20180
U2FsdGVkX1+yInEhFbwjFjjQ95OnUa0ivbDhGBiD5YKAlOeYV+kvFMRLwhQPqTuJ4aasy9b5sOMvfvP7sNe0sVJkGi/50sLOTWNe86CBuvLEV13Lvvwu9Gc8mzft21ozEpZA8EGPgyADcZsYQA7HKOnhy3X9SOx1O2FCXROUGUUOS225lpMaNexC0lmrcDdzbb1tef/083A208Pz2+Z2+HM/hIDhETuaBo/sGgDZJ8ROzkbYniac0d9Fk0ti2w4yAOyXNeNTuTKpx7BgqDfKkkOlIng7/tPA2Hgb35REZRO4d8fdSG4FqMKJ1oaAS7tC2tTLqo988J99X2UNx9KG2rmg0SLwRh7cBCVmDdjDYh2TSvpM2IXWD7YoZZuIsemIOMVYuYSXF81ZaGjMnlIPxsh/hC+1Hw9kCXCTw+jWfgrj9nbzYvUbuz+EQtNNG7t9JqdpvJF0zea8A6rqtW/gMvb7wL5isdt1+gpid6T5UX+ZbBrT5QLkL05LBxDuGnooa6MudPrSAoY+9uV412zuZk4fjgvVlihdgAWZ1gtl7Hmx4/IcNIrnv4j8ljS4SQkO/obgzsZiCJk4fySC+rMKiNL4po9TogCEY8mYYTfpS3dhBqJWQZNCN8mRHDvqH+JTlJko9IZiybrVeSW1dlMQfwYQD58XsWr+NhHcoH5BcF4nSjJ4pmszMCmaLbacP6deUWzjsazB2B5R9Owu2LRFvzNQlE5x075OxcH3dSfgkNJldJtZQ4yYQD54bBYO6E7f4LiW9+5K3maiSrOM21lup6FmkNAx7sICG2Wh9G81my3cE68rPluEV0ertbR1zcn56MH1V2MjYccZE1dIYAr5YBxjSN86/yjc99KpNdIeNMNsmIaUPHn+h0Y83WAotMgSt4o3gzIgXU3plinPjsDjXFtfSbBmR4bbdLn4L2JcRtDQ7zZvdsoIrH3bsjsIYgSbxjsQZoQbYgUmLlGM8qh3PLOpkq49ecT1VRhHABKi0uQoFYMCRuSSYqgSm+tXhb8P2Sxh7YE2uC1i1lWys3cWanyWvT8owLlprj+P+33fDQfv30mSXZdR3qcMQZ8qdkq7MuKo3dIm3Y1nlDeKwiWaO18EUzboHaMzUx1wEFMq/iKPtcOVUxrPp12XQ+GXepHEtPvskMMWrnsHykOJ9hBf3STirrtX5LsvQ/+p7jnwvB+92CIpX01WdOacBiZwm9TcwYRW67l4HgEC4e4Rsa2HgwKuQGK4n5SiS7rueSFoJ0QxuwoW3Cpvokysv3YvYdXAm8RAN4C5JMe4cGI+kDDF5gVSzEjt5XqcczgQ0o6zRfl4Zy1KonKhNbHhxZu5YC8JMCpWYzM9sw7KqoQI6siCM/Qyyq3qWTtesKteBLJklxSKDufwj063riavTbDE0K+MTkUcJ/QH37stTeHOp1qGoK0EA7lyzohxXuSm9wusV7rwt5/6jwPZXtvp3vWJVzjBy6Q4SuDcZ6H+ZwsLrJw98rGNqT790bMD16+7uRr6jVF0XU8AhoJ2DfrONxIbolkYtN9t4aXnHQd5qLDP42rKstuy0Qy8cGpcxnIF+Rh8QNyOFgvKfLqxwgfq+w5IFEpabQa+NawjRggTXCoUVm2iFxldxyH4QWrUErd2aVmiJjr3HF7ihNlaVMkbWCvHv2AWKTskFxZCPC53REYuCcI4yMGr9sCk/A/LlAbcJmnwZazW5YtT76pS20CRr+PyUlKuayld5wmf2HDq15h/7HLyRENZPhgQPJQK55pNGmzpE+Co097IJjjqrilUpNnlXskuRJTNphUqPwQWEDY+EbIF5bl8wwnTNfXGVc8ZPM47Pw7n2d1bHzXytIWCmXjEoOqTbQ58EBzNOFQ8+CKi11/Tkr2Tl8EV/eWD53JvUmvDkHrQYenV7PuDFAv6aDkFDAy9ovCovUKGqoRV2+LCu9E3Ogi8IFpytfJB1PQmFrfyA7FCbWnBrCFI/PPWPjqTgHvN5VYcCQMTlpbPkVArjr8+rFTCUw4fb+kOCWEx1S6wl+BgUuyqnVR7+Kd5XwrG6BY9+mTkYwIaX8mqMx1ew43ZpnVgIe6yAtU8pish9vGmwuNraeCx19O/yyiY0ke7CtSUpvFY062gUPiPksUv/KjGfBU9NIw45ma+vDDnxN62nctf7QcJr1yP3WLT1i8Cz0ifReRGjxIjbV22aAXwwHZOp3RT2k0FLKfmQ2Hvb13hIRp6IFYxNKCv2u9DranK8EOsocXr5biTggUKC5y3GOCO9eSKsv6ekIFwJg0zs5t156dPdhBItaUxG92OTwEqw5I7IwTIsgy/sqRgCT45G6vbSR0kGJLrcrCrPegPfpj+ZfdtQrns410MLd4vjy7qGLG9TvnZw/Xss2MsHl0OZ5oFpqAbtX3Fy9+uZ//sE7naF5zeCkxXOcPaFZ+0b86y8FCCNzlontuX/LfR0k9r1ERL6huLz98ko5xFQvQWEuhehmfjlT4tO6Vw/jSVNk0p81Mk4DM5LSBbXuesLqxfCFKfDWKPonoqR+jdDrA8mFcvWVrSP73Q/DLsk2VHf2KAcWLxRa9kOzqZafeiTQNP4/NAptQh/HPmWAMvWlyK/sfVglBtpUrPDjMFtFWRDCGjOL4SeBAq+6qH6XoZIJVicJ8PIZeATuex6Fx57L3kdrZ2PGJxyqN4Z7UFURnuvkoO2tPV0LgZGsYY3TBdpwvV8mI+a/Dhnjw9RlzEDdmQAR9mTUmrzUeZ6Kc643vioQkrEpfeRk2PVwiEnIIp7Z+1kTaX6dPOXBSh9Syb5zqCQXR5saXAuCQgtiAfRGK7dv1wb55M5DKOvwIhOALzxtAHx8Shh2X5ZIdEgS2qRo0Dk8IiW17KADF9Ww/ebOysWWYB3Iiqz/at9WKRXN+FNkmtdKRJZtb41HF+1hpuB1Af5J5x5N07Op0al6Z/wo4Y8unCFTnFW0ODG4C3tG8tS1C0s8qzQhLtyDs9Bd8EGaVV+GU70wAKTz3YSk2sBfA6KAbQ9J8D3+9vYnpcE4u1c2q74/kzbTRC4RN3aA1EUjNzUBUnPFM03Mi2+L5GtlCLC0Q3CJUNobhUoRWXcabZCxChSB9D0Kyj7lxVaxP6XaTC/eS/JlMpLwpLcJGlCM165ZrExeDX5eF1mkMoAJkS7ikVKcY7jBSPexbhrojTmdbPX1RUzrgAUesFvQg/ojqdB6jjVVgmLD+c9Ms9GmYCPEajz/MJn50m2W70h6Y3+FIInvGxZ2+w5D1U/xw2HaD3kgE50mIv1mQ0fA9nBtRAr9qaBgpJQNA4KOb/vqyXjJ8igYq52kIBbfaRt80f5bgl/xUXmdHzHR5HGMHU7M7L7Inr6pYGWog03+B5jHdE/zSBLWGfxiVuuNoC8MuP1Oi8lz7mabydqXjpOASdx+u2g0CCnSDRkNRDo53uaOlsBwvhgQBP3fQPFMVHYx7EZzfk3NE5txOlYwtSOalZZKVhXTmAd2pTvqFHieFQEwxssbfO4sjshyn8lxCipNs2VWtFBHOk0wv0ph+SZ8Yp8rhphpVX1V9IyvZOZXSTXVzdPIBK/rvpxzfW6HZEHI/hWYKGHmr3gr0oE9O6rz2VrajZDFj0luCahlSmAjx5Lcoyw8HIA11KJhcDgf9/OQRyAIppXIrp4QUclcQbrSgt5IwG1H7JRjtZotpYQARLo5RChwdvDNx8ds6BQyssELbWOvq6uJGUKPzlrPDcnSS23CAVCaRfeQee8etfPyvnI1GvAlUlsMkfaeKK0CoZIZcr8qz6WE+I7lMnfDETG1DBtPGhugzQc28yZTJ/5O6AfxkfukrJQsC2riBzh1CVLuDViS8zGf2P7SO4D6zP5O4RvIhfCUGtQOvbLMkcvA/uXIPSK4Dr5ce7Sygi4gx7bYGZNluizHAUmvnPXcG5Vd7/3BY1jhoK/rbT5ye89chzvj64OlWNvfzaOPukjkW5V0GXo/feXg9w4yQlJy/4p2yS9w6lrZdaUKEI4R4ffWtcJ/Jb9qXqr7TbdDPqSvPhDq/m9epQhmfYuxJTEFuHcdNm/8PK4fan0tz1RtkYqm/S7HjMa0yRJ3H0ndY9xNDsFVhm7ZwJ3uZi0FcDwpYy2ofHw1mRxs8mSoBEGQ5Mqshxl0E/UzSSj1fdAfB07UnXmiXspZOZG23IYIFaORSjrXMfzN1s0zPSOpI2XWjCC9bJPApDJedEXom+8/KS2DolbE7oinWHbcQ4PNjJ/+Xxq25C123dY6PyBXiLlVzCR7gOz5A7EHTeHndAhSSWCIT+1IzocmBj+/roKA3Tch57AhVsePfD+1zjNDbDfGdTqVZr3IqrwQ60tS2+xVLJhL4rh0LuSlm4Q9CdvdbWLpU/6Ii/akb5uBsl/fF91LV0KPj1A627ze+4ckoCPVeFC+9XpDJlzhI290zuyIEfhsLSsYqajLBxSNQInjQ3YoCG6wHR5ynDaYrEIwUX1uQX+vBShBv09RlqJt4NNKftwbkMbPB2yA92/s20l7wV/WFIlUN7lVWjTqzpN65il987fUx0XAl+GGssdt3pKfycj0+EniyO7rCaf7qh4cnxpLT96CqtWXvuB/oPoxpgZmQHcvJCHB0aWRsckcKltzsgU7EhIjtRAWbF9sx6npLFlhfrr0ljHHHtDJSy9ueGAUiFejMT2u9rfBVxzZh+rHaqb9wN1WzkM+lYJcgn6MQG9Xg0vY/TZIXwf/+ABOmcYNUvrxcmYuBRlteSxRTOIS/61xY+M7qF09vohH1ZiskS+p3E5G1hAwZrN1nQgV1hch41Lf6MXQjwKpVWGBTcDpGtW5tjHjfZ+9y+8g1D8eQeiTBW8yJxgTdf1SgnfNUzjtCX62S4IqMKSh96INZHb8MurZ5FtvjImRsjzbJ6H2m1DbY7qZxZA3/jR5qW88D72pI0OY2g44kGqTneZFKfjdDSTlqDsUodE0jKvxA3xC+2tVCRf5Kgv+gbGg9btUglnOtFpOaNLkgbLL0iA3zDFSJ0s/8EhuBJajxNvpCWYX3jJuE86OonhiYRxDXrwODJENkMpmdEfixS2Nuj7DOUm1ZCbO4USAvqHN+y2cInfwvcXFTm9eZc2wxEs3rqz845o/vksTwD8w5it3NicVIqcqT6AHqo8MNCtZUpnPTlPpAbc5mfpj5MmAvtplahDqfu8xTcGjknPBQqyzS4sPADxYuwgNQ+y2fBm5zaAwgEHhCk0tMD5JUyh7DowzPSKc5ma87iMoLcjo266VInoh18i12GvdOtLRBPnbo9jYglU69bFGMNMOAECJchc0Qg7sETSuWbcSdPPYFFMFhDY0CL7t6PBV3rIAFxTTB+2tw4SyoWzwdhYV0ziyzPcZWcQBx0omXDJWzAx90V9jtw8U7VIJwVU31OzhABQRxW9ZPS0CPssQGQK9A9b/wsjdjVXZYM+QSunoX561f4BhNZnFMByOwQhwMBVm+/rnRc5/yD70RXFLpLxzYyX90L5NXn8ZtHfyk+dZfx9WAks9qvqazaQ1Fz4cVIGZH+i8xDO4m2xKGtLciZ+Sg2JCCDoXsMcKw5FR5xU1D4QzpYY9ygdPkWe89w0tGO+0buQ5ylB+yHP+Tn5fyc7kR7tnwvgAiIFQSV88x2s1IqBUFWc7WBc8NoyBBhvDhFsBDjEs5ZWPsKtj01pqjNul6CfEymdTJ/1q2AjfTkoPpn4RzYEpAMXwl8A326uYZEWsr0s1dbIl3yu1cup//xDe+Ua2fDAI91YptcdVyrHUsjtMJfO+L4NmbYbDG4cOgwaqOCo7J4wL9fRogISi7UYYsQdFLmCqpYTfmVMy085Wxpe36sWVn1Rhm/ArMuPcpwWao0FIUpjJGRvzWXCMV/gdjANz3MLIzINdp29k5bAGGORQIGyO0W3Ktw4lWgqigVrXmtBkUsR+R2DBsK4mxapGvyd/0B1W2PtrEjECiifyYA1LxQ82MU3pNsn4ANyt8DKA9GjCe3XE9K9xmqXa44gVaESvqPa1CSN9qHV5J8IXmmmtORHIoty7aNOObUF+8sU3lalVNSa1gdV1xsMaPv6X3JFUuISgZsFZYNxpKhMsbq7lg3aFJehvhky2T6xJF/SL+VcW2SfaXwbH9ffBUTRSIQqn/Zc+dAOaz1t78MrH7iy7xdhFRM2YVwhMdbRynQ3SOehiSPkvIBeFmXttA4B1D25BwVBcukwSb6Kc5a7W8VnJevViUUQfoRCQgrOHQnpX8y+cVbGttG4CveYNdz8bK0YP4JNhPZWNYEBE5OT1s02+X5HIo5NqHsDlXQe/Ae8k9Wkh9iM1qJVRdqGyUadNRXXfs1PS1jC8/i5MjluME1is90osnz6RGGLZ6a0i2mgiVr3z6IICI+8uZ2gvHTemSIajNvizBdi7DoP6dRvK6H5jrEfqHiEFudIuU3gmNaLEbP2Tr8GtScDzrAm/E8QkYJ5gbOVY6hdv1Z+U9/Kc/euHVbflRoTe1tDPjULukjilILE4N0IX7CEq+YIkCRugrWsHh0V5yx4CRnWzDjf4kBtqigfAKppHQE0P31086oG34be45GCRn6058iOFvK9GI3apZlFWWRYvIMoGem8PKkGb/4BUB7h97uoBtGt+Y9/LCDChro1gunAqVCG45RYkkJwMddXXuulO/iMYrZHbt3ZJHkJjBp6+nzms97N524ljaY5D0Z4hVbEhxVV82XT3mEupV8IfyXkkCKht0lhyHnAAZVlrdraQKp/jR6QmQNBwsdhGdjqdf/1egoEhc3FChxiHg69TvGicuo19MulyzUiL8tl/pnACfUHGklWKWnJfP+3uXCwRUjVXiDpBly97bOSH4L4v9ZKeyzgS1WDkZz34OCZmdcSCAVCOH5b4Fu0Oe2GOR7qt+Z7z8DD4SNt+6yyzIHTLFFnLr+E0gHEKx0M0BIpR5pFrYZ2PVvvefOeNpKN3eca44/AL8OYR7usmuGXV7JXDjUPIF/HVmdw3wt82aHV57NjoGFGwQeWM9r9Hr4L2iyjMZ50coJ4oNun55VimWbSx6vRGossh6deNfQlc3d5HE3o6NqH0STQajVp8UH3TvRm3C4u21lEbt7U2Tsf2v5y0/A9R0CFqrWGPq+VzHnCBzY2x7hbde8I0CvN1eeIJQnpBUbXGX0O7w/4w94ZwUO9GkWuidXJKS9QL8pxkkgY9gMVtTFnQ18xfYX8QZnNWjWlayqY6Qr8YJX7iMt6bwcRCb+P29dOXdqbKDjht6xd80YN99EBDX0pbaPP+c+56AUu2gkVzYzh7w5XNuvxvODnu4SiB18amGANGiWBVMlsq8fbxgevCLdlYJj0nLw7r9bLPNU6O9Q26ct7PdhI69qmB2pjZEn2rErUt4eS6/nysEc13m5+ohM2DI2K1XNnXK1auCn1SL1/jNYpkSH4YIzotnybDwwhKd45Pi5g+KFhbsvX36se8i19uyKpe/aNQGxdiiayC7+mhGxG2BR2RE461/3diyYXyd1nIJr/IRJ8+Ru9XdEYEwACjzNCHlcx0U6UO6ecOT9hrmN5D7Vu7YwNzEIcMQA0g0/HGM/DzHUZtjKumdnvxmHDEGOxrl6XEbL7pwogtdgnIdnOZO8btxrW2OYalpURCP/IK0+LMnvF8WmZftNoaawFqaAJ5JCfje5wmYu3yO4AMOv/ZIBOhaOs4kcZzWkhd4VuUZZRFRznULahxlJqCfCHK0zmQbsrgR9qevqePgBPXBJsy338JY6ndXzbZAEuHk3CMwHCek1pBunMser5X4rJ/4kzn+UrGHJ1UBnwPTY8h2X3yd7780Mhs6gfAxIcV/n7Oj6icrnvsy7Beu+W2Gw/O0J3yMv1NiXTMQoat+XJBbOpSi5tGtwV0FkDRLCySmyNCiKPLYXaw+mjWsYaXhhmyFY1a3YkLriA6+gsAX6v895A6ahKiqP7o90wGWWTIbtEo80NvaEXI7o2wz/Dv91I9ZJVoFNwkKh21s+ZPBlcaCheBPfa8oyWbDK+dVEySIp6WVXgQ5DdYWUfzqNPtn9i8zgFOllxCHz++F35xbKZke8vaNA8r679iFACKQ/oJ22G0+xgH2roEBFsXNu/4OHfOZWcjdMbON+/ZnJBeviAVK78QZXZHxxvAOA2okA6xjdkK8zlUCoYpZWcGbRoIdS9V7KC2qNQf4hKHaTY8slpAzJl/UOP4vbKEgoord5N7zohdRvi2wZ5OSwBJ+/2Sb8e410Sm6Es3MwofCTdCI5OHZR7Z1bRfwgHqHlxX9IFgaVT0oDqbVj4jX1NOMOq2yq+U6ufLBOhKIUmN5wiIzA+GZ5gNp0zq2ifILEtITIIMaJpUZ0PFxn9teZKTDwmFyLbVKtIYYYjpbN+PkSq2R2b8cFbZJNOlSw5gsSpziWZnstaRs+CSkZw/jazfDZk6/ci07vlnWxD4OkDy8ZbkaASgsmiQd5gSZH/P9j+7Ui25uWJw5QUn2aE3Sz0wltGMomTc41LF5aRanqDIIUFqDKyqT7R9odJXKp5G8Q1s8Vc8bm9jaOgR2UCAUXQ/vcTmhDKw9m9o74NLymEp7PqAunzX3gtVCdGM2mAp6NaSZ+jVIzHsZkMJK1ai7jjiPW8HbRGwseEdS+LS4+6PdVVsEtTL3ojSRLvE95WuQIJfs3d8752nfovY0zbhJcywM6iirveMhF89lRtaAq2M4n9R40/qeUHxZm6LC9w9DC1RAwIpjqm5MwP8LkZ081q0W7Up6iUekA0SBscbVgbfukZFwdDIUpCvQQ6mtcWwr0mtyPK1L2Cx8V10ktB0Suav3npbPaPnPbP/DrE4zQe1XGd99IAmNsl010oXipFiWeXWlxiMN4+ulws3Pe9iJEW+SlqYO4uVToMA4aEcGLFnMlcdb2Yps0+y0D2qSS5BwiW2X3WCc6ZSi1U7w4NPUyn5SL4VIj/FsC4RZgQQ5FW10J5uWPaM1Qlf0XxIYekmx6KcVsbbDwktfrnMO1+mJ8FJjaflzPgkolUwRxNn9x1o+BYC2q2rAyK+4oT2MGpxC7IpzS/W3DcZf8+L/PqjQbcDYCy5y3nFipozoQHdAq54KyWvz3LGL8C3EZrk+Qf8qGHZREu3CSmtWduUqc8Ms/XFidTihLU8mXQewq2F9aCbJ/1HIGNuWrSJ6YV91AY+cBouSy7aTPkKbNjh+Z/DROBz6PXlX4OhdVRxacJADT+p8umKXsk3v4tKXyUSKmFxY77Ef/4q1dqLRf53zZOWJUb7zbGnAFxhvrZpJAQwY0cwhrQcBbDnodK0ubqaqIr2wBaYW5Xqn67PrAbxmnEDsAxni4o38ncmSrqa0hfwAXp7m9JJm5KBCc8JLs9kZqcUl7xDXmVq0PZbAEv2EWjzNzZ8SHnfLvQahtHYEhOYaGs0eWNpBUVH54bOAN579ojjPd1Ovcbij0KTPld88NtofGp1Gcq00p/fDgGCI9ZM3toGOiEeIVq8fqjxPEIwBbzxNyk/8Ke3zutPyx6gzPDKj+l1fdZmG/nsCozsfENItYe8iXVhwS8j91wOH5GJmZykrGkkTfXtM8arIdXHcjUBD08nVNCOHdN0zipi2npqGlXQuZzFG2oYiSeqN7Gup8qxtGbaht9UvVyqtgvzFji4Nh5MSflVdwYG/sFcANWHp0aLaWXnZbZI64eeCl2GA3LutNxMqVC8o2zLMS74RlfhjYendNKLuLcZm5E6FmIoy5cgrH3IMmeVaSM/42aK2Vohwiqhf1q9JjkrlxEMvhCqYNd+MBXpZKKfsC+Yp0qqLWN0Hg2FiPo+I8oC8azWQfcToPiMfZkgpsJLfu6t+ZwNbSs9Sa4B2x6e75Bs8WHXrChMUGZSW2DqhFzUm+/Js94H+QCx6mh/lrpsotcvC5bAkt4Qf0PTZilpjV4BF2B2ShNc8wJIRXTxayC1fuUnZTfgEM2UfPi+qrl1AAkaLQGl9lgTGXw+l0gnI3zw/F9EiyFwQfNwAQzjM7m5+pTpXFD40Dm9EtR4o3TzGxQ3iUS0MfzUBLkFOFeeS3uUAw+ZhueF9+jARygrsX3zm7EjsksF8Rg5gRsCgs3rUNjj7CZTLbN2uPZ6eO/cjQA2GsB3lxp+H1VMl7ncBQk/IbIyIo+fciwZqIEEBVbLhvGTw/fqVrZH3BLwWc/D0OOTSZEGbuW8aa5qFUw5HD2yp+FyqQTQUeGinDreqOCSoE/ckOWfc+flx6rcdGmrt6QVG0ny3UHHud2yetOs7V8uAU22ZbbrxHRzBZN/mCav/gBpHObEsoPw4ZswkzOe0PvqE8xujwxB/pmi8ndUehA3X6fl64Lhxs6n81HGV2ipt4czrCkfa/OT9Qtjv7skAbLguy6Y/nusjulX2BnSKOcVw0nQRKOog87n6jOUjc4FtIOUy89tR13H/90GXyTikCspquqCTLRkJQPRsu5YtqTRfD+XplryJKpg5vyawZXWJq9S15qIj7rSs4gKyalL8tRw0ETWLvCEafwkN9XWaV3ulqV7EWn4C5tPSku5sCcO3GbEkcad4qPVpRDaF/huS3Ccsb93XYGdAZrjExPRhiuDSsSP0ykdz51IvEVnNkrLVRgVJem2u4LMY+27Rx4/J/iXV2+F+IZBoJoGVUThjRodGBTsSQIRH7xc7XNimIWIXCDjBDLhFT3Nsde7oyw0qwp8zOrbwmDAqPQA6Rz6dPqZOKR5HWg+NWDq6nMZezqSG0imKSnaTK+Bhi25YSch+may7+w12pvQc/p8EdndMoRy3bOGXZ6yiVHvLkingmihY7ciUKfhLcDO4X3fB4p6aFt1J21xcfwwUmAFZXDQ6R+1X9BS8j1vn1lJAX3cXF+CeZ1mQ6px7EZ47bf8WUcy/KyQeeGetl6gbBt3d2Rx7Ie3NqnOVW++66jHTDAs4+duPctL3i0dfIKjrsKrUZJJKLWDDurG6aOpqdPscRqaXxhHYtkUoGRmqPZlXXLzE9DzPhMdWD0lPmmFfShe6nYqJLX5HEtTpzcx9bRJiJnmcgMEv/TM3jdgNRxQ+EMQPNSMfvT6QkH2CdkosYYuolu8ITrE666LqI9NWH+7GG6exB5BOaxDXW8GjIerkDY1B34bVfhrzg5BPQM+NCIByRK4yuuOmiYEd9Es4HQI4RHM3uQZNKL9iQDprC4c9BsXikXv5n0852IQaE95AIv1oeGeXXWSMuKaoBE5wc/GcCLjsYvDf9dRaDgLMfwSeNLVp3BuUp2sXuEswUXRCC3T+8f5Tbe5tmxouTGUNb/jp2zjLZ5FuEPqpl78fYqj8+b9g6POWDeb+RsDDcoDbwExuGw+R2QrkaFi+nvE8XfuvIpxCiQgFOFznbJPB6F5IuySnjgEdnUnuoyW/gy9EuKTnmkKVfyom1WglmCmaZ1hONBYYgbKmDm/P4z2GTNyFgcN2yJsg0BxtILBCa+jsU765bQJMcNIdn0XNqNuNrlOCBPz6dq4yET3fE7uqThqR2Nu1OcXa/urVuYqnFHEYoG6pJi09t34kSUey4Q1iIhzwpUej62yihGG6xG+cvB1tDEFXaJHroQD+lz2OOS1gYGBEdXJGvRecTa8Gd1Q7glI1dI2MaokDi2guJvfAJJusOVbUsY21js56JQh6b0GLTSEmjr6TjHnj6K9lsLsobmhQc1olijAmbroqB9IUute2dM98xJxQXvwH60VICgReuGpOZeKjco1HQhrdIepfWYU4VrpR6AJnUw5/+kallJeg+aieWa5MlVxJ7WqS6DUJomAhdz59VluNrtLbkwdUVs+reHIlsPrWqfRlyvDcQCUWya/dR1zZ0AeJr5VU1F0zzWEvI7TpGdv8kScJzUr5dgDSYz3om/lqqeW9huNbUlQyPAM2iHdI2+YhlFRLNXZbyxLU/OVU7CStvoCqIvn8DGOuvWKVqr5XUHiJA6xPhhlUs13KB4rfV9Vt2hhhzECKuFO2TVpLHS3AeRtU6sLNeZUFfaC5IobpinxI93QM94+UAEov3Clkq1DBvl0estWMQqs/qZOtAfPuEYwu8I6iwGy0Ad+EMv50C7EzaKr7icMobvcuyAekJdK/5/t51w4Bwh+/tKDNQ5RCtmN8Qab7oj30ZjVJCiP/YaUiK+AavhPhJFzASkXVZGy4MMRu4VKxFopGaN7nGHdnFkZpmbDd0uj1GHg8ocF2HAglx323JeSMkpMQk71bCORNge+6LsFuBOtnl17uNPzpULHPVIsr609ygdfk5W+lZMAYX4/inRAoEnRy2CQzO6pB8SYLq99Yrbv7Pudi+9YmeouCvrNaoG2aW1yEjfQAKcEMWsWGGySHH2UWZVPf8nXO39qx6UpVr/sQGsm2JDkyPw2oANehwHaq4gwQeAE8pcdorDjRJJm/tkw4qXUmjcZwv9A5uGOZxi9PJD7kvtSFUDOIGAEZ/bhk6LqrUBS8Mf/HMAWMCAOiiUoxZP8MtvpHv0f8HP8hZdDFV7tMcPFY92uI/SFcZHRn2dkutU/QHCB+p3RkIO6i2U7OP7KLohAlRM1hnbGSDUH7VMtW6o4oXH3WsnVApC+5SDvaWHjE4qrTNnQReZMrkayCaIUlxy+j2X1VBxotAkBsX3NL/LZVnoAiP/qeIUBx/OsSTHohhhstOCTbEFV4oqaQNqhJ4lAzulXHcCK9UJ1GxXCaLZbcwZvz0Nu7wZsYkJlYRH9IZQVQo/QT3bgxnCOcQV8evtRkQfqzbPWJlJKzjWRjXzLkPzBhDyEUPUILRncPiZM89NJZXTEKV4hig84WSlK1SzApqaCu2nI6Heog4V1fDNExY5P8LbKdds/FUlIRlRofzJ7fxAXyUW5TPx3IyMaQG+hAgS4onRG+Yl/l6nt7Urunxj6jIWcN6xLqQl9R9JLMaGjBaLe7iXuXKJ6xLxbhAt95ylxpYNmKIa4tYBhQKRCBSH/gg3TvDGFYgjl7UUj+pvvGyhpnN9MahGNwA18pC4EB9Pj0NwWaw+qxcKWFuaVlKPiKtXeiONeglD0SC+i6SCk4p6AeT3Zr4pwSSDn3+Vpys6zJwQ72vDzA5tv6tTNBxfXdFuKOJsXTr6Z//Cw2kdQWRBjMwLlbx2aDpNqDRWmvs+R+qy/+q2IPdt4d4oLmMdYTyQcVwVnLRd9Gf3NVNdUuON/OGOwT0hQ44eu7t9+MKLRw7oPOre0FfjWg1sRS/DyvqeLsf81IzH9mWIBF3cpKoEpnoGUYr3bIqDysYyPYAF5NP6QKr7ovGqP7VvhGAOq1+7rtJmC6eCZwktPrXNHUlEEfWAdA8NdbgDWlxRcWSTklA++wwis5t1rD1GMzF90OlUwpLfIRdyPIX7dyWWTMI9uNW0Fj6L7bUrIqUIArZuqRN0WbrZj/bLJjgDId7mnPEqUaiEPV1c6/Di2+kv8TzWkFxnUoPPX02H2VPMkJw+g5L4VmGV5UAJoAD+2WcKziuMopV0odu1TCp7aqawngR1GmWdEDvRXNxtMxccmR51901nuEtE19khgwIq/UOFK4VfVcJ3ecHM57IsOaIS0vsbjvG+yrQKUaAgiJnszTfBBR8fc/7ERxpVtAp/loeXKQmjlxwT2hE8gJl3wcM4f+LToRzfxbWWBOWpo7IN8zJ7gGj/W66mvA0hURadewhJU/7NT6Khqe4/uZM1eQDL2wAep+xM22Yr813/iiO50MdhLs3w3/INb4tfMzkJ9G94o1vWiHMhUNu9XAfEXm6Okxxr1VRLkg1EYaNMk6+oA8KrzZgdUNoO9NId8OxRw6MN+5A/IEmzJwaNT4mZMCXcW68+mevhhtshKsXG4d1xp1vN+75C7QM3IAAeHZnVfOkyU7+0ti22WUyPZh8d5HrmZN1TFL/qTfgtZNBtlApQyO7dAfFLpmmLB2BHxwtGBZlOU1DFeeH7RNIRHz01cON5nmXd6A/JHIcg2ZddJntS9/kklZyzHXQZak6CRBC66vbz1HudIZBA4DiXi2RpuB/nQWvYCHiBxAStr9x52sQIiHjZzd+eXX9TiZ6MjYkDwCotK1W3B351EKTsswbTKCJjDREpWLzLxQfw4D2lxsjZHDQK0KCLNk1vhkVqYz2tkSuVX4j5dpdM4y2d+zNkd19bjneoXNkYWOf0cyRZv9mSCgjJUAd0+nlnU5B0+a3CcJHpt3wzg7PiYoDb3WrAqWdHCtkT4e4Crheu+xGmUzV4bfMQEUUwnEmMA5TkZjBffo8A3AHoRNno52995kozAFyFCQH0Gaj/EJAonQvxLhodVtypwk5vNXIOHJ2OQITnLM6zzzjnW8eaTt7AZwWhTudMU9wkGnb/FdpPLFaUBEuGCcFeZUZqlsfNLU7S1W6MhZPyP/YieBQcW2iXVkrhYukb9Ymo5F8mLE5pIPaw3Lx0MP1BqqTW4oggfah4M+ZGlRWwYe6XUrQa2dhRsXafd4gxgGSyETkd0oDS6UOynXhyiDdZAJpRSJCKjS3Uvruau/EwiGl0dBzhV7drbrdFc0Uc/4fA4t58Cl9imnkggAreK+xSKM1tCjPgXNaUBETIlpnk8zZTI9KejKQRvaJyQ3Kc+4xB7C4an/ow1rzCqgBr4QK4kcnPOAIfwCnDi0/HWW7vVgxIq7khZG7XKOTsb5w4DY7WhV9cCmOdvGZ5The1jspybPtjbPsIJuWmgm6qMXsOyD5IWVg7VjD1BeA7kMGRj0G36ANkj8u43wvTxkCPMIuPoWJoOovXCdVgV7+0UPCAy3uNA5IP2Dx8J2NYwCDfnJh0hJcuDEVkNyLxndv5y1pPnp1Hf22fPq/sbBGkz7K7xCj+iI7QIJwJl5EZzG/31t1v/8zJ7KifJJfhCvoTljwzY976vNJVHwSUoZU7gPznNz4XKFp0ILvK9wUkzVriZaLp+qwRAvr1i1n5EqxCnjakwm8y+zQXLTrU9Ww4oQ6e/4gu7ZqQKSBu5qRGuupVNXVFyMUsEUENbeO2QCPb09ChcL0Hz+F+CRENcahCVbyS/U6vimFpCtAznL/aBIBGXU9uNZb1p3x8hlX4Ej28OnQ65yRAit9ORRI2rSoWSKptBPUFgo3XH4DfprxyTBVBYuVd2PTFYIR+U5Yzm/F61OaF0TwfscmRgugRNZNpfUyGn/AtSQGPMjYs0iYh2d1wd5GJf5MhQafVLMlqgruknEoK7/UnJzi75ZO5hch/F3BAc47VzNvc5A1w6BgM4ePvTeH8gPK3ggqY