Algebra, NAPX-J4-CA36 SA
U2FsdGVkX1/oK+Q7hEpJqn4zH2ZsHIwCJq6JitIOnjKbc8N+LfUO+nwYtNHzs45GSb3h2eFS2ZeFkXORMUf0y+YSZI0XIZxkVL3HINmmLHhc9jDZiUkxpvyH5dAXkg63soNVqA4XHrKgu8sDwvt/VBEI3dqGPkrU/sy1A+coHst6byryDs6M4VN3c47qHrSrEhBPo5ggJeXsW5/Gjuouxfk5Zc/WRAjDNDcLarPiJucLh8IjkK+whiGCqajFhs/YsgZ0YAsfP843/IhIj7+/9U+hqJkuhRM9B4OppzOyVgU1ELov93XfvNLg2y8uUDS8Agt4NZAS0CSU7STqAVaMOEMEzJO2yK3e3SOXZQ453F1NoLfG5XLw7jpVZteOQ72F3XIpIKz1t4oc8/jsllm9Dt44aawyPRTep79I3P7gI00CZ/ghsD/mv0NDS8y7ovNITyiwHwKVJ7YmqwvAAjESVtgoSsA3LTZgdRsMML7fqEu/gv+1nNo6V46qbWcuXXPJ5/ZYM4xocsvJ7nNzddRLzqJnALbougQUQkw842knaZxdU80UyIi9UeredCyKskUdAPQSmy0ILdocnXY5vUC6SI+wrwGVUoZgA6zMs2aJN6J5nlyRzRdfAJuSRa+nsi0LeGJ7y5tXLVH9uqC7Af586Qm54FLR/P/Lg/p+IKKkFujG9l7HTfWX8od9p/uCwu7Jc0jQoZbHV9M9zAdC4bTcljTTq9I/NyIDEoPT3c03kRhcauYN1StQslNWTAlUm7GOI4nIMZ0VloXKLucy9dvOXZReGlGUTd9Nn19Ze56h21Gy0O2XLVHGZWF4j2A6GXLd4DoNL/2i+Lhb7c7lpbcUL1L2sayiSdiTgooDyItMbRp7twAFAUc6d1BcQG3ebk7v6vG8WOcnx+Xt8m7ywK4Bs4UIPD9+qYpliNmo+y724M7AjfV3JsDa3je1BWVHi2PyUFJixRno9JFgpYk5HfWneEZPYFkM3Yoo2jsy6A1T+VGN6Gx+fCpqbrtaocrMOmnySPur2dl8RrRo1WJmE3bi19EVLEWF2h7wAwaWXmc18lYT2oUT5U9ARAl7xuYuufEKoPH/pNj/O/y5wfFt5U+ASXnXvF2fyaH8e6lfJ8oDErptgE0/wFzpRUGWDnY4vZlAABnskHFX4RcgY1Hbau0+bTwUZ3m9CNaNKU6l1PPi7S2qydYFWo2AK2JT5ZKG6ksl8QU4fUTPbssp3SCH6kEVmAUjyHyoLcw0NiTu+oTLeWU4Y6hPYJ8HO5f7JKuKTsOPMj0jjLbiVRa2dJ0dNqqyU3nHSEj5Gxurnbim2vJveAvJKw7h8Kh/DXct48SDx9T66ZeHIgF77Fzut2SyeNLvEeee+fpPo+nMM9ah9sNtmowpQdnVmeEItSfi3VTTHb5AuqtiVXXFyEUHHATzx8szUe3+ehQVP5X6HfFdzGM1O34Sqa9d2EzANyadb5p4Bvf4xBGKgsiwruQ3grgNNb9I7nyfu2vWtxl/ccrHhp13Hn4H23fgimHcb2iQAgjl7OuhWYkjCUrEOSRQf4xazqnbOn9/nyzjjRkkt51Q7+u+o5hIIuSUwjIN8G4SB0p5Tb/yDqaSV74/AYoykbp+Zr95BBt/G55Ha0FVlzi0psrHg5EjfFt/Bg5hMFKkOdCMnStqU2DwcouZsrhaJD4gn+tDUfR03RdhErmfJtqOcj4FnRB41lKRC3CeOiGTVOHx59ip4QTtALLX2WaKnvaIBs7XdfvXETpm0uJmxiIxwtkAAsHQrlpPjEXvqspyKbNiWstTxyRU49dxX/+gzC6LuIBxwHg8Me+3E6ZZulU5PnVxPaxxxnx3n0QIBcLskWFTP8QX3LGo7IJuBO004j+odiMJKw449ouUj4f2NXUo3KEuxlnYqOnp602HFO8ybLJYyXkKDVHX0EsSy4v8kH9EPL2lqHCTnBrsC1/wE2rfy/3lDacHof5AvoXleRFMiIKXHehh1xL0bqr9Pm8nE4uym8w7RG6tY89F4vr5yEzzzsgOmCyt8IvRnwWPB4uIjMdSR3jiOSiF+10bYaL73NXtI0kvwSYk9/v9giNkN1wANE1IKRQQfalO1Y9lYyAsp1fYpjBjtb41NTj5XAEs1NYWPXirLkKCJ76RwjjyPHByF82NYbPz2RdM7IhBFEEmNXIYiFVfV3XA5DFVXDJ3bY63A036+WsJ6opY3yCL4uOaln7EM8c3BNY83fUJ8rf/iLX+WZc8vUYxJ0N+tgQJ6AeF4pVKxTU8/2UNHYMskURiTROmIh8CbAw/twL9rFdYFJT3sVXBUwBs3FLhn87B0CnHMcy2i5HbUDj1YjZXGeDCTaLZqLwUwGQPNMLsPU2PHdHST3QRwxMNWay7U+Qu5kpOHRCvfZqtFNH8Cxw+iErd21rEV3sDbZsCwKfbvQWDTPieIqC/UujU3TY3kAMaJvsWSMiDeZpQY3pZ0Hp2u8g8P3bOpKfSfyGxEDmFUJ2SzG4QlTO+tF3oShvA5G3EtpceDt5TBPMiaZXHri2pUGMtxilz5L7lBwPjf5dOzfo68rB7oYt2gCQdRZCFsLAK2Ct6IdZXooNW+T2go4hbCdfeqN+iNa3RRude5gU0Ah+avQP5lMBG0L787Th0nIb/8DKH1NPVr4WXyksIpTociLJPq2qjgIGcRj/Cyl6wusGVrqyX2ehhe6HRyYe6OWCBkGAWm8zKgx3mF/b+Xw2upavIQu858Qmfy8fzRdxBW9Cp9R6vvfCk05QlMl48yNCTF+aOybVTGGeAo5Je/9vXbv8CpsjRRo5e846kirmF9i0F09NqLWKQNa/gQpfaUXL4FApcMqaoZ8Jswx3X+q2C5yumiUuTuhif8jZlNQYBBz53rijDD2wJzby1LREm+Fz26OAYwpJsku3fLSacLOLGirQFy69Gy6w6lpc2V4Pz0Nt42gHrSOmvqbzL/K01dQ4AxKTOsEgXGzi6V4XhgCsiFJLpNCDXDmCzWuFHbLHzK87tRvSikUxzE1Oc7AeJXUKpKQUilw2+GdiVTAg08Op8lhUkkcIc937kufyZheiNGAec9/0Yqo8I/VIBrNFTQp608lKeOO4HDRFF/msp1EPpAvCuwk2ntO2qGZ9nZqQDNhARcSBu/H8m7YqCM6q1qBvv5OUrHDWoBCfRc18LzHVNKV9PeqW8x2/2JdVzfYhlFrWPDYrbW5UiTGln4bITgFchKlMlz0fsGrziYDs6oTq4qdaO4LKi0WabqeJLg2xeHxHJxVuVeoLleWvbpEnijlrRHDvEq+1k6C33d46h4jYKKL54Cd9lZD56FhpUD5k4Pv0++p2z5rln2V4zBHrv9ui6lfw8b6eUIZ5BYB9bi9seTn08M7FxTM1eta5S6HMiQvdFemlVptOODL5YNn68VL/MJ/y9Fr9kdxCZBin9GJj05LVqeV8h7nvO7F2JLyUyRfgS8q8fCy/WU8iUuSgmdX3oupuzlAJNFFVhFx2OvWJg4TR8ee9ayxc0gMCWA1vEyP7s4Ezi9lmlVI5qZl38YF6DM0Ce5QygPfZQsP0Y8/1iDGbqTWpLLeoqjpp7h6RJlytNIiqcVyphrrJZyFh48PsQXz1D5WVa+LowiiT1KB1qFPJHd6FITRCDiMcFfiZNYWrwNDGCtsu4b3t7hm/XFjklS71PbdIs2UtrbuA+vrM3b8qdEz5b2AbvqnTQnJlqjECdkpmRJFZ7Ujlg5cNL9BdY6P3h0/ijRU+wGiJaQJ4Ky6NdsxekmxmPYiu70gY2jIr2FV2kMkRvZ8Ex/Ghi69u31sXdIDEKt2H1qLFomKvj//VppYIqx0AlBwN8ju8BtsGBYIvpWMCiYTiJs62jQgoJ4HDo9EQG0zzgXIFcO0zVrbzO5NGWqJaHwHe95qKc4eJzWptCmVUoHTdZKoPW5JoNZv96RqXheJJiYF47Lu0d3DobYEKyypoe4nTX48eTnnW9z1NNJraGozBP82tUJLHky38PtOwEwIfxhyCMw81XTBWoNR685fgN1b9U6Jv30qffY2AtyiZfwC+YaBOoV1+SiMv9ulJMCWFFIqu1DG83wgGOlb0b0cIuHmqgOwIxMnAdke1JubpcBg/ZuejxQu2aWI1alvxk87vZASgADV16ksx9xjiLgq60Rehoj0XODbUG228dO2pkDErBQrxE2/WcOL8LDuXkwbVpOZHI4uflHbvdEiX5oKy62HIjCzlxgfzC/Kiqy0RFntEv8W54yZOCNbtE9WQJgQcyXlVWSmMx8g+/ADnDQfASNEfVAWhRMA4cJnpieh7P/45gkQ3WgfOkAt0MTvyAyvIgVzEHQgG9CzNEehm0HXVpJOHtbmDRzNxXPB4tVB+ls/1GVh0jfH6V6GWtl8jdthHqo/DdzLDnjpjT8jLVFpof6K5+Qff506u9epLlKBJKQJndd+76CR/L4ihCsvjvdFINY7Rnrb1meoqi5RgvcT2d3wCBERpmKfF9S5kkUlXkXzzTLSab5Dtz4rRfxGv+9SYGx4dpOKar9I+M2O08ZLXQiO+mMCdExM2dsiQDuug6DvkCuB4g/yo0IRecK3G1XJFSlywD5e+WD9kdWVjJsOoOXxw8AVzTl7cFnBRssAFZcVAWslTyYiPy7DUuj8O0haBkxcyVH3nn8DNTtu22qxyn+Z8JCiK3AfjRsSyaMxmlPvjvb3RSSbVDUBSfa+6oMcWZoJJcfpxHMjQJrBdvwWDcFTQpphbND/jEQYnYII64FlWUMh5FW/gEX1PcQxIUHAlvD3M43zuKFgApoSfHlOur9f6hDCnpxI89/vpj6DLFDusUByVXFZ1l9OC/GQnqj5iQMNYycNg4KIZ18dWSp8VAT1upDHFzir93xjFTUzqgT9krtP5XNpMVtqfg3xPDl4SLbN4g1+l3wXfvbQEuuMlsoPSGLrk0rfHtAqQp20a3ZHOFfovMz0bqYRx+IFTy9upf3AgOABop3+YeGu1PFU1LGzFYCigWiIu/0/gAyVnQHeOC55Qw567eS5wXMktdoG02Y0ZciDnNXT+QH40dp1bvEI8Vs/sXXjQc6HuIEzpzy/k5ggnII8pS7QtXDo5AsnH9uFGjs+EVYJSFl+co82cP2mJVW/fFtz+VruUYBVl7a+pp39HGYC8H/xR/PXGEddmLG4CNOmjga27SyaR9h1pb2klYRuTjW7p2aSTArvJwXNk6lOtIJZgUZI+NGIMzm4Llxah2IBzxwLbWU/C9WRJnGYPlZxJbdRnexgRWHkEfDhavd1RUrputG09rG/ayh1B+8k56A1EXLiWd3ZMCcFv/WrVfWE52bSkX0pkYxkAA2zjJ84lKalCE6cHEUojepJ4Y7ldXSU47Q2HMVAhcvM5jSZjbaMC2IJmSHr1WOeb/jdZF1K+NKW5spl4piCiDgX/f4bYuJ5kdZcUAowgJInfuA89awXbvmLfb2jyzQsjwdUJoQL/3WRo7GHiLSc9buaPOX5BNCLZSMDeXpy28qxuXTuP+/EArM3hBIAkuLYl/vZHoc37YEs5cW60AdIQ9C6qRoN8QPGJbcgrXOIk33JMM5lQKBF2Xr5F8lmlIph+ZsIDqZN9wZqZEysKZAmA6hmZYHBP9PoesmOKEECNI3VKcBcS3yvbncmmciv1r/JCp70Wn+2QZSFyoFrb/HEeVOBTscVqGLBWhyo7FIq+IG25Dp06HRbnwLydlngv3YI/qOnRvjrHWwPMjd+x26yZTVGRW3ohWcALQAjOTqcc4sI0dO52rvdeO5zrGMfxxOOTNy9ylM/HQNjR8v8UHdmS9W0UUexJcEKUg5qj8kpja6oHuIMictrIxhMBiNiFXvytwC6Ps+wvf2P/0CYtR+CtsfLxWRjKIAR5NLex8rrBcFnbJByl+S5ZHAanfAZrzF2kulOU/Kytk+gF9UWSQLwF38eRoZ5Hmn3qLzQG3A6TKhJg2oS/lKiZokzZdMSFqq5e+2yN8JfoTikwZq0TY/4lvkyatd0ldhdVlzQBWmctqrOZgnFpIQii4SHB7QXmbZ2LDJUNOLwMwz7yQjmkQ7sCBe4PpAATNpVZnAhuO36uU7p2M83qv0C/KGHDON0LUpnCai9QKO3jmvahtnoOxqTv+JHcEP9G3TBTJ8Ti8pV52kJPopnKxVLmYOVDknbSWkTydLRi/sZd6XjxsJMUAYL7G7TugygQd2I5YowQTdo53iVCqz3cLj2zw8MAU5Fb1g9v0kTSDQg5hRr/GUZAhMrnMyD/5WpjVtFF9HT7//RD5gH/Meg6tbH0ZypWG6ES+hEIwu8Rlm2NQJVOxSZ+eEpqExVMskC1+ZWT6BykBuh6z0qhTbE52zH7xxok6dbfpMXJmQLCi3kx+6stJIlqpmCkwnSjutk86gAmXHEFxOHjkEYzWl/hb3LXuyvbL7UHdIeIG/FFZFfdaUHTPo4qL8WtThI0mC3YVUUeINmHsB/dszvuuLrXbfHn9WXMDz7gaTbpQBTD2gbU/7qDVctajUXcpTOg3iBTAsDwfyZFBUpYcqhUnBAS/v8zeJ2805JAh4TLQ+fYauHKMgrZXJfKP6bR51pBTRgZvdX6H41Rm5vsw9cbwF1avTchBp84FF+zNDIvGGJeVh0Kbuq0NsW6/tR0vbmXnHdxfOK0rs7XodnG4c/ScNtbxl2nyQDMRUDtWr5wYjj7J2KHk2gMJdZNJwLaNUKfeUYxYRcvUtNVmcREJ5Fj6164Dvxj+MFN6DpEjPc5XwHeLtglFhvKlxDx/sKmUIOP1/ng5rBpe/a/Iabco3HviF4inz2C1UqWx6KgUvUYGrTJIZbHin5PpBgJNkHZj/1nxZ/1egSyBDECaoEOoZ1wH62N8Mxk2iLKzqqk35eiTUhQ6gfOIDiOoaDDn9P4V6dGZ0pZdf+JzJ6fkfOjX+gZUZI6eB+Ty9h5EdItGCUioCPCZb0gJ4Qcs3c+7wfhI4xPLxzDe0XjUARrC5NJVpLHgA9hkDlt+Llp89T4paC95xjz++l4uxzvkkjHZC/LrEIwUxye+/irkyBlYhJajwuiRvrGqGen+AHeLzzYQeYgNEBTqe7cw0UTDNCqd2pillWA0b+UKuQ2MPZO9Ri+SWcqAZ1R9dM/3PKUn7kV6MQZNm5UBVHqrGs3A9uDaeYiB62kO/HFAnNqjCKfV+OIg2gBEPWhOu4u8bx2gRRBVKDZeOtIt8SfeIuc5+p2rEa1MzPEQqqHf84njoCpKKA62ETIj9YoO85BlAPuawKUIeLEApPkbd6bQ/mLDKH3deYiVBnl/iFpj8Wso5ZpX+dzmU0SASYyCvJEekNqXye9hKjKoCxt4ZTMfW1VAS2tt74EK0SJr2BuF/tGsiR9plslSW/k4mTEXo5pixjmQE8ZiJikddGb+JUOwsYStK+z+zBzIEeiFw+pG5ZCqA0VRnCYfpqobFjZrgesNT6ryTzBmPO7dxBut/1XJQgZE+KxxXsFgruHoFskUfB6ODEgxtFiBVYjpVrB+CqsZOydAWOte/sdYILajrpepGUBiMfA8H+YUP1U562phsAdf0fcc4bqueEsDJvYuijzFA6651GeQEkrglvppGRAMI6YiKIrQ/kYEVqF1QPINu57ggIg3N9MFIRiMyCsxlawrnyopxyxfSrQmQdwyUzEx9Ywv3pHEeHhSRTxduGyqYNOdNo9uSxnBM85r/XvYUsDViTfXHimcYAppc8UrAC5m9W9/ko3rJfJtfh/ntriQ7qM+wHHQZO/8gGOUeqzQmRnUhKKRSA1CbJgWrCVy8esfXBJ7t1bscAsjnmhUvi4MFrjQHfNxMbOpg3dVg2LiY3YgJAxmMIiFCB+7p1PBzOSNeAlqmaxxsd9sxLlJyiY/9VrM8KgG80TcF4UNlsi83v+ozEiVeRAqMCsUYvujsYeeUWvgiiNTBTKOfwrZvW6gfeWwxDxmYMWGPomPqTYo4iTNXKhC+NVBCplOwU7reY3cez3H7hm2X0laPUE6CSt+v0RRUnEMqbMoYV6aPInwAiHfrHFypJ3S7njhj1rGr7nTsFz867pNWeyEd1sIYvsOi009jxdzt1/QnEjw3OheltMLtsHggJewE/WWOXFnNtRcz03scezJSv+sQJjdZA7uMhOVR8J8vUh9TcCnnJbRXhZclt6zMPlboUHpI1sjXMy3cn0Qan4EALRsTAFnBuKr0IhBS0Y+rmistfToeGyDDdSxz/l9Z4Um3ceheZ4yu5a6tpjyBY2lHXpAHfkS1B9jLtIchzElnFulglw1UqORSNymyy0FZxWwfqiuMDUOOROQtirt7lUPYtiD1c0dH2m7bo3zyY7/bNwkrTcsve7J4oOueQkf9DUay8JDFEvvdwrjXLW6Bd706C521wOaKQ9k5E1ttoHoyFbGOT3UsOLM8JBYpaFO+NSMridfXdWcNs4KjmSdycakmVwozu2bgT7s5b03VqCZL9dgbcnNmndoXCcg+YgUBGY3laf++8SnaqWFdpzuzIaxWUaBjTRjEzLbDkBYqZS+RSQMDISzdDc6qN80864t0QElQbStFzj1ktGJIc9yPIkkmIP1xLpsXMPqTeYn6XG17yRG967fGItzMFurzjDt76sOBnJ/vYgxAaA+qU3OFlsxirQel81ggXgqMU4FLlIyRwjoe4WpPvPD+h+z1aZfWQxujiGP0ORMdHIfMZ9C/XzKtatbS0x8NQUEjM7nF8JHmvrnXd/Wnxzni77YVwc9yGELQX9Hm/KtG45f+b1Xxi6NeTqpDvTxK2R7CrmpbUR6EFhYEva5fVlnJyq7XQ20LtfWcdbNt0HubztnMqqi0+iDuM9AYSx1T7TWJTl0Y4isdNcRUQfjPsITdjEeVRfOF+B9v0q3tipRNVd3WmlSAm+t7gJgBWjkHD8Ybdzxfjbkt6dilSOdc0Qo7XYaK9Q0tCybZDZu+hwREnY8jnBjEpvQmNxJuHtdFP5ZSONOUE3hJkJPRwoEE2aSd1O+E2hFDWcVPsvuvnWna6400drI6Cr2imYbBhQCrRSKlb7qMFHI6Ud5siwYQNTbROrNday6ituBDkwji5Ps4ApisjwJEcw66iUxQZX9JmeH9rGXLWeMLTW6jjO8A3H+ZoVm1lOCnT9vMlaEI8H1+Vamz6Ic0vFvzvzk59bJEiQht2ZVR3+p3SA/D5vM0QjNyra3s43m9t3H/SAYsUoWPbABzHayYzjhl+crFeoLKsctbUYJVfAHwhssmLvCb2vGlB8UTODRbAhi5lvI2sXVX/GqdRByH/qMTKrQTJdoYWTkOD5UeTg9TR3X2aVYgZvt10YQKApMXbkJ3CmwA7w2orpZhOqvymjSKtNtmPEvSfrtLhewRzjfDqA35KiAwzK+ztpObQfIgjttHRi1UhF18jVmSIFZL/lh1bXhldGCPYixQBZqTlDB91EXD0+EQoLEjbSWB0WsGVEax9jrXxhRvGoyg3GAZucjKwlGSB3ZLPVvM8dzDNwOjTiW+AB003AiyJqhAzrYqMjIe5drY/5thr4iSsfV0ZHhbrSRHwcLlxKhkcFfO/ryQVWzd93JWS1Xlo7/sG+nYWWXVRdmfezQevJyip99N5t8xsPXxmpwRq2rQ+Uf6wTymwk5YgTci6c5IE7AllsIujM85MacXdouFaIjMYloGkBES5cUFBi4USDfTHGaAJZ0qDjonb0dkLOYCgAUYwqZWzPRbp4gQWNoGAM1WlYPI1d9RJCYe+73E9HO2PbJVVGy7hlAQX5kZ0B3haWrQWuVHKmNcNkEb2skc9Jf6cRIPjjGsJJChPHYEtPKzpoj+zGJ56gjvsT/fdEu1Qp7R5COas3Xt6RjXjxj+zK3l6ukU/156CT7TKTJUbFtF0IwVMF6pwf7EaUT8Hc+n8CJA/AZ6yAmrpW7JnZ2awDoFtx68m52G/+9eT4ltRnbP9uxfuIf+q15Jh/lXx72loioMtKwyrzySsub5ZzY/G5Gh0Xv3rZM0+40yJvCri/KYO+Ll5zEuDHfPdZYK5IrHVLq+qB9wsQe1tDl6hw0Chrv3Ze9OzoiohiSonkYFrNSeeZUUMnatGt+kfXtOetsI7Al/5+V6RV4oiUorP4540ewJQpHGPa0tyMs115SxkCVirv2zw3Ix7Pf9p5dea7jUx7khyhlzlfrvnr7vvsb1e0z6fe0RFjZcerLxbqB1V/5BC3kgJVxkrfBhmgBTIlVrQREO2Ai7rxZ0rhumAT2HohzxIDxpFgfd/3w7aHuTqAoI6prvISRgBsGBDtAnj4Ug3hGjPzAa2v0vPnKVWRwcwu5o5q8b20XLWdbbqdUtLUcbugO39TEf38dV9zICKzvn3slYhPQot9gu2pMoa5MddBY7+mt0Ozsu8UaQkmyU79FSVB8x6eOvv2PSAxcVatsRMm+7geDuYgEqgiyTt7TeES6Mul4DrlDlDR7FT4gEG5KhPyAKiZFRDkj8BIZXVql76axom2Anhno6mVjL0WWtInV6QVvZcbXjDAGh9XWiFchdhcALx1dAaf19siht+RTTHq6gxC5ZgrTQVG8NKxlEUN6oe7O2T4gl/xPomzbRO9psJwY8FV+0y3Uro/6J2x7vODGaWpH6DUV723f1bC7BHRBqqNs4XBp+3x/y8UFwl5SDfgLBUMx8/gAsriw1HpWlHGXH+192XeZkrgTXc1Kj8eymbXuyM+qrDmDg/KL+TjEatgBMSNu04oUCT5OaqmOtcfKjK8u0XopknDn6Jjki9/YV0fNrU4NSrsscPvEiyccBKYn8IY9ux8gDbjY9kRMaf7w5In8o5+GrwN9LmWaMVvBypo2uyVKtkdWcGVU8saTI3pUa97WxmQghc033qtPQHIiityqtXbu7YhqKkJXLvx/ljm03nHH5HLuIflnwqDCuU2hCxchRLALt8A2J911ErskpFaZdDMRB6CnIERGhhYrGyyawcxiiszU26/aV/UgrmyTqcQHUfcHpIDhV8zWJ7SEt9Y+Cmmc5VThtUbKc80k3nmArAmp2uk45uE7QtUCk9QLIZixLc/TpFqcs1K5PvXDOj5oCvwFRZ/lJx7QnFUjEgGRPbp34TIA5dy6xWCwWFrSQLRy0MdNKQIep2Oua57J9658VUYPSoFk7rGVwnBHMBF3zrP+1m5MA/dFxcc80dJ9EkzBNyljuz2cAAtqnTacrc3hICJj75y3QFGyKwCZdBiDbZl/x4mqECI0v4wiVGWvBde7Etn/yzTpn8zpbdJz479KsEsHVpvKIHP0Pf4FRi0+wyivsGFbJEI15S07xXbW9uvtvn2SW/OE0ChRNDSjHOwl9oiiyFg9PkhGG/xKfkj23QU56mydLNLjtRvcY4I373gRS0ayleDWEUOVYT/quADNv6NddYXE1qlTD+S8zGoRRoQUpsZAWiyaXdrtLJsZTDBF1KWB0OXefRIsxz8mqBjLLN+ozqWTa2luIZ35yotBhHmWDGSWmvyMDCDTI12z6PjNmi8RjmV0ouNQy0cSYqiF//LPuGu1y1HkLH+lp+bonUBakBtd5LnTIK04JFsY3FM9MdLuMX6kLYMMRBfTzwIGAnGOnjOsD0g6YilIn+zAVogkaYcW/qZpDXatS2rpUWIZm9W2FVABbK38tgl/88rFbkI2/ofpDIwaOXC0Pmuh+hhpMSqo/ljh4j0LRvIUfDHPb9DDQzC+BCS90tgNC3Wd7AdEU0hxLb8opexh9rSm914WYiP9psQfHvf7Qfdr+zhUER652rSfZWKpgj9BuBo4O/UvnAGJlPe874uQvuivfUtJt9yBFgWkz/nvrYTIFt1MAIOJ0XmlDi8xkiHflKV/DeQjPveOb8icAwAmzxLPmn/poCLft08Gs7mybpT9thfz9lg5EIFEmRMdWzhiRsvlvX+yV3DQurOFHIcCOC2Rx2VYuUYmshN8aadEB0QI3mrpTUPNzMoyghcUXJBaMimWtyx85/yaTXJucpQjNBtE/xEpHS3MJZxVMXPACJcm5QFCgYq6bWRyywChkjmr2ikQ5s2kKx37UxBWP75PTgYL8EwXm8BEUL+Ni8zTA1yFm1uQpxb/zHAzHsqnsUgVWUxgCDz0nRRxtQcMhk3g2JOMVMV3jIXi2MomI6zQxC0+aIrhD4E4re5xQtKPnrfEuAF8JW9fT3Ophkf0lXMDT0ziGHd04JoBRE0FOB4QEwJ4yPVY7yly41yrdvPcYYoPAe9q8HPcbAISKFpXIVP3iFpsYxmRr+mdO7tzHCzn+E1LEPWjry5OB1cEYbMog9GMR46/RbVOdW20SzPC3KB/DhdJ3JgmaXIoeFnWxHlO8ZdZ7mrAXuRh1dxGDASjyqf6H2trUwRLAJG8h0yRBtwn1ZlUwJ9rb6LYUufDJ6tmFYw+IGUT+Z98M6FYRaeIPdxJi2zY52uD4burNsEpSVZCsHvLXoDq4h861lPzGZOm7lWemzJSMwjjjqL9ffF+CnZQ17fGpwthUPfgrRHOBscHjWpmpa1rMqsjjzUdZGa6A48zLSJAiSTBofXzofpHPiolU+feci7+LaqfSG4XpQjy0oLW4SRO3ifGYkU+IzuTybsDehR9yYlZ4FV/YPsEM3Md8A5SJADIYz19xO1Gy4iIqi9NBujm1Ewr2LCv4Fr1HGvKJQ/pvKRRV+Np46AozD+4d4e5PgRXWTPcc0ix3lki9rAmyj6tCit7HUyWX5yQtiHXwyTnVMAYNOPj8VGJRNTefYqMSo262Aao4nbvbWGxx8GpoZ/5PoCbTwu9/hcWh6mesar6oB0g7m+foDAVvuZ7QFW22Pp2KGT6bjFcbqC65ptIun4Q0Kq+8YzpwBnkYUWYX7NJyBt39L3j5ffTtH9lz9lLX78SJYlFmEw8vesTYYlo+EOeAZ8/E0AGIihECtrt9UnkACjAk98P9E98Hd3lnpaTqWuZXEbTb51eRBXnWe5PVRZAqATh0E14XuXAjRUv+xfa2NdAl1H7nsRVguGnzh5JezmOMHLqGUv9wgzRALjZRudoeWR4pI8sEMLRjax0uH34wIAotoJ8uroLbRn/1GrCG62fFF6t7e357kWWqFzYCYLAz3wPBugRXI9E4X1zTJfBsHpZDAeP1XPkoWPR657iRjXGTVptRjvMtThlz6EvtvlJzZye/ucJaXexp5p9ZL11ZwNL/7Ak7gK5d5rCYOZNlMPJs64wQWfYnd2jgPziU0Xql5oS9g4Y5uKdQZP+WXXM9gue9DyPGje/6qGPqERXxB/kzOyz2/n/whe2N2znFCgohm3t9xy3JJigF6tgppn5jgkU0H92N75IQ6ICy2WroJnZzRAo9XHm7Xz2i9VFjXY7Uk8tMu+HiP6ZQOw1jcyc1WO+WT2YlWHTTmcjHBICf24KQ9Wbo6m9vpK4yGNf1toWhsBcWrwalo3RGnR9npjkMTrUPnZhaGgitocgB1+tuNfTOvPCHyI9wVFM8nvAmXTf+d6KIin0u0JVdisS1LhIgf8Ygyin+CUSdE65CO/A0sDZ0IlD5Vj7lJleePhvt12KVw9vF+NsQ+94iq+LQSNGtAuui9NK/J6WguFbotwnc0wo4hzr3TcDrwauLsrgajjY4Y9uCWXLD+1RWhuBx3RjiItaOqbPkBfldQ2/TWF0I2mFWjNOt8hfuamzShyWiGFmhKiXHgAihlIP7Y1ZwLguw41btyf9WMn/q2SdSsjvF6ZVBinvqMvFwjfGpb27LmefWpbkxTqlvlfzs1mccULFovdxuCHcSKb4DzNMqoVXnZWA9+QE607uFAFT22te71bWEeNROZYlyF17pSrzWi7KRSQyPYHM1sgOL+hPwkaS2+01rSsC1e2nNHYP5J9XYUeJBa+6jcPB61wY3D1ayBUWIEISCg2J0lAmLBjt2xUjzUox/YHgOT2AqTV4THYRVdQlbXFGxZLT4QbHAChZzyQKYIy3X14tKmEblkkyNOf5f7jUCWN1qFbwy68hdS+NL+pxXbM9bukNAeZkf3VPqkaO3Am34/2nVI+i484+9Gn8DFjx1eQsPfIX8j6EBeT7gE6XHIr3RlC2y5AXMZyLGNn+XEfRWp8pLfj9hIzFcdXqhbQKnNAPThp1VEcMZj6tbbcQzJUUfAx7771JL4VXh5VYULJjvMuqrFRMG1fS/OxhFO/Zzav/mGzobzhiDB6t3PxZ2WmjIMKKTToLxOSSGvPf6yXJ2twnPJa9dKPNRpz23j3LvbzkNzY8PnJhWOc65k8Ir7nRE+MWHwpQzTgaA+V8BLXRpbxs4lmVV1MKH0cocNQCDEM37yAnMW2Ix5KsRG9NvNm6Gu3a74VXWRXSD/I3pMT1KStZMrvU7OYDYbG0Go+rFdfPY2huzoG6xfmaiB9RzTOloo5Cx9V21B3LE0eOO7Jg+Hco/ZXfoao0Mem8rZLNQ9NVDD7GDrLqu4hZIcXVLUtO3LYgP75GKDuY6hmtehjDkrKCPiwiYvSndS7VtJtpgjlsDHyddX1Do9iQXUUFCuha4+4MwShYWrIaanDm2IAXvcYu4Wv0RzqWJPRMRcPUFymTCY3wYsokAQMJUEfsvsN3ZqYQzN71Om7MdtN2ZolG78kKbTxasNrdkwPmyHnhpL0n3LuvcDT4UHASesxoPFQg13Ogzts6VpFFVnbp6bYKAMcHhNNj7C99Z6+LEX0HBRPAbrABCF6Dxj1Ewtgi9zMIpDDrQ46GShwOW4eYoIKa60s2vRdROuHDFtz4vl+p3iJBRKN4BTpTjISa/Jf1LxU1cnuSK2FW/spXeTYk7aHmeCJBujQWsQHDpPOFG7YA7SMQRPtuovwdj4fJ0eUi1vyijLFik7EMsLpBwCWqLYArnVr6dlE2jmBZ6a5jL9EYQIxyZmbO67iKVOLPpAG3BCJrDKKunMCIIyBb6Ik+MaOoksCgtr0ibonY0LYBL3WsXJWDKFYK8gyH2J2+QLghGIZT95mjAuf3Jlcve39DqDeP82rCevuhJFst4jPyHsrkE8ansgH27HMXo5a3RyNV93VF0lN1pWYG+qskKAjqXoDyc8GhIZHxhkXYO6atqVT0A6XcKiN8uXBLJjNwwDS0F+XelVi8IXp29grLDeQom6T0k+PBg+vtPEH75egDPkQhgDOADGQOzsoIfHIsp+uxC0YqROTPS84zz5KjVYqxbJJMm42HGjQ7bz7lwd3DfSO9j1n1/8e7crE8iC6+thbbnfg9pNl23jk93P0tw10QjljvBDnSWDC/kbDh0hE2NpgP+6j7v4C4lZue1UTmYhoe+aM2S+B+qvEqtjmoS4nCnbworAkUGImNYzPLsq4OTuNd65PiC+MyCY/spRVkfsp4Vb7maiEpOLtysqxNdBxMhtZE3HgdDcz4v6tLWKsO/d9UFs2VEOV50NDmCpX3d8Xkzsx2za5v2x2ildlH8KPK1pRl362QvV1THYTg6NHi9YwpEk6vqj9a86StxLt6JLmHoGyTTsSG0ol5NHTD9zMOA3zfUq1Gl7Qo7ZUwm9mOpjL0a6/VBfAg0ZtTo/1zOdlsvU2MUOuu35tf9OlLzBK44IuUGJhapyQOsilm6pM8OqRQQQy6MNv4U1hFvCSDmYCYGNO3AlmRuHFjfpXeiT6E9OQC4JX0JeylXaFe2OdoTYrceFDBw7ymJyUAuUhI/OyN/n0YuAF7KR/SXJCRhgm1TGWEOEMWhGjb+u28z7WWToJv3C+Lpnn892Za0X8gsXWCie6BbCwzl1hOyQlAb1/u+mKa4ZzHZUKlQTmQnbXMoOltU6peSSu/49sHJm7Q5Xfi/UsDLLv+15WNcH46duq7a0gNgwfkS7j8T1MvxXcp+dfpSPBhkx8zYfPB3kckwXGMGg5BG5moxnsNCvJn6jsuabMuvzo=
Variant 0
DifficultyLevel
731
Question
In this inequality n is a whole number.
