcI9lagqIOQT6CVsMaGeg5E6VIc4dj3Su4cuBFzQf/Hw8wyMzRBvw+DjJ3r0TsDrsGJHcykNiNuWsHGIiO+1D3I0h+JcMgWuBXJu5w5B1a644+ohquOI88xelz47xEn0HBahLjAM7Lf+qJhvqfHeeTcIRkPzuA3hemg56zbvLi6l4d9SiRAz5Bo2QdJqISimNV196vpF69BvImlAd7mJrM7a/msuqrtLEZ52vaeP2KoJ3aH1VtOjqYQpUHKZrtsiR/oDyxql6dTDPnZaWsPzOXQ/ndGrj1tILiAIYa5fdTUce1S5JSVfqMMxQYk2qiNH4TQUSXQKhKBkw8CMGXX+tp3dTNjc4FzX7WkldNeUwN7WrcFHX0+BvMPXSrec/jBsjmlRVsKFypMp+xGj5wz/0/I7NErcA2m9oad3vwwkWtiJYD9yOq2SL3wEM/A4vI+U9FLqBRH5NqpHTLiWpPkbE3B77W6HahiQetRSzPQsrjObdE/GNXBqlLnV8cPd0gOsmsNd0zzXYTL39QOuVJ6YTPrR4usnR7LJcyzaBVgFy05dznJOEBsFBJT2n7S2LcfnPaBZP+8mrpMuo0aSrNiOZieNq/s9Ez3oKhGSJL949ohYx6IjN/1edz47uS8hku5uTcHK7whjvejsOtiS9zF3MXnZXSJL6VnlOmRqsU9Ya8qQVuQYt94LCqjK39bwe6no4ZmH1DJmKVttSxM61pJO0PUXMVovJvNWCzAc5328HAM7jp3ktDqR21Os4hEqut72fPsOjnJ7rjRxoYJVCNChNnjpH0bHnzcSMUQTFv/7XIEXpoNqXYY8Z1FGIrX6QW6U3K/VIG/aoRzxDJhHsjMqlcV69ggON2HcjPyW5iHP6ms/lPv+wNTxSsWJvNM/FaP+LJCO2NTDpX5I0NAX7GVU1lOYvwuGaVCohWkMFA7eORG56Dydg/g1+iTnBQvnw+YaFk1/WK6b67Pt/y1i7kijC5rrbMRg1HukhDGyFv+DWCUr14pdvsY5HHOc4ImQ+n39D+rD5nv6f/6jpvoufkcPWxcYaeMHRyeTooxNM6/IsUoS2fX8bksF9CZRAgkVpc9TXnKyhtaQJ7XGz0qqBncN17Exy1UL7EouK4BvS4fSJXHV0/63flseBZZOyM3kRWhDu4EikjhJg6D+9X1UZseF1GWnBR2zZFKMwobi0oA2y/tTc/kBCuhjfLEPTo6gFiwRDQMdMDoy7+2TiMl5g16xD2L7I2FI8KDfpDLIrB27HznxZefigg8GIF41D8pkvJTE1cQj0Ms1KP/oashRnb0EyvouT+LPlInCnKcIT+8LwiIdxnWs1jgN2vUxkCi9Ckue4TnrDslcL+mufIBseapH1OJbqIrLNcbkkBVKEFKupMauco6LPMazpWs5oFBoTKcRbK6OxJiseG4Ag7Jf2JsWO1vBmWXnrEmfKdCXZrvsgZnWpyP6/iWCTq7/PtbyHkg40L7jpc68ZtHCzVcU1L8ZwzNr3jjO6tf5o1cuz/m+tlF/k6nqgKVf+5C6WmeyzQk1HV7XQh+sGtGAOORgEI19OFxqocE7EGxA6q6h0Ka05dCb6oNl+ZfYvoQCum/Fe4AFxfsQqOIxlvo56iiCFqZGMKA3okVsWKYJBWQ9y0NzkmsWDOEhjYOpW3sBwAb1VZH2w/JdUo19zaYKPdPM3Fh7kjVh03gT35Li/DnAS21sncuMuofBcJk/0NEv6qpKZpYOrXBKRwxhFgV1a/lRnh73R67O9gXHkQdmML+d69xLA1VBjPEoAPddiatNmm9Hn3jqv0OvjkWrNuiOj4Gqk6jyKUPhAkd1mdOyxcEIR+KsD8gutLW8tYJqYbG6opPqr/z9vI/VPfgNJTIePkkHfemOt9adRoiGH0ZF7Ky1pXNv/W0PmKoyKN0W6AjMliBMAK7t63ZvZI1VsAW+nxE97rYrOT1nWIxkrt4oT5lDror0WCDJcD8KqCPiPi6qYarcWmjK97n4GmhORusLpnH1ysJlwzLy6PgbpOjSoA1vXTxlid+SjaiEEl5i7KcPAQhtX0VqzfI2+CTP8hteGGZVOHExZ2ea0Br9yo5kqhKC8bMVcz6m3lvGKPoIyus4JDYxrxQOmVCkYIc301bRowZfTPGKQ5sFAcee90BJ+Sbouh69vUfQ+MG/VFpzpXieq8+ycUAENPeXwbDKy/GMw0Ne4eNgmHa9Ciay2KS5v4PvmFJHB1zO/DcdiVmpdguGHNdaaDlkJPOSYM8FvK/anKfNILNOqO5mIpyku/637RWlXNSaSeOyeL4Cp0h3Ieno06CyC8Ncemu1X+8WIs5XgyE2QiKSN7rxfaljgspx7XLTWNSvJVbJMHrZX2URuv82WuIF6BFents53G2iPaMrCITkH1eqCUesvsDfIXihKc0mEQUlXsnyPBXGyf4k5TrK9+k1icDOtUlfzINNqa4hACixuUTPyJOtNt3lM1pwMffuytKOCU41RAZpaut/vX/xnlrW1nRd38ZwWjH/AXefxgk+xQJyC7XAa9bBj12P1J7/UjvE6HD+e/92tyZj7vOc8IMBkb6RSoTTbBI5AjknJOlbj1fj/MZ5Lu+ok/AcO2Qqk3+ELtjc6Dk9I/w1Dp+/2RxbeJECTtPD52rzreJS7OqTpcBivJiR44OSmboVRIPXRRIx3emx/1LpjPK0S2/V19mD9UI9WkC0SI/71ji6TzAE79pTgR4/a+vg6FFLhZTlsEV5qmYJcEQf6MEtF2Eg524iq7Xl1YnrGQ+upAVzGuquOTX5mQqeDEOA3wwUbTsDyZTdh/CVeun2JiROaST3xmJjHVBnITnybcpY3HWfR44bUs3RdanDpSl1kTg6qQ6pCQ0QOdMQzmSyUhQIQmqHE0AW7kwW1EjjdlFBGYYE2/8Tc7XqNjjWHx9EFbk9wW2bcjmxkaeBCvECE/u1M6D5LaFxtnFH6/FaPj/Pi/RY/1atS0kElaTIFmee89AG6jX0CGW+GiHcBjQzfShhTM1HZ3EktBud1L0yYtWa2SAU2WShuPFa68aiuHta63fNMY5N1uLGnlDB6Dqk4i2h88KZ0ttZm6pG8nxAW+vgX3l5buq8rcc1tTayp/6EzFtw30sMhLCCixeFWyDqDk8P004vWnqEhSlbGiUsOpVIcaLVIf9JpGiAP2Y1s77tYS3cQ/rSfxbLzdmAtaerHVlNbuyyHHx3ty5lA30oi/1XkEOUCKFp02RtucA2cK2XK9am3PIF0715ueCSbJiOW9TvpR7IaHoXIZRYTl3F+FBBaafdqriVE7u0J5Aea0LIzJCuY1iZpRo2VzrVZKP3YZic4WJifvO8mkRE8D4xmPijvHzDlYIUHNi0wvfWj964jiuyqDTadDrcLxJfmhdSqpfOr040J1hiErnMunbrp2VNAtKF9NT9mw7mb+Qg9sr6xdSElJ+J+JbNn64p1KejCh3a5howThVC6M5E5afVB2RJHdZ4fVxQy25lluyLfZjeWIY2LxqNIgh0pxCyM0QpvN4Ebh4SnHNFvwxKtVySDVyu6KBkd+pu+NKjOJAZjOPiZo4iHutHKrR65PK4zFSC3ie+y5A512xTnpavIoABk6M06uwudgtWzzHGHWf3jNvV5Gf5wtNS9rQBCIHSHpytABkxGm1RfuLiUePuEK+gg8Vf6Mt5EfYtm1rWyhulYprInSXgyV/mJu9OeBZNCg2cJBEumWSIoo8UZEf+MwLlza6OrSbQ+Anxxsq1EZ1CNPpIMnDuhvZzcvYGQGXaATqtEsyjTeGSB2/78esk8YdKuNR5xgRHuLjWP7TR9tE12k5jFlzbxmO9O9nmzbl4OHuo+smTMrS9yHWGx6Yue664UoYg1zrRShxTH7IX61UES1nd7J25XHkGUq52NTdH9oGrVXlzhoFBTZBKfEpDbB7KUQhKJ9TwPMdiLV6yAzVRiqkf8qYKsLyC+x2tyLhU4xN0OSRS7Tdo3KfsmAtQFXyWaeA5IL/+p+kULHHTI31Ijpui7aQJTsK7I0kpKnKt9WKTbaD5ZeVLvYq4SOAqrWuwHC131L7a1kc/+i/sQnMs9f1Kn00WS9JjidgHMN5Y6+KRXXkibZaEAYGCzHZwXl0D91ctYlkkThvpygsdhdXxhahJIB3U0EB0edCf5LUcQ73Lp4Ad978xQoEJVM9y2YVZw1fVwWsLu1L+NGyzM7MHVDV/lnwSFf5u6+LIMHgDZm8lI4eBbtCNMrUsi1BGtB7+Oxe2dx5UANRlxl+dVdIXqItUWxmtabMFCJhwlXJd74niD/4/0C86+d166+V2dChuQGVD1Ew1ZV3jU2DjdgWzsDoQ2oGTTrjGTU/+jLGvUoohej+mXvss0dVJWvDsFFE4ZtcMKXIGoONFwBGhM+qm5gbMNpdVJhjq1MhJ3tdUjh2YfFyOL4p0YWZsALhUJxKSBA+hroW8rLWb6x+OhCeNsFU/aiBfGkPlIhzIAvhA8LETjNkqfbjTmltU44OoxA5wjwVV24Vc28fQ6KEwdT5d/TLiUjQUdtajXMLBANbYamWZT/CG/+YTEFMzYLuuqJfEIDd+8dMwAgFXdx+u2M/3Gny2MRptFXM/YIlsB9mBKTyooB2vHm4u4q3Zk6bQBvJr7bub2lk4eq2/AKtnvs6F+YocE/CqPv5frj7Bi8FhsybSao0aK2J+am7dLI/43JrM0XuWa2rzfS5YFFUmrE2z6GfZ+TVCPEUMGLpLZSlKRCF4hVeGpXy/bdTa/7D6+ZTo6+kFZKbvHOZGlUcjc1o8m4k0Lc+7j8EEfsMIjZOGNmwkh03N8R/rkBMGmOW9DM25x2qt4WhLxTiexH2u0S7emiPZ29RrO4arz1vX3j1L7Qyl3fI/rAHBQqf7X9Ic/BYzLOO1A64WcTccLZ/hQ1ttyoohTDTAsDuGKw0yM84W4tidf3zVbrO17VxncSBx4uT3VU3yzqVb9dhdcB3i9ObO2qJiSCv0fcBzVx5ghpnbtZ0yjhDmwxyD1evzWZCHtdS1eM7O/evef0hy3I27SVjZJUoD8n1ssjqsNt2//C3cMXBh9bElA/wgRf4aKsP3AMW7M9WFAjOzSKH2sAU0gVYmDKuGlpi8ULnrfnBKLnNXXhvJj3lJIFW0IeKTk/aeoVQBpRAhzR2sbeGlTdQLfaVIWwWH7FDxiUaIzoCh6OJRSk7Wh93ZTWZj2P4iWyVPw1hYix5CL44Y3reIz7eCRgk7SPgXv1csGIRHGwgWZ53J0+B1vWyXp+SxDrFz5zr4FvkJST6noTstFLYat4Skq9cw4S5K3IfMLcqb91Z387mZKrpv3S4XJC+Mb6rrmcD+rnDRYGELOjKvnKluaVXMXCE+9YgTOBZdn57/FsBJp0u/aSGhVyM7Kj7OduRFS0F4qSoDYbBE6tM9s5YUvFhP1E8i/MkPt4dcO/jWPqu6axgKKZCRDvB06Qv292sSOxcUewGBuBVUPN9pbm9yPZnniTCtf/fNiMBUNzV9YNEtCfEOzTSm3EPgjt/JQPyC0PijyBkrYSnX6LEwH7NCXco00R4Uq2KASyGv8wUFzWijkt0vYw/+t6biAsswXONs+67nfjdtL4fKehYQLxlTuqu1IF6KHQipUAl/7stpaihoKjw4V+kyrwJ1zM9dU4cQxP0pvZiIK1STjbrA0o69k6nnEWq9w+Xz3XSkKg33xQsaUT/hJPILWJH6/32s0k2Lo8m8QwqxeXk1NuOQVZyxbELCxZtk0QKjcWS+0gNXaLI7ZK8TKdPDGHr2Co1V6455Lf3rHW2zzR10VGuUeTA9RbLTHnOG6VRvxutJccYyYb2b+8zXBHv/noYYrVFpKIKH79FVdIZHczOxU4L7sAFO7wo0aGTCu2yHqhQuQXDc6tN9TmJTLjLhD9OHLXViKVM55j+U/VPEgaGufAxKhtyA0DVihurYTSHf4pjImiLJ3g6pLg8eOUpsF7DW/lurVoh5Eq2bdCNkPemtZARB7/Lw+JTWgkS9Ia4cK51XE6xqMmCgYpGHigqveK9Bc4iIgUf3rmsJbjjSLKUlvCTtMZv9jiPPfDDVcZvJgu+52k88+HYUSIwBmteeFU1j/g/x5m020pmulU/k05DTYoVvzMtbvaO+e1r+d1Ca3Z04UJVXPq7qZi1L5TPv3iFfYDYjfUO5KP2LbZ2M7iOcLyUbHcgypNQQgbMmvaE+IrEBAQEufMdnmaTcVdZvX/ewXLQc7nDY0EVfpBlgNVxC1dUjsxj4cq6FxRfpF1xSw4fXd4Iml0TVzHUiUi/cwi0h8uM/qkPetN8hsEcuJzCPqUFlBmDkLXj6JkyKU1Y6zv1rDdK5FRlb8/wuQmxm7ITFQnEDIj7CkKvg2tpBBVbOTsu/jBpFdC9wFB5esHuF19vrHgEWJP7HFbVEc8Ei/h1D+kMwa+CfuOMiufCbGwyYd3Jqr3HG6MWFXi98t/NCFZRoReTuESvMrIHibzc6m2AdmpSKAZZbnMB/3R0nTENi1UXJK+zpdlUA+1S5GVxQ57KVC/pvzu5vDzT0Fr8Libmm/JusXEHB0VtGeVLcG4qXMh7Ia/arejkTbcB5GB4/Uzo2ybY2B11RmMoNmtvRGWprh637LHthUhZ/PmGdDnKmztENrwavSgldIt+Xd1WJsXGJwrT/+nyfI7hrz1uqzF+Rt/49aHI8Xga+m8kF9tZ9rt5PYfhFsdTG6v0qikQhIprmsyuj6rGyfdS/uQBGxT7GbDYgKxWUrQ/fx0fuYW4fOKsT+DOIBRUkO9ZP+L6Xey4sRYOKj1VLcWY2gVY2kSxzX5COyRF2FX9xrQ70i6aeIlKnPjf3JpeVTEio7HehvIhd267p9RhZGgPTGlaQqiqWTJ7TwNqOYQ5hvmG0BhrrB06FlEAQlRlUHoR2UJsUAQm36BnTmChqA0zYjFSxzkgegIhV4mVwoLrQBnKc3uBrxb1rVa7/vVtPMo3oET/7YamXyy6nAWQLX+HvO0VLEldPrhml5GJTM3TmWZSCHdXsl0nHBwjk1/Pc//8UIjTElP4sbabWT5jUWqngORaOZTdlNwVDXmTExlpMhmn7vWJupKClr22z6MGDsny/3jfQlfgJcPU89BjgWH7ZmTbUwxuK8Tv9QEObf5bMHgM9Hg1bJ7vNdUvPhQzBPeCkWPtcBfPw2oXm6NCpJ+ov0j8oy/Zys7XzPMXQcQGO04hWTH/b4nz/jtPKn2RKGeCllHnrNVgeGZSKqIn5NcBYqIHHu9OpBpYW8eEXtauB5tzqSvCJ8WFI8PmhXqL8Oat9voMS5eT+4yTk/nqEf+Jrq4jol5wFSdCwjYGHHos5e6Xk+p6QVBlzPl6+NdU65MBNEcnAL8j3MDcptz9S3NSyTBA8jfI6BH0ecByNO2cZ9sylvK3+TsRkLOEsWtqp69jvPG0qgGOfUKdGhaDSbyJK5E3GpKqohtCRR/8Z0XkIzq2I5dWOzUuiBhLy/LPngQXV9Phv209h+NJnW/w0xf31sHKGzwFORSTM49QWaunXfYmZCIq53Kn4cHruQxAMwJedlAKCRrXOEAeY4qOm+VFAC5av9uVAAbTv+HXgjEetE16F32eJzYTjTIsHaVI4pzFlOF44LQ1RnmXY+P9on9PrQqTsbFMTL2w50l/fBvFMZHazjOiZuqvLFSENC5DCK5oNdPkAC6pWt+yfFGaoObA58cG3yf+nyCYSqqh/m6TMUbY5YZoEeOlZBQ6znR56ryyuZ7SaQeuW2+Bk9G0wj/rhPzE6kOWx7XywC7SgWFr281ukMqvuJ2XZRyVeGT/XA2/V3ww4Jl+A711EdbmjGfGTg832dJ5HEthXN85WsPMXXN/qyYhg44a3zz7chD0ml450w5ADJdVWzgXAeUSps9PsZjgAqWgC+l59HX69YSas7peZ3KSFuRtmMRMk8b6JX+HFhzkJ/giB1LLpDjodgCEYGnQPEKXD+A1srd0nWRYsom1mdw+R0faX8PCp35QbnWXOn/wu17SRk/FxuUy/aANQn6uL+d0ILtrC6VJg11+IRjb4AGpGzcqjeStx+5XL8MYxwhkKubyWxKx2xI0IZq6M+TxfIU75BE2yajrdFhqKlqtZjUw0kv197tF0ug9U4weULskBCL1tqQTP2APTgDwiWkpH+oaGiOnaoUC6KRaL82v8u6h0ubuUCUzqTEuQA45+p/hIv8hFqpMEhcZwa8Pg116jnXA3ICR/8gQo5NB0TbNh2J6vzeagYL7eMwc0Susv8x6EVsINt5m8oVPWfKaLV52AqP2pQ3Ou6rLi2ahO7qcCO/WOtTOVjUQp3wzfJ72CQWbqbP96+NVWbKQn3ZSpPePxDmbn4gUKXj4R0nb+34quVDU8UWQxdp9L6HmQiCwP9LR4afeIZhm7Jvm7Ob+6t+sZV95upTOOP3ORC8gjpt6yBW3n6kIMm7zQV18YUu2sFH9E3W045bppcE3n8rdHwUySG0ki2x1otq94hvIQbOz1+SefSnLUgbHoCwezyin7jmsLhB7pO37CsjSxyM1MjlRyvRNLudGLnnz/QyIl+CBu3A9n6WLz4vWgijZg1v1et7IqH3E5Xcomjd+7LM52ZOHmh/3xpo8QcDesRN84NEkI/AbLCGTHdiMdaS+ggoTZTrTcgl2lCmGIS6WJHvSGoLeQSkSpYSLF1dK2QI07kGMAp/yh3Q==
Variant 4
DifficultyLevel
636
Question
Bernie creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
What is the size of angle x°?
Worked Solution
Base angles of isosceles triangle = 27°
Since 180° in a straight line:
|
|
a° |
= 180−(90+27) |
|
= 63° |
|
|
∴x° |
= 180−63 |
|
= 117° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bernie creates a design that is made up of 3 rectangles and 2 straight lines, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v4.svg 310 indent3 vpad
What is the size of angle $\large x \degree$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I3-CA26-SA_v4_ws.svg 310 indent3 vpad
Base angles of isosceles triangle = 27$\degree$
Since 180$\degree$ in a straight line:
|||
|-|-|
|$\large a$$\degree$|= $180 - (90 + 27)$|
||= 63$\degree$|
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 63$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 117 | |