4jHQ3Z1VcZLQUMjSuNSqFE48mkLUBtGCh0PPsES2Mg4WkZWUzNcqf0TIPRt0q1w3yfAjEgh1dEhqfbAxe7Ik45q9Q3u/aO230cRvN9RDMe7MuRav1AbWnt+Q3Cp/VV3Cw6AgrdWNZ6zFx/7mwx2IbGj/tHBfhg8f3tWCksrvCjWGgf9N5+gcJzp8rpQ7t++VBLodNE6AelUnYOkQfkjOamg78J0e4NG7TcP2nCLQctBKkXDAsxkmP7YwrMboj2qf3ix5NH7RfCth9Qdkw3wk90VJ9TIKKUmYtiQtehHFWemsBcGbOtTpxyvLKAVZZtkgX23vCmO4W/oDlarz763LD0XVp8rMzS6o7wlH0feIUhkCMiwYivLbWX1zLblfjs9AuRWOmZmQYYybOoGF0z+UIzLohoR+hVVtEJCNkPgblqmgHk2V68913dQtCcJAwMwsWF4mMeaUj7AhfFO5l2G3eKq8vHr9T6dmuN+/pYVMcrQQsKiqDc55WU7cKzUJADgSDukjYOWzFzO8YrtjF2O5mw5vsdZ7celFYAsEvluQi8GOwzGWVoq+y71c2u7DRuB7NdY0IityZF8vRWVq6UK23oClfULqhrGOc9Q9A8iQCEu0nZZ4KEMTLYm1E2qZFuD8S7fAS/iMxNAftx0VUYgQdPN1Cqn0hncgxWMhRCpJb5dLoQlL/duudHt/t3+gIx7KspZducqWY9jk0+JBWSevpItdEzPp3cw3ODZ/acU5t6eoFwXIHh/pO5dXGlt5mwYsUoV/XO46ACcRcF8yAoSWzlQLoxQRBhjUiCb9H+wxZB2qZPJLfRlmE46P+NYTjUk9A68uOWeqpBR8nOT+sK9lTvVltme2h3gM90LrIYKRKFPbiiaRlaQGDGJkh4wKw05/NqVrE8iR4An4vlv3rTSYEKoqkqelHPIsUU8PI+dMD38lR9ddYoOn+tqdNAexcKHvpocHNQOBmq802TuK0UMWgVNcbkRwdH/As8uQFWLVTQfl880VPQUtZvL+jrjUzijpsraAt2qj64yC+PZ6GZiS7cPu/3sniFcjLhoAyglVsFYyWIldXxYiGOxHlJnZSdLx9FD5DJLQck41aRqftV8RWO9TVEKq4UHlJ0dRt+fgDCGogmr12frUkalzCmkV31Ig81wmLUkbCaoqWgZrXlw+v4YzyNdXsrmtcVUKEKFZ/d8qNEWYLPo7vZigMm1DEC3Q3e6jTmy6mot9p9p2aeI4N+uaiZd+6DM8gDc1TKB258OzKMQ1xpwPwMhhawIdme8U6smTwi8jLutd6NJkso75jjeEYyzYqdMAocITWKr3RHHVqzZ7pUIx1eAmIfL/NDyQFxzv/I2Wf+2E5FRsFniSBkU7iC/KP3EW5pULODE8dH+BMhxF8laHpD+Bx6w6T0o4PDCN1DeabcqS5glNa7sMS6/XK1i9Q4Zgj0d6nOofCeNWsvmrDCcGFH4di5L0qNrysD/AbJ2iDxStThkwsuFWw086fL+Hvn8JrJvVDPrkC7820luS51Hr/rEOgliqaIQFqkC/p4pa4C4/GpMmHfzH5+heb5JGPTc7tKoeEc/eGyDElV+NBHUPbTgsZLKV5dFjJRrtQ0H8kWWR1gS+3U3MgtGcoq49GhCeN6dyhfOSUyaVX6aG+XstV7H9giq/5Hp7mLOZ3gsafxJXwaWwfpEj42T6rhI2SYq88poPkGN6INLIRRNA5zTqCCzkoPD3DlGs4k/4xjl8Tplx1fYryvR4Vw6P2LSiVuOdGfORFguTZTIkiXzU4C9szJJ5Mh/HLF9oChuM6GdENHooqX8j2ObNH3pJheiTq6TNxA+8EY7XxEvrYrTdcdMYWutP1oDgPbHhFwDYMNHA/LkQTtyERmKFMdArREJspE2MtYKyWUEYRV0qsmYCK/zH3PrPoVORdZLSySro0wbL5+c7iVXBquRrMc2BfNidBcKRdOHP0Byv3QtKszRtjoRmm73ErM/yxdZnSanzdOG/dygn7Cls/HyMEnyhgdFxMNGjTPOVdKWV1/hFB0a/fdOTfK/74da5K3s4LVknX4MwlqkZmvUvGGDBIsJkYMC9G0/U2DKRrpSWo8gF9hqmwsptbaIGd5mDJLs37nFf2tbWBaC4oJBfwxGiPER4YfkP/ydfyPshFrxqIZOga1K0inGNu5avC3zKl9ieQQ5o+dx6+W+bx+n6R5MIovN5XOwhZ9M73/2HmhyFeISSk/3eolui+sBvDa/Yci+6XNaUZsmtn66Vj4/zsNIAx8PmZVIhD3WFMKz3C1aA13vmh7y68CLU3fYzlyhxxjAhzEVsjyXZ1rHdcV6ipuSlEQXDR+HNVZ2HmdoDp8qZo7wTHf4FCRq0jIp/c8lfAUfGbO4Taal8ijbRjg1QtsDj/nvvGnt2np8eua1g2hm5aByH+NS/n6EUkCwON89+2Jqqe4UoofWT8PGaNsxOORjx+OnCJGYMpoCVRnJS+goy8eWBX+3JbLrEUhAz+VYCBdevtaOI3wJ3uwn2QWZvh4T7JbR2pRfo0HqJyQOWZq+r/48J059vAQEpvz+Mq6WPIcTGO/KkTpCRL7aVum0ZYLlvm8ResbVkoBl5RaLaFhy5oKEtQTpCz6HXtUxU90wvMqC3xX9i1zfX4lwmPBKQFfH5RKxZ9wyz0LaqArM5aa730HyE8bGlhNKNRqQxZlJJ3S0U7IYYhWVMapt2fif8awqEVOsa6AasS6VmgzRGB0rzfbMHJipIUUv7v8AgPDPN/yMYUQgVuZ9yUjVKf8YmZcnvfQwRrVuwSWecU4GpJx3owLBnF8GQa8MMfVtUJTIj40cTasj5h5MS1KoqVqbjbjjQ3HNr0w2pUHtJgisfHJsVWon1eRMrW9b8AMAh+v6NKKNVBNhvPirAWU5nyVYX+O5YMfoH/b2zx5T2lVrxpYCYlfg/GO5KVUt943dkNif6K1q/TChiDFkSTIwJp52rTxsVcd3GEtUWT9zjmpNeuf9Ms+a72a/6d4Iuk74C/9vSPEdN7SfPZuuXA+o6184HoASX73OF6N3HJRFsME2kw4J9PeA40cwoYupwB95zucxfscMRWCTO14ObdIL8CEZBjGe4+CV6G04kt0kEO09/fMDOwQdhn0T2j444tQdYKo1Bh6mq+0WD2hHgiZMcA57j2pUwqwoKsQRh2MOBOzcmn55sIgkr66MJfPMaW7DmIPfdC+M5foTSpg/C6JTDMNU8G8YD7ULi4tgJUobFASjsI103PFbqMKO1ZOJUXcqQBN908ICUqSX5vMT8lOGq0vCZST9KOEEiIGEKAri9EjoKHlWp41l9p4/7BKAFpTYDrg1WfKUmkgASy6a2Pa8U8sri4KcyvhSu7xJ711DDI2XfWA0U9+MdGCozfQGgi1lQTtxoppSsRERtCJSyAP2+g0UaXdSm6kY25DxwNwA3MZ0mRgptgVZoXrYe7I3xtX6nAgBPa46iF7hLQjYcB46TaZRUv3Jh3sATuHre7IMcn2n1/gil+XT2HyVtu0vUydG2gGHEo+9997BYfTKOCCsP1OcsdbHIRcqLp6KEkcldKvew+Df45C7+CYA/g5F0nW47RxaYbvTlO7Fbay4wGV+c/Frn9o77BH5if5QD5gRSDKVUB0F/v8iKrslrCM6+yrT2VXfOmB4Ex9dpHuB2ow37QrE960hliU7T823dE0edVO5Btmb1qfNtVM+9reR4nzonjUDu0TEGphQE1AQiRsd0Y7QMIscRtYthkgsxosqCAtVoUSokk8sdCMQ+SKf4LqH3mPxuWIOMN2FSrXZU4+ETHV9bXuLWCC0jVQCXKQEIPJ0BbyNgVkhlxcTo+lkp53sAMVyltHjpszu9kUUtH4sCbUQUFwhtwoiI3KsrO9GafBwdVvQ+3dJMNpmu3iMUfBFtb7+VJkq/0FUrWFAlnt3lHQRmj/IYjCdSEZnOfWg4K85KfImyJ51SkkxjwJXzNFE1gxmr66EyzJJiDuMwYNyUkX6ztwpgFCLm6YhJe93PfubWBtI1y2GOUjWD9EAsyGChURMWD7kPRhadYaWmBSpNpjRd9VgslCfgB0rS7rf+sG27x9D2xDcDgx+hXqeZd8H/zF/VqN1rJImmqqHSaB92bvOWPDXDCBz0ibFqVIiiFFX4CNQL8UoA8aVemzEQwtQl9gZUMPedzZxfG6X01jomU+4Dxg4jirOXZzBx9nvgFWN65KNmB5825m5jgclL5fLAxT7se5T5tudmvTqlngaDyCosZbkhHmypT1CJ7ZUzgChYkwfAHclG7uGr9DERP/rGx3ZQeurXPREdRaxTmK28AT/Qr85OoH0CZlxPC8ViMHcTzmX7G5wKZT4NcMNrdZzY1T2kwHjs2b+wggbgMtRLMXh05lByIRAXPgvDuSzzATrJ59i4DfGpvxwE1qgoTGb9tH0zyX7BZuIJzzN3gXDZR3sJVwMkbKg89f2cdml9wyg9OHblE59tuTkTfLHlmTf8GCvZ+7eTZSRJxbPPxjlquemDL1svphHpQg5vSNAt9KstWsNyNmkkn1zBA4EP1KC0vZsG26aBNJ/O72ehZyi6i9DhMXgCiAGAsOZ1PrgbTFNZeV2gUpDRT6xUNHn1gpnEV+Vkf8RMGaJrQza8iUsBy4XUuFWJCCbp7dXBrePV6ZQ+JBrrf2wnXFJ+lzWvedNUkd1JqSf0eWj2hjoC9hv8IV9jodGiUKXC2z/TGThTjPfBn09wX3BhFDlkPNNrE6tbqmSgTAtJxlexHcQDXDZlyT9FS8zDeBoTuq2dgHwR9NvSb3BkGjWFPU0dXjDtiFfhtaXJYGIU7C61/XGmbx7pYrYPjX1lm6tptZTzz5GXnWfDN91gz1HKJWVkgt5QY0CF0RI+qy1/wxvsYnJ7gwROj+Ap0pPCNQXKKIqXTdcDkVB3zojLg0cPtoV2QbfBIkdfWpU+8cSNvPoUhvNLb2tM7HkS5+wJRJwhz7kYCzVVTeUBJSRoW4PprUgcGulXwafsx36thbPqkd9b02Pw+q3AXnevDozbz8Sizs1PYEudShkKAmzvPF0LCfS4XKnQXIKCJLY5DbjY9A/7lfx6RSiwQDSpYbWspxkYFLM/Pi3+7qUNomKwiecs+85x/TA2DwbOKCPjnfiEOw5gwqyot+ngWdC3H3S4/BbtQ69uUNVi81o/q0YEyqvxUDDwycz9HdtSr+HEdVE0OLHMgRIyX4IT6dbRpfS9kRnKOUZo6vztCcBm7/WEGVMrgZq4dlCtR0zoWgwn8oXBenq8wwCQpFgW6MryVGj7E71tdgyZSbLKOyJLnuWoXmK9Wp/1Ys9fgT23wAxHPEMNK5oiV5T2SsCbWufIm+CBT5FokdAs+QCCpdbEiellMbX/zvSu4EiO0+e32OOWpd3mOEKTE+R61b4d5FgJ48Hb/GGsnjJVZ5y9thnFc/I9mxQ283lkALouivEtwiL9CdvESSfHbkadIEhsbjaD+M1ybSzNRr8TNa6nCUnFvtW2y4D+2FF/763xJRYBXrBW3Y/BpSwPmhlFJTRESAypBJEPfWv2e6+b9wCwuoVzcpLA0vzNwaMB0oaT4ffk1dkoPD3ktp6OCb7gyS+WiKr7HSV4fdsTUjh7Mgt/USMWTiI1q5+uruIsIjjeH5NFyH7YDbYiGWHb4xN6sZeE+E9DojCqJKHBM9JdkkTMYifo4n6w54ZFlCqkt/jyqmz+r9dTpLyK5GE5p8IY9GaG89yCFv56c/kHhhEm8ITEICQCCB25Da8d3htx6pFnLRoOeXv3DqN8Z9V1UuKuDKOHq16TQ8Vaj+GtYCNGZAHQLsY5dUFY+0oxJec7vmGvhp5R++1Bp2LjcAchzZYIfI6nJKv+9dKhTlm96A6qddWwEumm+Db3I0ZbDPqsQjOQX3RWcziD9q+JSivL49wwJJRVGtsTrdw7eAXSZZ4fbDnHXZ8S5m3PJWAYb6tgYODtwRNEyCQp4+t7RIoKkbInCN48ViEtJG+ccJ1z45nFdmRncWP8KQ1O/eSofpGaUuV0VmZE3XvtPxxvb4bFQy69k4SSpuNoaj72Bmutm7u49gQ7yE30R7T2JAkwfTl2nCSY1WjO1ZFY2wbZthk1wzPnUqpO/BBqYEQe0sy627/dw6T+54YPcILjdOONRbyqc0i17lqGJ8/8dDxu8+Eojs0Yw+Q9frJdlcEfl4U/uH1F3hUGgY8y5yh2vxf+PHJX0pmvgy0SVyO8WN6QDxL8M+gvuGZpO+Ivv/aEuA975cpkSGc0A8gOnUQyz8VSu0k5fm4vAw229fnju2JDl+S2WWlOOjB0RkJJOI2qSs/eBgvYJXV1zww/N81SZ6eDv+4Yvzmj7yZCuX2OCJQPuxzisTBSSYBXqsX3Iwndjtu5T91yudVgzqnu5zndKi34ja24Kj0HI9TGXu+BDgt0UPN/sXjrrX2G2+ZvpW6y68pqzrg3fZAf+NaZ8wjh9yt/NzABHkR9FsyU3wxqHaoDUm9i3w3K3yBcxHJkuUHuj7qRmFy5OpVsexDMb1e45+8ZM/92glUmJLHl9P5erXkzkg1rkQhsBG2d/xCqA0t1QuVJjs80jTTY1rcwrpcX1N8Vh6xqnlIjhWYpW90MWpo6FbjkWRpwzAzm1zoszsPMti6Q5XvrTSbT8ao4wVOfwitBbBgiLu/K6u5+hmragqv2vKF0250P0DBT2NPFNn40QmFCYg3rVJNiPF6tVmAE6+rcYtwVtqofVSkhTubvyvmTHYYq70uPkkbYhNfTjqm2HtKicj3WBYYhSuge2a5oYmROo+SBHOhCitpukjHz0mSMGbUNHQCxwcLfk+763BhQYAJCQQptrmDFD/jv2HXj3qkH+J4rZ4atojiFrQBw2HoZJrJuW+/E8TMGsQyTopjyx9ez8whM7pPAYhFBhQmFgvb03PsZgtFp6xE3q+ez26TrAbHDe29DmW6QNxAIt2Thhf9
Variant 0
DifficultyLevel
655
Question
Pat, Mitch and Josh entered a long distance relay race as a team.
They divided the total distance into 20 equal sections.
Pat ran 209 of the total distance.
Mitch ran 203 more of the total distance than Josh.
What fraction of the total distance did Josh run?
Worked Solution
Total distance Mitch and Josh run = 1 − 209 = 2011
⇒ Mitch runs = 207
⇒ Josh runs = 204
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Pat, Mitch and Josh entered a long distance relay race as a team.
They divided the total distance into 20 equal sections.
Pat ran $\dfrac{9}{20}$ of the total distance.
Mitch ran $\dfrac{3}{20}$ more of the total distance than Josh.
What fraction of the total distance did Josh run?
|
workedSolution | Total distance Mitch and Josh run = 1 $-$ $\dfrac{9}{20}$ = $\dfrac{11}{20}$
$\rArr$ Mitch runs = $\dfrac{7}{20}$
$\rArr$ Josh runs = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19xKWAe4Ic/qQCLZLjWWXKO1QzQgQfVetUHmj4DaUQbgbx33J1fERQxn/PrvogJ9XqBfrg21QRb/wZ7B3HL72JsNKtxcxabbzdlbTdROa+YuyYk5rTWbFs0PU8pzEa/+6VmgpjJ3mIYOdx1M6NVoS05ySxeyCy9qQ6LEt3+PGtMz6pd4MKFi/hSG6lluc4y5xfAGdbFN/709Fn4yJmSzmw3nbQ+G4mAztQv9bQGanqjrato3dgzwGdvgMwqyYZHAEMQoSHFJnynMaO2tmlL8wlseueKGHV/LTpLqHkWFg/b8hva4NJji1U71N4+G+u1SdgHE2Quabc2Jc9LNROp8kG/wHhEq+PnPJLkLFUf+6kAjccMVRiZG9/Vdb9WsvO62zfDDoStknDDRru0jPllgQUdandrSCjvJN9S60Oa6euMIaAqXri1B1LPBRiPMgJFfhkHQJdzIA1G+teJ3IplM1beIthPO9tcIk+ZYAAosfvsyDVRueBAEAZ8HI1WippxNsmR5EwO1Ea9HRq2wEMxiC/Wmke6njdTVaP0PvcBsufuRxv9vnOCutCdT26Own+t/TQBUlqZVIlksA27+yFWNLdH5lPhGyb9V1WK+zDHzcLF7BTSw2UGcNOJAopvSLp2M3W1EKE9JLKtAz1dqXqU3rh1cXUdCnHkS6bZKuAXl9vJO8nSLlW9WZmY0lvpDtBD3p/g5mh7CXDCwgCNHku07q5/SOaQY9rNGZ1RXPKGZNFqUQLLD1ZMwfCI/ldhXuWoG5U5biK/kEYdO+TgmBshqu2WxN3MjVwjEQaoszhhh/fZdPJKgPGRTFYbfbE+k26YBEvoB0TKH4uPPZjOViy415ilSw65/8NC+3yMZUQ36cl895t7FbIJgArRa6xXm1aeFkcEJAADXGdq0lRos7L0902EQcFAKyaP4tDELUbzHLp0TPVBWMACnXuXcnI++lXepX/ta/3/139aI7cOApwc1Uhy2Dmd6sxQWXXEBmlXXkQeJz0aqd15s0POE0hIc9Np5huE3qM3Z4D304ehJNXxs/tt7EZulLrBNS8/0sb6nQb3RNCZtdAt5WIu7LzPdPzFye/Cvzk2a8gHBZ0QUTLMrEO035WALf8BGGfPuoM1+zat9brlqjNYhXk2VM9LCfdjE74X4gF1aU22lhyFVH8KNbPMhlOG6oPUzd1CLiLTIXR1zw5ZMeYErie33uyQstCDV8QEM6gwcY8s8REnRRaS8v2hDef7uT5DHS5Rz+cqccaYsVbBoxT4lJOIaFnuzUYcTEAbpy6ZyBDzu94Kd42lQzrsJzJPMcPBNwzCKuvQDxqr3pSn8iKdGgs5otI5jEf8FLFZ4A3aQ+Kx2WBtbvBfMDc163NnJYg7yjtEw0M8JrUquhsYBK2Jagkya1tw36FdDacTAbmRDyqNQRit9w/fZwY24vu9UZcDHR26ezjRAEr3RDIXrs2Hg2SVZ/TKzLPcM/lTuLWbOc+o86oEdljyG05S1P+mbW0f7YU4hoquGEH+QG7zz71ypuorXlBNyIyXahMppSYiCgqLboQb0pkQ0NpvUAXSPNlcrddIyTo0Ibj8e/kxRZ9xYkPzAwi5sOWAgCTL3ohjC4J+cv1tQHv/4CXqQAg/Thttg5WnVxzuwI0w+bQLEmJQv4jXaiWZkBOP3gZAARFCz4aEN2A5qTlTypBvWyATtxOqgwYCIYaHBoYj76LBzQ490wAeEnjDA0BfWUZBj60ldni2X7iQRXwmKMC4yFasy4aO5fAZ0Swzr86qTEdgcd/frRiShRkHtq9Med2RnwaAV8gL8IBKJ6gvEkbUo8ha0tOPHa7qrWOoae62A/Y2FlddMg4mf2h8WyJ5WvWY6YNE57jMhUSFSxaAL3obNC2VbKfVWZi0kN/iPhBBVgO7WIeMQl14uY1U/E/bEn3UyuivIT3blZmFoq5K8DvD42Saj4/oHOXcJKMNDdV+xV5ND6l53T1reuF6dP4mzi0G5OaqWB0APusPXPzZ1hD+KLWRX+B3jKplJ9AK2mnJczX/vbpOSF1nYJauVadNhOXTsWgxnnO2+zIe8EdJ/82s1H7OXroupeUJJUUwHfBSAttxKPDZbR6gMkFAAVwvhO2g439PYUCeVomGBQIXQZNyrVjNQAt+uEi24CmZ2v5ECj/NYlLYSfemDDeQ/FBpp7PDMtWggVvLBYE7A0T3o8bpB4ivEqxZuRqKpcs92XkEjB/coAOu2d9fv1uQnk9bo1WJl0rpTlge4X7xX2bw146SXvNnovpkDh1diifeCT8t11xHLznbVKaNmYRI1I6MR4hR/uYC6JSlZPelSsKVDZNcWNcqacLw0nEiANMnwtVuO89yCVCk6a1+jF02gPKbqosj2fznxcS/H+71byca89JpvldPQ05GTpVUG8pZbpOr1M4mSVVK2miwBg8kYA+GD3XVIB7xWuBY6Lm3M2UFjNLmKurDkJg8nhQkRrXHSsu8XsdKMr260CBBxk3WEAZJRYiXn4GDevxj6tdLQvGIj7KIi5L4rua2FN1aticXYxmhpRf+UYnrOBTKHQaDoqfFm6skb221oQgVz2UiwZgjzDOIn6P968u9u6OFrWvKs6w7Erod8IUck5+9fof5yKn0p3gng+kFANLGeRVteWP7k/wcerciaZQkaP86CR75dyuFd40Wqv5QktTiFyJZCw/Y99b2sy8m4nnKla2dKwX/fu5HiG5XBiBTvOOfUbamTaMYXsXrXW8V9avlbwJTSi/YnYHXkxqm4USYBiW8qfDLIanupYAvp/I8uRHvuEeZsxMTv42tg9bWhC9n+55UVLQQL9gmm4k03AwzEYi+vT59SRbcG4RcWJ+GpjpxfFP2GME3SmweMdsk8A01c6Gco58KKBl50SCWZVkQ7Rp0xIwCdXLKDpXegsYtLMmIS/vh8fhXHD/vzsQ4rIpwiZ6Et7fLhx7Z6gAM0pe94bH6SO2jYxP0Z7S97ERDbZu2Oy5hGpYL2an+57A1RTPZnFVOcbd4ieA/PD5sCsPWkxZDsfBNNcCnT8CvzwE79qoD31h1tsE+gJDVG31xA5JeQiMdZwIFzHs9LIyweaJirJD2ERvsqC+UcRcW073Qz9pkynJDRPbO8DcpmFEp+aSJPwhfBiuHpRCT7uvOge92Egh3ra8sSWsJRDRQNYMz+8gwtPzgaB5V0gqlnHOGNxmeToUj+USlbvvW1tCVWosK9QGF5uOEV5otVLdoypP+1+8fZ7PJUHehjf1W//Nu2WEPNG1fKzMTHI5jguyXGR+EOu50kLEGhWMYdTmNOS7DfTxnugof27GCrZQQY8TaxT+12R/3b+xdJNGcIkVRzfpgAmXDePjFAqdu7PE4K2sHwSecapA3GMDA/fjrSNCk7ef9eSwauzT0L/akWqqqVGNYQWuZ3oBm36LvmwEH+g93A2hIPFUQUJPur/VKiqXjGaO7ghbepf5pWDOAsyKdNwJ6FwEZ+Pc8vtQFQsUl+g78IeRgELoT2SLhRM6AXaccnyeVxSGv99WtCBk7cXEOvDLtJFl7xzAW860QbsR+2/aWvlcKw83X5Y6qb7X66jbjfk+Qu32aCxJpsAYwJqest4lnE2Z0WlcaGfoYCJNRwHFOydXpx3PIoMEE7o8V6sTAxEBF7J2ACyhM7FKXTX16/zrAEYyBXkaALG4nLPbzhyVTja/aa75cD2h3tmTaugidvyBJ05wcbP5TtTMOAqPd938Mk7vnpUCmDOt92v/POKGg9emFVNn7BJH1bSYMxNmC62XD7/BiqV8zY5+6l+MNNzcU872iY/cPPCbwbNS75OgoYwqj5epCunCmC4AhCDkhYgMw860TYLNUK8wSlzYrJJtoM6ZAWwlxMtHlBA8IMwz4o+0ls9EzxX8/Z3KUzcjEy1luTzyiScWuVS6wKVO6SdJ1t+Jo5OlQzuJzRQD7cgoz+TuhCRHqCvMI9eRpWfXdiiJyPVqpT0GJnVdl77ya+4LMd9IYwgcStgwgDPONdT84F3TnHq2TiPs6nFbC39ouX94kqtRhA/BuhVaAU75oVw+Kfjbeq90ShY1CsbqmH0PMQyp7qEKaKKrQLMl26Tkp06WCD0ty099FXbujy63EDo0KSA9pIz7eHzafh2KVfcpkp83dECLR1BeHsUomQpirvG+EdT+NFZA1wZusOxy3Knk4vBZdkGv7Umk2xEIL7mXIsiF9AsOn729JEpmT7xpH7VLlIzyWmOeaQS42yHvbWo5eWhpR6JDZplIIB1P/IKI7TKS/mX1Vxnot3d0MP7ZhUDih++sarNL9bON+i+CY8VazGFNiWKe3AIoaxftqPH83zxr41AG+7frESfC5Thvgpr4dtcamyiMLAR5FfqGydmeFqRk2R3XId1I4nOpgX8k9MkPL/dM1yUN+zANPRk9er7bfLGl0cDjO3HzK2qj9o5C3vUmN28juBxORyhlsr+7pwzO9EVZmxnMAq/haVwAvx8TijbhdP5HnLZPG4weODs0eJhTBrAecZu7s7kRVQxhLW/WONN8ugKPSslqbuqa+jFGTfc4F4yVBCRVEtsyqXtqXC7wqI1JafjZbjur4a9n8sdLOavl0D59CIvhS1LCNX1nPjBFWzw+uhyHgrXMEQ1Ssz4XhbRidtSU2lVtLQYV9jmV0zbi1iIuZts/5aAHDX2vDrpCfoVPh6p6Jd6fRMXAOrBk1rdDrbyG/ddV2mvSKIRoS+2kg4nCK1B8DSN1zeIFBkxq9APIqqWtCNMtbN7mzDES/4Lmmne4NuupzSojD4qvxpLkOGUEdFf/HlFqnwAs2yqL9kMx7dUW9NTMGXKLiuhWirB6hXiGh+/wiKsLiDwePUP2s7BSAK7+kecQPz0zt5SjRIqCFUCsmj+U1Ru8xijGM1pBKPjdOMUjCkf734Na54xr5uFmeFXPLyb86JLsNBQvnKkZuKpA/g/atydMkLOQ4d2raoWZ5HQs1eZgbuVooqPbbpwzVTQiUyjXfQwa4QceGnb572YPQtH+ZPr8ad/xCGs/HRPH3xmNNestN2264CIB4OaMsUhApnpB06Q8PYTFTTJegTYJLIhDYAbW9xGWuvod7iHQZs6+BLnenUH+NRlKmPKiCyahIgM/5IatO/1T8YbDFKxfY5v6u373KSQNe1T74S/39XAl9UT0Ef9RaWQhWsugSQOTBEPR1IcDE3GzS9EE/uiQ6Yx/jNjvsNyddCukok94/zYglBkynT+070ianCrxQOiggveGZFXXSP23h4elnD5P7dJYuqCc135uT/A7tVRkwmkwxXg+3CN3YeG05j9KgObWvPI/fAMJ0fCCqTW4i9yymfHDs94xD7ar9eTXXZbxswMgm6pGAajSYnKKRhMgh2YoNlgco6v5uoweMZLLY0IaVXEe+jaLPzQMCXg8mnaRTkbqlzRH4Vql1rB9vecRKlMhdiAC5nojeKcAQ6ahTvzQyiSRXHkYs3eOgDQvyHmzfvtDccAaAbUyY9552TcCRn6lo7+BUAK03b121hAjg17xwfgLB7UBuqV+brQ1bsBgYBMeyXosthret7nrxFuotapZ/Kzpc0bNpMZ5j9CAybiNknKHBX+IGx+DwPKD4eHsqR9jE6REohqj+hnh/PrrVhZwpj8zjKPeYcp5+OAibiOOump8fw5NanYC+dAFUACeq+zqSpTdiUYHnna+P8/nDJ5xzuUCzo6/u0lVp4m1wPy5/gKjGRcCmWhOBdklRQ4F9Y+j9FLFAVik+WwNooNstaaWyG9rAfV3dhQdzMk2/TDJk32t1OZQIg6kB1VnvqEATLO5669Etdgy+IsGwOC5NSGtTBpmTmlVEkVmjloFvoPNmdEsGI2jOH3ji/8As7xA3VEwJ0njDAViqLdCh9rTAPafh49vrClgb7fhKvU64KC+2PeU9x2O/ODSxW972MbpE77iIpf2QSbogMcEtHk0oF8IyOMNAxmOBlOVwG4VgHeqNYxYF2n4n2rEcDIDDpdAGgDcbmaqqU29DAqvjbG+nD3s+9V/TW2jbmJjdjzGxl7jsmu3/Z1R/0+gdqxAAJ7wmqTNJFLhF9f8AhMLiZJfHBsN66vSlV0B6LNzzpY6V3FanfanjNJwWseVU5Ax8yzAukKgPHxW3VlPAweVJTwN2wreLBfoNW6c6A3kfE/0xJz7WTCkbNgRq0asLCjeHmqezzkTJTHjwmjJdfnQT7Z+GjPiVPGRQs5/jZ/4n1qknNSTUwlwXbK/50Oqgu2xJm3ki/I6NUpUxtb9IrdjWbxNIiKamwyqEm17PC0TVbZsHgJhjyfUFOfR5fBzb6a29fjkFs4wyemwRENqFa4jp8a5hZkdXO9uouqR3vI0k0R7zUer0zc/kKswhScxxtZRuxjpKjFitw4ynC45vtxwk3y4+1TFbhh4E+l8kkvCB5wf3QoFOVHnFHwyQ2wh3s1MhF17JIy727HbKpIvLobo77LEPs9LgkAQxotJpWYbYacaQ8/h2Ex1tD6csVM62Oy824ZSqyfsGbl3CzHkj3G72ATx1VfqhM7gOIP3g0IqHMrZrlJTePOuxwiJsO93FTmfvY/LyhzgPyMK3a/iieXhEPV4RuVH87vU0zDtT98yB9IaPeqVheU3D3xdOHhhOSaNQYQT24P1W33paGpY6bkHuiPPE/3obPwl53Co7mZRZ/SRhdLJB+K/Unb8kB9pbIPMZw+e3Pq3iXO0HsDitULgYdvZZ4EyxSejo2zixeQRBhxOCHcu7xRWP3olEYR2iBYuHZ5lz+ArMJgcacmEYO6Lvhd65yD3JhBH7xQdThN9y81lSwWwE2P01qYZ1eV9tHrEFefaPGf9Xe+RW3rwcKH3qYOt5MnJdkh9uJR7DYMsdqWFBUgCiwm8F1imxg0SZ+EsfHH4LDwFpcYkRlGp4wU6yT8nja8wlxl0sdLNqn+oT6S4HGZVnXkErQ1cIhJ6ea221SzW/EK/q9hctQemxMuHgKw2PVpsftKg53JvsSjLpvgYtHxK5bNN1Mrsbm3X5veXCIRj9Gr07uIbGrwHLYdPQQhYfxUrpgpQ6Wv3Vi8un9q9k81mC3UUTmqmE/i+piCGYyo5dBKqZNeaqDvCf+UMGJacqKX5mSDDZK7qDJlfDzlEsbDOOSX76sf3yUcckPiRFN/XjnuFITPVsevWT4ZILT2eNmFQgBCiJ0MrF7Vo1/21PxXZqLZpsjYJcaMMyZSpMS4jC5ehsJVb7PLigSwwum+iWPfCV5yzlgqwXQmr5E/z0oRT3bNsLstFyRfMLczFIURWaxS/ixLM3fTn4Yo0pEzR0ujsssWmRiZdrS4DwV1sYZTaPIh55KmrZr0DtrFGktw6/rxDnmDeZVu5M6C9Bm9lUkIZiGeYWflyepcQXO0o6X804XOQombljbAExrnb1MMSYIBq8mrWPhDHnwC1C4CfFQiBBanFxlv8/xAY4tv1nJeXov32qG+FSksFM/5hKrVnGmyIKtsSLV00J1iTF6WECFnZfU2yLGU+2VbkHTD2voHWd66rqveu0oUNg6zNgw7ws2A+/VcNASTi/r/KOy96bmpFsrCQ0fOUaif121haesnb/3Wp5mQbZN7douNPP4uBUJX/cZsA0Ffcb7cC+XVB3QSE37/JJ11CsA36duUqckhbaV6PjFsU9hJC4kFswHV5DqX6UnRG8HZ3dM0qR++nwkTVkn+iENFXcRquOHwo8Yw+f41zu30yLDNyKhMIInag0hA1PXT6syaNEPaWLK5IaKc7gxHu7zxprIlrRXBbwh3AIAS+Zcdzxn3K0v857SJarWsn2hz1SaP9ttFc86m5RqgBYmVt4I8YWqDAk4MRiWHV37Pl8u8wlucjqIusYsodwmFvFluOO8PZAA5VjXFepq4PLvpNKpcE0WYKi8StDCsfWQI09rdLHPsFNGysr52+2AsZNzRE4wsuXFD7vL1QxRg0BDF1Dr4T869JuJHll924xh6pjwr+W8tM9M/G1TKKqNPP8eJxGAL3WF9EaJtHMID1GHSdeTaMkFJFqzGydWyfW9XWFdE6xZGupXaBXwmA9vkIBJ8S/TJXmZvItz7hWaE6rUI6q+09BroaLo/GJxI721YyKPybdSr3rRp/ZpC3CvlpGEdYzXvnc7pw/mlv5WBX4Wc6FIk8h3p/TGBQqQN36XksJXdYFiLQ7bc63lkieF85/ZtA9DH7+3blqceci2RlsPUBy/CdesKSWehS8ulg6AsVGMMzOf+7rEQ8dc1IL1CYXJ315hok5jf+QXVsl6TtxgFFbRattAIe2EmiHljXbeaKiiwFb/B5fzizKkBzlIs1/sFIcLnTLA0d75cbubU3Nk9ldv4uUFGqncEyYKcKtzJoWqgtuozcgoJtw1KaXN519SAUJy7TQYHcbIc1NkyJnvaTFjLqxZS86fP1PU8shYRsQKtilpWHYBKqxKDdb0xSCzuPhBbat5sDyRb6tOKvUqLl0GBi+P3Yc7tR65n0q5tSzX05OumWFROQPfct0N7Ujvx+6z/opLwNy5QoXHKOHfBYiVpaizBCUP/vkb0MJ3RSOVTunB/S4pPg4VcPmg+uFirtqLSefKLihKWI44uRsqCWlNcCZzls1ypAY4+cYiKT1tn1m6/IlLjFq63NFCn73JIaKOPr1LxMt5FETtZ5psNKr5rv1QLh0WW+YzS+VAWJDZ56Ks+lOVpRKuYxZ7LtCRkJ+l8qI5rv9zOIBtBW55rMH0lCcFIfyRftrc/DgAIZjxN5l6rG21ZTehUR1dqE5vKFy6qGfT3WVjEmGnuZuPEdD6OmY92d8jEfydvPtKFfnEVyzvWbU3dyBx73Ih+TMeMMZ8FHCTrJUhuEZc53pDxzfLYu1ACe3DzAY3P7Ye249YX4cX7bhsSBEZygy3A4T0JBxNa2yqI0/6ta3f2kBxQapsRPV5anEXskw/ArdqMQq6KFTLRIZIc1Zc59OtFVADkMy2zgS5pCqd9WWeWpQBD4o/BkXLGmB/NvOHltOdiooYjiTncwCsJ+AD+TETIMdCPS6Ic2HouLL1PvzbQWdxyKIhaY2/DnRDoP9NlZwHfWCGgovXtyG6R9g74vQHytWFd9wop03S6O83kdhf5cNAu3DVuBOr681N4tgw11WWjqtgbrednU6EN28KeuwtTj4ixjF9GQ6H0NZIHHLpIH+oK5/0Wb5JhjuU2LOCeFoZ63AfOU3m4C6hwpHCxd4tjwE1PGhZPZihBi5C60VFNoMqIy/faadSV1awHhdECD5sz9vwwXt08LkbPG9T6R5DBi+OhjjJT35K47SwdNYpuWir3GR3r8LIU1dqMQMAZWAGsUdQwLTbDHQP5nEnnOCiidEJNKIWaMei+f6GkEPICqQOiEtrbQV96Ov/cEiUOOFUOL5gjVQAvcDMRRBzc5bTQrHx8WxWruyFfdbl8VWf7FmXVGcJ2LUujjQx+fQiB/+yJQw2vTokQ2UgiOppkDq3NeSlI3EOYn9kAztlKzsp7acB3CTiGj38rxFH/9T5L4EMshKTCS7+yEGSve6VIg/4eAwxIxwqwUmNYcrNopnyaUXSIfhhOPk5bGq+dhL5ONnN8QVOfM694pJYSISb090mt1uHG572DSxZBG52jirIj3IwYzbsSmwyXwiUrsRaX/T5+Ri4i2b0CwT61nl5zuPMjTzSTJWRWQ0FxGbHTtPJU2w0cSpfA70uhl+JQ+0RxUVTvmpzs+SG8a7MK184NjwrozI0Yi0bAhJ20f4PZugzC/xzBQjUapHh3PPK6DrtMxQ3iW03bHUaDX+4u88NCP2ccquY1sT2dofmTsxAyxuUfH9fCTdHRpilDRLvvMQadefNg+Fp7tdY0AEY+3TXSs4yGwLfq6Dusfu0vEb0hWVO/OxHc2VLbNeTFF3hGudjWJzyvOZXzzFVtjp3TUmdSASHgU8JYsVjl1+BHiyyO0Ys9LRSeIDRQprVRh1hY/XEFO9Bxl+CBKCaTwpPPF/VNSHcGa/64Nrhvzz+7yTPz6dej5LDG0bQ2WDEza6LS1aWTvXgAQhDl8kidFXqxaQuvAbUwe4TaxBVmFq6LzqM/CNb2I2hjDnDfmL0+GQ5ohjYzBLJnu5+ljP1MFd7dA28CMDuMlOG5EE9PvOpNxeSYR+1L55QyNjKCy4PmED6TrMYtOA6cStGxjWQL3fMJyTrcJcThYQaNLgCp7E0+qZ3ksYmkcqNHwM06Rti/7/4gkrMVAIFnjvDEAqJli/kL4pY1TPiYxXMUbUpSXOhZI54vJU3aLHupd7ECIzK3PVlTiQxB67ySpMPwUoPjZj9tTQ/eS1kBbDY+0/z0uXWQONYnbX0sP7cuL8T1JfS+vdie9/heMit9towD/utwg3z4Mhm/Q3asu6MHu6RnNGdM5+zZa3azkacaMvl2G0g/30rvw5zcVpVoA+uy+2ZlwvhJZzh7LRXGa43BEsym7qwSvahwXnHTDV0DBzKBwCPI+0xaf0QqLL0h3wGXJJXiMJSwWu5QWq2Nfonorrsw4YMmyXuXKW1RPkizpmg0hkqkoMzrh+Lqg2+j4lbflHRPEdELWa/+cadVV1f0TcDH6opFfNNJwlEnMaEMzfdCdwo4vspvygUSSLZBnLDnWz0H9g5bvhpXgBtlxKZXEoK4nIYWXNSnXrFS9WOe2oimT3z2TZT+mbBqF6kmVKCT02MDBjRgebigxSYb/MH8Tbi9zTA0vvxPozRNiQQmKg2WYLOMPZ+QowUOB4MbyKMVMUCA4Cgo+cQ9+cbutOTlkvymcuMtJv0/QCBXPTXjqveqDlGxZ6kS27bd4ydlGghj9Vf2aa+Z+Ef923MllgpYwaONGLSxFsfBFCm6M6K9OOoWFApUaSWmab+2q90nmhxw+c6vdaNBHQ/VF88noEZFcVfpBysM9yRRMwff8+92s5z2wjjY7EfSQN73TeSvFv2GlY1xl5W5rEkrRHPYjaC7nKu7yinoh20OlPUAz8CaeJi92UvPpc/k6THbRuc7Ej9MrvBZ/Tv78V42LFJSdljY1lr1dxZFF4YQMlTjPqZGQAZFJ5qEG0zw1fIOXktND35YcdVhyOyhmhyBqkLY7Am0sLokt5STN69UXYWOwy3bxb41KpXiOgn37WejHW/wr0u2T3+XzeLyvUoqbr1qWQ3BqYr3HdC415mJ83wxX53nmXKKi/CgPNO69yDl+/lbQs4DA7a4LLb92qqR2rIitNMsh3mIdNMGVryRHewBJXAdIXp+bcSr+eGEpyyRBPmRhdv1Y4G0231eK6Z2lCzbrjT63RqRmLCG0n6wsiVkADSABKo/OwgWC32J+0B0sMJ7DAsizcu52P364HpVKWvdlJhO+TZzHY38hh8PjwBhRupxqjHDHBvJFGdB24AYtQ4JYgck7UU6Cytap/j62MIjXUNRmmvIz9Ngp46B7LETieV6aW+CcJJQMkydURzgMZ34AWMuXtybRyaC5Mse/0vDgSxN5HHIDtdxbZFI0/rtrVIKNAGJIl40FK7wY2/mL1Imts+sSi/aOuz/2bNj6Zqvo8O7uavXZhrsnYvbNdsVPHyB0qfkw7wkzf8O3QX6akDQ0CF1cT67JlBV3CNE8DYpyBlkh8od84Cx2Mjaj02NOxqbyy/uSoJZmAEPwWtAiP7HSMAVf7vZREyvk+cyvNwxq17EoWHNeICG1pVebSbBQOZFDyiFjDg+Kl5bvUL6uVN9QF/kAmAyvmLdFbKaI2uXEGXLbRnfiAmOvP09xnVESvJbXIw+CZsR07Tz+aCIW3sZTYt7shqy6AjJJcRRoddprOWx0WlJF8wsY6RGMoXdufmUO4OXRyoYzcwtUahK79yLsvOGeFwQzlecw0PBZSKiebrAcqvqlIHXQI0xmxUieI3h6KCdru00idGGJtH+kYZSNYLR+sHSuvYe34qqP4JcsTq8HPbgiHJSWk5JZ7IwN1yGEVkULfoOCNRWIHWn5WQhd8W2G8s9Qyjy0Rr9JRBroAN5KE8o/I64zwUczHWOCB/KydcQ2ikX6r2144yZrjtPFTGziYYWc8B8ZmIwpdF70jn6FAZa/nmm5QVGPMGh97Jm1M8rrhcuOuDb1p+IWIHPRzQdBi9EnDtsuLr572pc0OEUvME1SZOx7QbCAH0Fpdob8pOek7ku72dmWsdqkyvVpyHq9UHOLL9EBnQ0d7j8pxW1OJFxqXXzoECiBZuWe8YnsQqVIpj+5W7PYDnwcBTwcboVkSJQMlNb7aQ988iPcJK25icNnqnCMyZFvbQ+rEX5lBlDaYKmFbtsm+CkMBYbE2dAGk+r8rTwxa1aI1BAFMZyCGnzeEMKq42JZkh9m8Ojx6haGjDppQw6951SHp+zpIK/cjDgA97GDBBnVM+1D/Y9Fpjac91jrFjYEZ2W9+zuqmO5BjnMOCRQpnzy+C2O32+YZm4cmSag/8p2s9H4vIwvStJ1lxhfXxLqV02U17U/ADIFot3n2YXuxOtT0Kpr/sJGYCGtpmuYSKmsNWsGZDMQo6IQj2rsqOkKyhNLc5nh1Yv5LTytzOejv+ooe6gaKsnumGEy4s69DtLCObHCEV6KCtawkZ05L8OvwalsrZKoWHN1VfLP+89Sd60liSydPM/IBa1E7FBGTlwqFaFaAFGAuoI7KUrbsyEGZFfZuQXrRrhrr6RfK9l7n2agG18Dg0p2WmTwGWGEvyzr+CjMV7GxTEPWUrvT3bYl1pq3e/xuyvVhzPwdWjj7oxpmB9TKZDTEs1vYcibrzcd/ZcrqzaPv+VhtQPeZP9hwgfF3XmQlMHJT53AGtJQPKv1rmlFStlO7jIwEBc/mwQPiPbHVXw+lF/+Ite4Glu680DfgPdIK1CcTshV5GFfNzTv2cNJl3AS/WTGXdJbpJ11OUQAnnYj9l5DoEivrRZ8vmDw41fgcfaUXyeX2/pfCROxgwSSFAm1iArcVJ7QM8jOBt4Ian1dAIJxN8nq54WQaB2KSl+wNlCQKbvNqyn8DFDU+e2v+naeNXNHWFc7H6TVQ50AAfJu9aKKP68udg2o2lpXmJ1jYCIkRYqIZ34V08rjCKfluux0qUs39EOf3m5XpKauBTXvMq+krIGuUQni5TBx8HTDwofeVEtiZY5upzht4eLrFFcOugLj8/+e9wvVRB91slNclGXVh+dbLKVh5xat+8qRLUaqisZYLaHZ12iV4YYRz/QyJNmeURdah9NOgb/Qoer7Y6zWjdqvRwzX9LjzN267M5MNtINb9Os7GF3QuAQv5C6yMjHvr+j0s4n32BnyOH/+s/eDUPbQPA5rwdEBziKRaW2xSaONsfWEDpjtQtLSd2A58lDwbyC4h5VfegQldyo7wQYx1zeuB1eCyu30uwokXsg72w3aXHAywogGOgpl2nCqKFgrBao3FwgLFWItUk8uvKGb+59IgdXpUQIhTW7B4mCPpSDcEpU6/lwLPb5a7uaUHBzDDlKixbpaA7onalwjjbYg/0+7NkPG1eSKOjRWT7YoXZ+WcN7yYclgujMuf9ViB5S1PnSVXhPoBDAoFneXhgwqB2HXE7dp/PapQvsPazGttolaUCPsCx3Zpg+4s/sr0ImQr3t9kGDaSmBqCGk+Zeh1e/W1LqUihlcUSWOB9502HghG9NLeX9trDTOmUfmRhWl/2b+Huh99DFEZJCbrzF9F8sJS82Zsh7VjW4AWsvPpAkQbzTnpbZl4OY4i7V1B8MyO8zhTG+VsWKBjAyuIzWlzAbk9ckPyDQkC/vg7wDRA5Mf6FmuF73YHrbgl7UToav2Ek4WqCwTDm/2qp9dI9pmwLzeBeUUaN4HNR0uOCZYSUcCFIOeE+RztxHGbuPh5YHRlpz4EaEjGiT7FwPLMpTJ0eVoIZzkeIQDWu6k+yzLYZkFBtqjwpFqlNHQUwVo+XArxHixGw1LAJNl57b/Mz11eMgWhjzIi3K1S/5v5ZwcA57X13fNLFk9HUNt9ooytXLsZwJ+CINONXCdnDBUmzlcGtcF5G6tHyFTd1RW4NabL/MyZ+6+CDq2Dlb6zScsUvJy7oqt9fau6Ne58bZ5kQbQZpXfNxqEqVSRRLBUIyTcc+aNla/9zp0chAfaqUuRX2874aaQUQxXw0WfwtI2QE8V3Qsax0b5Brjf3/zYaAORi77vWiimTRuf20aHqRbaI9V1i1bPbIvkLXdn2qjlXEzkSCY8bGPGsqF+TiLRqGllgQ5eWfGYkIDCHwlwplCkgVNjrrBYuj22kza2Lo9C0k0TzMet8KtYOjtZ4yUroMF4L1TcRZIheYPaYWCgsb5hFlkQoYYUCxa24CKliZF1IVBPOzBcGvsK03em9526g1yVdDyqbN2mhyJarRuykGIuQR05YTdYIUw35bVP/A111sm/ISWLN6dxcIbXCvcqRPUyfbe5iK1hjvcv3grZdcVDcRHHRgS9LgcbgJD75JmRUWw9HoX+7OMWhNOmJNZKNYAlsMKzTs0AMoF9tA3s6UyBKQMLKpzzwFhEs5m6PdVC8IvFL1+hBttEubgh64GCZA5a49eNy0JBxxcckMz9wTJKQXOdk92Jf3VQ0ovtZInkYHPG4Mzg/R8uriz3PBBRqdNlTqihjwNUDMEHg8yynhoL4769dxaZ6pV5fohqO+LoHgCKLAYQZQeyOzScnqn8OT2+bXU7/Tb/w6sJ+N/tbtGKZZ+GwcuggTd3g+GyNLRMB1VIRhO9fvSzPrlZ7z00foP3yeDqu+YdN7I3LJ1KUcViVp15NiGYYQvPd4PlKMmX26wEJE9z1qS+JMx+oWJcRyebNKaYpzDkVCtUCEChLazSrlUGhOihWBPQGt9lcnM3sUgmKQFnjCHQL+Wxo7lvOPgcX0B7ynLg+s3Eau3cVK06x1pw+Z8znOKnv0K4FQYcip7MHz4FcDcuvsU/ybBnFqLKPkKizRLR5TziL8JX7c7BRSjPNjm33AX0nZedIxYtxJ73eLSzfi0Gan41IBsdbk6uvwa84wwmsyrd//aWwuBRnGo/RiKDtDRahYu6ZncJfby1umd71Cb0M58/sbk9oKbae8aHsbROjDtNDjni1ondYqeb/eNO1g2icAAOfPwypuXNSfhc4w5V/yEm9QimHL8mdCSkkLkdrPL7eXlup4XbmIa1yFr0XKRny4LMD2hxK89gY5+MHh/LPz9um0wPwTCk7Q53L74DEpJ4nioFWm2Rpv4t+bMfIXWZxMqjl81GsCUhoIKZMuFk4225p0CXm9bOwwY+xbtrLNg79Hk+90/Am5N/35GtUy2QMhZDisRpX6eZt/ecJ1qNEw9QGkRqn26FIx8G3djlbYyGzCHzNKLLaWBerCrT8xdI8OjEHeHZkHxp0Ti+y6LYIV7the3WsB+92DPRjmVaqlyjkYphHeBE32Lf1uYSH9BRr6hCcmu0eufslXC4u5bXQcLmJgutfa5z5WTDD2W9Pea0ACgC2ZsIvdvZZC00vNeu7OWCG2A93M5QeSYgRxLpYWzW79F4zvtZfNRse37oWjMc42VugPR1jN79hsENj3LA+HqhU8/hQqwJX1GsDfbcMWzg5wsHzz//9yayq0ZRDjQvItlgy35W1TWQXPei9ia5DuB34RyK/7gA/RF8/PKjpQtwb2FFhvgYbNRggMpUXilrq5Ttg7j/UTIx9VgkpkcoDkd5wK5jLNJK+7MpL2hoL0QG5Sq8GY+yZvRNkp09MfWOQ7ZwcRrN6v3XuFT7H8j19jFmrzCjOVbnd2nYBZESlKaUOHjy4IVxv63wxfiAP6rFVbdJAYaPcV53lRLQ1K4e8x/ashRXUQKpqE3OmVhGEJBhmzKfZvpDY0fAul3KC7GXLdRtSeksPtMFdhVIhnCzbvItLasrF3r4MQisqVPGUBcvJlqIjdSkMb8ZNGD3Z9fNwKlZ9VyYn9mBb+ukI466+tOHT15S8B/y23yuEHgdft+6t+WGm+LPmBhfMoyCqDSeT1WdNcV3gqw/Ge0iNPe/U9//e1dZv9u+wHTExLW6CnCM6eP4L5niu406AaBoadUoDTX0Cp+mx9TXx2oH5bkMT95rbjlL2RxCIuRKV2w+fXjOV1/IM+omuUxUL55Z8xeSheWHcgMBwkWF1VuyM0NyPVo1RkNeYQOEx8RJldpJM1UAKUamawSikjdL7/pvNlmbdhIKXg2HzqKBn7yqAWIlNInRvTYdQsCHl2V8oUD6uFIMK/mnrHhLeB/5GlL7Y8q940cPY+/Pr+K5Mx+m9TWtZghNCiwmAstcLp/QH1WevvIDD1YQd8lqPvd2tUy7c1+M2AUXFzlGsCQ+uyFu0uIdTXfppNFaOxs19jlugR5k1WF8n5+gnhE5aoTqBG6gk4iW0f9kNEBK5ecqrQ5WDJgqq2ex446G4YQfo1oYy47QAw1d0y+PLzL5iLzkenM5yM6FdIyFCCx+iSTXPDbJP86KMnjCIa91sheMQ8cMR0VbshL5uD7SBy+5vmz35uv+LcxL5Oq1IZqiPamjMCVXna+k0SYKsK6R3xy4esYbe33suWor8G4ee2SN7ZoQa8bu8m3ydP87bEI8XL4TZg4UPpE6wfB8XmJiByiXmDanV2N7Elbmisx7NBApSJCSb3s5nyQ+RPl91+ElzgM391TMGztBvZ9PiDKYT+HeZgXdhdRW7H2rdajS8bTYBVIn5mSoIgAYYVRXaB95W9a5tfq/DqVUi5hJYzESMtRP8wJI4kbmeThWm51eLTbqGuEPsxmXDyJTpt2ygS0r5pohooY8T9KloNXAn+Nq2euOWwAMTA62ERJWf83AaS7d6pn4fi+nPsIaSZxF2Sv6QLAqwTvkc7LCQrrVAXlHkUyCbfAj1jEIN6wPefikdmDHtzx1Tb/bRInHtc5pzAvxAnLG4sKHwGTyhyPZV3Ayy3aS+Pnm142p15zJXAvf8M3j9AVdqOjCforI3ukngRmrjfksHyoHWSgNOM1XQgda6KNOWAuK9dLVl/I6eP5UUNl8IUrDLL3fAr4ezOf7vDI8S442ZUDiRYayKOurqcZ4rs4QeJWIpiVJzwaWmdFrIkxp+kDBaf/0qOuZHGmrH84JFjCDeJ251UfitBzzHMmVnwjabMlLxT6HUfkNX8XoDAldUjfGcmo2ys4ATW9GmSjWQ1PqmuTdgEPAexg4ibgOnf8HR4IMIETolBWcIKmQW8HB+ewXO8Id9SWKD+Q1/0Nqnt64qU6SjWw8BLwaRe9YGr6L+eItZEcB2yVfMJHeuXMcuDS0dkbFIdYiq1aI1tFxKB4Ftd5a7K+8xh/xrIcUuPW1fXCluLrzWLSpv9OHKxnUW0QaGjql7fdm9/TLA6xYcFA3KPqRg3SXV8QTmMogezVIqGmcE4OtU1wALuqxJacoXPDby+cS6MHHv0/eYkuPmAW5TzWho7n0vlJv02yL1aRCpJ+oqZ3foKPKR2dQd6jf6lB6akjl7cexOxNgPCYa2y1NNPYhV/uGtdgHn57BoIPAuRgaySRQMINmWNNe6SPP549sYxXpLIty4Gp+M2GXpo0uxX1cM9JcegSQRJxpk1aKTjZBNqOxThWdQ5e1D5Lae0dqVib5kUh9yIoyj3BUSnDShPYCctN6mJzhoP9ns2LQymewrnYlakhXju6qAmPd5ZG7a+qf8e3oS3U6bqY4ls62Z2KVg03FwTDF6HfQS7jNw9gMnGODbyAcoZrrRFsixtajVeqPrh7ChWNmpZLaVBnC+lZFXavgooAh9nkfpAfYlbD+BBiAHiNwZ7OoWwjgawuOtyKxNZGfXLlTMJvfqDzoCxSyImLcaU/KTdC6KANMlB4jUNaf1+BHk71vBiIad2bF1FupuIq7V3WGcyk6r2rYPOyACkBcMifkENcK5SuOT62m56wmDLq406KCQA+IdAHgClcS7h3HPLQ2fCeFFngQjU2CgoNk7soSMjRWQiyCJh16iaiz8vVS43j8Gq71d2oxsE7t4XKYd+fRZSZrLGHDQJcFOvi+0hiwxbFqRyHI8xZk+uwTf5bCksoeOhmZ3SUjp0li7b4Fdl1fW+UlN8ztncrQnCBQdo5j0uZTLVw83ET04+Vmc/odTyR3+a3YtVXE7Ghyp3glp+0B9cRCS/zAgBfljNSF2IoyO0rWeLRgIvqP5wCNrYYrBxvROYFhqjEWv9U0+6O03YZY7zmL1Zc6LEjbg5Sh0pDprvwJ8gmmjpn7CeoQT3Dzqvbny+tTBzZx+7Uz6aut1WgSLrcj1D4XYBjFVWKVCFhSlDEM6DbeROZ9mHSiy3fX2xHXA8MF3PvT1Eed02llNmtymo4/As36A267oJw8h2+0pJI/H8KdeqpIGk5bpqW1MEXAx5yuHzH71DqxesOOo+3AAkq7jh5ajcfRBzJ763rvpfKwUyYfcU3sc1hTHdXoYknB2K79aUYGsW59y2GCK2uMBGdNO28MqnooijrrkyLa5FiqXWQoB+fhKnxwtCQ18vy/b4U68rdzRhQhHJd2+x1EnpHQNwNe7GpCEvGzErkJhMjpb9sd/YpdIgmIqpTBD3CNJuxWN1TMFMPJ8xdqdcmjs1Tgz9Q6YEJgrZlWHTzsjjzBFjshxmM4s1+t7x2io0KNpjSkkh1YPfLODXSkYGyHBkhvMu4hLOaNToaawMZHM9gKu9vkRovNJ9x8+K/yjPnkMagzMEY5Gfjd5vOg8clmfo79BVAeTRuUiXTJN4PXhrHZD+uG8AwOl6VEw1lZKqedeNWB0+5l0W6jQIDjPZAJVOviTOqcHEsvnPA8wv54zMU/IIYMCMdw4nY8cCUd/+Ryj6Vh681Jb1jXl1lc1VycLsInmQp70Ae9J+G15Ix/gwTP0MxRBpGReA0P1DM1pg1qO8xmTL5Bi3alBorYoovNuu0IBwQJGhNfjGLCAT/vq+Ln3l/uYfogIQxwZ7MhGr6XZMAVhtN9peWTvAUBmehXMBYNdtXXu+Ok3DBInIBDPQDLeFFW944wOszldObfKx2iSuLrVLDabCm/DZGVAeN5Z0g4d4H7VzQialBsIJi7FSo1vm86ZA9Q9POChQ7HoqhrQKj0ZiLLckhsvhd4uyk1bU/U1eq+s6QOrUiTVAOMLq18gRWorTOHjmA3ArdgEzGpaIbwGjXk82dqhuXUX7zAZgaGrzgL/mtrJkgr6aJNO4HVEFohJ8JDjQlyc8uv6YNlTFep8pzw23IZAEGH2PogBr5Cz6/pEDJCzLtBxoIoKJ8mp25k+v2ShmsMPYQEpBbmCuPh9fidJB1akTb3DcOXDJU/7FY6+XVAnFBs55nQiHOfqqQl/2D0ye+DpUizjjJJgANb9c3DrRbhnMzBfimE8xrxp0zZHf1aoSS437UHhGfaTIxapcG7t8ZNOB5RM34MB8hrybCtivnlTEz3UIWp2gASLpagr6ejLF0Hemr3opItLTnZ+4Nnf4+Sb7uJ2noQGoQP+BB6lAhKbCCRVRP0Ocq1pXyNA7xLX6U7wsJDBnoBm/eX6mJyd+Gk79wGKSnPPG1U/M8V1ufviaXfY0ZOmWpGa3x2K5uS6/AiB9YjG7OIV52xjlXkwB7XmsDWk5nRO8Sl2l8JVNTv5n0a7O0uepJWDicYXZtOhsAv71EjQb1UK6P9o2FjXfz76b28oVgxMW2Pwt64A76jAJLn500FD4vSFNusV5gKO5/KqWLimIMaP8w20UMl/WLmD/SeaAi7/ml6EbhUD2Iqq6EOdAzSyHWjRy0EGChnVVcYYrR7ZT9IqaypcxlfulVffgJLOV9Vw9Q6a3E/kUCd6KZMy+OFChcCULO9lLzdRqhsYaioY0IBszjLcMqDsYBi+TR4da6B+OSQMGHK9kWibo/AGn/2Qg4ngon0jYeOTBe7glky3CF/K/2+rBJWppYcfT1VeNktyAT7kEMDB8haQFkhY7R6MzzgERtGQgBRKkkIQcYMC/3twAxYmwpWHfBeSwBDJ9PKXJ3DxJRuxE9GbDh+IjZeVrsA927QJBtu8rCY5JegZMi5VamgZrZo/kgtofWhkht2NsHQWRrb7b6unhtNtS7NBnP6hEi8tm/ISjOdygMUvIzD4ZibYsB5rj7Y6jMIEbDke5AyjzP/PsQi0a/lgyqELolRKdCVA+gwAVOosT5Wz8y0Jwb76L/NEvqqSy7I9lpiaikeIyvV5f5kSGIwLqsrCZeLi5XKgQg6MK3lQ/U6QL4DqfanhYcYz2ZH9Ku1f3CC/luKi/z3ahVA9pjqJYOm95AR/BHG8ALJIOo20CsrnXK0aHE6mMI7LFyfNJuesAR7vzkynH8a44Xx2lOdC8ZWnMablWX3d0xJXjkWBGZXrj+uxzQh853KRvnD+ejd7IsuIm86B/CIUCgYni4pvGwDZvb/J77icnl79rDfW4TMuuazsqT8csKRy5WzPyrbC9MLbgM+u/Mup0dOPd3d4KRODC2reV/OhAmgGc9/acAeP9XbssTbZjtglelAXAUQZ8SUTzsnuxmvzHuNx754yFbbzl2PerxIudT1fjEKXbWQle8EYzsd59Z7eFr2Z/roeaDXwZKSTU12JTSb3I74vvR0go7XmaM5gLTvvHdBTd1rqMKsrnMf/ErhJ3jNPQKKgFALtxekllQ/dPjBtu859Wc3WiF0dsZW5YZ6GUbUv2OW8Xx7oMBTBEl3yj8YqOlFXjVbOZ00DzuPOUImP+PORxn/w34PNsWXLpABHukgStv8Bdz/8mtbbqcs1ccDj2ZMWAZvdNN0i1yJcP5sOHJS7tUmmRvkSbbih8tKQaJdKfyUz4RmI6hIsodbGWSy3+Vo9uLBuL/l1YCuH4XhvzmQeBwjTDLn3gn8L6uT6MMVXWPNC+30mxIh+KO2rFWjSoPsVK6U7oG6XDAAWdiVN8bGoe8m4U5Vd/QibQHzVMUW+CIUggA/RB7SxNMW9UPUS32rS0D2HSH6iZ6uWko3Vib/MjI7r/7gaV12NQ8NSxqaMg9uP/bAMgFCOQOoEy4uhOStd2+h/iZGnzzjOGy47spkU1VBf1nSaLXo5PydG04J7F0nqlbGE/EizIMxnJLUePtIip08/XRUbnvXwh82u+aGIIjXevYsxXwXG419dE1DLUtd72/GCVRuYADvQhVRhwoGM969fYMJsOElc20CLJrOrfiKfDDRg5+FR+33r1BrxCMm5yCCzVaHx+wU9Ss0ofx3t0lwuJPO7Dyxxf1NcxQ/Q15UNZckdOFuDjBlWGhuG03A3PPSloa9Q7OeTZmenyGl93nOWqeK1DlEDm03kvh/SG6FFqVrr6MEFi7VNe1CgzPcjPWh3j5GDKsIKh1zQmzlrQLTI/b6OPYibkmLawxGXKWUqn7wSAYJ+M642/XlF7B66GcTRa/NDMZSNBdukPgJvnwMqjPzC8vbP+bQoQZotLG3c1txO4LWxYYqNF9cRcUbsECyu2TECiaW5PsK48mS7uB/6RsrL28gnHmcNbJviIXlZSikCMLvR905Jr8LjMzfXzBa+9H1R+PlVh2yTL1RtupFG+Sf+KUFV46G1sEgmDKmp3mA7wQzlSJzf9JVkHbmRZSROcBZP6L69C5BYy8sxKrnH1J9ZcxHYCgPoaUWwWV2/hZwIqPsHitTTu4czGP9+xHOW6uMyI3lJpM5qhSBe1IMRPbt8z1KpcpwD0lqp5bOFU8rje9Gx7j6ozqRmCHvXesVSK7uhUU52NZLWh1hDC7rAl9DLks03gO1E5Zsh+5w73p7ev8HCk+VEHMbOlhynfRato0BIOXMmWN/0s9vBCYzqB0p3DGli2L4AgLkQPf2g6wXFsz3b3xtmlDJQ6d7LFiTHl/fDqKevfYNOwjo2JWvjqJ8nHwmZHF+Bsd6mClKDwUQ9dDpdErKiC746Xa7NY/iPMRhPaO1CoFuXAvuvFQeWDiaNsmNxbuwPpLo/Ci9J3VrXP8y+MrSCQ1CcxTyZshyVwl0zKzvo2FmMRUjmGo1aKYPERSRn8vXHky/euDp7+TJa6w32XBKA3ljLd1ixIvBFOqo/YDeRdrXF6prbqpebZZh3fOUQ6h7V696PsEh2NTQ1thbfEKmZP4wKuvy27HvHWU5rRuzdce9BCNeVXkThUDRcE8+SX6w5rHmgskQLf3cacts/rR/XYjLvrJQUgWOLEFMo+CMSc0rfeqmz2yYGd1aAD5MknMr4k6EL2PJqAet/d0SMwNXCMUj1B1+eh8UnP3EE7YAjWU/riYwaSW+JcFt1wwGo9ae36g7h197t/wiji4sn0NWO0ZsU9Lj9rphUTlPQO4UI1mH3rgKwosrSofPAEMMzlM17O20RkheV3s5ztGKBrpF2enhUUPcjH3j36nbwQPY2aGX+GlVgmk/nxoGRszEQmXa9yimLd3Xg8OVvYfC5cZl0cfR++3YHMqx1pDm+HdZloLlRZb2rg8e37iBsO/PPugJoi+fJB6+Y+/ywetjeAODTZ5lhm5A71nWj/mJth0=
Variant 1
DifficultyLevel
653
Question
Jenny, Karen and Leanne entered a long distance walk for charity as a team.