n5<53
What is the smallest possible value for n to make this inequality true?
Worked Solution
|
|
n5 |
< 53 |
3n |
> 25 |
n |
> 325 |
n |
> 8.33... |
∴ Smallest n = 9
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large n$ is a whole number.
>$\dfrac{5}{\large n} < \dfrac{3}{5}$
What is the smallest possible value for $\large n$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{5}{\large n}$ | < $\dfrac{3}{5}$ |
| $3\large n$ | > 25 |
| $\large n$ | > $\dfrac{25}{3}$ |
| $\large n$ | > 8.33... |
$\therefore$ Smallest $\ \large n$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX1+DWAMHaLCGJwg4mwh/zN68H0YHRgvVuBNVz+OURNiCv4fxvb+ZZ+cBZgFuylCU4Te95yT8rWO3hn59kiufa9v7Kkzgm06D8JsGdyvGyuu537dCXijdZPpsN/0TXZ3vGDpNLQNDQ7dlAchv/uwIDJYnd0kLgdFhlVkgNE9EhQ2iHwTndaADXAmD5UgiHveiIvZTG1kxdTbkE5R7p6eQEjPXE3QnM+/d2MaVo7fSNAj+eZi6ypdQBwIoNmTHuT0P7/pkU5lwiugfmWkMbgngDUkjGjs5mglE8FCWVpgpdDOHMpqtZRQLvDGae9rDCHsIAeK/sCJINWw5q3jgvzQWgf9XP9zyD1/wnOqKWPZzIgWGaAVICO/gXRhEFrwaoTJhhnJilb2ugsIlskmdSMqNEtQCvmciwSwMfBxcOnXHKNrJXtQmqf7Zb0BtbCRswEStmsVINZ/FTc//EIP75AoCyk39+WW7+6oIkbQOu7BTUpdoGxdq9T0aBa6OJqOKad+jHFR8CWWde4NfGUqskLqU4tOOMm3JkLCp9g2OBSElKFztnSfchDurWwq4iek4l1n+jxIBZwQTuhu7itmkhIPcroSk7JIYeSycY5lQPWwvzuCJZ5Fhi7OvGSmOX+z0S6FTaOl6I363n93Shn5LNlxEeS2iTnGle1yxfN138upJoYgobwJsAI+SH9bgwMmcExlZyhgSOoj+IggaHtLEaH0HWgaiaUAoDCq2nC3SsitK/XdSs3S7s9hNXt+hqSzsoVIgeRuPZPhKFMuy+opauv9hDkaLVaCXlN6VxtLSSRbNf1vwzUqyBijRDibKclSw1Nq54gp2xS10n37ymaoAwn3CXEuMTmENajRiLVHj6wk9fyIOLmr78fCYIdUE3Bwu7bQTXlpz2/U/OusiXwYam2yUNF8GJxxt1CGBlQOXbyk6LXnhWRwr0BvVpAajzYQATFbTgewglTS0/VB4NmbBOqCZcdqvPi2uELQile2Akw3LYuVFHWH3wdrTCG98PP9jjRpwVgHzeWrkAzZqGDFr9ih3bsiBL4ZIqz3HFM6iwP6ajD68gSZ7PxwRSPmpLW+CoCedI5CTda2O7IH69+Q21YbbeyYYYVp0BLY8VzlEv26kEpNbbH8ltwViCwE1/t233zWs0pZjmEx1P/VPeSKyBz94TslJvwDgffHFNZqlc2cYtwg1HhAXfh7NbzE4UeNQYTd226uiTlUFOBnQSlOYtO4xoRiG7RoEptkJ8Wl8AMVwrFnfZ8qACcC+NhgGPeMABuJjETwEuYg21kvkzG8J5ADnVdBHF3myEMF9Dpf7Xqs3iUh6IsNmvVUJhDHnL+eAylD0uqokk9Ro/3f3HjYnGWhVh9BmvrswkxoKvFt2+jxS3J7aRkNSY12CFefhWPR/kNdNTbi+M1zogF6MQjYIM9nhJBHjVZHWLT1lkbvx90FEEiIjRlAcwqS0LqK8EPFHHwysmqucGblrG/xp+yUFG+CsDSSk3+x/amOj592qubEHsfGelEG+9O7xg7NKOPtka9HSiuPQVih81KetcyJmaQVMNededFMa3QB+O8IKnlblFIHGAgDptV+vWNFGKTyjf3i2fMr9BqZc2SZWj4Is9EmZsub7ZxvJd6g7DU+p5a0NB0XDUYnUY0VL70pydycWIgixd+iwByqval1f86p4wonI+6tFq0Ca+oLxAY1s3exJR/NtaI/TdFA413bip68OCYHgMuCyCEz5GKCtD5tX2R8g93BIYlgfA/Kqpny3x4pPSCHcGI6wUE8FbyAAhWwamXyxI9YS4LQMV57zp4b+tj+a/5cRi0CfM/xi09xbZqQZRwePY5YCks1/DJtWKHH8PCnfCiQ+lNaxkf1Ap//0+jJ17hJL+0ogBAGe3+csF9ZpCJTOxRPtNlnPY39E1vNilVIAXbxia03cv1IOKrwaxyGB64Gcw0jZlv/f0y099UfWrSL1wn5xjilyZrWzEwn/anprh1Dq3w2nXfNzL17F/QR8+evK3hV8fQG03yb80wZHEnKOCqoIQDwTULxX7OO3EoTVhmKfmNzYyDZ50JtH7Fmtxxt0pLu5mWG6PG9JQu5q0fliKVGSLM2rMGn/brG3lp7SDeN3PA7I/VKuYQQuLSiKWNhI32mfTZ863qfgJBeljBGqroIYOhZ/FUnSBVX68FJxUkrLyZzYHwe3Tmw8hQ3Uc9c+qys+497NwEE2gpHq9eonbBtBWZSrqbDLXytMksmZUWHCtaXx7VEv0i4A7ug4B33tYVXozTF3XOqmCx2t7aO0RKz5Xy/L0zOO8289e3FQ/+Aikt7U/qrVrguiDCVJp0LwMmaa/32PynkNzq7kM2jEbEJODALsZNJhPqZcxg/aJg/P32bC3UzAZlmqbaArhaF7wCWJd6kcNigbBN+u3lf6cGjgoQuH6E8pGkU7GRIf/eOhFotKG1tOTRRGg6ZvFdc1vnD3P8Xzp8NkjMZ+EJVI0PwvAtQZj/cZxDB6Z10/kPt5YmLYOYTsIg7jaUSdmsegLC+uFN+fQafwuIlQ2Nj9yasi+Z0ZYm+B63uREFdJBAvrsx4z5wQSNbEN11VQ165M+ZESY1I7y5XrfynH8AF1KjAAFmV037hB+qq6Mc3ojFoqwzfgrYdcdjjEswUe7zNtVRWb5KN5wowLeGUFKAB1RB/GoRnG/gI8+hrs9kCz1GLAKM7xE7cAZLCdqEsTAKzqvPO/SeqK5mrpvRdYMQ19Wyc/eGw2gU4KxnX/xkGdqbnTm7pHVxzaxrr0fQWnnbQIohPM02qnLhvvvtm59Hgz4W9cmQPsex89yJX/5cqRX9+4opV/iTD2+Uduvir1R9FUvqMs8fkG+4arMGaYFkzQgHsa7jHDIMBfVq4w8fzRU6nUpjolz8zjYylE448dzu2OQnvZzoFYaBU++SPjwaa2SJ32CmF1h3eUF8baxzAos02+mvxSalMRiGh+kzCmZGTGsyodWxp1MotMLdvddkUWmnG+WIOiAhwgfNib+Xfg3nX6J39MB6Rl0coLZ+YQ5VxdNEuRPnluAyR8Kqf9xOFHUh/40beOt2QW/t8p+H0ZoBwSzCzMqWW9RuSDShfMLHsySloSNzDYA9fwuQ+yFB8qqRIUbJjNtlF8Vnzdo7c1DEKwfeEOMJUTp8dlQlLqcfs33qMrajItbkNIbJqdWm1BehRcxrpwrgcSeuJMEzWicm2F1JgvfupMnDRzNJpi9yownTQqr25M3WQIn0oTOLDUP9sEsCsxw/akBIpcqTFJ7HZ+HvzZ9ItBoO6fRnj+KRuz5TyoArO5kQZvRq5rbxzPRVlFQ1EB1cI9GlCAU9EGm2AoEvtKuwnP6pT5LeKmtjae0cWQcA+cEXDy07v1w83Nf3hAJ8ROaa14DbDVShlNSU358Q40xe3fWir2ngI8tigf/sfRrrfshkxuTzw8Vfyc7FkQPqhEd3bhb8YveY4VneqxOp1yVduiEcKkq5EhwA+8XeXomr+JH1+5Sngcnt7VNyMJrMr2IApqWrquh3kwF43DEfn6/p1fJ0YyUo0Ho1c1qTnkal6UWoWq8D/SCWsA3e80tPP4H4J7uAyA00F2fQbaCxL8KZqyDCk74PIuOGH8nEMpYogLPJFOfZM9ECqU5xkYEsV6R/5b2wzAWG8o3wLP2oA+qwuNgi9gDwFJ3awJ4qxOOJRUjk8fP3c/IOMoqWyjSFPEhCe1TLOfiuvLDKe7Zq4ZPMATMhRvbb2PbhzwyllL+suQ110EmQekFavTYHm9guioiy396hlSBN00qtbU8t+AkHBpGMAH41+nXMpaoJKh9W9curkJWhjWkrITUiAI/1S7PElMMoeSeIKheAG25qhGbySF9rA3BvI9mcK5e970u9GQrUoOpAHc94X6AWH7rkABTjRVvUc/BYMzkIe2JcX/rrdXxGtt90x5+udI6+oGAbdkytVesQgI6McecXGkvCk0a091vd5yoTZ6GcTNz2Q2TKNcySGkXXcPGyjBYXbWVw77GkG9ZJRKoPoZU18RXxNO6gsevjF3m5//iV7ttaoP7PM/T4EvIa1wjsUCOpvs0PcGvHhMWEODr2p2e4GAYzmAkRFPZrL0KbLw3I7GcTSmcjyqDgsCWmlCT4UZiNXLF2tfwsZ9Ki8H8F8rZJl5mHsPPVO/R8i7YajTkANck4ylUEM3q3j1JkUQdPc/kn9X2meqXFuqMkawWF1w9r0dNH5grOkG+9q8VDSWJcLr6RvAgLMgeLptmmeTGqRmCpujo/kEKSj2soAsy1KJ+qUeLkuSbQEcyNBprdwWvSOySVFbe0Uic0v63Bfm8RM4ktFa2wNp1Qg8hUICfN/NyjjfBFzYbNz9oeLVKcpZQ9G4K0xnri287Vzn0x/3/KmDluij9QEe3sF6HjMg8cU6BTQUSZYIDPYhYbrAhQ5vnuMrNPG5PWT6UpRppIpsGoNwd0TMcF6+hrr2u7ggOCQMMddzcDGP6vEoBPAuD8QGxRoq7ata6TsfBu+iUamX014gxLzSCt40BI6VLPbrq13MitEH5Tgz2hb4KWWbqbotkbAH0yvPLjcaoy7e4y6w/pz7oR0xVViKSAG1xBS9AybH4Vn7puYl3qGQ60YdFAHhTRonoarzh50mXci5nQw9jrPtKuyYgx1KdcowFAI7QbSJzG/lWRdZhx3euBDi0NO6hdv+Rdegu9FLx+jbb7WkX1lRlCoJzEOqPgfkOSGrN4YvgRutw9YEhDzWLkbFTrksxAdmqocDiQTh19YfoaWuNiLw5xfx8NYVm8/p/DXURDe32jCKtO3vsR5CrjSYjqKqK6KxlYyYy0MDucR+lJXbv1mVduM+7kOZoVF1FcE5qXT5KRM5l0Aa9gXkcCGckrsJO+UKQAJ0ernSXhrtyQcYgitTgmiiSTFlIvFBOxggyw5uPlopiaThS94jfgwM16LbVzIXGB5NTz1Qj7FtKz/6rdTWx+gqPwCK7gBE5f99f+TIh0U9s8jqk1qOXTEpYWaK3wUOwTZuTzCwpPmAXoXLD2QkadRXXQJnwYm8a8dwRFzyGCc+itOjC1ZbN3ws8+w4SoxLrNzTB43/tzcHCat0fc0IBY+rNMCTPy5C25dbZKv0TRpbBev9upG9psoNGs9MjDQmlHusI3GLdGZNND2ir+IzHnfZtFX8iHAbfxcq58YwFBqADtYwjbki0iuqDum1+EhGe9acGg0GOgaoe9CLqxFEEK6Hl6vhvBA1z0MJGn86Wiacvu3cfYM8JbEyEtUosyrwXjyO+9XHLmxo6tkeVhHSVgGXpKl0CyOg0KhA1IAsA3pjFzOs+TdUv5vWJasxHPDwiugj7O2czyVfR6JysegIQasgusD8jaUe/LlG+xkceHzgFMZHSPDF2zUcXd7NkrZaaRMW1sC5G1wthHqigy3jfEwfaR6epl3w/DesTPPuW6PIx2Rk9WobjeGPKk3eKR24SCyyerEOitUrXw3Mg2UgV8fTjM+gV4/8l/ReLZ6lMCaWb5Pa1KNJQkJH9Hwe1kK2pBQWkYVXZTwk1fkYwt3d9ZrtgDh2X834Z1zBB4XSaHLdJzE40ixR0gq1t+RH0vkF6dYVX3T8WmE1HdAKMMfs1brZBPWjmfzyR+r4YmsBbM21rRb4p1VZc1IdCkyt0w51m0W0kscIatQxeCv4Hj2zNQ7mI/vfevzH8A3luB1h9mnKYoZjIhESWzm2JhylpQSrlvrUzVAqWvPF7XJ9ddCXCS8lqx4T209yr9FaP1a8iygNV9NUy7Mgt8spa1MAvXmdDLWr6JFGtw/6G06/cHdBemXYfY+W8CREmFHvX7R1a6U1BhTQR22cd7MLKr47UuFA5Wv1Ayw/jSP2w/bQaL7hQY6jXVpxbkY07lvztwOp2W2st6vW6LS4nS/oyxmyFQ1+Iapm2LXCFqT0vw91D+NWLdEkMFkHdFH/uFUa/P7NAfVUPW5oXs9g0jX6oYSuK4cw7c5VGC7fUSp8cc3QCdV4C/S/vg4bCN2ksEQkVHi0E/jO7ABrJcReoae0b6haeVDKrhj7PA87zIS5QXuEHJcKRRn5m43hnItZcGgP1ZkQVEa4yspyRfl5CsfydukOy9lO7eaWoMd2efoTAAVXLP3eaRlISDYHBQ9mXZ3iEEe2q8Ymn7POdoiqkX3HQB/IVIfbD8UInU56AvLgacgdQPscC+fQCyxW+nJ1q9Y8bmvKMGMMyOS9cf1XO43SlBrOAimpAPMdA2uMvVTD/orSpjNI2B8RiZ8L7NWSM6xW3rJPNDarVEDVThFOUpJEI+RLhaycLRsGta9MVceHOGKmo04CFZXvab3yFX44ObTrWUZwjDXhwgr/iyljToTAfWQlgSwWbD6YusVlfPqPN00jCz+zUcBniiCZls7i7aPb541y4XTIrhYt9W46EfzTQuKx3sqDMiHAITPCM4UfDeHuk9pWaVRuWX1B6otSFmlimKfPcdcSdMX2p5C1daE5l4JkWMi3jPEYTMGAyylBUV3ZzojWKY0/uQz/ktsmQDHLiJeLlbHetyPpiMLcj3WwUpRoG26i6Q1qcdQi8Gb2HoMNdXSN5dllctBC4lm5WQ5XGTCSU+qME5zS2zs+jAG8mHgfYk+mQr0xKHuk1s5yr5yYAJuAapER22aSuO0P4QKMolkFEmLLaKnL9pdTir4zP9s6TBxdbEZebU0uLrhuG2nqUVhhHyXXVL2CUa1cz1Nwica3CMi3YzPs+9f3lil9YRwbH1z+UKWjhVBckSUKr1N6ne1WP3vWwpnXdfCsTQx0BpXvUCuB/JkKaVy2VaEJYyak/gjOWdGXZrsqJWIAXmCkbtrW/aspTvNQXpzTfA60PZ+xyK2nkrQldDTW7Zlo5biX6HL0a2d5RxC+iCOTNjX73zJKeAfY5yK45p/migMgX0u6jkpGLUp6q1xg/3E0kIXKAy4mpe/84s1vm2uNbvMiBI6l+QhCf6rO6A2ETr0ZbYyB1JCE2ljQrHcfHeVFDJkExPZkE5/dyM3Z8s2jst/bZ632X2lrJOMjLLVAo87pRNScn8+dPgZpHfNBWeK32dZ8Q2PDQyykFu5pyrdfelWntXeeZ1pALJJSndzDLGG4FBQBs/ncIsiviQu1bohenoAV/Gx5t0RFyUyhPsnkD5f8gbmXj94oqIZryyMZ6cjmwTRuL5+zVvO27WUO/kKxlQ8g/WyHBoXSbSCqVFCRE2NosmpOBSujN6QxA7Qli5ARMSW1E7C5gLH+LEsUGQn1MEBCYUVe9V/HuNAjYg1s/VG7+42r6ovCJhLEiLOnTnVNowsPhxfYgt/zWhGD6i5lX9LCz7iz3OghnDJ9R7d8bP/j3XE0WzIPqCaXEbyIut3dsEBDs2yYsYqrEo4tzdX0KZ5rXAVv1jmpr/lRIhCBUkuvgb6uycg51CW+5HvsKKwu9W2cV50wR4GVIv3e6eLqVJ4IKfo9xz6vhGHNyFs4ZNSXBxz3FuDHXKKrjXSOp1UGCCAseTNLrJLSRPPYo0n3FXA/AjHwJm7a6x30eIFOKoLP1JNvZUPgL/Fg3E6ChsqhoRDDIxjGHUk/1979OukPwoDccOhnJdmOaYU4CykGQkKTwdluu5+DI8YCcywM34BdudLvYWxms3IG0gFwiCWDWne6masRua0ccCM/VG9ZD92O4xxubG+rJHu+YjVsI+yvXEsYSYQek/CVoMWaz2ofQvIsw5Bakyqr7HHC8XSejS7ZN7RG2jhghRlogWNvybBrBpDBzNZu7oC3MIpbXbeHXbTOsbkrl1DHr5Q1H/r3bv1kLZqwH+itiuc5ZhZky1VaC2EuJwkk/bLXbDSJFvgCfLsVoQaI3CUkUmQ1AKF6WVYjdzQnbA7lmVQsVppadn1Ypozq0yb9lQIfZetjgOVBQjrMbWX8RQgYtuuQmBLSus5skdSn8gewt3wCSziiHQv7c8Ff7uHvgG7s/RcZdCd42UU8lfOTAPH7I4BXy4OE7rHF/PmisPGD06v5aM4RMzSo0tJ6cWr14bES1ggBDzQaqkHkGz5/9tAgXkLlKCyh9CYGRDCamw8UQcYqEAzSMr3HHHc4hxMikbtVp+NHqymUzNhvZWkaA7wm2pXwqF+tHa5TvdLowrQUIxqcOMK3r4cNb737wkDvxkBBd+TnSpeK6pinAAbVq1b6jqw2f3tuPRZjwGp3xrYQRO53bLXqMAw1gJjJFn8fqsPoA8jNkrdVYxnrACy49eUtbilknlvMkTX/dUXBTNl1kFbHbhrQjSQ9ViarOF0ujvgQ4+e8/v7cA370ACH/Fhdlzz2f7zPcdNsukD6vyiFb1rWWKrF7rpaZTA0m1UyNjtjLWG4T535sTE9t3FGkm9RpdmiIlhakvYVfoEY9nWE4aa3V9zFOpETQ0krsLVYuHa2gv/y+7kp/PvRK7PbEj4ovf6kTtV1aK9kFuuX8KIOE3e7lWbiO4ztTmkBTr09GNN514KG2gcaW5GvkFojr5ynuzPfAIdEMLUdec7Jl+SA9xEsHnM0XGC5QNiKAGY1PRdKqiW/YvjUfsYygNJ1Ph9o5YkOzogkojHaFEs2K/4RwwQo6+BBra0osq/ZDmUf+scwSlGU2QRTE/zCwOV2iALbHyU6MXxQvqRnGZdd3GFm5C0wGbIWLcecjmGNhFotXELe5P6NFrGXTS4NusbkwzeoZZLeqFy4VJf9bjhT/ULnSpYCCxaSzKgkLpqPVUquB7yxGRjojnyjaIkjXFVJuAGNUQGRcPHT/er1yH8ZxyFqirnksMOxYLnAfkc+hDOP8rYEQzFK6yZtkk4qtTHo4dt4RHDAYb5zZz5qLpnpdFUksngsmcv4TCJu151x/NQGflt7sXU6knm8KP0SqVEV4IKAX5eHsvBDqZROwdMjPG6qe2r2M6OlHQ5LLGx/H3uwgofuyvij1k+L/HZ5xEK6rrJ050/jMzDjum4Pdd806UIq4UhkWfkg5tq/Gsk/FhswWWRf6QFDlW/N8Pu0PVPaa8y5BYu7ljYgN4YA9jHP27A3LQAB+SOFowDDuT8hd5Aa7zt3TwGPCeos5+wrd7YwJp+oV5U5heILE85NCx07aRXBnP5Rxx3f23gIP3FrLj5zBElz6YSRVgUDygkcM/WaLjSalKoCrWfkkI2PmDUoRp9XCj8sL2JmCbRwRFUJ0r2iWuKpakJrT1zQ+47bmA3gNIoWsd2f7+ClzZYtqERgfoVSZfbwbwX7xUMyNoKxbxyYGfG0OnGsU6odrAsWSOgZueGeCO2Eoxcds4TmMZ59q0+hJJBdgxzsn8QDdq/AkqZHk6+sN7O7a0BKc31b021TGe8r+3jZ+pV9RN6GBCuso/m9UAiZCjhlwx/HvKJQgA/b6z9yDZgOlIBVbwkNhD/PjlWjWmPZuFhf0R8gR/uLn//m1ZJ1zIdkYRDbo3vWpw8/H7CJdzJ+8ixKqCKaXDw7e7dywIniujblbQW0NM3Lj2CHgxZXeWZSu/EhjnamXxGV+YLKWq/o/lzrWg7XGHPhptKCxjBNQ+EAytF1wqo21WdffUKZl6ny4aWCrnNmlvvC+fF678at1j+T/3lIaLdE8xFjD+G4X+aJyCXbWYe1Ah+DycsiCFHouBiEcQKshvcq2xFfQrbA+spli4W6QSK4MIgLt4ITm+EAAYA92AVgXpkaPt7u7zZXywVAdiETUWRbSvQOI4HyX1Ju6C4aRbVCAT5T84Cf5cb6JI9EWMR9M/hM2td2kRBSmNb/gK4zrIoPokWkL8W+lpVGTxw6eu/MDOBcyNcP+5e/8PPEKZJrZw04S0Juc048RMK6iJG19CaF3YP93Odm41I6UjanTPDc6LOdBEnm6JgjDXPAlGI712zPHWt8widZ4dAES1MkKwJ8sgXoc/slkMoxVzzBXV25uCOzmrpznVvrQK/Zyv8HIswjoCP4TwdrxGdBaH1ZssiIAPd6p5eUZ6eXsX6+/O5P/dF+ULRe4BBneTyxXBO51OckyKKanShGSkRkL2m+71DA9i+6vu7Anc2wvCd/sWBf3OdYo0XmAIF+7z7fyuYQzzCfEPrwl7DDRT2g0J/PnklauO9WKPDde4bU8R7oBcDsGs2Uk0IPtOJqw+pNV8NeaRuHL/32AyXtzThT+tp0AlWKgX8i4y6eZKxh1/ccPbUUvqGkx8zR+/wcspODTe72njyhOm7H64LW+hwCNPnG5dnrk4nx75wQZoyuWMGz7gTpKnxr9ODtkGd4BcMfBNTpWOL0JzaJYd2aV4bZVtWBPV6fVECs4fwxLIxz4/cmUwXDzMqGkMReeXVSdYhpBk4y21QWSsre5i9bCu2cepIX04HbuJ1e93QGhQqKx9MvGcLvM0JsZIkfPjXycdB5LH0hCSNRy3z4rV2U9+a84rtxhxjzDjgnIPBN10qEiIIUqhwat2y90nVlrm2pCQUcLTgurFWscr8VR3CLM5GbV/E4wPNE+696EUc2Wif+NPvXtzKt/pmp9V/OtjBJ5M+FUJmediltHIM