Algebra, NAPX9-TLD-CA21 v3
Question
A Cartesian plane is shown.
Select the correct statement below.
Worked Solution
{{{correctAnswer}}}
All other statements can be shown to be false.
U2FsdGVkX190REG2u0ZtIgA6Qp2IUyniPZMx+IIjTKs8ikIGvP3wa1xGz/I8LYSv+hZKjtm9edIQaQCOfEFZDShXVJzmYmMSen36vb84d0pUeSiNJFe5W2qRDEQJiXG3Hitt2Zd/ezxIh9PsnORv8hkWftX5OXwYJvV+DvoysS4RVX6vpS5Er3WLmm/yjrF/JdSZq11SXztpiWPkN6HBj0JqIF4fHxWaW6X/nbfMW51HZYT5YSnUwDaU/OnXbdjh2y37corSYGAYpGCZM6PupYO8AO2Nz6Nyu1R/EGHZ3t3U9LQFkA7MvWbkmxN6j2Bejgphtl55CSRGxG2al6ukw0m/5b7fz3zW1kNm7RcwFFR3xLCs7WethpODeTewKAcFHjCDSV73xlmXZF27SnkqflQRtqNK8hcZLFXZxt2gjlNMBh/JKEh7hYe8RGT4VyhVKBiL5ei1pcP98+bTOMLK1glk1rqHKcq2Gl56ae8nesrW3jD2mcSFKZe0k1TyyRkcRVGgYZbd48AsT093WcM3Qc6uGPf4tPyDZk9CniRARfDMp7a4+dbAYcJuGqeqcyvPzrNVidquwr0GuPLdH1mlYdVTVxrwdMTW8bFXAlhjZJ3r3uuEVvr8SL8rWt8Px5y4mdFmMGjTdNtV6JVD0jv9yXQsLOvd15hZcZyfKA2n5X4ShzyyTb5BN0QkawtkwmVInduIC8YE8mcnJ0vaPgeNh+wynR0FRou2f/65ZRTSHd87fskJaX9eyfUdQCvNOxaZMYkCHrdkAWlnKuJG9ICUpXUM7ByJ+kUUNCDQBUwv/nhvr9LZgwNOTGcPQBhQ4na3NexStmfIedzJMfxElRvURL1IIRvWq+9sM79eLNE3fsAbGtdTW8jkM95LKFHNNDEdV4BD12lZNKctxFt7OIj1FVbQa/DVGeRrCUHJ2fkt5XJ27iqG5JrNopqG/S/y5/lta/ffslyLqpSXe8WC9ora3PjarjsbQCauycPLIPTdmcyGdAR6tZqF1H+2+tJucUhYLxtSreTjT1QnlqbOKiDKo2AoS/o9rlUQsinnSXcAgsr33UwaEEu9PvcMqtjvYvITEWqpmvZpH00VEUd5n16g4Y3JCXgnodmqNDEY4i7SaUBKYiNMAz+fYkOEKYpBr3nDYNbpyMppnStvBJa5zqCp2oMlvTH7g/O1YE05Cma3qlcwqwGqvcFAYr1DgsnRy3btGIHCKoT+gT/bJ2/W4iPimUKQHgG1t5qxoH+0MiYO+/m8VWp/GU/HCJEB9x2zZzt3dqZ1noqu1+LG0fF+pAFmYs0x5wG5QFkPvamKhrUY8RyxtJ++DcucYz3dw52hO9be+IZk3XpSgNvRbU4pP5lMfwupRjvNvy7IBwR5B/KrnFvLIPgiH1yY3Cy9PqIc4kp6iS4R5jjjvFP8EPSp741DY60U3BEgN9OSnsgAUH5tiPUWdUp1fs4ytAYk25tF8eE/C/WzyTNmIDdNkxgOnqez08tYXMi9OXRZV+Df7L5P61+8CVffuPy4gSIcc7q/z9HKpflttCX8+/gw4XIJjpvtoHhjfKCzsIenss3CvLhOwv+FgbP4mcTMLMhB7o4+ciKcBgTnWNvMMjcMbsGqoAMrFUpu84iiD5v8YrF7O8ZryPmizDFhzUCkX9G3T06+oCyrxOTbbJ+4MxXCVmJgWXYJLnYACe4w3jj/fcfTwHS03MP15nThMuyFUT02H+Tf5wc2SfAeWpJjE0ehI2lFizLmd/lAoJCa/fasUi2NivVBhcQt1ClF+KJ7534EamAOzHL4mlpi29hBeXKLJkSSvbSYto+2/Lyrh67Tw7E+/pSCFtbSkKVE/RrmL58C/ayKb6Ofj5z85qSzm2+uF0l9Fd2q7vMvPjjMLEWV8J1iRGTl7ZBDECS0eQ8DAYUOuiUe1cPG3PrNnRvU9eeqkCzqNkC2Htr1KDXa4jstbYtE4qFtYT5rHbdErx+4RZCdjTJ0G4OX2VbOBKxSnEQ6pSMiFywMPL+Igh8L8bcFMNfrkIUa3IEkds9NW6oB88xmLXyuDEYTvPDDKWzRHo2QAdHH0fIRfeFllabY6npu3XHG5NnGqZHWZkdRyUkaLXWPNchZu6tYkBk0lABOqyLYwv9e92BdZT+zIVBHU+yl1B2WpBqk+MbIqzblH/qAkO3PZ7aSg8urb7OfQ/ceuSiNIAWgHnqomawIcOOSXTkDdqIc3aJI3F+N3WO8andxy8fWV18YkbK6ZrQ8Ru7KcubrbOPRQo73Rykd8ZmYC4FrYFF/TButbYJsuG7xIChCdUmJfOee+rXRwp1ST2/cLdqPJHWmuqebA70ENtmmx8d++NpMfgTF1G4DH1L6Nw7dRSgh9JhxHPuWbMwmTQqTL9rXvyDdQvbVw3NKRjBGK7K1x+lu8sdNI7hX4ukU9tpRTnMKVui/+HfvoSWQmIuK3ys65JNyshIpoZNoqDvR7rl1ydiyjXhpPPXDnrHVyUF6T0qFL7u0Ea7BF6mR8TFGHwmOJ43dgjFDwFrFHrM9ykGkkthy5fakPg2G87/LmEIQ/s81JzLhK6F7EMokNidqYkPFckUqLZyqO0ZqFNH3C1Sk2v+JtYzqVjHqUR/ER2oooygLSKK8vJKBjxm6h11qVKFAe+PKEgdwcrhA1fqOFPnZY6TfIbFJhHhWMnFUg2EiAd32RIkwnws5MDU95qTd+Lwzq+hLnDNOJM2vwgsDdfE8no5VZpPouINWYHaY9JvgQQ4Xt/IS/gAcHYKAzKdcbam8zbBlaFg0oEf03yN0uc3U5qgiDMQlXBYoexR3rzQEE009UKTwx4F25kqKB26ItByty+UMSb6CItbXpVU0tHOxUYAYSS8WdrnkK5UPkj+wjrMQO3/+7RRuXMxDrdz/LrxDhutJ5M55HHtAuUHtjxWEXM1T6pah2qJcN3cYVHx/Ay7D/UXZkm2RLd+teHKTHLSowJggRp87clOQnrML9cO6jmMiQrxqtT+FEU53S5IzQFkcX8M3E/XuATZChliHkSxsZBzWHA+slNI77rgr60DnwZrGXMzEaatTClkRF1uJ9K1PrOni9U17G+D2N5e1W4toYG10bzbo2YbSBSph+35JCWk/XxK20vD4vslTs9Aeef+lvRqN7nFWSfdQKzC+HwSYagSVc6qLnRDHF9fHXj1L2AEr6hzPQ6HGJdnC1A8nXWMNNZH+0yGn9a3Z8/9TkOTRNUcksj+dhSQEMuON5v0xXmeRrbS3Duhnk0Jn+uOQDpYU19gREwz882mQRbO3CjuP0X8/Jn2dys6iXXJxAJPtPnHpXP4pdCFpw6Zvo8XR/Wnr3K1Qf5K3II63SsSRfum3Opum+gRN7gZUA9wFaoEY/aVioDH8vnvcAb7lKfRESVsHWyhZGD6IcIhQLBgY+Ix8k7QJczy6fmWnS16Z7S8EImSN/s/hL7VOS1uC05Q6KBQvhQmZ21JqXjMFCBhAbyrvurPSkZq3cvWDZglBTL+AohJZL6JNenordXznElYv7awj5ehOufTN93hAYftz92vbcBMpkxvBg1JKCdJDFz4ytF+uy8bR/64vMAThU4FnLLUmOc4Lb88IDmbecXj4kja3zATHwxxTJr4Rjmo7X6vyRfZYlFP/35JcGkjZnZwj0NZmCoWQ/fcaEt0/BDFNqFztH/1TtrKDs13noF5zRleutAy+vDABgp86B+rj8yp/BjFRcFJTfr7qS/O8zAvOsHiXhYdZEiMcTnxnMcLuR4etxw+taBZPx+MyUYRqad7LwD7PUx2VY/7rJKzMEgeIXfitnGkjUqUys7rHrietvFGnCzssotYXBErs+jlIyen4CpySSlPJe1sabZKNQfQ3YYuRb4ArnstxbQbrJuvCSYJYmZ1VD9e1MaPqRrGW0Waa8IkyDd8W9GNdRsLyuPQNbz3tcQmvM0+TPFpphPA1QddCq+zaGOR/i0rl/0pp3WR0LTZivVVDZNUSbT50+6HJrpBxo93yrPqB5/Z7rUy3Rw0KSwtDY5Q6BxeLsmSj5CRA4LPwpukrjsHecOq2a3KuZpGh/d0GzAMo0dibTtnFqZdnORLrwghBlxHjWLsicy00Az9IE7gCoLX0xIrq0rNDG2PxxzMcfpjttIxTKDCn7BqtghNczHdXw3P9XChpwpi/tp2QKfGfbnz3e8tESaxN38fjJ69UL9pkCY8/zK6FnP3OEejbQdrhWmuc/QyCY4D8IJ2J6wTKuMW8eBKgKG1PnQpE8g3teTZ7DBFIQPyX+tDbrrtrpRxdB7oY6ZqWr7WnEZfQR7ZReRraTtWJB5YAKqwnpZaooKkJutMg7gx6n1FVA7AsUmslzFmNJnlrKCziDD8vJVceSL/7rXTcJimSkArZgr7CR+9AqE2PNADPXCz6Sikq29pHSAVKiDTCbK/7rml0BBGk9fwp+h45H68bvLfcklYaBFlHusdC5VNm3rMzFxKFCAg8t5v3BUes0Uw/KZ87civAp+zGwSdePWYV2b1czRCd8M33NJnyPoRjpEGMfLLZSfEYTIZqYYnzTJLhg22vi0yhhX2O2Z4tzb6zpnIdh38shxWTRu2EXlO2gCY1TIeqR75lKbZ2BnRCrc3jzBoU7MSMqMXxnsXG4q1f0WP7ZGEX3f3ro/D6L6ar+/kemcNEazRd3PbxS2S2AkYCiyufpa6+kp3zWaFv1HvXLnoFd+Bv+wqHszjAk3R1MUldqPPVnacS+Qjz1lEMLANKXa7cISVFoQTJm6fXt86VFVkxR6YPX9Dv9y5y9FjpWlX1Z+lNHaJHhWRo/oqyp+/sSUMgFmtm9fhzD9gPQMN9T5IhJTih7Wiz2C1+w7YfsFlaPlLg5o1t4UqXl8CJxl+TWDfuAJhLkME+O3jNGy0ZivWpvzyYgmW0i9XfzjEWfMcmnuRtpx9jK1QXObnygy5j9Ye/wyo3Coa0wnQHUgtrwYxcBJhFMPMJlVtD610/gACN99cG4ykacMyVetAxb9XznUKtYljWQYkoMeVvj/Yk4aVG5C6FFZ1uzrB+d+/X50yGBC3jQQ8Pwrkm3K50matpxVPj9Il+Z1Uw9xGObzPS7p0Gd91JZ4JUn9hcGa5M4wzAg8gHDE8AZzWvO9bJ9JUQttxTpwtRS5jXZXhV67OE5DoAGTJR5+aCDMV4oBTUqWF1fVgsyrNXpsiv4GwoB3llB8NRaa3F0dcb+QVliPX5uUZYY/O0ArFoAyj4UTYX3PkMwgnRVmUXdITyb0/fe9IE9to2qwLtQiElbc2oHa8gmIszIRNXu1tI5QZBnwpfUQz0I9sPI5I3ltFWzsDii0ShfBZoQtUCxjffBdi7PCo6IRtSbKeB54aDoMltw6/K4u2ECIGkTQjCb3n6Yyl1IHqDSNlvyniS90y/vniffZxDTXmfjlx+yb8Cy8NkmqbJ3xAYj5xr7yUmD31d2iPuyn2wb09+ZvbmkfbTf9qgTcONXqFDkqRDVJUg7FoMt985Amx6CuY80kLlCnnWicPbjqjeSRhzQNbO2KJWSQ/rUDKDMZeZs3uJj+gDPMWadGpJcv7v2UsRLbvGoytzpuXmLAwcB6fEmzGcFxAK2nA8HEWELJpKFTpTzHMGD+ztdTE+3m6BAPHr4aZZbG34RScBmqqQZXNFcpfa4sqiQ/pPA/neSFFc67EftzYvsCLYqtd+J0F5exKa/V986F2R6Ih6vtu1nztJr7ZIrAGAt2EbnftyZTNlbgAc6ht8BNCHpSU8C6V1zb6kQWSnmotAzBgAuWMvrcrYsp6NYMLIdC2fwh4gBfdOylTcRk5gjlPHzZbyW42Em1Q9avgo8KRD1rBdnCmCUx4inbk/Ef2dU3DpU76mQwjdAM+dR9iOJC/qSSlIgWF+ezIlupeGgGWiAW2T7IqgqQnLIqfwjAK/86D35fDqUVl/D8xU48D1z5ww9kZd3Rykun+0k8KpFEzLTpuucMMZWaFX+/rmbNz5UV5Tg0Evdf0LyYtFcnriWVR4cPdk2q3OtFFvjbMZ6n3Sh4+SHJwBCHKfQcTroqacmq5IV78rQ9ZK8JM2oT7NawAR9XW1HwGUx5Z3uZWzJ6rxkXfRE7GXjiiRCzu4ooxNE5XqUQT9SU+PgfIVcxT29Vd7JpEbIsFQ7yqwE7EwErbMS8P6VFdKmRXcNsTM0lOnH9VlGCLltgUlWCOMdi5zwu5FJLDLw/LewNDtEUpYSo2fKJkd8lEdcRNDlDjoDJ3HXLBexEXLUFt5hvD6U3uhZqKbjsFL/Osr0JPBfZc/kyEQx1DmhDV+/+ZHmAQiKSwhrv9uRwSFc0HX1mDouWvAGu4Zfc7UF4cjqEmZyY7OnTqBTn1SOoXxJKz0Y1K8Ly25X3R1uCTZdKkX5yqBqB7U5kTKL88uRaA0qBedUJSb4/pq6E9UnoubBTYxWFyKZO88kOEAZ2g7AmVs7Rkbag7mRuUlwaxjFlakFiwaNJvgPR6jzf2mGh4Wfw/8E/L868LaEO44mFiXsY7oN5FkKF5+p3PB+9GEKTzSq5zDTo6I/P9ApMXzeQanTiFOQigQnPRcS1Um26wvxFP/gYR8fmvVX5i2bUtlwYpTwcSqvoTmSJj6/5c/+HOw6xfH1n9DyEZyMvo4rgwQnqTU3nBjkgDDYr8ZFf4wJqQeWYEsSLtvYKTNDrDMA8r+syWG7aimC7nzXAGZm04tJaB1+0fg+3WLRKJmlqHoCE2APcqOP27+NU83DgqDkeYck+qHdfWCBlc++Fiyqglg0nPBTWWKApPCxK7DetDkHVohFM/5yPWWD4foA/NGpk6XY/17SPtSQcsIGOF7NEdK6qw+M7e7mrD+1f9LVvIM3BSSGTkE7OPTQ0dDl4KwB1piP91megA7641pgVpeRB0Bgs4XmkJdxSRsdj5jGxsCm21te37bYGdvxJgVSaKDkrk5XDOoJU3dgj/2VPjHS3vL86FkfbWIgr9hDfKhpDupGo8wRUlc7irweGFL6V1U//tdQX3I59d0Gnog7qsRLDX3a2fPJg14Y8H3zoshwQdL4D0jqgeSf6P5RcV5rvsQljOAjREJGW53Ouw7rA8pL76HbxUx/WKNXmNzEC2PS3w8hVYwpRFKePrdMZpYrKvPTIW0iiac1J21Pu02zvHkcSE7SJAC7XAliJsWpQEiB+6ABgXqLuGgv/0qAJ9uODEOces42LMHTlrg7bK2KIvy+Y/1acpCMKlo2eMPWb7yFk+uCPn55jMVwM70FLGmTLP8NyWsQdrahbbSVmjFek3Lb3NsxL5A9v+Ku3QWHuJ1yNNtkifABIoYebdj6Purh+ii459Oupx0dMwNhT2s7X2OCQdlOgdVcJ/+vFPBOKKRxD3r88hSeJD73Ca/Jd4sJLQ1hJq4A/0PyspVdZA45JkWZhIyU5OjVpb7gcscv2lGy1JuXo9ELWDX76KGwbBvnU9NCoeDoIGtSTny/gRX9/bWWHpv6f8+899u8K19vM1EYiGbQt6WjFFkzrYazl3V