They divided the total distance into 30 equal sections.
Jenny walked 3013 of the total distance.
Karen walked 307 more of the total distance than Leanne.
What fraction of the total distance did Leanne walk?
Worked Solution
Total distance Karen and Leanne walk = 1 − 3013 = 3017
⇒ Karen walks = 3012
⇒ Leanne walks = 305
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jenny, Karen and Leanne entered a long distance walk for charity as a team.
They divided the total distance into 30 equal sections.
Jenny walked $\dfrac{13}{30}$ of the total distance.
Karen walked $\dfrac{7}{30}$ more of the total distance than Leanne.
What fraction of the total distance did Leanne walk?
|
workedSolution | Total distance Karen and Leanne walk = 1 $-$ $\dfrac{13}{30}$ = $\dfrac{17}{30}$
$\rArr$ Karen walks = $\dfrac{12}{30}$
$\rArr$ Leanne walks = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19Xh5q/3xeWXgdarSUiu1URRZYFlQf01JieAWPWTwxXM/zOhfxRteGjofhzfPdtF2sciksYjlzoUwZ0NEteKAub907k/lQIGt1150sNGbSmyQIdMKHxkoWXD4rBPTM0s9iGzUqhWoa++jmphgoaoKD4ajrCqlHFwPxFtjjvkoy8KNjg2WmzugKIG5pWibMF/jG716dDPF97pSnupqo4ta3tjWPTQzhTO5MLzMWpuanc6NR6qMDc5MswsMAoGUFfoKzgjk8fMJU1q0dwx7g3Y0+M6jIAxAw3BZ2OB8GZmfGVof5T1XzBcvLAXVvQwSoTvYcgF09svXp/RIqlqXWYb9eutncoqO4aOn9taCCNNLZdHZ5nxAtlJHswaLBNk44nVTFv3gwqG+CHox+jIaYHE2p4HSk5oiZQRTKhtYXdzXysDFZr0tDDRYqc9oAjD3lt9ViAb/lAFgBDcMMTeUVnQcQ1RrlQMWS4aB2IPJVFN/HUfmotdLVzrBSRkFCwkY9IC0Ng+QLUntfKMhj2RYhi0fZ+6xwD9BNQLqA9rVYiWVDtZ9+JBeiCRkiMblPlOaJqaIWW+PCOIQjEKV/Xb7eTGuDdW92Cl0M7wjnGCM/RsPW59jHWFSlm9ActPTQp7IAcwWjj3YwwOO+YeDJcY6fhs2TYXxOD0GMXk/v5ACPU4P5t1uxqfOtSDKGz2K/ZkZgYKhZ9kRQyVBTJXFKSckXMdPgsdKdoCrBdMfcz3dJDXMWZcX8gudC5lXFeIKY+ABHLFcBV17W+tB5UZqumqzoT6I44vZbogOFsz5W5X8NXMBm0BIS/vDr6v4vf7u6iCd1kaHWta9mtZSQa6xOLiP5XphR0x4i1w8BO0zUj7u0IS7vvQ0O4YWCIysyKciwVOXRcpDbGIQqzceI+QUwjWz5g97zfc2reva90EyDUzVp63rAmMhBhTy2e1PS458N6I9WLXZvsxEug6eWTiwOj5t5i0D3UMWOiE7GmW1nlTkSTRZuF9ryfklFKYKmrkb387EgcZil7PaOH4mOvsf6fPmUiRA7Ogz7IfCNSw5RRs+R2kEl7QTzEAAz2FXdV/CRuEmWYj4Rld2Sucq8qeWKD8aOZql8pedXZ/ukSY7OnoV8b4V3vIqNuyZLNDERT5iSRHysT6gj+Y9jIftrhXlPNnndaHMqQhZHOjOgsrl2o+irTPSc9zvqoRlwh48iCxKD+lMvcSE6YV7vJYm0PxusmDEc3UG2oHPLoFzucTooWSqKbHnd9wp/kTcvL87uVyIVlSX0WfArEo6P+ikfS9QzX17CFnsErsD7tW60N0bM8evE2K5aCPuEkqVfHjHihvXgmyMuScfFPygDRbY3CJlv1dnGzwmUn5cLqy4KsxaI3QmNC1oKDlKFB+5/K4ykPg5TrXoVQTPvaAtzTn7eqjUbD9PhVuWhb5PwD1rs0Z0kmCZC7TtPkJbxqQ3uaz7apCxPqZRe1zfU2JkkLox5teOpqtWjEho7P312ft3xMKs+FWevCMREvo3zBHc6BcRvy1T/kPCPFjG091IurgKgt/lXDBPIB2NceukeKknfnK7pUI5L+URdWCNQOtVruziEQ8WRf3fOWPRQx/jHO86rHzHSkHNtz/cSNKh0y9Syy8eEFrZTrCE0caNt3FogAMeSKYBeCeaFDLD4oNGiNKrbhZRN3C4P2cbTP+3LHcdF91/jMKTFQyvKFD5OAJqIVdU1WeApmd8erhSluDLHD+Mno89CZDpGMp9BVnDZ1Eo1kCu60bCvg/tHEeszzp+PPXsyVvxHPfrQH5pBQMtpNU0VpfLsV73zkhCIPvIc4eyIKR/mXNNAv/cCm6N2meKM38Ek6/60kI7tDoQ1+5PaYT1q4ataSEaZd+qCFJ8z8xy9KXN0aKuOYVT6rJT6m+u9vWdQNUKDS+SAgKxGRCUCBSQw8bxtETpxRBcpQtCug9ZvIN3SjP/dQkjQaOEJCY5288m/Y9FjJKUHJluoVdnYt0HxTALuJEg5zhTaWjEWOSMR78wwKR/kFTXD+hNM5z6gUYdqm5j/UoN5qE+ztq5/7pWpLy36qGB8hAiUpI9op1+C1mUOffB+kmi40m8bV2xfgAp2YIsaGv9JIFH4h9iTUAZRQIf11+G3srP4i/UqB4/t0wonv2J6S82zQIQC8KS7FpJppfs+R1PekLcSdYvMHMcc0KZdV/sT0S54M6ISLkROsFpReVVNWSPURgEAZTVqjSYQ8vLfgKti1kdZCOGRG3tfDeG6omOlJ+l0QtlrSboDxG2LiBn0zRypBrLPDpjx6tt3F4kCQ9Q62mDS6msdO9UMpsPAatHiCMo3isSIDHU7pVpSJ6NggudH2gEnjlzy5vvW2+XVKsbGr4J0aU3NcUZbfOtdNPYhAjP5kpg92EE6Ic00lCB85ENaC4Y2LS74Xbhhnbl5WP4x4ar13g2/yLD10Dqg8tfvOqRFlT+I6pt2pHrVCeD1iJJoHLdWyoR8Ozw/9//vgDrl1eZGkMzj0Sxz8Pl80scOn01EydELdR0/ZbuWxv4/PIY5UWAnaw33zXj7tnUbQ004uDJ8im9HPELY7HT1UwPlJYhP+And+eR3Ihhqtl2HaO24tsJxkBcb88THzQl6Kb5sqPdO+UD6WMyqZ4tGDbLVu2PRaFhXIT2OjTi8Q5vYM+NjGvjCEX2wkK6LGj3nUV8YFAwzNfZ95Jpt1XCCeiudiRR8WBZjFMgoJeRqmLo3l6trgSEsv1GtPfX0AL6L8iJQIpstTLPdLO2o+fd3b/9mg5gqtfIFilOp1IfI+5hbWn37+6L5qUmZ4htqVhJ38iFx4cY2ntfPJOcZ9EnJLwJ3OqxFX6PiIjQg6EtR3xW/io4hqAb0QmZokbllhXnYoL6wv4UOtI7G23bowvzJWt78mMpxQnkUJPlzQHhpZX4Q7vJ4x5nV64b1poWTQDHdl3zt+E9G2o/c7BvdYkxFs2p0Mgn9R/UGL1q1Lj5xYXzU/9Ncrx8CKYw0VpVcIRedYX706x9Z/B5aET7OLGwL4Pwc0dukGmQar6PhBuY0vReqfdk2hrW/vWw93BRl0nc3hUG2JOAbHVEUXPweP7bL44uNisWHZOaOlmAzHfat536KHtBrs7Vg4W5da2tsDTWEk/bhwDMRx4yHAdkVJrkelSnNv1rXfk3c4cm0bUII2/OcwQgNzWgayEviGpiOezvoNdagdLj+RLC+XqyJgGhZjLzAfvdes5Bs3Awko6Bcrg87DSfcWAKIVyYDCp33YdDxUKaF+bO25dQvCb91a5mVUI9LGjQpILr1TV8n5NiWex5E/di9HXGW30/udiohaqRGz1BLt/JLUDobnGxrE1wzHprpZtmEnvnrsv9eMB04WHdMrpEUIbbNhYVg5LymiPKmFWy7CD4/qWu4XPSuCfJ/q5Ercd2zEjwMXLgL5C0o8/Pox9mS/KHQfcQr5wu66A6Ykbr2zEUXuAZbOBrsnGT6u9dLZvSgnEddlX3erP97T45kZjZ5W50ulmhO1p2qb8ulCuxweqjpWzrEv7B4pblP8VW76ElOKphjQw+X7pt6OWfXqL9auUEJxt3MauNaaKgeM1jxa+HFkwQz9/Zf7xnumxUIZL1onfV4vRRCbV2gnWPYUgampY6Vq2gWfD3Muk6ktmtr5TjY9JbJJijyb2UshEsKGZeKV4CjHpBsEkDHQBYclhoiZmPwgnAYfHTKeJi5dvUWTdjNs/Bm8Sg6/u/F6/3Bkc3CEd1Sq9o5JugWdCj5VPCu+XyRAQu5J1ZCSNsoofTxmR7a84duN+qfKDN8rEgC4b+Yox5rxchgx/94pos61aVu2L/9Tvl/qe7xejN3Cq742wyZeCCYBgWK09caIHflWuG1q8dL2MEg3d6E1UINVHXD7zDdpXTq2XvyfjgmNL6cgkV/EKbCNRoxlQDqS0nbAXTioYx657/uheCVWxjqiK3dwtmSIocOharU+a/qf3D9qwo6DKledrb3+DaozfsmdIC6znr6gTnLjBONAsQpI6DNtMkev4NppvQB4ZM0jSEapzPbEGwHyKPpVtWuwDMJV7KYopZCO9cX83SYHrzRCsndeueo4svQW+j7EhPFcfTNUCz6VR6yZkwjJc2/vRYuLKpxbr42E8DlyilQkwkU7gyx/fdr1h1+bMZyXqojXwW2Hp4xHlD53PbpcAkNfEUsuogT0dSKAI/uhLg6zxNDK5SfkU6EV0BatAUvz4Ycw8LAjFLaODY5Saa4Rk7LRe/vbL5dtAiX7AjGOoh/UzKLnskUMQkcnIE9u/QBvaZICBResx5h7hxFMR9M85HDXNYx13qT61VB8bv6fIcFubwKUX+0u1MjPIjpPixiVW6YoFn8iCmJIvLaC5Q8dfglLCqLelQq43V+kyDLlmKOYbpNtfKGHD3Wgy8HMzD5hjdSOFhcaITs0ZHeZhYV98wriK8Uyce/ebnjVvP2ChU7kFQ7H0ijLelGOutGPZnkEKtWerIxU5YFQgiuIfIDXxaiqEW1LAAwMZdMF/32hHmbI9G9tCRl/DwXZUIuOOpeUC5Ts+K2j5+9uImw7oNHfI/ljqx/kWDS0SaglSL3qunN2BDQKrxo9Qp95YuPADWUO3st/tP9WNiAt+bHvxHhROp1mBt+RsraV53XroXyX+VErg4tbhPF6tWVDXmwlH/tlz1ZP3aA4QPlWkS2KoHl8xSOBPEOrckORwKeGETzD01p73Ng8Dgk7AFfcxLarsGdDEVX6CUb4+hYnzTGDQyC2Env1I1MaK8dfdDx5hTwmJGTtWKY6A5g30TncrEjeijTdgnzOToEV64rIs1WuF6jQj/yFhOSghadddkOPoOyHzfWyi9Q/kBYKyodlqfGkvbI3jGJtzWohfXZqqKy/AFembtboTE3AuB1nnc2pUJiK/hkN/gKx8IbLj+Hydr+a+a5TZrZ2MsuE92nll4vCqKbvsR3O0o5sp2k95brFe9VVJKpl9p9u71P+Q7S8ZBqc6oGfrrKS/MAMhG+SQshFqj7nfRS+8g1I3dgmqKHX2RYCvOtMbB2lEy0dpnzjDUYLPOODDQr22bTChq1QEmLN2nC5WxEohJ4aTnhu7r40NmKnXq0fFrUHZZwzIKZfvzWhs52RoJOMqi4N+RQwZWEqVLjCCJiR9t7YG7COE/4WgdQ7JnZ+93kGT3eolKjU94jOzFcnXBt3Uf58oo7xUdy8Uv+sKJNJsf52kcSwknKvp0LH8WPylJwAiUED8BB/qIxYHjIetfza8mNGHOvZ4Grb5wX/xI+Euvpjtw1h4sDr8r6O8t2gnMkgphcO4cX2xvLEUo6RXn18IjNySsST04AX+voONTBTF5WbR7hjng7z0SJpTt5OY1PpUBuWduadchdED/w6FKs/p9bvTfV8T85WS3dGfc3hc2KrSG+IGIL0GmWen74qm0hHgRdGJvsVgEnbP9ONBwdsCzoBLDGa9M/JNTNh0iALu5k6jmXASCWQCI+uFl92au+tjnh1ocHpSuwRqFgZtRphc2bhMQ7P6mo+vWUAZVIr9nFoy5BrCi0yUqdJCFS2e2QWbrBPClpvWSg0FYaJoo4qPe3BdeysCYujVPcA/PnLTnaFaavSPXeBYTtHmA8AYfe3Wy0+rUpFwUjKPKZDSIFAmCrlY8/Vf0wr83hqI1l9B+kCbWi2k2jkH70M3qmy8zzk4fWHIa2iLZ6k73lfJ+QaRfkTWhtj1EQqc+/DG81ayLFKMtxlzQWOXn3fcJvj1u7PAjrXm1WWftzjE+VZTrG4QXY7fMZquMIVJ9OBlhzbOQ4/1kENLWTIIu4LhxCcFtVjOtZWvL2mRLpH1Wyoaps7So52NR+6tNuG3FgByaUZbrPo8VObeJ8M/zvvPZ8Ii7JbPpEr5iPHI3TNBRxHcnNCPetPuqolcTt+6DVtoWg69W2j1z9FsDs06TgU5oe3nXq80rVLfeVIa8Vcior6d8/SlB1i6VNbyC8RMpCgHkV2KgDpvFRU3rSUsBOisL3EE50gcBi7YAkmXyECf/VSdKVx8Bv6yYPwG76J4d2HYEoZreK5ReQHF2j2mcmc8fSlFuMedqo9nW/epH1dK6samBb0c1d8E2v7Pwqv2fDxmLsZxnAsS4eZpaeMOSsyxFEW99+Arh+kFSAuQlms/8DKvA/RPPDSeN5UT4jCUI2onwEeW3h+87h7BPMuXM/2ASceqKhLw5DibFLkuZqWZUdXJcdECSCe24qMzGAAGb51XuKmfIryQE0Xz375DFB+WwsFuZaf8WWQqz+wEOgCG8V9ruLM3l87CICalwMk27vHUqybtkQUUi6UuGqbDvRuidD5mKVNOHfB9JhuNuuC3PVN0hYkzxrAUzf4ASYrXvRzNLUB9nZIwhEQcWIsjERHWKoE5ahBv4PAca18G5j4adtLZq6Kn6sQZlAp52UTkxKNDcMK0EkSZgZSGdg/g7npXev3sCV3ZSk8IhPfpTJ2dppPYq8rqcnIHezqPCsCLHZjDTQtXXiYjC2QzNP+0ozCLphU04K6pccSbqPDleDnbFG/7gkbU3zViqPzQ5b40IxP9/2nf6Ghj/lrqVu0+6G7sfHE8YX/Y7YmQnMb9olIOIhVvZF4kTswkP/absUhtXBWf9vzFtOYjLetFJK4FWh5Pc5TV7pwi50Xvk0o7bmLXza3ZX6hmT2IAVBBWPSXHRFmPEY617HmU07Uw1Sphwz/nPn7pPIFNNYeYk/VNoTCgUWgU9Fj94CUtW8HalUjaWSHAb+niH2Pz2Ur3gMfzgAHpDXSMd5DDnvpSDSmHV+fU+npb57rL6lTtyj669sFQud+Roxhg3myEmeCP9Z/VJgns+DrtsXeSltOxdP7jv2iQ5l7q6Sq2Z8faaSfjgFI70wL7KZdH30eMBkLD42KcG1sq6fjBvdWYa3O5A6Xjo1DpxfU/ODQYgXfWKf7aP+tvTrlk6Ff6Vlu1OJ5WtHqjjwjID/BAOgqVaWK0wIG1BUKSh3x7JP7s9cLeIk/Am3jzWZeQAC02s5X5vfjUsr4Wafn7mucrtF6O5on36E7zxyPvxPFK+CCnl/Yfmy1wcvBbi7ZQuFcMolTW5O9SjphO2r+FaC5U6HUAtVW2xiHvIoiHp4o6md2Qz5VRllnXiDrO5BX3VSFVGRV6kHA9pYP6kT9mecEJLMWqLaUK3JWu8831YgqLutrrq+6juKibX0SaS7XlckLm6oQyFj1xGZeWrVoA2di/UIIDPhAI7fHSc5iWgWyNF9KXxUcKfrZqyzWTPJLK++0QnJ2l3EPgMed14DVsNsB4owDe5ByG2/67YmbH1VgVkGhCQmMl7UQseUj3HfT3Lf8LqCvcnwVPjoEYny9FbHsL5BcVuhJAwTFGZyXKN3JTtSwv0G+dbukVEzDxumu0V9H98EB106unYcQP7QyRO6EGv7HRE+f/Gvc57QchOzRNfHhPbl0ZtiWKRCHP057k9gnre7uj7zt8fy7dKEFmAz2b84gTfdjGg6p+OMNEzLBLm8yWoCH/d9HT7Jp1U43f699017cwh5ryVANIc5TBJeLqWavaCVnKde0aO95GZhFUHJSvPC/GHkjgkri8QRC4dla+aWtFsTfhAuJdri0nvUMar5MTNEmkifUHUHxKIM9FomAhuEjvvLcxbuZCqohpElgPBlF+u/aiEcr0KuksvRS2EqA9WSZtZIcQ+WSX/A0tzGNGqx0iY8xvZlXlx/5ZJHDDKZ+xmC543IJ7iFxkl5Gi9lawAkOlWa0f2VHf1b84k+7SH1636Gv0ZMoovyJuxVdL8jCBxkNEqXLskLV3RsRY2v8c8rsmake8mIOv2BatKhtL1N6F65HXmAyo3W9NtHMZrplyj2aXZqz3oJbEjxwZrAUvdl74jiwJWcFM6Om2WJ9qL0r+p0P079RPx/QJQQs7FoDSoKM35h9G2A2WvGavd+Hko9Vlpc3Auw4q5mLh9QVxHgD2PoTFEHShSnLUWV2qJOApZ1bckZD+VN6ATisB49vjSgE4OgYziPNgWcSv17QX35qwrlul3UL8/N8ABCWG+3+ksUDsfeNRz5A/hdXx0fpE2gDQMFzFTF+cS9i3OCw2UH89voVCYZYiXG6Z/ktrjVGx17iFJzyQ55PNo0zy1omrUZKtvar7k2wPzPX8NPeGjlDto4lScd+XsgOVmKI8zkQDVDRWXenCXkaXzVq2WcPAV7Ofek7ugi71DsFtvwPF441l29nbEDBWBXnTj4H/LCZLOQiPdWbhLsbYhPBIggbfmzA/jTNiS1Z9L0jIVjom3HSjm39DqNLqrmGgyr8ylZicZJyFOWkYJ/AXSbJebsS49tepxU7VPc7wNGCvfs6pCOmXiHLF7CWZ9lkmItF1YXnBL82ZzKLkwtkNGPMkW057akBw3tIM6M6Go9Yb2FU2bysj+u+yZZeRWlAlHo8Jm+oTJmzx7fR2L7Hb7Hfnk64fqXfrBQ0CMjzCLRRDrUvPJ5eETBtsDl6lxUarwA5HyfL1/xICf1vIDZCLGnpLBMLQpHwC0cpK5MXOcK8b+fRkYI69QEep4zw7yB4tRnjKtBlU0bxvdzONNBPqe/IVuiMyAGqxMT5fp5Eem4nb3yBSgZD2WDxfUsvORIDc2vbr3ALojUEy2uqh8gx5MBEXlAKweVr5TOFXP7DcnNXQEyG7AFnzD7pYXkwXh7ktVS7TcMHE0Aa4w6lHBWZsqAbqFIOzIPIC4TUNcHodElf0+OhLYUn3DeVNJayMoDKeovQiJUSZbG1DS1X/IrK7WpkMIv4KmArp20NnFhET638o+Llj/WudhV7inpZKEPcblQR3yktJQwewtnGM/c5Eq0W2wgB+SYmj98ddGivOYsJNXo13wXLyVQKFHl3XTZWZiTrT8m3w8Aq4/a4uaaivupgf00TmXFKo1iWi+1xsCjNEFfMfJwwI9v5w4LwOPxWxYOOMk/aZ1ll0ij1Qm5yelrC6BJcJ7Pz5YCLOsKinlF0CE+Oz1q9D+Fig/7VzZWgeiHVByPzOdVTmyYSDypYXWDq1x9nRyl77JlTk4y7TMzUF/PmMvMr58bdZphay6H8TGSCcpMGAB7y+zOfssXFVZy2UfLNxzufMIxCHCCVIIPlXJER86GpojhHFtfW6kOBWQsEOZ+UsGDgWXY3pBTzaiMBUUShL/fsWjf15Ulo3SnGo5+M6zqYIdy1Sn9cLEyiM+IRMD28rFn/d8vWP0t4IRRjv8YwarW0yXNMTLs777kIyN07GIUL921wx1BIobULHMAhjnb1HonSILdSpDFTUFX/DbRIuJ3KKBpt7lNOEa0YOXGYwEYxKp0GqaGnXvZpjjBKfZRwa0xrYmLTf0ZE0CHRiFw5g0Vgsvd0n4ZbYY60FkmFCBjRSODKKOIyBcosoeJl37RoZ95m1EjyWCgji9SV+kDNnZmGXIqJoXyV5Acfj60wXjBZM07CTa91Q/F3OC3VxxQKCFz3TxSD+rgRas0qpQKXNSPuzlAy7OcFzzE7fTCfHdht2w7qBGb92CallZxVVpWWWs4ZkiXtub4iZis6rhbdc5O/Utz5fPx41X6B+QnYu35XEW0N/m+Ar0Z5w9Bdi1/wsxE0Dg4sRou9qiQ31flgf1TWXsvP+mL5wQxE/KrGBuPkW87/Ms6OcJjuaiZM4MtYZpiMlPLvx/9AFB87Stkg18XmHoV4XWaIuOa1/Xt6KnsF9wead6jsEYdsP99AuXnycYPDrrigYDiZECtyrKRp+jzswtW9LruSo7zT3KX2RURDgpMRmyj2+acrn1J8R7t6R159RJSNBR3/nWZ9iwVy8NdrG1tDGMunxNXjQq8sEFO5hKT7HFOtorpIzJ+MqoeyCoJZMGIYBkoWGHQ4j0M3MOu3sYmpIAozdCcl8pkbJBgxPB1AiDhM5RjnlryBahLfAl999Xe24QQtYzUpanbboAp18bs/8799jMFoVB+iPy5Dobpnkg4XRUZCnba2bMe9uM458OzeAlye8KfNvmM1cQI10NvtKsNfUB6RuQdik/ITobkZRv4zy8ZalhKSyUp8XE0LLRRPlc7yS4ro6++TlpTgaBbdGthqdRy+jrUJEng3m3De/+dX85KE3pWbuIVZ/ummfTpwndpEqB2Vl3Z+JvG+KwmZhncASDUuEwJ8Vv4/9Q2QH4rYxFqzxCKYeAgu7xsRv+Gr7l8535QiJASQhyzLwKkgunTuNrvIKgX/MPEzK5ZWTA81TmZB/XACYKeBRS953rELS/FfHZASz1eMOEbYSF8vN7wZyxRUi1QHDA0Y4UfWd7Wngy8h+yYohyJEHPfLkaHRj4xARvTBuJuz3K9brJCdVCUmUPhD5+K/1BduzV5UqmiSCDYGZIRGD7atjHJHoJUj9T4EPlhjWPZJYOrJJqg0CFxXRfVFFDtYV2O85yGsmHWnmyGIdeadiNeTyAGU5nz1E8z1FxI9Qglk60iqRNb7QmUTv4MEYqSY4F1P/0s4wVo6Tlny8VmScebLq5c2c3vxQ8utqkBYN/9guo5YvrPkXEb24jUN2KRGDg6QQ9skYyF0go6EUEwptQ93n1S2osbYTahnvLmYWPeK/wpmcUGuMwGb/gAab/BA9qzXRLNtukB0gd+PCZ8/lfNjt/OaA/ayJAC7I49k9oJPAm3PAx9ab4Jjj3RIrknulq7UHetHsv4tJQxb4E8slMIpzPtuxiTiPcSZZWYpJ50wP3hzyNSwRBfgjMuHqtEvvRAIc7oJ1CchTHvZ2PCOiLyucAwGcJr3lHcXK6pYFnSpyydEgh5f2Iuhm/s6FsrZYM+dfPRN/I8WudlaQ6+pDz4t4sZKZazXqGSipYEmQ78KUi2EXTj1T+Z6wlVUMDhlXEIaRpxIG08ph12TiVRYC45sCd8mXnE2ZaExV5msdGskvoHgD6ZjgoyQbfDJm7IyMkITsJxN/UXItMLk6Vs3DtD3raCHOJVS1ZdosMcb8GFzcwn1Es5t7yeIJkEkAhtJq/NO9EuMljuS/j1LlbRPHTJt5VnHXiFPoGDV4MwukkGK1Le2pbfxzqAMmL/bG4jbZHBgDT94JmXHtmo5GC4aHESp2TBaaTxWfypuZWppaChTbBtMIwb0LRCPUGj58WImT/S/LlcZ3v/qlUIsmX83Zd5IOyv77GnB4gum7uZfKwxPhzL7NeHReDgEMtdfHCmyRA1X3pD1CjCEluHzOx4VqdpMgL/DGJvoI4iUHV4aesZ0o83H5tNjtvSymDdC4WL2ohaFhe5xRneYjZRwSocoycpWXthjQ85g0qDTjkT0/bgGqr5DHFXgH8XFyDkU7YLQ/oI5SdJ/7S3Xi8zqn0go2zCJWlZY2U/todXq4g7m4O5cHC10QC7qhWHr+FKfujyCGpN17UVlgek/9nolwz8yIJBQ7/YDlGV89ermfeZ4tdLfOgKwLQN8mgL1XFQPluBZ9dzLrNf1vC6UgHHJlz6qNJ+uqk5FiQoc/pin6vj8Afn1v3s3wXxPybKfyIBdcb6eLNinyC7Cmn4GdNvq+CZJ6Svh+pShP9x4ue/964dXAtcc1mh05/xWSsApWjbqF6UCcFPJCjrxdIuh4rSysJSHFc8KurQ3mx2JYKfFzXuKmI4v6WGuO5Rjp0sEqM6bKw4FOZxi5gV68q9qjuRfwMeDCR9f7PcFQgBCDao7R16FKMvqpoS5wUk5rP5uQWnjchO8LN2PnmSzML5JhcreEufcEZ5w46euin8h10UpLr/RfBvfqsJKPFEn2ApaddOsntaQvB4qnUJ49Xj0EbgDMpyubfDsUYqLfCM/bBXAjKS5K3o2rZj6p0MGnwLLuhEj2KJPZGScAUcg7E2Jlg1HVtRFJOycqR7TcMhVIHNOAumWhIqdLta/yU0xQjP0q+iYh6TZPqv1r77q8vZiaN162Il4RFMIR/oFzBS8Nt3a+eauxyizkpEJMuqdlmaestPX6TBwVcZMmsgpOhsG95zQkZ60Ccmbq1T/DHW/fU0KUySHuFFulKtzTkV6pL8o/Oliq6yD/z45UrkQ0UwPySprTGSByqoEUTCgeQhQEq0CxPkK7yepc4YbXHILlFIP3v6WIsjYT9wf3TLdcaYOLnDzaMq8bhDT4EEmulSFef0CYC51sY54+aIs2Y0gaoY9ULg07g/JiRyOlGcA/gHDBiuSuzbHIeXYyBV1aFR/zUu0wdBYztDYM9e0PdocDzOiqda4DpCJmkTSHrlEKU3a+De3+k+o+1+XlkIOxnW34YcqrYvykAgOuAf9E8LHaGLbgOPsDv05MM3jbLlgtxaOltJlAXDu+v2llvJWFwuYnv79n9UFAatcHEYZl6PsjehQVKtGv7oOM+1A308ZN+3nflOVSH54G7nwLX1X0fThHlkxeM0B1/B1jDJKw4L5IP/lawUoD/pInWtR4VCjp2OARHXRdIsCdQSl1ng1yEmvwwz7hTrfu7FgutPgb4+6Yb1QQGmv4y/fJIKt3C80q1r4bgnzPJwXNdE3u3Ge+E1gi937YME5DLKEPbH7dWK6NVX1nGeZWI0RuK1xvlfUf4Ht17ZORyJ81mPvYSsGqM2EGHLlyK/4N+oQhg/kbKTZGwp/GRzL37hoHZnvWLUVvpj/rL4UAV0BdDgjFQizMpZaw22OjOhUrbj3WV19Y5xIMrc/uzQeoRlw8MSz6OzynIDzBBgIssZw3Xf0deizBedELPjsWiBeAVpPJR/0QMw78SuEEOVzZNEDsFiINDQ7qpbk3efprzFz6SUjwadpgY0mxCnN55ftw7sHcJnD6VrAL1FtbwVJjsanVa6SeLpqdaEQUm9gGx/MO0B+qVRSNJP/FeaOJHhtZACDoywSXjOVgcJ37Pk5/OD+g1DImm8GBV+SFlgks4TUuXZxN/1fu6LIs3HKxThPme8f5z/BmVv3zcujWYitdwVKkD51kGU/IkeDzKORV3T/YPVc47aEsDkOeLlzqW5fJdf2hcE9ClFRF4kzcDwrzE+OkkvRNXU5a1Z9KGws/DavcOG6nFLIaOPYKqW53JJZMBg/ZHBfRR1rrfE6vOECU7Zm4+Jx98g0NkLPPc+n3WEVYL8mLKG/ebrAkAXYTWN2vMpA6MevsGlJaEYiRV0VEDh3MM5rlir2vaLBb5lGWiLwVWRn/HFJqYm+BGyjkWkqpGBLnR1ka+uZQsNEbAfu/V1fgAxGEYQ+LwGIEHeYpz4eC+ZPe1r0z8xq3oEiRaPaHZ2/wDN6dkfffUOt5/gMe7S8HCYOBz03NBKtdd63zB7ODhRZMNUGUpPvMUWhJCvwd6kKi8yw8IvT9HhVrwNkaso6kbcRcS+FKhLwBdYmu+8gihQQceuljQa4Gk60qw6cpO5/87XmBjyNFDUP68NQE1fgz0nuAdBdEzGo0Fp5iRw0/WMmIM6rCCxqIQnUl5bdEMZHmYFlQCfE//8juOUzvimvdt+dJtkcSmqED55PiTtCoknF+FvJDba7wDc8GnH/DACtRRDXGEGutokgqcbWC454IIXo0JxM5LzGM8u3uBFzVECADAK61vIU8yqpxLHQAOXGOcFwBIEyvpe20Nmbtjf8JdnMc4XuNqUvqQrLRCtbGDIuw05QggkMGadakvEit6Dr/dONQDBmjUcyAq3sn+qOUuwhKhGSoVx/6fTBDaN5m283Xtvq7JN3uY4HjMB+FrrqCaA79PFCudod6YSdptPzRxVZ54qnRMrp7NsTQoVOl6s4E242+8d21vpB9YCjyF73lEfymdffS4Feg0hgo882x4VoYQv9IJvay/WJf3XmLWcO2QzH6J5xM61f7Q5HcR00+yPQXu8Up30RM+waFtXDPUGKv0f4jWErbbT3FnCgq7uujSo9FikT8nFYEx8TqgsfMmMzJUpUwux+aiuX7pDJVTxs9mYbi5eyd3efEEWsVagort/Zr22L3zkoQ4E1ZH63dHaawaMKTIeOTI1mDKG5f3A4gWmCMaeFh1MGsU8BvNcPHGaMGrZLxCrTVp2hE9gXDQcEpBhaP57kl15aG0FnWTJELi4ne6JybuxIrhw5d5Sxv33/sIz/hGDC1eW6AhOGGeMRmGNrZ2BtfO5L2DVBo4N4CzMHfQvlbcPf7kc85j0Oork6Vv2QRzwJUBQaaSmSYBPCyuZ4PsIDtM4fEpCmFj9Sq6YSRsdxqMPwkXZaPQ0XXCGcatk8jY5r6ZYGZypphSqRXlqQ2ypYVS+PHytsdi3ENhEYcliiXElk3hWJiD8mjvw8Ftwe5tyjEe8MnDaGmr/nbLoGHrVtJHKb9QR0CWDWgHw1uQVw6RH4tNTK/HAZapASxuZ3VkxtnJnfCbXJlKrPAGSEOZ/0aQe1CdXjX0b8giFYsTWT2F+RLLaikPT3RvQVO2sL6UxjstdveWU6wobazhhtA1TrlP6AkgnbhUHtMsOilXSXLAbydau9YYMz2gUxduMO5TFPYHvcImZFX/BrWARseGIm22936aNKkLlhK7dnw5kGjesFZVMyd3i0ovwYmvRrff1Cf0L0Gf/OBvfNol6yg0fBKng12Qhd6xuGSX24/sMb3RW1uvAwwROieHQ52DyA6OL8pB9EVF/ov3TSdeQ8lUGtASiGFWDSskVoi2MtKFwknT1HoFJDFHKjPyGKUtHjM2J1QovYQ6d2AaCpkiuMym6KMIJlQHy0gQW7Ut+H2Lxv8rjarO72y/1yruLtZKfxMjTnKOK6AC/7S9WzjKXfZaRPLte9e85qxDTA8ZlePFw+OBnfIzUJ02MSpz2VRBY63D5ripz2GyIZk/V+absTzV486XhRP+v32tEv83dPcT6fsDmIPEdKP0PJRrI6N+5kQgUYuHP7QJQU+WixjRplVh3NDmNQVH83/h7JLi00A3+GQhPSsYhRduRVe1V/5g7Yqf9kujb/rtrzP7UWMHKjgJoDJCjmn0kU6MZE14iQnk9xBGDJXMbFa5z8QxFtcGOVbikAcrCgv6eqG1y0jbgSjDKjxhwnLbXgOtONlGs8UKq6B/ZUzPGZuGI8RNPi8+r215M7rxY45YmvUP+cLPIzygCP9vjqw2uoNFfqXTpF5/1jojtvEXTt1IekPDkwuXyyNrGDsQKCp5YOp6aDaXnfscf3fI92lq14uwaM7F1KiPZ9+/+fFHs7iYWGd1K/Ae7C+fcMjqLQgZDNAHZVptzbTz4IWvslUJgufoW4O5fMnpNHrno0G8INI+GEpddJ+DlXMh1ego1h+5dKEW2u24SpJm0MwXz1x1HPpNzSem+zlGJZ3mCSHonIbMION00xvmiF9U3THt2skWre/sTpSaUElatk92SwqMtn/i7C3OkcVd/+Vla8oEWuIy00Nfzw8eN8LDtLl0lYq1cj6eMNze0nJPdCHJRK1k4ypYGd1tJWDiSxMEh5dPgj7GfV2XAlkBjoChrJgTJlC5NtSDFt6RCTPC71wfoEi7hy8yPUru5+FKP0SQxlS6mfIRU0pxEBlJRzjjCxOmmPDKiug14Dp3Fs1IaY/LF83scamE3klk3bfC5H0reU/by+Xwi7z9H5jWpgD80q2ph66s9uY2AHjdi/VFk9bdkBlwHoMrF4xPTIXgoexYBw9sSlKeuGHukrgMYsdjZ2uGGFTcy6/5Cu/q5E7st5tDj4hq3SJvx2JNt3B9yNwUvRJoYYHlhkmoCu3X+2EKWyrwd0/E5Kd310FlFAYTUplStesNG7+lvcjMnOaF7tJX72Zyy6ccskcmZZQVlqYbeuqSFWu7ducHHVO13upxJpbFWDFbJeW9Qksy9tmosxi1woSLFqUQCcXx5BUw7ZQrkzjioEx/UJhZubCZW4hviCuswDrpefZitwGewPUV3euy2bM8yXiNRItKsAcOw3BHiOjZrXpikSDdz174M/53kwvVTLmqnSDron7Rwx4n10Iu1q3hEeSdZCiMFPwvAYNLJ9XXkbPdMPDmhBN1Wb4995u9YVdznQJyQwBfBd/w147CZuwAWoFsQli3Vgu/r9bfgnCXxvjxWjZNm8asDrRGPLEWcLdF2qZOh2eQhSFfMlL0zCYSrc4YlPQtQEn2BcfXTvo+LJxIfHOhIbDmo/e2Qse8PbP8dbwdARWNe3+p9/EUCadWLA7bIvAOuAp1jKS8OpLL+TVGdQafS6tYVd+KAvIWRZYCrbH2VxKiJyO15jsoUyNAIyWcxCFAs2EEcNPFiNkLj7VCwVDY9G8Dh6CQSVrsanXlDIJKz01pExvNw8+48IoClVhgxBRgjeneQl59th57bS40Gib9P03yWaYk60uiLK9QujRawm4U8hH1OT9qjjcS465fdupCFQjdyT8X6YnvvRvGFthEoGOEmTErlbhs/RImjt5GlWxBj6pMS0a482d3QJ2ECe/iseblF5TqqClpDqD39jkSklKU8uuT0Es/1v2LahRWWu9Ka42QzzrBMl+Bhbek9vdyibjXiTjqnZetN4pM+XTh/i/8liRJQV+GFwfDYsoHlPUxn1v7YFrybUZBOEiefOy14LjTqi3eVvbNULuqg9+MQO1ZiaPdF2hKrGJR+tzqXxCmJ01mL1T3zKTApKqmu4/1E3WQPxhd76i6r8pZvqCbcCiOi25AgBnlqnp2tzLZgSbrcEog69pvFjY+55+ZQPdQ+C37E2emK4sHqT/QJbEDIZ7NOOQVh4B/1bkMg0q0D0ew2VKhcrJG/xNZeNGpu9NCbn0N46hdTV+X9eYSFsZzWPsQupiED1oEBpq+y6KA6lSMyQIk/mU7k6g1MxhfZtsHSgzaHObBf1qjb+SjntIJcxqM7QDPUAMvrEMARX88GIBs00kIMsjuRLpZp4dqqmGBzuIf4XrtzvS2td/wucMufCXEYyVNL0rSsWX57+zadE5PWxw3oBA0RpO9+EQNCH2C46rXGBUI7CkaqnpyN5/G/F3yEvcv9qLDcnWPu0+wnzc1i9alix80uw9a/8MGBuZ8DzTWWVf2N+fpa0tY56kDGAXe06OlJsHqpA3mahdouqdXWHnx0cqSUt+sO+wsyBwV833rNBVGFRtmacd4BABhpmss0gM3WtQUu1r25whM8occpGO+LrrXLbDpsiT9cRlCS7oW33/gO+Z4PY68Eo3nWzHNeT0d5VWEO6qPBbkG/w1tgGbBR5FRpI6xou00jJZdvITwzKTfTSOR1DhXAxS6NHQKuf3mn4p3H3FHD+KbE6ZObHvzJeeJBDV3vUzVonYp7H3vTt2eSM4wzEH6wuaI80Zau6I+pJCbdKbHv9An4W5qjWN216KejX9TjK39KL9U0LBywPx5LAKut4XBRmJMplMznlNTFbkuFxK/87eMQ2j3jtGy80eRNn2kpXPMcFwda6dbBhi00vycdWj9wdivsMqUR8fYOCEfgVk6bd+owxEfJcYc1CJ5dVNaX0clnUJqV/6kvkKXOH+5r/P9p9miy4MslGkswqXmKOypYKuiOr+Pt9ommnj8fSnVkDwXu+ZeXU3Zj1sDNJnTI5hxU9rMXe00GTwrdU/dOi3sJoeF8SbXYwwQZJS6T0ODT30TvXC+T7LnGk2PxODL6l8OgDKIJ7MXNUZ8ICebIbHKJ4j/6k7dEmhlf6FzJ+1rNwMbK67dX6HvCVeTw/dFKgdXUtxePCIFadB25e2hM9qedK4HBx7LsqhKYmCZYctuXFKgnGqE2/CYKwuIRyOt7bAJxTVu2e+CFJCP+tgPEIAy+zts3dzDUAyPRee2gw76gv9BRTO+luzLE70mMVA5/DzF6z2wmrRyvQig0cTF/6Ut00GGZNi8uzZek3TsmVbkIjcDIxLibkyQkORr4Qnhy2F6gfmKLg233g/Com3KRZi0KquR7PbL+c50IodPQX4vWCtUhRnlr0hFUprcctOCsrzLpxK6e25P97nj7cp9Nl9i3Uqy36BkTrOsrboW57D0OZCsZA52MOWFFyzVUIo2jEHjSC90fw4DG0L6SlGTZoxkqCPKxYrRF0b+1ok58wxKT7i5xv+PR0o7sP4GFVoSElGGx55Hc8PUrGwrBLvfT14tEOFRpAxXkBdK92Kam6pbSMLFLlFw2NiBxZSQJhGh1B7/75lcyAlqkNKtDdwG9PAr0SZ/ZxdUA+KH8AyHyvc1QKHJ9WHHBsGM3Y1xWlrwNRmed9wBaTLEHJlPFSBSKEcf78CuIPaX0PZ3yM8iNPfZ3pAFCLIB4qmOPKL6N3QFzfp6fJPlw1ziEUs0FH4onhwZjdauG+zUcxZ6Dqj1EO6/Y7nuHYduFOAtJ7sM80VjxqxVlax7kaM/5Dq7glh32VDqrp+htO2Us7dnhCwmRfVR2idJzY0mBZKikX/sK8yTFYN2mTcI0JH5YHkiHPZpQcQHmXo0wWd3uB8TDYWuLCyvU6eT6GwW17DdSUrguvRaHXFjDCYerMDOS+qNRzyUCYIqdE5X7wVX1tEuMFe2nn7/LjU7shhq+vP8gAx9xynDxwg0+aQ8Tels3E5btZ7o6Vysd4S1GIyKvDH80zEy2pMxn1DrgU2JXlgkXmlUEgxrQLPMkko7WFDjNqYAlRHGtWGcaXWIT7yT4ENDcCx92tzkLQmrVoppn0qZT053HBFk2UE+yARgjLFxJ6X0nZ3n1fJYNeI/wIdYPS3e2HOLTp4fvpv+/vfYOLXBVYjdw6rsyYiQ5IXJABkvKKb0mafsinMaMWPTh8EyOlbnvVVS5UjvRpX7nrLotPBfhPAKVK9E6qddXPqRdjkkdjNfGdSe/3XfemwaJ3guo5capZBam24g48dSnABetOWW+3L5P8TOZUce+++bxUaXJ+rO6ED99zZyfqMq+21sWAAv/bcRptlpJYntnfFL2uZb5VWf0ctZyy4oTzUikbSY1Jfx2VJuw564EJhsRsTYeknT+RiAgQZWk6oL/Y7G1YLG6rSuxmezipPRurtfpLwO/fIAcxAkJg593sEn3c+bd8pFuiedZ+IVOgN1vOtDy9k7kkn54w0bfzZkIt1b9zLVHFTEdo5K6LoLb1T6Vt+FJGmSSnxXLU5MrF5TXFKEQQfxY09ypatoLIpNyx5ywUYOsLRKV3mw0ffw3GBaA/n2iLgI8e6nY16uI3KG0AfEe5m2SQqmTCR7ULkudJhG6IqOYAOllPx5abXlGp0mzBY3Rj4/wv4dhlX1fu1aV/LFS/SVBfasrkG/S4/WbGUoaUpDTsjDJfzc/VBjzWhpzUXturEepkqIuuid+h6SvcuVEQ/wz6D+Kz3jHZ8sN2Mgwp60sBAmofdVX6Wpc4j8I+vT1hIxWvZzer004GAOcrlXSQsqLR/xtxQGOhdCWQUQSqQ+Xjvkk1AMcyeiMdCJLbCD3vxctQkf9wcqnH6IVb4qWXcjYOK5AnO1/i95DUzQbyQfQH8TGjhmqNEFJSfoyr22Ye/gPJCaP+muMpdGUn7PTVeBStKrK/pmPKEStGOhgac+dzWFqfWv7E5KD1a3rOHmNMavgYLAPYL08zZXM4O7fjSbjzEYXkZPpikuEQozi9u7bpyJQxbXzubQKgBXBL9giBZ+MXhMoCv15q6mLQJAjHlMbwEkjW6Y6mvnok6XmbYEhB39x2p/Ylo+/+CZyb3Z1FUr7P5VRxSokjCMb4At+HxFl/RKDErtv6DlDmx4x6XXRMrgBiER5DBr1J4YvTeUxmp2hbfiHN0C2F/Nj8nTMMFHOBL42tUSTD7FMyFBs2V20CKFIfu2kqn9djbcVkcADgQEV9RGFQdo1rSYQQQLXBGchF5YV2BdrxzdddO/1yPUeeHEjxzO/g9YlUFQOd7agUOoyO8bFMmeyzdJk4EOwfs0iRnqznWSeJS/Ven0O7e/xNveyF4fwDT51RDPrcjROzph2AcxEpKS2RK0rwbXWEcq1mhh6tGwaoBvjkINOzKYwzNaUsEjzYl7D8vc5sxwdSqQic4cbGXrW48CMB2mRyDr/fQBCZP2yeVAOJ5XDjCn99ZHgeS33CvsXXVq077WlP8npSc1q+lly/MmOrb8mJQRPOiaqnK2zaDtJ6efhkUPajSDly2AZL6/AiKWjzaLe209tulPtaA6D+8PK5TAgGA5clfRATYori/wIutNOjW50XS6I+j+3kL8/MOM92rlJ8NHP+Afj7coTztY1PCiRWUnlm01YAa+lPGF41f0i6xLzxKb54pAsC5dFiksHS9ViiewYExZfUZcSO1umn92z4ORNnZZ33JN735xNcc9LOLSXEtT8Gc8KB1duykQE5TEMp4/Xa4uSdtwcKaSKF8O/r61hj4gdCYSFXvgDTP+ldh68IIG9+xVS03znTCZE/9B9jDpSf187uxAgJ2acx/FJJqM+6Gh/a1DIO3Z46BM/VQ5FJp2j8xGW7ALbjLgsZzKOQtctf7myKxClP7tG7YSmf3TeMLm5ApkPI90zdugfOXTLbmxZtzjNLnzgzO/XbfVgU8EwOF11FMvLBz9uN0E1PPk7mxtRDVk2roR+ltrm18ARmiPyYTuCY9hM2/SmvMFdfNUi8o+e/SCc9W/NF+IaRpWBy5s5BOsBhOxwlMU+8ekQTs2CFd791He5fdrSs1UCb+tF/eJgiI10jJDFlV2rnFs2IBPnUIE8O9L1Tt4NvzOlTZgnHOy1hzJMHTm+koyU1Uv2s9Lks0x5/OSH7H670DsAdoITEqP9/Oxbz4fpVXT5YL+JQJR1Et+6pW75eKNXBsNFQQAXxfPagzpqgZEX7jZWNSI9zwcH/+NOls7XZ87cJ3hqZeAm+f2jXGZSrt1TiRB+JI1rRhHZClnhb4LW1MgTkMAvnGJ1EYVT3eZQdARs+nOiDkxOFKfvveQ9dwKkrFRTTiW2MRrKAYOKzFrylIBxZTou6QNNVMVJiy7Im4McFPEdakH/XA2X0LSAEtft3QqJEzT3pqwap0Hm/Mvt1gD7uK4/LzDK0mJj02DfTbs1QxKOCB5KCf5AhgDw7FI/RWSSS77YaiX32f5FJZN0Uciebx57skenLIno5NuKLacQslDrlYC6TSr48LeN1L6q/eqR4gQvLtUKPj7OSstiQYAPJwJ3HLuv036Dxv+XJdmUq+zy3kYbz7D6XS0HTMduxl/fVwOZ9/2Ml3PMLOVA2YB+OOYCje+QI5RBASW54moDNlUsoyKNwpjM3Rp1lLBhLaXG9OJ+mpVgYKwYOaPgEavT+Uo1+8vU7AwfBwqddBwu2ua0yvcE84Kmn65SzT4SIJzKADmIW7tEl+3RPote8Mlu3AfEnqo9uoQNXIDVTqrJrAFEeTR7t6s4ZTF490ltllp0bQPshq80Kb2VyV7WvCJ6lHtq6OW3ek52jl+ML69ajN2RGHmJWmivfbBd4ZaOHfznvlLvt+TEblpiFwJfygDQGsKcvNvau3uUNqUZNFturS5imgHvVrsMbTankeX5ChJPwS19TaL7f6OOlhvio8s4FBbMO2lGoIgOBjGE60htXahyxbw1/Rf6++6uGCvu4g9Hfy73e3fouja9sd8UXqwdiUtseDXV7RSjOaNaWRVbC8oIw2oty/Ig2jx9+nZVUGI8oYrE8jaWK1Ha6GQc0LhTll9d8VWUP5Iw6t6vyC04ojqKqbC0M/WTDZyNNFtA6VuAtZf+JUgkeDI6KCFly/QfkZhX9rkFCzsm3XV9yR4PUgEn2WAvflScWklAt4vv9zxxnTbjU57blO0U26EBizMA7HNss0AjgLW7HKjyWBuGimiNNIAVf/GGMs/QDN3fZdS1RPs6BzK3H7844JKi/dT/oueoNO94oD5csH766MiIkMLFc3Bm+05s9DApQeEMerTkCfv9KtUYFIrQfphD7vJcxuMrct2lVY/7f/39pxOkwQRA7zpwU6GUmWZdxkp+Cs/tFsFWxWRIha1RKR8gA9f3uU3zrtLNwCk+e3N3QXHv7+90AWIFGBFlmGEAhLf1cihPQlyBb6p5QiPBHx6oWW/jvQqObxhYSTDZLAZwy3o7nbKfw/amhnNHoG7TMzfAZ7N5pOLPlYPWYtOoSVeJTBkI3Nkpa+TMQ5kPR79ei95Pn938RYXnduZDrLdeyVEwdztWJU1mD8i0gZtK0tDvJX4I7hK99I07JRXKyS0Y+et7dDoh3wV2Buq3L2riqNWdaUEKeb4le+/awRnp8eEXyKn4o8flQ81TsRgvg7ubuBPRwavW6RPJOy0z6QyLMy87Sdbw8jz5feAK+HbuauTXPFQbd1/eadcw1IgXqd7BAPStsx4fGwuN/hjzj8CjmJS/EiajbFxnPXb2DmGEwBu9vrPxGrmL/DPDs907T0bFBEWcR1gs16wUQgZ3uifBxl6QciO94Fk1+nDxOf5ItUdWA9AsnI/cTMHr/1OX63BDrL+sa1JuUODu7Mo8NCcNfkXFGo2trNkZrBA==
Variant 2
DifficultyLevel
665
Question
A walking trail consists of bush walking, beach walking and a steep hill climb through a park.
The walking trail is divided into 25 equal sections.
The bush walk makes up 2514 of the total walking trail.
The beach walk makes up 51 more of the total walking trail than the hill climb.
What fraction of the total trail is the hill climb?
Worked Solution
Combined distance of the beach walk and hill climb = 1 − 2514 = 2511
⇒ Beach walk = 258
⇒ Hill climb = 253
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A walking trail consists of bush walking, beach walking and a steep hill climb through a park.
The walking trail is divided into 25 equal sections.
The bush walk makes up $\dfrac{14}{25}$ of the total walking trail.
The beach walk makes up $\dfrac{1}{5}$ more of the total walking trail than the hill climb.
What fraction of the total trail is the hill climb?