2lD36Xs2OeYcA4sXMO33FIew7kUugebywoiVYDDZBdlVnPx8AP4xyxivsE1vqEBcElaSilmrFF933PB1/D9h+rcoVo9Z9vZe4MgSJjprl2nqtvadLt/N/szoFJxuMMjXSWjpnE2Gi4ROwLN7uhPiPc9ejykgu2sHvTbHd17f8EMq2q4air+26hPTBT1Fj0iqVwe8EJURwQqZfr9KBCryii6iu80gG7hUxvOVRwCtlQKTo/8oqc7VoSzajYg+LAnjgJaZEMY+Gl3Mvu2uXmVVlIjnjHAYj2Q/y8NVa/uswubQ3m3UBXFjgsCfG6bSjpidfiAMJJkDTVnzS7XTrCq1IUmhXmcdJpH0a6VtkRux++57JlZQ3eEJcWt/MQaJ/gEJQz4b9fAr6z0LEqzNdZY5P7ccWb6HQwL6sBtmpC10nFxBPS5LFMAKJD3XFiBxEjin0437mEJwyraDdU4ailRU8M+KrQ94C7JRjgIkaXgj/zPGo+N3muCpPkTbI5oH47GKOKfzv3GiS5jc2hSx8MHsw20ZIxhlkCkeJNSfLUrgjvW7C87PuFUqp9+D4FfJ4p+9gg/9SDFDivYAmHLJnp3N46GSXTWSxCczlDnzcLZM7rBD3nVxD+K/1YzPSoU07aatF8UPZcfKvCD86PkOw/oiBc2rF3zv6pa26GIXY/UYEMQ6dvQcg3kNOaeQmkb02Mu+pBWF3QT5ffcIJ1wOaNcJcwR4KjXC2j9pT5FiX1ps0Qmxnn9YCr1je09u9ol0CVjCljVZaECWftJv30faolqq2fv9+nkPKVc4vFR+oCQyd0IHA/6mck8R8eXDfKNDn4HMGfe3bDoeG/KvKUgnNwUw/Y+O9uoVvY5xZGX02NRkEUoX2xJFsV2X49MahOjeoBOVe1u/nmlwZuvax5Ae0BEbWMMkHcPXYdu5PgSvShNk+aiwpbY02LuPDDXBIWCjM/8CrHmgA6prYXYBbwC+LbEEp2ewBFPYwt2tcSSy/12OM7IF+6A4VJo6EO+ZtnPeqjDOaDldKSD2cDJF5NAszuTeGzKti5VPkrS5oxZg13YzEt55suNth2hR1gSngIctsKVicOsFcrMdJSVQLw+pk81Tp3kQvZLCVM/n85YFW9Si20zBZy3ar+yEvwrisOsvCRB8RgtQlBOh7KjGNLATE4309h4sKJDlkKOptDji2siF5bPtxMABNzUXiG61m8biF8Nztg06lJkLpi6qwpJGIvoC1ORI7Zh/9Fgnfv8ECAQ3KijnvyWEf6Q2ewtdUhoNjpoxm2FF8aLXH4IM4GrNidi3mVD1Rnv065Vt/ilsHHL5VXuRBoh1YIOoInIy7Xq7fX1kGj7BbB/K1ajcDJ5fEMLKB0jmi/VRPecVMthPaBiV0bKwVdQHVjubElpJYgc3SARiivyNcNgPnaHki/+iZjeLzKD1RTOyu9RcKKVBsvnuP4jn8AQfpYvkySglcNaeY7dYiXyz+nlHYYHntypXQxLc8XG0fgxvdSyRM/Y/dYIqFSpMFW51L3JAzyR28lPmP4f3bqN0m5RoTB8G4QLfwNieLqyambKNSgs8A5Ofbrkfr/uSm8cbXzEwEElG9Ep1IE7nmQ7LaF7LtlEzXw81Nb8UpTkbp4jL0rYkZ+xZjclPAZm0zzv9kfO5B4voHc7zhHm67e0K/fLPwewxYOnOGLhVd54UBkhSx4DhQH20vPIc/3Wv76dlwBEpTIVAb+ZNv9w8vfQfFZqo/lVHmbRf5WRnPWF9WVXJTM75Pi9WVAAkg7NGLzIE+FuhlM179KSWaP5lmm76CZmNkSpKtTIYWEAvmGRIVABZbXeo7inARfrqe2YEyfNRRWh7/4a8aK0TSayvaibmW0p30cTXJmI/B1sVSB0qQ0ii4Np3TDEQ3K+RTcEMN7pxr3R+Z8acGwnNliD6dTUxxpmbYwvRl+4akpM/ToNKn8e3rVT0+elHFJIXpvZjEoCR8GWUIEt9ipg0Fkf+LYN250oYl1QSY/4/nA2jo4IpuTjP/v3AQrbQUyqHHH70rgZc+cNBWKgyiHgv7kvJiS9cyWzThl8wNIwC0l3VZP6QHgYHTl0EWfg++yiPeOD9Ld+Il/Z+JZp4POjbDLIiVIHUNqdkDlZHvAl9RIceIrPo910eBB2HT4kokKW9uOyJpM0FKju8XfsBqt/Hl2Z4uSH8eaofXHSW6AkoeuhtuebhRFX2i79NEa5LBf5rsRllApVpSJzFeCR1EnF8WaXkP8IuRh8EvgbKclwQKkMBPTMsNMBbkXOo8M6RwYbpIgj5yTe7VcrtO4a62Oklszafz61KFuUXTELXZHuDG+JPLSbNPQQImCQgEUFzxhsT7Un2pI1a54lbO7+WPRooZhHxxemkQWgObzP6NKKoeCCMS9hawIEFxQ0tk0tW1Wwg2APbmxit4KQhVZ/SFa8CP1Ca4ppaZvSNHjbEEgWxQXXekORZnGXAE4unAWNvEeVD0r0UIRGvJUbjBTHbwlg2BHd5wr99D6O9blqQa7WkC34g4APMcQ/qbhxRSkNgjIdeYnuth5SvzTCC4R7kASp+sVEFag3jjXU1Ns19PpaStfVhKaqv3MfBUwBMz5Ae2H0Neroz6hGaaLV52BSAHCqFP02m0HNydgYid9Nt2Ug0PrO3QiEe5+rM8eaiLG9sARSYM0SqEqu3Qn/4LwvcBGwqSBWikO96N7Uucxwzxh/8LcwVUojKAl5C62mltzQgA5Zx04FUpW8uu7JFQo9RMtpXnAgy99p22gDvAhLOkQp3OAjM+l8Re8qEPD2d2ehkyeOlPGqiXoRyq7RuFF2LbIUgrWcE5lXC3Z8YzgBexMNqiNJL7F6m59K8ALtA+hFWL5XhjfwftPDbgBS0zM6VpMYpVUcMCk65ELjHqiZtIg4USvTYDukxdARJbyybFTpVVFEtnV9aB5RL+i1Rv1BhMIVn8x0vI1IcV/sVEHgXmjMAWotg4mOCj6aYlxM5ffKhnZgc3/JUohHMENGsJCDhCmsNxzMBLdrfyO1pcrQLO+mc0bdcShBvyLYKzT4fRkkA4LyXm+oAia+q9zV/STSmAnlrPtKCEI7SKPc/jpbXjC50UCnHg7OIT5rBlRYs/qq3UNRbCCi25sMr5nueWeJnGt7n4/TknpSdMlNcXVYj9oY8bMIbkoQJNjMTPsWSczrW8JHdlu5PPOc3CxARmz5p0ZM9Xxo4TF6GcIQlUFh6dTdy9CZuPOZkHvJ+7kaR7TAX9/nJGEoFAbiocImkkWSXjX5j5V88sayJAOQx4/jhX3MGa/G7f6imK0Hq7r9q2XGhBC2fIHrbgyHY8emFCb/gP5U47XN6Liaw8joyKPJzbvjMO35zgSFN9AkAdHRVLkQZbJiMbuqul97O044yOTVUEo07vbOWsnaeMzHwmo7ctlkCrHznmWccjvJlGVpHva6Xq09+DHwPR0ANPQyTAEMyTxjQcyrLuV3iVedstgJyRbW/uwlZ+MnHXZLmL14PUrlbVP8qsvTyC+uu3CauWvQkSRa6HnkKVx8MZnr5B1lRZHYsOrqF5KIJUFFA4eEhboTuauVQ9DXZAmF6occr4tqYxsejvCRrN+kQmGVw4DgVPe7kj/3xzdCGFoc/neE0vRHdngAFZYdhw5mBFIrrCeT0nK1ZKTOpsVxk23qj4L9Ncc0lPOQgWHyZa8nFo/CFs69A9CX30NW8PgZx45Tbcejoy2IyWovBLjpO/R87kQRvGXEe/+V86V8/pCXwjhY0VPpUTfHD5gjFt+AwjU2RbQG0qcbknnvLrorZY3zBHN5zeXZEoJ0EkagZZlke9DK+Kr8h+K2zgYAWWNQ6BiLxVvQSqUNwZEfAi2+me2nDeQTEpMrfB8Npiu5zd9YoizaBOYS/KnXi1rKr3ECWDareGMdCH2RUbbeCcKlOsLn8ZPPmvQgXOeBiiTxj6PYYG/FI1BGzVxaHuqZlN5zdsy7jAirDvdYJ/kglN/0rtrVP1SV7tLyqur2s1UBIpgAVBQ89rSsEVPMEutrO8bZsbpOWfpP8hghT6Ny8gZHLoXns/Jqdogg7T+ONVzdiI/bZH1FewFU4bYBvX4W1cc0jxRrH3A6E1G0k7zmPDbt/LoVIV819ZTWBWeeE7fJaEOgBVq/r0SF+EELbMQv342Rg0D85cfe8PiXXQgcLnJ2jrqS7A6+LK0nQvtfayzSiGqJlT4EAI3nAv8qgD0z2vew/M1GAm9EEGdJaOtvUfSvQ5IEkuZG+fPfB+JeKiz+58kdbX1Ci7DZR47X3Fd4Wnz7Ug7t9hnqd3nfBE6/SCgLtzT7CH4NlnI2/dX/h7ezUhCmroFuVkDRky4wVqZoNzdSDVqRCAr9TTiyYk+nvKUNc6sRtJEsyXZJYLXA3kvslvSIiKcioFRNSOIDDGxQ5CjX0DL0Fd3qKd/dOchIWWBPOTRe+xdRq28Ejemo4z12gsI+17D2aHbQghC6WA1zj5o8UktCRiKRYmaInfbfa7/K4g/0zm6XkjMwoFtOE31aKE6gFKttxG8D/xTQhjbMsWgG6+U5WhHfLBs0O9BpBmAyxNKzVfqVa7WK8mnV+piOLlI1rowAH1pQXWOhGTCgnYQG5cHaKiRWNCdWohi7koSqeKaTlPCXNkUoQ6CYgOJfGBimvlJkk4BldDdtpwpSe3Q0T4luF82s/Ffr2gcwRz4m2OwTAegLVldCDKu9GAObt4kw/lsTR/FZc2jNG9Po7V+xUJGXIalPQnaPiDJWUdsDllUeqWrmpUkygKRI/CuJlvPpOg2uvK2E/usiClIoAH47PnytNiJSZcQRVW+HjBctnqOhTtUQb8p6D7AI/VDb8mjWGIwkI3h/rRCG+3PjDqMtR9PDdW5xs70ml0iEWO1wEcG20LWxx/NZRJKc3EL1tsvDNSKFPQWftMC6DbdYUTJ7Mz5Zo38GeyUXC52caHrZBT/iFir/WB2vhK/jJlYavmAM85+6d2A0fRQsvl5lX2eWOAm+w1VgUSQyp1qIAdvjlms1MbqkVZggWYY0yDzwWFXEHpKmbZoGRxChCgPWz9+gwTiBxOmUGga5BN3L/fkj/VSltp2ePaUaDbL7xXvC0mVAeDH1HTpxIOJpBuL7eIyGJjVRFPIjYPIQBogK2c7L833UOINIw3RJm+3wm2gL2+mxQPBq7CKVXWhKziBaS8F/TKUC96dn7vVjOeXDu3p+xnw85U7zTRpLaQPcO1hcWCeAQc0DpJx10bHnP0vJHDsuLNSSuOHQMUFvaC8aCy6c4P/AqJi3OS4NreYBV+8K1SnzF8Zj0tTA6mXTeDmU/NqdjONYasH6oEspmEspmplWuE=
Variant 1
DifficultyLevel
731
Question
In this inequality x is a whole number.
x7<34
What is the smallest possible value for x to make this inequality true?
Worked Solution
|
|
x7 |
< 34 |
4x |
> 21 |
x |
> 421 |
x |
> 5.25 |
∴ Smallest x = 6
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large x$ is a whole number.
>$\dfrac{7}{\large x} < \dfrac{4}{3}$
What is the smallest possible value for $\large x$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{7}{\large x}$ | < $\dfrac{4}{3}$ |
| $4\large x$ | > 21 |
| $\large x$ | > $\dfrac{21}{4}$ |
| $\large x$ | > 5.25 |
$\therefore$ Smallest $\ \large x$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19CDrgZUE/QCMacgX1zIA8S3HNcJPZXKR6h+Q9nLdGoVJdBiMgsQdu46iJtsNfOTNZ++T9umHlav/Vph97F+9xbhwrkyuRbnwrOdXNrJVy+W928aLb2mimI/KtpdgOdikLd29lbjcCRRhrC8AGSNEUDGyJrBJwrgcON6R+0yUCyXizburJsFiu+GEKkMg6GKl5vjaEKURM11X824GtlCxrMf1zpFj7RmmBBN+NZ7yd3+Z84/deGXqpEz0WBV3vlB6RFgUuliMZfuBWZPNKiEPT8dNFhjiXLgDU1eNCrw24s3O3+fnP4FkXyRGsKMpt5+LYZpDdZIb/2VTZXudKlurwAl/HxMm/UzAyPxkmJgjNljxjvT0oB1khhpnlxhbvHoHrQdRoOVlEue7pC0kZ8TbR8SpmjaZtr159pFY8ybD+He/l+G036Zy1R3j3zemdjJPBfmQI+/nQOodejVfFsB1gxzM/XUnlMPhEL7vPNfsW6u2OoB0ZzijGSGLav/+OqURvKN7VRPp/aUbFsXcKUxVBbPcZ9/IVhOddSA64F0zYE8EKv9pN1G1tPJFtAmC/yLppesbQSOt3pT9ZXNREA5ULtJNkgw4tKT/GtOzn5+Ae7cq35i8maMk4C0IbfZFO/G6r4R2R0I7BjFt3R5rcXqXSEx2uVyEondbkUKinAY/yo2gR1kI/9Xyjr5v1oPMPolFExHDHxdo4cqsB4f16CKbolo+JcKFioXpcSb0xCOh03dS+VUIdfrzW2cq1hdVTXwi4f2H3mAUQALOyiRBnMfrhnPwVeRKm7ZL8QQpeW3MqiXsA1aaoPCtzXnEwg8+QikBU97u3eMKVbHSb++eCCR6lHYgO/y4oZjBVxgT43LUku+XtV7U8KUDGFJe3hoqimjy7uOkcWv0HRCzJYthUJOF01nFSX7STSp8giW8+2S1c1ESMWKfDy0+QnzLMxa/o7uqncUXLZa0EeL9JGuQ+UzZEllOpwgsobDOW/PojH+JqUWhPLTbMQzqn4T4BhJDTchbThwCVDsaOZSjMFQx+RkUZATWK63tC9Xt/xO6MuZhJORmynECeXLV30URhw1sq/Wt3gCHTqeven/DsBU97iu51KasbjfCxeiJLv2T9VDaA4CaOGhJzjDM4O8gEum/IjCqExOWALcO5I+pz5AXA9qNIOK7VYXo5JeiojFXE6UmJJjRNCe1aopDZoo2cacr5VW1Tu726gaullc3xOWbddRbLcYAnMVe9dMRgSA1Z7QOjljIRKs94tjGaPnTYVVu58gDksDHedo9t8MspHmjr5xp+gBoNMrznQ3LIAecaTO9YNnvvyR63ukihr4j50xmZiOYc1PjmmfVj6xbTsIi3QBD7Bib4URz1yPC577LYlXz/xaYmMywQz4wTkyBnpk9bkGF9vsuneXDiJcHYy2jaUS/M1s5FtzZfg3Hc4q0VnocF3xDSe4odDOx0UbKZQ+gq04qzgBK5SalYFutQKuD8sjYfHmmeUU2pYlcEcJFGyGQHA0MNxYUMH4DEc9UbfQLH+d8MxGoZfBA5iq+8vQh9THW6mvjyeIOjHR/+ZkYWzjQWqgLDEkeMU/stQ4gb9v+8Al1SiY6kF6PLYRSKbv3v9r6n+6g6p1g48nAyyjhkpDZySO3Sim9p/hbyh2vodfx5bKUgW74HIK9mtTIPghK8yGYwoeeXhcKavmHuYVlJjXd3O3m0BYZwz0EC1v/C9BfN4P1NeFsiElNOMcdDcIsQIwfeBcc3U4JB9gGFutmgjV2HwTJ+ZlaOu8ZkMgbmEXNiuwmciZNZj5cF2Pdhvrzqk9KwwdfAimFdcj/2UguW5qS1BRu5yQ3VWkf1PXf+1Q5eEgwrHS07BRYxvoq8ebMq0/1b+mIv1+v+oxUGzkwB+Rkx54M0EZsihDvb01rYYNLUsk3AnT4pVqfQm7o09jfLUO8YUX7AG9Hz0Q9/alsXEYSsx1BebgyNektDT0TEZzGTN0yJw0zKLgPvZNuWoNT+bWnGQRN+BM6bZFBGNbBqjKAd68Z9qRh1GHXG+7jV0rvCk5wxsN3b/I5Ga0XkwpQ6y7ucMhFYMWDMPUhN5871Z4KAmgx54CX1Q78h6HCxhM3m8ONH+uHM+pAk0dGEmJFth41r/9O1+9btesu5LEt6//LjkRz+z4ri00Cuq4a3zoLs9/suUkiAWjy/v3A30u5/dMKO+iFVsxv9uGE298/v2UWLKm3FHv7sa6ND3L4Lv9mlZoTnxPdOpohB7oj0cNC9KCVC5l8hD8PNPPUSbCgtRGX9Z/DhdF6d7tAiF1vLHpCLgCAzU9HhDQHpeTNUphzUbxByDoaoMpIiipcuTG77d3oFiFXGywLgH2U6trPqt+VSrVqwP4rhKIE/4l6+fh98rS16rFirrEgcEuXH/atE6mlg8JSZThl7Pxjl15RAFH/0bhvD6AqHUa/k5yVDBkkWtBzPARb+Y3BkjCAOPp+s/L2/IbvcR1Z4PvULC/7n6ATHcjfdEcks4MqZGG/LwyMxkfXZLnq/F87JmO4FhQF3AjzAvBWsn36RlFTo26gsgnzEvn+zTvl5cLDeRExSAeTZIcUkuGBcVWCXyNZk5eQwCO8VdWAQ0hsxUaLhk00hS1gC1u10gfsJNBZ6ZhH8OG3WDjeGZzXNfEtVKzB2ZakxBv7IqV6T4ph9hVfAbnpgR5I6UoZlDE9nI8gJnQ/218bQkv6/gYlz/Lt+KP3dWS7SSZDWAZiTa6dM/gbCARbcA31FLnXRBbzZBU/sMmF/rLhMJqKIXvXliqkTzoP7RbYPCYMm3SotAVzk03DXAQiKUp1AqG7Pj48GAekQDFnOU2alZMyniLmSGEU0x6hU43nGVgBkMbgIitz9s3xjPQ419vPraYwCNOKcKdhsLg2SXbCkKhKEOET2Hh44C8DTXh+EcDz5J9hk8FcpXQ9QKQCog3KA+wB0mEv1x1GrLMqiFu2+tNAYvJCXcQCud6rEKUHfm8PkY62Z6lUkSG6Zc6Mx+rZYtsO6P/qFpsBDfSQowa5xZSxIVO4qrHupBd2SyG+f2Jbnh0mNEqk7ZLgOXxOrq49XPTS9usWnsY+1GUOufwtkKahJyWoCSKybBrtKVPuVzq3cOBPImp1sdSHk9jqHw4o7ltZw/vsJHh0jcndXqNw5vT7ySDcdQ4FR0zuyCF/DHNTQnpZNoU8/ut3Pbjl/g58gzVaQj7B1umG+57EGKJ+gvCozHKz30cKzPn9VAvY97llzc4FwXTAphnrmikgi70trNb78ibCY0kmS5vJYFmeubE4H8w+TZeXHuWOnF52VrU3zjJ4HbiPA6A7gz90EYKPQKyl2Xhga39ABx0e5sqe/scD76Bp+gKoecFexrqIn6y5yFmvJ2vJes9nmE2/GsBhFyjYTz2ArHsI/x0zdC5nYnvDNt8A9ONcq15Kmpk/I9BjdglC2RXF9tS9NiUEc/i6RXQYMVnr8mZx+rG/QvQ95HXTCblKeZOyW3YX1xoKKgv7dpGRlNhBw4zSVxY6EhCW8cbgMchPXa+JcH7StgngJqn3nf7EX3JdXChIALmssKU31xAiHr9ErifmgXf2heshfNMInsgMod2J6XFuz8enPEB1/g4EBkHBV11BtSkFjbP1ZDzfwQJZ0wz4l+5gvHQe/g1GaiiKv3yY6ySDHrERM8adAMUlZoxaFiJiRyi2WJpJ0O+aznbLk9qrSeWMZPcopxY15GhLWpoq9bp/9uMOTBUK3jMWnLn6AA+4fbEAAk3lCsQmlCsaKJvRT0bjO5hQBlbGZdUavIAX1TO+atqJlC8o2osDKz3lw+WVzIppJWssck8m/MpzuaRrvFHgnEFfZdgr+OxoqAjhVTUraqzahPd3pmMLC0f7fqAJfJFU0tQx5Ex18tC7PGO8iTMMuLzvaw83+lQ4rEQcHyJTXXyEQo27wDswbDKhlMRfLe1pAyLmTHpat7cgoph81C+wqzpOSecosqrES1WFs83JVPFPMxpg8wvb0DTOq1FmSKBfpSjG9Nh68XXLHegT/zYxMWcjGWdwzVQPBJfc+t8ZU8KUOyaOHAFrZwhisFRsdSRS3SMZNu3nqfn17Jq6fHcy4nE84aTaBiwFZWTI6KCM3b8b+Ih7jGROblhKpct6o5RlSjgKs06kDnb9RLyZNdAAlWI7ch5w//0tB2o2HIkUyciGMn1hWRItH0Xt4iCM9PpzRyDaJuDP4Qe5ATzndxY+7yzbAjffrVs6ijBpUaL6F0GeEK+yc+SrWMBuKwjwNndeyCAK+x1BDBZxSF5MGusQJtVE4V5w3CrkHVYo78aHtkL2Z5Mo7TSoNUZqv8vxHJYJ8wudA6ApPS6NKwue+4HMjdaMjGwVB+Bjco7zc+HKOOCWytZaJNfG5ZGTsLi5UBctKzko2jynnlxUhIVw5B/LAHNJSXjrGIc43e+ibBSAJ05ylhhiq11pMEdZs1prPKZNzA3HjegF1u4X1ttoZa3uu/8VxhmpcvvSsS1p0o3DLyyYaDKtCdJwtrCQGkmST6jvq4ZboWrKT+qctOkL5ASJNsQZj4Wx5fv5ke9e/jj3SpiDIzESk0P+UwNpCNtkWEcj7m3bV5rD2s2IqFZi4Tf4HtZWDqrfDtOJdxJmD2+SWt/cz6LqNu2LgyUVW83opqK7iTZSkyBMToQMSNX97pN/RpkhYd/VwVjefyrYYA5vOn7uZyJNIY+yb+u86GYFsvqqJGgCwa3vu1+64NDbrU2Dm6JoDg8vzf9pFBlpvBvWsgEViegYvQlpVNsgt2F4TQNtjj024ffjHwoiwqIangw895x7SyPhTP9ZHXHo5peHgrpmRyi4qsyGZ8RPEBtIv932wZrx0giicJ5UzV9Ude52ImEmLAfl+HmS3pAkLWohX6iL/oIKKHPnrV//gesf3A46RVN0DNPtJ5wsvXTZ2Gv2ETgjZ4mtRYXH3TfPxccrf4XSh/nur+c8zWxT4kIv+RNAxVqpeJAb+zgjE5eJkUaj4xJKyJ8LEvqrvg7AKT4KE4WIdoOVNWWQw03ceD9z2Ln5aoMqEC7VHzIL89/fhjs6qv8+g7Nx2mQ3r8TqTXf5