Measurement, NAPX-G4-CA22 SA
U2FsdGVkX19e6o1uXRB0T1VVoL5h9YK5LC5jGyRm4LFzQMAwaCg8SAkNXlgBaBNi2I/glKsmlROcNdunwaHPpoBsE+TlxnsI3oEx6BHf84z/ECv913DuMLFmwZs8adsCPexpNGy4ZXEgbN8Dy1V7rr0a66VQOzRB/nRNMEqpqfAFQj4ArQRIlt52/2AihqOC1TPCbWyDJIhOjNgdbS9l1sl/yfvjMd3iQtL2EAdnEhyeAxvBXJIbmYoAmVenUdp33HtFg+Pb28Qh6sFSyyzQDmG+fL+sHMsMifwCGUJDSXP+4WHr+A3DSPkPvn0BtDzKY2m0ihPS18FgLTXFPBYb/hpnBsFH2afckZLriZ/s9SPJupmqfl9K6JwzkiC+ZLw9xMInPbcIQsf3hZoJoITVu6SNO4miDDfNMbFNVjmnWS2Nf6+Wry11zLXOvaXJEfURpboxhAHfUnIl/gEj8aiBbXNzAzODJAM8YcaXtrpXb1Xj9DhuCnTiL46cirdcsXVlbZm2FHRSyFewj1OVfBl80ScJIY+zNAcxDpMkw5k9WnFBPFYkTNPBUmVE/xRsxktAsgiKxZyI1PLJQL/5BeJM5gB6I+h2LGobK7N6WNwWHctvptV2QDt3A/wwkgQDMVvLNhm5nFewqwTMNDP6zlyIKVHyYJoLInMpqrlTdgvWMblVOpJKcvpBChljuqfI3N7NtVrUBr8bUCN/yVSoo9vMtw6ORuiBRBTANIbpOtQNzhzEY9I85GXV8+M86VJsGG2qSV/q4ysAclE0iyzUYoK882G09J5X/dvUZxqyaOxJwjHo3p7pAiEorTlb+AGmWBuebqt+dl39D7jC21MYDoEWP4dgL1Zfy4ropXY9pJzSQMTvofw345nNxLqu2fLw9EAMCiWjnyVaUeNYhMe6N7WI1yqRxl7IPOMdOAfTQEyxq2ve7MHR0MpkmQGdgL17CYzTSh2Xm7uxijfSGYyC6ika5LQDjHXcbe7QKS1R7CphjKfXkiw1h34H5ciCX2tmXNWeCFUmWXeJ1BTBZy7FcoHRTk0NZCQ3kUIYZ9bFGCKKI+pG/KDLkm3lDhGcJv5HewBw7m/JHhsi46eBqSsuJhjfCaah2VwagrGLiqcPrPAy0EMs0JJzJlAKBsKkNk0x13zpEGMQ88YVfpAPOYXIyCwGYDmIj8oZVZFTAoeuiPvG+OaClNNvr/vZSXboQ4SjHqlGWRZKCK+X/w/85mYbtUoLOJ2RKwWNNF/PJ+KG0tj4x1wYi8XNgLGOcdrID1PuUozx7zbOusMAuhPL2kjHMFSTNe8dN+4uLCSsYqqJarMkuU9QY9eymM7Tg/GxNbCX3tg7iMgV20gA//vwAhvJBUl2Ww3JGcIvVdWziRbm3mD0Ka2uyVcvafsQhi6P3l/QDCBfBsAoGkPQBAATSxeRm8Rz8r5iYSd2C4GTOHDfoPLWPfCPXo/xKk3/gyarVdRI22Ys+iavE7BWHY5MbtjXHtlrMbU0721x1mRgHCICB4xSQqLonPit1RqNvOMMSOCq4cMO3R1P0ue8VlC1kTc7E/BT0ICvpRzGkjF3X2eOWUGim5ZvEv+QMhwYxYvI0WewbvrSp2c9WFLdRqK7ZW8lQ2G3u/bX+QpvxBLeSa0rU7b5+fIyL68xKQM4o6xpC3coJwkzA+3s71/7B1fMIpAZJHqAfkyjtNQ/UFFbBi11EOY73B0ZOuZVP+PI5wM8ty0OdxoMVaiBvd+31JYT2wwKO5iZyx3QlfFKk/5niCnHCVLcW/PY9MP2JGjOy/5JKbOr4ExHcn+MtU08REeeN11J7tZv5z1K3mk2PrQJ61BLOvTfzklGQ5Cj8kaAB6koeWQQaA6ZUtomNH87X/t1mBfQardqqB7l1mJTRaWLqEkiWA41ZWsokypp1XUOYpRvCTL8lIpzMGU43yDJU0Al6ZIZo22sQsEHHWglPpHwD1cyFeLG1P1dgtKSUDrxS3Savktv7d41UmeJoEXa3eatfp8dFYn29MDFJ66mx1D2e84Q333HNc4XGXtrZBPh99QXzR/UgGgg6whJhcKbpzeJUFy4q9nRLYCHPSNqRp0ualo6rf6wsxdAcT6jSwa7aXAfky34aKETHMW9AdzhxQgNDqhyeHNG43c+frX1WaflmoVoD5aIwnS9EMdXTdnYSiYU/lGw6qPX1fOK4mb1dJJ1bvwzSBv8CQ4MjYHVob1iQYCztCLh8yFtY+fYdR/3iNAEvoOIvmrMAKt+XINn81OTdegWuBhIcQYXn6A97DQIMVqWGAVCwAPnEvcwQTU56ps/6c3yNF0EO8C+FPfN/2t1bEvEp7sIVl5BMJB4nA2Ga4gDaogGY7HEa/uIwmelfZGkz6Ao6aFfRwNVLYXT4UkIJ0PaYblIqUmkReViy8kJl4/TnrhOOAVpk9PpDMfgrtwsGFNM/dfFpQ0nxwPT+o/pGoQ6NzykhuVCzDFZJ/HyAs31k3Twpw/T8eA7TK7L9uKFUVpsPRb7gUamOX6tS+15EHVNGylD7uL/+cT0v7FJ4HT2+ZD9bk5GzV6AcBRyukNgwnTtXGISsxsAi1Sb/MixVz5jAxJO3p878ctLWZITKmFHV/9U1nTfsiXbtPYgiyt15DZuSDqa+o/RRDHcLIxU5SF+uv6VIGnC0bheocvX6oj1lMncZZiaq5DswLMvbQJgzi1M3wOLKiKFG9cou+Sfa8CwpK1+dSyv4PBcXxBwyAyXQ4f9eSXyurCjjo/5yllv3+EsrVr2ugIQwtnWTR+Vke39zYeiklDwvILfrdW6/0Zq4buE17EteRATggdtXsEXiOiL4nD8zS9VU91w/fLzseDWhcWwMdOm/UvEADvlWxm4Q+ARfsegIXhFb9abUVXNH+nIvQvs1NMX+u7bPEiDZnishmQlJ8Hl1omtxwAOYpB8kJSA36/JtSibP3vSyvACoakC13PP7JRO/15RjIj4Rfj6uuPGuzs+uOH10VZ1N/oNMCMju6Y7WEj1pZtvuBXqrcNIfmW5L5c+ZvQX+juKM4DQ6JohMtHYy0KMSL0FUYB7TFEA6MEgSGwBK3WzgFP1bEmCi10zYEQxKrQh2HXxghelCq8ri2Jp5lrrioUNzQKQTaR6LMwiciPELYtRhBYMsXqDyou8O3LLIWTmc0d6jrmRxbqm55C3LUFQMyU4D1NhuBhv8lg0Xo1uC/ze2DWb2GXf14IPSV9COk2Awwdpaq72ZcJdNp/hS3CUCDwNMgLc7r7RH1uaO/NNElOEV7XyPMc5iJguFNqRBPTdW0qqGRujlqzuuo95TFxO7fNd9YVwsdgo71RN+1J+J/wFdCbOsnJTiaE+Jqq/KE8jrsDT1LlwhXfWU654ktFi6qfyicTUEBolH/1uX+hi3aowmKko6zeio1GWd5TLqKXLhpfDe2unxKaEuXvHSm+hJ+LQ8OsHI6Mo2+kR/L97ZL95a1aaYmN/YnK/5yVZ1+/IgeozMBukGOK2I/lQi05ShV9BD/ZcQccWMJAIqw0/VSphoIMwb7HSCRdvohAARlUJAUV7Q+jV9BvvEFDuMjfA5eM96oKypTsLA7crqjTbsraqITV+Bof3dN/5S9bZpInFbAXnWD0s0PMHQXjheAnH9XhgPJCBfEqmeKwq1eihAMV42Sym+GqSqmCIsMAZc3vaGs5urnt7WfmwSd6P7wZphlxyVm3BggUjdJNjoiUuJLPALOGQla7dLij1lnHmRShT+90DGnDmCQge0olDuxw6xY/r3Q19BgG//SHVPPwhiB/mYueSWYh3+L+8Iso6UehE/GVUZXSAd+g3y2Gp8emuPrDIYkj4Qr0pxMr2AuPB7MqutkbWKTTKb5e50oH29JWFxpFp1FzD/hyqCpO9EIY8RGW1NnPtn2RmUEucUPauquwmAFxfWyS1w9WerpaQu2E51zq1EHE+bNFg7DFLPtLH/NL5geOwPXLMztrb0A5SKP1pTLGpeqxgN0pjXzsZUksbsqbZ2hXoLuQ2P2NgfYYKWJb4t8ixrUYQvgbC4KYQIYnvQOb4S09fMrnXZM8U0kr3n5AhUcAw007l84+gBvFZ268OoVfNcpjxFknMmAXltf0xotSTjfEXmTdghdT262Eqn/uFuoHN1jaq0UKYC8fDJKH+CGD27jyjHqEqExhJhgNKKPcpz54PzocYEVIr+g9iMAvO6DU8OWX3qBV03GO65oZPvWBUHM176AjVNUM4G35dzGNF6WOf2ECcOKAfI/S5/UPCZeg43JQwWRfCY5X6+gUdEFJJ+8SQFlSdIZjU5BSEenXfUqZ0Oxem5GdPRW/6Eo0G6MzjlEmad8U0JsWDAJILDda2rBhrEFAB9wXZSmUr9pR+X0XeSruuNytYhR0+evk+TH/g/Kbtgmu/hgs9WywsWhEp9eNIzpzcZqRA2r5eWSwfZJod7KkGq/drYGkUrKni1kgrElDlLxwbecl1CTMsS8uZdWc2U/1zOb/5w2i/e20W1nYI/MBACIj5FktiAjFqqR6Boup/V6gQPS5JFHip3rCHAE4/iDd1NqNVsxlY/LG46OPPhhCy/7phz3QDQehxJSZL16++uhFprc/OJlMfqWVEiltzZxhaDW8zHbT9NlpdXBWTlYniYjK2lZq7rXUp5Z9DUdN8bFbPSyQUID1eg1EOZWimuLZuMH2b+Lo42FJg1AwKpl/lcSNV8jPlKEoI1PLabXIxuSyHewTfGs7VA9dYSPusIMoTqEp8I0Iy49cmOGfYKQsmKa+MGj2JE6caF/+/jsbPEcTgvYcICuGszRBeyIuhZuCZqa8yLbgZ48y3SK/rzRVHPcujuEAAPzkMNpU/rlz23Zcz+w/KpE9bXGydi7vxHT7MlB50+Yoybyn3o011EViZ2rcs+FiWbilG4LdWh/1KPoZ6Ab6g/VdXIwQje+/cWQ20Gc0fKWQE+ZY2TvwBLCBivIY4Y1pTPcPtJipFesia9/mYGb83H42o84E8rUK/w3he8liSIvxXEGVxtfrCRNU7dWVwDfSnhmb5d5dRtYdYp0vbP95wiPQ4shnwSjNbohzA9csLPmEAAfjxFMEGFyG+WD/hyMTT/qOvMRHXerE7JU8GRmQvf5DHKncYYe+PTkNxPdOhS8WZ76ngBDH0NlRAGimjBia/7g4cHo3U4/WKoftfIGj8X0avayNMffcxiY2d8vVWeBVyk0as4GJqXZPNQWERXxTB8eV+ip5aZaetjyew4/wYvknV4cJ9MJcoZxySQHycrZJV8cgAO10/NNClrTQFeh+dIEWq9HZm0iU6epif9WOsvjOaAlzQU7oJ9jXgZ5OYeQH5hToD+lpgJiKePJFaHiYJNPhhFzvq1aeZPLkPv4z7Wu1cAK6TBjuKQLw1NMOduhqTNgwqfokZXp7SIycKN+9GZrkxzfld9ugckcv0J/gi2V9XRBxIr4v+hrci4QLJPSc3Di1z7S5zD9paJ8Y3dmihGGPljeYlVPy/gw1PhCUgmT7irf+qLalWkcixt3cIItLOV1jumAH9Up4wfTEWuGyrTOiZrbHWl8DacAOv00Nvv5swnnnegzmohlCRxrGlOhIm7OQffTvT2XK9/hd/+KBybARgNSMane24jXzLpsosS7I5mZEQUnMMN5qG4ZU2DQGhJY3cK++kfFZyawNGtDcDpI6iktGEVi0voxCS6lxFm/EMi5MdvHvOVXGKm5Kqdz+WSyujgHj6U7RRmIYHqufb8IVtUbreV2sQHHmw6sEgeS2F9XDXxm92IFdaF1z224FqUsaMQmz6gbJguoj3CNclQamOxk1zCPBu0sepFOK/OnAdvkgrIbRkPkbnSWpnEtcqP86ySsatQua+CzEsi4HOAvws4pHZZ62KnTLY5tF1ly+QN1PTa1Ynp9sU4T4XIk13Ndvcsp+bseC21JgXhQ3TcUlZTgqcwJlXgH6eUjq+M1QmVL3WeYJO+FshwNIUyfWmwHO43Yb/CaHOm6p9XgdhB6KXpjuJZtD2ttdatFs0+yeNU3pPGUy8YKZgrWK8d5IdMaNqmexYDgDxwjdGA6UbSis6KoXKsjMeMgNQUd0Gk+AAjlm4jymTVuRXZkJrvUXUX2o0aVkxwEi3VlrK/pMrjOCRSb3q1f8Kyld0w1hh4DMmYgsIxm2iOjnJf4gzYKZ6Ip6anNjXVkdDgbPF+6fBGH1nVXqrVGPewTigJNQyB+4BZ4XgOMgfhwNRZmkRRVuCU5d/HpJSTB3i8qTMFaFtiOElnwbdemfluq2Q2rxsgKhTmhhH/FRxbEFkra+OGPSNDWqMtau9yWhuuXhXN0/wAnaHLKZn7TcnM2C36k1sZCdlzFmb/Pu3Dvss3DGwt91aBnK0ON5XWdXNIso3GbqCFbG5YWyNwxN6vna9AanhprQesFpmabeaZT+MGnOsa/lKPA74VfMb6rXbgSGgAC+YdU3DBaelG1X49aQdGvxZW0+nosZ42v90bb1Qvjca2Qjvs5G7A4xNGKhuuoOF0BBHOJ6f4RyRy4VdyVw7agDvwZEjs0JdWrwiyJEeJZgCpI96NbOZRlSg/iojHBu4WRQw3oelZFhCsBSO6G1fIv/0YPRLHUIY/rOIuzYioH2hypS1T4Q5bI3Z2G9GQCykaBroTv93u5I5/cEBLYQMXZDA+zB9mzRi5zh+TCteu7YixWyv4FbxQnsZAHQaaR4mACmqt/VsL1xRu66afHWQIuQDnvxnbKzDw6K6UNBTX/9nu4LFtbbjuACX+XxvX6O8FoRYVwfFihuVW7ITGKhmI/qxEL75nPGDCaUUbxe8FT/6sH5BFXOk6zYXqTow788mbsuXWHcx52CFF2Lb2of0cJ8+bQxnhAj194tC0VLWaAjk08lbF5XdP6wR5rRAvucIncXMHeZCwJTR0OPHiivZVAvV+i3RG8+6dn+Gkn1EoNLJlsXWvT/Q2wdHYXkZWka7IMpFtnn92DfVVuZayAvfVFIqoJqzIhbjkLuVlbeQAdJs/E5DPqJQ8OUOxlgKyKqfliQdUuUO7IZlHdoztr7ITtGjTX6NSjJnXj1doP1w5ESKDhWtA0KYV5IzKd2fDEamNEi+yiJr39xFYaNW3PWjr7Fy2IKQcjLdTX4SCuXKJ/huhgdA93gY+vkoYP7xLYYDtgFxxaEVKqRrN/w9eAmnoWBZ8mS48nxXw8c171VJKWEiFY8VbFtVLna6oN+YlQq06xRmq4nhB5fRgqT04KTieK2aLvkWbRXV4UTfQdDV4jW6Xa2GiVp9k0PsGNaTIlGrVDX/9d28uPQy7B5VHFFQBg1/83d5F6DEfLZaRq6Ow4OeQsp0IdnlMqeX7eODhYsepU5RxQy5RQPV7Xi18pgjTymTJu3zzMJTHHao6ODQU6sD5LXYkWEsT0F7XEONqgHeYaWsJMSpGFyRxZGXNN2+eiCOPGnWM8x/ARuMFrP9so6VgzJMzTYGYBmTQAjdNBfQfbqckxfPvrV7bZym7tso+6wdwhte4Ijt6mbB9rfb+YiASYv6ZJDrInOvRcc0aZ394ZCccv/1Mab1Vo2VHfHMnFB70vVTt9WudLGghTfpLIxwYSZkRub8cfGRYCMVxOVf3CiuGM0B3j7vQ2JgNIcHEJCMgaV75wd0jFA/82xEixnogLMdpNJd8SzxDNUfXaiKEf5LOW3aIy2Pexox13okTuTwWHBqRoVXJiwm+B+78z+T2BI+PhwgrzsVUMznpB0Ye8rssz9KMSgm8LM2E1WnUWf20Tvq8mYcF33hcqasgZ606Xw/63BpdaRS2EI5GvuZfPwm08fn+lJpdNjlrSOpgPH4rgKAKEUJdF9pHm/PwuGkKSY5Tf/02F6bVVnjFrPuXzfe7TWTmrLF4eYljs2aIwOrGZSm03Lh6QRvNKxEr9lnQ5jznedfvZd5DprUxwl0IZaUHOOXJnCmF11j3Htsv2E3d+X4kDl5I7nLkVd1ZS9AdjnB7kqAHX1d+nkYCDPsUBEVymo/I+EYrHT9hHdZT+Rv1sOgbgjf5wI/13o6U77gPvj8lrcEBJ8HsqKeXnLYQdb5vShvEUfji7+Wj7jSGEhvGtKdPE8FbAlCQAJwYXSjil0Z6+Y66WbZqbzdO0SNxXa9TkoQgq819pSBfAbL2Wk9Y5HtIoSkEdXKc5jqBmkivLE7AUvq++IXi61ayJ3GdtXhAJQVQlHk7vM4BttXjKGfITm6wopFVJYQvY/qG+1Iganu0nV7UgFAMmsj9+K3gqRiaIcyX4Q7jU7f+j1DzLtF9lSqKD9Nwd/3gco6yfGCipFSI0YyrDSfGAiR+XZx+iRFkZlmPbPTR3lGdRbsozZbOQ5MU6/gDV5M6qSrEbOx641sAymje6f4+M5eVR/UPxsGXjdxbw8IIn83TIa9PFxnLf3e8P3HKxlCgcMUO33PhASY09p4/petW+2LxHbTG80Cw9RrjbafhquaSEG8uo8rjkJlO0b/lsMSJya27HIezvsM2VRHTJqTZypQHgT6XT2MLwtemxvqJ8BxKC9TK0Lx4ACCPfy8IUo/wGXx2rlkESCXrEvwJfeSUethRZrCyVA+UF7ES9UAO1wAma09/sC7EDpqCmL9u5Cj3q+sBQ0bhZO8cER05U5prCpIna+isj3aEGNEE4aaLBPgbOWCNiTMmXpnPSHLcQiOD2llM2yxbNmcXIHyqxsD2M51o/PpffJI+JyS4ib0PqMul23pMTXOHt/o5eSiqGkqiE+pGRedvYIux9umRolH0DvFuGNE2Zd/HEpHuUgLx9yKPBbt4hGyeas8OvT7KfGr0ZSWiLESaYll2LnipM10gMMr7ZfaZlHAtrKnLppJL25b6tLMS2/LM6nWRutx2T5lMp/XpI2BsQnDQ5UC/X6AiZKl/yFtwA02FTvqFoRgREL8lhqPeEYX8tAqo9oZ6d/BlnSuuBfGUVfQPnPuWTsjiQ7ACQQ8rP2WSErDbLY3yHqoNBksNLZf7jJLvA0c8JxDpjoaj79boy5JOBBA3wF8tnwZgfLK1CVcTYLfz9I02uGmQi3zvFyC4CuT+7zJ59rla0BRQetkjJ8nMX839zZbFA0UQKW7lurRTu2JlfRBjlZVrXxW9fvYRwmhbo4JQo3xlooOVI0MTxfnmB6p4B8SQViC09D14AW22PGoeh+UEaBQtCD03dlzAFD6EC5AyTMYupnavSoch00/OECYiodI0HvLzG37mIX6yjsFncVhfzhEKXj14EfqgI+HD/UyRn51oLKAE++dop+1Eq6VxjXyJ9TYZagxsdOHmywCwz+EHcfY+Q9LVzme2sV56BPsjvY4n9cMrz3cxfNwv1CLcpcY3kRnLbDojyWuobF7A7Br4mZtw0FE6lJHfHHB+/86ehndDO5X5APzrJXoO7fFzC5DI/T3yjilsUHt/NyD3+2/uP6zgYx9DiHqh7o67tTanXIr2sbc1DyFRKb7NR1Xr1w80avTjCJrwGeH74n46wKEMgX3pnrq9JoFz5k0nnBE9gtTahZRXGjC7VVMJkUGBFFHS5xqYulXEx9SzP0CzhJunWt3T1hVfvjcHU5C0XXiwue3gOI4G5cirN/EOTCMUtaz1ZNfWnhBvnJBIYekSCkxW44HxxeWgNN29/Z2TOcZPnRY20ZNZ8YaNALskZUS9g/BIXO9c174JTEaig7NwQb/RxQ5yTpE1dDY+tjjG3PYrjgYBw7FS7I4ATvrh/0L7MI382ZyLbIcFWY8OWGYQ7Tm/PKvGYfMwAi3Mo6weRiyHbHBbyCoEqRP8y6UM2a3YYOVKvdNdOv4KTkf6jPM2XdE1dx+ZmXRv1vFng1EyYCzMcE6r9ZN3Y3Xf6jBoWXzln2jcQLzRSr7tJg3mQ9ZHmTzXUljq1/S5i7IbfWi8fZXbFP4V1r3EeOeQPAHAN5qYRxXkOVGZNmJ9VjNxtgOOVJhwJTLKtnmKWbTjFsMBjMsX9pyZllhSan3Y+uPzlVncKDRCIxXJ9MMcniJS7jTF1XX35jO9paBsmIKTFfxSWLbjt9tSskrv3+vIlwDF2m9hBLLFqxhwPLM4T/edVHfCoxYdoKouPd7fLyXspzfMR/v664Jp3AnvL74WvheZSLS7W4XpqVAUIrin0LH3zolOEEX3umAkgtNH8yvo7rnCR3OyiyLYZK9B3SC5NVB2r5lpI1CxEwNJmT30y0QYJ155IR4mxCEYbrsCpf9jNwdbL3TzhT4Rsjox4Cop10bCDzFVsteknGSu3GZv6ILBX1kF0Zk5voz+geBOuhcTPR2Pq+AMAGmXi1pmq88YGTmgvgTURKGhSlUa2OKU8LSXjjRdBOy43xr6KdBGjbKm+i5wmDoz16Y4u7jjm1IHssEDTctTH4KK2kXCGP3iN7VEfO5D+/iDRRY+Viy/Q5deSIuIhhOg2arvWrRUJajWgGcqdgFEVHHiIv+SpVkD3UjnAYXBvwnM7g8q+a3F7Zqcx7lvxtofUHJG7zizo2UGt8vHLzbmwRB5dcOJD0TsElotDp5BIH5f1Uv2BRGoohffNRfRj4ongBKdZzvQrtZve8wAhY6XAbNnp8ELmz35LsfXFEt5GlkhSzRrVhvbvbitX9dSjdGIkuHpSfxFyDMZELi9OtleJ1q6jug8Gu6PyLJoflGCrkewLZVOLk1133APhbAbLjvpWtl1BgPiTBHgPLnF9xykUB90IjbYL6dVLzhpsZjCEOv93VbZWJ/GIEfbww5iC7YlZ1z+9n1buiw+p+dO2nXLRUr1RWhKEarCupjRGXqXovnxYaZVF6pf6voy/8HEiAJJq0t3J0Usd4KQJQ2vu/CRoXS9ggIosJ/U8xhjSluU9ddleDgMFOosC9K6R3bwapQ3FxjeJvYTce6MeUiEckWQ28zv595S/rBNd8KTlFFRrcOflWQxgIKKYTG9eOIJ6HiKXW4NPR/i8Ts0dkgmZ48BF40GfNpMmxKDjcqMPkKJN3IfbVg3LcZRnrocCag3hBB3FfcAty+yI2VmDnl3FL83zBCYNvsrxbVXq5DWaTDaDlAVknglw5j/rM9K/myO5XSowEx+VryF1Uh3Nm4yNvrkgmQ6DAo+VrYtTLDgtByTX9GfVuZzSBS9FT822/M/40QiJxp6PaVk5h/JsST30LKml8VJGqkm3MJoYX94zONiNWUTSpooIQA50Qg5MYTsQv/8y1vd3MliRRm6Yg0GbhiLwemXVKTW9GcoZYzTU9ucPJTkFw614CavgUaiyKWkNPIHcqKgij3c0bsfB4K8pgJ7VwdJkQqXO6kWrj/o8oIxnrW7m+HtcD2JRYJlZlIQ2MngjVa0N3RMbH6i+bvx0A85EfQkIbAAxaUpWatKUjQ7sh//p0WMp7Vhmhwy1Mh5Zmc2Y8xsZJoywh/9uLP0cstiHxc5p0mdUGuh20VQpA/Oh47YQx77vFvLneJF9TcNU922f3w0nVekP3qrFB46Glhikxd50TY0A1oJ9acKnzvFL4qUSK5yynubu2MX4dq2p4OG8mHaZwnoVDtnPLq9o+7bxzNQWGlNVk5OcfYGXm12pKPGoeuje6yPu8t+SWZ/t0LOsXnT7i6Ye7ykGRTn3gisYgKtTaiwAINpqcsK5qfIC5JvhTHzlc5hnvqxgw1zkUYIHIJFcnfAztIQE/2Rfy0wCZ+uC4DEYn+gNxW1XdP+gHo3nhlxcf3DBTcSD7DcgTQLVj9AZE0mNd+nAH5wqqQjOJWX3ki4Icd4mxe1ZQlhtqWpnjBleU+ain7UngispZi/9Fdp0/014GAsGJiBv19oXK1XD0bZawYaVkhBHzP4/NJUX9oMlHx3wBJCJkxHRja+B5e8ViirrOoGeirvXM0NnbNS6Ele3X8tWoOG5nIYSCqoJ4L3Wox/CHPWU/7/sal0SUbfsGAMvzPfPALED1Q1jMq2JoDRGK2WsT+WP81UKjZ7PqNUM5hAycVO1fL/I9OkZi2v8GRDPRa9+s96YiV2B5Rs1S++CNXgwx5HGZpBOR9cpHUsrg066EvUmlDNTDX5IoCQ9JvkXoiSeaJKCO/D6nqKR5MQzQjwxQB8MkDZMjzIgxrjP03W2ZJv85yuuUopelIQkqMLyi0Xw/QEgei6iXmiy5dBGW3UGdPE4LPFHOxK9Y3VvQ0Yq4XH35Ft5FD17+z1K/JGsl+13td1znDfPl0luAmYLh2o1madNIC+sI0Ke0PyJJrW/Vv4Q0RQe571yb6YLhDrUH8ylJGfk7ZdFmQLBSRB5zaDuEEm1eRCe7nEFhEMZaOP1D8xFLYz65u34xlnNGGOQOd8XjkH+99/uApqFWFP4hm9Y+aeeb8+I/4jwjia0Jiifkw+qKPckrmEfVgylIZ+NLj5Q68WLpuBl+WClyV3HUGzUxMg+KukqKQE1rkp2y35PXnCZypL0LUUDAxIsH11dyWdnepZgkdzUgDy2RtCZ63sCqgUo2/zyPclXIjs9YwJA89JDM7QrGtz3laAMQeRC8Dbibxn/1WSYgCTGjLP/XgQuO/7rcoaDajnbb5ZFC+QMuzU+RHtXl9+mZfZMZLF2jCiv8JYk9TnYeDLwuLjOYHShYK4KO7NGJW2ZfuRYu/+U5Fg1MEe5Wagz3A6H6wNMmy6M+s1ZYKJfWLcqt4OZlMTuWfE9SMJ8Ps034rJBIPC5shRSewrI3sGdhOMO4afO5Fl5XJSJLmvdx6GVclf1Gkrgr8GQ5gw4Bh51HyksT4i1/xLI1Yortuz/naAIlnsbOzG9uITx/TJzOG2s9PiUn9PnK6A5ksHosmnmOrlsBbxz8LRySbPs52Mam9Uog7tJc5pROIvtU2J3UwjRJmTxkM9U38/rs6RIScfFf9H4IWIPFjyppv7aiIE0doLp7Oejn65wTNlgukzNX/CUa4p07srVIFvYZQPM0IO/QssFUOeMwet7rFldN7rAnno4dJuXVtaHFpEsfPyIXxiSgzE4uFjZvJiAKcbt4ul1viwGj86DdUjRiWPzMWx1JlpZB+4wB/QsG5dHIb1C/i2cGnt+mPiPzUco88NIKEPVgEOkt37BoN1BcBykutX5QEBXIKEW2/HlYP0idFE7gbdkfloDwsM5Iwe9NQlXsNHiQdOGz18JkRdYV9P7FHexFwAHUAguDLSVoOCQGj0ijlM+E2BSNXFSA92EAul0mvUdcT1n9T1X0HzKh6m5/zSaQR99GhPgd1YhAwnitFRq7gQilXmPMttVF+YTarbuGfBM4rCKxpFvp2E41hbz1HBfvyY39aCanNZv6ELLnEq1N3WklKYjB0OZrpnm6Bglck8aPQ1inznKZiypCG/DLxrdq99eyglCJYYkfVkVcrjdMGrP5et1o8+LrH5+qN0vx7rlGXwRPHdYz7kY8aTsVH74UjFTG0STtFJmpWMyLoukUVuzqB1hKDyEn9L0jac5DNamqRNrbc2v6VCFqKZiqLIV94PiuVm9+kbT6s6t1AdKuDuWIBC9BYW3Zc1ZMNWJig0xZD2crSI4sa3aPQrhLMwuOblglItBAaKmOovq+l2eDn931pLtX4IYUnDp//KckVl1xDkh0oewcq9ILxBMUkkNMCYGonQb7jcm4dV5rNY80c2yKSbSNRA3FirkohUkkVlola26dYnKyhtcth7uXe5EulinxXvRh6d9TuLeIMBggKM+5ZoeqdL2r8/sFM3nlXwlpwvAGmJJ+eRAGC/6JzvIwLJNfN7fPEqvd1L1SI50vTctoWEVy1y4M8Maml1Y3r1J6JPfpBww5pUmSFzP0WxOZAL3//tLxXNj3h8rr76dL/ebP/ZOx9M6Nz/R9Bu4zs2rJHsjw/g0rQ9C8lVDtLaqYNfuJuwBYQxlvvwfCdVYM2kyqZIwHXmIOyE49+j2dzediW9UEI3+/9lRU+MLfQfiHAu2+y7uZJHxnU6ac8S9w4ik+ztmsIaDOhk6lBdPRJfZgHIYJ2BA3J3At9kVCrOG1TdN4xBHxG7mv1A6LwiII23xEJ3NfHggGLWTifuhc+Y3DGAraiSo97AZPIVxaHadkpNcfzGmJzSlmI9kbpMWuqMrc2oV8zlY579B5pmc9/DhtDDFMfuRY5uL02hoEfVyLY4/a/VHMLEVenCehJOqdGJeWI4IzU6FwtUdwYAJeGAFPWQVVR2VtL9FLBOrin0hcDzsh6r6opXYxlUIU+iuDkxOdk1FIEc2Ec4XOKSznYCGyONHk3Ynti4CeRDabDASa3OV478Ugn/sxzmdQ3a7xHwhcTLblBWN7AQJ4kxGx1cbR4whJA1bLwiZGjACF6js8G3kn+EhIsWGpKlpwXajjXdt6PUjxxFwoU254gSjNpDImOqExvwLoAs92oOIRA8smbqMzVlq4WTWIFOD22dQZAV9FYg+LxTJDDlp9uhOst8zUnp0xG+T2yoRGYDr500sJ/YSqSMI30H19bJPpg2xsTi0nRC8Mgj7FH1WJF0vK6Vn0gNQacEGZaggreD9trsnL9eITGlOdoieD4u1v5TNglyRBLPtnRJQtzWN9yTfPZoo6FdSKb6WRYP7j3ARcKvbtIfHbqL80t3IBcjyxRp/LItngC4BZBAA8kD2jaAymACdNLMUfCoxsVE9bvrhiepW6JCfxJMmfFba5HloOBKqdQE796AatvXT4aT+bxIqxfscAYyhiDXW3jwUqaq83ReoXthm/s1/+XSCYwABUm2DJbbF5j81FkUBj9bEpbv3Ip64VpABNlgWFJwL2cHVtw8xfctI+VZlDLE8eGeKIvVAxpLIhZ243cO5a1ShpC9cuH5IsY8EdC4imKACYkvFDtcGPXl/5U1ic+qNbZw83f9K0YFdcD1C7Rxg6pC5DHnShi/Nn9NFcRDbPcPlJDm7NAbSszi1ta/fbH726gI1ciWelp4ZZWed+054a0bwjBycfGx1An9p29AYjSyyMndwRvA+rrLSFAh6heB5xfcfU9Zh0LiO/vez/Vnl9fWZhKGfs+aqazpXuU0piEldHghL4QE1DgESF2jJMOtfaxPA7FyrR7gzGoeTEc5uZguOt4ZvwrR5vpG4IhnhTFgbD4BP2B5jrxMzIsGJEONTfcMu52VuARsi0UOwWJVMVDCE79XzmJYzRivvgtBmwnRekeak49d+V2lRyvZgS3q7owC8LlPcAvuGfi4x6SPaGeDFTbq8/cK73qIswMdL3wVPyi0TyLnbn1sFaFO3gBqOT4HIg3x/PU49L8G+U+8EaG9Dko54vPgaq8peS+AkBqAL2+/vtMgQlxyOlmzQHN2IEHczUaqpW6Ioasmvxz630ERPADgaa/NJmvuDp2n5qDaEefFYlbj3SGgTyYylBrfcW2lbWh1nt3jXpDp57DNToCMdchG6xMLjCLV+RBxcGl+AYn26XP2T5oYBMFXd66/yAp0AQXWMnK8VQS7pcKaU2I4GtiniqIg07xfOcE1opS9JCCfBXWLE/HRkpHHAXNTp5Lh6E2hcdKO6inOtJ+zsVGXJWI6Z4linQaYoD7NZO9C2ImJjz3CBRtWHskD4Beqf7vg5e0nl7uzXz1Y3XoqZXxtJZpwISxkTgZb+Asl5oDtMw7pI7fD0+fFK5aKDw3e8ODKZTrkcGVR3eRrcv1iRiFtK/EYnbXD/zlW7wDrADQ+zisHqF/2WHmUpGokN68EkVlou90nsP6hsdcw4u5vIURNWzCOxjF3p/Whz8sxTg2hiz/DucA/Cv9pD4BeZWmGJa84u7/uGBwKFn+h956GaBAuZNCHauVTN9s7zwNCD0xfT+74ZOIva3MT5on4QfG3aBkb61WeGfMVcOGuvY52tTB5We3iQFUXGUHdP1ZVCCeQjNDo15sGXLvxVaH3tWRycfspvR+eQ/J8V+keNCI/I1+CPBBA6QOADLpTfNgLc4UPXxa/SZxI6OCVxrKnQBv0r5gMk24AjAr4Jfw732Us/msMKUoTQgFwszcDDSgdCUIH9r4rACPRaJIkohcYN19aNJKRZCRNlmhyg0rlqmX9u2ljwJ8lHiC8inSRL/CCUNypQNMWFudOrKkcx2s23R8bwigjv+bhqEUoDYrWMHMsGts7VRNS0hZrRwbeKNFwVje+K4W+S9IEudLFdD0J9ZECiG6FXxLeh1UW/GWas0JITL4p/FXLPkueQAtEli4jhFIFHfeLvIReCv78zq+dZid2FM7FoCI2QCe2ccPhmUKOQkJ3BeP1VUI31+/i6iUB9kmzdsB10BaJ13k1X8lYKEgBWt1qZYqsv73rDApauYpKieF+laMUB1u39