|
workedSolution | Combined distance of the beach walk and hill climb = 1 $-$ $\dfrac{14}{25}$ = $\dfrac{11}{25}$
$\rArr$ Beach walk = $\dfrac{8}{25}$
$\rArr$ Hill climb = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18mt8yBU1hFWlactyeyYGjvJ1LZax62eDmpAlSYIEkzxokCrKlXyFEjuBSUuB9EeEzz+ofcCfRShbaVodObp5msn/BM6YB+GWAfsZTJyn9RQvJeVt47y05a127pVN1SYfhgPSOwp+r0XUvVB87ybSreX/3Hp4gWPdWRjr3sldMvhZxjLo04TiZHt2VOlf2bKaNIWMUEx/Ws5tGUlArFYvsjTXvKniyhjF9e9nfC1L3l5umJdSi+qXDdlMMDApNOJ3oKCXY23rCEB2Bnk2v0nxESb1mAihU6Jq9aJ2nzhMp5yUTRvBVNRnPr8jZecCLT9y+Yzpx5WJsH5xLQnYZaLxzDhUjoppWK7i7i6p5F0rqD4aCNIeJ5G4LC5vc+GfmbUYfm8bmdgbDB1wyGgTTLF0P+d81cPcATKXjPKJUEm87nPw59a5fDFYqlMg4gZm1cJdXu1lxS7FRtfaTmUq7CeynJ8fCsMB+pn3QKqj4AMPwXvuDZgL4dXWhW/kOMDrLlTuXC7l9wqRUd3McEqXVQ1E9mM0syDpVxwXHcdQHeDpDxnHHjIumooW+tAcsJhle3wwUaZq+Q3Xqga0azk1WVP/ISD+vFYK1ztyB/mHSEDWIs7HKOJmqr2eMTOG3JoRcjNuA9uNZa4gcTaR/65oZ9lJAK5sqDqPNFcIZfpoovTkmqXmyr+nlS0y4flHJBdCd/nrk5maX+FiLo+ex0AHrZ0pxODFjFAB3C7gwD9Y7X0WWCHL85+Zl2ti+EUj5A2/RPBUvvM9iISd3UpbpqKhXwK6ohm+vnq/s4bK7RduZc7ZMGOfgNlRT9lhIuQFMmnmrBGJzRAMocqUspJjDzhjlNOrlleMFXUjtbHnI9htwy/ertpcfEUMskIDM5hoSVpiFGDAJ+jukiNFF8ddWHBE6lqiKo+UVyEF7WmeowjYodW+0ZJLrZDiHJzeleI9l4+ad03t1PX2iBN0CV3WSX5n7leggrXM1koJicXHZec+yoEfZGAtNBfM4mix7LGiYSNhIXo0TBnx5r6jTWTizazjVbJhuosvdDs2lP76gSwPAREqthCIt0IlWEBBLn3EoDoEcshfKrhoudnW6ytnxHS33nrfd0T8UU+Af/HNQsB9b+wvxLTnpXXPvu/FckcpvTcn7U2qLJ/618kd9PfbddhRPVjbGx1pwA1kj/QNTMjMt4yMsk0Cf+k+WWX1JQuyUU83sLLlVE7Vocu4fRloGuYBr3SMnlvK/264Pt/2Hl6+nWz72wTzRIHLv6PRUOwRi90srOjksXK4UJWKyjlRiJCPsFD6XFGi+fO6aOMb//4mHg7U0EWillO16G7Io4aFq2sj9YrrigaQIZsWILgbqibNHYUHrzzW6iszAa7eM8ddDvqR515xhuB7bKCTHY9lOcLcm7O64Fy2glZwmrdWKAjA+wzJUKBL9wvmkEePvo58dWWmCILw80C+MQ/RCtwD8JGvuVDm22Ii820HOPy0YmQf1jMKREn+OfS3iMlReYCwsSZ+itjHeGQ5pZfdFMCFdBVvVEzT114XqyytKJX2OYeNTN5Jntpbui4ChJBuwqrUkIAa6X6Lc9UODk2Nt+L4ywhS3t29p/Fy1RT2i6pv6QqS+EaNNbNyKXj3lx4VmGoN9dtwHCc6fhO/y2T8aP6yHQfPpAce0V85qjiDrtMtzZa+wTAhmK48rx2PoBllw/bB19eBa6rftYuUFlbBPAYcYwfMFMyT87CzdXpsYV0ACQXnBYHhfaUXc14soVVzzWgGBnKXEQoAFQx6Sc3oPQKlHTIgRrBg4jv/kZAQ/VgCtxKoQ4ASNKIiLVPiITzwK23aznGB+FE898eCZlB6NwxSQ/bjTx+FmUnjgwCbJ07ctaTVQPHspDOwVRc87rg+KVNg3AQDgDCbBAtYdvc1RXe6CezapJQLklJRxIYc5IVFev8nD+0ab56RI4i52CkSjhYd6hZrSblegW9Gk4FVo67c93OIcnbLmLdWTaI3rTHwo6/F1mEj8yGRBpP4XSb7hcr4IrgqW+vfBas7SyvwhPLxIByepogwWPh7XnYVJtLApPcwm8ShbKtaiaBeSdsKcY129L+bUcwJlxFNMPM+lnC4aH0Dme15oUN478Lhn5J/g6+SARwAOkskgMbvUWJbv+3cFgI27VgaykvWXmaqetoQq1zKiy5NZ/9SM/Kq7RzDjPj4Ryw+v5vHL81CCTyvQKIWCiwjxkk+sw65PvoVptsJGY57O/xm4WQUhq4e2VTQ9WpEZLwXcDCjZyFDEv8cZ8hT1xCtOEkYm3CyhlM9R94EcBChJ7bIQxgvuuCciIQMLkI12/aR+p0c86EWGRun3EGDNB1z6Itwc6cLtldy0gnnXIlE3SylIuqpuppsBp8DmmJwafIRc5nxJwwMshseYqXhO5wqjwCdolgELqwSFM8EXtPp73DSSpBjptJddCKUp+LDRc8D+SxdlmvF/Yh3oSrhAMFi57yzspipEdhDT2qsGgbX5pNh1RgY/fHHJic1OSOEfh+7eWInxq/clG8PpZsQwhB9Jw0J68j04+j9muEmHivR/jcvoKSeDov2OdqYYjJsHlWRbNZOYScFqwAUdvmiHQYpqeJCur8Fi5sLGMA0dZTIJXdTWH/TyR/Xz+d8Dgyo2FQzSpexkCb/r3Ai3M9VS4J4D3kavbVgcCxElGrQocrJbGUq4EiSwF2IJLpWtD+SAkwnAI6ujT2tX0/FUyLZciETfZk+2udG8QqsKl1Xhl0GJpQgsni9XgmnzbyRNwk/NrQItOeiQA73sajqGe7JEaXPoFRuslvuM6OZS3Plj7bAMjxgDI00tH/V31TkTjlIHapFh/akQm8MN21kBcQSgaHursBtXkhxNa4oIvi6gAie8FEvTgbopqr/JO+355jXY3a8xUeQ1IH6MUHcJrFU082eG1sUOmbkkRlHp5IF12trLGnyg57FdIVkDqXJ1lii9Kfq435JJ38muKVFf1rmynL3Fi9Jk+fj4TGMhyfoplIlINtS4xuDxJUHFLJatYf+CeR0T6uaGEvajFFEvkZsTflQL5pLNtmv+LijyFgikLld+HT9LGZuyQxFQufPUo3pyinHBSVB2i0nkotNnxUHrCH3qv8/VNXd5Of1yu64yPV1kK7sAQZ8oO+V7xx7JqP0IFSAbkYFdnoXBdowKhV+wAr/xaMCQmptvP7wXHfBIqSx6wyW+d+cg6JtBs83y9thqtoYJFEGsJqoyw+5oqZ0QxwY6CliIFEeJcHfRqkFEwAMpGEqb7BgQtomkgOzcFb21MqhK4rRYAOzlXPao8/UU49F8aNcAP1mBm3zsZ+M2Yh+M0U2S41nnOhvd7WQx+LuJFiC53zXY4/C58CHnUxbxvW/MxB/GjKQsCSiqTLCTtnDzDejb1RBV5XmgtB59YQUvBNKu/Qx+4DP2aJXpxO0X9wPUVuZloVt95NBN2K0iXpwC8JFvE7TqcaKytaadIDNHq9DseoLkMX22eK7PEy+AtE5oGL7oFjFYpKDsiVIc4zIiqo4D1BMeQv8O+ZAFOmXHXnleQepj5opLTn4GFUFITekt6KmBOPEfQghqAZr9kSwXhXO1y2MvLKP2gLZHFgCUF+98HKNeP8t71AhOHOQ9ulTjtebBu4peGs8XCYrEok0hTcGwGx9ghIhK49iuE1Rx3AbP2vegm54CljmARTx7q6XTRBhx882YXbmpyecNp6q/sWZuU7paUL2k2vcdk6ARpRr/dyHQboqa1FT4ADaCJis9GvGr3XMhzLZjKwx8kSPJ99ANeig+tTqItoiCJnfbyVl4olhkn4lu3TTbdMcO77kptJGPFh8PDg18z6OhYauQjH+5BeEwp5Zcji2K/sfEHIDSIFeFa1o1Sc8DuW31Lwg97946N4s9cVFss5zZLEoIzsfj3niFYcrGLUHzYEvXaAxQZ4bTw4WPFdVeQdvpRzSNDXNgey2nKYbO+aMuGS4M7woj4z0BaOrRxLSLYCDLJSxVPRB3ojW07ivBOF08shpUewNnqB8Ms+atOB8y6dw9B5ROef/KNOVYZj7FODnc71Qt1l7zGW+PQAVQIqKEhXLZNURDWCQd5edVBe3nftSsTergvWg4M1XXFqyOtKboPE2KNhZqltkqYOydIGQzeP0UVlJQEhS6aDSHqOv8anDM3T9QNwP7PpO8d/LY7AbNQ50RJqmn9/K4dFJyn4ASlAXQnSvntzaVkvFQxsRiLlTjUKQCs2uARRiz7723t2XLZxvvAjsQ8WwNfopg0faXK2xaH0iMuCZDBWdVJ83RaWzh7zIco5txRbkzj6g4/HMxqtn+/lgExUEEASxkWFBt71BhUJ8GBalbqdC66/ppeoDodDzvqAXxK3VaaGD9gyhaTaTdyy6hFX3/jzkyEc3gx6IGDj/0y7l8PTUHyISwVcke2TDLZwFyFB0DXrwFtmhd7+H9MzKqTfijvhfsZuHityb0qQ/qsIj2Sfu/jzImgsnAssJlV/9rDv2Th4re3grfERdN2lfuHnM4Gga/rVjTYJ4VBpxBjcgrwhrXd2Jm1cwa5APLydnG7dbjokPgcgiblFlK0v+yuLwhl17YWplT6mo+98f0Clo3X7xBXWDCQfQiAKFCAXszPXByxP8s562eKl79Jn8My6l2JnGHVQPC70APFjrfsGNUs9twWkUFmI6MMp15SrEMUcigvZ5jQjTR68leCYmhWo00KnvOmV7ZZzrx/K7BZLzCZ6cXXlSS0aJTbhru40SYbtvMK7DcePbt+pEfJDEeiBw2L6/X2c8kKtz3771I4bpzD8sL0QsMAqqyc4zzbL2aKpmUTr86cSp4AkTcOxmsXbkTvGwXuFkj0TCgDLfg7rGaZZ6EKFA28orabXvRxbc2KFx38ENRymtHahWuQgChVSS2hDY2tYE3t1EpNvZHez48k6BwEnLfGcEWIrh6Ev0/PIHp7AnQmKuzNF0Fj5emkP7C1SPgBZWk8GLyBIP9lTkWiTq7YJ11Cz7hSya6AY1jjMZ3OhEWS7PfBaqX/neWgFEY1qqBpRmL0DEsUQNGnvfnEXzGx3hVizRlmF62pf0Z5iMLPh9MS3ovxrnPRkihx5rSt0IYaAUdc5YloG0HFdfy8HZBs47+xinekBQRZrZ7ddcwYL3qj+md62zc0IigqXNi8UXqQBp6xxj0RtxTUypLYq5JCHMyT13ZKU4TjbO2V+r4yLwglPDqTHDwYw+7+KKS9WrLqVs4Je92XfhfiOIFBSkGDGh/enPB9RcWu5P0SkrnAyqRuYSG+tvQRbP3N67uSH46FHyxi1g47QTtNp05wdg1G07Qf4/OH9k84tU0IiXtW7yvUvMvFfyCdvue1vJSj6ZfYs2dCccrnGe/tknCu2tX/ppdf9C7lnNM40uFjTpGUPS7Ldo+MwsJsAL24IiF2ZI5iTKnutKk7uC73NBgdNBvxqsaFDdC5ytPkY0rZ2LGElaPTnvc2PtVEZGYA53zbxAWKyEKvct/MsSmoWN+xEMKsg0cSbKfa7G2yZN/1x4Cuv4hnWkPMmD1XxJYber2Rf4sMYvrt3u8YuT++CwEXyCfK266rcah/fsNMxeieypkw7Jw28xltf376WWM/f9Ni8clEzYs/0skupffPQFWu2ORzjgzVh4f9QN9CEB/yPJmtuospjixvlMZ1pHmsph/b4thDbiWiavBD/RKEv9N9KNeu740W1iBevGlJPq1LGyOiZ+sV8yxCWxTL7mUaJ5yFCBuVBJc1zDyZO+7Pv+70ucoTa8GKSgGNIauzgdaEJbM3mIZ+7pSl2JtjtSAdtZ49gedj5rcd4UvH8MvJ1mimZM77A7NV7YYjU1l84HybGDYlatPnIUNZ0VgLj8qdULV6K726dqdyD6WXbMLgqgGjgaND0rZSyKi0Lyeyob642PL3CNElMGI2V39VKQ3BbkdaXSVY5mYFI+O1t4usiNi9KZ3GVyc7LyIUKncIAEe3wrxEeLGsLctqi2ZfTfsOKlWFNjOIEr+8HzI/5QDYuGOBkp9a2ds/v/jmIRyTN6oM8uuZvmDAkF/Dw+/MhU8GwT4lfcqif2C2P+NTu0od5ruZGEVv+QEZuMTal9QnDPDK2X1xCMDY7OPH8wRgaXLqXysX5Lwu4JlUIyjYIQH4SIM64lJ3K3PzE0HZZOPjx7UTv1KWjpdgDloUHhh+TDqGRF678zEGWggKRqFHEMt1g0Z7Y7wZvo8M5i4RnHF+rYokuOjaBFYaWsEF5kGdKTDznghGDBHdhll/URGjM0eDk7ur911nJRbpPqFoI127hl1urQ5JzOYcKu/Ec22G37xhO1Ffl4fHDmF87t/Qg4AfmTudgf5itzC0K7rg3SLIL8lred4DXN0Hs2bpGF2CNYZwqedFoinfdYD7RgdojArq7HIX93MIjOKgYUAyZz3oC+EbEDXn3AjxpzyMhu/Nfkm02Gws6HshA44Oq6KWVRgMpErK2tnCSTGnZe7ZX1NRnbcKhzFJmIj8oGnNejnUl7cfUyaY4FW8R6EaeI/d1QWFQwZmLyfza/9p0ExyU/GiAgcI2+WyrFpwbrEoZ9zWgx9JvhD/3/pOs+H6mNGrGJHjv8Wdg9srO05MgJSVBf551IPIMyLM9XZ7BU85WHPeQ2Lw/eKK2koNdnztAQl2aUMfFC8LcyTNKOIBmNoMVYPerjV4YGoCGCEdXGWJEBHZ/7M2cK1gVwi8ogVoDdOPoIfAgB0EDZiXqkSnHLYEIYzLcO6V46Jl061QJPYBqepATF9XXoANTKWXTbdbgeh7qD61EhDPGmHRT5ifvGZ3a9V9z41adS53hdju8Z4P7a8Qlu6Lqx0qUpK5OM2egE0K9WnTjg9v7WPKA7bkDl/Ol9pp+WuIJO4R//jzhgLeocc7Q82YIIgQkIBZwV4z77oGkyOVCRU9eWIgYI9yd7ZpNaddd88SoXxhJoPkoV4+DPyC/IgnRcVQHcfsTaoLnfNV74DYWe2eR8o4zmKsrA9Wdbpa0MAFgNsYWfy8+9xxppxQj1EM+ZGvDMsgLW3Y380H0NuUkkS1nsC4nO36WxGZSWiFuJgHZXVM7KkQq72IBCMezi9sqA1jcJtPS6AkdWrgSs8XG3d9qYzH/9dMR+o4tBcX55O8ShzSmBKsxcv9vvAel1K5/zJuYIvWUGPaiDTMi8rmh2D//aX+nP4Yx5WSv/7YOKdS3I1JbCOwqKStgk4yBt3zPgYC/Ni1JcUlYWNkOPGBhMlEMciYCREb45DpbCnrf+BRhU7gLcORKdQgGlGAUN+YNKLdUcQL1bRqSTiI33uQ06Gx7KmCVY1+G4zn4u3cuWLBZmJOO835lJ1hfb06mYBQIwIRLgm0zryn/1zVwPRict/rhjBW/QnLhe1Bwf/tnrLfP5lYjabDxJSE2k7pDCTjBNvQvgl69bBPG7xAEG/GNudF3k7tA4abmhDc757KtI1gLOzSARR2s50lJ/fYCYVv2H86ybv6IFImiBfSOzJ5blfklYpmtFZ6mCG5FYPcBKu3JmCRgGrqX92BwhoQN0hsEyZldjwj2rQwv7euGTPAgZuV6+UXscIqVyXA2xl/d8oYehMyYRNj0xU0d9Or7Zm+y6zmOy/SKrZgaZpQD4/EZwDABr2r7wMhEEwUQf717d5p65RiN9hInoTg3pv/pF14EU+iAyPbF4EC5e7WFp2p14RWBccg26MaP64q5NAIc2D3IKmWJ2TQmghy8Rmi02grXKWuklRKJozvFQxf+AmOvg3MZAoH6gbrngbQO3MYR5Bgxs0ljv6J9uLkNXR2sd23ktSm9YS6F03qv9jgD8lYVm1SzxmyCLE1mx4PrQtXLae3iWyGjBxUSPfirV/1WdiJNx/PfJwgI1dz9DTc6fFA51yHQQ9ZoEchTXw45BIydtJN+Z5IWxZMxNGV6dc9NJ9HopU7hNAjLIjKSQaLJgY+/kJ0Z9/fUGSGr/8cU0YaV7b+iAKmdTsSGM4frLDgQ+WPBpFX197SdMFVV8kltUrdm7G/c6lWZPSYB/Ypru37uVSol1wdJOcduTdew7sU+Vy1I292I6H7WJGuEIEigVtM0SDbZ66z6KpM3QDkM+G4jEkBVf5qw3HApJlZZEyeudQt8lJshpLRR2lrolFOY5uvr2YghTpfJZZ76Q8cJ23PJIt/MY+4cA9TvyiMyWJA74oX5Om0KfLFFpekGmAbiw81UiD3AYJjLpiD8+phmzTXPX5auNfZAAKvvCBYIVDR9PXjoz+g3DmaYPuQwFh4GCkFTlytCW8kkAi2zY6LvItwctgJ+LPTe5L2dkJZAFa60cHPmgCpevcUcVrwrOB/Zh9K7N7fxQZg0TlB1nQKjT9p4VdyngZ5q+EfaqhtacCe19dev/k/5n+9ys1KOmLPxK+UulpWZCdP+gDCvbXLgnPBM5bNeJCep4pqd6EwS3zFz5hHwTNLfNaFbHIJPZBExzr5P7tcjw0OoIJkqdTfjL1lzJ2B0adr/5YWbBVup44vOejb0U6GnD5+L6t04o+rVulEAMjiPxqsDwYZv/bZYiH6wlqFSDA+MjcblBiQJNgYmjGCjawAu7l14Xr3CpIIVsdlFhhum+CCSetjeuTnLAuOEsFwKptfIqX4DGke7Mi+P7UR+MaOD55iGGlCNWtahRgYLwQP41e22YLj1ympI9XXPaL0b17CiTkzyW6uLZKMgb4nKircbunUmggIFWPRksFZQr0T0SwUcW14F23EGfNj7zO7iL/0d4ZNFbQHYh1SbVuEtCfp7UQAxy8NSZI/4NrBULePiTFL5JVTR32dshTbsekfY8n/J+8yYAy8S1jzmetUsreuEruxpzQFtUImEv8mmfIjt2enMOHe2GNj/8rRmG6ypSruG6UUnTtALCZq5jd78OCy6ug01Lx7+wFsTUJPjryP0Tvl9fCbnvoyWZNZi/uo283PTW3QrNSsyMkXdr9RX4mVPwXpzzatQeFjfnKhMTYJeQP0nkYHbh15gK4oI7Wlk2/9LBgp/6Tv4jPV9eyBf3rh40lzcbAZjf5GjUYjtamsYf+JZRV9PGwi3mls6c8haKtu9tslRbd8sCAR0W8LXL1DO8Yz+aiGmx874GUVQTeglmW6mLV2yP6zXAUCUD92gRqxl2xMvqByiK+M64s1XnJQtl11NUTN2CtpQvTTPYLU3n5OAJLxMQzMF0QCq0P/CRqHRzjAI15VZdQF08nz5/hq9Tf6ZjTfanRXS0AOToqbkSJaMxOHfqOwokH989t3lJ8veJ39fpB4bGSXf17A+FZvEHTZkzU8+nuZbb/PWQm3uhcEOHseK+PZkd+U9TNB/VE04Rq/3XnJIJQ6DlnaXpP2gQOGvjQH1ZhhSaD0RRZbajs+3FhOis/gXpIAzvAabNjnCcUbIIQK7IXFGsOvNszE53+pmGuBwi8uYUY4/1mueWS4Jj3Dm+dCuKEp3DYOmnVlckUTeX1NUwSRbYG0KEupmD/0VSGJGwd4WOhRpV1vowOdJD4NjE1f2XLXFAM/BJX74k+YGtqCkSetjyhFk0pcNeppYhqC4Jytg6WnGXXvMm+1CfhIgkoGAdHm3C4PMFgFkovh8WHMoYaSoYNerbBHSydlmkrWSZ/PqLKrChiWhX4bwj+wOuqgzKEbIee3OiIZa/Mp/oMbG184gDkDOPjao20KN+ftIuzFe9kyVfD6RIPMAV46QKkN44kPzGf2/Imy2GBUju0zoaNZN2lyaEeo4GaiD5c9h9cMIxMWNRbleKIhO/4jhE2mHtv2Pl8HI8a9yPYdry/lmOoPNLdYauoMdncpk92Olk4WF6efQ5iUkSnc0fSfU4mf43ZUJfhq3VIuTtIia2ar59qsVNGZzJZuHk+u3FydEC2l9LK/FUy5KLXpDh/VNv3KB8KEQZvmwMXwnZlWYDR4pCJEew5BVlAawg3TOfiq7pJrnm/vMpGHDLTTaaQ50Ds2Omc05nN3+Wae2E3UCy85cgMKU5K1JBZ2Oq/eb6V4G6ohxlg6oTkF82byZimzbyetn6nPf6zQZ64z81x5Q8sqMRmvfxdr/09QlEHijIdnrPe1iDV6f1CP4APITOzvt3pwOWdQztjkuhIG0sweXa1AC56oyJcxTCKGNQOmdHaiKXWSXmh1EkIsQcsQ/iPJlp9RSl5MkY3wuLgqxyHGCnM8JrUp7k8Rpe5dOSzUDqhWd4sQ3G+xk0ArGXAknciN4A+vkZ1T4JNmIcVPzBGxzFifdjlxR0T75cPHiEQQtXifQa4+JLLwS/3ZmCY/9xQsG35CRQAnW6IIfp52DIps9g1TlPBUjVEv3l3KLoWpcS7mk4oNBOBGq9CLvRqt/CSnb9Lela/HHGWyo4OwnucMwQTKExWPcDCzVEm8H7K0vqcR9GsKNGJFck9kGbVZ3SBrrEuIhU9W9RcovqGPEAc8fZDjw0etg5ws1wpPs9Ahr7oTGZgp1GG5v3dpFppH1x1gLd9Dwjr2P6wUrWKsdVOixkCi0CEY/zLuYU15dJeeGxmXEEKOkjiRDhwaM26F28d73O26qDBUUY1DOg9AXpKnbULiHHEE9FEDLIWZXqlmV1Fy1A8DYuHp/rga92NlwRF/H5GbbHCVxM7fdhXQtQg/3X//1I1swC7yR5XWkd9gy+0ji4O841yF7PGyVvt0Ka8wCSG9PsUZMzccoJdP59EexSrqNriFncxckNYRdX5cXC08EFybUhY5XEM7K4oDZ05ftpByCvddz14FlUTQD56WzYMlZWhzG3WJkoO7GdzQ7oJPSdhRvmdCSLZ0zxpHHkEY+TUwz6lNSFBhu+0s3ymKIVetMzHra+dVTJ7+m9lP09Msk5L0uEy+31ztz1ICJM1Ouse82SdgMstumjfC+Q/xj+oZKmLV0ru9ftfMcVQ6Ns2PMSFM0ARRtmk+mLUDzZ+Eo9CUwPsZWKW3sKGrcecD4+hkwWGmzBX7Eb97y03ggXreafqoHzCxsYx5O5bq0n/qZf/MMJYOz87F4jFDqqD0zoqufoLaE2q9XMhn2Dm/8/LQHf9f5jtn95AJ2RHjoNzNABVk+6ow3wsVEYHxPhN4Hq+sifaL0UTVi5Iv+1B0AaqWJYyWAdMyatrphMtGaTWdPVGMHCnxhfLoIvwiU2qf33w56mYE4NVSLwwTFm6HxLTPmsEF8DyyupZQcvW8NmCwFFcRAXFtKhBazitddKwDC52r+3g3JEwn45IEWUFu44nmH6dujtymMmnfOVkLsf27RDn4c3Be0fjdBogZsnElvesz0FP2pbqx4uWKVmgQ+8coVvlpT5cx4kgvvIxcu2PDehhH6VYyfGkv1VHs0/V+7qHA9zLJuGzfmwy1YM2DRsWHiB4RC1i13oXr8zG1cZ/Q/h41/B5/9DSAUts9tv7ngqXmvtpq/5wmHg3WPiFy8AnL/EB00CA/hcjWn3G357hjZCYFr6ilc08Ed9DfSEoGq1u24Z46DY73E2SbZbeGu7dzW90cDvTMF3mRDyr8DXJT0y4asQXKgsRrTBn85BAm8ivrpgMrLTpKt9mUvpkLNrG53B8X9cj/00Zb0EPJKxrBkGOCyiQO8PEX7FR3PdwoIOXyaqWp5kIMqx8knyQI/dDB3tbjwFi/xeuGMLuA+RYqglJ4hlH8uSZ3fYg2+5IrnkTxPgfHI7XQIG2kqGgIg42/8HKGwtIG1YaI5IL1QlNawJPL9MXwyhC0KCeWs7RI75XJiLBIbAKGHcWogYwEcnC4gnV00PScqduqbVzyT6GzhPTKrdq/dGr6vWm6I9M8KqZD2sH9RCuNjgVpBUs/wFgcm1wTVOQ5NHhxxP6SPbPNcwIt8ImNd8WePzf+71koCsaNQamcEYYH9GaVFAhFD8D+/dzi3YmQaIJsoouTZL3+y8FqvufpJczHycqm+sIHqMl4O5r0Tr58Appbd5FT+oFtrnaMyMBvLk9Jy8cRJuKGMwqJjzRSzyCfW7SJ57aSQi45CzVlEIAxGscg/6KYZFlcE1oMm111MDwB/hUhD7+nPpa5d7+9J4RuAqrDzQmrj5ONKS9daaHh+DVrWQzMb1HbLHG45laVySH/evDtKssA2tGNvYqvUaj0BQ/J1lWyi+Z7gQAM2DvofTuRRmj7pP1wJyqhNu31MiFtA/Z2J1YM90K3wlJYRWVq2XmNujycrYaznRoB6qVstvIhgNVH5Qx0KUpkWYPocti2N+hnaagDMr1aQf0EThhSROcDUOgIGs9b8uqR9jXjIGQOwhkRtHNErhS+fA7fe8oa9wkeUXA0exSm0BnIkwa7ch73wjMcRz5wfg2uDmtk+ZfyDumvwvS/y8tB+eJMwrhH/Ya1iv1pFnkq99TsHa4rnczuufnS7DjE+InHDC7aE0A4sgIO3k3npCAnxvbL8qXpiLaOsviZNPQ8pUNZoJZJU+s4s6OUQdGAidwPaD/IpMZfmsu2g4cRNrCj0Xjj7jQMyLAmtd9oAorS2rGMfxeN4HsqtdTnLOLloLps0wkSAxx2Dzw3KRK9nE/OEFJBthEglx8tYKpKoIwl7Bf5Nq+1zZGPF+MdebpKazFB1F5je0C0AtrrDXhT4D+i4HYdD0YnGDRRX7DEiDs/b3BED9Ru+QuunGe1XRz5slLDjVN9WkMRGPErhKOyKLSkrdgeq/HBwy02Cwkq89z7EL+JQHZkzrOv3bhqBlsmf0JUmzX9w10Z9YSzN/13RTpdogLzEwg+rHss9O8QskffySf7zkVMQfeTd6tVJ6xbZRrJ3CbmwBQVUmG8yGmxH+QeDrCaN4R8taL8wh2NCUyCBlUJA2J/vQtkq5AidkUrb3RveMaSwH0VWDYhIVJwABOvCItU8BAV/jrRUiYaT9RF0T8SW8Pz1OPiAx/mj6F7QLI94qZfKvIdKiOEpjmas6zFTuyboklllzliKU9hA6qkHh2MoKk7NTwgAkBjX3XFkPXsLeSPurLJRCQxcYsY1mZKqFeVWpeW+kt7h5+IcjUYL7TuR3OBid0KCgmhrWFSlcG+MzuMsO5Smiv//UWr6hQhmju0iEceOLRynOoB3B5jVNRTMgn2exSBnK7ogjgHEJSL7hIe13NwMgR+LzbIBxFE4YFRcos0iZJzGcBkdUbxCfi9NRboaIgwGI6tHGsQWAGm0RYjPU0JQmAnVlzNF8uvXuKqfoPmKcDvVYREnMq1GJ6H1w7mGQbg1QsYXWtEfraSax1IkhUBX6IPIGGQodJRGR+WdGNN8aX99k11o8hqmTPZFcE5lr/nJEwrk3JX7ExvcFGSO71Mfab4crNV/0GUf/1sK2HCHcuDZl7BbitJCOR1oWKQronqyRGVnp1zOMtAKljZKlC6bH41NpXj8uXkBInV7jpzL9EnZCzHfybfhPLUCLcnvl0z1DZODX25ULrVYL2axFnc6djGZangjQDxMhJTczdXcjouhPeH32pLWX7CcJU5GEAvb9KdqK9/pEAYSmK7IUW7o563viNQBeMi0RzUzYX7RmcV8bcNK1BudoL613ft3PTc6GrQYNpIogSdIRW4ialblHY+Ml+fmdVD8kOivIuOrU0O8nzwY6skYUv1V3YKWPefJBRNO94tE49wXoiOGMXleeDsYmEISHYh08psd7h/KI3+5B5bUClRPeQSO1qccYUbAsrSJyAVqL7BWesRNQMHfUnTgRd2pK8nvygqagWKSfPNVXUkIWsts3S9OZ0+iLz3KIra7gOaRPy5mXArelSbz6VQgyzAm0ajPrljPmqp69TA19SlZdJhRjeObUcp4aND6T/j8uNhoBvuowFIvT465urWEsrI+DtxmA6Y8wH4A0fjYMfX7lLYcojja6Khp0uik1hio2lfNA05qiadgHM5ZCouW9Q/Rwal4e9oZB/tkjTS27yBHQ5MPPlN+qFrGO7UjhIHx3jcwMUgAO1tAXeeDzjQaGX1WOe070THTG4H982X484LXp9DG0Z+S/UtXCZIO9mncOl5gE2saK4gOnQX/Lzu07pEAXdiX7o9VCJvy9EUyPHRZWwRwQjvgea2Q9BAQexle2lGh9OfqjHLwQMXJqDUFoxFjaHmuTmYZwg32s4BJBdZkA5orpjmy0lamGUtU+AD1tn9Nt8hwFg+kYQgRKoZvmA1AnVGEXNZG2gTamy8fLl67WUwd99vcH8pEQxVbprCUn54s85WekhLiYr/iagcUV+L2Xvp/QXcftH2RteOYk1vsSrVAWliAnzOhK8ubYulp9PDkfWOmy1CuJDjrUY4/RVWCDUFrs5uFVumw56eB3tEStLNo7GBy9DdLRcaY2dx1xMPMRj8KOa57r2M0UBrzXwfeXQ0MurbnusoC0AqXY9jiT4FP2MN7ybvboRTEVMTpxpaodBkxYCR3UiZoIQBbxEBGJdHxAn/0zWEYFVFf/VQsDHdqm7iHepgpisUMGiZpCeNFcHhRh2uoi+vdNbymtXWkSe5JoaVvOfDUhaJKmcoP29MQ56BIL9wXxmkILLdRe+AaYK83cFUMUnaTqA4Z6JqC74v2yk1lE1sCfHVkYqae4BMm8jZUdN1KiHQKz/6CM0dxEFwELxtXWpDORzOEwoSmdBasz7LKozMwrlKqNCeMbxnPVWqBT1w4e0ReDFDCXM7iasEGdaA8yDYgRQfRYUR/RHkvXT8Efnrk+xOYSsKJY38KPIufSIzGoCPCXTxL04m9Jh4tA2TLysXjnROf/3UYSxT6dojvNCzWGBC+xfS9DM6G2XdkYeXJ/cixie/CFRt4ecy6rjHJZ8RVW/AlK/EprJ/kQDIw/51w5FAOY/rvOpD0nKJH2/oXKfE5xjQx/5S/dYenK94TqoR72d1V2B6j8hTRVf2r0jKqYGBQF95l6QqTTUq/oDZPy/Acd0t9qbzyeWKlCTesl3QEQQZ4NI+tZtUNa/MoowUGf5T31aKvBLsgroj9WcKv1LcBuBxDoJ6zxvzXkc/TT9QpUcqsqGRbp46sZq/hTWvaPTztRNaF4YRHaaTYugJWzuSNXdzHBJxyy1YkmHxaCRS2jlblscTYw0fSMWyTKGmJLy+wz1jaQTnYSesvo7NP8iiaBf6Ik3izCF3uyZFJRtXFkhGOc/dnhRtaiiYmZPHUCC9dj1YuaOCpwXSK0CY0OQEWaqXpsN43HzK5MXldH8qI4lgVM1JlgtmfrchyquoPgvx0qJUR0IzgupKZQk2E8Jja+dDCHFQqBzZJ548WxCpTcoScRmjTa2Suc+cqz3t+XKnJE8fo9UmvdUJRYWdI1LS+0dmUmNFPkRuD02AQ+fkseF+9YAlczTt6TXN9jJF0VUcJwo7D9y+CS2k8mLplB2fXybZhLbN7YVRgSODRbP+TMTIqateLHWq6zBiRXoHpSn4D5UCDC2CPBuHJ2wKRi8E2aL9fpQKHW3Gwmyb7icqyamaL71Qv1V7PVm1X2NaKFHpSbXvJBnUmlEPcjZC1jal209L0NhVobO16lR6zZ43t9ConA8WU1OUrOp4Scorsw3YWJnryCreXqGlQTZnCy/S4AzZwbaoggkHXcMxlCkcKoLnpfWZ2QuWqmeoJ+OOeBRQ/xmE2+0Zd3dYU2fz6+L3fz57fOgTuW5qgzFsguzMi/6KoufxTTc3wW2bhDTqdckSaiNbYuw0zv5fqaR+xta5Sspd402aHdz9bQy8020jE3EtD7LIV1f9P7i7v5MPzWuW7ruB5WamuoI+jCxlsWb4WePmMg1qV643ty6ASPCkTcilciIAq3gNRUo05LJJ2n7+Tx7m8oS6jv7ypSKyfH2+7v1ZCbDlhyCJBzbuneOjee6rk5RFUqTTPsnubD9qaDS6WJHkQPo7XwCqTVa+qE7y+VsdyFJUGMeCCBPEjNRrKcIaiMam8oZEsBARNRw/wuvrF1V4Vfi3h4AlGgOtG646BkFuy5UBH89LCJ2KIbvRxniv/TrPfJ7G3PgpF9CMwrp8k3AuEbbMvO2HPJOy/5IHUWEINYNkwr7Qq7pzOq9bLFWf2KIkdqN46wgmJd2q5CO7+636hkqvhz/RS1jYv9xCB1+pakRS1jkj6R/Umk+lHsrDG96VxAmsdRrQiNENRinRQZm1jICfFzw0KdN72WA9SUbG/GHh9K8FpvErv+9Y0GXa0wSGGe4DkG98Q3dVu2rtcze23fvoQSx8uUFt9oomMlFEjEso/tWV35kCrde5H0GgQG+ZKHxf+IjI5oZDeXybWQZCWSlQXeZNgjiO7OCEx+zaOFVoDoGEP4qMH44yedzLI2HppbXhQcMsw6LFXqp3PWn7lkLruOtfugoqTuGIwnf0jpCPUypd1VpdYVOulAGl0aMnxDBllr7CV01Xvw9l0RSo7hY7sydTn/Mu2Pjlr5G7PoVL4+Uc1hXOOzALg/fkiDXF2LOJWIhnq9NN/MsNjqxCrPS+kPImwra1DAlssl6+AaQRJTDypIR9o2+Zdz+8e1Wb6dsgY+bmukxVSx8ekNUncpKuIa+DYmc+P6Kw6FDC9XVi8ug3ySNe24/h+ghnZf9ZegSezKbVW6KsOhpEZBEtc7xI7AP6AQVdLWpE0pptL9WHOzYVzUoZrwIRUhxyJedAjVc/wwpIy97hhZlQ2nN8wJxLxI9MAVP0ZFjr4LbPJJHCouyLmL9RfRdULcWTCfwLgbI/63Yc9/Ke9EHpX8HEhEDx6Cgge8ww9FqNDawhMfZIUnimVotyXYO96Rwk8Gv6JCy1LITDfV5KERNUUYSF22el/zWXG37m73SAA2sR6RckizkxQAN4T12V9bWGG6H3IHMHAB5TXyd5kQeTg2efCCrw4r6sg1LK8mTLVXjno8AUcBxMptWTqg1dgx0IAR6GG3ykXvyCE3SLCtaIiNMg6/3dYwnKX+BpZZCxh0TWbavxxllsPhUxkRTHjquTTgkYVDETRuW5lBM0iHnATIdDSgjFE7ScGPKYIC18R0XewXdAOgyF0qpTNxv6AmZPmzS20MWAffXAjgUUbCECYMscDTzd2pVRzloXHg2eeeDnKQ3vk0RDPszBlR6UpwbY05FGsypcaH3LoELKLSsdUVCk1qy2ZApHmMufurR7WsyLq5eiiV95RR7ejmDY2IvPh3ZHTP7su6dadRFlD948QIybl7pRvVNBTFktSidYFHH6i8pUE4fbN8bJGv57/NYTeZBFf2JQwooDHBXTQRYl7z/aNWIerl9cVpjA5udmCwsGVCqd0r/ihkmNvOj+BJevJs7qDjMLSA6k0mm0CVUeWg+sO+4MHarf3KF+bYh0wQyzpolSpBXHW9RKgKNFWUKOWnbbArsePumzmS+9fzEKKhn34TfAtK40uiJNaW6uHmhfS/ozphcLIvm5q55NOMYcZgKekgvOS093xyz82nhpPwuiTA8ypQtCGCvclfkyl1lhP1RMe9xpQP7CW/D2OIe7fDOPWbJPZEl04zt4OQXDcQFnYObipRuAoX+I4fQyVyytwMuBVmQemxE4JLMhxFl7YoV6NHaa+5BKp7O6yUstL2cHSbT/YmMIURTUGkWbUCJdvamxsB9Y3JmZTE730cMGBeiNh0GdpIVzMaFfobMHhMPuhq3KXjKRwJrn8+IMDueAaV4ztQRf+WMT0pgwICprH1oIXI8AApGmBg1wBe4FlLMs3y8ALfYY7HPfGIZxey1Q3TW8PU/R1LHuo5pDhRKdf478ySA3m4Iu4U066gE5mJ7yiK3VvKGmCkGrFJ+C7HtzvoA89OgstzR37kADT6t/JMVyrJC/lj9FPKIgWyjNZeJ0kqz1xi5TDt5ZbF/YGnXGQ+JLJ6FJHeocg7d+wgo5LmFSQQK7MC+0FE2SWZo5we+1K5yigZmW7zWNU4GZvN/V0Ld+oWMUcTvpbZNSOzXnR/gm1qNyOlPdaMtmKFNCfn0InQHGzunV2jLUpo2BtphFLR/vZU1K3vPp0GvttIZ1AtUuprzgGpNMkBolhQc9VQY3Y2gjWcYTtRlfb5edfqbOFznNgUbcgg7YZYy+4RlObmyifZeQTiY6+usefd/yeiGBGhUe5vIekRqtnPbNojAnCt2wRlATz5e/egIZ8MEmGqT9AEOs2T40LsjFAD6HNFnxphPtuXiaFVIhb4zpvWrRLhYEfL99Vts1+bTDC9v/MAngmAMy5XCSnjIKPtUySh8VwRkeR/lu/U6HOl9zt9YdUXdH9VKtIxRmeqr9WnKenflmN74n7EzmxgeOf7QPsrEzazJSzPXIbwdmhZb1QVPs2tSaSmy6fyedjn2Km5864MnuxNrM/6CiJYdRp/Qds2aJBV3+n1qOH9+e7fOL0677OeOxYjz+tsHeI0p0UVV+EFhHvHsknWQ02sMy3HJd2UQi5Q3v4e1o6jgaKj04fb0kNYDUAT18VAi58XTlPDHQiBHfGcRincHG0CRKTqyS40p2VuC5HFmRztT8dzb5bveKns8T8oDDsqsEtoliafbeBSuOnTRA46Ztor/phtX63vLbSLFFSkWYQMCtEd6I3DZbzmLtlamuFoSlqMAAtUcweOKYr1CqpwVqjzogNDlFbd49BvO2WXkcNWQ+V1WUd8IGMODjoRKiAJRsxynsPbo9FDtiyZ1tg9F9GtMjFekw7ILAMXAN+U/s4lWlbfW6SZv7Un5NEwJE+4LY/shLB+4sG1XrZlxQxutCwuYAiGJUi2AtplW+VUPuUY8Pa5PzPU2HZ29yQF5zL7d77Jy2HW2MpIdXWH4z7t1UU23/Y3gY383JhULNPmaiBplCmpyaOO3++ewhS3z1PA22hgaTWa8PXvSQyI9fAT6SLVdzkr30vUQcJi0wIRoLLuvCc4vFKzxTAfUI1cMkVLF7OwZFpbKYgJo5BsZgIQJCpZGkgq6l3QwARooda6wz5/rpvws7uRxMrpc+no/yCcy1QPdM4cYnSnoZvfs30wLUy6S9q3779ePVSuF6r97THh51R8DGeccrpJiD2alVloYGbQ4GOsPQvn9yOLRV9Ark/PnyW+JXYCXYfpRuPLpCFOYfc/cVA5mriDhlwaprsnc5pux2akexfdGMYWwEUyUErfvWEuwbwySRX/GN6Q+ISTzoK66BOWZoYo+RgIm6uahVIBav86VkWtLiiUCjZd3/TEB3tER5U/2/XxtnDWFDM6f1QIAdg8OKdr/ERiAuBB4TIYxkjE2VeMnBifpPPx3C8mWqo6RCpxNIlMzc6lKkbpyFY6m+7MurwEt211BCLpg1Nat//ixPWiJ0yGyEjn65+7wI2X/ziOA7PkmJo+wGrxJSDuE4PLORbhzdSje/toZ0Sfnt3PBC/UDLdGlaAUMXWpNMAVbN2aySlT+7cnJPWyrA+Wi48G4Pz0SEUJ0PHMeL6jtLGl9gme9Mwjz40tO/K2zu2PiT/+hnEUXSAdL7T86Do2adenqZU16T3BduOvqj6okWjgPB0Ue+nTIERvv6cs346qnQIIXErhIHqCsReAK7xBeY5MPjQtYtHLAuFjSdIu0hNU9k3A45Hr7Ih99EFXF8lTww0OTZ9f1DFd5057JBTn+mENhNuDzOI3Z5D4xH51mWQiInK6Gw/TdqXXBEeIcS5wc7rHcTCxxS+x0E9NryJeWDDADPWZiYTzaaFsEfGRTC7QiHtxwJ8c5JShj3qqzKWfYngR1Fo/8dp401asnFwkG/wNW5RaL9C+cp85lgCZo83wxi9KrnIFrvFgpNu1CNm72YfZ93Z9v1+/dUewCN/tLplaiIsLiL4udvje6VUvSWkMMWrD7UdpThXe3ZJSzsph5JGIFpfDzIYX3U2gUK4p4tA8Q7hkMWc4t/dav7bBsmmCVkHLRkvA66YZ9VG1KlKNFvZxIQ3SjwCZicIdmh++Mj7nlj0qtZdDh16878KfAwgCwuWNfbitYh/034AS4syQtTHQAP12smN3N4wFGmWgIzD4KnJysCg4AXmrKorcFCqTpasZE/QFrv2CA0dWWibqiB1U6dlQuaaysOmCkYSTRvxuV5NZeI4oiJpQUKwlo50Z5NZ520WRwoIfN7OFIqS/ziaHoUf18KUTOA+0nWxB+iR3SVyXZH2taQMEF+b4zcCyJXoWWL9+D9KvOzVllGjKegTq8/JRfQTsPPuFKUiwXR4yO/wuxlmCEdzbzbfxfdnLDdcHvV2tHAr9swwF6eRYoKeczxaJiy+SfR+ggCFGIPSOfHvefIjeZ2PlrgE9/hc3j/n3jBrzbwhbly1c0WYBQFUcQozx5xfrhpd4BRvDlItrwi13V2qoWCQC0OfI4/TjLtqPxNQWvfR50lJjT74U7lyfRqYiUm2thzsMnDKXGNc7oJ9FeB/XzROGmrf+RDnXcbomGzXEgRLkTBrnAIudoDecGYWDfg0JuwaUAPDt9tP6+GOTQcb8oZq+XXebTHep51MB9KCpVl1zFEHqYjMU57jd/+L1JprZik8jhgbZ7/F19+AmKHlPYCCrrqXGRqIp8Cy/eYF9YXsoR1AgEPnlHllQKOUHvBMXW+rBWAGjgcLgdqlRp7DY1wmYPTI6e0VPulHbMkLBoWvNR+52D1GNlEH2wzNsg86iopClRyYMqHqbgNRbRyxo4vVLw9TMqTFGay9/0hZcydZWqt9aUMJZch+/1jD97Hbk1sFHzcJDGW+kYi00ciMRPasZQgdSgJVkQU0qmEDj75cUgKpUcDbOPq2JCxlSZROwp1iT9Ltu+5E0RLSqkQt5b3Hzq+AYZrsIHyw1JbgAcLipBWrdocIFysaMfKZXNqmiCAoLX4dKZ+Ngn2I6x9ImWaBp8yvqVluyrjA0SFajv8RHPEueB1PKAGoZSQsa5ZL2m4mMxtoNWY0DrxdrkM7ou1Abl6jE3tRl/iIRM2a6lJVtB9v7TLKEps6RqJsfQhbopGTpUu5yfMyzT16BU63lEe1bmwzAOcFNzX80XW8MgaG5S7HbGo2pQMlBUvS52C1+okTGZVJxIMOPcClujtHmHJe1I6zEgm5yEZEg9AsNys0SoMnqRy/V63TizsVyvDsMijazOCeWLFqjU5JPKuXSA8cpjG3x6lW6tiJ6hUUma9bS141Y0AwMM+j4jmtHLJfe3g5w6dsNF/ymotIdouyRSt1+3LZ5hJRkgVEO81F7whpvBPuFksW1DESz7M5IHs+urAUbh+afZrWFhGVkbvUdMtvaYstT9PXRv+7WRzleBjS3xho12s+cvtQa+VmIuY3wCYNSLMKuj7S1JMnPJx4CjhfwmzNc/rV2+iUTHaHjd3CvLVok8jy6s3tEgnnxZCC92jbB3V9Tk2UQR2mWKErHBTCp0PHMyE3JCgQKGUiWltSKdp0uAPB4aBBMMONp/Dx+ZcPlUghd7Ii/GlSN1sgHkAQ9B2BRqwPZy/8WFlo4mhbS6EXerDgYlY+CdLimhbCZL97V1ir7CQUYeUYh0WBNgCyUTAK37sy0xn8NLrCJWurDzkW1MnSE6Ivs77neh29HE+S0YCEB6nzU1WlwYpn+xVn7Od6sgr4vcy3nYBlZrPIJSF04hhD6iHnQqHvRVYOIK3jtWGBkjsNpDdHdowvUCrVUNJbGuT9XQmYgOdMrxxQ1SPW94CW/Plp/6kuZCh52j3iWsfftVrqXzKhhlxBBOT1PxNyt9xqVvdNkAOTkP22KAqnJti0z42IkMthNdefTCr2HJqX4sGd2D6SvONTKk0DCvNWXu1aQnS8TQLPvEc6eUIZN5u0pov9WqpxH9Ilml/e6NzQqBonTSQINYMDtRQmm7t52MaHs8tziZP54wTSLt5vzOKadZpn+qbI+r10K2ktK1EeFL/wYnbfg0npthapjKgokBjB7a9k9124kMG9jxQ0QPlp7pLMKHdtUl7nr1Jrh+5Efk8diIe4FhGhXnHOo83LfcAdzFKl2curgsASi6TRLNlj4kpw0IhrSqo0wLPHQ21KuV5JGE5bUicdEjv/msd91SiqPRPELnmOrDR4d1YYzmqg7B3tjowMaCz2rNRq5cLkG5zKHWX+JgOLwAuY3gLjE4uAtLfe+pUznUfxWIrFWhzlDW5RmQ/rl9wGy+/3Gj5TkE1ZxXSO6/Arjt4z4eBjpPKF6mYJLWMnkZq/YDQpAUpMlpezGrN09eSlgrejRQcZV5TnSLyPXypgC6aJDfCkKXWcQW/BD7ZmMQKR+SNMQ7hRX3fLJ7cbMbAEdTWJ2bJ1anTY64SLyWopcK6VCH5weykD+WvHhqtU9P42kctpwAYLIkqhljRY5eNt4Y9mDKQREO0fPtizJwZ4OdonW5S76F5fbuEP1WzYqJ5nKT4Y3KYa+W1
Variant 3
DifficultyLevel
651
Question
Jo, Nat and Alex entered a lake swim relay as a team.
They divided the total distance into 20 equal sections.
Jo swam 203 of the total distance.
Nat swam 203 more of the total distance than Alex.
What fraction of the total distance did Alex swim?
Worked Solution
Total distance Nat and Alex swim = 1 − 203 = 2017
⇒ Nat swims = 2010
⇒ Alex swims = 207
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jo, Nat and Alex entered a lake swim relay as a team.
They divided the total distance into 20 equal sections.
Jo swam $\dfrac{3}{20}$ of the total distance.
Nat swam $\dfrac{3}{20}$ more of the total distance than Alex.
What fraction of the total distance did Alex swim?
|
workedSolution | Total distance Nat and Alex swim = 1 $-$ $\dfrac{3}{20}$ = $\dfrac{17}{20}$
$\rArr$ Nat swims = $\dfrac{10}{20}$
$\rArr$ Alex swims = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/ExHByQV1cpFuuHjUEKuYGolTIZDib6XuryPV+NKuFAOGTdcUkH38NKG4sPAP+Hdg3Iosuknek1azizBa37SyEyvU6/RwC47y1vk644na7zxez/wtwj5xsQczQKoyBmu85E9MaFpKhHKrndLQYtwWaobgZSiKdUd1Vmwus9kJnSRTjCZmKoyStSbiJESsDAPcrtlWU96l1oiccEgPuXU6gkoydQR7WXWm5ALWfWRA7ulXaPzaH4pUnu5G6MAQHoca1cF1lUDR0IyIiGHMNntvdK6Ox5UnN46OWrp9isB+mdcZ1MkoGaxij/8Ih/73q/WrB66twCu1+avC5k16rffah1LaNxCzsdHqd8W+FKLaovQPoKP6XnJkS35wx/iFGfxEPnQJna5KHSKcbP0OxzLxlwUWOSoeuP5K/8Ia8HHhD41xentplpzTBGkztHML5VGo0XU9ILvb0F66moXVsiAuDnvvYA/bILZ40bJd155Wb2ef3ERTrEXjIk7Nr+JUjD43n2/C9sokqz/oooaR39tmdNOupMCS83THTkh+SsRXmp5DfUs+KLUzKceAV4NeabBQ4vH3xPsAlDXWvBbunHOKV+2Rq470sQ9IStvZ0mU/s+h7zl7/pRGM1N2F4/3VQ0pnJOObHV6YyZCE9vIpOQVk356kmzZtoyY2BKrn21c0pG51mZ9oidjM37YJwp2GRdYGlLb97K+e4pShskAwtfHvRNuiJsswsodxIYY3kJdFSYTSqVDKNWQ0VT7/J2qfHHeB1htKg10aIhP5OKDyG9wJFVw/NnwLdmB37FdH7ZON8yuSi3jjnKeNlZGGd68YU6pILTZdHHugLMrJCal4Wr7o3bPBRxU+fnNUeMeBt73r3ZPt7flOhvSzzrPCdqApqX2JO4hQYITf0mopMDNACnr4AengzA3uzGZ+l4SxCuBfl2bTwhUh/paW1OGJ5REd/psuMjh464X0ZPW8Sh769XFHyRl40JoxzVlNP94EOw/YJtSDauMEMyWwtjPAEAJumpXoZAr1CU8HAvDkyEe2bKZyzz3HNb5uR316H9vtRl2eTmKG8Rk5VIKrChBq+fGSO1wkLpeTZFsPkF0xLXepFjk+7/AFn64CSTNAI7s3tG/mkC7hOZ5O+8O+egTbhguyxwk89NCQqjapTc8/qDtOEK/A9/llVexquFvYCLOCPCt4vUqmT7em9+kTX9KkWU2+t3opP94rHtXrfvQjsT4EjBXRsW2laCxUALGDiltbrE2HhxfxX6q+iytRnhG8+DdMAOle0KSd6hHgZln4ztnyG8vr5cc5jRyHXIfKg+tcrM+5lp5Pw0OEk2fZBqscPnUPSmda1eJxH0Nu37Yn1Pdz4ZV05T7cTvf/Ggw7T8xkcWwt8G1jYWjYO3F9TvQpwK0Jkw3V6CnlCPMdPtF9x5z6qV7RDnu7UyD0UtxgvEITIMj4lMvwEcfFuB4h7aSEAQsCcafrpEuFLwSGfyYK02H7jtki/q6ICrHL07yjXMOQJE8LV634JU6GDFC1d0ifKCFpTWZIhjusQtQ2ICapHthiHl+pniydw/csB0Dl9oXyCKa8R2jnypbTn+xbEWO3d5CnbwnzDhzYZl4mSMaQfX7KNUmsgOlzagFFSxEIZi7ZPeCTfwQQ1m51LxRULZPfF8/EeWBpK5SXCuBIZJaOjvNM1+HNvn4GCtzSIvordHgeg+4SQC0aPdhSzyy1Q/FPSB+B91U8DWebqJ50xo4pDG/ACyv03Y18Ag/wtv2VVBV6nXcCmC1BKWcH9yPna6PCqoWEOjylRUXZWpJynMQpnDjV1vx6vlr8eWh+BRgVHk2zQT7Ju4M3wqsAKmukSGcW+BIxxfWq3FW9fBce+4nolVnEpEBXx4L70dgfMc5u781Sr+gvM5h1BTFj2OgfJU43zzNoogAE2Y31QJwwLVIuw9xMTlwQfgoFcuPwpYvnS8qcwoTU3z19hNINs+lmyKmswE2Ac39eTrn0BvqjIjPcYej/KXO3VlGaOxT0OH8bVYgDIq9phvc7bbrfioBRJwVHT7HD9IS7HLGfZUci4vh8MgH3IYTAPYIecgn0rR45xziIG55KRENrJ/pBuL/pCfr4Ohk5F9ABOREg+qx0ZxO1GY+0zeqR8fpgjkc5XCATUC/2HIW4S5jLz6Fm0yYE2uIe3lwGuehNGEhMZG6EJz5n4kWuhH7W/b/TKraggcV9WP0uJoIzwyBhE8Ji/CVjFllduU416lVYeJ+Zs9N9FpotWNF4fBaY8Hv5y2S9ObBkCVnOyfCsVDoGaQNzrCD3QTZEP12XJfRriMHlLNEJeD01TPgN+qpxa0357FeFY0ZUMqsn8dVKMW5Wm5G8v0PCIZUbaORsZO2zDoEHMNhbDpYB3IA22hsecqi2OxcFZoJHYNlIJQGUzCGRCYdvIDlTJ5tZnzQjMkOXzhIYUq7ErdVj6/B90RYRpM/21/lNRM9W5Ah9OXJ6rg+yFGwSOSSgtxWyeZWG/AznVE4HR5/Kp1OyMLtWqYeqpVr5Q26dHRmz3OFf7kmjoP/BhsdG20WHZRkZxzZ4nl5cGYKaY8SnnVzQTfjJ3X//WWhGvQW8AxiQ00u2mJAGCXjEZq8T3YN4mS7Ep1ADMg5GIdfywDHvFLwIkxPQKqYIX5tgIAq0YlaK83SXche6fGl5MrovP/gaN6xWab0Q3oD2XJZYpLHcMK7Nd5AJrtBOg5FXgmqEyVqKSfcJmF+zsenfL9imIUcIf6fmk991sJ2Ulf44uPOthipPy3bCcYLOCuKevN78C0O+IucLYdQlr24kJncqSusYiTD9uSp7yh9/G2Oflx30NgfFnOTs6ws+HzRdJJEdO8/c6Rz0vAkBfyWxybonkpJ0t0NhyhlSHb26bwAzNPW2z1Xm9LANy9x+1qu4tF46opB0pjAfewQeDyB62svKhVkwzMCXdF5WYL0vJyS3sanUngqg5f7Qwg0TT5QuGmYg8aKA0oIL1W6UbRuVXy8m5uCIF9o08/nbmfZlvWCPEslsBvth3CdvB7ADmeGvLezovVDAKcarjcwPT44/n4KqksaKQrvcmDbEHkdNsiLUSEiTXhIzajKpXWHD8dwh28AUpGBHJZwHZyKqMU1Rmy+6C67QjXsQvcvc9lyjL6vjPnufjFfcX2OWNIjRamKWvSSg6STLWHEU4ELNxms6/qn09at5dnvP8kjpMVhXCM+KulVViyxNb1hNjJRW8uEvGJj71Vsw5C7Bjl6WSCf6uuckZLPLXg6qcMSW49qyhI6e8wZI/i9VFLvksGeHfAWDxAZqrIQTrWr9MxoFrd1ymVgmDBYfcvtwzWlcVU5k1RBJ25OTtMrIanYIEy2bKDZRBC2rFsylXYiWAnqpMFFgIQgBjDbb5wDzGmOkGDCAL4ZRgOMedBYyM89Jza1Y7CeVa7MjOQygV7cyihE+u9BflOZzK6cuvxoEFZYPIolGr9gOS/3O6WuUl4L+MeHH4M32EJcR50igEPcpeKI6egAQkM+Nfb66cOA5+xZqdaaLjqVgjR2eO4HiGx5g28+IssCAL7RIUzTP7Awe/YUlnU5UuI8I5g7uqPn2hFN/Dh9t2WqJnJ+fz+mZfSqm+dpo5sGs4SPvtOMNViWZ3ZVDGB3zNuAy0JL+7eEDk3wkus5Inz+Sqckjw2c9WpiP6D8BKKki2hi2CL2uc1PgiR1zobxMwN8q62GTiI4vWjEd2y6dvXlk3aQa3snKqfrJmkyDDRC4HJ21P4WxBM2MkpmD3PX8gZsD5v+7qFZv0pTO02V9I355u1NPqYVKFfiIG6si4qM/HlTj9GhkaCNvrNGnGH3G0CFbbh41CHFhOjZyIKDFfXFWnIRpL0eFapWxQ//HjbwF52HnVc8KRkDfgwCgloS9SD4mil5+vhWZWK0GII0QWYy1jPkG5J23c7mK9+5sZ+KEjBpYPD0dKJsYTNhA7a3Eoim99H6mm5IEzxFck9KnWE0nk+vQTRgP5CvjIHk9/nqpEQxnw12OzyvNIwrojZ/Cn2iV2xe3eB2k/Uxx6TcN15+aZy4Y3WEBsL2KNlepdibYZ1BgW5KyQT3Vls3BFsvRW9JXw/YZf+pKDNyOtWdBBz39UXZtjJQ5aD6V6RdP3JZS2QpdguiQU+BwAaDbX2eabUFkwC6AoNrjmYL3m1PWa/b8Gzl0/Ce95f0W8vIF1ymydQt8gieIXV6m1TAx2vo9bza3YMHxEXV/x755Em+9ITCwrlPURyfH8OZ1fKVHA/KlNpN9E46NddWlv+vTVIJW0wVF/PDLHcvsANdt5MjJRRAxPxFit+0IiKD5ijkc5af46x7FZ9yhnBH9tM0Hkn3VvzzY5NKi/C04FPHxyqAEfJaMij0BIS8QblhSaw4YPJPvpvNNDmTYC4HRYtUMF/lHdrh1ruPD+3jHk/XClawaYJs7U5TeVfL6ui07WsTEDPE1HlvkLLAAFETS5jAE7pS+KVDMDz2W6akLXudWex+mMoSXECWevFnT7vcgI7NWUjNTyYn5tK+JM7P7iVf+3hzkZnms/6Owc8K8fdscCDsGlsLXhknEI5BCWDYxx3fyHdCC5t+NaJo2zbFQznfICCgdNJnkBOMHr9DPEgK+D8AqIJq2gUjS6exHsnHRHfAJoMXk1kvzUMdv6T7iQgfgBLrD8A8knnh6oh9dfQysPTXL2HQfcC+ZDeqbUVvnSHTlxl57YcGW8uARnBaxizXXLw1nGoCswwzI+IHFRphoC/wd+jGO+qn59AJ4X8cOm1tYrAbXkhM+cJPPaCnvSPtdI4HIWUGbdsqukR42VotNx4F/K5ufNvvfAiThgj/f0mV4do3BEkM33XNgiw7zjErW1RIwLNprH7fNIlvCQHgCIvL5VMmtWG4QvRY/asIDYv6uh2Xnv/yC4yXrVOv/13JUfJbP2AFyioGUJu3DVUXo806oy1C7SpFQvPL5NhO/qoCrmu6CkrhsNO1lQxzmZ2TnkoNjT6bW1xxTZbKLvWZiwJz5p7JuJMXQSDoiihlg+2y/gwqG4Q5Fm+9lf/Q22Kw3emectaCbIhokka1Z3DoEm/G0e+BBi/isxnupyKlLaLv+xnETarS1wUxHrkZ8k+98Be8D2UxIL2tDckL6616OjIiXzT7S1V7GfdKTBHAsdbaIQzoPdfrWYyRTbqWsbQxMnu663Us1fBoJVVhIaO1PKD4RciX//hFbetrbpc8BttyuQTOFPtnr106PmOjaaIeLDgmVjHZdRiI6ZZXpq/ItWh5ENEeZlwIV1cWAbt31dOMYgDMWifrYgNAq3X5hJAhKWFo5IXptuM/bFtjmGcb5KGo5XXPrENKWRFWGbHyzk8efBGJiIqRjHIhQcnaJYYaDqRSe5ahR6HssQMUG5aj4Zchh9346tI5VTZSS2gRVbLzYPy72wrmspE5nmaRw6gqucSR+mgp11fKN2V/EIZxXhE2wC9UDe/YyDlXr46nF3OLIs61FEUW4yY6kmVmQ/uvsI3N4XoGZbVWDpkSOjGGqTqAXlcaCMydB5ipDhaCT/CgUoygIwtBoM8MVje9a/rHZEK3Pf/0pPesB5IhabDbouBWp9v2ZIMoI64mMaj+1TDJmbRkWXdtCWppyE66YeFrcMBdQlrbCZMNQv60X5BnBOhqwSpjiGzeI4x7f/lmyQX9hWX4yAPT7QogICsAH2/8WpRLboQipJu2R6FAWfac72tAcHf1qj+xU/HPMLjZrzbnPUmT5utOhVWkeIeCvFH9iB7U3Etmq3cYwWNIXOOGgjGMb//6pMV5IEDn1HSM54XmyWw5odXgIIDJU2tJPdAE+KGQT/bnlnBv0ZND03QBQbjACvUSSSSJt8M3bPAkefaFAEfVgEKnj+xR7nXLQ0m2RIh7/xaeqhn/QtdQQ0mLncLpk04c8Iaqb6HOywEN129dXH+ZpSF7oKsxdCeIjdnldukb90istDHvAwMCv5y80Wq3/j4Nh6v1ix+g0XY/ft3CqKpCXBZused8Zwr3Tfp1wAxHfBle3l9+vpZVGzH1ORpHaIYnWMrfuno0W+9a3Vgvt94LkwYqzJgXIVPZuPb9AcmM1QBegRZggcaOfC8YDWgGOQ8DT9VgBHsuSQwWACxdjg0D4pfN/quLN+bCDUA+6PIdxAKDqCirafNzf1LkaQ4Uy+RqjomH6pAAmM7Kn7VdhIDhvh/z/Wvir55YFXC2us3evSADHC1mSPE2NK676gHajoE0/7yYIFnZ9J1tKfOnBbais7NMWz3yVZ3PGXeE1lrKyIY3P5ZO48vKH0JNjmWDZwmTWTT3CTQQKJETjyWUQhkmPicHPkoLIJcHlWqFzWLw+JgqKVHB8VR9K7vf+9esWsLoMERjS5O7Al3rifth146vEEhUDIEDdNE4hI97W7VJzOBhAu5oJmDJ7ejJtu7poiqTon4kNlFd1+thDShwN+jXMTxtdBDTLnYpq1zxEi+Fki0xOoeM9xLqwAw0jIT7NqOl1f+0fF9lE0Q1WVZ8OYkcanZ7RmQNmhdtN0oXnSnPUhA6sRkNcUkNgG6Y7ddbHGi/QQtXG/DTF7UlFV18XpTZjty0DgnrpBuQzoEC8zKigHWGzi5zkf5H7BKC3HmkMN3xDbHHJ/YvjbTY+sZlkU7XiZv3S4qdb2cs1DlRDAGAf2CMV0NpjaAqbmZPFdkYUXPIWq6Ql29tVoRq91E8T7TUhowTKrburLt9dj3SIoiAnZmv1xvwYcxOVvxU/TaW7TgwB3cqZ42uu7uKnFz5idK3GqiHZAoF0eb31wIvtZ4rJ1AiHTGBlJsN4jfcZj9Hv0l1sMjtwcO/pBy0sl/gomwTKUbwHHT7aQcFkaKIopU8iPzitzhky5t4hWq2KbhiRfsza4qvMoLVmu/+Cn8lSUQg1R409xEd6iccmTYRfQbZPREHgUqy07oot8ZvDQc+8I4hByQxstChdXlnJ74rXLISJTwIZJFHR2EsMnWWN5ClyhuwylfYF7zG2zYAEtQ0ngquvHkgiLRBbiYOEoMeiZP/jJegclulaYrlBLoandk8/w43TsgvpRAVsWD+jlqLtk9HN4g/5izj7xgbWDwigfLXh2q+4sB5Cbui9j6wlFyBb5YcC8QnEdBnwX52jhWnKNUQVHvLn/r3cklz9PPEQVr6prILvPw++TaHxiD+4Qk1dmyQSi7bhZ9O+zmN+g1uH0zljp19v63Q49vN/ACtUxOxh/voVpNbz9LJ03ZttKEKf9JbsCE1O1xba+SmENK9vNIZhoErKy199hndxixUpI81Q4HG1WZrG/j3M9Pccsv7wY5ltP/iJmvq4XZb/kuOEecGMNm19NCz6OrmKBmslaObUca7yeOO1qqq2De4jz5o/Qt1YfVtM4bLS8Gk5rT4Y2GoqkBrsFutS8bop2EC5RPmCSuBw66VdN8mbSTWFKUGDJtA4ubZmy2FAdLaHknsKwMH7i644SaV/E8VWAF+tTYq1/HQplCGQtBS7qV+HTIoHDJniDQNLTlnaQDwg/+irvNL0kSezAgknvYDf7DsmYKYyCJs/16S7qDsdP3DYcDBtouoR7E8DwxzaQmqeG0Y+GvzcmBuLCow/Cc9Cj6/oBLl7YdwA4qZ++9zYjxfyUZmcx6Khfpc7NZOf/WG9yakrFUNaxHnrmYC2Y/1zGtnR0s6AhZlCDPPf+mP+TQuMiIompVZ0Wr10grAhUHas42C0JqSCCG0/U+35jESOeoN0Pvbjzqf51sMIdU9uDvhWloL5wpNVpz1aCJXc0l7IsFTSz2IXJvfQuTabfx3b87IHcb3HOirQcdeAS8w8nD1AIfXx9jz2WawCzz9Ezzx1YfqJXAhTDI4ILgRxN5CMZReQfslGTUHiG3wVQK+c7XLgkkOF5PSuOxe252DD+wWkw+1Ktgh80