dwP16JNVGaT16ijiyKmfP0MUDMjRt9Vy9wy9AK85IHLbMxF1WZiWjysVILbYhPgNmdsxCbPYCmdM31wf63FOCV4GWP5oawgIb+z37CAAnPFsveAMntcYmmTgpOiJWhk1yVAGMy1YXUPsqjZ1tBgj9h+OkaV01SE36s/PGcfjCrsZjq/Ra/U3QhLJod+zLNeeVl/eyK0mxzHVbXE5wkqdYWxXm+3+NabPRmr9a09/KDE8Ef1JOyyO87PdavCIm0gWEwwPEfd2iPgn0Pr5J5Ce1hdSM0Z+Qv1JQKn2iPOTek6aVQEMtqqJozwuWLrLc5U0eWBLAwmXLWDfP3R6S2f/7o17upf04BLdqlnMLfeNlSmArOfu5bjN/J1xGU3TGAVOTP6i9pRfYNGCgehHNnuFrm8oz9z99+LOwGAyg45OivQxkh/EXryqiBV2sZ8vp/Q1MhYjst8HKFIJLDszSZ6YcsvHvNtNo8CRpTPb1ycGkg9fm1dXkpGVKM4PVl1fD0BV/y2yNTsSbh72k55zKpRCRAFiYdmkGiai4qEV+pcqU9WD8Xhu6QCFHcD0zBDj+JdQ3mhDO7ZkPFcHG1bjLtAf/xo2pCJxRKW+vhS8rlVAKP4N+M0Fi0Aly5r8Wiaya2Kv0UwQPCOOHktVOsTKK9FajmZ+2YRVvS/06cvt+qJxOYe0eCboK0NLuBYoqG6iu4V6VLf0zk+dQX9JHZWeoQYb+9sG6tF2HlAcUkER+A0j31NrPFshaSMMp6no4CCTZccGlkbazvTQ2iO7Ou3SzuCA/zcIp5BLmw6q1qNYF6WaMspEc2bUeN+3mHmsD3s5cGEjvdpxAEnaw3QKlRZ2yDZLgzgtQqOgk6ffLHBng0CmGM+OynonSXmQbCyDR1dd1EZvUxJQRmGx2f6T0rnUtokURsHp2yzY7nUOXp0ntEgBTpckxwZCn09aZst1mQWLMoUQeF+d5JDnxk3IKMsO402rBA5V9Gl5TJ6EMcnx+8gDLIvND3ZD1qtlw4daTrI2bbLw56a9RhUILytAZJZA/nYi3FFqxz7LfsGLqMfJNBorDgWAdETRUI4HpWGI4bG1N4ce+9ncfb2xbBElaopUFvF+e+wxbE9B9hw91E61THqa6jsqm+J2VP/uma74GBgDLFJkRWr4HR2o7H/GnUtTR1JZuxsv0my0aQcE6y9TnibZV2FaKyKHxObEf1NS+HYqpwEyiZCTOngBAAzl63t6EI3w0IjRVGtMXuDzgbD/7/8ULOopbFwuQlHo2clnLchER0n6fLgnzGZXh4+xWGWf+bkCATUCk/sqdVQUtmrpP/RBk3zWCxDkHzxtQHjvt2x5j2dWjzmcdC4pwd/jJDcP9hC2FQjOTdKs7TJ7ghcP8Q5B/RN49h1LlCtI6OSFdbsyiYGryNn9phnLv0BZio1AYClyCB1eGSXyP9rpq8MnIqVl4RrE3I4HvCqzJwhCqMTcG3vsc9Ikz1CLFOjUKPAZxVNHy63uKU2dnkfHarKq2F5itlrZVS79C1uzUXXslq91NlmHJ+3Az6N3QHQIPv9oxRfSqODY+rK9uarzB+DJ3gGxsO+w3vMthW+cUIKnlaRk4opMT1fKl1boHPo1XE76w3DgyYYI1AvqPJgIApNY+R8mcG+rvhBRRFJNfUFUbUSZFaAEADm7QuECzB1DOTElSPGbrgjalWD1XjBidu7jPRiJnC3hBKmK35p4xMnJkQaiVcqFM5yhUnGj5WpD4k/XyZLiPA5TqIAl0L3U/Uwp8UtQpZnlPAuyWh7ucdKRNG6jQMfLjcyROdGR2dqDyiL/hKEnQC0PmaqVW9zG1q2mMwoTmqq7yKFzYTg4ruj9YH0Ym7zRcvPqRyw31Tpskcex1N3rpqDY4ncYjdybjGj1bbljj5v6CEBFMIdTjz2DEstzGW+efJrmtql5V/yQ12YMFPwY1DgCPVXl1Z9r9cPvKmIKOssSb4D9lTLxSav99DnQlfi9tMHUuEdXtNyF4XbGIpvgG1r01TpGdhcjvf8mL8pIkPnpVM8f/X+MWY0OSg+eFNBlSIde/kdPvc1NGz4MHBHOcLYeh1zKUnujBEm7auzXKaLvL9DOgkP7lv/Y+qgqUfud+V7Ri9iinQNdHkRql/b8zOQAiS9d5X3TXARGPVuHlv0rXDD0TtyJDB1hrVrPu8jN/XQmIM5aXzj0ZY4MwOPooaXWqe48L2NVVPyIwnRYXrxQ19Y5QXazWbgX/XExMeJYYtRmaPy8MadISE8tsr9dxvPdDx10rap0WiO+tipZSGcue0TGZMDMaytA6QZ7KZvNAZeew/mcoX6QBVj0+x9pmrGBFDP7G3eoSKFs4sP4YtyOTcpuTr3n5MPFe2YpN8hvMHRVlVUscanYIREgJHEzi9vNGjZtce0/EOAv8seNlFcEq+/d1VrbAFnqPwQcZQl0BXYnoRG6uq2TY8/V+bjTy1JMAknqqF2GF4yC24xAj0ijuPECSU1nk474i1UUgkV6fWnGBlALh8LOAftRhmqGhWGBWXi03ELWbN8y9jXf0N59ErhAGQk9WsktiJNVzxJ7aE4QpBvIEXr6+KlFb0n2GwuAVBpg6D2knM7hl0p/naoV/cL1SKTW87o0jWTT356lockfBrbzf6Q0qICfgeT2yTd4fVw54JdXe6TMgVt/6noaXV81K4g+ZLlm20IWhsJECpbODCYhnuloJETWRQ0LiGLRydFCu/H2f3aJ04F6F6gIoN/6jtoSJgZ+DoJbpvDqYt4YnCbE/mPCugs9B5PlRJ3R3Ak1y78NkgzkG1ryH8ixwsjJ1uFEi+fvZfthYe/yy+3WLHHkBRMyHTmhEyvTmzSAV0vMN+BcjovSvpBMEbfN0jkemiuH6RaVzSih5AhLStqtkRh1jU0gIDJBSUDoFddyD+T6sFMGgAbjXCZ6N6IVEqRbB7ns7EvrccH3W4btcQGek848ywUgXqJfUKlrDk+4sRKWG6RmHPjyGNIhatO2rNR8xJeM6AynK9whUgMnnenOojGi/x7g2Zwo1SrX5vlE/v7y7UUXyQAeWGOCiiOKpC7fwDEmdL51F1BHtHJ8lFl78TxC1cwlC1qF2aMmfLiU8jtaDHl664sbVpuVUdjg25+FBifMI/R+ybs3A2SJL2xLM07TokSlA1veMDe/6Cj802JdOTePUwFIHVarJz/XhFCORBD40t/yhv6JqKBSvKpNrv8hepIlyL6bpSsmV22xEOEAtYiQbb7w+5a67t1TZx+O0zNYPE+oXFqQOmEHHu3koPnHoGH7qdxwMt7WzLCvbcgxxXjxwkIvx0OfTQfuu7+iDSboEUPuyusvu8CKI9BXWBgB3B1Q0yy63ZYbUOf/CCNTjO+fbZz3k1PLctXwXTayV904Lm+adZkrNFsajVODfBVU6mWFceCozo3k/h7SChYgyzt+Td/x2DwH7mZVUNSAhoQd7dkI7/sqruE+3Ky4K/nSafTfxmeP3YVfqvophm7K7MVcdTAIb+9bHJZuKKC22042Xck+/IbzCYbCBH3qHrIRBYrqUFSnYGahe7G1/+ZTF5GlkT6fDHJwdCp548GTjYqdU43FTEsw3n0Wd2JIFTbawpEB0jek4MH/eOh4UNZ+K9ZLq5y4JzbzcqJSrcZhb5fMkT5i0qm1UUIuxfGVc2qnRhpClrM4bZkicq/CjMQHjoYQTMHoSbC5wYMiEz2dWuPAtElMMPAFl/3F5BbdyH2hiCtnsYpkkgHw3Ya8ouVfpaKRXMtuUsO4b1R97Sraab0cbl5RD9IoQJK/quEtx1gwqmrGVHMyZQxE7G0aZS4twuk2cucxLAYoJl0LTwawtYIB40bswKCGN6I9KuZwRbFhKq1m148DGpxAmMTDPzMTC6YTS0cqohTE8O9a/WtFd//MByUbVqSViNcT+h05WDo/OqZQ4RuUh7lwgaG4MHqDgS9QFAxpG69A4mjJPLiQsPeg2pvdC2wERM3IPVkh/2rHFOoTmXMGkerB3sibAclW1wRjRuf+6TjsvgfldVUEn+CMPD97LRxN6O0j74agji2eOiIpZXB3ed6dYWyQ06SdFc/jRPxbplydehivEz6FCMBoD3JGyVBaFnvbywUnwyqNiaUq7ewJtYvJOkp7vRD4QsCc5olj9mjQgR34pWwL47sVmSBjBND8YnTAd9owT+jS2fRihyEeD/doxEMM8uqUuiIo9b/mOLNKP2ZIPx9/J2dMV1olagfdmRe3/AKGGufayvrO9gg/8jugWwDHic2NmitBeB0OWd+FXGpiu9STjpLkNkLf6lbNXq5XaqW3bhhLMAX02UnRePSZmCpNw8rxa2Ngr1cDLQ6Lhg7JPxC+6DfHZXi9uZp+V+AZ+QgDKKPhU90nzJmJbQdnKeAsani68ZVFhobArm8vSxw1WWJ4oLQ95hkUFKxYW74vm6W2zY1sdb5REOGuzaa5zYzb2muwCtkamnLMMT8TfLKxhxXyMRLo+6R3kVJBQEHsq4i5UdVBeUWV2UwiV2dYnXZwYtTgYMBK6kzKaCaxv+0UmD7jB8BhnLBe5+NBwgEjKLNpuLaoeKteV8GMF32ii524/xs7irWqB52NfZaR3L5FbqlVxYMPLBg4s2leZzavXbWZf3G46UKAGB9B93TPddmL1nfH4rem0ZozcTYiv0n92S1v9h+GAUPih9rNowx0ojwDK6Ii/ALOZmQ6NA16NJcRDzBoqkIvxbnu7YsezdZ1FYiT+RPGCo4DvPFUbXDcGYCz5ROqVJR2hHWAgHNfWCGVrrgCcAmaN3+/w8Dmfv4W3IAfqxo76sk/nOubsdRX3y9dK8q0Hpjo3rPDI1wAwGjZel/GDLMuDNVjudLNmrqJPe517tGgxgb3aOic+sANP+bmTBVbqSEEWm1IwSb897ivqw/te4dORYc05tYb1+ku0dScHbeO/q6SwLEtUlxQusveAhcX80TS7Dtose96kDBQpgAf8p8y+KsanNbUHDI6u4713lN5cltUnWpF4rkFQqj/XxX7exyHaCyLrGDhJRaWOiEU1Kk4dodVL3vwFlgOd4HyJMiO+oTXN3YCJrkbOXLA3NsF+XIP80Guhf3yYhHX5ZFhpM3uc4OduTUym7cXp74UhGicamDSR5pojhQlNByP3asV5MnaBrYOmRe+qF4392NiN9dKv3K64o72Q8aHhUYRSBWpNMWLCQY+kks5yygVClQQqAeuhKSKjNkoyzDZwtn9lMxT2IAsRdvK7OtqW5c/hD/JwfK42IY3FyZERA3622tpPqSPtywKeGyns/sbo3kDM53JHsUuO4VW1S9KkTrgieKnx6BT8mNGvgRXpyrpnKwawZSEm3EabRcdxgFwCrxa2ACb3ZHE7WdwjQVuyF0EL4qhsZNv2eY4f2CFhtSAa9SNvKEHtiDQtHXXcquaObQhuKjvBPKxAlOUbJAhQaI6c8HgXOnAk2nED6vVE2cEoaKKOTl/a0FBOq5WM0kTwieGTKkKPMoK8eAoLdS5j/G9D2FaJE1lfCzFmL8EUGEYg5s4qkpfkVHr+p+EFBF+6VTaHsqiWd8kdzXwr97yZMlH40zdfOQMZBM4wPDlirqzDeL9VcvRIFudgDJlSltwiYY3hI5mDrYZKv/vRSuZhYlQjY1VDjkj0giigAl5eDQF427OSys2nBfDEIfB/bOTTZdWPCi+vsI+6eirjKi5IlPvN/xFyzo6PR0GRXq1O/ZM8Vm/wZpa4UDRIjcbvw3pTP1ZTGR5XqeT96URVNm7lCRcKbsnkNyEBkDat7dTYxXOPrI+30vusRPPQXBv/UMhzf/TTYrUH6J+27+rTQUbSGkthVPGWKtPTadA7gTdWrpBoOh3aPSEXTNV2E1OwlNO8kc1NqfObtP0lRaJx9epAWDxQPsEpw7vRfuNWdYU8yim563+GbM7FecUq/TIWjMN2u8OFOjw5vIHSKFWQUjT6BsGGfkiexy8UlXn26tXMUSD6sRG/X48cdvztjEKJMRN0azOq9UJKBgKudmA7GRZguBuppLZBeYe2qNBgdn7AYaQyPUN71LngmblRKWL9pLQdh2DBegSfxw8iQlamlbjSQk5TIDve/+D8kgk55qe92QveM7n1l2kb6+fmPBUCjnF7oZakn60YxvYJzq1mmuUsJPBQCcgCI17s2LNFR12A+9OPAaexacRjhremCu9HY8WdYinMUswA5Z4Ov5e3plEOY7K48PE7tERkl/6vPibg7sZcwL0ZYm/qrFaUXA5sXyiq15/nLG8csBp1U3sKYuIdeHBFJpDbbCsZZKacKvIVbF/V3VeDX9ZTrzxrTNuDxCuCOcU09O/RE0gpLDtxo7I9oCYsK/Jch7S08DuO85uFKWdGm5TI5LZGqja7rF8XF8DQlINpc422id0UpoSxlioSP33a2O66hX/B7mIAd3pYFPjGJ3pA0VD+v2TYz6eczyvN/7SVk2X1hJFWbSdm5VRp6qsVyIFSkyARdnwbyc0WCKuKkE88TP0Py6dhBoJHenhqJTjiLmDLcKIbfpT7I/wFrG4gwe04ENXGU1VOYHcDfAmlAAGrYR1rDdDGDL7U4ThxDsawLSIBxSnk6QZOQ8W/px7p3zHaemY3SNRBwcnt03eAXpUYlJalFQpUFreTpVdRlX1H820tLUmfAdDeZZv+GB6X6RLJKYBnVIWecIcNHG9bwmHD0fo89+uOamJ3NiJ0HoCOBoLvQDKQ235QIWtYcSx2OiX7KrSBhTiX4wigIQIXh1p7DwzmXPG+GbXNuNBlhmBhbDmsMhzSc3ZZjadh9su/0ej0BYMVMBCEGbmQs6YIKxlamzPckhV2oJVJXNqpNdy2Rli4j3MMfVJEds6uVUIIOp84zMOxdUuDDg2byIXoe6rOKqyxytBCv5GdWAXw9OMLBJ8TvCyGHodhNAxlRGENVI0klZJ92aJlAYodPdgF2sPJ96rAhq78HiZ+Ss3NPxfBYrQR0Xr2DDgm197hlEu71SmRzTICEI3fPj0qUry6T6AzN67Q2GhyG5kajq6/rvKWydo3jeJMkLADdVLfFyvH77FjtA0nUFgDLUhorcl5YZ+hB2tvuvHYc2vjoWZwoGg/f3p0HxGdeOH80e7TOYNnmenwNNXbQdIMaHaqJZQvGkq0VXRrsLfk4TWDcvq5KtCXunDjxGI6grOCjIoXUnZyEJwwzlLAEBGDpvlwrJYDE+oyhi3iKu1DIktbSJTwyKxzJ/K3f6Eab6tFGQ69MbrlB3nfgst/eL7GFrDA6Tkhy0vFdi3G4eHUJeiBdbhYloujw4SQfaclbqz5l9ThzWFa2dR8qT6wI0v90oK8IBiAsDJn42rlKV+fFsaSSw+j5N4n9GQCylN/jmQfOxTnucKLgwISd8gN6CYv+WGn3TUjihJODEyPhUNf3M97jLSvgUC7K1/y8m8tttwAtL+GYHuac6Y3Xl3pC2em0vlMsM3Zc1CkrWyk8VLW6hh3gs3vPaHGeG2IZIW2W7NANs0daHGajvGa3HZjnUInHK9eHdgOPG1Il5T5knkl4w3PGl5nMQhDmY2qujuN5FhX0VhJdoy6qpIfG4AZznjHZjxlJr5kvNb/Tr+euRW2CWE9/MI0tEKc32gew3hcrLojM+/DVmjEgbWBhRtn5vM2bqxwapwYhlKSXzw718xSupeHVmuJMSAzHloCLBfFpEirYAVlPAK0WU/nuMiqezLZoCNXMNwYKgjDeMT63nzCMqMWgjRLgZXTB1YFRY/9VRlLC8Xg1iR+rqNWW75SndEiCN5bmuFhkVhWkfv+H3TqWA8jB61WeBVP7Fo1KJjLlTp/F+TWiRuVEhtdUoHUrBDEp5jGPjGCgJSgn9Sk7p0b0XCQvTIRHEUU7BWg4kWI12dGHjaT3iM9z1Mhd/uLZI/KlMlEGd4byUmTzFOocY5sybfHy0txxoVTrykqkzHkBQ+eYYKVtgcfnlaE7iLfuHvqVqgBvcABDTfWz4Et1TVCb2e4k2jWHCkYPXYF4NJmMmwlqW1JQ89y27lZNzJluPNYgKJD7ktPqsKReyY7ViSMz3JVEJnS4ku8EtnWVCmbghT7F/5bjnxDqnzoY1ZkBYQOPdrYzBmrr1/6sQHq/LAuffgn9h1S2EMkJ3e2veEcRokxWg22z14+Tiz5nrcbPyYPB7NVMyA7WwdcSoTMir1eMjWOSOOFDCUywNsT84K+yATD48fvaY0ihP/cnPW7osRxXGyRHSzHokxQgqa448HF+9X41gifbNFUZ1sK13USbBpM+7q1Dsc1/WNPGK+6NIUkhaorqfe1yi0OJjf8MQg1LtvmLRugx4f2HLfLfRmWF7veUVJuE6pDpN17Dll+jDx59N2RSCuHIa3gVWn9wrvcJYq8tIJ3IL8wU5VXM2mskzwnUF+jb/E6Cd6udf6BJrki3/qcniOvsMfr8DNiVY58eXItoT2hYOyjJdiNlYSgGAUU5F7HYpnntnra84Lln0delSWxx/4OZCKXYsY1byYT9XRBP74qCfJhjt/+QqZdWaLlz20wnO9JoBBmz3WhsnePousHPIEX8uvmp7AB7K46ouG9h6RvsleGsOKFpfV2f4xtK3nHjBCA2bhmn258eM6E4FAnH2WW94IfRYXWI+12sSHau1MCaIgvQVHeoRoF6/6s4IlTS8Ss5yu4io314Sn8YZrBWK2v95gCJ6VsVOAtaslSdMuV15LykRFzYaTtgeChn00v6+h+ks3ScmCAeFu7IvddLfXE0RDD9nPs4AsrMd/iAS5hMTgw0TKmWp+/zIE2KdNudDmhncbyMU9RAZJSq+3XwCJNJCuwYA2ukdvdFKjKt6PE5VXlQhBxGr6I5Wud6LsWxhPFx+IpyMzMJrBIzzUKTAIN1p1upig7v9xMVHlrKaiyOxQdYN4jiC8qfojCloicJ2Jc0PKd3vtmEi57asWNQsxe5QFEay2No1YNBDD87Rhpo8bZMTo/RZCbu49jua97InBRFVDfqWW7qWWliB1MYxAva8vYQJvYLcaSkkrA4fofD4h5YJpGMx7Ad69IOFyH4WtAvg7hUc3s0dXUk9Az1cQ8SRrfZqjUMa4YnyRGeB/NHtYb1ImvNQ4rlbCc97M2JV2GNsLl0dYkZyCzOgBuHTZgGUEoWwcE1tly42eyufA4qPI7GPfKjp1VNDjzMbziwjxrJ6f3KYmYcxM+axxFC4OSJEAyEVy5T1ZansxhhmDz1YnrQO9arVUprnxpIhViFg9GtPIaUuXCQ/jLfSNnK21bV5W97ZliQkRYeaRDV/ObCvn8zZf+hUH7Gej/hV6OFohGyCQmWCbPIbkLQHThWtHakKe2snFoRcGBB1GnAXZ3wnAJ9YI+eWalMFBOXGIh5SxaPRp7yrne/z2ESMpyPNfV2ZAEgLtjuHQQTtrFQO9Wo/ewo9jMT2K6XymT6LQ5SaDV2G7tOGcj/r57pUaPQvshFD3/L+/Jiw3eSQGnrpe7IRg5L6M+rpWVH2lo74cbT+uPW3eO6TpyWhBZOz3RhEOQNp6OAQ1+vGF564Qm0zrLZeP6Kz30ObfXwEu6e5GT6Dlf6sTAao7/PTvgvk9bjzHtTxlCNRmYYJOpjOaiTxn7/j/vC+yFF4sAj6lTRdg3gWefHK7JojPT8omFaS5yL9WbzPFNGN8KMKb2NhXgvCjiOCgwPFgiT8iU+Egys/H5trBzJFeB+nI0LBul+B2ZtJ1M/hluDPO8t5KhFXP/JL0sMgoP60Wzgj1J2y79Dexh+KeB12xla1+r+AYP7wk3Rv7cjGCmuVr64kBGbvX40vKvTki1Nhk8tuRjqbtPXmi+w5VADhvtyeKTbFG7QVa4vcRWv5aOSLrf27Zfv9VfobtfuIDOk5ZqwZREll9tqoVqNnvmSq8WiUykDmK5gF5swifsM38Z4trHzfDSk7zHRGNFzCmXGC2wdlp2ZQ7J9df/5T/uIq6WyUPJiW0b/xrcx3mCalmWnCWA5AwAP3a7467s/uX0tXWLgvLjAz6i5LZDMwEjKuGW3ivwByFBd7CzkSyD/QLvkPxVL/XQz6MqYp7EFhDNqmfEnbpUY3MIcY2PgHpFVMfi5MgL7Bq79NiotxKUUdj93vdZtwJdxPC8bWNPcdKwtMacfV9tSw9s+d6XHQdxDrZlK9E78xrliRyEbYKwz1W7pJ5Z5qqgKAj8ACvDprHiLWr9kdWpCZspS5OSVbTfN84FGv6JNLPiAvpC9EGOsQ52Xf70zKQTXkUgoGk6b9bP785EFuqjlCBRE6br5OfQWBLxulAIX4G51vyltH5oEFDGz3YD7EnEHK2IUpoSnCDMLEV7jQJXG5UbTDGMy4bKyBSOeYLgzAL+Ki/qYv9Uj52w927mID2yxDFHXqoAStbW0xmh3aZI0SjDihOdubpTsfz1GXFMblQrHapLhtB/SbXLPENntyJxj5EQPmAnhXt9sb0/1nn8BZRObsQ/ANwFeYT2+KEcfkUc6shExTcjr7CwHl0us6rWa0FV7je23v0VMMDiW8CkC+ODWZRJU7AyYmb4z2KZgOz6MZ3oblJdZxcMy+0BHzTP6+5HVtesueq1wx9hfMNwwmuzqc6yNWj6Bc2XLqrNsHfiJMnRuF6R7wV+1J7TlKO8FJenwBmOY6/wpPEu5mp0PL2QN5BiSV363OTdUQ2rdzFHy+fQHw4hg33rpSwYqMgC43ae2pudrUiAotcWC8Z5gcTI0WPVnCuUqAxQXdaJtNB3/YYsiYq19WST0Hs7JJ+glU+f6LokXDlQbIyVFDmDwFi8+
Variant 2
DifficultyLevel
729
Question
In this inequality n is a whole number.
n9<47
What is the smallest possible value for n to make this inequality true?
Worked Solution
|
|
n9 |
< 47 |
7n |
> 36 |
n |
> 736 |
n |
> 5.142... |
∴ Smallest n = 6
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large n$ is a whole number.