c/LJ0dwG+bJlSeVt2RVDnwpH2/iE+Igsg8iMOWKuC03zLLptOa5+Qb8edj9LlLHBpUn3+zo5DQTl1mVCi6GcToQOlHwjYX2Lb/jBMhtKtKcgCZW4pxymI7L1FvLcTXKFkjkIKsAFgq22xXURuGBNRFeR8LV0GaUmkWmeEJLsINxkxFgIxxNX2PsD2YUIA3fLmN2tHS2qeofZrEbDB3Odo9ryG9yy9mDdTTihG1saOZGGerNcs/3sdYKSRFLE9auc5U9qWMsMnJkWU5Cj0t01EO0z9YSlXfJvrkpaceJkVACFh0ROUx7ZYPTqjyz+1Ycwf87+XLsFwYLuMaVDaa/zfHKNq4kuZLaxIbMrt1pUq1YbMjdEVbkz8OswS5grWeTt7K8G9YGMp5qj9PjE391GY6tYAz/YeuUVphnaQ0EGu4zSr2BodLlQ5jhKs05djJ84MQUsGMXL+od6yzhimuoBnPK4hicGWxR82ksqpxtaykTvrHVLX2hEE7+vZhMiuEGGC44YHAu7VS8xiHG+t9dmzaGQ5GKVPXl3+GiyohxT33t6JMQnO7j0yEWS6yeWz9fHW+nvweRC2TgUg/g+Au9m315Gvgyn3VHvkjxzxLDq+PeMI2IprvU/5vdTGuXQ4qVZhGGfQHjmFrjw0t2vId1LW/9yH6x+1lxZ3HHgjM4fIyxt4GNjxGKyoDd9jDam1yijxvnqKGMUQLwuFb5JgW2tLpxeK5igSfPtS24Q3HLRs4lTcw0weWQT9ELuq3/he7yiaoLwMI8Jktbh8XTOvAtV85vNROrczW/P3bcKcneqGmjv5wtrl8sL2sdktWcyKGCP1of0jeVIQBnlYh+amj/fovh2iNkbE+U8S2it3xJebCwBFLkrgCeiAc/r+gvKKFmFXYnqN2jqFbu5XnRo7MVutDhIhICodNdPIKvWLlOdlbIinqueXXaoNgnnYMdjpOa5Qxr8TL4Ukfd9/MkAyxrN3bCrXfc5XWf2JZEfQWPXb1D9Ra3O/DbdQZWGQGSeuMjWTukmCD8B5UI3hxkeFZlhf8AHw/qXH8aa8q3GWd31semls/fwoi2pVzzjdL+dhANSHio4S6ErDIvywsCnWYHm/eLqCqQWDaLZOsghVknlQ3Lg0qUeLtTF+3LiJNKMy/3CJjkli1Isvzj7wnvyoV5uiGIo8LPUv0G8puIFdUYACmMVVNNo4KqjROkuzsLMsA+nGpaTtmV4mU+4ZA+79gSGSbk7ToYJpFtlqYjWwAi8WAlTxHikiP/s2r33PXKIXu4aqXAIjIp+hDB+SwRNizTLu/No+47vye+h1IBQTTkxykB+goa3+MIkpCl0gd05jSgHitvhmTnpcOwkMuoTadngQteTvWtCqQoOOW/E2Pvr8SlvGHJY5TdArtvcXvagTOmk9953KB8OxZNKwF0TFNxLMLrr3otS8TJXevIfSGx3BcjAW2Y2a+XH7TV6ycXPccWImyA+UxmbtV7QBV79908UwT3VK6BWxyNOvdrCUcauJuF/Mn51EeIV1df7kO/SZ1lvZ84HVpe0aLm9Kj/IpPbuMKTqBDzSER5XCuSktZCv11nKN2GYpzlQppEoA/a/dFFYLuCEKpva0U2RaU4HnDb9+CvegqqK2VHdKxVf2F4w5UTKQjvcAf8YAQbdyqGv7f/aasIOVH5lSFhuQd77dSHdT7nNe9VC+l/qf+XOrsUtKlvI4qt1fRxn8zrrxfGB02tuttnASvNUViHfUTteKAMavkO4NRzHrqcNTZsgM9QWO3BeqMa/ff7lM5XEEtKygcdUDc2u6/1qQTF2OPPTF6Jxb8/zDOsiN1R+fP98dk1gyUfDIipvSmxBUnCFpDOn4Jh6y5nUY3LwP8gKJrZnxwaZharuA3Op6Msy0n9afsaM1ohm3Oh4nznzyt3pIQqSvV/0ohlf8romMIIjrxjTOeUpAnJZqT5A5qB0E0zDvcVQv9ED0vYtgu6zJx/6F6MtmJU5ThCEcfn3nKCzJHgU/8DXT3x6YX6ISTRiiOicJ7CvBelOxH2qnW7nNtZchlG9XxdLBksOVO924D+FmOlahYTuTvO7ibveNQ/0z5+PMjqM/376QIBtN/+oE2d7IKqUzvAPu+1N1IB4sAfQngXHeUuFRX3TyO15gRVUGgrR+nGYJTv0+dmCQjrlP7uPJCcws0RK/oyuTWbvOdY0KSmErLn8XT0aIqJQHAxV15u//sJFWIBnO9/OsCSgtqoQ96DHUMQzpFsap332Q/1XKKWNe+ZJaD5sleQAOH46GNamFcosDB8PP1Po4Qq2rhC7TTH1EVDbhJvAGF272P6AJODWuk3CIRqZ/PfyfKrYNJoQB9HcZ0NjtzzZaBmIPSzvkAZkVV7I5gfKTNiQsy1d/78wzAkqJNrvxXnRJXZO5YEFCdJHUmCQTH6MGrzW+iBd0kyOva9HQ7s6Z7o5ZdjSYavdt3urTXKvU8Hq286f9bxafPSKtiCxgfFJ0ttDptWQDcmB5FIjHHyYYiZRFCeGCJyO01TX2njtbDZwIMCVYsbnXpRUSrRL59ksidCxEsSxpzbsOHpHDq8c9JJOzn+bBpsixL+n3PZnM7jWA1i+6zDtyko5wahiXFvsAMvNe5ylcj3ARtS46fsUwk3c7p04InfmYZdsXzc4DpOq2CGyJfmbLIxdul6b1HjA3LotoHGooSlvoHp/dgAqss