54ubv4YN3z/IvX8L1A7pDuppf/qp1+2leRJt9W/vylhUGvR52+Uaf19JBsZuhzmv1Dp+tuyR/mW841IsVSgOU0gITthuYe83TKZvd6csQ9RA3J9RzHiDwZSoyh6KnwXp1u6fE9VqBboqprzaenDpNg6xx5qRYvC20LHJbTaHQNSfotWe6bVAPL06YbB4sm703bVbZpaYTAwf3S7cqEKEN67McajeZjQPlGSA1/HU8XndhkTjm+Xn7p7teopAZlx9N515BP2r1I1T8nApRIEV6DYB/kL4V0ohlbUuqbEtzgJ230xMpw5QhNgv+51YsYvBfidxoH8tdadHjfX26vRfIO/F5TtnNeCFCkZsLWWDD8wFAbfby5+eHQHHEU2v6w3gdkN+W33pdxQ6LLBLCTiPieRGPnQRNOW6U3CCWreLqJj+IKMDit0VRspAkAiU4JtkJiiHJ7pMdLL8/WXVrKdyE73yehwFoITrl0I305PU0bf70Sw6PU+VGwWjjk3m0qoHvwx5U4e012Aq60DVOwxSFBLjFDYtHCebwv5/SgpE7BPd7re5efvfr9yaVRhdWLP+DvN9J0sIJ428eIqnZLGqEO5FBrqGq01NptWntHIIJBeN7qwWj5cMjVsNoFLFD47vU8/TvnTXPc8APOTnE/+vRZKflt4VXMCPg02dFMTLcKp5d9w9uVJlVtvxk4Zvd7C2jfZjHepTdZ+K/z0eZB3ZMHLqXabX3i5c0lZJGQ780mW6xx+Eb43yX/ZX4yab4UGC0COe+N1tbHTIdWgnY7+3kO1AT8aGqIMwOZ0eLcy2hyH5k6McgMVXveQW4V3GCwThAXnDs1thmo8im4+VUapugJn3UFyWz4EB8oJLaSbaqKMvzJY55//hIUJl2xgnmRVHEB2VoZbHTGH/RN96QMxTJpwC0CTsT1ik0AfLQSllCdu7aJbA30YLKUjbh+3Sejgn3lTVpeiC5TkaclvVgAjrK+m1FJA4dsVAeCgLMGkyy8m3uIzm9zcPnIm9EGUu9hUED5iNpi7vbsGulyZz66pbKIrlLPm4d7N6vlpxIGpQoHsnEIovmvYxV/BJmV/HBjUmJs9i5mlbogNKAaE+yrNWw9UaOODoOLDtYLXDi9t4PKgtWfu9p7UO3+mpLilLOketET0DNI53lyFEydpaM4K0WgUEdMYtSX+PtDR9gfZm/BCbYPPoD+zUmFHhRdUW3IkvIVRIJCnGEF8C2ZwntmBtWNs+7DRc/B9z+SGM9WimxZfD+DNvTm3PD2FSYmFt7CdBpD6bfV9oQQSy/pIjYa5W6OC0xuyiwva7WOtdNeya411Ee1exhYV0BZoomirQnwAHTqUPWA6GKA3q/WFiaSysDgaspUOczHKKo5Gygo/2SxnwxMm+CMM0Fpdo78cmK996N/pMZxwpp/XciQnYla8qEKX3C4C2MDVZ17QGUUizDogf7PqHb9gHlXWgW/7IkEh5zo2DPEcKZILjY9CI40klV2PuPpqCHJudlC+tnub5gJ58GjrSq8iVdQodaaiD02QQSQaPj17GKa85AJNZXO70vCiLmDmEoDDnkSeYMX7H969tAU5Qvf9cPNopnnjhzvoT4lIdR87Re4XWIBmEGBHINs6GIdxYOb+91ZA/kPDnJ82YhUGuLrcN4lzIGfYPbur/Pity2I+SnzUYvERaOqXbefyi3bUnz5pHGVBRXacOaUbYZD2pvpLyGz9sMNXAV9GWrH6e1WHOgw8f8K7FkRhhT6F/tQIMp4vmtSYgkVtr+nt01/hDfqzn9/tB7ZAvp1wHZGpb6CCA+THH+Xjwpd/nTrTLuPddbDHOlfbIFjz65XWFduwaLOJCBoQhiEhWiRdsF9JurmEaptggV6ESOMOfUwm1T9FDsEPhAOtfhbhvXVTtUCNY06Jn581gyQNUFe+6vJuN+t2O/dN7dsM6oyFjlmCcYgK7T+1gf0fh+Qj00EPhLzoSD+cnDCM2BHG5gVGF/Xh1MejnSOVEVb/XrOYvrpbZ52H+BqWlF/ieFlVwZoHRcjU3qipUbA+GRCDuTyYgDTmF/pcUiQca5v3DrFO3w49IoI7y5ijpyKOwU13n9LRQx3ht65ZzFWqjI1Md2TQ4FpVzfu7f4o49JreU0wcWv8E2sjL8WPR+zV/FMF94hd+pb+mRyEddgtohLV4QNd0Z6SnMyLLKh3oeaBwhTk1YDGhdulrN8SpsOU5HBw9F+BsF+Cug4T8o/kFtk/ISYhljI6FSIiAW3g2gzwlKHTiiSBhanqeixKa6S2wnP0FDCniom0yGKLNGBHH4IWhLGSOg7hBWMtBKUQ/9jhJlbBTXT5imsqRNt1j4Gbr3Rq6E8VjMogAo5z7YmxkSVl4BHS8Ow0IM/hUY7nN/eyqCs2Ypjwsrr61MT5C2DHUPYin3WBeoMxV3RFjTNISDF+GrPKJbnMJY70nnasI9qAGrE965ToycdMoZ+GXtUSi/Z6/8nrjSlPBfqQ/3iZ0EHQIlJmft4zHwu2Mi7Ut8DdN2F9OuQfYPUh0gxlUyl4IezPrxA21sFboxECUKvtu7mELEgtJ256e/3Lvk3adozZwJgxuK6LVQwwxgpX+z5xBCg77Cr3sVDdkOsv2RXVTHSCloGxYtbyzrYFKuc9eG2IDroFfvmvekpv9udyfaD7w4hAKfedXIFD50RdFP1KZT+2CGRplm41+L0MhAHqQfuNh2CtCVZzKgwBdVL72ShZ0hzq7mfEm/theC9mng1mHyQsgIcBg6sieD2ou1yGsOuv0J+ORW7AhcZJb2Vf0q9ohwThvRpenOm8iWpDWLGWj8wJ4sKYcBMInKvuwMI7BCV+Sc/sC6Pr3AkttTpl8SN6/P9lTJyVixF59dw+D/lArWGL+1/FFdLoh3zvjzCoBpziqpuK/Ety59p385Rp7rZnUOCcn1a7ub9eutEgKX2S9KQWFddIKxjEv/P+u3S5w7rXTdvC4GSC9BQKIrvaAocxzo92GYSxrDc2BaYtlsr6aenyTxDfl8CQbb+xZjRcB8AgGkD0p7I3fG3464oM1k7Ms0YizD3PTqJouuf8mIaEEv73aiQFL2ozR5BtA2iiYZg9jFVpEW64ZcGP7ruFyvjC5WJJuaWGLpcuQTg7e77fgBWcbtVOZLAXznCBpfxBRemJtSfLqPM4UKs6J6oQaDcAe9d6xf4D0D0kXME8tLUwEZx6nEimcuKxQ5YkjjRFW2QEpGYetWN2Iu98DR9nbS5wwxhZkAI0dANH4dkSPNcRE23sMn0OxoOUu6009aI7AtyUDlsZq8vDpC8n/bZkd2a3YefiRPYQ0QNDMwrvDA6B85ozaUpgjV8kNDz0Ga0APyMbFfs4fAXPEfnQ+KSfWWgGfwE206KK2atjR8Z2iPvd15WvKuPmJP2T036a39RHYyq5iS44xOFNfNqOg66lFqpex7v9c5s8wJxmY2hcksZsciU/i4irhxMifv7KbFTO/oQA/lCxvaFPKVADJqgVI1oPyyBzYwO9SUVH9OjCv1IpOewNBq/L6NueO4U9uS9hZUu5PjF8dJA6qHcHe6Vq7+uKUw8kp7vC3ZDNfsaOQxB4jHLFJ06ab5FwtoVGZ5J8hc/DPQRHJnNAsTLxae4gIAT1PamSI0wmo2Ps9mn5JHrpAcYx0yhegjdcgQ0N55DHeYEJHuk0LxbqJLW2r4kuOmsWKN9ExxrEnYwuA0Y0JVUUkpYNWmPLNubrysZ4IagwBS0BE80U0YAMdKjVA+cArg0ZiuV54Ql5KxNBEvfa2dps8kmJ1F+AT0UMJJh169kjpKLHn+DeAK3ftGDvDcSZHpc+Kme7vjzmUYyWI+n