>$\dfrac{9}{\large n} < \dfrac{7}{4}$
What is the smallest possible value for $\large n$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{9}{\large n}$ | < $\dfrac{7}{4}$ |
| $7\large n$ | > 36 |
| $\large n$ | > $\dfrac{36}{7}$ |
| $\large n$ | > 5.142... |
$\therefore$ Smallest $\ \large n$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX182wRff2RoJmhoKD7oi8YdXpiq8y96Y1/cVbQQ863pQR3lyQHG8IyeQ0Cu0iD9yIiYq+kn7NHn54yIK9kXcm6lnTkDnu9yN0dpxck+u/nCD8H5uUDoBcInlKi0lQOBNYtH0t+xyMEa1Zz7JY8hOrO0X78kXf8iXaOw+5MnjsbyTLAsi192WJ6cyYjlpzuNqes7g0/JqgklYFADBvUSDTgRqRNQKa+emKfvQhjAEjisupywGilAgoetXDmVNHiWP4bx+xxDaqc1mMx9iA+Hte846zLDXLCYHKhuqbaf4bhSyleMpCeuWpgIlEVeBr25i3l3PxBqxhWkrdZxcVJrylPlhFWTY1rwqkwSRxiM+Omjb8ajoI5YQJrGtotrpaoa6PBPG+xDlUl3P14tN4Ek8ehZ/LksiGTCsiBEX79lbhE5fV3q4iVaB3AMxMcJ2XMtPNevCisOzy50jwEdpzel3x+aUHA++GU8+wDko1ojMWctHv8RGysJ++P1XN9/aFLUFZkyqEUm0TOFgde4szrk6p/zOQMTzv5ejMZvXd9L8+Qy+rpOid+O3Lu7bGezVDEurAOpy4gQNTcYMxFHDgvnXk6Zrclj4C9lbP38DBK7V4A/4wgOhw8HPJv7fH0hCMnqg14sMLRNQU6uLBK2Dq8KIaxNHrDyb7CScNiCbCIq0MqJmy1Pk+vPZ4DZ2XtXg/pEw6UqGP+69wvCp40sr4RtZzlCTLCodmrQ9Nj98gyPC3jfSRIGFZ7U7ei+aVs1VFBzHFYraIcd9UByNF31dciBWK16ip9Mz486noYiuEtwhc698/LSbFm1UAJ7grjRlIegudu97gBEsV27vcw8RyX6ahDbG70I6e8dvE/DtWqsBHmDF0QBMo3pUxfYmlwVLbN0yLEDPld5YnQkjhZ/IRRR18luA4OU7boyGB6GYSJGsNhyDhyiVmmZfSKabKMqS7SI2ozwTPjzklNUwPVrNdvbnpVu/9iq849w+qcK5MN/OSM0oFmUwJ9wYPGm8sWyT/+1Ep6UlOd+57iF7R/ucnwqxYYjZHepwlzBVxH/CBLiorVFz2dUGV3XFhMTTVkM4FjrEJtHsc1ORdCtQk3oNJs47B/SD9vUG/vkLjzIp7TQ6NjVfIKcaL4yDPUUFTeNEn1c7XgjYx9VnIPpvN2MeG8FZ3U2lK86TGr4Xsu0BY7D5Ecue+4tpUxhJ+T/i5K6s74BxMziPDWM9L/nMDGJlplsHMyEXGXhBg1fNkB8Cf+IWXYOvK+7OO1L8/KF8aQ2oFKZQ8L4ZLqcba/2pCOU8JzXMdXKDDPJCm1s9twuHmw/8L444fU21/edbQhzE2PF9JkCF7L5P9gjcyDwEsBSIOMrTsGhiNDVl0UlSNN0Nh2egqG0IJbnxpUwi1dwK0gQkqiAVPrvOTFfpXtjhNkLYFD+M7uOaAg8FY66V7gXzM+RMJCIUaKD91Y2M/CCUu9MGzO3vgrUjehOo6i32IE36MpjzeXlPzVhg9hP4ZPAAknp1Sbzmh5pM6icZcPVxtks21ohUi+qqORlUj/7N0xuyFNWQzbeKcXvg5Y4TIVbeHHZWh2/FSp1kym3+TktbpFuuBOCwWItlrUPDSONmuiEzds0vLCGXwASRsDQ18xdmxxeVL/JYIuXmc6AkuCRYJR5hiKub0ZnyTx0S1XpwmDv+qkGvK0y9ewzsvZoScHJkzrMwrMBgRA/f4BpFPmmXEShKLxDGz1tns44IC+No0YGillCDkHReNz1OS2MPMUkHJ9oEnDqprzr+3kdNuWnyrcE3JQjoQzC/0emipWNk+Jg7uBJ09ymtSeMsg8241QnPrg9DSnkTNc8z/YCTUqhshG8MrOMQ2QamnKQXJcWEyul6ObtICiAdVfq/MVkmlpcTImTnL9z0/xk1z+7zW9Nl/NEe1YOAkj5I6Re22K3wyF8HQSM00Ss5Yf6bN+4ey/QVzWGDtDZghLgWicDLpNNA5S76YFxiGKkCCjEUrjTJQ3l2C11nylYAJc5m/Tu/2kVsBEThFpoh8rr6rOPchLqbktp0H6LUZXJbnaDSqsISngNJgR01e+tzcv4kbrMSgTyCi2JSZ4DvPGbrodz1VdbmgnqS9QdI3NYMmiGSwWlBtOFO/LA6X65AQJdX4FsCjMY6emr4Xssw45KOi8Uflk8H27V4z7kgzca2a4Guo87j4RUdiIfoJJH9NcIso8pUuZpESU16EcAiN03Zir61px+FSDUOkEjXd0nhzArfXFA6FMPXfw3bPv2RkB/jCYjeLlMwMzN+Pdl+1lDhQRAHE6HGRnwGk+KDkLo/+58dhXxA7xfelb2gdIGF7ZwPabUvwhBxHBz4tBGnhWP7YVqYH85MmaPMpIFGRpWO1ATsE7/Gg8Q605rJBPKrkxXOz+OKdf651KV3E7yQx8ON+/xMmX4CmEDrRixUdzgQ8NrxqOVj8k9hN7L9XlYwpV5YYZggWGIj1QVcdY2uVYYkgaEhjyuBZ8qUMJfPnopky3dWb6RuNbYKKUhiq06YbrULVd8LFcPN0ZeRqokcAQ5COeDNE8l+vqNoQO7hBjMZkUBgv6oUVkTr2Ptb7+0Ipp1tlH8gxmqEXQ5lh0+UmiHkiRu92cRRyCXUWJp0qV3MtB5TlIEIbvO0X7S1kZwMaFvq4DKnPUQId+lbMNSze5T2kIgs2xcZEzXNcy7wlxn83smKTnYBpEBZ7NB2EGvQ3D6yYFlTt8GlzcrQ9VL3Z2m7jpTxHbp0rqJKEaOY97W7G01s5u/pxIGRGadj/KrA4qgInrYhZLlxUcNTU+DZoG7oUV2cUIhlQUVlbiQQhcBaFTzhoEQ4KLD1bZLQk5IOt2UtIBFryjvYGXvZErozQw0dRktJbCv7/YcVNCye8J0CeyFqqpPmFedoJjJiBBgq4rBeKgT3L2ZqxeJkv+GOIZ5FAC0kAVlP30O1OE/SCWroPDOviD4MMfwd/5o7NbncV318iI/IzhJ2dwR2JvPGzl3PY8HJNxHdfUH4D7ffpXl+zrM+bTWwQPRIBJ6gUaE8SoeYS/qtDiElsoytXgqOZlnTr1n+ccjUaC9DWaiU+DFpWaBoZd+hOyprLtw0F8IlNPzLRr/BsmdwkCwszf5qiYizFrdRKZ98iGFisNSlBoiwIE1eFP19dn1sb+hGFA5Fie1KtO4Q7pkp9xaOMwK7LyiJblz4Dx4IyAlMixENgyZGLdIIJh0BWUbpzVnHTw400PHu2n4eGHYlHTZF2QfMlw7rNv/bwjv7JWugm5glbcY325fjZcBHjFG3Fu4cfRmM8QyIalvBTvLsNPpRGE9/Fka6l0McoGfsr4KA+eCPWhbToYd+f0kQmkadOPNztYpNaixxfY+aWwgV3KF1u6FN/z13NyGMQfEwzKZZ0GfQR5yQqcOgpPeuk7QEEDD1I40iSSbWkPwwuV0qVPbpIE8xcUmLN3wEQ0YXhNspT0Twkwtpnyx3yQaQSlwZB8UL4iDCkjmfKg7SgBgWHrk7IBz43Amz1aFUAiMcYjhNxRVc7f8SLGf2HB9Ssml2STabOOS0Yngdgm1Z7S816qM/6BBo/ue1dZ2B9nVppuLTLVlK2b7md/HCJDYfqsHTwEHa+H3cuBIjAJ55xOzR/7CEC8HxwudLKlaUdn9jc2x8GcnYI1irSAXr0GGErtJNHxJBa80vxxJCgtEQprHfJJmybJHXvcNz11MVlEEYuCAkhWwLv8W7e27ZGTBJJM1CnwhukaflXjP/9x1kBWfTqt7Xt5Eb8E1bLv3wyQk2CODdR+nLNMC9CN5KAgx4xvacLunSsrgt6zGqWbuDkKBX/GywzggHpUG15+TvlvO6JLP8roc7soSaq8dIK/Omn+G00mspKUxmvoaHleDUHpEBI+LhGLn6HXbBMOKs0u/2vrGfJteAQD3GT25CqFyeTQ4MstXPg1YYL/s60hy515DHcQFEdeUAFP4n6Abo6iFAML3KJX13ud2dFQ8K3GxQJ5lJKRZ1vtnH820Zf692xN9aieM6BbqvxASYBmk8xRNs+WBIEs++vsUTslHaIEaZJ+vU9vpIVK3xs6UB8sJWi8Miec3lPj3hd1VN5Z7ZJMvcLkgC/2/bfJJ8Vncco2WeOyMlmuCf0Ukr00bSeChOzKcyXDAYfiLdu1mUjJtt8OFaDJd+t0X1lebrMHkYuMv4SnFJKM4OzNdLqdX/anQGrF2LKVsfBZNwQx4NxffAjvTeGToViVYV1uqn7/Jow6nvLtoNxAA2Peok3SEDrUwtViPQU3z6H/NQwjSsaMJV3c8KoViiqtyp/k7GHpukcSDWpYK+ZHec5KJFXGbixLgsPDuB3ymFn4IPY8PWarHnsNZQHyQl23yJlANYfwZtZqCRX3aEOjX1YYqJ+ubrsCrF0SCB2iO2ccTZhWWYRBYcW7IaZ8Qqi/BIQ/rgz6J4VrikJDrEVk+oo8p3gytByBuKADBFEaW+zcH9mdkH3JpJUO+xL0uOIL+yOnJP8m596jkTKSt8exZezO/aNSJ4AW+yc1yUyBz53MUe9vW4kfwQ4YRFHQMpLnaPYrwEsWglmZ+fFAv+Oab+II8O4yPjj2rifMn2upTtckzDbbgSZozVXrfevOvqs110IHqYXi+N3zOCrjeXlXfAfGPRZa4Z6ZMSoD9rjoq8J7L2XM21shwl8+kLvJBQ7w/3RXlCRJeQCd0CAkQDW0BshR6QLssyeNme9XCh2YjC25VUYVaL6NM7ACfmjNDhjPJzyZqfCrFiPYAxYIE/kYbEmQdH7zM2PPX0ubG+KBAIkOWpr+NE/dDfPfvrduWDyKtE/uGJE9rraaJJtr0o1SXsvZcH1DEt6Spn57E0smJsI1kZUcFwYWeTfz9RaPvr6l+ZVGY4i6fstpY+Q6v2NxcPFOuSuw2X2mZbGIc5GZZgvPmLBcT3PJJ4no3wnwtA7ULcw3hecRRAy/V5vEE2lqarRPo56R/hHWgztD8ABC51Ug4Y+yG72omqoGzozN7ZNvWML1jMvGlNKAwjGTou58wtZsfXxa7mioKPpy1TtlWF7hQpz5ZYqkbMSVdwYAIX0w4VIe5QnfCI22AsXsSLr5B7lSW0ot0Ua3UewZuc4gv5/96m0zsc91KVwpACpNCnvfH1e5fm5FDwORMxsavkRS6hW5mCMk4ttuOltTXNxH1Jpv6RsLTtT3cBGG0ifqH9iLWswnzBTfR94IMIO1v0YRnbvXNQCnilwvImYiE2HqOVLlepaUu+Xn1svEfHI2ZJKW6eDyLxj+2PmiizYJ1HoC+8vgrRkwwia6ukqg4QPH6rvNk8cJ03kuBNWBruX0ZinCVFoQo2C2yDi9BnYd3Os9mRl+OO12uffp2nbMFnHWo2Tmk44MSSdZEjrZDc5Jvr3ucZRojmR4zGglbOkYw9b3Qr9WXx8tFgaprSqUj/OwQRVbh7oogm7mPp5CgyECBaGhkj8ypOe22uFTgHpLp8albS7GOU2Mjqx+KNnz+OhmY5hXd4KfQZ53/B4xBdGWf5+GrT1Oujwtwmg++MhY6o4TK/ferQM5FG7kZr66bXe9lCNsp/4f5j1wK+6sgyl0cOXVIv9L8HNjpOW1/pO027fvU8DXVdBFmcqQKNlzWTYB6XUqKv6ZKeoYuEdZWMlsf51m1gEFlDfn5KT1ufIPeYv5HUvlTG+b7TgIXRGbobCkYytNEBA8dwNGiS5xWTvzn2ouzF/MBEmUhoIFc/ugyLCBV4cjIbSV5tdTgUnGT5WaOKgdMbfGepSSBpAZ7E28Ggih5QVjpDWddoRuC1ozeg4ufWpvTtS2Yb52qBqRD5dVWjK60f8rN76/C9k4DDM2UUFUkX98dOsI+6vX2inonrvnUxqwQSXbtmBAxll3N1z4EHDvJvpxHkaBo8cimKIUxmhaMpRpPdazbT+Vs8e084/zpgSCxgVt4DHJHittWN3uLxYMV/RBNY3mytiVGbikyEhq/By/DzTosuexfDB6VZqZ/4Xg+3U9WhHlxxJa5CXjQTI6RZIb2MlBHi0P5OfJN2O1eDzHyR6DEb7/C+J+t8oEg/zNF+PgQ85BzuvmsBwbfnoW/YOnn93SRh3QknV65t1QMLBdQ5rPDhJVN3Eb/gYBobepMGpgo+oVE5hV8hnBWI8JTB6m0rqvtU3RGnOas9CGld0J6fXBnkDOJS8/Ukk7f4SDzFi15sI5fnk8HCrbiHJdG1GQBpF3w8VpZbYe/tX++s7VCgrbawTYVxGI7VMbaq+LBinG9WcnLejtvMZ94JIwFncSMG4u2u/BR7xsRwbL4jP2aKGfd7OyApy11x5t5ELIYUlTKwJv/VICEJx1MPsYN7dsD4tlv4qwsWg93HXvPHsZYpbgANvrXBUxfmHxNgZsgHeG/SJ7XiMp5Cfxi2QhEPRDcEyZUnr2uDC7RXaN67648vonyw9wbWSj1zMfkOSujxToMfIvCI7gPKPLmHaPsZ+tpW4wovBb0W+8UMdZs89y+y+9fIs/ZffLh63DPswgK8YX9NjMUvpK0tIuky4hlASnABEtMytqV74YnLRow0ROUf8ra4o8CCgmDzra6zXow8hQqZUEV5S40IeHelsIibbCW9qGy8wwYZfH8R5ViupFwE5t1YPJZvvj6wd5JZIFcV9SE4KW7dToVy8gSJGa0F3nF3tLt1lld1QJkahNoud2sQOAY7vJ7SA7SBehU2q2Oiu4lVMLUAbfG8/H/uThQd0WOPAkR8O6fm9lasIy0IkMRQMiWKLXCK8Y7CeDV2NozpRLcVBmqAgOXAxumt0Zl3UgNvK+Ekiwds92RQ7DqnfE5ghb2o+xSsz6u3daEgagrEqh5pkLyMVZxA9nm9JtlsYPPM2Qart0olp/L5n2hEJIwcnh3gHYVUMVTWAP38LCSbFQoyn666Z8DcGYEohwQ2h6b22lK5jYt/3wGhrpYCbNFGeLlwg2GI4JlpjNX4x++XI5T3ww+g3dTsC3SZKu3bvNZXK6SQHQLCtqbXKCfcHj00WTCFAWAMPgqujoTgya7RNw4sOnCnDvCWPqY1y7s7rObDJiZ1XyBptR8mg1BP8f5/VKg+wc9B9U8dpF8eswKxp3W7W7ndta56T6WHN4NOc1m+VW9vJjGfacmX/pN3RNOlg+ucJOG+SP9rSe9j8haIfd8r2vWwHV5c5f0TXE0Rs9VyPFoVJkSqUc5TiOql3ZnmYxVzt7OMKJ6st86sRYnflnvEXjph1dpgnTCYrzkDTClWg14Trr1VTP/TLNP7poPrlyIX0zaHl1SU+4dA7S9QAmIbp7d4FLf0CKGQk9yfR6+dRYuy9B09p3bqvYb5d/OU9ZdyhWkfPSUkzjFtRGuZV/qeBZSHGZqPhyVC1FSna2+fuS1DKIh7j+r4RWzO4SJMJ+Emd+k34MLCZrsKQmXLxQPiGHvcDYal8Z4NUu9fx8mtR04hCqxuhFQTWfbmdGzxPxSpTIJP9DKNLWoirLhuEuBawx5Ke6z9foiQtWNaXEsiqS2xY90csRy6Aeo3OFPkdVXQlG6JfDzLoyP8fM6uIlCoQxOA2tk6hZq7Oh0UR87wU/Z2xw+Xxkuc4VakMCf4AMYehCJQtpgOy6Dw2k0JlnLBWUGk6ISTJoSXWpSQZSe+mPUBCRgeqYqlRJ8nCOhY8cQUGG9l1QybrG7uEZ8OfK31Y9++O4tklyoypm8TKynDYJDh/FzLy0paM1fhqoK/VL3UmDYEevderKN8hRLA5arWyYf+FF/JzV3LADqa6qJ2IOnhB8EibZG+4CTaXLod40zPgUwSzzl8LGT6ME/O/62gTG8PDFyEfvvqRaQH5GTSI3WNjNP6RWTJZ6Ey8ZBmES07NyH8KqlssZFiXdmhNt4shVZN14jwxcMa+ppgcyQoYhJEiUZ2Jb29cTml2fD33UvMtHSxxwGKhI4C+hQScTlY/M6PU2zC5tBfQww1C8dlyQsV8KdU7nwCiUnY98nocbjeeh5nldMJT+ZDAdFC9w0MrkB8kCM72P2d+5UEsbLJglAemvy2jmndXCbdzu2lBK5/oebVH9oFpKC2R4TYt+tJSX2iwnfhEfV47rSJixS4Ba3Gg5+RtMN+bU9BoITZIZwPHgVTtB1uhI6AXHHGpz0DjKtJtEEsYZlRIdUMxbFqwwyPR09leukkqRv9M+Ts0v1+kmDQmxuA1Xyydz/OrSCsftWhdWMB0X/idptGa4MUom0rGD1iiNc+D1xL81WFupesThCAQAL1CG93yCFD0nKggmN8id2YjNsnAMbqJWW/EbNfm8Y9kBhNacOQE7DipVinq7Y+Qc+kkD2/qedthl0YjjBkRv71AcrEyves88URtgiBqOakS6yKrbacBAYOLExJJacMD25/Cq5NEsdJ09i76D9hRD/xdla3kV+4zn7xrioW/fjXUq18CdrU8X6ei/7WAqs33QgBl1dqxGuSvGb66c+0UQN/Io1YvKe7Mo+rWJcqkvBnDOZZ9UIaSun2xSvCY+BcDM58H89k621LQnPlGAmQHsI41DgtFwMCPfTKZv73WB81bpGNdYo37xN+vwXnJcV1wcIfDV0OF2FOZdL2nxIJwFKNsHU4HvCZA45cGWV6wRzXHNmAr9WnLiBrLxZfNWppO/9xy2Y3epz0x8pJcdJo63vzchtAjQatXTTSTnsyPCCoRI2OQGxLen0owmc1FoOOh/NiQ9vhVyPG8f2X4F0xYFQ7ax3S+XHlaAdqj2HKtx4pn1lkoLi9HM2gK4CAXTEaRmbD0kp73a+oewqFhZQjvU9B03Rl9JIktE5jY0WAr78mqeO615wiHwsrbsphYuGo/vMGNjU6w/bHXhO1yHs1urP1kRIXzXKnwl/FSEk2VLT0uypc5qRmjVpsATsZ6VxO3LHB9yFKVd0MeBWG4wtdb/KWXmo1vqq2IvG3/DFFtBgTfj4JifS3iKXcn8eSii6tjdzubNv3dUIbgRVLKZTgLX3u5YpPjp4v9pDU5qnC1iFPWbhVO4VQIn86bdOHK65f83poQgRvYL36lJrVAfXk7tVVhGBU28x7tp6NQlej0526in9JWl7e5eFE5JG+un7Y0oyUBe8s4Mk9W8yJxXPaCrNq0XsBrfyxAUMug+5qAkp7z4Bh758zrKkmfr4CKjIJ4cBXljHGX1xHMnzO7QOmwdk6pQlSQQ2PtHezAt/sSHGOeqCY2KfBJqYIWCuPIpsmIDL66p2xvpqJEb+co7PpXjOsCJ2ihy22O7iG/eYFU+isi4LnnYEQpFxrkPVjhuVchCQYhMianvgpcyEXmFCpVAf++czbXPPIGU2XJ29i2Q55ewVmjdSVg9/mcV5QVJtNyahMHdg54IEmTGrKkR+rShGsukBFcSwXXgZIGpXGato5I+IbGPbC0ZcovWnG64zGQyGg/2EEbjWvxf1M9Ci7uqHgSuoPpURPBNovZZx1zzJUTkO86KcUzyvHuUzckFVDNu/DCPh8FlMtG39SEJFVpoc8n7Lp1ppNSb+yCF3AHC7QaLE7/L8Q3ygeYm13DKYHlVO2IkAzaI+3UHvDwvYUCsHPA6xgV78937AOS5cCwuebgp9C00psERuGZT3Io8XkEB8ItQFs4N5YvmFxABl2s/tOe+K7Ly3NWfBVanmVQRb2zTmxUvjYfbUVV+qIgAOw99B60tgr/B11O3r95HKssKA9PcpIpIiscC78a1jkgzDybeD0vSaakTF20ArRRiZO5As5Ui3OE9Zpa3s/dHvTbKQe/v8r/TIebHFOmHmqWHvVcuhO9rmKsxjBarJBX5mkedHX89jtu/FIz9XjGKyXmFyporHUp6o+OGyXxRH1dIB4ALTlYDatfuohFZIa5ZyupwyeCJWCCA5Qx+MZKNo4FC5g1DkA32TGL1esk/RdYQYddbVTKmCd2+lqTlZCg6ZkxDfUWGtaq4Vugh+Sc5bnMfmUKX4GbjWBK3sWwMtaRJuKi6/4sb5M8Cae1Y2ngScX+bl4YGEbh6PmRt6qXYpfZkwzJbXsl75RY1U/A1i5zv4KlHx79CeOuFPywMFP16lnYogiDbzYYz7lfq1hIGKyAxizJwRjSQuNpTQH1ColhY/OZihGe4iVHqLmro9Jbdckk3ZWji+O38s7+EJu2dqMfE3bXStb4wVe7OLhjtccqmPUJ2PJxVk8PikyizWrI70WXD0axSwIh3Eoxxp4nAJnUd6qc26F3HWROJ2ZHwSvjGgTRzFe5PEkbsqXvOjwRkvz//qmbkahSRlbLhIk/fX1wUxjVnWeg9rStwr44VWGnSSECBgZ4+w3gFaiuXBuc5BxwSKs837cNgqNcB8ek6uTVi7F0g13yl5naEXZ1yEbj3I9LCzzDhXQ0WyPKDR1rTQ2wzr5xwLHDDEZwkDZQmafIctIhfLycqH6s0u8GmxmTi/jtSOieF1ve5xCsR/Q5wrxOiU5ICfQtWyjQKCSISO8wR6k6Lc7EGruAYvj3vonf3kuKs2NEiy9E3rMQdh8tG24kQmY76dG2riOiqSsVoLszj7lzROfZFD4eB8iJFVBVzO1bgd4bJd4Dmaqy+AVCnqcWIROhTiyCoR8w2ENcCsI0k+ruV1EdVAcXBaBvHBHneVNhORVFNSaCYymec/OTskFWI6reo9ev9OgefUSrgFc2P2ugJm1Xv0EApXQ6a1z8YbWHtsYcZyj7skg7ICYiNH3cj4//+xfDL1wbKa80n5JW92T/MeBNV1vMajElby+aXGF+OSY6XxedySf/8BR+JYW02QdQ1B67lUNbkXWAjCpnzaS3CSxYcj/d2eJYDu7iyj61BYVBZ/4ffkGa0bt8Y9kusu5ij/lEPt99nbff/uodmUDhBP9Jcypo3jujZKg0qmvWFCNA4CrRL+id/bhkFWMgqlY1PUoUK6yc6AWQJwyGxlqpKWfKq3Tb5AnQWGMLRUlYAsNbRLkeTDKujzQT4ZmwfL68MN11uFFp04837XuOhG55KjUdIwAp1sofKEgfcn1oE7Nn6DT0D2mI1+eKBoel9ZKrITEk7LGV6fDlF9JRJOzIzw7xzRSC0elKI/FFtbcUZcgjUon3K62mCcUSCa7zJqVFMW4uc6WG1Lg5rroNrBv65Lkl0/8dtcnlYpKEKZWKH2P2aNb/uLH5A7AV7mBrPM4D1hFbS3fgbMz4+IfjkDXFBV6IvbVGzzXIarM2auKWLKQbDjNmOFPOn1E5Rt8jOw4ZiEExRqiqBYbWy9AM6Z7bzFlv2jHy/wDbZv9iLhq8bFywX/tyrYnHoancRJELUZbjdsmGhFIGjZRtYOrB8FF13XrkeHirWd7w9x/DOF195ZZHfqkPCI4jZYBD4UvvjTAbyQ5zYIUXfJxZlRoj7FL6DunIVoyy++TlU+at3lOg9pzGvTQKrl4pEq3ep2aDK80505usHBU1pWj4b95LISnhDcWb+c6NAR0fsMaOuGYcSuPPuL1tx/bCLwHMaTnYQPUW3AtuvyCy5yIWet40T8atrCKQzw1BNmPpZaTsljzEGwSEzUFln9IxUUzGHaK1ybud3ybhilCYlw2LG+zFQElCBOL7s8T1x7yDU2fYFemrpkboaAjnfAhnR+Tt/bo+ENddiwMraxFMCplG8z22K1zxRecB0DYRs7/EOw7Zk7d6cQZvydWPvD6CSmshNCG48bkLetZt1iShq6NpNsEu/E5nBudvkme7ODETQ6eHM3dHi5rmqXn99eN4n9FCvTUlfHmh/6S/7RCIbZjt5uMbHrgJZ4MYEax4RaLl+m2pQhuVblcspZxs7NmZefptDt6VAB0fy7hFY9E1xxizo0BT5AKTas6Xj+upclN0bLKzK6HHHRgjSu5Emh1WNo/JtLSGq1INlZuXlV6XUuAV6Jq+5cM3lhjgUR7QCiPJiTRn+Nu6S9jAJ8QuZ5WtKvCNGCwqXHM+HgMDUmVM/LkytxwJra8ekuvTi2X6C51R5pBI3rQf+LCahzrKb+H6zE2rJ6CuUkaDjA7sufp/25378isNBHrG4mvwGtDirCOYPPS4z3SL9GDW9Dghb6tOkqs3D8Bhdahk5mWWKMNOhogSVHdUthGk+Po+zFf7nEXdJUInPMyXrmqz5HTgP1/TiK9mkCBryuX8ZeykH+4+gL1sbZFFNmKjMz7lXdaVX40TFt1a1+thQ574aOmbgrZ7LChUCJ+aZ2ZojUoB83BzAf4NF4rPncnNLtvnaOZmlBPqp3OTieLpYiylSUqEzhZjAyNLCB9/tVdu0LKWoUhdY8ewHo7mlkimPQEfI4lrLFgybLCrCoI+JSPR2NnxO+v2ZCP+zBYjTIYtVwoZYl6UiqDZUApvE3bwcfv+HBzosOoDLJxvrJ+dQcUGxqU2Y2eX5HLB1ig6eZsCZtLS8ZghbFzfGOG3t4OsGapkyU+DmoIG5sLxtD59ybE5Zl/sDYhDKoT/znIsDTRXI27S2JG5Ituwka095R1L0gnYBOlGLVobkmr2mxR15hytbinE60e16804OSGhLJtSd2QwyHFkAfxrJXg94MiJCHcyYZX+ITa+ZAdEQhiZZ+gcWu+MtlWFoMC8vNOkc3o/XLunLAVgNx7fzkcw5H5G3JwjulONeaZYXXLYEWAb3MPzN2EfXe6jO+8Xi+O/8w7w/rXyl2zftH8u6VreW1KpnND17J0W/FRIwzyDO+m7OYhhtHDTZIQ3g4DbsyfiEInWdR1qebojJUw34L8FMdGdidU7uTjErO/AbdHnW9UjCWYMow/4gcvObZM0letLBnRIkptO01ZbrheTgbbSpvQdg827eJssK+rbOr/5vUQ+wZhoUG4iToExVA9TXHhA6EyOZZdeeijLAVrhyhNSfGDs+U5eDgvTlsAlcR62nM8hQrbDl9OmWXvX2FYofZNQsylLQxJ1Etjv8LoeKqCExghvYQ1liOXHKEMjp2yhcsf5m+J8v3Yz2QCoeUZpo3xYYqNaaS98ekHxaj8k0I/LrmlADzEn1DT1D9W6UY07TYIFf8PrJDQfc1tov1nHPvEiCa4eVJ0zVRZB3nVENv6quUNMktAtUlSbJmuXSeFkYdluej3y5B91M7iv1QZ1g/IhvreLxMblLhMo2yk/px9nlrxQbB++vkYQNuWw7BTZWCfINcCBZjUGrAUoH5IYl/NeHPTkX7+OJnoPsZx8QDaBFnjnMrEf//cCxg1TR9JEiFyyIgy6JXNK35h4gk0bYjpDzRzPM4k4ReLOQfLU9DPbQDnM0/HV0xUU7c6CeWXYLP0nsCXVhmPfd1r6nolTOFQgQLSLKZj4kNgK8OHxJAooDAS7tbvTwpebCh1I3/BTyXqahEw7xgc04zUdfyMxt82m60MkBmozpGDjbLRZ4wGpe29NKbr41Pqn6dEyk8f1zwIV8m990cEzsIQ7fwZet+AlzGQsid+K18IyGpShHsAxc/F+khbwjNh+7B6mmZVzoFyWinyNKauMzuQdHgs8HfqNdIupyPCyhGixKlRRZoB/3/s9YiYUzpJ/6vo3hI6keq2in6tB4AObiBSn4bSg5xnYvlRJsSDX0xQKBA7ZMGN9DoXlAiRebb8SZf11QC39VGfpc6oOp9JbIOZ2BEJXF87uPn3znVwP0m58ZHqWvy+Cy5xM1LtUqHuq4HZhvXpXAsX7sNBkZkLLXaCbu/GX3B5eq6KMulZ6mL6aLB4uccFgWrSmWHclDOpCWG7kyMXKXJP63QQbL9Fsb+oUKfsTn8hbBHqVLiMwSa8f3ym6wYfWvfE7IPohsSkYry+5PIWxsjcW7i6e0cnm85t6J+icHV5Jsp+GWJNkxTqE1e9Fy6OlnSr+bbkrXYPFL//AAV6BmsvtzEKZVwxoVWRd3MXl2yrYPF2k5L8+iheHG2uI60kz4NLFu/2J0/IdmoD3kJRovEvS51O/Bcb/6X7Do4d2cXE+GNlEjyyLpwSPA+QrhJn5+Wi+t5LQ0XqerNuSAn7+5UVIBPhLv05R6Q/O4ziTv5jrSUOJlU3FRc2ucEWIYsLE5rPQIO6EoJInOsWR/y+jGniLdBJ52uzaax+6n15M9ui5rNExflBAIQS6z4ZnEsLsSZttNKrnHBayuY0u6x3Ru9N7nwuByLz6qCRcpterWgBffIU0Y1LWE5gYjIRvG8sHbT3c9+oyxRiNtK0k5ztoNfy39kSEwfeUwiLCpYnpDfh4tbOR9kNvqQWVFKsLxrseMLr4br13B+ifShj0FQSaQOG0AxMdLllnLMRcxXo2yP2aME516jzf3pXfkFhPA7OgR0UC7hr/k+dKDDyqyvnPkLtQjcJGbkMq6fytw2ogFsMwtfIhrfMRx7qP9QG2K3/VsQJ6DOsgADW/Hm2Zo0YxFchJfm9T1hAOHpsaEeUn6k8Nnq47G0WZeHfv7E/p4YeRRK9Ix84nf3X3RmYaQYcBNrcfAMHqwj6cBGKdKbAJjBoXvLbzW0ir1djC4KjdLKz/8PJbcapRH3zu8cPwQohAeflLTi+XUmpvfUtEkDk4g4ovNu+dHVBR9rDGOAbkNveywYN3gJeiKfXOZuBo0cRwwWWJgmh38N2fliBYztN+d07LxLczPIkh0J7rXN/UaYkmJUYsgUZSvbEQybLAlNQwTrWbdhRkjz+rBxpud/rI9DeM8sApczZc4aLEHLkb1cjEcNnx5telPI8uYY/92PzYlN1DGvKdos7W3nD8xDLO4jqD5m/ZBqkPdus81Lh6E/ci1MbRp3OyrVgT+empODLKRhjJDQZIkORBpDYeoU+x3/oZlJQO1rBWqjlFvVjD0Os9TlY8ixf8A51bpH09EbIJtj4rNK+l/c+1ZgDURghc7nta8J0xJEx6KkwGPt+DTP17W4CxMUllAK1ZRtu4Ybek0kxOEDILMw0rRoAYSTadm+a5r7S7l0g05jGUB6YWIWL5tOhKonxB3sUo5jcU0ETCwOkYvlWLsaR7P/qSxK3qInw3rK+ZIPRFu5CWhy4Pi+QElQbTJWVsjnh0w0HDVUXfMqR+YDN4jEHd/IMmMk1kcMtYqqvcLODrEJZIaqb+7gl56vvB+IiJ9mIC/Zh71/MNutLyOtidHnSoiEg5a7hlB4AkW9W+YxUNlWmAaHpZ8bktWarYlImuuVnS3i0YiWmUNuchsHUfySE3hcNkPaVQRxYSgQ7ArhL9dVyE7ybij3cvNW0q+so75OGcxuXabQTuD1kJz3J5dV9v/r/z8g+VlfO08okbI0OOQBa9KQ7EWpQZAx8Rcv5Rbb05uk7UUgsmpj/yyomLJwAEbXn295vh6Gsxe7v/NyFjuzKlQabeCr6gH+NIQSceVSqlm13lxk0vyOoCxVEEMK6SiRInHrSdeFZ7pfa8Rau0PObwodmiJd/7bsQ1LsQpdFUOdHgAJqmH5zFbu44ZPi+LTLXJKcgTnfaFLcSURGcVK1GZzA6Gy8dbtdiYAcmmf6In0dWap7TMmbVEqLwJJjILRJrxeG5CMiDYGQE0M097gZBMGrq5Y4ebnVgznkwONMaH/znv4dmTExP/Vuw0HiGY3yCp/XOxNl7X02+o9I0acnoiJw3zmfsNTAVOoIJhHeQ2oV959duxuO5BnCLbPZc4DcEXKMjQ0y5ENo+813P0RYO7aDzCV7Dvm+9kXgWA9pAs/yp75eRhECIGL5GxDxPX4KvSYErdyk3UiwlHCEhASMWNlsQ6sFV8gRfrPnH+H9YF/7xC0mdGFW6KIpoZMOV/Sm6nTDnji6MWZCQHXwOX/BxRlldRIg8kfXAVFQ2HhL/6wxw1XwPDLiyldtVbszs4eXLYanqZrznZasL5iWtVLGZKDcmL0leZazGUGzGM161cZxHnmMMPa304f1sIaQvOVXfajMiLBpEWstTtGZ7vdBj4Fo/jhYZ7iE9s5Ag4I6ZuDxB/P0LcMouteUA8Knpo1QJVsks+VmY4eh4gf99lFfyOG8wY7CZhTVNo+QSNysklClYyytCUxIRjWy/MXQrejyBIOKFnFMOMw==
Variant 3
DifficultyLevel
735
Question
In this inequality m is a whole number.
