30157
Question
{{1}} × {{2}} = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
{{1}} → {{3}}
{{2}} → {{4}}
Using long multiplication:
{{solution}}
U2FsdGVkX193yq8NbVu1kbX5ezvuxuVoDiXDKcHKCeq0ADjsk805Q9VXhwwvSmUUlDqX0iLm+QsPRgM7mVh5Be4JGP/2EWxEpY0X8FigS7wQzg1GAfui0ZLlbgnI/Bdt9t0xPSAdsv8NGZHF1Ecvn8ZhkW+HUF9RA7Qfmp5P0VAbvpCfX5/svCtPa8jMQVYuQ2loDy9+0Jvj6ZhhZkismAqaOP3rC6v4u3hTYVyX6RIUyvP28TWrRKETcVCIrr2njpGB/xPimFYnjWhsM1Wsb1zNhb5f3df03DjWEFnjuu2C8o4iYb6dwfWlXL+gZzz58JbhB7Cu0P2xWttB8F5nEtKQojY9YsRhU+rKw42OwWd3nehH0N2YtWIMQ/ie8SBlt1Qm1KNq6O2FV2JleRWdyzsd5Y3vkHhPqscFXsFrZD5s7heg8ouoAfgO3NdKYZ42Z9iy9ZHz3Mp21uzh1xD532OY2RwfjYEBCubA46V87qwZCpIKuOZiQ7jFd78DlL3tnbTIDd4Wo7P+D8j7a/2tXEvbRSSs6jmwGBqVdcteA7BL1w/NasXN1XjuvggpBl6dTTh9mhDCGW37qbY09qEqlTXEtBQdZfwpcnHz9Tt+NSFU3tcCfBOVWDE0fsDj/dDnXlm71Hf3VZHcRp2+DastAJczL6O8uZhlyj+quNyl4hej8wm93y2T7PBGAJLTtI3ZET/zoryC/JJWxuCBGckolz2wElsCDmqb3kXAgcXDr9hXE0peQD74CFNbK89v7d2pLBSMEPye9XDrzSJ9SJhnAh+ubuLXI2XKkm29Pqo2xrueWjOjJLLjb9POTA6QUVsUNoRty2GBXwlNfxXpSc5PvdN4nvzYXCEpgZXHGEMgM3zd3pBaaDT6wRuwSOhOPYWEpn4gX+qK8lwbUk/zD4NYA0Yv3ew8vZPGW5//cRxNnpG8XKvUOSYNR42FhnSYeuU7zlxMKBZyAJvFxe1Q8QS6m2jQUl5y057RtiRiMZbr+3ia2GHXS5V9zfatZOUuKMR11VrLKvBzxhGKYzIMI7eLYrwpwtRsbVdhJcCIJa6cpniQL5Vyahg3ImFXfdnbZ/Ok4sI2fGlQ40bj3o0DFZoXT1zI/JsC5Za1KXmi2/OkEh2r0GtKOOBVyIwKCqd5fbKL19YiLWpNQiV4xuTcfVvRbBTvJWditUFVocS4TtR1Z/+CiW3DsVBdPhg4j2pQivX41cN8hP6XsTNQ/ubcI+tN1NdZu90lIcksziIZ2KUNF97OfuCQo3qMTN2rCv09b37gZdQgn1K1ph6/UfUSBUOlzdlGpPugrsUXZnQuc4klVH+PXtAgbXGJIkAX8ckdRCOHzTNJbFCWFFB2vVbHHImvsOH3KHELpjcWDlB5zr2bqhdJgX6Jyv5KzNjRdFZR6rjl4EDPNP3MMtxj0UpBtyGe01VtD/TGDEksDwd87SunnEIf5FPuGkP9Elaxo2hYGBRF3SvJfhfQc2+YFb3FuGuho1CH/UDYS4gCA63Eh8szfaKJl+8zpAohHZycBGifZI7XnU0OW76ibtJ4GdR9TCNJGSIzEetvvzn4yYTJz1oHc5r3PQPEubKaHJcXoymyu566lFRpXd9GhMkun6DQ1nf3aC0wnS+P1fe8JQY7l/TecQ6FjLnpIZftC9BQpHqlIJsipGp2bNN0Ah+aTFIvwteU4RkeTvN8bNIbRgbTbwW1Woo0kk6GORBhwi6YNsSuHNPzUBJNhkJo/J0jh+mxp6mkgp/ZKNABanfydbq1/cm6UnmS8RFwKi27X72VK15W/obR4GKwufE1H/oqq9ZTyMb4Kw6rQhoGgvsNoASDJFourb2BpAYjTNL40Ms5Lv59eJg3BN98ZzDQ4SeewliP+k6jh2n8WAxOm1In5gWRM6AjZoPG8cjhAEvDhQ3mjn8LaUPSGVTnv/InNicav6I3E1O6MCIAHKHdnJ41zFOV6zDPdFkiVtwXDoDf1cTMae2fn4OTH9TbdfU5ZSWcxDnAjJ4jNxvdzyMcBmob1xj/KTHeM9YMEz3n+AWLWcvJlG6dGQh5fvniJaWcGs9duuFyXdEB6YH5Iaii7CgwU67eAFY3z/G6sgYFXrEitSFP+6gCskcVFRHHadX7WRXRcE130rV5I533d7tlCgqidq51eAackYfhXwGO6lps3GCumBzlf6pUfJz89F6DKCIPdj6pTOgHz0M4ncCJPDV5geSM2PaKtUWdAOAAaTgPu3OdZlSPsDCdcpg+WPV3Wsnnusv0U15KO5L0Jo7BDaNixvU75T89ij73eXihYcJM3Jr4pAbyw8nTrvj0PQrq3wqCQ4YUVLCCiP3N0i+K+ut6q7rUGq9yLU23CoJ5Qj0+2h+NNCUNsfLl4vopAwzcBhdvxGX3KlU40sWJa0+MS/RW6sL3rLGPka7aVSDzHl21ZZANUb2Y2BSW1tDjQGFS+y/mg/LkhnEN5tp4P9uIS5zH9vpPMX0qnKHpSpxX0gSylFLks//HbmlOEf4gnNIKVzhMf4ki/WtLadszBQQgz+cyu9zphrukK/j4CcZNycWfgB+l2AdCUcRpdbZM0Ph3uGfStSrNijEBRTZ2Zuugs1Vk6NGofN6/6jAGs3QMeEhru0Smjat6Av+K20/nl530TNfAgbH2HK8W2Bm6f5gpE/QA9l8S+IRlCGyxP/uIroUwszv79/ivQsjGagH/6olZr4Jj5vPaFBfsi1Cc4oKqw/v1unMKV+KW350OI48onDdBIMJBwLBhiYYs2wWQcmFw3VogKc3zsuDjOONm1qoaayzvbkQNN94oeMrDUyurIgu4kp+Q1GWbXhjDhKzOT5Rcz+jBI26qXgutqePvxjnCsvoFcNMNqEcCqshbWXCW1dY/hRbCVTowweL+NgfwZrVmtlvjlwOrcWxlfjOkKVqLJu4Cl7VgTc/9XuzBO9z64LALbv1f9lUnwrK7xlqrFehcyLFuRZaJgAMmeyfjMB9QiUbGZ+XalAifRztIqAvkZ0ZMr4+HZMrAJeCgs6T2gSmoWZfSYSuWihXe33Db2ksNw1d8ui0N0HaEeR0MMZQv7jD2pq9MIyaD8TOA1cqkJE0P8QRiwMGRcxQgvQ9bnkHRohw5JaKDuZcj0HSfTvigNSrlN/uGAEOsZzvmuDJSE9UcE7sSjBGtJKYpYruclQ1PUgnVvramhq8SfEfZ/SfqkYKyiHWIF2B9X+MmVe60UeB9DHRJE1CN7Rg2UGXrFtIvs9fTb3uEJ/WMhbSBbQJhG/5JoATt7r8Ps4DUx+Ka5G0ckoC+qkq2yLwTSj7eFe9cSyr6oPEAmyTM8On8TvRiZK8gvh1KEGZYPeUR0rHWkUXUMMM3WzNsncXNCTSDuVVJIG/Gl2LCsOiWbJn/MIl2gnadL85l9/dZF7voeicxRPWk4fxPtWfGi/Qo2VOargE7ddnRPf2vVc+AI2b7n1B2sJViJkh4/6G7b7Kurocnj6VSE8dq79wh31BkBv/Nn1B+Fd67pbAS8OoQQPFz+8aIfXrYagLMqtSBGxjQ2i/izdoBgZ4Yf3tsDN2iCAVP+Ll95SG9BQQ1KVJEbpPMb9OFHyHcNJSFq+mTlMh4SNHbCTfWIZg06y+b4VWjIukiMmm2bwf9YWGSkZoatZ3bRUzPrpOn9PwyFnloTlMwi+fUY8ZWnIEsjIUgEqpa8gfdw8yaCZ7Tisl3N5JtSCol2lRGqcA8dRmZa7A1Kw9FPR4tPRzu5HfO9CDXIPt0wtiJ+2hv1z8S/qsk9FkQHucNeCuCL6wt9GMwjrnBvM2c/SgLa6rXmmsdlQ4N8gJ/htsK2rUeU7nq4oIfnrpzITbLo0/5zcoe9Kr/FCvarbpPXB2Bid2vzMzUqz38jg3g3TF14ezxRxz4XZc2rC5ger+tksaUhNmR9gKcqAQ14h+PA7evpCQSuBwO3Z1c/ATjJne7xQRg0aEwUHNwEUHqZ4Wl/eZJuGIQ1xwxSvtpcY70AQKc17OYVT05ZmYSFw11ZKAzAITCjnT7CXQ7YQIcmQvPP7MIdO/r859DnDgIn/zu9ILefx3I4Uo3dvMc7ztlOkuKQi3Rl+DWilNntDmlDi5VZDD1n2T78di++825rzv+xkCO1BV9XVb7VJBe6TWTDvSErzj9Wv7C7L6h51XFmhohNnSntOgx8jn0W3++iljvJR7TudGaNFjNWRBel1DBRa4V8sHwCasJg2mAWltuigZSiVxqKMqtZOUzlZsDJBv07dJ/sNaf98u1Wl4E/lme7aFNyNSkvFQ7B7Zxbj3m+31eSgjbaFbRy8Pr2KSJgK/3Sv4U82+2xTeesAcNW6FOl4aJHp5qwOEs1+xfiaLNL3/qIfk62rvIJUGIV3X7lyV2U1UbIC2O2ZpYTlkPfb/VX/tV6lTt2XuUo0CFUGaW3p99s5pN2/EXK+VuiyvWTkUnUaXFWa7yQ+ZajyBDhfWbkwESWGMhrufugg+THTyzzuPggmlqRgrOgI+8a17MI41LsgDD6OvY39bH3+lLPwK3Vgnqbf32F+o5vz+vv1F9nOX+B8SrcWm1OzoQzjPCwVQ7cyfDL4GBPpM2ofjRr549W/TOxiwBpspNBTb8EZ8zxcj0efrHc9zy5hGBCWe1Nr3HM/9VvTyJAbpHe3w2gN5h/paOpvndKszJJCyQCoPJQEaFaRdDNd6xBjiRur+MYrXmgrelsa4UZ9u/KilDfU9sYYb91xL0iCrPDuvdR2JyYyy+AJC+mRGFvIkx3osPyHv/fcu+pFI5Py7wm3DItlEvXuK0UIFlwex/LYfm83lOsU/0cz2GasLHocSvTMhngOHmG+c4x1IN3VI0sUh0qp2GXaPBkUmqj8nl6iMTVklS7tUgB3eyes4g4dungqn1N/frEF7hSqpUIoJhPLf7gBmGsluTd+P2KchiJqJs3N1QQkOPeBHkuCbvrN8NmsmIjaYF9XUOxF0QxsBioC7r7G6dsqr/UDVgSpF0ezorps+T1E9xwj8mOId5vOWj91ptST33ceZQanx600P9f2btRW9T8lWxzWs7bNQTTGRdpF4jJg+nnV44KkPJBD2YzvJ34mhTJwSDUdL1idBWJMiJe0+j6mO7ehqb0QnFDvUbDLfdmN5OAGx9rF1p9w3C6T9lHPJcIXNYY4QX3JTLL51Q+01550MH5F6QzfkrLOcA9OLZOpJCgUHyD6rAJcldA7H6IpO6+F3gkHObpQjx4k/XxfGcEAHf2kUn3FxFyFzZmNEq2O2DJJ7Gc2QMo+67QiqXTPFVnMzCHslum0p3+bMkawKTvf3vjgjKSAK9aGuvVu+2CkOI6SgS4oE1Yp9hvQw4BUvxgjBY6ZLTFJKe/NA5NeHA6Kszp47uRbSOr7p7UcbWnhKezu2p1anh29Bw3EjrhqW5i1HLyOPF+RJ7Q/6ehjumPmE+ceIg2Pwq9hbnoUMS+2qiWEjyK7zNYxl13a5DGEOKwzJWsZpvJRERZNx9j+xSQYdHYrYq+CbdMcW33KI8n7vaxEbpdt0xvFabcSZuPfbRNM7YRg6EbWGCglNwUlH1Su/IHssIKa/E909mld0LL4Q57wYS+qVXx5cPDtYhnQDCkMS2dtrB+tKyppC2mu+4S7PjeBD5vAgQ4Bns+b/d3hVqM6wUciFxbNfKJDhqO3mFtg67r1198IbPp9c1CJVhiHoaT9uRLzb1VmuAEqC11Dbp80c6jxyXLKAqh2sehT2Gz5mVDNNMZxOdKbbubLI4CmvTfI55/yhCoxtDlAkm5icL91i/8itdpHByX7X3HbutXNX1pt87lvLICInuyEzg9kUEFcY3Sdc3pJ0B/JLBD7lR35oV577axoAIRFIc+9qELj4/8kh1NV0r6Mx/wnUaN4OX7ev8oJ8YNPWTj7/gnmYU/7N1ggw9ezyjPMu5VZUH7djI8vMnziu1iK8HsxiVuRUIXuU/vgshvx2RWEdBwMdT16led78vM2SBCr/VQ+Yw9IA/huqBhOPGKh4ZgrB0pX55VTL6wtQrsmKLciWUOrPuciTbuxUG6uWElldDkAdiDPJP0NlyP7hT3p2yJwC+3ztefm4ChnJIbR/UEPLUx3V7A0CfMjuke/8v43XeLPNUXz7v991EunI7SVSXffeJE5m2qjmc+DLNvlLJh3ud6ADM5+L+uEX/m075Ke2Atpl7fYDYENOReyp6VY4Goe5F/5rjPAs9mm2rNejcS0BfLY1fbKcd3HXwn+MvCDQ5XBSF81ibz2xm4qC9KDwuLArhuhbCtQaX3Z0P8+sS+lB068PE6x/cbmgQyAokY6gsq7gAVhXroiyKzQ9TO4Xqo7xMjjGuBch3zutmEABKN5ScWIlU3D2ouRik+0MRYrgeFIfy+A3ZgGMNPIIC40q1G4bng38uGEm72XnNGjchcvK9WG5JfK+Nvw3fq/g+l8WxTtMgbPnZm05YJIia7UiQA6HKciYvMpNXtW7j9AiPTbrclVtqGEdyKnPBvud4ecXb1B2F1MdbD/AqWQrs9l/+LkG3krOa/5baY4tWWu5Iiw4Nb8XRDqaFtA9bTInzGtK463cLe+wvVbKIFILWq6lFz9gCmAvqAW9TIvidLSeU4dAWKN4NzEysaORY121UW2twfDSE3iYu0GqMAVZ3ihYZCgBgWbZuRd0U8KFhHygrwDZIAUSDGb72uCsBkTFzBmcu3UzpuHNCER8Yk9VQ+imjdwC0oJQHQLQ0Mk3/ziCEkD646RBPzx2hYdITRsTbPq6MuYso6aXH2eG20ou1K1a2BNy0YYqul7vBwYaabkRlgzzjNcyvuGwIDFo80w0pt/THW7V7P247ythDHKJ7dfS+j2BzjVwkhxavHtT1K7xnk0EFd9tkLcin8PzrEweqbypdlDvntx2DVBSBwyBQIMvdlZlaxiRZlq/KWWfTil3I8+ql9R3Y6WaFzPp/Krtq2rV16Otep3vS4asi4gwxhq9sERo3DCIwOQdfIb8xqh7h4XtBmYXv9NuLY3v8IbhaIW8yxi0CMDvIqqnP8F1fc0MmgAP1l1IG3Ee+hmEhvGBxyLQtGdbFI1Zq8mWi4fn0BzfET4ganLY6ex41rGx6n9j0IJ6iI4Tk0ZuULEpE3eJQLJgXtt0/5OFAgR7Oxy+jEPTvLEABAABsmyYCEt80Vv9k69fyn9/423WzED5KMtz1GXgR1ezVSF17olcdQPO+V6WbIdzv0AEVrJibHd/Zy+BuoM9wtU6vt56Iqqy2kx6FVs2hVqqlfervExFwoQ0toLW7yy+RcgB4whuxQGSl8oYxtr4MLvzYBM75UdMCe2OcGaX7p8tysV59F2/u1WGFm1I68q7pQT5ck3fbAVcKk9+w1pTpA9V87mNjxYYjTeoF9HB0MCammZVlGKlB9/YFBATiqF3CrvX4Z/miEOELWTq+YgazTlFBhVxu8UmdIo3hSBwloRFXwVauRr3FOtdi4D+tPK1Soso2/oZA4wqs+Vay11XTx5ZXzRPEkQDkjn0rb9bYdxtRVHjz1wbplB9v494ur6V7NnRpqmS42jAW9M+VCka0GWtiLU3qM+MKWhUbOsfe6ZdVd7gQpMwxsfWrvO7VnSJc1KVXWHlH0NhKwnAaPALVniyxnpC0/3IHte6mB6wcrSFAN9ByFw+cXTMYN6ZCKGhADXeqGq/71Qq6JJDp+WkaQpvGidsAUtZzEn/ribueWrGYVTAIRb7VJgni41kPHzsRvE5CoEkkLCqMkSYzZ404HoKqqw/PuaIdZwASY97NxLd7OSvqdRXCKPTFkrOyiCQjE5j5czMA5F/iRNDEvjpZQW5cswRq+5L3QLXCuRyK+S9l4t7t0akQ7OQuDTchcs73AktNHLQurgB6kOFkWolHJ/wbU5ZeHvz/9Gzmo9QpjTooFEKFny6SV/L61lsye6w96Ilb0UOxvgs16RaOhLWDDCXIaNnScAObfGhQpLCrliRJpZtc/4OPiqU2R9ybVAC+xKBe41Lx51uavMhF64zhnHCT9gH1pYnqld/DUAMfHZTolR6lG5oons0+gz12h/iLAkB1yuK/9rrWOV9o7haUPyi7bO/tRO3CmtDkM9Jn2jSafcgNBA/9tLbB91EA3ovwHIpVj7yt53OGOLhsnvKjKWFjp3zQ1jMmC5GVpE7lEVBB51VKdrSqfsoqRZBMTou6dcy8POiOl913yyI1PcpSrpJiEOXQ2XSPH3nPDTcZ5ebaRRh3GyMoE5KWkNJK3qL9dTnMc1BFaaPY/DCHKdUuxGwna2ijXkUkidgcoA5UkdrMsKZGAbbdYDpWjQZMu+3MyONr8Q+ZxaYw/fGQuJIRQ4297nUxxb1fTObCkL7+/TAwevGt6ccf2TgnZ4cf2NkPZkOFlqPfJRwoFiuQdjmZjYAdluT4BnUAW1O/T4FqZ1BBG6nZ1UndPEaJH9Ye9kfQCasKLIQZkXGnlc6y78YIVRPmsYe9Hw3C29CnKDeM0+/g+pZTAuSC7dChuaL0AbT4mwCXByFK8X2q5ZHHn3ayrBqxNmZ0EBRiKpqZ5kwU67NmwcYCU7hwmjMPsnOq1jHRj63xlWu8Yz2ohqiSccjTbOixbATUhQAdRdaPMNgWKQlDEN5mCNQ8H1M/52JFCgrxzm73B3lp3RQ5AgeDF0J4v95f7Dla1DZ0xpRc4TCrvljbLTcusJql3OdYxTU+6Ku3jtTxJ5NHy/++GKjN0OyEhu5swNrtk/CntfHsuf4w6zGNbcA+XMu94XNLoBQxV9fTFoCEvUp/xH12CLLHb1J9e5cmrIb3DgV/qyC/+CeFFvaIHPepfvTdJnVBUE2SZTymto6gdQupAax+g8WfQnmsIZVSOasw6PPY6m9zkG85nDPPcLWTDm9Jt3QQfTDpmtJh6bFhE58eFo01JCHPEotmlEDFXafT5JXKWgZJa09B3wtK81MYtHId2U0dvFKseyTEmWXHn0ZsMthbnpu8dchsdvpNR2qz5i55LL4WtaQ/fc0c4GDZzl3D5hJiDh47yONguFC9ekBiaMh7hYTX5PZAyDoPcankNBDHVVK9hmokLn8RdGeVi66X3lkptAliC8rYSaDb3V7jLZUAZ6IlhnYb7CiUdkkqc3xmJUo5c2rSmcgSz+PVQc+qHmpDRHSCAICC5J37mfRvYducK34x0243ZsbzozbztbAkxSq+eUbAnJpncbXmvLNVcvd6zDykx00ZjL/fYCmNKU332Lb+w460/effEDYJfqWkEPgjhSWcy0lVWp9GDesJvTsp3a1Utlq4ntuwky2BydZqF5LO9cE++zFVtzY5MpeQ55/6mGFAQRjr55Mp8JMrnKTv+ElpujRormx7NyNV7fjegrQX0lVW7EkAgzBHAaen9VC+4lRZZG2srdc8Hys2I0GprZmPdDtMcO7duWfAc697lCMzwtMGx2MCcmPFRs5edwgf0Gl5mCWCdU2rBKd4d4hopQ2tq79GrGetwHBC7hYw80KVKRcmTmqSZBhq3LKUULuM8a/+/pNUTuOLA1aY50ib4CtCYCcaUIHyG1puoXfyqtP8XLu2F0wRMDr+yfC/YBJ3sulAgM4BiIiy+/rC6DYEH7YiZRLiJu53kkLWC+K1L3NLTxahSwwXR3GSOLns1rKk70eVVZXdb3KJpGUeOo0VzzIFGNSNsAdj5BzSU94Gk2N1ea/VfAXpTPcQqIQY9W9JzuVMu2d+zCaZonLCukq87REz0yqn1iqYM3OTqqzp87GkMC7f7MjrlJkAHE5BgFadBtnoeqdKVyKS81jhw9EmeGk0qImt4BAbNi0O/TKfxEHkQUA8wCH98IswCCWJJCUrueiQ2AM3TPJVWoPx1ioc64Td0onjoeH1iGthfziwPJue9JKlyAHPBFCmsR0BWLJWscA53n7r7PZdbrjIfCiyRHxyIIOA8BJMlawSVaa4dJ2xl/L8Ac1qxxlVsFOaqlYPtNL0H+k=
Variant 0
DifficultyLevel
586
Question
162 × 205 = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
162 → 160
205 → 210
Using long multiplication:
160× ————210 1600————–3200033600
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
3 | |
4 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \ \ \ {160} \times \\
\ \ \ \ \underset{\text{------------}}{210} \\
\ \ {1600} \\
\underset{\text{--------------}}{32000} \\
{33600} \\
\end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX18qUsovxrO5XdIb6/ErYl/HkqYbyz9MU8x8LMuP6HwE9vKjdUBAFV+M6jAULeR/uDMbTTFSw1FG44xmi7tdkBxIj956aNGHsWoLx4v2eynWkWcEoQmqaOeth3GPkW/MVTkJPIOLX73DkR5K/ayf0RnwrBRfn9UVgA0fg0sW6e2vfhVqNgMRtDfIAxC3V++dnHbi2t9N92ouNyCLtxT0fbKUvjvHhSPOQO308Vnz+1Zub8shOSDgm7lfcNiQPvIrLYXLb0rwEBN8To1alr/oDR0X7kqzXIpNOGaLX7abxyPfJZufeoE7Dpe7+FSWzzsfX5awXuRzOM4NwfNqFWdgVRYESwkpSAqXa2wm5J5rAFF+f2UuSF67/Ce1RmNmajBKkY+hDORUAd8SHr+eb0Jz45zbTf7kY0jtFZSsQWOvZUTqD0oAfn/0evJxK6nOknngV7/WkUI2pGnsRXe1hjV4X6lDJJ9HG2PUR0ToCFrRHs70vPeIa7U9tWZlwmCb5sW9ibrQ4UhOWgS4b9EQ8eGL8OcHDzc3RQI30eKQZ+GRjuFZKdZGfE7YrgtcS7gu7J8qAfg9WXKG/0jtAlF7g93Zxe0viuFZt/BCm9b5gU/OdGyh9xEjaQLjVylGfFwA/OAfG4edXytVuNxsqVJNyyJTT/7i6RlpOlLbPvFgTKNej3sWRZD8xwcEbT0cDUJm6g0aNYeJ115J0UNAn+N2X1SzPOe1brYvjTO6j/T7LN40GWdVhDeq0X3Cbe5eNUXyD4i/eHhaBIBEZst1jyegIcvkNedlpwOj7U0uj1srZ+yGrmov+ceaCntFdguicsQrUgyq3xKo4RtoPOBbLyGrycwka7dOAdZJ4K0o7o7t0JheILYrm7Jhxai1GOEX5dchQp/sL4+h56jDpdr9YrZVLRjyA6uXAPjDi3wsxuCi39TygYPPgRoBxfPtku8HbDiN39BujckcfHct7BTWF+oyH8kLZkI3tbfiLRHKJufMU3k4JRxsejXIa39GezR6R//EdTc+zBC5FfU5UOYPzu5iEfpwV3FT4VoqIDpVkCCth5Qndptn3ZyEbbUPcQtWW/IKLyuznWBnXCYB5JQsE1xgFHW9YhdagTvhj8LNuDTYmm1xTtdf7zIswQSy/suQiaqZH0XaDjVEYfH5ll7hHgQ8zpP6GSfsGmQwMjkjffnj4ZUbLX7tJcnaertT2xpuWneU5JKb8jdiVi/+crCkic5BGmpiBQeaV2iVqIpyRh2a55OPGCVtawxeIES5UUrCVSAVtYCHa7sIgh3ryjz7dZ5laqhqnJ/YIQfmQcc/XzCgpKcQaKLA3XCCqiR3lCVCIFZG0tUDSKS/oP07RaLVO9XNNajkis6JCx53VLnzJyR353s7c6Kk5ePUv/Ql3KY1p6CUAZWDn05hrWHA8N8zX/K17EIHhhXGhY07CIiQswTOlzXUjUutxXAoAJaAj7WU4Kdymr22ypdkkPYM7VgABWaSomYxm2uC8Tu+Hiy3bdDqFFZJUH6YdjAnV39fF8m5vWEC7X6GzBedyeMXkrWYFJyuad8iMG9lB7UrEfzZJO0ThX19YXMIb0GWKA9zaNnkonluihKuTk3Lcse2VcAIspQgWHwN97ktWs7q8AQ9GnYjP6CQtnZ0Uj2EQXf69EBNu1DNThXHI19W3+SXrhReS4lprBzjTh0gw+/M7jAVzbn5iZXTWL0o8AN43DV/r6Xk9PLtM1NVY5pplv3PazwkLq2oglpLpZtSHCIdfbm++u7lRKzTD6GJMRSM/1gyfne9jaZFR3rQSEAy8tYuVwB0D3OmgbkgC52bm6xiCXQvzL9/V+ahQPHA9tQLxXjiea11Klm8lWaURHIf6Q+960/zrvGWfc/39g85UuUaEPgDHhE6iWMkuF4Dq8lgUn+yM5x5u91Baip7wqITI0DYCGvTSGZfLdhgZKQPV6M7YoTRV7cWqwKy69OsqvraQDzIyWhDnlgfmsw0wVx9nHKmzmYb/UVqXC69upTKht5i7UGT//pYKN3TOBBvaruKGYOe4mIUSiY7S1gPl+9xV6MnovsBHevjwpeXa3zPDzEwuzxGOfcnuOE1PpQumbKRIE9dsjAoffnaFAmCVmmYxjid+uXhMBNL1h9cIkIgTBXJ1YKBWbcQPgeA5FP/JUDfYJLGs89FRR71jaYfb04X/14eNQtrb9dJq59fIMv8riR54UggKNmWOwo2qTOngdN1zjs8o6mlvBNeLhb3fiz52fG0kpnT/wiKMiX1DiHPFpCRNRvB5ROolyVifJB96aoNq0evYGkHj07A6V/9x1EQhseUJ8PghiY60OJE6jgyhF6f8eoCP4j6/gypDN9Bc3vLOBXX7UvXSwy15y9BLxcdep2cw+twnhbdvXDJ6eEPAoY9UWW40uGLzjoMbCbiRxoGAmoUhswbQ7WMZRLsVleOrjD0WvVP43Jqf7m3jOWIGRjrgfr0AAoi5LuW3MmpVR0T0kq6cMPQRJzNqYPc186iEr09zpgPMmVQGFb2Gx2yH63zedZHfOudIayo7U7rMg8GZ6ygCphJj0lwA9utYec6HXL1EmWByXBzQcUM1xTXDmQ0KG0tW7czJgqqYmLzwGKV7NzftZHJyyxZ8HQOIJ328CQGf4/IPjriUlL/C+Eu+HrHGjdzQeoGde5BLlKx1XuMy4w0d2awlrvIKNKNIBkMHgZcxVQ6dmkoBvYX/0pd1n615EeTOFUjdCdVD65PufkTcl63AwnIxgoUfNOodIMnX1CpCTGMWCc/3dQgIfX4/1ql/ECgYIV3um8E8I3KQsw6M2QL++uqS4hfLXS0SNw62K/2P5C2SlaKw61+LfwR98fzTls2qo147r2IohG4LQ8KEAQybF3G9K7IYt7UsV6mLYIK3DzYvis1+Mr+ZBkWn2MKwe9YZkf+CxWp1GQRkX8UAh5hKYs8V6N6ZJeJcDnI43otXWjpI4TjRt/SqPEm4fOjVStAcOw1YCHStnzy5JV5hKkWPHeQRI5v3qKPypNfm82hQn+BM1/wzvqrCs0E9t1LRaJ1prN7gBRe0Ow/kaHno4qGZqZKAR27cJ2Vd3af72cQGZPtbWExC3VEkiN3QG9Rb9ygqrN0xmMyQS0NHm3xQFBpTVR80BTsT9LkqDioCqZH+zAEXNVur5N8H/ReUsU6pYUXL2i4D/ulBp/6PUxv2ZEmW+xj21sUwj3YsdnVZ/havazbSj2IGNOjTU0dtvf0zIVNMLS4N1S14k5JkZ4ZX2tgb55pKOFLCyJHSW2IjfH1JFXgyJDfxjQfhpUhGqp9Rdsj5aYYe2kZuV7PhQ9S5kmc7sZunm8pM2Xi3dtOSRX4kz49lWPecZmjPhUUo6ZRG4RfY9K8xJIDIpNFUU+TZqtx+aNIlyWjmWmd4tDiQmKlPQWrLv13nhjr7BK6BCb67fnGAuz4+8vRF2EzmYSNfrO+pVc169vF7C0EtYiCHmwK0O/pYEVhrZAuodgjRivfm4mPOg5TxHyE+D2bMU7zkSE/OyocwIP+lw4en5AchTd/GBhVibtf6cxZIfTzfLb8PByBo+WKiIHWjZsQrZZK0Uz6ksc08D5at7yXdtnwaJ5DBLMAD5wnFz5rh93+ri6Pp5hLLkhW4L5sYy4xuiRFl2aN5TYSVFTS6zleMO2UqLpnyGqa3YUYhJzCZV58KBsBdnKU0o0uBwZp3ysbeouSauZvUdjzeMbKAmGnRAgJnIKyZN7+zdLDwakZoBU+F3v64PZJ+hLaBWAFkxwJvrlnnxaMt8/3V79PpaFIO41IjomA9unT/VHuS/HHGfp2IRtdZJ5MAh3JQiBf88L3A//HWe7dO8yorsG77Zkh0XMC36BLdiCzRimt1Wqzqnvcs6mRQo2dNp76SAGohldhKICNp6K0rSiMPzHHVmbQfgKCl/Qd1sBPJzP00otHFUd3zjS6qSQpKYwePN4qRYZVrTUv5okpDW1NOfYyxeGM+cyEr6duvBXu5tsKKxrixyINcecXyS3/TOEfLpjoKPT6LLKEXYGuIqwQN1MNWc1ypU04/fvgcWrROnluw1nF03TPIbYP0C8wNHfcn9yzGYaGs7OBfsweMqGonrFJsVRY5YPOg+nAl1xpkZ8WGEwsgsKwjwiDCdTnN+CMuLmOSFBBT75/L4oRdojsNz/ha/cn3XzsqBe8aK/7NO6VVqSAh/lN8p+mxpiMzfMdFZxWM9g22hIIOXD888veZajbTDlkOadHgkNDY/bDs0V1T2Cz84ZuWisGNHC+8GJJmKSTNjsRPgFzkqi+EXZGBaLjal3DoVYzd+BXlHVDpHJlOBUBBH3o8nsJRjMaLMEzU8h2LnM/bdDrI+Ddk1SBnyA0Iy+wk6ER70IVP/zw4JpbxOnYOxBx7e1eefQ8XBcuMz9PybLX6R1cVnDmcCUT2ITmC9Exhpzv2bchja3U2MbqLJHP6g5n4ogBGJ2o6jdekkryzEMWZyxAATJF/cbAEnUEuAEib81PIBzFl1C39JU7U1oouLNnO9xggK7By21kBcg67+9BNbZiedp4/Im4FG7EBx0Inx3IHlLFJXGJuVIODng0GYRZrK0wcz+Qf5wA5RA9xdINGqyjN+rGy8VzPZmjtPpCUg4AJuyZUWLNmH1BqXVH0uIeM1bWENscqiDc1bk6xK+V51Hu/BPNtg2Gs02QPBQ2c8+OVJ2TfUL15qCh7Iipbr0MOeuzir1ytbeWSWJzcpYZkaTACU7GTtTrEl8F7IKhlkfBUd46bGv+J4EjME7WNYQQp6jM3wRMglaN4muRP5WODMnXOiu3Y776XpewtZtv7zZtKwn39dh5AT+EhoXjQoxY/IounHBL+9mLoq/tN9Gjl2PGhVWhvNlT3JkBLQsHgZXKaIMkwMrxTH7rK8ytVPPGRjHQXUYuiCRRUA1M8pRXND21L38vo7ubYVVDSUEtepCXjmt/dvst982Kd+SLTgRLdz6fgjObmYcA5sZ4rUiA8QhivSLgArZkBHsdMtAB5HSV6MoV4mVvsBbnVV8TE7QunY6BxhVqyRRTy6ckIAg/FWJI7KIaFLl59J3EIt896zz7V5U/RB8rzqD4/HjCrPyRnUD2MLcKjGYqHVHrVHtjUAqF93BMvbO+HBWvh0RJR/DlFSzpAzX6JVv8yr1HT5PMdmn3hbCI82MZForsGvsuAevWoBmpjFYWFwYElQz064PfdFDD+P1glAtGOabax/AOihB9jsGWF620eWXpCamjevG7rV6HEjEncnafDJ4mCsLKD5gFQt6qBYocATHAbOdCf2zdm9pRezsJ59JmjNSt7ugjB86MyOMhWUQCEU2jno1wRKOmPqLalerKz38X8G7NbjEqnat9GqHCeMwGnDjEvMIpzuUiiHt9yeoycYBgoSXEfcG/cbZa2NyMwgppCapxFPR6fSz4wlMQgWtGQ0YOAfhi8BsAPvYXLVIBwYtiAsppDcS8UEZOzIW9WfJpOPmEJnhftr8rNf+T8dFFGUeHfe9kKXh1l6IW1xgbu2+dFQFMCy13yld+fCIsfRKwZ9z9zBwxIGMBLTcCd9QQDj56hNfY/c1ShCIpG9XiKLipC0bnAAm4skigNmU3HxZ5Drp8Jv5/32c2ygL/Recy1yF9V5v0mYST0nfyDCIZyFKArzEpAZDUHyIk2tTZRy4ieEfgJOAJ1mmi3uVHWx8E2kQIhoH2+WAr+KXVrzZrOpVVWPDOrRx1cySYNoV3ahfbe+ZcdDkUQL0C5Tb7zpCcxD3xtff4KofLDAU++rzJL+599G0Vs70KNkR0JKK2Qa4jgnYTFsAt7tOlsdKRiAMB3ipSV+PkSM7ZCia2GcLa2OUtdkooCalSQHyjGavhqsIZyTO9YBzEEXquqUkZ/N4vf82dFh9CUvVuufkInQd2vNYVHaiOViW50MGmVTDweE45g0FY+ffCzyopqhyqeX4AtCr6QRR76bm6pibNj8MbtV+eVDJZeEpKfkpfPclaFEHm6xQEpNVLE9DpNb9+6CTH+sZrPvFVUK9fRVtWck7YVKAohlAzoEB+nRqYvfRMjVYQPvuwfTs1+haq82RcmkhDIIx9WAEm0sgBy67MI0OYA7QIO68tGXh7DdNQE0DmtN+v5bhFfpmf3+9LCsk6X+oaYbhYWvhQQ0Ib2u58kiI8XWuKQsa+mbWFA7AQjI+mArmyUONR7aYAldMG0CoNrbnnih2/gS4VoCn6CEmKi6PlopwGusWfNse2qlT+LKqxRYxBy+hRyTndSGyNTKLrxs5k2FA1sTcD23L+MhCELgZ03L8Qv6NxL0mguVpC3si1XJKpeMLAkn7DoS4XspDFWHoe9Jle6bIkO9gcD6Fp3meqtg3724hi6Hp7CyD9qz171IFmA62eHCm2WOMP1ufKzEz0aN5Xw5nryTGFqR0zVWAOAUTej1AE0TdLLlZRbGwEhq0r9MCTLoaSchcfDmNkwfauoLRHI9oldH3CdvlnZAwRDm6tx5RQz5EoGVFZTx3g6h2sn2WWnlM433ha6rcJqspPVmCx3NhULbbdWxJcWnF2XFpyFnm3ODDe2f7AE9ZI2+mhUYvyZSIrjyMFj41nmi42RSgT3bVx0Q6X7oRPlKH0L3Wbvj5WFki/qkLVRktF+8PLgfV1OCKZE9+8qXPrSZVQL0aetQ7qn2/BcdFM78BK/U9q+WDLFv8VOYs9U3NLn2CKFQsFLHdb4FQ2BL+a8ixS4StqplNNeFb5b+2aavsUvzP4t6uBdCINkjOIqtWFgmIIzpI2Usc7QPXwloqNki6qC07/ONg8m5l7wsT9oV7Y8fIU25fZ6MIz7HVEPsCuPkFBz8v9dIl446USFb5NLnObPoSkukCR3/rws7YQtQOW0px6phzABGo5AnGl89pJN1h0pMVX7YPD2nQoI0oIqtyj6chBgDgjt73vPjpFMtfsNtSejov5WIOo3sGSRFhLKBoFJImo/AKxZ1qDCg8F8WeDPU52wNbwlu3iIrIwnftWt1FZAx/Ey3cuRBNjAa5x59icD6cEGNFRbAoQ/hJyBWLDR1kDY84h+USN2v8PUx5Z6Q9xc1x/NJqLBhF/u5Y4qO4iPE6Sut4rmnouYK5p5mZ3tW04xphCqf4dSKAPcDq9DzaQT0Rbgq19lpAXtRMUDr2+GxUkAgIURvJJvx3R1u+FRDUgK1lMAQOBtVHVpfFDqwRzQbK0653Re5EZbv9A1roKq5yE+keYTpYCZ/it4n/VG3TpSmdJN4DlARknS1y6ihN6sPCxW4tvurkDOJ0Zd2Q70Ocp7KkF0wWQcQ3zgj3oTepokZN4VeB62rVRb4jE7gI0mfgYbLXHKnO2mG5b+lS8+G6+SCHduozqgvkdK2TZZYMU/uBOwZMt/vH/eizjD23ix4P0z4cMxo75Mustt3X5PAuhytNvvewHfqh85pQK8uEGGcfLxLS1xSsk2iPjJNBSjeyTDf2oVCX4Suw91eiZIN5N4hUJ27abCTXv8I+1GDjU5AMjtqFulCwSfLgmFjmfklz9l8N2ZnGKCYa0fKdrukwofteHq1sI+0E8pNbAJekoiQt9mQhFVbIVAmzAO92NisxwxGMEeZktZSflVgvZjYM3uTH5pmjT+HrRMAPNiJ9EnUSuMNiMmUsR4r1pUP55XCaB0VCgTnEJ11VVfOTP/OCVTB44jQ1g6yT/yE+thTMY+5FlQxnZOvAeEd3jZ3rAsAvbT1rsOV3Wg7+k/FBfIq4TLc3i11D05u7uMj9n0TE4ZcvCnHeUl8TjR83x+7Qq8t9/eVyYZgvHmknCYizqT3dgHHdepKbhoMeBattbacdQOH4vm3ygUpTAl9y97XWXtbUFv3f1TDkoKuDcBYztbO1s5SyTI2pXtfvf7L8j1etANVLZ4hokZMd4S0xsdbUShyJL5BHlz51E1I/x7DQ8ifbL2+8I+RE3ZtqZLm4SRHVhRJuQrvTSPMN0EoDN/jcdcHyjmZspMqOcQofxVrxm3MvdLkRhm54dcEJjWobJoi89qDI2gJEJI78FNK1GGnX7svYQnM8Gtkbvh44gmldaUVr0SzmwTHZqXUt6dIhfV+VCCBrwP2aEKok4L0yrA4UqZ2xB11MGlaoxZ4FuZWbutPyTBOr+TyejfLQogDlPJg2QpxmtPc6pt1/IaaG/cnn6RblIQvVph2Os0ZsWn1JFFzu4SHTYjTnF04PKQIq7gmBEe2eYOcoTFrNa2bbc+gFB26A4RpKZ0IHE1l+XEegEhzWJxiytGtIRfotzgI/o4E5w/WMj+gO8XeeSJxF9tnnZnQ3FdmGVKgt9gVBYZUQgZZS1aVWC0vDPWen3NGDqzualq6T3MoREk2olSW+b+7sk5UZfdYOyLTzER9edBnBRqYyIOWtB1yXHeVohNfkQ3MTKguAFrazbxlaODNOe3SwmE1jo06GCQBB9XWAzqRQb75UNr1RFA8/LSpRz8PHwE/D6p5eYoyhIY8FiBjgZzJ2kXIP+pG3byIUJMd7yFuaQsijTdLUZgxEe5pN8S/8ladoQfzzOrZacNF2CVSrbYthU39ShW+5nHrXeuA47JWA/NYo6F0AhK6tuenYfaihc+y5jUkXFRreGI1E/Uq2O5e+/G3c4bjmCq9fGuiZdDxc+yn041Ey7pVBm9GtwkVbYHeef/uc6w16m83ddMes+Vu0PMOE7bifeTpMy5Wow0ozdAeJRTAx5bXLlNgZdhiFOZiXjsdILjV2AJ+XW4RWXx6ir3kDT9N9sP5VzJla0/r4u51eGIvc7btx/zzZ1dW+gp56fR7HH0h2KpDu3KYjOTAmSQAkZmMvLODTLk95C0qhLUzNWDPnM8/wIsoBwhtMPrR1tFfubuQ+hAmKThj1EzNVWRyWgW1yPSOtgiwrKqEtVJmBob/bXb+Z+mDbE9RbVaZZpsBKv187F0kg3bongmu2idZ3ZNleWHvv2GMOf/0URj1O8enmvlE1PS0KqhTPttv5R84Xq9I8D+mKmdLJUFZiYI0cp+DMT0uWl6/SxFkoGRdksxnBrTT1GKf9UgFgydCjluAFXSUEPE2yFBDReJL846pvMTLslB8OZvVYsPi8qaTwbhg60WFDNRbra12Ny2eQBd+7KkXMRP+g5HpSG3s000RERumnPAUNmcz/YyPfGYRct6HGakh8PP+AfcZghrnSJceLoUQisX059Gm9YDLUFQweqFIOB0rLRKy/Wy8if1rN2jX1AOcXs9ueNvzqYze/o32MQx2T6ibkGJ6rPoMulSc9lRN1ta+3nABDKoDcwGxk9qExsFtoDyKftvirj9sZJmzmUN9tsDOhwjg6qAnEQJTWD/j0z454erD1X+i28dyivfzZrp49bcpBz5dJoPBuRfwV9WYmM2SbB9IjNg+aTEKMCabRvx4JQj37REr+71J/NEvdN1cqZsmLuQaRKGuf26c7Lj9wV64I91higNwXWjzLTYqAbzvMCiNVR0OuEcUivCJ4DhwhmfDVNn9sWEjf+KLAuxPf27l0Gb0YBefm7FJwLCAYsCml7+/HFImjg0a3bsKH4r8iqYTHs+e8L8/YUaVfm0bBLxFjtDRVmpgQ2tufkVUybUXhVxoSxZIPvxWvKkWCXFlLOm0jE7mmo4BgC1S9bQXGPf2hPYiN9knDhV49yCeBdRkZs1Q09bqBN8nx7U7cf2+QO5GpNCkf1qiST90/S2ZJ42ktAAFA5glIyxrewemRxf3sSqfwjdN4VIUSsvhdGtB2k7Rcypo+8er4dghnBtLpn0UlxZcBDeHP2Mht00EkqEsZ68RTpr8gCagaa4M2JzKeVpDA0oe8PWBLSo1qVwoSV4QRPxzjd7bsvEThs5YAX3LlMOiSTMZ6DaJFgIUVQ8l5VEmh7icJHA4Bgdf0Z0nBhgCdthQOWW4GscdCo6TZNXerVqkcjmckaJUclg/3t6qYah+YeFHwGxcxipXMjsf1W9iG7OJtXgGjKTGLxEUcqNUCqtpL1OMwQZVL5eJfB/CiuvqXZRJgHTwmFn8SJtnS3D27p