1s8gVv2UYpoiZIl5OdXw+vR8CiUk0okXqV/q7u6mt9fUiFpNWBogtSKod7A120uC04SEcTV5bP2xx2HPUY+KC8ywk/R18zBDbeRJ2UtUTaJ82SHszG1UGjwHwQ5E10Gw4+USAoB1Dl6+QJ7BjrJL3W6myw9lgdJDzJgT+o0UEBFUoHcpNwMie9wmdXloqK6qobL2c4aQQoLOyTnDY2CpYdei1WXYUqmtFK3ULDA23ByYFDB8aFm4ARS1/aoh0rQlU3MHKnZy4sZDR+ojJLEqPTEC5KwAHvOcXRrs06G++2HY09t/aOimoJmgKRv2aGlW931XZ3F1BRzjH54PbeqXXmOjlf8Rhd9+mmF5B+UZ5CnrQVe8zw2oIRZ9etJMqyacuMUJoNcyKzixI740DifBBqIdwhOgpLcVAcjLwwmnFW3Oafu9/WE/GNc5ZSupHPquox1TMhJ3dEa3k56UNKk2nFwqRy6GHBFMIv8W47xfD3cZJjHHfmRRhHjqtATZvkcmwfzB/W7uEsSl/q28j4+Ep1P0NmPJEsYXyqpqdbKSEHke+6+HHalAfPKshT03zZ1YT8t92HxCFin+Y0+uklodXfd1PbMusFh5bIk6OSaO2+Xb8oQjj4hdlv0thJTAi3uFvIZWzFnUZ00WWeWMSONSYhtZVzEhgKidvNZWlW1xsec68BsysAwG/HWubVnVRhs21cj7ZdEkOm0g2MFKw108enYs5kmfeo+zZHxBLSU3TWsU58RTPLZduw92dYF2PepIe/nw85PnT9J1LnkkcLJUpnylkTifQm965ECFcmgBtxXtAMdfYDc795UoDasM9iqWdnCql/iY7gHZXSnPHOyB84e/OM/JK9a2s7dpgwFrjoVC2fT3GAAPGAEXfyxRXgT5z9U9eWHYspt68/I/GEOgM7p7DBephiIK2TmMXXHjRB88t5RBALCik+uEKCHBg1JIMmqvAEb/gZlMWCbIHyfzy5+uMLNJGxFBf0UME1drisPt0yERZAlXy4DOAwSDhfX6a/JtTLBMBxklJ0Ki/s/sMtVabcmTJhBEwPFRG+na35slBQ1cpGO4MtyiosrwG0tG9Y2lKKFMG1TsUUSieeM0lnmWMwS2kQH4VlH4wL0MpNOPGNiti2if3BMVRW0fNa42tlUo8iZ7Q50yrAFamwh1OedPcOdRPTQ+qrE5Q6zFCtPY+ALHDYT6v0b7JzDGALb+xVedhMEZih+aceqpoaZzUarMxCi5RqZ50atyxanUN81rKYKIqsLJ5shtzHATBxiJWP0iFiHHgYj91yFyFkS/leSrFoxNluQL9rP5wjI2T1arnVcneDJKMTPOQl2PnrmKKx/R5a/tsXqlEeDoEbgHHdW7GkPkWAqwD930AD9EX1gh3PrzjGCtEcMlEGJsCuNBppzFKmT74Cfu9VJo4axaH7NtvEoIGtig6L8iSu+sSy9soo211iXjqxVzDMgmMGjk9YSDhGnC4M/QUfLfxSlGeuj3H9znMK9w9HioTcLgeu4qvGOBh6EQo8wKoraGWYuIYloLyntFg0WyuWSJbDwEYLyQmb7ceXpDZ15JKr54W0TYLp8xchmTyijcI9YTUz0OXam4p5lW73BFaDwqoTSQWWpYi8wE+lDahO0lTGcNVcKskhhDOiUgoaoeXf6dpFoXTWEf6H0RKQ44VOTlMcNWW7fZalJyS5lZtq4VnmWoSvNNJsikNSF+ehPh/wLw9a5u+EyJEVIAVQTufHE9dQYxjCeL/Z0/Ymupj4ajSz4Obn8LIWtTH2KIM3LfoPVf6gFMBWNt0WDnnhGKn6vh5vfv0pcqTTirUmYco6rZo1BVOdKLkkmrxep+lYKta8F8sESMxjdSSd0jhzki9ZwG+4av4+Onbz8NmJjIfHGf0ckbQoIj1qtPJw7n3lOSSuD98H6bK+roC0MMw4OQo+dEsI19aCr07QOylRjfsD+QJB8Be0XC3igzdezDBJaTo54Mg1Sgy1yPLAeclE1Qd8iNZGfLshEDT+Fj+8uVbqCs5MQy7uRk3UJElo1hy437BwF59tKY/YlzqFJtajiWoGCtgohBrNh/bZ9BGB/O/GBrUwdfbpvXrALSJCy5vDtmaVfy01c6v3eJZlKp1VIFS/QyEHf9INWYv1H9QExz2k6UPd7fZIAat0YnJzPuNm8krSrglin96UQn3Ybw0lBiDzdHkq6kOkZJK3TbKst+AKrcDUvn2D4CbXrXKbw5YGQN49jnGBpNH8zWywHiEs0/hkd3rLuNnEHm5d309SP0w8jA6nxzOdMw6wfD/+pY85YQ/pz95xrMDK2R/zVs7DvE89AR8hRECTBnAvmJ6lLs5QPqDtAj/o2egkU2lklBnV6abz85Flw9S1VKy5D3yAiGhS7A7N6jsqcjG3i7lolsQs5d7PQANNw1OjqO6nXliDF2eaxZ9NWU5uzw0EZzjTLrlUoApmmx8/vUdXbXKWywErl8XkvYfrvTRPDIbdfVV4F62Yxgsmp5S64i6TFA1kUPQVB7dx4W3HefIdLMlRjN3TyZg2HQHv49gD2juL1QCZ4UGzT7RzZKXqtWrM90vDIXC+6JrklIfMkSpTqn6bdRE8OwHS8RlVAVNYeqZeJd2oX9xJEsMtsUxUUSDkUAVsLwTqDzurw+3mtm96fMN/BKslfWOMPWdP8eAsA75rUx/oGIY2DgBjx2eUrCSe0EbCVPwEwqL9ZWB0ppkJmL1pb1lTg4B/4UB9Cm7zCpLdm5VIpmBf1/6uoubuoapUrum/IgNtsc+UqaKo8IRATc/6umCJjIEnHxjsw5qMYlCsKCVHuY7wz198BK1exgKBuxs0FZWWCaCkS5AovwqJdj3LNkB7sc/rsCe2aBlkHA5pF0x6H12KqWBQp3F7cTILO1U/uzVSDtskHxiYRQSLCHLOrE558JWa7sftduW6FO9HrpRBh3rmLFU0lxUQ7mIV6Em0gx3oVQJrfYrVrGcQ1qE80+XKfU4STh8PqTorsiXrdvCLGfZw2jGaCM4ojFg3vzXy7HIpmMdn7/j3YqTYnP67+GQw5uBnl6TmdGXMrDatGzCRdLYV6lth2lTcV+1c9g5uRBBZjHRJgN8vVlYnhfP86AKIYEykSc9rsb2bTyCzBMHQ15o1S6TtwshNuWvBO7JkLtGep+1cODv6ZJjeFGlLwyUbpVohuHDwTwvsMnnKJMiFC3FObvt2LZb7I1agTqFBJ9vpmZNuos6Z3jnmPVmYiJpQBo80rC9xfJd4gU/DQ7v3Gt9ZM0G4ay6Ehgi6iakuBncNa1UsQs0fVTxs+Vy+IRqYfk7CytHCbtaCFGf0acwU2CQ==
Variant 0
DifficultyLevel
683
Question
A Cartesian plane is shown.
Select the correct statement below.
Worked Solution
A is located where x< 0 and y> 0.
All other statements can be shown to be false.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $A$ is located where $\ \large x<$ 0 and $\ \large y>$ 0. |
Answers
Is Correct? | Answer |
✓ | A is located where x< 0 and y> 0. |
x | B is located where x> 0 and y< 0. |
x | C is located where x< 0 and y< 0. |
x | D is located where x< 0 and y= 0. |