m11<43
What is the smallest possible value for m to make this inequality true?
Worked Solution
|
|
m11 |
< 43 |
3m |
> 44 |
m |
> 344 |
m |
> 14.66... |
∴ Smallest m = 15
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large m$ is a whole number.
>$\dfrac{11}{\large m} < \dfrac{3}{4}$
What is the smallest possible value for $\large m$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{11}{\large m}$ | < $\dfrac{3}{4}$ |
| $3\large m$ | > 44 |
| $\large m$ | > $\dfrac{44}{3}$ |
| $\large m$ | > 14.66... |
$\therefore$ Smallest $\ \large m$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX18DRljqPjAke1MlzzVadxh3nQZrZoqL0yOGZfkP+mxUy4PGS0iAuUxq4bRxGL8eGPsUXaezKpH0l804jqwszpEHzur4B9meauKdpauYsBwMrqEoXt4kTkQ2T4gNcFBwzhfoW6dV3Wvuw+ibDl/qiuUM8oJQGaPTkQWZzBf9XpIFO5hH0ol1/oK9bgLXEko4WEd0AePFrbvgmwF1M9ljPxr4n3vVNSrhh7Q1YEclhyO+WD2rtkhZzplu+hGisMmY1AruVJZKChAH4CIq34l2K16LmYgh2CZztwASF38s8tlK58uhSDRNgeMrUl5/9vTHiED1i0oUZHG/UHfsi9ZtAeQ53d1cFLWifbZLz5dlLtPLlE9LgOCyAaiOjcYsed4gFRlxoVoTks25YGzBuQsx/GXsJ8EmUslyH15TOGTS4NSfyKbUe8rSnDobmdLTlcCGo5TQ0piuuuoTOID3nYIFBXVEysuX6ijgl/8Y9JOCIpZ8/dEOhYbIFFx0mKGyFGs/AJaenYEruiPnWSV12M0yoKHB61/PnOwJwFBr6m4EwbP6JRRER/COxNi73HD/sP8Cw+5Ie+ZcV7bQxNXqvECU216dNnewxCmiPLzPrlBeMHbQZlrajtdKF+2r4CMeuwH8aV2saj67q+WE45v3h5a5mZFOnmcelkcA33gdkzzxEL2JlOknZcjxVpsbDdRGtkz0hwMiw9a5SH2xPQ3XGNdF8z5b/XEzPaO3kALyoNbGxi1daDlKKUFan2KBBBAbnVcsoVlt3DeseIzt5vRftEFcFSalRAlfoAG0JMPLQR2BREJOI6ifinReykM54ydBXQ7Wlsmxfam3/RIl1nz5vPEMVPRXsqcuoQAA8UbWReSi4UnkvQ4Fss/cJDlwbV//2PKBdBPWRlk9wFXcUm2r/PonBaOrgB5nRFqPedOpDW0/2ezOLQ16a2KgdK3mRYbuEWNFAfrubmGgRaBAyVMN6c49tRIMQt/lyX8onkGFrGE9LixfZQVAPG2dFSCi/SZ4P2mk+CSZmi5Jr+x8Bh8+gaYzuBfGOJdIlbgnhSETFeFZALnMGfXFoH3gFoZ+dE1cZOViBDCC4ER/CRRtDxWvv3cd9IT1J2C0DJGAeMsgmqhe+Rr2DF4BROSsSnmX0l98BWAQAEWsvsFv4WkLrOUEPI6p9OKzpeSPUqST121v7bOcOu3dlcYdih22qnFWFK43Sl9TkzpdIi1niBB7eXeg1NceSPP/26er4UBi/2ZzyzjATKK0lh+y3H4J/LuV4onAjZ32E/yKIDFsJ7NG6BTJ2xiYTDYjgE2zXMwZV9kvDIPJ1cL2iP9epyu0QuJ0o11xjOSiZK37Q8NVYzvOes2f28lpwicL+CgAtE25skdeXaXenDdEx2+P/nCQZrEbRm3DAvQMCICrO4W4NisMXnZbUeHQvF8RVxf6ZoVgEPndH/73foLA0lSAgBLc7FVPxpzpNp3NVlzoBJf2dyDgh8wycgiF2hcFRHqd5OVJkHwAneEsQH6mtBBsXzKaQhANYrMLy2+xFHNy3z/lFDq/dteA/pBiSRvQby3m5qUn6R7yMwja74PbtCrW2E/mSAPHb3T3t3BKwPXKRt6g47HhGNgwY/ZutVOa9+Rv4Y9iJuWWc6enCrBDTluQECObMqB1fIbYYXw+bKSqkgK8oZU7a0ulSdT8HPTs9JpntcYGRo4HBDGdiF3qqYmlXXGY0UjFhF15w44Y+EvAU3rRjzl8B4/Ah9h5ZIA1aUBroysHYxaywMEvU+DOy8FYaBgZ0k1rNHtDlOgiRePvUoNy4QXuO6zmQt6f4UIOillt21zofTmh7DcRDatej9+wGX+PMUtBuTg3VP+X+ibRKG5yleFBEidtso6n8yffLqhhQ9P7yvKdHBkM1RuiISR7ESHEEUYajVkuKX1u5d5vlCROZkTAEvQQVbt5aMSiV0FjOzSCkfALvZ4cPdRwiDciMnR6lITh7Q/YqU6VZcUXlYfmk2wPD2bSERHzFnPuFvm43Uuva7pchcZoxjkMDWM3xtov1F1oX+sRXtyTyVHkOzoqkJbEUXgWGyD3jzlqxITMiHEZVS4cN6PTD0TNqiNjSPfWGxgIv+faXooORFD492DqJI2zeV1Kc/450OcOiQUULf0jeQ283XCYuWZFMKup8zjDuvhBQEUtbZfqz1BGJPEyiyvc5N9fd0gaQ3630183LvNlJNlvNDuSIao11aRB5H/TaCeUkbHuCukCzqX8/eoO0/9R1CH5Hx+3V0S3ro1y9RqEIaozqrnYAByEb/N7J7kN4jzODlBqsVLpQDq5TEfDOKL1EyszhqAv2rMFZi2ijtBDOw7jEc3kiX1b1JYJ73kt8QppU22RfM2exnam6vxpu6igTA8s8r6o4bC2QqTinUfVV7TBpVTp6XNGrrzPobkDUeim57szabcOOehsEBU5pAUZ/Tu+w9j6M4BrTT5RYLl3sOb2r2n5FldhtEQbouNgnwOGesFmrDpS7sGMLHkhDYp1kWzVL3w3NmStWE06tHIwgLgQ9DLs6o9lFR4Erl5bDgkoILtgman0prC+WGlTnJQyFsNinMMw3KCRGVTQvT2QfmP2Wf6Sl6Ic4o+5hS3oSgx00Uddc3PMk3sGrLgcvKKZ5p2OFXNLeCROZvaW5CIyh8SUFLQ64DNBzYGXbB2XyYOqrf4F77FrSmpS/kcm6bR1/aaKt8rGFbBXn7PTM/wqkQT+IzzEggzboDfGflsX9LjexqyrFKYnNJr/BIMsvdtMB9rEZUYOu1Ovcz3ueOMHrYNOi3PbJxcHpDlzcsqe34G8ud1uBrh1e7WLFdYx4at+wlAJTFCJPELR6v5XjuFYbTodQAdDx7ggPx06yj2nnZeuRt3tPaVbTaNbMAiW4VOF5wo/L+zQNJm+IhgCz792J6QIW9KxaMlAO4+3dqmlGt2aCc5MSFggFB4g+DySmki7VON20Ntk5aHE3XXHONLpmWJF4tMA0KJFKEidQVEPdSO55i8RUe+gmkLqafE1LMmIFm10ol4kN0JhuSALa2iCDeLb8jVG+cGhcRvL4msHdPnWPKKq6zJQqz24KrvEFzoWEbMqIkZgOss09/8U2s6BVRMF2oDE/0MAbqYPKLGKQgx8bYTvRGFGtpONcY43ccPTRYCSXw+JdANftRyTWchzBrvo1uFh+6wy6EJox6F0NcYH6gU5V7wT7tN/RH23dXNUq6ZgK3bYjreV9W7LcQn46bExvEb91k/EkEUel+w67ICRU5K69lzesVGWV1T/CTMCi0AN/1vD8VsjT31VLWDyfu6gSVLGa/LPPzpEDazUReeQZUtYW+sjwFkYwQIaxf6BGBsJGVw0nE4xrO6lxrRe1mZuzmQOQQ+7zDdK+mqhqTugBA/uws9kUulEJhxaWZFcPS5IVn4iMTI9e1kT9Bf8dz7Rd2Mluo9rBa0MtmVqKiTABg73v8FHDbaYCgKFYHEypRrAE167JZUKQQAB4CoVNWx2m5Qam7n1zAveGVSBQW/6RKKoo8tHBf5NEXWCIIlsqn2rWhD67A8LJWvP7avpINPkggCTvJi9Iiua6YelY3mYEBt4m2zhPkwEQLtLOXEx3tV3OvDmnQ1JuR2bv5a0AJQEx8m59GtKKNWjqREnmzHss33dNIiFzpGeW4JyIcdiCMRVPokyzRI99ehcIPfdwl1z40D+hhQocb/tSUqRkLULauZ7U8DqAF5TSiZcMzJF6BVYlMkIt9L6jVFj+lDWLQ0QKe01DycVkEZChBb3fuStyYgJEqA1AKj4b8u9Ab1/iuMn7kmbx1CtFdTRwW+uHGseZ9CUSncLEUymxMdoZJKWajm32LZGb6KpwReN81xSDGfAtdnknjU36aNE+gCtJJRVz7g9M/TpYT+jn9sDdsbbjQ7ZAHAg/E5FojYpTj/Vxy7UEgYsUbPU1pC9snKFibFVdZLVvzG7uxOCE6CI+Bn2EPhKNx2vT5reL4GtDiHx3P1o8I+jHC9UXNQvjbznZfX1YhHWmPqcn2YOfCDnRlUwWsORjC1gGVnuhiWIqr13RdfyCNwJ0ejfr5obE/gkmqXKw5EWgra15WYFzcvzv9sGTUuM4VD2K+4TyMgN0D1shMb+uUeqAr6PAnlje+e4TUQxl9j0z7q+LiTJCWzFNvCPNuw51eBebntvrKWh2ZvlbnmbXxNRa5kLY/Cyv7LsH4+6O2J0qdAAhC8R7gc068ReSk+pZ0ZipVFMNr1lh1J8Vsu+ACJ6ivuy8ShFOF13RL8xP65zOpUBDVIuX9EvJ234FRNyoHuU2di3MLRqQoRSdNYwVH15xc0F277bm4KmSwjtNmYflSwm/+ZtjHUaxFyo7ctHu7/V0c0758fn5PL3TUDh898UBk4fovMVc3q3R31ebtC/jEPZjFzGSka0lcMfxtWfgoKrhZs6mYzn+Lc4h7eQErpjjmrAwEvgVEWBst45Gi07T9VDcmRhutlFKca9vx4IKLL4RBvWnufiIF4mBQgwrSqEC+EJLiU9c+8F9YZdW5Vq69KnypW5K0e/peUSeRgz57Q3jVbr0I0vstb5LYk7d+wpKJcaY5IDDY7g5/z8YiVGT9CYrw23qkttzM4W5G24/hl0Uvid/Rl/KpRIQbzGbBp5z0JU9w9iFmTPcz9GiPpbm9/MTG7M7tEoT4O+fqakNVFNMEnYNzSlRlyPuF/GzIyK/j3lzHHwTSGLcNdhVBxNT9P8zznYQKOkBPPVFQXueusBvFJMKuUnOgBc4QwkYcVlJDuroVP4WXs+d4aSljPZnliUiTL97WDC0Q7aBE1P/EYAvjKweIa18YOHLNraKEQTZqXfY3BU7EpvWK83LohRPgsII2F08RnudsaNXniP1oNfBs0D7CXfUKorPUabC99iYB9uacOSZq/QG2AcDNgfK4VrZ7k5K/41mycbfSNAfZwn3+NCvV7YUi4vJtUUqCQhPyRk1kLLBAkBw2vJ1lzFVA2Pkh3hlMsHgPrfNSq+EVLcj6t6UHCMotsRILosTtmabQX5SFUfU+n+yS7lAosVs+s41ekcHjqZGbK+Ce0A0KKMTJovTfrADXR/LC3gCCdOLdhUtO6spvqdywlvb6LzZhxFYQAhrfK9g/ASjoAliRX53omJixko7lMjPWP5aemNT/PU/mookA66y4rInavcxMqL4DlcIwY0N0pQT3vScR9rpBPTYR3Yy7go1Ne3umFEbMTKZBOwIOtc05Aojk/O2qLExJx41ySUZUh5C0A4Lcdi37apCxnI9GMBoQnfA+9uzMKDRgsrEvV7XopZUUko2PCBJGJoVCtNbLA3cepbUEIl37VbrXu+Nbu6Rpay4wpxuBIlcubW+sI7QWkvr7pFL3dPZnvsIvjj0+F/2Rw4C7CHg6sDs4dMcctUyWuV2OF1Y0BPvJLwp9XVvGA5WruEtrYRpL5ukNf26V6qyolFPv/1OoAkToWNbmTUP02ipnvZ/jA5iDgGOdq1sFund5OG0TSkAeH1HYR2ge9Dj385KRjOO/cMVJWX//vJc4SjJETkwM7lcBRF8k9rFTngEvy3/Zld1/VYUx1qHvc3zHe53nstA/xpGw6W2byYQkCSjHr9fPvcRgJ7vjAeq+86SttEpxvTkNNI0jYRsb5VnX6BmqhmgovPPXQeYPoabs1XD5wF+De/XQbhiFWEd/oj8hXDqW34tAJQ8Ww2kRbZmnBMjgWuJGAoZQfrJULybCSrgPeTZ11TMN5MU4UtshAA/JP8RxYbMrKcK1spsZZ0tLhY7IVQzh5kQK83PZmTX5bQqSEeQKCpUzblfbQt7oR5b6WiDGbAoGTi5Lh3gLgYm090VIWj7a9zeh6iOaeYOBwPDyyYQAxcHqIF2GVGjJXXcsoR1fZPnM7yaXrSaojtKZ8TMIUkUMSvXZjHTVp8bA5O+CtZsCcEumGSneC8enhHFXk7uActyG8L4RZHyur4sV9F3iqZHWzTP6YHRQa5gvTy5livtfGUnEw9yIOx3vVavU+1CbaXXPrDIC+rGKLKX9BpcU41wDoTW/Nj47wt1YgGkZvGAvxpcvX4/XSOQMF7gcsLTXTguZNNbuCMwSB3oPFkUJUxhAvZHXMGVPCyPRoxUbSI2SKUGLgrjkXiMPFuM6/Ovpadp/cdty1xG/cW6xberDnx9sINiTfUJv+i26P9T4Jeq4Ze56/NTV0CD+tb6IuCt7Pg/Z3ghhb0Za4hK5hY0wELkLAckYRfAt9nVTBid4mU1IdwUcmokzrPeYSmgImP8lhTs+IcNFAf7pVBxk5eJ+8Lg/mDK8u0cm2nuzCsH5z+kl79R8GLU3ALJw5dqSGeK0oDCsU63qZOluhTtSov/rR7opGXuUefiDMdTWZfYMktAGjq0Xlu2aM7lw7UhozaRZ4BRoTyrFzgV/h/jmQR+gy3xa69iN8uOsLThb5aQ8EtxKjMIcUddp5fI2V4DQjY2FuFbxDk+//948HnjhrSpIXRbRfI3U9OHqmLHWtBvZWzLxVF4KxKltv8vb9pq5eM7WAfPY3As4hryPtd4kQ322OzrQqrkNcamilDK4x9XIRd93zcwIKsOKHk+gjcX+ItQDnBztykdfLcawLFysMJqeHmmwQOyYS8w0jasyCXDlCkwCsSbOsXsQDQAPBI/i2l0xZEJWmR3/sNCwKFBPySfLplSscIYkojwC79imzhIKtGABuiGM7/ihUpF2iqC6NSDEE/N8zipy7PgUuzUhNEWMmwmHPQ2nz1IwsxUV0NPWVpPtF1P0NgOsbuT7eV9KoU/ve5Kf59NZwaL1Uj7kPbGmQH1OxDK2QPAnrfjx/kc341n9DTEvi1yCnNL6cqLcY14DO5PIFR9GE5Q4UBetpau9Be3wh3VYJnjuhWfNc/rDc12augIRDq7r3e0kuIBxMtw5pf+h+xRb2EkwE58N2my4HfuN5GX0qCTdI8TknC2q7ofYmYmMxcVcxRT25XxFFgiGohyiBf3V0PZwNFCYGezxpzcbLl5Bl2aHXb0jSyAkB5tVfUvLNub9rpdgNV0lrJWH42s9MqoEpKUKjLfaWB85UxhnNGyMwZiYHuK6vD72KZNAll0ZhoqurosFAXgLHjFmogugeLqe/B8+7H2PE7PDVeDdgVECOFSHtBSi3+TONPJ1hbGbJQFhOvlZ1QjFNfyVbNd7EDVuUHaetdyrOZsAdWt9Q5f3USUEYhGs0cfRggV0ZAW5OoDu3y27cXp/x3XQpV8xE+XLyJEd2lN7xYBzHCJCI2uUT2n8XiQbVeGQ5WWP6JXacwd2kRSNU49UefFn8pyRe+aU5k74sGYLe76+c+no4dJfFnhQhEK8hoMjWj7Dyg2Tj4MX9HGjqetcXD2XKXNDSjNO6oD5/TNgAtqF8nXdZtfCd9nZ5w5M2PoYSviYewAnSik15mktnFC9EUPCmFVyuDckMUnRSLx1iH13WyAgvYEXlBJnGkP2XAXoS0rP95oz2twCwkiHMOcejuOj5wCGNwUczGZUPy6r+Vriigq0EBmV2DoqtVyKFc0qg20uywbQ7d0A2ezXHqTVl5JJhZQJbfk4+DnhZq7CynAsdyZ4AAM2hn+rHrQyzPpccyVfpcpXsjhS1wjt+lFeoOemmyEGstgCLnd4CjvfGtldA5i6QQ20NsCzBz5Fz6bwE2XlgKMIK1PeaqPYl9I8FdSHvrVgRA7FQzP8M1V3XwCXk8j05GLK7YQ4kuqDOBXZ29kyGktXR3XDA8DJBFC0S3eimhHl7DXONIpC7N2rWVLBJn2bZjPWWC7YtHcelXxHCHb/oAvUhdQhcPMRqjthBd0lc5oR7v6bMHwKPY272q+usaRXJx6EwexsR+h+K4ket7ECACIHu0fzuhczzM5G6e4nNeQgHC9DvY1kr0MmyJBVHSBl7IwLHjEVZSf05EmHX5KJBFS78nZK1R/5FQTuXXZ0ZTlok92dUIqTWUBgEMe7O6jxV0SnYjclK1hO4anWNSL4SFHX7JnzpebSS2ZT32pYhGoK5NT59B8t2jZztNkouDgcx6W75t7CB4NOumSSb2EF/DCahy3DjilAjY5MNuDRWwMyIazAG7rWsOZAnkYBMDfoQOqJ7XfpaBihGQ0i3+3Ne8vCHP+iKE8jJAiu1O5OuzUg8H5pZuDLDeWASrQ6bejcaNKRmQlgQBwAEyEJhNqcyWGQnxMmcV9NOLu6uq0fNiEcxUO3f78A5X6uuHctkzGLpLuscRzS3qCeRPZ8Y1p8mfsDVdp8EUkRtMCQHNiyUGmt6VVJnIZS0N/4DWlN7sG+4ADlrBqp5tjSWR7m2u4SL2Da1u1PF2OHhUZwf8w1EjnF/qoJ4I+1qHPy3ZOAnq8GPt4wdP6bJX2o+ES4WMbgiATk3IUCzvBu7QDhXQ6U6zazyUAV3rXcCHmM5LGM2wrj7Yvhxvqbqw+m2k7+DT2D0QQj8x2U0ytaEXAZvm21t1rrTUbcLw5V2rjhj4IBhe5kLYjHpqYFtfU0LMoo9zMC3Ik6UCWVSmT2Sk6O0JhnXIS2+Ixy7X3kEekKpgGzj+BmLFtiu3OI9AI37SOWEkSOOnE73ISlVWy4/p94uA51Y8iwGJ/Cws9GWUG6KjTSYNwoNcnLRoyZ9UYjlfNqFfXuwPd473kmbktSc76iLcP59Ep6wxvThFYd0xWQhe2VpXk0Q42+6bqk9asUrlLg1KD5S/Xx7GT6caD21OJtXRfzq7UyPFnm7mHS8fmSPIehDvjDO6WKamuq7A0s4hBwl53w+cF8WGdSINENF6fuiKUY2sO2FELWldNnLnmAlZGgR4zSvyAAiSEg4VDRyce6NtKP1aC31ik0lS+TT95hW+p9SRrQHwjX/YdmQLrwfye+YWJqmVWSEseVfJDYJVREk99wiSaK4iE6fPQ8LVJ/wZECAYlKOsO+jl2DunF20ZKzfVa+kDlBEOx1bzucTgcuAossE745PBiCvA7AK/hERp9FmKTW8ODSHx+yEB/+UfbHeeGrNOM5TvMEMDe1R3BsuKc2Ttxt15iYxE1rzrLa84ol7QWaxQVeepoorwlf7jO5VirK9FUeGqm4ZWAhQgNGyxh7Bnzy8UW/sPUkMwqja/DOMb5Rom1BAU3IdWaKpN8QZouakAKe6BRS0HG6NdmS9WZgAlY5PnjGuF3eCevTHjCY9HBCIlY853JozLcN7SB0k/RCyobvAFNdk21DnFhAznGE48vR9+Dei623/tV6WsY5f4btyEKyZ5xNRMWKXeOEs02JMLhbu1HzTunZlsBARUe3akB42k2xtTDIDVleIUq8G/uBtr0kRuG3TrzF3vwLX692Jb/SB14f+mX3CeDfsxSUg1Nxz9Puz4XH1d16wa8cS1nR5C7MmMFf9pJgmRyLEshD2JIEY2ZI9FPurJczgJeVj3MdmYVEk4ghs2bAyT7ITKxCFdve6pmUlaLeVBOItgzGU25HU6h3RkepQrSLPFjZFNAwQtTrnh+Ckm9IZa5mxpR6/PYlTyS1YbpdjQ9bDBQDLYWxFC92y50uqfnNxC78tNrWVRaIl9r9CPw4zBtr/EVn95gbDG7QH/iJca2D0b95HEHQ7JhgVeYzCSZkIjfBHq7NhlvwjKrYGGGIV4cgERQJUXXGewIlbrHjPpclRz03XY2mq3cJXtGyQ6jNJO+szqmK4sARRppLDMloI7vtVgy/WXEEfgmVBDm22YujR1rSyS+T7adl7Fh64uInW1+69MeAtBvIVcO2H2b5qbDsmD/657c0oK+pIxHN47XHS+A+B7TDjDPvJe5yZkf8Dw7Y5EYCZf/QDtHe+2XOh9o97Lu6TbCogGsoV6qsqlD3xw07lLVja5jF3zSO1RRAuHIH0MsMQXU/z95l/+JYgkmBhie01yMso4bmZ+5EAjoCqgNdu1WtnAniPkJJh8+8fLaZZxZYiPfpRnXQtuCfvTXO/CoZLsVIggwgLIVZ3uiUO/QCgwUuPbgj9SlzMIcrsA4pNYgG/B1fAXyg/5ZfzytSHn7SUFFAKPI3znE7My0iiI37Nmg7WhmvErlf03/0ZjQitY4NwdZ85iXGeUq9ay6+PQUHyMyZTdAqHKirQsS3FPrK7hgR1m/rc+s8RUfaE91/vRV99tGxT+HWIsJ/4H0XWC723Gkefi1o5cy7P6XauRlaswWG1t11s0ng6jmlizQYsTdmzDEiyNooRo5ivKyLwxVCI22COHCZ9G+YnpuGjeazObyz3vQOOQgYkZWMJvn3LQgYE4xvjdkBThEVx/8xvYiFSxQ9a+1HqaJYZkbvR6Re6Elgb/SUZ41FtLapBg79g2B9UcBKegZw4e1FCwQxewwZ6v45JMfD+O5Y8dWkaoxEXHjYzqmy2tKRTplXOzq+2k2XGtc8NKhw7luj3IccPi5NmAAub/NQHUUec2hrNyKKfyvUfl/cMdDw8Cw8gBKKbJRm36VnmfzOYva9sH7r4B4dajp4nsxLfD6POlmVdBwKAuRTzMf5ilgWJJ/+hoT6SjVoI+XxfOn2t/SADjiPvMPnuMLZvKzPf2aawvOcYgnrhdO+4//4UvGQTkpJPGmwWFPbLjwAf1T7KzPoRIVj7COpK49TbjHmdAP7g2dWJGkNlbA24RfoBQK7HBokyapwwb+fUF9jpEsQs1bQNaaLWXfEhKeXmioWJ4+3EhbKFPgXnxtyU6Sqm6EicIIB9ZCwwpYmV6V+QzC3cCWJDudiBDLxvOM5/5QYSBM74q+XXsgDaQj1A8ogwS0gRuX7e23s4Eash5Thys8ZmjbFsoMS8dj5Bl7YmC2RW8dwf2DaiX1VjexaO11t48QoJVxJyo8EGKRWmKG6jjwrTl6p5LCTpzlrUuAlQ2kAgkBZENY5ch3b05At83vJiBag6A27fFHle+lYt5XH1y3woxInkRUAYVD4c4Q9d2Zbem4la7CPwLZG7qNv9VaRIetpWrEGrhOiNogfNOvxl5C9WMYiAxwMyu0bNL0nIKWfnOT383XZ0MClDOJrM2UQWdmfEwv2gwDelGpSE5Qqooe1zQIGHH9L1ic8TYVLNY/GjNKAOkkovHsj6y2a44RZMSzspzqU7vWiAPz3/9gA67nOCUMr1TKJ70MPkergAW8ZIdw+NrUAMm47/QUsT3Zv9RbpB1z8HNiJJAdEJZPxzUmZByUwFeQZRhahs8qP6WYycIlXs849ulGCxynS0r45Ek7IPX/kvfDxx9lR1KSoqMcHDW+Jy7SaZ+B9k6d+JGse4wi00Pyif5FyW4Tz7SjdxbaOMF+WQmA86cEzfWlP/JARo0wbDAgkAl2Bx62A3Nn/dHFxg1p908J5uu3LG/b8j0mOHO1l/u3RXewLooNIOTy/STNeoLPceFJFN0AXuSWPoFCnsxBp+xgIN0cBT7yUzaRFm07Qhbt+65ocya2Yd2TJxx7NlA8Fvuu3bdwsABhnGZcKB4OqfW+fr2oeSuu+iZq+jAFGExL9exUZ6D6SaChbuSP3sE2faOFqwCt+Kb16LPYcjWieUBhF83GeW/VJzbe71+2ERqdb3evKycm16qJs87LVYfZSj8iCxAy+VyjA0mG3xeLk1MvS7Dc/CZx4090HI90/3GlxJwxPWvbwy5p/tWu5eDEW3h8j6rgoVYVlJG23HWTCpFLUFJo5PNJv7GsCnYZiKCO7QwxXWShk7MwcgXUQ7qlXtJe+wy55hqx+drBJAaqXYxayTiGqHyo9w4n5wJSXgyLJqPxbffnuzwd+sHD9V5y2c62EBXsQZs7hzu1xPsfrSer4bMqrQiyLw4nzA2R53dO88fllQA+OvVI/uhhIBCTzNz8Z6vJ8wrzCls3dmecO8YDK16NnFymuQznSAm5vBNcpZ4/1n933vWkYZR/r51ilZ5F54u1qHUhoVvn6N8XMKdpDV/O53bEVh+MdMyAcXdl1BFN028x4LsfToJOkYq3AiAY6o3nv/+AkQtdKvlhvIdLCTYWTM9P01COr0cunde6lrPEWNrE9FUtQguyAA5dEqlKcVN5bD9QWSh6H8EbA0NA/Jc395dFH+l6HHc/9yepEoWdBjxnBQBArwNpNWVM7xGziMqeCQIP822dasWMKhtJqub0c8qqPscrPZ/EoFETt7PQTLi0mXqITt8GDa2x1wh4b3yTfcEpfDxDuEwKH4fMAb33UePgoi0dYG1enmkn7ol4qvL2v5yxD3/s5HFna/qfag3EuW0zhDLoGXjauoCLfUdVvsrGAnyL6HsHPCaFyfYiDdmveHdfJHJIPZrRcCkRaRa7M5ps9azY2QyQfEfP317ETwxepXW+lBpW//KOxpeOCblnKqVUnQ5k6v+0FwlBvKjhZ9S+U9wHEfmjCROCruhobLWXlf8Z5XqqAoieeY7zywdmlHFjkn3wy+WAmvW5tFJzjN7f+iAT23txnS/+EerX8HMdWwzgOPwMt6jEKO/gFvVsXtDu5VTfo7RbhqFS+3cte7HkJy2mABzXC97bU8x2UzG2LLbRpDNZVxANeammxqm8W+M0BZhJP923pE6Y+o/C9Q2lV/7ynxVQbY+OemSxRlT398IJiLM6DQTBNoG2EgFooJEVQN88RHX+nsCsyapSQ7YcKuRtT5f2d+8YpRTQ176sGvpbG8IenLrve4pVV8y1aIlB1GoumcE3jyR6MsOUvIuIL4wVrf+TJvlm93gyFSVLZc3/Jogp3DblJ/+pF16BD/l3S+ZB9HF3FXntR0sSPjQSvmQXNI7qmyPuT0wYRBmmxnCbIMOtt+WMbyaunyu6+8YqPg6RjhMpeZFWMSJP/FftPLUPW4iMh6JHh/OHyPGZkP5xY0v74gUqG2BEVfO4guyqGZyPtlkJxsbDJ9Qs0eIJ59A0kkb2xg8rvFG9d50dvVH/eZY9cEqZtZB3GPuPSJkiMCqgBMbPrEcGs74EqYpvrys9P8FuTSXWSqsW9i1Q3rk2yhDze55QuRNxhAu5o2rORrLVq9KrvQeNwLZOVPOOqWa1SihD4j+cRRogKRSljyslo42LZjIEDSGiTtQhHO4rUzXxAAceXVpZS9uC5EmOtOCsPTUnq5wfTAHQx3JB86nGy5zmz+IGNm9licrTxgaeZQjTantc798TM/rICpSMD+sOPXTawZ0oJYnpoRMBbgn02msArlekDS9RWZBiMfa4cJ1Fq++8bTJ904OzpHtQFYA9HzeFwJthxeb8sC7HovlemuWCoZfeeaBduMFWz1u0TJF5ptaFYXAXwWjIeJbEBFrfCz5RZArTthM/3GhS363p9Nv7lVxY4uObvjxf8EC/QpbgcMLL9WCcFNFwvscUQk5ssI3MIXlmvyVUF0e1vP06StSZrPPd4ET/tE9Gi2vpYnQIXLKrdgC18egoHbxVrGC/J879E1pIiI6hx+d2M0udGo8GRS7EmZm1JL0IxXLlhIBy4EFvBIFSrA2ZFdbn/zUdBiuQaBrkRxJGQSt7F8hi97qjBzp4WjuSGR2RwA9luyme50YDuGj3pC4IrFdffL+gyNEm+aCRoF9wB7cU1izN8VOXM0yN87W7zheeUmI+lCKi1O0257zHpRtbIFgN6vxQWJvPSyFNcSDm2hMOMyXbfaVrsvPAflQptoDWUkIwKTFgcFKqa9dz1ACIWEiIbA3VXulr5RpQtkaeb9p2oAqB5qas27w4K/55PxyXQRSl9qS8y8AVtF5qmxjUL/b+QuNQ4CuYhfT5dPE1NfIxP3x0dTvul7S4W8KNWWWdACmdN/Pq57zKvT9BaWXOzAICEbyNXvgX8UAdVUtub/6TXUtPxwzDKPAV1cVjK0fHcyDoIEpk4W0cQgx317ZNAQx3CsZtnucaiSGaf6JjccY/8FcHQ0I6gFjHuAXYrHaU/+MtNtmPrHH0MH9HLJfZKzCJIYAiAYI01Wy2NXhh29GXL2F1QXGZPXqdAST2D8yC39fbIg1hjXqgAXmHidsGY1FMZaA7UigI40q0aRx2/aFUw16Z4WVv9tkxkTkq55J4GhkpoQyIZR+RxLJWpWBSlCIIxP0XyWE8TYTqbTgIoiZXKHbvu7F1w6GNA0cUSTJcaFpaQlC+bXy2ShqZgkq3N4awyAgDkk7b6i23Wr5/TEvpkSA8YJlGcf68ZO3oJ52dB1HQuqxgkFT32736lvea+glejLJdcvOwllwZxx+fqtyQa/vlZxaZCeyNQy33Vsp8RYVj/hRX1gxdbS+7ltAWBNTSFiU/1DG7ERJ6caN5VE2kryjRZ69RV++m3yKDZ6NEMga8DxAXc3q+m/pKCH/NuomeDvKUGexNwnb3pLA6/Fj1s+7R8wO//jgJUk50KWWkfGk9RSDmmwvb4C3OeEJO6F5GS4N/K0TersC3QTApgy+Hj0Y6s7xY32njIlhurrQjRsqa3HHwuqxM/a9jt5P4F9nYYHlZqs5749UfInYo4CYvTeO+pOeNfDxjdqV738k6N2rGZJw4TnM6/H3hEaDR3L4oeVce91HJzfkd3wcw5uoHuCqp+fx7YCMhy7JMe5BaAnxNxVmriOCuMW/Jb2t2Gm7/xI9Hm4mijcdYM4p5qbWu49qyBzVITSDrFgUoioVgZJhyCtqD4epBuU9oHu1QSDqTKA7xSkh9nJQIDEqPFfIE1WYKb0CoTMH9rCiqHXIDtmvzU+hHte1asRzlSE/9YhneSTxTjauJfvwuVWHEEbp6KCzYtiX07nTsnRM4T3k9SukrxPGMY1En4IT9+xj8h+O3/S6ulnww41sqpLOJGxXYfvRL1PDXqbDqzWFuUbSNn1wEcIn+uKccMclsiOfZ+3kGzN+Tm+uOnSEA1XssWcA+bk7RpF5XG5Z1fVJvR8hwLHt+rVtK7A2QVNKOxojrnAsMtYKbAwvBi4eVF7O5qI4vMsl2Q8BHJ34t6+bjgyARTa9aiNwWtH4spu+XjY5E8vkcKnx2rP4UcA5yXzqXQx0amvS6maA13WlbwRbBqfYvFPT0mKFzD4suvzP4+ovyVYwk61mqnofVJaB0GbX8JzFwBa15dWp7y1XFM3z7qq46K3TIqNlHNfhG2u3h2wHD3la1u5JWvn/iEEBTLFbZ5ltzMZw6Rxqu44wYZJs51EzY0x44zblqIe+s8uyPFTsAAed3P1aGK4lbFz6QF/eoIjxUwSl9T/7nbrhGSXWGB8Wxhc3zp7fEt4CqY8J1KZAlthwvlHSB/LewirAFCZobdkutojufRTHnAOf36Hhppi96kqa/tG7gq43vY21omNcGMGylCzIp+RBiaSFyw+hyU5LWBtanhY1T6d9qLufQjQmMb4+XTlMOB873NQRFGPizPApcX0GNqFsQTgci/pvJX3HL4ntYm4mtHo/HENT7mirq0VNyAMSGPENXlgvz/sTd0jV/+9p8LRBoOXbjm+jazfH677Zr/vKgcD3hfxl7gM+/j5pel6xsvqtqDdCAmA2GLAD5IG9Fbm9gbgxU/yADyReZXdp5YEtnEobxIGr3hik4Nzep17rpWg/RWeIlZltL8Xfb0+1ijYGOAr8YzcRLEXl+3LHd0VThhY4wEy5sLZ33Iw7RaG1H5hqALjgKmxlsf5Y02vfCryi2xVxokTNVF2qZcHOTtciFkaJmsWXVlWgULgnxxaJhfkmp7DOC9rqMjJ9D81/AhdHzVgfS7V3qfOBQ2KVfr1vf0Idzi3fJn4Qbyf6TmGSxsk255AbcO4FkHZsvi/Mi4GkhEvQ85LqnwyuPTg4OZkb5h4Y6aF3H49o9KLD/Cv+CLrhYD3CRD08lY2mNrPlg8naP+P4S1telfvtKF9uwC9ztT5SNjDVfXR7IY9/FMrF90qIhCwBufvy8/hCIWOqlLlF37ufBlPHsMy28/7LirCt4UsvvGmlxGNoOWFiqfVkMwmT0M9ywFBq9ua3pyZUIbIvoE8RXhp0fHme9h28Ud0M3pMlbGW3PnVSOMxYsB8qoZR0ICFaxcaOim5GJzNhkF3y/N82NLs3X1Kq16d6LXQ90pdKPpFEgmZo9uwrXBHJp62XIFTvpY5ozNCzxjTJ2zzObUP6wOPNNdoZ5OFICd2Lo1DMjRq9Ts1T7VlGjnNQC8IISEiCpaJoQLzN4bgdS67yw6a65OTrkAL4zAndpFKxtHVIHh7tBEwlgd9ASTLg/3CCLprfH8lDJIjvfJ6kRXJUHsX5b8ueDy8BINkbfwvhBMjJVcNS+Hhfl2wPBFtSbHapmqoyHOvDHH4rmIO3fRnpn4tnKchofU5/aWO3GQwMQY4bOMwVRmPiyVAi2KJK+jBbm91Sra5eHHqi2zW2RzZQgBSNVWN/EtSW07N216iOxs6vL1qMuUBcG/duGRfGZEkxE3VSJnR342dr7TlgpTMJtpE+39RilKVieBBBNDpeW5s5CpR+wn7Vl1Dc8zg=
Variant 4
DifficultyLevel
734
Question
In this inequality q is a whole number.
57>q9
What is the smallest possible value for q to make this inequality true?
Worked Solution
|
|
57 |
> q9 |
7q |
> 45 |
q |
> 745 |
q |
> 6.428... |
∴ Smallest q = 7
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large q$ is a whole number.
>$\dfrac{7}{5} > \dfrac{9}{\large q}$
What is the smallest possible value for $\large q$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{7}{5}$ | > $\dfrac{9}{\large q}$ |
| $7\large q$ | > 45 |
| $\large q$ | > $\dfrac{45}{7}$ |
| $\large q$ | > 6.428... |
$\therefore$ Smallest $\ \large q$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 7 | |
U2FsdGVkX1+Gm53IMX6Ac0gKlN8LHRJiRYNdkiFhHRM19CkNRFUEeJnliAxwxBoqK7y/pFPuzBdSv/FZAirux4F//YoyQvpoHCHM6mHw3L5xInze2dCegL5RhzX6tAHsAgaq7X9Hoz6aCogwPfwa0CSPxuMdIzQLiFyrKA8MJOnMQTUXACGAeyj22+PTQjvPundh1mrtZlPTBtv2bbKPn2/OunoKmwy7yykra6gMl+bZ+ruZnSN0XVkY0yABPkjEBzMc0qqfPodEhtMWjdbobnvPrJoKj9sEMeMP4L1TEzn9kH5nZhNxoU3u0Dj8An42p72kTPlXh7YHz9KUyMfYy4471x1VZtfTt2ZKnpeamt743mzxYO1SQKxnhcsotKv7JMJK2vyS+4nizt4PQHBYUW6GjqRyyXcPs9e/LX3EYiS+Ch2kWqU6JefE5HJN21Ku+k1HVZ8eeipCfuJZaWSQfksjtB1Xz65JsNY8zbbWqZqL3C6tqo0ZT2OBp0NLWUFn3p5FPuccj8TAz+cJw8lFAxgDWjhXuUjvUf3NiQbZjiGR0W9Sn8Pe210G8OFHdKeLc8j4ewNACRRrObLW3fbDKueyqkd7dMv3jcZzpMUsZ/1ItqSRk63vjvXLmDVApidUnH0Ytue92gfU1oSyxoH2DF7T3WyHdpRfxJAVBcJSeMBn6jEx399Hu9SbNMX32Cmf3AWx3cVn3zZ0iIFQecQkfrX/xV/9USSFLg7VVMF8UCfdBdemjkOc4bzYjfejuKGY6KlNnxdSSxrAelUGCI4xEmgm4MRn5Q2pavfoCGFGnaSQzxqysaUSmUnZVbY2n9a4jK9vBkMxk/UO8zkxriIN3LXVngzdUdllKpo9omDXVJqeHvdVicdgsFp6PNTIv5vk7jdgPIadHXhwCBKSe/knH/zJiVZmThdgK8GvNx8CpN6RqvtqUYOdytQVmpdA+GLLVw4BTXgKN4uM1g0NCVfOe0AZ5Bp6ZbAiVsfKb8OQe9QA3u8lpQreBQpXS9SiF7+oHQnsqdkl2H3tAiKgH/+OarVKvVHFDSiHsD1FTuBtvbYjOTP18pVwdqhw4Ri7cYm0BoOkyeOLCCvenj/KChV2KkaqBZPq987qi8npqUHgdvQ81nsC0Sho93Ikfy8g7/01EaofgibG7PiLKMyfDpfdWo9qDvJTLs98yzayvB50d59ooDWdwd/7Bbzj4LfusZcYCfoRbus/sf1tvg6IJ52P+TRqC5Bo984T9gMp0JJXRhZK15G6QsI37z03ZwTHHDO+D0ZoEc8GlAJZ1HErCkKUXryGLTpcpuIAtPhXlnAZK8YaSDvEh9wv0fcbAcMDeaIVgOe387AwsRY9QvgG6Mm/JHn9Smmv/rMGMGqutrk9Ip4JkFnIKAdGkSH4GQiVtKHC2Q/Uf5MgwQ3er0+gJ7ZdMkTEfE7tlZoipmgDKHa9aLQk5MGtNv7U3XhkblzlzjWg0s/DKWH3CPTOiBpSgdfcPWEuNTTB1AS3GjCc8h/h1viMnNyKh4OBdBpYse45DOVAtE0KmM7d0tCNurpqdt1dYHFczDqGp2qvqEY0AOeju5z2K5GgIXr5Ky7jWNMuY0tlWbupDSNGeHVSGQVzGEUh9KHWiA23e8T/y9w8A1Ap2iNs3p/HEfV4ym12wFxjM9tgc8TiZxQAn+uGf5zoAq2f5ZaYCcfZ7V53FIJieDJL7qgoyv/vHrxV72vKDBv3RnvC910Ax0CwegpHjknUV2BNgj1wyOkZNHMEuSm+MOc5skbcZ4o3BqhnzzW+q5woXdY4llniz5z3pC3cGxhEA2ygFpDo5mukpEyL270oS6ZEt0YPYQlUZ6400wCQAYMyFmc2oMNxyDSbxojcoPkQ/5rUEdNzj4Os1NK6Xz9TBi1w2XR307Dva9cEUyR7DO6movuKufuVPkIyl0zF750T1DVldYUiF6n6Vj+0DBcuuDAYHL/eBrS2F/bJ0UNdE58A79erA65rQRYspD7a4+LdpfXrds+b8Rh6OeGI7mVRGweF0Sm24sQljgW8fx9+R5e/24hJAbncWOqU2rKtghCmi6NP4otKNokMGsPd/X63It44ZIIjNYuK1R8Q2tgBA1C3Br/Ug4JyXEZTxj6lSzkHErZP089lJvJynfP3ssM2cn9PuiQDlARHLw3l56Kb+CPSUKnC93VAUGHpMYY62Om1WmsTSIZSI94BwxDLxk7Mc+suLyEGKDlL+3iEDzJX3qWciCnit2KIpG6BZU5aCwNmtZN3DJjG09b8f3f9ER1RA2+sN/clD0SOakTmGi7QrxPH4LJPKAVELhuwyCe0NT+5FXXGr3okt4w6fAK/nqsuIeamtM9z1F3Te4db+H1kbpIf9ns41RwQkhR99WMsUnKgksLlZnflZNewTlZx/lgwOdikaOPTm61kqMdSYNrYCdJxwr3M87V2mmflLH7NVzmCb88x1OrCYH1Fe9KIHavjLnCLSxGYx2GTKYXQ9yr6DqS5iPjb0kZ3CA/CPDzoeIM9PM0Keg2SaBPxqAjeo6mpNfSiLQs+RWPXENyHwNFAaoM252t3nznxTbSbf3sThDDsxQTKzKLzpgxqRbyaFlWHlRdEfMyKS+PoUMoZzIlxY6W9Q7yl/736+5bkgynsQkTfxXtfdVgZofGNVDIY2ZSKVmnQXogo0FEag7fPxAcVVegz5+ScyqdC+iW/9TgCxLRI5f28OzrQdk+NVqtE2hwuEQI8IPILttsLKAo6DFjkkH7oZTIGpT2eMJPq5lZeiyUp+JRUmzhrjg7B5QYD7TssBmYNK7uY4ZNLCGHq932ASnDxaxl/adqiQl/jw1K1aw32sNmaT0Y9SOTVSIxXnGga0KQf+sgDZHFlFbm/j99mqS7+GfW6L6SUi2ap/2GItC4WPDRRNQgZjwO1BQgswg/pYRnKs5gb5ZQSUdEmFjSAsD7u2zPVzoX0hpCtXjuWECcCDwce3PWECA9VCxlSZsm6tKKj4pzUNfnDZcNa1fyQ+fZm46YLCnlnmfoNw15q1nqcpmlfXs0njaImJwftMFCxMt7gsslJuGZQ+Ca8UivQwHVxQZdVvHqGkj26Uxt1YJfwKCkNJ7IETLqfHiV9qJ7o2s2tfxp/G0ijzuyfk6GBBLrQERkpSC7dCXj9AW1rlmB2D39qAmpPDjBSfj7jdRKyL9DploADFEK2Tb+Z3Jcjxnbbciy51GBEog3Ov0Ye2cb0HxfX8vBED0IDGLKUdvaNYSDRJsHVQwMQGmcB/9Eob0uf/pe0FO7XXbDl2B7FRe7hWT5pj2ZvCc7TIuerREyu8akMsC09Mq7TZpJ+cYMgxMPsAocq6JKsGCmGePcGAWkk93LyFfRUeCMgqw71eFdK7tAhTvQcLDkpYD+/IufdOazfW17XtFlbyNRNO6X9aUcWYIv3gIMjl9tsrlVQUONf19P5SzCy7gDt0EFAFeXl5+ztruPfFotaJ1vxS6/UdkXZiUJ5sSA386XddS88PKZ0MXhcrfR3S3gjrAQGn/wwiMH5e7LVle/p5GIy4hUfHO7kJMj4b9vMusq9QzMiHyNlnQW+xmizSDzCgvVj0toy2AkaX6JE1SPHJ+30HcIez1TOjogCbhr1GQ0VLejKdOjr+HWfSTd+cX7ffuk6/s5zdWLZE7JtNVIyUynfgVeJxsukF+Nfz0HrJPPoHABkKZc09+ljkvt3DSv3zmHk0x9KB8bgzEIzpI2DIgxkj8WlccZQn60grHiwRCRMiLt1Njo52qoIGx2DxkfWf/AaWvMOaCve2I5ia3pC5twMpBkrixBR/u60snb2lwwvU4NlCvd3a4UyOGn7tM+QOam1u/B6VcMzj0Vgi5q9P3n+cnCMZpSoee3RUHXyTw+J6hysDCnjKAkned/I5WvwvoGakOF7ViIEwCyirOprWp/ajuExytUsEAUejmAKbU3lEuQqkiyaIfuEc8ii1+NBO9YShVT0ngInIoYVi2S0zf/AuPFrZWOZJcCtpfm5sYo9eoI11muTxQsUM6jNoR4vtZAYXYUbs99ZxvsJc91FiD1tXyP1HuOefmTQfXZXvYsl41zJrKQLmYGdLzJRFCc8ThWWwhIddVwzZiLJTfGzILX3uESR8qMKFrq8DXlvTO2wmvXlbFvSkUdmvz6AyZpFjsDRe8Q/6JTuyT/OgFC1BpUIrhrxlt9VjkHYf7H2F9dNsPgCX7UiEvONRwNPTFRQcGmgcrSizHzfTWAQo6mCjzYJ1NQbtTaj74o6x+LQxNBFyV3zWrGbuKUCjvqPRcHzgWreQ42Xxg+R/hVMmpeAc5Pjysl/SDa8LbNlj7qsFhBZ2JvvleluzWRNRunMSu5YO6B692+Ffd4V3HlQWxapviyxMBUIukqWVVIo+nEK9GVPJAaJDxBQASq3Ypb2M48Z8JCz/g1vkxtGyJwKR0G+6weEFfbEp55NHNfsObeLmoGcDkzogn8hdXtQ1wmAu8t+Edyt31zrVbG+SyZywqNxsgjNREhy5FutaBmhLxfoh835c9lWZaldwM8giP0A4vL7u5/rk0mmNhVNFbX59jziZoQQkyTq+WHGkov2UgDw9KyDTD14nM7d5nHYd9bZRKIIShGs8Ysds7BxwfKcaGoAhnaRZUjCbDg18dep7xGva241cQlO7YR4Ha4w1dbZKrVtUl6UnyYGWf31jyicBszMvl2vbmdgG/6cRCajNvvvR5uNoqNI1lwF005l84b9fbkcFpetNOGTvnYKGF/b+DRcvpNAU4lUBlp346QSiUZeLfKaBGVparKzpvgpKm8USYCVzQvqhJCairNiTLN8yHoft/xtE1FFyt20mCqZbJr2U4SsJFSGqXuFssv9zG/+cH1/S+UPCUyhwKnIvO0NhoLGMVa2176Jx45eAnBMMqFRJR4yphmbCgkgYLQ0Ljg7Ck++nVCJbzeXlC4HWBQXfod8vwQHB0exLuDT0k3ZMpeOFkeR2G+72TLJNgTTTLCM2rJC+mYtxBvjx+j7FoiyFJ3PCDRScI5NPWxI2rH+ZkRxW/1pCXzumf4JeVr3zDCv9BOWIAxq64kf5DLrX79e5vqZFuX1/cDDcV/lNfuA8s7mo9c3OPbXzGuVQU2CCT3obMZQ5Tk2hREQtoIHazzlrAirgQkgyu9nclZfXusNcOCDt/XfJeqwCDQnEWKxD6lcmwpPhhJLGyNVsqXVVkccNK7MV1YOaw1JYZ5gBwJULPYIq5LZwQiZCLDPeyzcpYw6/2FyhIOyIL93tJEJ5zIOjZhqdfe2Hp/bJj7RSc12yrKVoqdJ3wF8JUkmchH9jVD1BYlJaIqKciZzox/Baned9tgCpIo3A5tlyIEYlLsWEKTtwTrbPdZKPWWNGK+OX6v2vpXSjRHh8jwd+Vn8GPIANGR2bof