Variant 1
DifficultyLevel
586
Question
195 × 144 = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
195 → 200
144 → 140
Using long multiplication:
200× ————140 8000————–20000 28000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
3 | |
4 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \ \ \ {200} \times \\
\ \ \ \ \underset{\text{------------}}{140} \\
\ \ {8000} \\
\underset{\text{--------------}}{20000} \\
\ {28000} \\
\end{array}$
|
correctAnswer | |
Answers
U2FsdGVkX1+mwLrvtz69VWqaBFnVZTGlpwIqlY6ah875TyIUMI6rduPb8mI8dIGQU9vDn1MiuZWCDfdjSxQgt2eJ/mUWEKORJFdocRHkMvLOYtPqV+0mSOcIhwWUj4gvneJKYP8A/DdcIfYS80ueYTt1+61outvn5ctBnahb0xxqX36Q+lruAjm+avHhmFuGnu+psO+e7pcQLqvMDJ4XkwrVBMRt4JnLOBgk3tY08T1GazX9gfOnp2A1ELIZyYxOfGMgR/5+i7mwMYDLH71DGA1PXacqh0Rfsr2pCrEnj/tRaLAbJarSwGQ2JxiVQsWkWqqYxoQCTEJ+IY4SolaL+98u081ypZAToUo/IY8LQ1vxSbHukp8K8H5gLF8If9bBmFPFsPlgJ1eapk6U9Je81wg5O1DARnnK47SxPm7Og6/vv7PrCQWn8TiqDoQN6F6a29jjFI9qDFOZ14c3CqA5k5MAnOm3LMyE40zBg6KMcWF21XquxVflCSglIpXG+Tun/1W61XDu+ZZv/t0YUmjV7PcgQ6KD37Udq8V9WNkU/c9TX2gus6sn34dGK45ZGJGHjhwiTAIG9uL1stZHX+6GvSGMrNn6CLXL4X5qlZW4M9bDizyxtq0czPVybT1Xt54E5vEaGCGbBcWibHvTEATTCKIhtesPFh01r5x0C6nq59kUrztEA1bnKLVEdXmjfrIXT0FdJRg3NC3HXRCIu4bjpjCLgBR0S10NrQWmxpA6201K49OiVA/LfIeZBrCGfxAwd3NI+NIQUxDB38XPZk8k+hBDE3SgLVnSua8lqPDnc8J+h+r86pIy09fWmT06KV3JerfbAvagdbWZbEvNO50aoAGfnuToGGdbj0XrmjRvEZis7dhT6Ica/IJzS+Ndto4Q/b+O1622uI3XzJCASDyvGZHJ2j8MEB8RO2mZShkYHrVuPrxAML/WbEDeb/fcQZPvhphfW7sQ+QoUCbTfaY/Loawk1JgDuRzFhjKyIxQDKHj5poLx2+U0WBf8n70ESsgBt+ULKmuH5/3CXeZudPeW3dkGvu89B8GyydQqmEA9cphI7oO7dlp/uT+2P3jXvBedCSi61y9VLkz0qbl3/IbJL2UFs5M/UxA+D/D84WlRJlmsol5jHafvQv0aU1MXIWBcZK91EO0lwJ7kzofQEwXqICUrsIp//Dd0r1ya3PdmeODC/cGITI2n4mDKoaqgPYyV61l67zZDak4eyO46cASUtPkyg5TXyCaYgbk1RsTQj3d3IvzDwGEi5+N4sqgo+kI/Xh/wJWtS7UwZAdox0E3lU/XkBgpVK6O+RMHN9b+DgVN9Aw99HxysIbc9LETkupdWgGKnpodro6RI1spOg+09eoZZYKhXjp1AtdOfwOwr7LRqjH1lmg0ayWMY32o8WUTtpI4072FnnIr7kbuLs5QVGIbx0+67Col6X3JveSgm+ahnFWBKKsrysRZS34oepJAAHjDWsLQLL8C2XvsFEFeLY4u4YuPc6qOVCEN4I6HhYmVa/M/ydWjV5AtkE8x/M6dYQcG2Qh34cpOy1YaMyX3vCgisWzfgMfsN7BnPmgea1lUAPQLxNj7YOey4++JbXuZLM4LaSXs+7tlPhAsVOCL/XTORpxGMi20bXecDLLM62/N1+YEpzjdIlWYygKSAGTw4FS3KZENXjXIfP/DFQf1W4tdJii543knjoEwxC7dL39ikGpwL/EcDFvjIWNySBFhtNlz63fQ8BjpCbGhlFV0Zlu2fqyFg6scxfTpsC6uRXzovJL4tEdm9xVxdtQkl5p1SkN64vB5jCN8750RrUi8S75h3rAhjcx/5GPeFss5zh7Dx/tX/Py9jsSMWmk+l/8zFriF42sphCX2O3NWyYFnjKVGVA9t2h4KJOXX7go66ATkT1VEP9W45dNiqKRK/qPT+9uA1yqpGGr0YDmAaBzPuoqTbFX/nR0Bkz2yunnUt9KLuINwSSbNKHPLjxLMUc3kQbTBb0ajZEjDZeu7Un0oC1ZDjF0/Pj+xR2jyTjVpJq4zf1r3E9KBOi+Jlf5fcT1v2cCjffLPzhr8iMC5zxqwmMiN5GCYallXgqZYFqnyQJEoUmQg/xI3NForKEs2U+B8VD8Hzgz9HBw7QFilyfavpVeU5+km+g5JYQL0hwI1lYxINTbwKJGhesgN5JbmpL9qkDNho2IffVP2RiegSOel36nLAP8PECdmQYR6iW89RvK6GX8b5xazUgUgi04s7oZvuwnqtnxr5cnHBvbkuPnugbHmbx11Own+Z8eRAO42vK9xClcUj50qjgPQNBT4V6M7Z85/73VR7W1Lj8HxGQXKtwh0X1/4QdQ/6w8yeiVPDo1hmlj6Wwo+Y6CiM2Am3nb7pHnnuxKQYuB5kkIIDzUPAXI7zAxpaU190gHtim4cMvJ3r51TAJUTltodnwJNlomFMgX0TT4nFvgsYWoBBWSsWkJ5p20G8y4mk/cpUCidyqNR8ATlbPgDH9Bsjo1w6/+JIUvLhKJR9b8z+YxlBgbwoxOSKNoRSgPatjP83PTStBE7bNclpqWib7UAkuzUfs7Z7ReEHJNptwkG9o4uodTq/i+Ho27W7J4XMgWHeK/K1fXCjV/HdTMpSIwWGcs0RvgBmmASpOL3G8FudyuWqV6XjUVQFj9kjcmtGg/cZWIsp3nEGYTBDliGq1JSzzrWJVOTVmrPAvq1ybFhROpKY8QGHCQZctVJpT2lvokAr5aEzX5edYOvXNwHUegrTKjl4oitJ8ob8mVKYhmCkVqsMFU0WTAlM7oWymhy2oYaxPAr+no3AM2uU2RU9IOF13tJnEC3JCbII1p0iU3jL+96pQRMU37SRu6w4y981uYoJsEdamqxKq9crvn66IMgWySK6U3HPwT9SuvJlwABuhN80QXoOqHMMx8cydf7JtqZYDjL1PD6jEhDrjdb8tMgvV687tfFDakdUNajOzjra3jUDD2COdmp1im/N03ez2U9YGsqbMFTEzRC16ZNw5SoBxOhDpxDc8CAjuz31HArdEgW1nSGCr3SZuCUL4qcUuSRoBREmPARdhuwln3j4/Ir2N77ifDkelph90BGMBk/4j+FeGVp+2S+1C+nf/2v+Y4Jsv5cf7GtHlQvEMoITm3YNHaj+dNX0LywlCtEp40hYvXmT37gwCq3fGWn17cnL7T9bl1SAky4GtciAEBTV76aOs5KRe10RBfZSbr1WXKnRrfyoQ456RpOZ989rnHXtUAnQzypSIV9LVLG99XxhQ3nzzM3dV6mxU6e+4m24SfgRN9DHVUgkx4rVr9wmvQ/kM76kxYW10VRWhWlBkQSiS/WxsZE3dB+eJ215tBt8zBk0KFAIyvSLBUrs3AZfy4lieKloguRVWmF54R5Ms1COXbcHOgHoWL/XBGdDq62e7/9uPVXWiyiOhbTcxFrxjYKQ5wrcZmVrJZdYO17JZCSzeOkZrApRp5FJ9KKZuuz9oPV13BwhQMv8IDEdxsU0n9eHVELHiOgjUd1203qEG14fjvY/ELr/qxvW8lttVxEvOBqjxUueBpNKOyZG6+CozqyTw+KU19CQWoOMBBjXEEw4oqLODx2qylFGeGkTnAQVkAw+kM7AJX/tlXSf1y+OMF8S4sQ/4AQft0DWVyxNrWX7O0ZvHRD/Xwg+tTXC5sVLbYCuWv3d9VzYYgibc6EM4pwxFhEQwYYkli645nHrzsk68vdaPd2R+0ckDxM25HiDCXsOe2fMTThOs/s8IKn2cqkYQZ+uGKB8hBRHlgVXGdoZizw/8lbwdAjdpNryJxpqZS7thEYt4Zetb4UtoCqEih6cCYmsH0FW6UELskaTGnFMcGiRfjeop/lN0CURUJcJSiUor5MneSmn7/KScMFpbI+G+2SMumy9sOJgAXbUYo1PUwt4EvbpCJgnkCz3qzFVp4DDIBxNfpgSxRAlNHso36f6hsGwRzqJPSptRK4yzsqk+Ix/dkN7fHMOIJ0emWXx61WEnWwp5B6nRt8pBrS7kmI2kZa1fD3Gc4zIZNq054ZMX/9m38ibE3G7cLWc2NFSQibPULNS9SWnd+Jq0XzLJ3pOxeAlxPUnuirlfty1daDOuLaaqlyE2BuSzleXLWUOd10o8hr1hRClesNEfpTpVw11OibconJJikqTzHXAl9sQtfKqOuhs+Ic9gAIYBECvjM89EX9VrZZ9nGjaTWbYddktH4CoJaVQmTltLlSCiFexdiqoKhJc5Tcn6GrXGQkLktfh9LOhsT/iNGAWRnWlCnc/h1ImzK6Os0e7pS3o/pYLx9+RbT9V4cpygx/siH4Iy7BWxzt0SBVYGq9bYOCCqLaz9Yp8NiKVhTuD4wU50KuT64/L11E9YFpu42WgrpW27yeiZgq5pgQJUA8FPBZoCm5G662+RFVAADITi721iMdQgje7J9wzj9oUWfF7nkIHOjPyC1ZPzTBF46N88BU3X6Vcp08ZN7l2pboWi8OkbYEluQUitep2wIFmnZzFlnjaxzhm+lgBQmIaR8WTtEwLMPuNhwJ+xneKrc+5iegpF0DEToGj7jG9XEmCdte9JceQBQyl9DCkTkL2Z+ljs0miTsn/MwQrqXSEbYV0NwzPRYMuij2UQHdjM8wy0rW/DAjyz5A0DaV+pXZaB9L4VyhUd7DKeBbNY9pQIDQ5z6lAQa4+mW65ij8/1BArkWpnVeNRgzCEHHzcjngO5HrFsGrpcD2DuuqP+vhkjcKvy/9K9/d6u8N7kI/re3Kw48zDWW5Fz60B36lbQKCh319TexCftpjDW/NUAKCixrXJj+d6Vq8VjO64ixAfClwD9GTzml9XruoqzBxV27dP1qTvGgTmlYxWptpMZSIBk6lZ0nH1YF2VzpGueiO6tAwgtFWqHdpZZFXf+wOg8Q3KboN9Z5xttpWltvqsg82HKptvNwh8zg0SSNKNQXO2O/eKbJBDbSyal5xk6FpsBSTKF3I+aOGQ/XbPlN7Sq7DgIHi/JOOnCvg1bgodpdBNLN+eYodzrTGaeFF4CumLKWXsS+4o4ctJc16VqG/SXst/y34A5hbihBWwGRSwy/sH6GlgyhGJnDMdDCVnj0CL660FvXlAiIW3FKptBGGPMuqFhC2rDaX40QZATmKenkY9xFa5srmMMDuU0tKDwUP5agEMhgKRKCXDTk9yqDvLRnj7+sGEAkWUVUrJKbxBjYirzDTv2TfjvGu6sQ1XtXE0AgKIpraU+oClVW/DSdnoZfzyPeHitfZnf/R9gyv3WCjluj2nAL6UsTKlNSfpKblAo+qPQRFeTMch1zguIHJ/djGRkLQIdQN/UUaySWLXk9CMZ5AEToYpHgL689gsjahY9eKv/3zOaz3mOHZ20etlt1bTYAUs3TA3eo4UgOJLaWicpXipBRDz0VpMg1unfEVAT7p+//Ty0SuJ4RHJiYpM4bd+0CdIlmqdSxMUGwvkru59VxmEC8APcv816oJc7drgrCD8YM9OhNzBzKZdVedqNzRHdFWD97Q/1JG1ZLvJqyCaidtY/+ra9J65Piq/F5LTEa+LdaWFG2NCaSeOhC3d8Y0GyHFjIP7r2bL8vYK4bzqnptzxD6inHZyuZa6rxb1Go3wh0t7djw7+HVyiTIdy4NY4GfSPfIcY4bXxdsmUsyJmaKqhdNc1W2RUP4qLahPnA+HFaYR+g3uD3m3gPKkR4eQh64H/7JaWVKQur4o1QYDCDIoBp1AsQ6F7L4x2rPqBDohXMw+LIhvJADdiYty4zIx0254DB/QnlJMFHHm0yeb+pbHtzm4qQ36zrIVVF1Az3+QVfD8BtAU3MhjvYLE6zvcuFThGqyyfovzXwJQ10fYJNLCEWY7ZB6fASGYA7pJxYZoZBlPVojabCbKsEl5vKij0ETIcS8qKLTXf1pcp0gHznXSiADy3L4wCPpNMT+DbqafkvoKVQHf7yrT4+xl2+IyTwD4nSMatpUEkP4xtFViOV95Q4aPBzde2ba9SVT3BoM98nikFWmAY3HSVMozihYRhSAOIO0cMcCH0dHslRRth3JE3DUxMEavheka5rs/3rrTZr5ekjOgJYbvu14EZiBBn9RVfc1ZUkdJV3r/ZOaz0wrFiznnbH8wWnc1u6+x1HE4R75YD+DRQdyt0PMgqxKCD+yBLGWtN1wxVzEvNy0SFftAZ+DJNRFPVj43bvyYeRGBA7lqe5KbHBndi98qMQjo2ZCSAR5wtCEJCItgbG1PlIGUnrwNo5wb47wtK1tzP0/r8FXhUP9VnVzUZiMpDOYCc162MPwBwzwhDsGqLAT4f3+kASo5Wnv3GBsYK85bOdqFr5PlCcNfgaRS4NSvrY4OkK3qIQF7AOMf8QX43ZswaFyYBF5bD74CKFt+pnag/AsNVV4yD/sSkFR0FNQ393yRd1oa3NDh1rWVZlcfU4GF0/VDbJ3hMnQuORGliWUtWgVU3oK+DcTxUXWek9TDZFDca7adeFTnOj6lzAZHAfTplusvWnWcudpTE3sgII0M+J862MS6JcuMEDubGFfp/jnslj2OSv4sfOnGn14yqrKk7Ye8q3z+P/zBlr1GX6ImHkCq4kyZa4ndJGRPltAQO6j7vJhH8xnX5hfZjTDrNmMkBoOz5D7Y3hy2AAFDcmXasC0Q+PBCUqHVErT+yYYQrOSVVBBCQ7GYMX5IMplvTGH8+3pf9V7EjkkyUph6Ft/0nnmZ/eWI3zb1+SJMKFvEX+qhwY4dCRhFbPJ+BTZ0i2EsOZTQu0GenIEne1wd/Rfq5AgkI1FoHmkanowuauqXyPvKxEiFr5iVS+S9jRjlv0oFr1Kwot/aFyxxMfYvj/jWpMNbGLORDkNvtAFZ+EvICFzIF4v1HWPdrCZyNs6DQ/H4/Uts4/x0zIAnKV341jvrf70lDynWjCu5HtTaOSLJWvSPeoZBh4J/yEq/3uipWuKFUXL3BvNFFEY5x08w/FIqiiESVI/yR5YKg3fdalymH1C8Mua42wuegW/uSYkL5/bzhD5fodTquqb8UZjnYlLNyzhsFogTTjsy8Z3JL5WFYGKKnuurqCPG3D/3xPu9lQbkEQKmnT7kvmn9cmuImTjJMAYulk6H0INloVYqp68kP2cBE3J8aH5hQR1xVPdENIxhGV1cWABzJZBm8eCdDha0Py7TAs5fXd9p5Uz/BMe6HGfHg/8fQhf4fkLtDRGYPmoGtfRc0EToOlXlp6Tg+0QAVEzotUxMTx/gRkRNGsrUp5txYo1in3pJn7ey24rHAi3d3SkYpEjzhqYiAuYIIdGsZCOvMoZuXDKcdzoadW5EvdOhlIro8+1Hkm+JweRIcKC0/9/V/BO8rzGTc9vNguWbx2rutKBw+y7JBMfLHIx7rZNhejBlr75CbPTAGU0UJrSfUQT33Nup1glh5u0MSgjHUhdRgWBN5zhzX4xNjl0RxsEq3zyhy/IX0JmZFjHlnwzcI5JSryISspstB4WkeHm/VGMW3FMJIXza35dWrrf65o5y4fBTLbWkZUpLNQKhwBU2kGEmCjO2/RDA/cYMNEhYQ0NSJUUy/vySsN1bq7PV2tieqIxD8XmnDzyOgSIQ+ixC8GlPe9vQCvG2dfANuAtqpR1pqm8R4EVEHdWZBbcLmZYr1sOpf6JnO2zhLlrOBC56+DRa0zBWxgIVkTtzhhyC2mGiE/MUNWM3t4Fdvfp91uG0T1o2SGsqdi2+kKb3ajANZNcZcf3o9dJqDRSyLvARJeT8e84fKMLkVihToPTJeGPXv95o2frxAAHE2BWFSQFdW/yTiCpmwuYuGuwBS3Tl6GIg+gR+CbiF5Vk0qIcxaFDWNlOywJPX6/4JjCXqhLLKtU0fODBMk5gXjotCvqBVm/lBcTIcUIf+qkGZK6HwzydfWWcUbJapfphwsEEJGcA0IQVoEdPgGxcwniA+NhVqUno58fPMyP+Dumxq9fzF8343ewTDSt8zTD7mAsHSPAlifdqQiOdERxYnwYsEd8LevUR9PlxQ32w7Fe42FhnvoiGxp6hVBbXGwZxhx2EEOYbfvWmWVXux0VxOkC+h8oQzPqsA82GOKrITU4T6ySIx5W8vgukfFKaQaSC2pwSEYDDwy+BVm838+Phd7xZcqELqPiPq8s8QEii+79sTcG3XwJnV4llauGheM9dxUgd4OhB0AM/KhtiWVzJnNKmYk0ajYuK9S5u3r1+n6/5/xWQVMpbgnHDoX4zrMAXcGuBCvjRakIQY1Ci/UK/AQ397vQt9NcaOmEXPdmop+x+zVps5cc0ETY4xqq6I/KxgdNhp+Z9lzIh3eFglldxFVhw2OY/uh7Evu7QiQ3aItFwf9dg8GJAI5JBaQogkOCc9VQ3UMDJROQ/YTRQVhalrc+StKnjkff3d45953Q99sGJwuyAoPQHgTqX7PTic8ASwEXROFcR0WilOgIMRmd/kQkQEJOeOEsl2UHidnAmFrCRzAxfVyskNQBzGz5yq2UBUxi1XTrSXczQFSw/yN/HQyVueJp1N/eO/JiQ4Ni/FjbBPQrd6K0kLXBhPTovy32ExfeQlr5TkdnntIWAN+R/tXi1KJnO4jja9vZ6BFl356YW3xM2Kpza2nwAY+T4QkfezWEXGtYF8ST27DDMHKFMKWbG6QaJKoA56DmjXgk/cBs7qZs7waZOEWbVKIi0A3bPjFyujHMXSv8s/4bj0qTvKiZzqKdYutkthBFFqTZjzA7zqjeSL2O7XOi7WB0lh3kuLSa1gyI+BgkiGSQauonYx3G3CpDVgXQ+sobDds1uu7/qgi1MbHn09XUu5XPRq/GvqqgL2JXRXGd6G6nVdzlgxrf7SGlDR+oHTcjnRVgUA9yYc55rqqO4WkgaM4MZMw5/rE9EOtCpjtuAF9WNlKxO3Q+mJZVNTB5XK0YOcCtLkKEBs82+q+KwfvW9c0Sh1A5CpXZ+4sJLBv3AWMP04bTHZH7Z1cqBNpANujIJClRnej3PnLFBc3jAgIuYFGnnwdXOeazUp0t26bhEwR1XjwDgmiEgdKHozzJD0uV82q0z4Q1ZH7+X9YAzNm/+UGgntVLx7yJiVX2pADA4Ivw2bEAcu7OEIFnxX/NP1geN6jS2JPbk7CCW+50u7CproqD8FkpXAxNqBFZeeDIa1rsceAnqJIe0q0BlQK7SD7BMLdZpXC98FsQJUDTfyxszAfpQvjH2qPFN5P/VJ7B9bPuwoEOBWvDgKZHDuun1tsyIdPWaw7fPNRWqQtPvLmVllX2hU7kspaJtLUFdbaUFLEDpnoe1IvWXJD+QCmiI1ixFKH1Di6itx8YPYRq1NgAqMG4VdqgRS0PERnJ0042MbPg6uzy0CoOhwuzGUrKeTufVADcUuc2XPd3g2plEx7bmlBHV4FYJsGpFjdgKZ4nMmV93csgUNjswBMc4pCJ80E/wNKAAZvSEAlm8dSi00jCS8bgoO3DBXokm7PjWnRsa+7T1qjtLW0AHaA+vG8UZCKSSiCxCXGzRjMYSqaf8LX/w1LMhHvTJhGXCqry/tPTItj80AX+pyTnJz7hfDtevyMl0ErJl1rysQtCTGelgjzrQWRZDgfW5rC/e0BeLqe+gy7j3ooZLJh2QQMUkW+q3Wsa0937Ylf4INe+yJ46RlgPDgOW7yTcxoOtCiLbpynbVv4tgGI29e4dlMHsLF1AN0rOCvlkraaAkCkMZFVJG7zaNVBbN6f2tOKoYuQSWc8UNk0x0I5h58VUXTqbPvHQuvIhNo1Dvsout64prgy3RbAi92kPb244WqHrTQ6iqFWil/mcSqFPUzJZlITwSGK52kE02+m/VGweRwCF/L1jBG41KgaGfGV3+KYkozHDG6EHrjxHfq7r9OeWf8q9bH2o5ibnWQuOUsR0TUcT9gCc4qy0Oeo8wr7tso2kLKieZRILx2BmHIvIIBbuo30afeDjnRzkg==
Variant 2
DifficultyLevel
586
Question
232 × 155 = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
232 → 230
155 → 160
Using long multiplication:
230× ————160 13800————–2300036800
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
3 | |
4 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \ \ \ {230} \times \\
\ \ \ \ \underset{\text{------------}}{160} \\
\ {13800} \\
\underset{\text{--------------}}{23000} \\
{36800} \\
\end{array}$ |
correctAnswer | |
Answers
U2FsdGVkX18NoNtL2THOzQQpC+Vo0HHTPAJMHcSkB6QNvo4pf1qSsa96/dJBHUJgbYWU4cukZ1fCMBhPzLykrxgEfrA7NDXNkLhHwboLT2Kbywp8sxGso0xfklbGk5fGcnHolJfz7I8J1RfLz8SZi+V7yGZOiQMEJJ84Xp7rRW5TlXbxgvFkXkq/T6hUWdMicb8ROPdj/HEC2YFS+QBBPwOYXwyCI7eKells+BCdBELNsLNzfwOAjyK/VBfLkSrqiwvXOKiZvu1sIPqoDrEMsPXONLTxhnEREec9FyPaYp+4/skMTrTJ9GSBzDHXBfK/EmhT9qWt3jsi77qpCkB1Cf7iOnU9NMvctWt+0BqslAwdgXprbipe4EV0+j6llyHraustObwvgopBwZKKwr36DqxLY4UYopTzLRJqE6gMEQQeN+68iCmMWBMGc4ZMW+atIxi9XnHLYpHLwDNEwTOawbfUDFhTXuvlXf/84yUzcArjfTvuaUw03g1k394RFO3UZ1afMMgUpvBiEJnT/htQTanltyyEntaOQCVZK7XlZBWxUq0+IHfzyJUk4xNJcmKjS6qLIPJH0FdKCwulRcAmcEw70seBdUgLfHmV31zRQ1nB4WPJkuHL/5gV68zvk1+3FyBekUT/SPb92/v4+ItV3pnDeiLX5KeBghZMPPJBYnyHdDtyMHySCjI9BclZgNAyeadfbapEDnk7q0XyYdrrn9DPYMWLcH1mfxRbr1vkXXIGAjod8hmeCNORbxEC8FcXgLz3iXBO05LzLW8PelGl+1w0ZETm52/9d/jHxFa8STMHYQuWjdcPn0oSSnjBjqgcVoGHt3eRFEQx9/2MgGIJLt/3JSrZgAKsiE1wCM8cqwheLnsfsoW9y4gbNW8JoiNLMOMzeNqkQyYSQIJ20sm5WnqQg6jdtddWrrbtW6G90BNz+g7PoGM2SbWC5RyDLzTORDG1QRfao/MLKAfs6oW7jpthRHvhum/HFSbk7uSLp2evjr0ntKk/+E+aOveSHNsCJNvCntGlAMHtT7cJpsZzjl/ZcjsM2/COIt6HKf+vz2B0ab2LGx6iTVfXJ/4ghL9V8lRcFKiFVL3oCc8csi86gYhVGKFVO/hQKx70bXf+w9uaOt9ZJWwPaIxKlkPDzLF72G+W5hdVKFvVPlBbCoa1O88NDlKHXtpExUdYG4VSn9zhd8ujL1wpcq/xQxUnl8yl4OgTBCHb23AdmIoOqdakyvuodRGPAZf+CxIGgdw0rIE5XrzuarcNLi7ZiLF8jTZdj3UiwH5Vfq60poniOKkoRjpTgycbxOX2OHaV1W8NApLru