YCy8Ujd1x2hiUkRhU+fG4LnKSyUgjhAoGDZ7EMIxXA+OiZTIvqKKZBE4zaSSJk41SmseQ4knKBoQoVs6eCAPs1/sra/XJWHmNBm7VjDSMMxgtQSezIhOXl6D8M3YIRMoB1fXw17LCg/EsLV3V/kHDQTwqIPq5QvnmwtcyL3VnwWBbELYue12/dsk3IWXzWNooGqyE/EPq6AMEbNl5Xbea8kFqWpqDUhap5RaIkYzVQFuhyJkIVw6OospfnVeNI3Eos8TKYqencofkIEOa279Vo2Ag9ZsecCwqs/fuZXhNBPuwXtQFvI2q5NTtHKEU9BFqn5MxcKqqLDf8aWIB1QXFdGKWEbhYFxWSNZbarIUI4x56wvI4htw/C5nu8gk4Igp+fguROWDQxfpp9RVRU5hdnELR2hi2YWgRNn4v/xUh82+wxRzBS0VJEJUdsl2kWK0UmXaF9G4Am6PAKRUKEFzydWbPsDI2klDgkmLT3sRk4kFvkV6ziwcDXA6NcCoX5hKiNiJo3HxLSh6ERc5cOtMRZUp13P3EGSCddyU12FDS1NWNvQqvZNrgS3dFWX5BnHynjzhNdwnaTOgEnIkKNW+RBp5wIZF1KBb3CFKAwHwAlRU9QRoCt2itu/0GwZTgZx6yw8vx4Zs6LMcfczfrP0bNLMF+bQ4wk9+7HoVvDLlQGwmaUPzKOD+pTL+ZOEeBXNPaExQCnfrE/XUnEOZ/bcINeiZec4N7MvG9VK7VTDD8YfnXeFB1FWja6NX0FmAziO4miaqHCg+uuNJBNVrBVuZd5iQK8ssodeDmDsB7f7QbS2RRH4qknJsyf2OxIAItWbt4qYwHs1HR1zdoWp0IkAh6HWNs7ES2vLtFAFWieBoskVw7cbnC3G3qWFsujGbcJSJeQ2WnnYXsUY3TKmU/viSet7bKl2RQHSyMzKqjINUo5MhdZqWhMPs3EmowgpfTPnXVDBbqvBm300Z/qXAH+QXlbWHAh37d+05bmQsYiR4dF5W8Vywet3KvprzvlaGa+1h2b5M0rXqlDQsC7oqwhObtQRKC2p7CAi4kRMqI/2gD/5JFPE6tvkfWvxjBsbGoNpT/N9qb2GJArLzUz9tyGcZmdncdtT6/+CQW/l1UT/w/hDH/LBUWTW2wKBM0oNLahsDpmwn5PYqU9jqGiBKy3AaOw8fLptcem56KyUIxASxIsrrhfAnMRLtnzaHw5brqQN6NFGzEMmopcCvxfnoLQpgockcW6iVs91yQB8LOd6is3/bhie+8d5XoR0blePo9P6XiX5GLq6BmiiYO2ajE+/sT3b+IvZq10ssDOjpmXdmqfweOeJO0SndHJKbRQpbN81NB7kVItFyfGIc1OyNuKxS/U6sUIOup+WLKEDeXAPwo3/hI7GPuYU41NkYEMHnarYgAvLonLlyXr35g1LSjcHzzi1CfX56ZosrpQRxH+PtuNbOigmO/5/Z/sbDXviLu/3woRZKSlGyXl1l5znio2SlIOmU47QQ1sHEUO20sciXmDwFXEL9WVpDlr6LRTu6TCbk6qElqFQW3xQKSPZXfApJnK61m+A/rSiAkh33YRAtxSZAIAaFZyrPAIhYQTs5ZZEhXBZ60B2hgKyBd6EJ9GkTEe3IyP7bKZaeUx3cNzV1XFuR4r8rYbzey5p7Iai/+Yawtf0DIJDPYy7Bu8XTO+dgzI5t0ixfwn7XesjvpIGn3H37w/KZJklHjEUj+AEHiH1NCngS0aBCi9bMcE/KJzO+qD5IA4PDUYATeExQwabICmH409EffLuwbn1lc/0Bw+kwXbcMwLu4cBOqbF2XI5MtJ5hjKVEQuq5QYVrgAM5F6b8wUEzkMpiILiYNC8G9h6SH+m4PFgQE6VphuWFoH+BHNLIMI77RI+lkaLMzUflQKwTs7vnqNnO0pIeYegzv4terl1PaSybDH5g7C9yPPnQt/2cj+LMQuy5LEJE1+vKOKkxdPQAnjXE1EPNDbo9+SKk56+r9Yb8nJLr0/SbKxyFEv5RWAtlHhc2smP9gallegjKTqWeDrUXsjXyJ9ZStAgKrLsuHssSSCheKCx0cgp2iOENCZjc5h+/+xUHPN8HlOJKoFbLA4flX6GRfCwbP+Wwxn7PrunclPVGwZ+AnfISeX47i+3m8F09XwYzB1DLZxUUNy4eFy+PWC8xRGOoEjrN9682bEA3LE8UeJv35pPJV3WLGUMijbftbttyWH7z7EBgMdhcwVbI7+Cs/tyOjfpH0S9tzmKe+e9uF068vckOZ5SKwxvOvTxDm0BTdwT3IARa4LcWM/Lg5XEWmPmJIueWLtgEW/GiUvt9guGf7UNX/4+lrO4FfsSC1vdEgHraGwa/NgaQRY34T9pPwcOEOcIH4+Q9i8iB5YiJuqIeIECL+oD1jFodnr3oPn0gjakhjbmsBZ2JjvnyaFAwfjVFuHUK0sulkeomBpa2N7My4+c6TJ28DhWKfMvbVOVaEHieOK2TX6fE9tLjsSPb4iixpJuVI4/ryCiSsUsv413SYKuYw1yJ5EaSFEJXVqIS2QebNbihJfJW1L7JeE4Xy/exMLEMXXIc4EZIEem34HQ1PbBJnCqmMrwPZXn8f2ppZiBCPBho9ycRcRNp2zrut8M1Z79mMYdynHxU053aX1GHVBLKNrPqlIHMdwUXq1EfYTdNLcT4dBNIx9i3grJc1Yk3DteEjowb20vvECa9ChGaBFTr5d0ilZ6moO/5xfxTcORe2gLQ9u4P4Dr0SPkzYqQTba2Gse3KGdBU4bxd5+xcmJyO4hgB7YwcwfxJ/VgukaUqDi26iK2bz5KXA1lsPkKYC3qVERd3EPqoBDrXPDHb0BAwcJoSHNFeTiInKhJKZl8qNUkkkdae2bfUoRW1yxsamcgWxdpKPHFNZxNrtR4o8tl2FPzdH96i6ir4JRftoaWw+FkIheSz9YiWDYhr/bTCZZI8XUbuumPvOTRuqH2PjlE9tbm2LiuLhKN8iFyfRKe0WoW+xpa2h2+lHFski4i+Hp6oG8jvYM547o97IXsGwgJ9ZuTLDx6rLgxjmdIXOHlOO+KEsZN9XOaAyueiTsATF34QQo0H+bmTFKAMWsXspBOPVEEk6nYDXApOdZs+fYVmUUgSwNts/R1ahYijRcBaMJegvLJoLcJFZ6skxDtWHS0bOQFqqUcDbWpvTLpY9Esj2aNvQ8aqij0KWSYPza7R2cwIb2X8VCdwr/KKQ5FvSuy1LlYZzJ9UGbL70fR+n8k0AciNkl7q47SszdrPGW+PeLwoKTdd3/kaFdc3EmQwHJIVUaluQaNgvBp6dnfZExIQs6Lx6b8VMB9vN9MUQELs/aSWPLt+pIpe6bcNRv0zMonTJ0So5yMxmVA47iZ40woFiTdgn+lYq+qfeZ2MKd7A1almLfaPuEhKqPhGU3xqxeq8Q6prDAxj+ztssezaXSibhewKDOAPRxp+qQjUH0wugbkUOoj9oSabF9kgx1XcCC692EEJsqKXlt7uRYy3HoOBJ4CCztms9OGzrQmxO59wHltginXkuPxeUjB+EnBg/IsH3yZVsvmSzez0U3D0Q9bDVWh/NyFMrsD0mzfXBqd2ozy2VGgs0CM2z33O8Dwser8ikyAeeIG0wpIyhroU8AAGuZAWE0EubN8YyT97w3hE2z35jqQWgQvALpC0mqiUUTu8weOTP20yXdNslgsNxu9AMBG3CtrVNyNXTsKKKWs+7L5dc7J5f4Mk4BZtvjjN7LFOohXdRjfM5UsSmoLoOhXhR+vwtTrGKcmINFSqbKD5NnfXfYhberg2QfQWaZrh6VRJ6xSy5NUyLdHgNFDdFTvcCmTUhhjvl/aOHx7cA9KtFrasRKup+JZ6FLpqL1HwkpJtufVBjtB/Wq6IGO6juEp3Tr0+05Ucw3azOojYqpChTTCCvmY7f2wXNYdV0aycnYLAur77/iQ/Ez/stI89CN/HQ4vpZ92Ny2McpRVxyIZHzwQe/cv0OYO+Tp9nNjiUweNThDXnpYAntJAa5PjjE1dOHVlbmMp34jjG5afIelY6VM26kNyYjSxp7AsssudyIkb6Sy+8g3pbmkt5ieNvsCjl/dVFBWUsDXoIRPx8Jae0pI6FF9guBzz4P2fU6Tp4VQaNBAokcw0YXgA+c9Ammp2imO0etKV+W1PcRSvpnoj9g5edvzrdnO9RgNI3zpk8WK5burIINoUtN/lRxwPC5p7q8/wJnchJv6pNfvS9rJ0R6IOs9wogjMI5hcF7mGk6PcayKUuFdU0wISYWO0Z5pGFzifgnw5xgN+cGoy0Wf0bYZW4h6pOYTbXDn28FLvnNlFbpYa0SpUuJG1K/PtdDufCbSpNdhFCvxq1ZqIvtMymvlvPWd8xSH8OVH33kJ6RILuqJzD/qqMU9wBkjt4aqhVk8bFuepMGv6RT7D+1g6crWUjJuFp/FGIfZCz1JS1T97tV2GEZBqNWuWNeNhMMD198WqTOKLuPyGQjFFlVrRLqeXHm3rVs7gzLOyWgFdwFAVWwocn+iu7vzc6gg27zk8AhF7MjpZjemHwkngvcVw188VPokHKz5QbTmJTRyenetjjElBalRqfdfgS7k/4H0GQxyMCd/ZLgMYMhi2ivLK3mPUi3fyXnEkxybrPxXwpqQGyqJkkzmnOHHyKXxb4tHl+erOwuxTb/9s4qCrcGkvyZ2z290JxDIHFFIk2zCQnlegqC4K5YDO2nIjccbKs86YTu+vOIiN3ft0HQg0kNvGiTliBopTh7FpbX7PzTAG3PLT13bXEfj8mIRQPmSvi5OL1G3jTqbEmrpHzkA0GGLu7lhi9vSfkmj/7C6Wp5MjQiqF12OoNLJ+fiMOPgOlGKb8zOIRLgGUyefTsM63ZjGWE9QqT75l3PcTrflLQv00y9z+cv1V+hLN6E5cJ6uvpDxDIdzGnbFBlUO30hAmb7uLUwOKD0mJ8ozUQBwl1kuQaO168HROfHxQz0Q6nrTd7kru0XbvDexUWhJ3l48wwwsjUp2m+ac2A7SU0t7SmKtPEwvoAh3XqEBnHvJf5F2Xm1j2w30ylzz5LIERLoBnT6d+5wwQej0vbmUBAmgVoz7pImeAlSAAbMmOydA5r5a3aSgzBmwCePC56wx7A6WKGoDFDxiYyyekj1wWYhJWsS+wGrNA15FOLP4ML5gdiZwOtC0paw3GhNqmwTXonAMVnuv3amvyipj2qYeYG7JkCXZMEZ7/ubLFoaMpfeXuG/rM/GAjNyZlKP3ZBXYLi2f3wAGflrV6z3kiVsqpF7kMAIkM1icxh2SdC3e7/ApBX2wO+n8ySnYTXNGb3Oc8rCMRFva52zbLJigTJ2cT+Yp0PKyYSBGZ08YjmdW7lcvc0X3DN72D3mNAVIRWRGaBJtCsOm3s6iMCH6S2AEwqHIuI/vA3wWKEB3TrjjxX61kNwhQDg2xyeMR3JV3uCAtElX9zWK8yaeVpvKZvDIHLLaLo28Ayin4bEpRYrlCAMZK2C8Q+71MMIjy6PHNeUtHNTKq4uvFlfKFYrrCIXbWWhHQFMXxIO0wPYamsj5yyQt7PFWVUVsLbVNR8E0ccmGrS8WXH3sfuP944BmA5pi54q98MdNirs77tRdrwp7OqrfNHVapGJNkfGGREbTLaCBczUNHaWlf2yyVtP/cDd8LKEpxKrV3JQr3GVrfk7q939HttvmubzpuNHcgiJZKhlGc7AcSh64qUEbQWMGBG3OGkaz00Ooi6wUjtdGKuLEKQzK3jteUdWaSQmk1ni3yGyYI0RxxRD6ysDNE5YMZV+C2fPtEenUgwybs4LMFm1txeW0sEuF7T2N5qcPofnRsybsoXAa7rwypsreGo/HsWyydvbxYY7HxVwxsPn/OZ+I5mj3uv1CPc7YxNeeljCnJrhQdte1fAOO42Asz+93W3uaIhSmjFA1IHi4tdBRkTeRSfmO2ux8rBMpgVGnY28/JCKluaVXzhB/Rp8wZcr0/rm9rG2L8238WLYDgUMGpxtgNzxlgXCsVb7GTn7z9TZf0volWgx+KL39fRUMbTV9h/NwQh1Wli2045Xhn/KG4wY5CxEyhEwcQl+I2pU0EsotoUHPqaVNtm2HMisTza6BMqS39HYOlcCcwafpU5V+lN+6t32KNtjO+Pe3WKokEJdLmcFhSizSPsddkQMgfA9rAMHU4Ueqj/Umtvdo8cTNiZTowzx4gfOYXiF/fKY4LTer79dByY8EfKCmw8iqGZ+pMuOE2IMyNnAE0XMTTvPgxY6bHFrtYX9xu7ogwbePKOjU2HhfyweQtB89PasTBfIofYDf2CNNks2WRAWl+qk3Ej8SA/WEor4AGnbXDWjFrFrsMOc56MvrmnusFmUYnxXTQP77jBWDqWNHRCusMibK7kKvb/6OsG7lVv7qqoJrom65T4FchJKoPoJjSAylfeHwKPYZum9UFrH81XVuXrLP+FyFY3kydjVlDbSdSSRNeapR2q0P4LaWEjro+xx61gEir9+ueBIl9vnEx1ypGGgMK4OkvpAlR3jn1WDchLxypYIY7clIFDjlCvJEhI4lqNWij+bAwrpWbRulJjPZnVE8OyHld2jKGkBLoQjJN2MexgdAlP9uu/VoPkBNkSAVSXrphYewxXEXtAwgd2qisSLhOeCqMVS19s+WxP+FExQ2OulA2RvwjjGfmERT3+0D6g9YR1X1nWc4hpKrLZkWZI0y69Ah+oVdRsO4wB+tKi5fykYgE2g9UxQA1+7rv5BJ/PDYxPtjukOPlmaEpumQOuqoAqzS0z5Yw2U/c9t0D4cwsnPix9yjWHxjL67GwGm7Di/7GFq785Om3lRrxB4USPhB+vRq4lFQ4CeWbOQxIRr1quNZaKuimr/0mxNuWzlteysj2Ct4dw17eckUBoxV3KabQiX68fq/p6ivYICZhuo7LPgJQSlkEMc+y5KgiG60P/5tY0/cuY84o8uyx0/eve2YBpNwtt60GbaLPBf4FUH/CE8LPDMu5KGomq9/isGoal1drbQceq+kSQ91i+rha9Da0Rbd0co0aBlrjjT3up38zMlTEvLlw1H2oNEhjHqipeC2CsiJAkKsa7TF4Q8GyL38lvOd0SRiPzZ3b76fyLPB7rDMlMXFwXnNGXNQwsANe3ftay3ozR5DvEe7U3niiQbvQVA3wYZIw5zUKdN6gbIYWRS4f5EwaTsikNgJ4w7X27cZX8FL+7oyFkQKKMCLCuqlWWsX1zARREkHqDc3O907MIhpLTAH5k10qLff8HZQNelNi1adY6XbASW0STlkM90OEc3NJWH0ZjZYWBViyq4eQrirkIbTgnnpCl2D1P5N0THIfEHLDkJ2oYq00G9Ano4YnfyGALM1pAo/1Nd+op6mgiKg9Q8h0WMIJq8vFx7PEAKHBjfGcRBHbT8ZggAqxiygQHr7Kq4SjHepAB82eEcdHeD9wiCR05apF9OrhC6Ae0z+YBmPC/mbY76fWk6oe7QCNilx6TmqjRO5D2ki6KAf5/gRTNYTwiTmF3hJpq5WWEHfC9GrbpqGk2pd4PhH/ltkaRDd5oLNTb+SodRC4J2iWbdrHBGrw4UlHU8AZMn9UOAnFRbARX8i7KzEHOjFanhy4bIaB7pW8cPz9hZ+l5Vgk3VRZBndKKyZiE5VoD1O3wP+Zqz5qC4vS6NogHtpxgzGWVefiDWCRsW0PP7VDA83QoGW3Q277Hz0hjzLB0wD720RMfnltp9e3kg/3woxMRKhyu9rKREsn4LVEdJAbexLA0Qu9iUbaZUrAz8kg2JxMSY3DzXL0etGcUnZ1IDJYK16ho7XZGMshaS+dMFJinKR5vW/+cZ7SMJG9f7YL+Q6DRFffzj2uoVPzY43RSfjfL29iXggKOj4deAeImr6WGGLmPPnReuSy8YZ3lXUiVRHHa5w/giXptbvsLoveVboueW1wtGzbRqr/T3N7rdPa41rdi+M5GUjeUmJcOh0qIBy+cup2/pawq5AEQ1Qx/QZ/Ni+Yri/d/WIFp+NUdT070GI4WLpeSgFWIoYknGVi8LJDWkZXMZkPXFsaJrKvxF2tvoJcH64PGzvZSEXJ2qjosyd0wiOVBz7YU/BZ2d/7vdBQmOy5jTrFAw/OkP69t//JcaGtRE5w4s37AeHTDk7L7YyuodvDlkCpmzk4kdRYb2DYYgfT7l8fNCLv9QekSBwq3SwKfE5mNRHhCD46yI4h+nBC8lv2R63/eELYJPoBjSuM90j/NltwKyFsbu1fiet0Fh1I2oPCYt2zfwS4P/pSc1VMufw880S51MbJs9hsDusHWFmsTjIBWa3LwL0gT5fP7fOlfHKXIIYCe/Kn4ypJfHTpDn6+ipoOyY++zfx0z2tigfpsUwoVAHeQMSKQopp67vNtDJBCinSnPjOUn4+aK4eL7NocCyORLCC+seNXz2Vm2119roxQVSYny0F9ewZfpsmP//GNAqHNjAzL00GbgSo8Wv9nFkk3v7V42Kw0jNUU0VPLJSi8ul72Yq2WlYz7XQjQvSblRZdWg75mj3QnSRlxy4L8nTux5iRW34GSeUt3RqBh12su0g51PBWidq38nBb35+j5/tVdMiU7MDxD/2aIfTKlSph5nEyJU5HY+r7nHhNmOVo+LE7GI6p2tMkHTr605iQiYAyQ7j8jGgikcb9euqT4Q1n5VlUpaXZ1zt4KM86r+txWLOWrgkheNOi3RWX5Ri2b5UDl4VCSTkXX+UeLqqyFE2oFe1iwhZl5g5Hx212qJceM+1wtVuP1t10lKX/jt6z29u+nWrgAvn2a2WiiYUb1yfJbAjpSQxDwS4PdAiNX9zhAX/LfuDqZzPV81PAwD6qlcpnPoG2BS212Bk1DYz8CH4Lueg0YsZFTtZaLlZ/9dvIJcwyru/RnI7FPxrJSegCBCvCud5Xl2DKITaIXMpSrhYesVIkm8Ryh7m9SsLLpF7Ne15cinzRiknABtvbPcwPq5ynlSMnwlh5yVvp8248fWLHsYEFxq5QW5z+4UdXEvCeQIEL2OzFStXrjU6xgKsVhHkwaHO3o9zFRj1Mo4l1kNpByKkUo+2GH004iOllom+v/HZPLTl0oBjOaUQXXh9aMFkFUB9exjsiuvYQmGyNOebR23IVFt+YmftNqzySPmDt7+XblOYqFYA8+tDEbJ9XVD3jtN3sjtt3ul35RTlK/xgY1yrCan+HFsx2HSdJhhV3WPrNhF0Y9Mbxq2n6+M/gu2/LQrDSPp2Serl5+eEND9biBEyBEvtt1xVnmez9ssmsIAxNLezwzywDjBFdPbwvUZ42A0ns7/C9W3AvDUC8rs80Shh/ef3FUkwE10yoLYlT5JUzBgHV2qpo/MunLuCy1J44h9c9/xX/KTRGG43aE2faTIXmIYGYz+J2JpTrPAiAPe5/DRz1AP9F+mWD3/sJuzGeRKhNSje9jjEDpe8HYoIOS36//L1bsP3y7TlyiS4ofUqz6QCJcQLYBIKEeHpib22In5dximXj/DYG08Rhp5JhEmPY97+Ge6KASL7bh99PQDgZYWveA8M5/oL1PfqeR3eUMvVr48P761nBuKCBeN/wWzsn1OWlVR5TQaVNKzw2eSzBqBlwKhdlIVy/gnih1oAR7THxEoDkmfxyq5gDeA0H5Ag4J9pHVnXQnA3T0wKzjuPLcuFyy0SNCBw1vsmfgCEyEr7EShAQGo+Zvg2VsWUxHlmTr7MlL+6xwGL/lDcmp8VqA98pPRHIXTFqf4H5oM94+XUqooEgduVT4Dsrka/+wOUbToxxIqpIh6n4+4uJovt8m+mwGBZcUDzXQwILPMi9sLeyrZL6cWhLrPhqbIoWEsd39eD1WXFuft78S4JbdAEZWh0VyzrcwwL7IWKeJAZAenAuoVq828RpKBT9bS4b6cSKhxijE/9JAlPCrVfc4pgv9NlXm6I0TAzrpxLe0aqrdTKEpotAcw7WqRaPonqIBFLnKES+jduGK7BkwDO5RfaTwfq9PZQKK0ilrhZPjv1Z+/0EV607o5F8evazJ/mHc2WCKw/CJ4EGHS8SGecdo0WJcfwDTFIBKjW3zVbKQsh4LWVgOKHlhlMKfl2w/RbQZaUYZpv9LOucDs1RGx7cV6hHIChX3a3hGY+RvXCRCe/VYETWE/myxjGfF6JB7sAtA++6DKHgX7PQihTvEO71gksQmmECREVggOjstUjDsve96js4navnnMLTt0JceF45CrK/WWr6O3WAWCp+3VVyU0FuLXnRkHRvYe1BOYByUSGfzR9lVuJS0CcGwiM9H5XdS7QJbYO+aKahYrryVdWqlje1offuHGuHFdK2Z/ihsP5wUXAa2VnPeI2TL9QVaMHkTm4ij3rd56jzpaX20zrGHS8wWOOR0Ul/pd/dF5/Hn4397UJEIEQ+stcnZxd2yaCCPOUxJjN0kvqtod76i6EF8ycsbX0nxdCNdoqZKruclTcKYJPOyP1g4Mn3HNUQrBxKQaofLLjmaNoA64h1HvkowVMZAUMJDWrr4uVfArQk4b75R9tT75cydyAfEbYF/3Md4LJbBknDTtIMfzY25BL7dzdh0VJ/2HYc8hFfB8YD+V/CVklITc5rzb07hWYY5MCi/xvD2oTkk9Nrh0CkA9kPSTAANd2bs3fYC+oqfHpCZPE53liDrdeFXwZWXICtUvqSvp63DYgnFosSZXbigO+jGEDbM9AIbO1O73ktOjl7E6A7Ps2CUPFY0TWsuWUmgGGXIJD1n7GgOLvjB0WRai8tztvYBCrkn7517nvQ79dnzZNLUaZ6oqH0DxtipAGk+LZx8gKB9arFCYSqBuFurf9TOK+GYQA5LUUSHe3yn6yCOdMN675DlWTfgIGMbKPY7gwz28VTDOsH7KL7gi+8xz10ghWP9ZmHEEQilL0SeQZZ1fVZnPmQYdzE56v9LFB9kD6+4UED3qstKD3lx9VOdSwQS0gHf/EqDg6A4J93/xXSfrjSAw9TXRtWvVSJW291QlB1x+hErQty9kFmzDBO6CEYWDUtjUIzV3l66Q8SjVznaOoqDSYJfW2F8eOuwxuDBtXGezWiuKC8+HOZooIbtSJtcLirETCQue66icadhyh5mpvs2D+xEP2EKZVh1ll4iCwe9oAaerIcQojP1zh/B89yT9U96AlM4WWUoGGRO4TRvnLrywIV3C1Bf3gKyuj5xrL4rnpdiDOQ5K4krKF+fVUgKMhjNF2J0NB+bhpMQO5YgifKO+BhNj7CP2hjRdq3J6X+P6Dg61UkoO6b/VSjvap28B+8TRWdLvQUWhz0rRAHfomindZDBqlmaQI4xfotyg4NF9VlNYlOaGG8Un7+tZ8fvRvXgs2NO6hzagl+wSIBvSA6YVtW4DP0NJtS3REEzfiT3EY8Crzsj+4BTN2G8Azl1+GWyavSg7cug08k4pkfAY6b0062uoM6yN0dFu469yrdDMxnbuP8yyHHxNbFO7A3BjO8LJK55aFcumNnXIDjmVUaIv9q8sE7q7yyrYDhruViHdBXbMlrQToRvu0jSijNmBl74+PrJmA49UGjOz5TXcHpggY5oWSjv4c2mIgeGEU7j2BJm805MrCzqDqMjUHkd9sIMrwECNzWBq6xOuXuzG10RMcXcEem7dJLLzqiJFRxrmCMmxP5sADOtAblWH44ppZVpL+q6lIUBKYzAsH9HoYfKcmICfrB6H3PxWgOs6RtQnSTf5FO1KDoMq8dPqXq95PoYsum5b8AV/wkHirYvJdsKKvHFVPi5E8d3npMuClU68WZ0TstDoCmX83heoC4jhrI9cc2hmFHFznekTola68zwoUkDFcjR0zLeu8kifwynwrP1wMJ9LUZdqNgY/eDi8DQEqpNIBDgruNzOoS7JnRW8nVzwsxhUkjeuxW034yYWQPd5Hyoycp1eeMhQByzthsms8WSKdarajHWf4NWM7xNpzq6uQgSpSs1bGfWvT8pkpYl3GLpbvcbA0LdkEWAFVk66hMYMt/PBKmjzYAyueNebI6RLabflB/cVI1HN4SGBUx6jEVVrFK/1PWVpuHZxyxfGrLpnSHNHUF0gJ24Vf78pkA+SLe64KgAMPfdBDQK382mCoO3OElahpACe9FyB+PiGGEIWXVpKvaxmHlz4L2j+/XGNPypkHCdWSz9SUjRQNWFVGN7QR/kkapc251IofL0ikS0qpwBLSsg1jGeEOZr4poZw9cfPymKJx27LmTbhhkY4iHM1bjm5Kf0T+EY4QDd+q0y1uttPLvlgIVN6XvLIJ9zs5YpHrBxRAP5MdWKGz0PBJybLc8gQ2AVlYk/zMy7uUsUPSFPsh48rgKtovj9D6h4N8WaQ5nQbmZcdieuqpA8bnMcUNBA7CEoHVTHbz8/yVK5KZEUcVxZ4bjZiDmRwx8EdDGhrqjrjs/ROo/UUF9GN7jadWymERQ2igYEqoLAxvedvBS30jjVgv62kzABjvS1VlDWJ+eT3+pFVsQnKs2921UFPYgXDuYA2pSell1fms9jsxK09/A78++iIpZCAK91WxLSaa/xL8V9btXfp62tLplLZJvhab/ByYdbAH3ZeZ0YwYSHvzEX++5fTKxH2WDUg3up3oqjPigTzNjrgnvXP5jaBEBTqMd2L4ZTB817JQ1wlMk011KUnLSdAWZxtBn55cJWRj+iHLpQ9KPWPphfRVuL7jxuM80yJExxbReW36IiQsA5ooXo+BeDZWxu8qcyy+j/vwJIMyWKuEkJJxeZ+r6Cgqn6Z3FyLky63ZX0NsIbkMj0//h/hy/3/mkDmfPNrOjearhymZIv2PSSj0dvk4vLUVqDXxlhL1gpdVdrj45SoaaxCt+7vq9gYs2+6N4C3yU7cNiTXRITAxbvOCgGJb54zSNCrLoJGUKDX2uKNSp1oMZ2HGNShLFUrd5Qj1qzSO2eAcKJJRVDvdeBr2g4OB0RUXwg4czVcytgh1auv0S9/LEVxhgjE4+W5DYIA/TYQQAabXmIRPr/q/pVzV9vS98UMT4OEhPXtZvAkA5hPisPDPPQOjEfjkEq4OMakUMBiOw3cNN1V4bgPg7wJGZVTofv04oUIZl8jkmYU7XwsGKwT8eFr90drD27+IE7cWe2ty4nBgXNPgrR/kYohqb49f3qGK1QozGaSStRNWI6PM58CN/MVYQltLmZmZeh71IdHiDa4O9dBDrhSBgbOmnxxMcLDOZeiyIMR0QcOA1rmMIDdhSGOYbHLij5lAZ7ParhXpLopNLSFQD9i9JiOOSPnjUb5OWdkj06/8kahqhiUUySyqq7QE6NqRIRkQO8SrseFVoifeSVSO0XFT6RJGVbGJZ4jQw4pf5TrreFnWSA+wG9kuMa5VEJcA+YmwIOD9nT2HsjdSdJQHTZl9ZJKjW42Sl2cwfvg16o3LXZCLf5ySrphKBAqaqbXe02WS4Vl/2Mt1DRGTk3LTBsD60zJCYRso6NGPVTGLgnpcd/JUFmdHw+YVXltGV4I8fvF5CQzKbVMPefhvGcuwu3/MYkp1Ym9LuNBBbKbFQjUrUdriEg+JnT4CgHhGVZdGTFjmnUsYnCy3A1sj2LyfRGWwESj2ZLHN8UJJaaOPed8qKQ1yZvaPIrr3hzX0mB9Q3lOuXb/BbD3itiRUBZfOGs5zlXKNGCQsyXJOr+C21Di6PFPUUgg2uV4tHHjh4xOcIrZkKi+0m2mG8KrNFUTRORpXkualSlwxv7s2B4ShVxDWHqEKQFU9lgwLiokPoMwhOeqzqG39Xpy34bGnLDKt6p0MNA8IipetajAg1n0p8gmn1bMIMW1glqSLktnx2+qK+6VdrkFA+KrrXk8iFqdH/q/Q+4jHmMm9e/mqRqH+xfyd9W4YqsiOtpz2xoiBSX1SBuH8V9TZdraZwkPKnDGF/qbkrX+XxMBNHU4xkwLPnIByodLq7vjXNZNNSd0AD1Mh4S5jTh+tPkaLhLteDabuEDzCpcFmJzfjWkp9qHtkj2r1KXgnszW0NIAAXkUckokZ4SPskjCzPxGurkQ/x+WcQQndfu340qDcTuzkqUphub8xbsIPXvk7ht4hjtKZIU0YkCLfSK6PngzKZsjML8YmUMGcO3MKjFXzQUn6/xlLxFQ6glHdNEa0gMJZFKLi3NMSnx7STbYB+2pjCoT4N1lKV/Soy+FfrjdedR4TR65yR6TX6tMuVeic3Fia9km34ruYbGNC+anJnhJ2h72lnQiKmfuyxOZRopTlAZg5Vdm54d77oREdzZIRA8SHuJ8wm/2YNLKQV8NUuMHDKkGw4rHyFl1alv9QHOYI3Y1i7HOEM9TiP7dC4DZIAvI06chjwY78YQZYmE0+atnxFrEk5qBv70m6V4LJDBbZIUm/qfGIqw5f4rnNX6AO3G25aP+t9cy0PVU/mO1YX+iKHZ6uV5oCdEHQ1vIW/cqCum5DZczVamGQ6GPx7p1rOhKtfkAfNonYbMePCPtwdCM+efnBmPD+zz6TGAaRydxAikSw/qiNvbJ+erprAR2bEvzOoHxxuka3bNykL5kbDW71HO1z2jjwaxMrHUqi4VrBt5vHuyaChIhkP1Cus/OtvyhUdRSFI35e3CJpA6OlTQHK1fFQimzAn8iM5RMyWqghT3G5E8c/ESQQUv64qQ==
Variant 4
DifficultyLevel
653
Question
Year 9 Art classes are tiling a mural in the canteen using orange, red and black tiles.
They divided the total area into 50 equal sections.
Orange tiles make up 5017 of the total area.
Black tiles make up 505 more of the total area than red.
What fraction of the total area is made up of red tiles?
Worked Solution
Total area made up of black and red tiles = 1 − 5017 = 5033
⇒ Black tiles = 2019
⇒ Red tiles = 5014
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Year 9 Art classes are tiling a mural in the canteen using orange, red and black tiles.
They divided the total area into 50 equal sections.
Orange tiles make up $\dfrac{17}{50}$ of the total area.
Black tiles make up $\dfrac{5}{50}$ more of the total area than red.
What fraction of the total area is made up of red tiles? |
workedSolution | Total area made up of black and red tiles = 1 $-$ $\dfrac{17}{50}$ = $\dfrac{33}{50}$
$\rArr$ Black tiles = $\dfrac{19}{20}$
$\rArr$ Red tiles = {{{correctAnswer}}} |
correctAnswer | |
Answers