9C1jNRRVoWrzGUPj+wUsJPrVHnGF+BPybsYNohCrWGxzm2vFS1MstYr6mQ5It2VBihrb1cgeiRpX4FNqw3TuIJ6lEhNbQ8uq8ORmqEMfTdrORc8W4svIn2OmepP6bV+Vhx1gowNt/0diqm0KN7yw82WWLbXrW2/9ymL/9KcbaZrijF2A8m3LEnEr9IeaoDTsy/jyyoIQ8KVuGsIvrzH4538PdljVolMTGJKgh31TfBNxLsS6Af2gPrsPcE7BVJw9TonEWv/hHU+aKouJmrs8NoCCh71CWRSf/jFHMPfGezY+hPSrS5nAvZjCdJgPd/BRxlCbU1mXS1ZvUHI6Fpne7aXyg1KHQEPIf73G2wCgNaxVUveGZNbhaqFaiUY1ipRLkSjCjIohPeL8MUwZKddB6QyiV8veeEh/UmpX4l1Q1vx8toPFuDzXSn9yjQEJk3bskjo5ZNYIPh7tgjc9SfcLXZ+ZAjSXhZcbAoQDrQASNYqfxeNaMdLcjONvJ8N/GkC59/PF4aP/DD2KdrSn9oupIiId3332jG2lUlSUXP5wH3c1hkZx1q3e4brx9NDmC6x02MJLRC1bDUeDatdRzRGLGgadHzlJmDXNVSvV1IBJ7zWaHVrLeOJX1j1HgtLY93XMtqKqsInpds5fj5ERs/09cf79rXMYe/5BSlToOqeW6lzJSRgrkWBk96r3a4Sk/pSzwZQz0Yv8nYPoE/xgadlVx339G3Od0d1WzG276y2UQZDbmadLWxjwqb5ThikHjmwN4+VfHpqlqyCS206qUZJOEzPxG8isx6ZFU4gv7A5WmDJt0aJX39s6RYhX7ZstET6ahrVH6lO+xZM0jTM3XDCKGka1iFlbFP3D/mccd7kLM83GL033ZgPL04iZ29h0SobyQ+viAjmG+pP0WERY2OMaF4Vh+HMNHlBFiyQ3nl5ymbAsxv79CasZKq+bYcj9CUsEP40SZJ1sz4nxZuOXGXo+1Cc1AmCrg8AQqpmbVjme8+oeoWzFuvfKV95WmSa+LF7/l5Lv4720vb9DzFcg6c4qzyQNWkC5oBPJIp3I3ylaIv2xnZCvZPFg4EYA3GxzVwAUDc8odK0nW2t4/u3oNfeNsfDmEv4Qde21Lfytm9kXU5y3QZsj9fQnFzW7DObSF4Hx2asdhdz+SKZKvLvf9OIvcWnNN5MHHog72lngdqyUn1L7SS74bhTewk/5bc16TomAGBKgKSBOTZA6Vw9uYPQlGJFFhVp/Z+Mzq++A/zVfHQMRSyDd0gA2g8XHxPcDl+WmI5quTpLBMwGgUCrswdZNbeZKhdMxiq24uupWxwRGAaQn9DEl5EucNecNW8r3cgCw8wpworQGwyLVyJ1z9zUuBKbmZjNjEU2qdR5jkeiE7Ri6XKRtL96pX1btiveUMXrmBx/hghnnsruXHk3A/32VnjgggbhtPLMcjTucFVRcAAlZi9DibLeW8PUcf056OBkXqjSC5JWI/abU4Cz7Zc4BnuIP1iJ1Rb8gr59TA0DHkM6ebys3Oz7wYr+bsfqZ1cTJtw+TP0b2XTU6iq9Q/gZx+7hJs9ygfvQxRGUM+In64za7PGbu0ERfOE5rIjtEk/eh4qpMStHgf1T5zrHch0ev4ZDhUsluIc1CtGnvxp/g+nCuQLNWsO/um+Pu4T5zhz+gM2yPzdtNReNokTU2gretgMj4uSUhX0ZzNvPKcgAe3vGxNE/1/J4IPfSA7FbZHvKDdGzinWHPqf+YWZ2ecngRq+Vpzgb9WcPL87kZ6PONC9F+Zb9b2QhYkZMMk/wXrpnIM+JaQw+30hVKaysfyxc3msp0gDjNKBUyZTkAfxURkYa6cz/Dv5Q78suNjif9H4RqdC5Kx8HMPSbeoXZlngc4O1Lli3aUrfo7grLhLC3IGmNsU8YxMlaEkBBh6Mqw+Xhpsj3LuWS00i8cIde6K6vjU4JKAPjtq8oftKfU6nkHwBBi7PO6VV5tNahiWITu5bYCLE+Q2w3sq5PuWwpnl3LcT4CVi9WfErca6a+/r9DZ6dRPg+QFAxRUZAiv3aQdTx5Uk9zwYzoFU5lj6TJZcCVTPKOvXz2zoOID4is8VKvDZUcjBmumL11Ss2FKr16KFwP68rLcS8P2yB/9x7tgo9OzVSHwFMfDtYfl5V9/cLUgAYKm7NqZuJxx4VOP40ABovyKgmmJtgLG4xQ4BUavfqSn0ke4QiebpPCqtaWpMeO2d72LuigpY2lxG3kYhU1YN6kvZadl9YGBSGw+H5weOVxV3aMcxOUo9F+JbN/+UCUOl72vNk7b0qp05SXgqZOX37TFZtg33IqYPUykot6IhT4aIzvc17+GG5bgzHRcy3PtYTRhjcmxnMbVcytaywZxBy+a/PcUN2ZJ5ni8MFP/sfRL0y+RqypG5i8LiEmnOY7+PMVVtOyV/A1afTsNVthMTeNSyIW15FWpM3hySZmWPzTRsPUA+Elyj5xTn08+459cWU4t7GN0qSBARcagBslQAZ/5uxczgpX3QvTzEfnFaaOB4YFQ77iFKN4tM24jxaery3mWSrtNkTXPm0Acbg2pyV/1WaZg9hqAsb3QbX4BAjhSSL2fjSZ/DGnG3Hu11juC5IMpnCwEtvZcJNaZ5MGfGAXU158CgU0QFz8oniQwwTUW6h2mmxmNWSvpuujHSFGQRWDUI8jPR3/ObcSaXO91pd8xlTuREasktlr3zOY6iik8esJDFoPLUvREAqgDJ1lyKanaF4p5Lr555NkzY3ozYQDeueSVrhXEF5RD8XnVY4e+fWcn3I4A4+booSUgTVJpLYOmp+oufFQWu0tWgZt/3eJVzxTyN24t/OTnrdtD4P/7OcxBbY2F7olWcvAMSEPX36De8JaNuaAk/zin6xQNtWxcG7XEI0vNtyB/ZEH/+zc1dNioY1TYdEc+3+XDcsCQnN1p7T4YG2jkjwVsq2DtRllRkJLviSyQP3KM6MwQQ1CYIIEi+2Aumxm65rVShw0h3p6MFwmapfPidKhErS2/rwrrcOhdYGg3ohJdZPiExJP7Q2We5GbmhYJ3vZjp/aE+RIcLTYzAod5kTckys0gW1vx2EnFmUSjVAbqEOau3jvhZdoucGUd2kSK/1s+ih8Qt7AAGXWgddqvGZkkzn1ok7sSeRNeIvtB/FLyWrrx1vMX+HWdha4e8zA3hsIKOl4Ftrmp/fc3yM5BR1DFcem8LRfCJq/JTrI42tTcz76j8ZBBuuiBjpbrujb0M31yTDpZE/HqO+ynsGINBv+/bz0VYAhjvlfGJlaquSx6Mob/15AQsFIXJ8r24B/CatlVVXxNln72QphaII4GmgVLCab73lEgW9Dl/jTHWd0Eq75h1la2dHp6rz0bzUuWvSd95IIMPXrpt5grCXKyOEEwcV37jYP6Nd740jnPUhT3ejI1jcRN8jx+Bvo7UZBT4QKEkkyui4l/sMhrGo2/Lh0SFd4jB66aa/ghRc6IAbhMfXJUDh1xR/L9WQmaJceQrkhwqbhqOxdjWR60N4RC5pUMdhik1/wxyZIRKl4tbmuUG4bi7ZYjkDjdeZUFQwl6FdEcRotVERK3a7YwdAA/VonXFQmwPtv3M6+bGn0AfunTvJwfM6SkwvnA9DFtMxrBUQOFMsUb+x8G/iIcBy1rq+LscKBMkkhF4BIgwixcdZqNYO80BUpKe25g2FYd7X5YFdMig0BKqfEcPIxM6hpyuaL7TMfkQreFzvBu2icPusvCVJ862/T6hUKdItS0+I7D7JdnR/B6cWZEb77VHeJrWjJFiu4RtNXmuzT63c6a7AHnLxS0Odn8ycHprcdiVJXqdIvEge8bh17/rndLXO0eYqMTLyvbB52IpYoWVXuCLTJKWXrjgOK+DXQpBUUUy2Lyvy+KxRXwu3yB6vqB425yEeO9MfKHvXPtXonZZLO4Osc0Glcro99TfzQ3mkaUWqncU5nq77nLPGzPmLYIFR1DQ8pEcoKI+yb5cstC8V131BXZj0o10uXt3pvGTd5p1zMJ3BJusE9IrqWhu1tsBxLJbZYME5u67k+K6FnCAHXdWeT+gwIxoayIGYSOTsF5DzOl2e0kajFnMBsc5Jd6NOLe/+kyg2v4QnKaLnRBIUg9Y6tG/cKeUibf4W2L+5RCqjqo6uMbSLZI13Xg53q2hE05X1z3qEYyLnBxRscWxUwnKOX9RrPwBaZ7ewDyuqMBkAac2/+YZ4GCvmZE2ZezfeFLvRkQrSKaisF0ojvv+GitoNXlxl/Uh1x4mWPCMiOkXH1d9/o54EI3j0qkovTYW/d7+Q14I+B++TFGTc9LnCgdcDPnf7UxKloJmTcdM08TF1kLFGczh/RX28nkEhf+AWT81QE6/AJr9kMA16D14vRCyJ5Py7tN6T+63ecevoiUTWCDmQfSse+RogYmcGJRdfDMVYxWufuXCHxPHuQeQ5LhWOfXpm+PRaP6m4UywsCSFXBlmKQBj5Gzk7I9h8uaMkTQBGQLdFL/6hbtuSIvJab1ie7Z1P06CQ7oVqnlRtLTyAC1ci8PaTX0BrD2GrWizA5U/oH40SR9rynJ9z6leHZecRevxVgpRI1aKKqDlcESanJBzYYbVrexogtkr8jgjjuH2KB1R5HqLOYIRT2UQVkkNYxrQ0qNfBJd7hKMPD1jRZ8C0CGFI7sZTiw32JPR15wJdEv5QTiY/YwR7IrVLukzuho21TwXN4afeA8FbHVuRqaHacSVWiQqm3SNfQ9qp19H2Jr6c5yVSQ5BF2zlCVE4+HHAJODQhU4yLtB2AeuKd5dUY8gk7W5UlCZPB01H3wSSH0Di3yL9F7AIA+/s3WovUOsNXbprAXD55jgh6JDPbjQVswP47i/B09A4y6c5gKpIfWjj+CKsobIh7HiMDWy8Xo/5Iwp9RdxFpWA+fNiw3NiD1tTxfrH3lXb3m0OJivY0QN4P9WQTjzX9KzFJfbIgp16FrL5/aGLetzndMkPypcoV1sOiG7wO8KYN7My9plvg5CPt7nuS/gv8uW4UZo5PFoxlhaINhnKbsC2+9dCbu71IYGvOKRuVZ6QTvK3Nr1r/j34ZTU2Etg2j7lPkF2lwdrvqS4rm5Lzk0EdfpccRcm7zd+dx+WzvzGnNy4Ng7ppGilFBaEd9QTkE7lE5p0jTBbkdxJcYidKIdnezjaF2mRz7Pl6YBBzH+g5dS1iMyIYUM+kedXeQ7hSqAgg5H6iWaxh5DdZPB1YpXPKlcsm/aALYYhBWyYZtj2w5tJUwC71cwR2Ko+rpIW9r1Im3/bVGIwLUQKsrqgjJg+8zTmhfpcRXoy0JOkCRBRgXUdMbn8IuqvyOk3UsyB2OM5AGViz7A7RyHzLmHD3WoboeHkGaxpAa+WFdpNBvT11anqgjxJsXxHU4x39DLR8//Yi4H6e5g5apYfmSW7k3QFRm4uB0OkSTdGvuwY8K2AORFSYm/IAOhFKo10W9wuL4w9jUvpe3Ft/gndE1K2w7zAAOyo0mM+/HJv+ztzvnX6X8Vcnx+SPt/nhFo+X7rcYSKQToChkhsCr29MCqEoaiPZqGMwXB4LLD8dQ1fnwpAS5gU+KJUcNNYI6uUXXQJPE3UYWZGIljjoM0bl/CJA7Ti7OUjLWIIOEXKcQt7DoPxY5bUSrk9zM0Gk9xUEgSY0/BLGzmMD/UYmc09L9X2ZFe63UyhxlW+ntsEUSi3IJorFFn8UTczsZJqZwtTxqpmRAGhemo8GDomTAttejslT/D2Kyi1/BOvr1HIaxaTRfrMx7dTNx78mLnACJi8iiBLC+B4hXZnvfxTsUey3E6TE53YTTp/MkOd9KC5Ru6aTceXd5/XGBtCWeL54Zz4D6hOfxPiN2f67FKWD1L2yVj+o87HMAXLfJh0cNU6HwUrfvIx/4CgeBf/DpY2PH0rvuankhtsaUhExlffMbau4iWddNE5opXnjX30f9DaxCzBwYuLzEtKoRuVSMxHVKAiGdBTlHsxuGRXgERhCeVT9iR8M5FWrjvNRODK8Ctpx22tKox7lBHrnobNfg6Dexbkld34Bp8jSPf8tgBud8Uiq68nPp513dHtzzb9ZQMtZUDbEZP94GjR+sl90w0zptJ8//PLDgFoNW5II7hTSrNzpbH+Tj+FbEUZSoszYd+Q9FH71Suzm4z5hnkAjnkFS809R4irhdTBXBn6nzV6k/vBfXj+CTqlC7qllQmhH1lbeVTkfsXkWvJBX1vvtM+k20iegmjxHeB2RygFWxbQrAl3mlDE5dElyAobasFVfM+0MswPyStcfXHYiuhlFKXEi89iqvoLlR+aVho42wDcoNkJHGebsSHp4FxFxlflD7jE3Uj4IxY8TqI2hqUltNbiJiqQj7oBeIUiTLxIqJr+NjRC8WF9VX3AXVtZHqUynG2uwDwxXPD5+sXhy/heJ0uAMC2n1jpJLpyySfV3Sba5vjNxm5dwDSvsszHnNK2qqKnVGPgljWHu/6znD50d4ymL3imzUpvbjzp/i8KSfpeYzHSVFWPa+FQWuXTuGKnv0m1YunNo/nh5y478ygxIFPQ6oAMU7FczZLDcCcWpuHbsQEN2I4h0R7L2mmyGSBBiJavUb7366Hpts96V2PCtlkfPwra/6yeP5GCJ6k+IMSGGGHAmq5hNakkSUA9lxfUlRjhohF51D3zm7TvBr45JAJtuSkh2NsinOqtKhLDDekk1B1wDTGSgqmCgWXUIslJ0pnqc/8KC4j0X3WccKY0NyRJeIeEW56oJAuvBZgAm8z07t8PED9q5xdUJLML2qF8+mqxnf2Fx5FgpWM9WezpBT0gnT2n7EkQBr0oNDRxiXs7uFeTTNMeJuOUb46ir+cJjCZETxf//Vh1HeUjcFDFo3RyDK6qOp7oOv8Yoyb82I0bv8XX8DK7RJo0BmwCRYzaE0HTQC/AHfFft/kHj6hJqDXdPsLse5rAVvzWVKWaX3GnXSX8TQUqhTYncU3Ch5igS5rwLyVjRtUMPIHzV27npgCNi9iTBtjIo9Jjjq8uKDnMjK4caflGEdl6PIN4d/8hcS10PjNLXi8U1mUIUyvuRe0EeYdm5XYAZYV1eEaT4/e6L0MDZva/kpSCNVurTcnlhnvW8J4BgAAwMJNFdn0GI9uqMgMjJmCD2GfaZwp0J1aNIPE9MvwBzu8jx2o7ipDJ06HWuKeWLjXclAa8kvB7qeSNTQZHO7PKY/MiYouYLnsZJ52PJI9Em6U+Gxd/e1l9IBE1Pgyt6FiND+ESVl/1Wx9PN0+REm3LrvoC1oU1jfGUpk1D26n1j6BN6pmelJWxFjDvsZzetNF1mgfOOeYDZYtu3OBYyvaUtuhDp/HndhlcaRyqegflc0AXMK76eDrC4s7TgjPd5b2mOZh4m8dhCGzicbFKaJ8/+UaF+xFjpN8ONSxtAr/7yOt20excBa/VMaqe9h3JUMBW+SbrAdcrV1EZYVGxse39LF6NK0TWKwx4YHvBmukhP3daJjVgqhH+2Hqz3l93HCE+CNvjzyRqW7XjSePIgPdCLyTfWsqeuuNwcyW4ubzSbPrqhKjUK/ai0AeCTQuE0HQwTC9OC8WcnmFIUQp+iQMxsS714jm7NnwCo2i9OqHGGRHYbD0S0XrASIp/Z9rjBWPpcPikR4zeQ5tEVOK3WLmkIqbUJGOxvpWDgDmZ9dVwWVv6z7McjOWShdgrrxDCWMCr44PAljsHMHirSmaoQpy9OO7DsHv4/O0JUl1h9Qd8bUAKAYBnlJhjdIqmK/ucyylZHCKVLctNQY7C18sBnobt8fQ3SKz5ctgimXj69mstdHJZ3HxLq8GSqwLplwAxooGbQV7fgt24clYCODrWZSVOoiS5woGWEe1/C3Me99tChq/jdGhiJ+oyc2RM4/oabMzktOE4UhdKS2aPInQSamZPRO0c6HnNjYDBXkwJdLdaCkrXxHioZPa8W0X5ZZ77sEGQId5OvB+1zojYiQTjwJRygAV5hem+mghXwGjGI1ILqaHoZCqpeRvzx6I8oCKtyYKot00LP9LrTPW8wMB9QV9ShCOFZTpKaALg9Hs891N1K7Kjia6ya96+rFZgikLP6pNzODLN8OHpyCWeT9Akg4B9XfJPnENybgvj7f9sC7bp3w+gLlPNc0FOf2m6fI6NaWmI6G/v6c/Q/VK59xqz3MEPxZGWGte94L8pliTI0YKFiNycYksU3bWrY0tSI0snr9gNGtcUekKsUZrSjC+jrJ1Uiatr3tt1nAGaCJSQdQIWRpvPnUYSy43CtCGPpvDvFYtm3F/d15e8dqZ2HprCh5SHmBtcgjvsViHAKG3Tiv4Vh2QwOrM+klKJeyMGbWIJJqjuSMvQLrazSe+wRq28ttEUgKum3rBvssSq8o7bopYjb7xszlJsdjr5lT4ablpUCWuT7xovyfWF4wXzuXa1jD2Zr6Kw8G1yWDrtymcJmbNSUuSz8LJuPNRcpyjH2GgNuR9sODwbzBqY3GcLzg+ZSgoUrWASROC+z+0mUufYikP6yg7r7oB+0hRXBVsGZFBQVuB4/2FjA3IrhrGofArZsuTJImxkVp+O42HpjO8PlSZMWNbLd12Gg8nhyJm+ISbZr59dKuw5hdrc6enWTqYkWaXEWfe9Sg23KfaZq3sxA+GsKINViD+r+3Sq2Iel731Yd0HdxJtW0t4Eil4mNIEw3jRAuEU6D4jhTzaHG5i04JV5xfrWVq/C1vMVRQ7tAoWt6wqk3dGpiQm/BAXPRncDs7dXvz3GPmOMeHObDk5jBoqwlWDYpIF6UMlaWNRzmoOpPaa0GKCCdDXbPi4nGvn+048hWIB2srBB5pYPX7ZdgTypMhlYSLP06RR5Xk8lwaB7xxymjNlewr1yL+72V7Hl8NgW+9bTecVnFWUvvDkuqwlmqO98c5stdsZFlOmQg5lPg3rsRYaij0oHWxley8uo3mt9kwUiQNxYcQ8AgRbarjT1lMX2a1F5YvnX7aOwZm5mrk2uiytvz6HX0JGk+Z2zUF9w3F+Fkoc+uS/hjKRsFiu4cJU/ryAfD3QKIOIDgI83phZd327rwewxVZUlfIZQMVf1LeT+QbF82DkWCHme6GwUIOEyM2rT/S3sxbhlL9oke8/4kCnAmiridympDWL/5NpEsWWo4ajr59qhVlCBcd6BmJUgSTvRbA7vC07fRhMD9/Kvd0BKiNMYZGysZH8RmCqnpcsUX39gWV14d4485bAx7ql/IKpK0yjVjiLI+vxVk9XFxfo+w8FwRVDH9P0ierOPDqTqrdEO/jXwhEQHZsVqbpm5f8qsz8hX75gzZ1mjblv0X/KfqOs82SMLozQ+2hyUZgGIFrycZ7RyJmydQ6J/2aeXQbUmJPhB+7TRNpRNsINLKHxn3nYD9geJFJqbRij4Z7iMwcN6jVvsIX/Wcx1zTVfk8sOtoEhi2J7E0wRLjVeiNnyMoqFW5MvjGowJdKueYVAEmgpj3PjjPXiGGs+pkU9yKN6lC2TXY8vuBdQJ8xqH+p3wGaip7G3sStyfYCE37GcLWbGzKmkuY6FlTbL5If9Z3beLrMqzfJQ4e6v0jetAaw/Rwa+vrWUv88VUd+Bkv4Df47YFNEoucSLaretr1B6p+SkvqJcGCOg0FJmFczZxJycSIUSiFcRrms/FZGSbOsuR2cpL4+pgq+zEd+bDehmc042ANXgVCSedzqsgdEgJkhya8uOdXm5hgeOKfnj8tyYMN1qvO2HeoSt6P2bCLk12rnc7s9vTWO3+IpYW2yJdtjTyPIrAMdAy+NC7rws7CdH9uJXpNu6XfqsA2dPJr5UF+8s7FaywK0PgswhtzRg58/dvM2UV0GN1njwnIDQPYWg495j1nyHGilnDxn2SPlexJD3po4DWrEEVoVW+PLtyhkHQOMo5TW7Ev/eu2R7sGHOKq95zwSJ2ciLq95ZqplDgVHpHSXcFEWmqxRuhO+fWu5Gy1ED31BuKuUhZdacZWEQEpCuq0gvpak53KG/COHUID6raTOZEKzzDgtOaVH7OgBNTJFVVNZjEw3jlp7qbwPaZ8MuY2UdZ5P3eTWgdbRWH/y3mC8ZQLcSFEetG+YErET/86e7QE2lH9/ta+RKbN0uLcezrneYny+NoPic26r7mldbdGVXhxKdVogZ/wVT3eq1xoxWBOjnIso+zgFK3PgwvAUQoBpux/+c73tQBODhnH+Q1UemB9LiZZYrPr9zhmBkr2aifOm5T2u3Vb9pRwx9Lq6FLFvh5dtJbfXcow1MDeRCCqQf5fCkqWWk9/diAjFeckuz3ZPBgOvB93otp7q6iBbYwQoaiRd4lWJVxyhxMw2V2Q3F+R7WXGyEAwP0bhJeQxCPBm4LicUHX4qwQm/mPQUPJOlAiyDDnpSkdDyhlkBXXGHN6hNT6mHeK6b135I0Y221T08nteu8WYDVBFC66CzQ2sG6VX677UF6VBF1u1xKA+0uPIabRNJw+zfllXcflqmiC06TcaHdpXgw5AiuEQcRfIc8x669pgs2b9VHsqdKjrRZ5q2OjYgcbTRgBlUZnxRBbjsxeM0ErrwlxUaN/2TIMfGUA16LCx5JTcwpI2PCFdkPEk8zznS1Lw8RYk9kFdx+VAFgs470hrhYfVDP3y9KKWIVLsbX6xPNHvE0tS5I8DUnBsFiSWJuqShoDizn09EdRyLW1YelURJL7RpsCCnTz80UlPLIKSbZNRYfYWtrU5NwjzClXn3LnCGQV1bkmqUbEjYKZ2XCbv4
Variant 5
DifficultyLevel
738
Question
In this inequality d is a whole number.
2311>d5
What is the smallest possible value for d to make this inequality true?
Worked Solution
|
|
2311 |
> d5 |
11d |
> 115 |
d |
> 11115 |
d |
> 10.45... |
∴ Smallest d = 11
Question Type
Answer Box
Variables
Variable name | Variable value |
question | In this inequality $\large d$ is a whole number.
>$\dfrac{11}{23} > \dfrac{5}{\large d}$
What is the smallest possible value for $\large d$ to make this inequality true? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{11}{23}$ | > $\dfrac{5}{\large d}$ |
| $11\large d$ | > 115 |
| $\large d$ | > $\dfrac{115}{11}$ |
| $\large d$ | > 10.45... |
$\therefore$ Smallest $\ \large d$ = {{{correctAnswer0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 11 | |