139k2/2hQ96TMMgwKM7togjISknktSf+NpFisvoW/s0yyrecIFnaM1VIJ0NrDOCJNUoYLtLitHboWq8tqWJOOF2ttXFRugcjiJgB8DGzLQ140i1iANsPOkwRpQLa4E6GVu9El4KebA2asi3qciiDOAo/u929t1VyI4GR75PmoF2U66IgwxXgrpFRTm14ocgmKhcS/F2/WHGY/r+qcFzWTXkGfJai/yH1M58zZGknhSZCRkAYUdXk7r70hef0IeuqUG/A8G72eZuEIQdCxwHYJ8GAVXU9DvwlpO4Suc6nZ5QX88PXQ5VZUBpabaYhxR9BqUTYaXqup6zWDs7yfbqTGKxtuWa2lrS+wO9cF//MctQcv5bZTnAGKwrjHUKrkSe8mL6DNNvkFG8XupMY/JwOSESNPAFSb/t8FGqV98ObZoWjQ3ILs5u11SKuPqBpiIp86YA7pKo98OO95kEWkU2gwGvkl7wOOUJWriBqlGR5Zb0E9xGtgals3RImifBsncCrpZBti8AGlInMQYNgVI9ROcojWbN+3waeLa8srX0CFVi6qFwIRz1yn1MDggSjOrxB1a6CFO89rqXwh8N08ZQIeY0qHeH2ys9fyut5K5wNPnai89x/AQzjyR9ObuibwZn7p6e/r0GsS/dpZzeq1u727W5b2gUig3Ay8TeuNLgHjzcBtjISf5gF4gCMi8M9sH4JdPIsug1G2wQjpEeSFRHSl1mOh+pKG32TXlUW6SVit3Hx33pgyzGbEHUwWg6f0IXMAUP4iUl+hrg84Cj2t8Yk3k1YjtVyNfiRrhI6cPP0aJIMWkLwq6d0cly7nqM1EIxvdJRVKanoGETzB48Mr0lYd1NYdk/V66FT0ZXvMvrg9cWSdsv0pHnY1mgtPIPxAwqbUtGzdSvPjqWdxvcG67PAR8TVFKX1JWhdQ6gPpF8gwB4kTCx84w33W7F69FtARZzC4b+vYrvqsXer3Uek2btKVm2HS7RXIiohA3XPGaN0HWOnAsZm2UNpEljZ0xg06kYvYBmnQUOqAM87PxJXdATsgTrXdp24HSd2r4/6+o6ZDFHX2vuhkXoFayhmkuWYqmGKKD5qgYqRa7HmdgVENV14KXZdqFUUJ2AbkkqUyBuwUi8wEETtNZlr4c1sCVX1hl9t9f+zgsnfOcdZTHUjmbtR6xOJEVDsRJJeRsK/UvhKeHQ1cJOTBwULiS1zTWRKLZiFCbQRu43cbeD9VJMyuFkKyFy32OtOgFCXDbpHOFwWpn2y6zRxPeZZhSarx8hYeosXgaz1aWv9nTR3cMqCxqrgn4hOIpwOTadEFjlZ38ukuDPp/9S8J/gMSFiSODraUevPWCeAKbMXlHbnMqe255zQCt/K502fGvswhSYEJ0RxaVnsjRbV/C+757Eq32IxQGK3QPiXS0DC8vMZXeuKEnygFJ6uzvtEaheOVBcfZK/QRah6BTTLi+h+FOy5NMyVKuMgW+jAqGpYvpeQmZj4ZGb1J4bbt3uTXCh2wWOSB7MObTqFdB43W4PgCS4XZ1N2ZV6BFmvnkic8aHN21U+NDT6vibK/tgPyEDYp5P+/FnqKt3aTK7lHImdxiu3Qbng54UwD3nUJM8eKj3JZCYob0HnUPUmCgO7USnlGIH87MGUYsNYrwkHzdZLw1DGb/WNAPUafAp0xroK/1ca3mjo1XP4LjtIztficiAJMEm0KEaatqCi0AZabmQy44TKzqRCKeECnbuAAoTmr+aPi75GyoCc/zyYCDyoUzTO2oTgV/nyvb7Xg7jCLilvn4tt4CSREOaZNEVjP590A3DoNFNSf/+C89eoRkzHQpYIZjA9jRpxh/G9/QpJP3IniZXIYP0VZM/GX4TiW6O4YxmYjKnlbIQ72B5RLg++rFQGuqPlZr1phfr5owfkYI44isYLiDvuPVOtg0uqwaJ6KxzWE701FVTdvPhl9ViLrM84a4JXE2PHyYXHoCWZr8U8/LSO/zBfiY1DvaLFhW8t4ww+TUrBpZb1/AqSEtyKi14+zWnXG43H2xLRtjUob5JIcFiTb/xE9V/2ZGS4+rbXlhrtaZWqUYIuejJnxKWa0I7cRKwio7XGsmiQUVthi+fLPQlc2zV9EEy+GMFEaAt/JYEJeT3ZBB4SJQ2OcF7Ae7v/tyfWvUztrPaXIA97I8kvAKQPX3u/0E5lXiK4JV6p/5js03iDXCt6R3i27sCwTBQx/+GKw6yARUs/EzBH+palVhCnrReqdSXqVkMrCGLm8STfCveo+S0tGyRZb60GOEvJIEnQdvevb+9WRaFyt6BQ2KZIUguscdthpVkBUI0JTPuqgeU5KPImCtggeTQETBID11PIlK1THt2QyPQEFbHumdBK1adOuGgXw/LOJGbDmAilW0XnIjz65CS5R2hI8WqiHq5A4jqVZ/tqlERj3nwV1ekKUTd8RtWUKznmnyK7azFihCw7Gxi1XNZzhkcWdJfQ4J2YeDnUwJHnTTxdmyxcvTk6yx7ehsjKCdZi1BUwOVaSceYTdfAb6eVtd+AHGJh+M5+InJ7gXO+NDHcAZS1lgNspkpbZ8jLIcU5GKyOyY1TTfD27PJMglBowColvrF1KyvRXHR3TdEXyCJdHv9uAuvuqfr0JU9dMlZwm/g8PHjIjyrPa5z7U+xuc/Qzb+2nwOuO0bv2xiAtEvFnjfrO8uch/KCK1v6ifTmWThE13bFPQlfME3sHAvPGHkdTA4JdmAq51+T0eFRRtvox7D6moGmAkW7wxgsaeLLZddnATNZ7VKyjuY+SFXg30Lowiv0ahTxA6KFoLapllfTGxGg8bMy3VenzFgtYdiZExJbvpKSXD0Y5blbIe9JiJp7cgAvuKZHsC2UTSteKP571qky9hK4K22Jg6Nsay0rV6BwLwgDYpvwHDS1iiIi40JWBhfYm0a2IxpbFR4HBEOaMtscZoBu6PFNPhG3Mg4MpsfJYdHX4BEIpzLcV+QlBUeyoe4xqFU+DSnael978bdvyBvtGJI02vZ2sEXBj0bbIv8qNm41ZtbolXEBCujzHIrbp/NXarFEKDSsIrnElPkiTH8kjC0dIeihK3h0Ud8lT1aALwkRykLb0Yv8h6c9o68LKfdFiQCIstT+EpT0c7oYkjajgiuGIcgiy2epEd3rWoSBjt6NH7eJoPyop3VrWZ0icsA3b4oYWV7bdrOk+axOeQ4GAifPGIdNS3Gq8lO9aH4yr/eJzqlDJg92yJJJltT+bjBg5I418UGPDGjOlA3rpURFxBQZyU2XS7TQC0dv3T3mJiz/gDE5h4axL9wDZeMT0Ogd0oESG28p/3LoMMieLbTymdqDfyhrQUtRrC0OIb00tqHSegH5t7WUvAYFdMKvNXgOShmgQJHGatHKvwhWj1MwhTG05xLq0V1orvQZ5NE22ANviYIlVZH1EIUa/mm0SAXjRN3a3udNcMvnWujx+SA90maOrkPJwH+pD6A7kbX0td6u9pnm4VvXKQGNLvgn6phSLsXW9Q7oOudCr8iNMXHh/1hwJ5tEy1ICV0KCBrLb6L3xJ22T8ftXT3XL7LlxuKQrZJ+htv8m5S/qb6pXnIRmKc0MtkmTSFL2QFMiNKTmvcP6ltU+MHSPNItNziTBoulu+ZZP0EAu7USuslyKzOBrrwbj3Soyg8yPB2nJKo9U4vvfFAoqjD1TtoySC+R5a5B+u/n2+axMTIdCH4cb/NlHhbE9gzVA2GiUmZLbFk/2dVs5eksJmgroPvQc2YVmOztMdR1O2Gh8cMSGGwv7p/f/w10dxAquxpkA0qbKGIpNA3XoU5MrklFp0dP1Pak3hXM4hvFsH3PRGlkss6+UvsqyORzHj+3vk9qsfQs+XYSVkVaSsqoZRPb63BEEXYZAEtqhwNWQg+x7rc339aW7blZMAok2jWweBJUXF9oAVda/G8l3qguMF0L1EeSUCpevOaF6PYS1os7lFbe3Sv8bkMfrC568PiFAQnPEhJd94Uz31ukC1YfhWOACBO0nudTMnrFpTgi+L6q5XXatLVXYyPHjbYAfVEAYMcfvn3Y/EI4AvLXf7Y0aHyL9VX2K/n4MqCRvOkKwv22P95JourBw1/n5VT3EaG/1KiJo08MBti44FhiFBDfYmBJ6aTzGVGprSWCAIHHTboh8oet3kqE/5jxVAxH9pEF5pkrvdpiiJeuWIHDmgF2qZpHm6RbpkTXWjrQGci00YtKLm0KTHWr7KgsPOytOYhYc32rSoR8vJI/rdVKxN9K1uDh4q71LsetQWNOfGnsEHZ2cYBFRRYxmvF+0XKy2gmv7/QhEogeyv8zhu47aLjaof/LEFdIFvT055jVltr7axTd91JmyThY57pAx/8kkU69GVWWyOh5KugqCxifZHVL1TYCnZ/dUoyNKl3Jq76+ocTQ3F299SIEvRCN34ZN7djkXxPrfJysk+ttdYqqQ6dNa29SdicphNiQ/EgtsAZc/41JhszdLC4A+MbNelqfqmzsOWrxO49TQunzdJznUJoOFQ9gImevqXDgu5/Zwgjhv/dnMnroBRLI5gNZ9jXNyBdongvpB+RQ6fe7g9SMFDXR0t0YjQYcuyuBQFI7FHJW9oFKDWznvtnxXVU0uSP/lYDn8KcXcgGnkvko0qWLHYqYIlolK+9hIfDRgb7xEZ6aDp5ufqMxl20SYEPaSPHrBRyYTcq7awrL2QFIM1SB5UqOaSTuPYJyJ2osJZy2zdfUF/eCZxoIX0MsmWLzPFrehoWuZFjBbQAsUgJogHBsG7s9PRTizee+bn29FRBxcetzXWq+eFE6nv+6PHk37KNOTMALp2InWv3iwycA8rO+W1/cypaaXYtiVH+dJ3mNvZUSuzy7KJNiTDZWsjnjIB9JRQsfOXOHmxFx3PZvs8sHUxygAw3WGqDLqTeQNC1vIKr3xarPotfHUxxS8UUELoavLku3V/DY2YPk98X0zc0Wr19RqAcY73oq9YFtXDzIhBGbncMbDU7h/jV0wWApH72o65KLDqLQjDUpF4CnvoagGaG/scliyQ4R0ct++Xr/Hwe1ySD4QDX89AxntdA5XFVzkcoAge/ydoh+pCX1fCHADF+DOCoJqX4A22nV3gRxYLSt+AxF4tbVz33Vidd9cQy7t6Mst4aPvLwwAAhmc8Q5WR/cslDdG0RY/2krsxo3zqKU9XdFSySmJh2jSoC28diL40FVaIgcMXyl4STTkz1I6vXYwNh4g4QaS5qNjItLever6WMwDARKV654lGhbPIb1Ll04Kq5/JiXprkapcgfkY+OsMv+WllPwHcDPCdLhjS9GH+NPllZKpD9dQ28yvSzhBB4g3l+jjNTHt7GXOhnjRFyC+JUbffGda+IqQ6F+hA5/FG54yrZgKV846Glr+BoqMlRF8hkMTMEoegrBOXeWCuXxNCaFIuBvJP6AAliyporjgrHo4Kods7hW0zLepxEb8DKgnZqw/c6PbLenrcJerczEmhUWsY11mRtHxgwogok26N5j7tcaJzcSOxUnNcnJbN5BKcP3fYANgC8GdIMt+8xreHihIN4PROuGfaJFR+aCeLzRjgHJiD/4Q2KflyV6AbSHOUfZ6BhRdG4cfzV6XZon9h+YAzMRdVyPgPj9xdNJNqEO+xO+kaW8rT9F2rIji+UCijPAEjo/YCCKsbtJ6saUwHAf+G+PRYyaG3EcrqsPvC2dPlq341ibO3t+zZY0J+tFz8lNi3T7K5ydE0MY0Vb0Y16ieUwTGkcmdbWfCXyNv8zazvO3ULC/4geUOfuWI9FtgolGTfuf7We0ELeb/sIH4BDonPfurMBw2Y2EnJ8kEEg+/WpcXNE+zpxYCJt8P0gw46cuvhJTTtmXZIJO4ZIukvXAhuLYvIDB+WMZpQ1TCm/mq0/F8vkSV1bBXgNqree7aYHJ5jhhPfiYZiEF3iafOnctcUYNzd0SMCLk2W9jlUejyTJUPRawXv0q5qq57Joph6gwPc/BnG6auUcKhraCIJTh31HKWJxLnfkP/R1oIMg23QPFBnFHVg/PPlRy9FB+/rw9fdybsffArR3bshNGtufJxo1VZZEvODrX5xE9JH7VHfDDwVEvZdrE+revZIWMJjAMuRJXXgM5XdLNICm/Mj4O2W6ACy2WICRbUWme0RPh1xFro5ALTx3d5z2B09cjvXzOU6Rbl3boAi/+nISS2RlXEBVR11pDSjIqOl+T5GCuqM2NyS0aHldFwFauVqQvgxuillGM5idlNAxmi30uCuAo731Wvq9Dw8wOZGIaHx2CoAaxv2/CaQ7RzVT6nAYUa1UdDbPKpBg4G8fXXkl0s2NZ1nVg04yCfICxZDCHn9uTRWVS+VFv+JzfR1I22yl8tdoUvfI6tYm69Sv83HrUIWs1JyqR8oUJx4oM7OHVlxIaiOeJM8lUWcNYukfGUukNgq+NtM2NuMj7Gf3HRdFU0HqHicO9YAydwE0OqUjsoXE8dPTVfL7f7XGEVa3IHrTu2O7SJ68LYGhCZIzEXP5A2TJ4UjIDXfP5+QKzfMLVty2IGEwAdqsXHB6hmKpthF37Io/H4Ovzrl0Dsoh5g6p3/7WrHb0DuyowpkCPukiO2nl5lNal4fWfHG5Wvv0zjag3rVUOYdOO5U8FpEhrmUUzfoGKrpKGK/Ahe7+PjpOkjUWgP5yBV+MWe60C3+dbwkGHOFyqXI0HJNLJgfdhFcfuhLORZ7IkGea1MQCBLOVI8jne3VUkEXqjxCtp11SOMRckDFnuJulCU8wc2IBY3I6mDy5KUn532lrZCWg7dYCwdjUDKJBC+uMBCdMrvSSYZz1aZGlzkkz+QgXc1baBHqyl1P/G0N+E3+wyMvwmQlDDzUJRWdkaDWiQKK+5pbPZJIzbKKn+7j9buHiikPRPcjHN4G+bslrXsqX4QvQ7QUVVt00lr5awKqsUi2PrYgmkLw7LWF77UB1sMCFRP0cLNGZUWEOrm9LgRS8n1eFYYKGVGwEtudgJsPC8kHbaWnB7f8AgIg6uLJY1X+4KA79huKAl3RTDy7beJbAD52cKnv44r+4OPhoKtEtZw1P2pL2fKu8FvRKJU1Np4E6K9NHQRedOL2NTccTOpsqX4it5b9lyjnoU4JoS6XG6CxwSAkAY1CRLxnPbMOYwmklnnHz/FGih3X6pfIqZwzJmITtT14c7mWZe6oBEiz0XR1wdEPg3o6sggQjqIXyh7sQx4G51ddiwITwql6ZYm+vlh70wzFN3f3p1Xdufa6XA/+dl9jM+1QykiAGLiZh7JmF5vfv8U3E1jCravdQRrXxENSeJBgQX1a1TgyjUH7UmFgzMCNSV4+IGbswg8F1/NRWOBuk5AWVEufqKQM89ybFe/7I8E16An+au5BmdyfC71xkH5Yj6c1nTtzbKrxIlne7AOSwHR2yv1MWRvXaa+5bxMCz00ims166Ip/epZIcQdOEJv5cc+DD497ph81LVVGQLfw2j/3pnWsGpPCgqPRaR2m344PI8ZjPbLY/52c5zsJpIAVqo7P4RB2K9H80poBJWe2octqdTahuDN5ovvZ+KK8ImPRdbAr0riVKEiDtBENBLAWk0NrJn28V37Vv4OMupPwd7C+qu5mGsWYeP1vpGne9vOyMYpERZCEAWohOBO5THfa2qoWJ0Mm6zAbyhlsrFDhly+XXB1Z2yzF/i9FdojzSTYRJk2RYia0osGHuW1Q0Mg2rPkKhyaavrF8V/lDbOda50lJ4HATuZzGlouURP8IvrnOOVAg+F+tFGXgTXBcpzH1LbWiJQDoa8cwRDo1UF4TETX/x1D0yTQaTG9v0cdamWOfyTEzFv8rqkALwwrUY+X8pSmvkBz4yF1XF50LAiN6BgegwdKiYywVXzKtKwxoR9shwiFzG+uYiREFecWAUVlqPRIOC/OVlAV616c2gMtvZgOldznN6aOFxAJtBj8egWIGaHm2/9aNuzOg5K4gQiAfLQqyxkSA1MQwR4egniDRQ7IItabM9rG4WznCeZVQ9aMgp1Ak0YzfsoNtIVnkDV/FNAYbmnmRvaxeuhk9+GyvNq7LQN/E1J0cFWEPNU/7j83p3PuJ0pgCdGPf7qpgcyyzzomGGjrPx0lH0XVqDB9Uo86eu3LBtShUIUnQrBVaxLcH1IiqRMB/n3SF++3KY/1K/rekjvZ0Jv27Gdb3RrnjUQ6jvyBoE2FOiCxHGXyb+qmltG58w7ZgwnO2jy33+U2QvoARk0f56pjlGb2C50y/T8/E/WC4VK1/p0triB9sP6JoudZTIZWqQYu8+bINkQmGZlLXmdi04Kgxtm0ckmKpXtEClMU6Wy/yF60mt/+1AyHkg6m5tu01EEzWXRItnLZ6uksr+0Zsa9s5EmTUx5FscJ0ngOEIzGfEtZyavhO6RB7sNF4J4OYl8MbxVQ6r/SvfWfgl35Hjto9RwNOsehKuB4A2g/HyQgize9l1aM28OOThib2XFtr7K3u+63qAjMECafqqoO0r5Git7/gmNcwwYMnKl5fgntjL0Mwnsgwoks/NlmmlRpb593vB1Cr1xwbiqcynrzPXy626/95W5/K7Gx4LJzbHBUqexAzXp3C6vj3G+iwxpJyQxFC5ysBnefAPpq0IfPlFljmpXXBmY3Ho4aiMNjYVinBpSBQUO0yfBVPbgBNzkejJPGo7Eh8zhdMXIgWVrmbPlnFWU+rA3VcQYmDLVovdWUtbI
Variant 3
DifficultyLevel
586
Question
424 × 115 = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
424 → 420
115 → 120
Using long multiplication:
420× ————120 8400————–42000 50400
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
3 | |
4 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \ \ \ {420} \times \\
\ \ \ \ \underset{\text{------------}}{120} \\
\ \ {8400} \\
\underset{\text{--------------}}{42000} \\
\ {50400} \\
\end{array}$ |
correctAnswer | |
Answers
U2FsdGVkX19VF7kxhqc1aScfau1+0G4mg9YEDG8I8qoNIt5KcylQZap2YucaOOzT2WttutqPeMAW0M/LutY2Z1XI6XXtSRl7nvYpqtz0QTgd15tLECU+64TjmPKYTIEsZfpLBgy5C5y5pRPqAV25gBHdqioIAI4cVKeSBrRBEQrdLZ75QpB9vJRs67fhKHAuMWUlz2EuzOoULHN1iOUPEKGVtCyAfbjFlMPK+BbE9ZJ+5eTOiZvwuM1B8f117GfxOXZUnX+hP2yhHLqwwxnSTF/orxQy6+B4oj1OdrJPyKFfkWr2gcplxjv/w2XcRkovQQDkO/LNwBmekid/YeC5ZA8O1fKXGBCixoGxz7Smt+gdg/qjO2VzEGjsexzmlfxUIeGk8HQeTzo0buHdjE1YE3WpFGHrnGFTKwmXZT194Rg2XauP1coz3bbAhqPhjreit7SIVA1ZP1ccfqFxCzsFxn0p5BmOl+eFlCWUEoj8YbhDtc0WB849JKX0efz+ViIkcm8PI582Hb1i02527Gq67kmZNoKDdAwFrXoasQeSfk4+EBWzmfc6GHCmDwmnfhyQ0Y4ONvcx+TM0w0rmItwRBUZymRIuzknIg0+bGGnBAdLQs6dpOEYe6gFByfgPvietFyXKBTqLyAbBiIGCylIPjgLDtEVx9Z5faVVckGkaM+ijalEeDdKVOmWwgE8AAMo2x4AjWAeVndZ0T0O+MNQy4eCmwGrmq2dO1flTQzy4QtRlLhgUAa2mCHNLY7ZbMAsn3iPBfITZ07w7uQHqJrgHM0T3UJPOsQg7G3BA8OpqdgoAZxJo+NS7G9EQsIYtH/OlXzvdmIpVDYZ8fvlt/BXcukT0zqvBE2yurk/hkK8ZtdXzVH7m2Y0qeMQcnXuvCLjloy0veKkv+dmBwwF2UrdEVke5FSbECdC9iQbLmsf4vgcuFQBDw4jDL8uj20AoUNYcuSGwCMRkplmISXIqCZp7wdmM7yjUNaSWeHvOY1j8T0SWWK/4wpJq9pJZ3MHdiCTZwkURy/RkhOET5lVhvSqGWuGMBaISWcxjlIGUJ80P/H11TxD8XQ/iLf9MIOE2Jk30l2d1sXb5Nc6w2gblCGigwUqxSb7en2ZDmXdZBgHxJ7qbipnTf5GtyZ8sGme4pjwTOcutQvfC65AhCobuvE5eMK7l5gSb8TlOUyLNGT1AesOM7Q+r6982SD8fRUtxVd9wLam+K+51aS855NeV53cWcKLF/exa9EBLsWFLUYHyhC3gsKNufCT2FyfRfRrD4M1EZ8A34xRDiWlKpKbZZLWLMAbgL8gju1ukxMUvc/XPPwOGc65gSKiT+aX5dYnEcqehoM8qcZZSbG/pBLCqoDarN4XfXXhPVgSKftjQ2mukXPt+9JBehlKo2AGzbGwm3ZXEOXBts1Jz7lNFXpUGYZbjaY/s/kmAcbGOMUX/2R8NYKZlQwhq7ebdTnBm7u9OFOuc3g0cPCRftkU+m5FJeru6jLSKDfsJV+AzAYB91p6lY4vSIS8lCQd6ezb4haYkeKljTGjAzCcgJ/LCpDQE+5y26Zibik3qwpiH3X1FD876IVg+GQ7KJzeo0O+3HJLtxMLlNCtHHuiBABo9hytwgK3vo8EfmpHalEtbTel6RcfawDgPvNHPfKUaaaW60f1dQSUAWG7MrW7T9bQegJ4l59f72bY4vkHDBcG8xYF4L5XtVKUjYcAxGHeMVySpM/0+1Kwr3KQeuUV1F7xTQ6X0KKHQdiIRkNBadTbMnAaQPPR6JIfhekfQa2HugkRzEzpaYo0hCiSglcJEiMYN/ASp9E5psaEBPvGhmDb9VfUAsU/quj6zMbg6BWqxwcfF4pCZZayP5n5mFaYMYFm5H5QNf3ieQewwYmc675xX1KkQoLWGOg34zdtFvcnpYl55MERoDgij+ZfYLYhwvB9OeB18dj7ro2GhPUkqEl7SquM73exjbHbm8hiQcfEeK9C0j65jNobKbrtd+y5GCohMKn9Jrjg77SgBQKNVUSGe7zorVp027rz2+ylm6c9atpP72shN0cUQ3W/RVa/yDzkE4f4LQD1YhrhiUI2Ybpf6PK0O2hoHUabnvSf4JES8sI4khft1E5UvJxDQSBehypi21pePGHlGNWCa5tKAR4NFe4bNhNl4tmYAEFMd8i2uFkDZ1jjF6IyxII+TogmmBSZyHBlnblMth3YpBkOfPsdgW4uiKKJ1OyRW9s+FCNznQsrJIzIJmHFlCpBrUmPeVkz6on5YGEJ5IHCC7eiKuByaTN6iA+L656Wefgcss1iqsjRDrG03ETl2Dfp4A6CIwJYSQBueeEU9bMWZwEtTTMF3rwbRppBS81YE/8hfEitSgjFVwE/OUB/G3wPrJ/RQHrBYV32dO3aq6zu36lpPOe3kdT8OF4g3g4XXLXkRdJ328zyjlH+p6ES0OuW+ozoHtXQez4bqAFUXKbh2i/zTzjKnClov/0xTEkv1S1zctVaKTzfv8IMQ1EK3nWQFAwYeAMJwQG99KdYlIIxjbgZw70WIOLC+PHPtAiM5Eymc0M8RD48Jm49t7cKLaM2QGPeuAE7Q/1tRO4HIHDuiDsyK8rolLdsfeG8WIr1cDIHrurwuSsNR+IpLYCxvgwAf8Yp5XY9yzT16mo30bpOUyj5Vlr6+ic8XJp3bqVliMF7WGD0RRDK6aBnf70YQuZtQ7/SnVqelZJY6GFx9BQYPUN6sVB7Vm8KthaSUNJ3tH5TKjMkVnMaTQL15YMMlhzlGmkgyArv9yRdVCLDEGs33rErNWbuWr1BE9OpUgEd0MLv7IctLfJo2XjESCHDM24dtGRKcufRqA9SPzICVjO3K3+i+Ws/7fkWmXxJUE6Vd06ZdV/cQ3fxdvVnf9xRRMcXPLjM5rOPZngFIEkALGsFUObU74/7Kff5f6mYlIw/C9pfa9hORRDeMxN+cBDG64hqSJhtwDzW7ksqT4/PEobdHemPcCW85jM5lrhf5E9D91TTh8hKsG7kKmuVCr4Yg6X297ovnAq5S2GQsJbRVHw7J+SiOvxyj9dGCUHL8Lkeo660q/7ZDTRG5FvNL7yM3xXcRXYUHmJYssZquutkcwOMbmCoEneGDRlQ3uTTLSWDURLfG11F3Q8PMfICsnZpPKUGxFTqRMlWhCnes/vPR/rwnyb6RpLg+eUofWJ/ZyYjUYbmVTEJPrXSdL4tv18HYmh8eCtSndOBPEVF1FiHgabI1Wsvcxc8ZH+7OCNBA+TDSD+nh/MSHNRWHKIO5JQT8LKFMq3sN+0QkH7s7iZwfs0lvC+dZnFq0/V8ZzdjljUO6o7ocZq4yqGyDdoqxsIW+c4kCpW82yEyvsV2DFykQS3Hv4goKxsG9e95zQoNYg25HceZSLpdTXYff4UsY+KY4lo92FRG3UJsHgsKQDobOwAjDgVHlqpECXHOWO92/RpOMMmZ24umkuH/ztlWdqMpkrVOE4F8rtorO0rpVuDOl8khoqVdmB7WvobVjfzvjUBG8UacJVA+fD3qA4hREWKE+y6A1F5fsIyYY9/kjVQz6YbzXg6fkJICiMgiDa2hAraOrZxw4sdL3eY9Et9rmfBgrBN2RIYsOIZtRUpxqVQHgpKxrQZHCECtqxKCIJZ52qNzlTXzaRqlDVcCRjx2+5DZHgJ+Fj+DTYXI6J6TSgDJTnvhpbHDz06yv7xgwOSVBHQR2qi4v1fj6nJwTEJ+FRYUTRidkjkwZgFobQatzSb1mTb8Bpk/NnJMJbSAGYeIkOZb0RqoMEyMgihRD6O798amqEe0j5vUmtbswflq5n2Wg01avlyMUmMz51VYMIIItp90djg/v1jxHKvriQbqeUV7RRBVHvL3nbA2qijfCBO0KP6WpZbuuzZFODlieTT07Hlq4RMRvd1NSyMgMlggnJ3ECvFAhi56N8YhXZjOkjT7eB0ZIR+hgh9uetDfUi3dZTd1toda5uc9jdgLOvBr0WF2/6ThDlIU1KGpGTZbWHiwqeijzQpIsp9RG6xWqvPaPm/nf6V/FpOgvYUoPKcrq859W36h5ASLFHX/UeJ8pJetAbPSmrRkNB7e5Z8kw5wPM2Jy2XzO+M/IyrdV6rLxfzkMouO0FcT7+SXoP3XWTGYWua9f2YusfyOsMnHP6h1jOR11fjHnQz61zCgrkRax90F8Z+epCpGQ1zCq+rEqGqVAtY+0asSWMuoBCmazLXvfR/787HYxv5RZi/r5DlKCOORe3ZQ42qE1MOz723W0kNSvrBfDlMpMAQXq8ktRIM+gqDhPsXtefNpi50uoabeLgK5LlHoDQzZzfc8aZ8T6TavrYvKKORphDVsHkgliMnV7NyIostuWhluKsdqMCN/1hMVv8f8vMo7WXx+TXrnZH/CF/thAlIRQoYOAwOLLiULXCKye2/jFlyMKZRsQh3h0ApMaIFQUuoFciPgHvTqQaH8U/0HGxNeMRjLcTCYI29iYQuxBIgNR5TyIwXn42IaAB9bv5zoDHfRtIQiHDoASq/ZQOIICD5qAsPhJr1BnPIJsqVq7PqSRpqgRqe3VGPaHICJWceWEU1ubrUaT8Zz+3VMDTRUZoe4GscjZUHLgGDGQQLonGDaK49XBxNt61iSSy/vcN96PyE+jgA8uI3PCc7lDeJYyMkgBKWMqJ8NRhsmFD6xhfu1w0ZXDjwOUjDbWc+jY38a1Pt3bENlmEcT4KciFBZYBj3ovHlI8t2tsdAHuBjOxYzM5px2lrktPfW01bfSbQPhMonV/VM7KA+CfvRvjkZgMgF43cIfg3F10sfJyLpEA/gkMqFimdC2M92C8FOfDgHoin5jRwpMSn2WljbXPnchimQmbdQrkI7Jk7gaNltGfa69Ps2tfA0CIb/6fE5dkk1JrFNc1iDlWGrN7WiXBI6puqJ24+cLi/yEGv3Bb5vIXFyH5ki2nldO8IidA7pcP68LIswrSQHOQRF0rSuBLVcuBXgfLgXyj9N3uSdas71zIaaSP3yZijnQ3qPP5MMypt9ad4NnWNBK6v9i3/IxZ8Q5hRh4LdghiKqRKSCcwSmd/WmuR1yI+G46uD6PNUps4+ArmWaqlBg8DSc8xXm6BoGfkuUGQRVjiuXidSKY1HdSPxbpkplSljyKGKsdkKh0TiHEPQwLMmxAtjPYB6JmX3gqOvB83lN+YVddYKlrPLYSeqBa1AueW6suQf6M379Kqa+eyB5GHceuOAg4Ikc+rmLXiYModH7N2ZrBtKw9qiG+wIZxng5L1q9SYX3KlSqsotATAwVltFyTRe2cH10V2Ayy3hh489uxtvurMa+WJNiSJmvzcM7KiAdf3W622GEg876pe2QRVFG5FzVyT2qiCWllUh6euLxW+0fwAeJSGAzxyu/Ga4UlqkdEba9HRp4my7sFYfbrdFfjYrXiuJaYIoAZYTMawyHgMGBhPJDTCqUjEE/NDsdMgbgXhQNk9mhYca21hzphavbu7t8CLPoD1tl6i5c3PZkY+hPiOwLlQszL+X55+S+SoBXNc4o0MTgcoPVFbD4E3efbMW0k3yBm9OVOMlGcv80zh6ZmjYt4TyQJg9nP7lmaDJ0MUuUgbCaB2HmIHNEAMbJPS1E5uu22c5cMkKP3tFMUX/y3PkFjIk8GvapW0M9Ks2R9tDi2mOwWCzxh7l61sXRxH2bUgVrBsiprFD9cHLIO6RqwLZSSXEEpZQZk+WIejQyhPyi7PZsrmVekb/O+eMOBKCJ5eDiSTxT267dM7oPoQx89L7t8Bp/z7VE8To+/fznVBMF2heXQ5qSbhGh9knfRH9yaRNM3k0wV44dSmjRMzV+hfwJC/PbeMOhNb0NHf/9lJZr4Ju2h4tO7SlNLhVhW2jvgmoXpFDUzpsYk3JUxmI63zTajPyn6tGoG22b7f/Cojz83Is0TulEcm1pHRlHOOOmA0QAkCDVPfsNgx9zk0rT2gldPTR6pWXKQBIdQ+YFDbfcNwXIv5lCYuSyid//BWy0NTpPHA5T41LI55LHFgu4JpCvjN+01wtM1kOyNGme7oc6te6IV8jv48aKQpV34tk4Vjl1AMrw8EiJRdDffb+UnHCEeWHPQl885Ux94TYSJtzho3zZHqWg0HudFPNK2XkAy917QOMmzPinOs8MYOP75ZtAboj4v7qZEKxrHBgYpoaWr7y+IZUqvkNENhzKeE2uao4sSbyN9l5qOxMuD595KWnLFVaZoQykvTD4oQQgppCmIuDKZTgMYPqGTxlWj6TC6ZXKNEauJT9MLGTD9JQBIcuO6jSxiBrzev0d48lQljIQ+FDZFHqNxGiGbmzcUB6cC9IaSB+gAhhRKBXrc+9xjtyQel23AoM5vUGCOYwTxNUdHDdmpBsuewtL1uqAg3pyJfp48znVA/bgaw7Z7P9LagbiQbv8RVCubTUX04b1pbMjgqYtuWXmaTRTofoOEDq6HZfWkuBO08ujIavhE62n5usHZN7NltG0NsTBAU82IKdpfeAU/iNPQxnoULuzD+pPTvARomnKR2U2zc58/4+DjmTmMmnj8vp1r+OqITA9aSolsQAFdk1ZNjX7msfvOCYiIJ0elWqC5wMSq0pJsFWvXV/Cc0Ezgs9rlVM1b5nKVxWuDJos1YFnUvC+BnBV3/3Pol0C6cYCY8XA6LrJLPn7Kb9FhQFqcxo3+psJ9/XALSv0rFhdY+XqqEG0GlpsD6x9rozzznqFlMFkveG2gxWxb92xdlkEoHjGmllzSTXLhojVg58jnw45lBgpPqsmj+km2/Vd4zhJOnlldrMuLMK7r2DovUPZSmcmiB1IDcVqZ+yDGjABBHlLOYx5YRQFLyQF2Ez4tuLr7MI+W2ETQbK8flaiiiqOx56hjIv4POCWrxirerIAfPGoyCpzEmJORevbrBRYK229wDt69s91YycBYaOAdUZ9OBOrgeER412fyadgB5iYOc01d1x8y/YLBm09z24KQLHe1lZBPRYfcLJUYTwF0MK8eakUxwhn5iDFpc3SpxbEn5IC4k891vEDMdzNEbUxYTGv5rO/nj7kG1hb8oP3mLM/Kra3T1Uiwr9kcq6Osy8B9Ze/wTK6UVwlHiULOAPALvtdnUGF3W/0dwh0UI/kOQnMvl5GVCGrEv79AOOf1sNZadsPqi86t05kZL1w7NmJjJPNFaQn+y8qSU1j+l7bO+2F5v+/ZFZhcp03lSiqJ8taG22JHDEnXAjUrx5/YJrt9T7jbQvjX3V4o+uYoqRRuXvWHkWQzIJo0E0WdEdWRl/KUdve6NbJrA3uMR5S1xH7XZeTn+5bXSIdF3Om9TsgAdSE0CHTdzFGR6NpF3/MrZTwrYZSHaF3LNvCgNaz/sTVsi8OK3NNqOEVXy1mje7SEEJYdmcF2rAo0UhXg0g2ZH8o5Pzz2WcD0HhEJM1u76r7zLgRYGk7QoylCvgDM95zeM7J1GX/trIwyAZILFb/GzZ0qmHUVsCUstt/q42ujroonIr7QhCnJ4ZJbZ47YuHMeIunoi/ekZSxK9BE5p0r+lRJsTMBY0MtPU1FOJ5GhtAF0TpRxcmj27nD+N3IicuraSgh1UXfWS/Z0cjiFOSmaz18RBbZ15irU1OpW2oSlpr5IV9a0W6bs9Rfe9lO5ZjHK1R0XsdOWXGAHflXG8fKDAAEicKnrbiqjeDMhZJkwl67EjgSoLYtNgEoDWVc9kD14XFnJIzUKTTGCDM4roOD/3VHubGcj4kXC4TvOFjzwRJABrhHWAYAoZn0i1Em9Y+bUPsCyyrN85/bVpoNmZRFJGDtPoDTKCHS5Q3lpeFYnOmFFsb5ULHmkj/VkRm7VlmAqCCOZHRhCQ0Mc3zRvBGyNQ8cYbyRqxWVRYgefQYSLNG3DI4REhkNn4M068hiEe2kR/LUOqXfRPg1bFu5Bl/Jj13WSBUoF9QhSKAcV+W4u53qtc+x3KtwORfAKzCM5bViLbDErgOybhQ8EAqyhGY1tVc0t6FpdmbmvQV92xthgz1bVfTWAxGujy9oPgeE0HnSwseZHuM+bLXdjL9Vv6/l4zY5ZRaq6ZedPT/UWw7FmaGZREkWwDBAuKZUKOzXGfqD4nbbc/IoXsTLXUzLam1KRz8f4kbEnzopd6FjZVnR129lj7UgfUxch++Y8fG8WU6C8H/qhWDYx03+jdYL62yC2bVpV2dbRqNXkAuUI05RxyvehPXPlzoxIK/SZXYcP2Jwn+3imbDGQK2ugkh6IJHCnNipllHMcXYprqxiVem21KRb1KPjJKRtXtI+78BLQr5YL1ZTlE1Jb74PYQHtURaQvu3X0Qd2Z/T/GdK89b86hTOIrkjJHb5pZ8jSJcwYHg5HsUucYmMPIaXn23zQpvYEFt0itppFtdkmks+G+AXtZqIJRzZgzyaeRvBaOUR3R/6/j/uHDIcWv8Ya6JnSfOfBuI60WTndJZbQ7RquKL8VBUAf/sz0EOhf/Fm7vquC65Afg9C1j4pVXxWeh/AWB5U8pPlHCkb+nDQAtt1Wl+tLLdFbuCIdsHoxnkDIx3ii4U9zoZdLAfQjrBhdzK+nmkLItnc+aAH1A/SqHAiKbU+DTJsPrZ2A6uoURcz5wdIDsdwVWrDOF6Frb8dJy+YPrF10/JCTQhu9hVrTX3AmO6LH2s9dvbqBQS2gsh2sbFBRuG0B/qJFt+G0oV+L5cxPFIVhqlGjoGXZ/DpymFAohFlJklVUgIvEa7kVoT9BWsvZ4UsPF4+yBDvy6QDeXAepXBlwxBCOCJBZCXwH1Haglf0/DoCX+xPxHClE/tYmT5agTE5AUQHn0EYVkdaIlb961fXoABlTDTSrmUIurn7L40cTBe+RIDrFy21ABue4uX8rhnZgX1yUMEybUjjEUKq4Cb2I6Z9pm8vF465SnFEq3fAxv2eo75zhDoGfJjj25AlGloKHCa7Y3vRo4xHFHGzTUJwJvORa+QZERqjmctngIMXnUTe83P89vzhpG6rZieUGOi0Xy4MlaV69Vcw5Tly2KuhWJ3eXgexQflj3TwNsuD9bStIVIQMSg3SEPDmJ2Fe/P7mIPFkT7MR8SgHXrjHS7DZTuENf4h62yL6JkWgWM9bR/5GI+Wbu332nYq9YZNlyqMteDHUogaIivBDlEuwjP7tx8AsV+6OHwGQgtIRB9Njfdm8+38x3qi2V2A1rM37jmtgU1j2Gx3695JTxaT53tiC43ZPdLmL6ZsQPHZhJb2HyqidOVh+DQvKKDBPfrvJyWp0/mYKrSjndpNH+EqQew/ilrbFxRyxsX/hUC6s7oog/rU+LuYTcUeF0eqLGxnsf7+xkR817e+uUix0LlgGvIk51fU0VFOh4TnpEXOKoEGwKzxH1taE4KkL7u63/n5QERmhRX+6RcjPtxGzEBidznRDuwHEWjLHibteYmT8OeMbAzz3A9Ua8tG+85qugzuF2BTMR4cYiWCvRXjMnawOgkZgpQuK72vAVL3k/DXJcsGLEcX+ZG1i1+k6JYMnxg3UVkADlUXVg747x0ZL2/AtVJmI8txTtWMgT/2d2DfgSx2ixEQDhgiwkZM6EI/0419pnaFRTFGc5sv1W9z2S7FafViv1pUI+2KPA8d20VAbIliWu4hiuceaxxUI3wQPlNfjqYp4qpfMhYw0xZ6bxZYvwYFWbpuvwTFuFevi+FQ35D7Lun+LXV0SoAZzBbjKroOboAzVffZmcwA+ENlLIDgW05Dcx2+p+PYh3hmind2Yk6+G4BvDOzr6bi245VIJksIvLZXcfiHPN6q8oWlfUJwyF8/8Yk68cEIKT2JP/9mtaV8Zxh8sKUje5HY1ksEbZvny7adCNQ60J2EZiQy1CcI6tFbeExr/eK78XkNtfO8lolMmiWyYyrXdyppL9fJgAVlxEcfs4HyXP6UFNi1OY1Ow//7fFgxxOAh0sWifCuaIK2b8O3RokyTqSg==
Variant 4
DifficultyLevel
586
Question
565 × 123 = ?
After rounding both numbers to the nearest 10, which of the following is the best estimate of this equation?
Worked Solution
Rounding to the nearest 10:
565 → 570
123 → 120
Using long multiplication:
570× ————120 11400————–5700068400
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
1 | |
2 | |
3 | |
4 | |
solution | $\begin{array}{ccccccccccc}
\ \ \ \ \ \ \ {570} \times \\
\ \ \ \ \underset{\text{------------}}{120} \\
\ {11400} \\
\underset{\text{--------------}}{57000} \\
{68400} \\
\end{array}$ |
correctAnswer | |
Answers