0014HNBGnQ/oVTOgPXAnzUGtI1kBUQVObx7zdRVEkaRqVH+EaZPll1IWC6DHwwRPlacffWYU53n/0IIciw6SsDwA8ZPjAmt/JPlhZC7cgvRK/5jSR6QcH/ZUDzJGJbnIfLfBwkWmULRVFvTJekEzoXxTduKU1UbHIbsXTO7/dWNGKHNfCXb2Z+HI0SBsGfEeFQ+ZfFbkR0GikKE67+F18QXjfoH3B/k2sXH+M7d1QfEd6d22ZSbt6Xd38djtcck7XVHeUjyBganlthZL6QsfxyzEA8ioQf0hAdS6d09KvvGL0WXgRU7d/JAs2H4ESqbMM+eQVAeW5EJDIA+t4vVLPucITxT9MoZSbOnHJ1vgJsgaXfCS0/OQZJOZbOCusRKZ9l1aXCxiB0m2O9syd/6Ayngxf53iwmp8KEr83ViotPXEgusKkFaUq9A1tV0r7J+sv2Dt7iMM2hQ9nm+WYnNO+fJhf1nss8O/slAxVtvjxMlAKICZr3eXPQI50RpULmYKNGsSToNytOAFdF6w93lyY7D+J4TmnQr5i7u5oQMvzhGV2W7cj+0lvzbSyLZzc1Nk27MCjfvJ0sdU8p4OPMsngdvFE13Mhvs2+xHEzfZSm+pP2XaoAHneo8S4uS8csU75QkKLj7AFz1xV4MLC/HAPyNrqxfub27MikUqJpkCEGBEBSuplX97IZHNOOOXfcTBZKZz9WWu1EH5kdvy0MZITupAZkyEWrDBi++C8ndzrhUWFz+R6KURHSpsgEwB8nQ==
Variant 0
DifficultyLevel
685
Question
Jerry cut a golf ball into two halves.
The following calculation gives the approximate volume of one half of the ball in cm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
|
|
∴V |
= 21×34×π × 23 |
|
= 16.74... |
|
≈ 17 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jerry cut a golf ball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-G4-CA22-SA_1.svg 200 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in cm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball?
|
workedSolution | sm_nogap Radius = 2 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 2^3$|
||= 16.74...|
||$\approx$ {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 17 | |
U2FsdGVkX18LmWHjShb9/ISCS5lN5qybCjDn8DV8qC/wan1lQ+nLXBG/V0t553dv2nuBnhyWiHoV5xFW1C14eAB7SWigwv7hx5LuDUj7UaZXpBFJC3VSEsU09Tzto/OLWolV5FKv27fvHbc+BY9R+kwv5XWPT1r7Aa6SgF3gYSoEa3pAtY/9RmZRtdf3ecspGhneKcdUxku+T/lIVkKGaB7giTQlj9uD6FZ/tETj6i+NE6OOjuKNZ28RbDpqTu+ucTa3VtnZ2Ey5V8iVYHh0ey85V3iPW+0DymklzVkcap9FcFPe1YiVWMRCf1WMvS37cNtih0nxDkJ8QaqXgMTPNxpeJwhG/ei+v+rmtrih4APdq88pNZJmGYFQc3T7tBy9lGjENT+lg4D8p9aGj/IESQV6UKqU7x3K6nnTUXY1l6wfhKhK2bD0bxRfOUpwaaoluh3QjWPGUvoW3yYAFtS5T3t3TbOS+berAOesuuN+rpZwl9ciPxSVBUqxqzAxo7CLPZtWeSfKr+K4VXX2mj62Jr3fwaCcd5yjaPh71ZICDHOwDQ+hilAt3Yncz10DArGfa/idUfAs5OiEZv09DI+2v9Wj66RwuY4i5BU0uP5X6MmVrsSbpPVklZd1BLTVy8K4ET3TvvrGxT1NGjcwqn2B6Rf0ZcnlMFikhSc9bbjEXtV3LsBVRz0cnB8OUyrX1j+pcqLLAJfIKAj/RXVsO22MPtmba+eMlJC/1DjfQBxe6CpzFHQUKqA3T0UJ+sSHmrNwTefIEBt2cgCXR3nmMjJdJbaLdNSF4ZUNCmY484A+/XjqMPBCcAOEEfJL4b45POlqqn6apl7/tprBCVX4DVHNfMIOT7G4PwGj76s+7juE3Z9vo4Sn7M3ebOjNG4F7vGQyzhaf5IDDyXF5QOeU9dMDy/xUnRk6Bj77dQX6Dg8YDS4gow28vvMuTT5MvTnBzcLBRa6mVqp4EyxSLZoydq2cdGwJwxqKkGYA5O6Fv06VnOfgzaSQ47YkZs0FNHwhSlhdRV9jogv4Wi0vILLK8lC3L3/V76GbEMRCFAnuIA4ZvzXySJbPwKvzKEUOjgmdc6RJ4QcRS83HWEKSN8tpDOkS6mwwTW1IqSc/H0l8Fx4OAR5Mm06PLIjiUb+HnmCvg/7ttAa4yKuaGvPfum4YAqbQEXhZYNBbK6stJumT/EL2wldI52yy7aOqU5fCPhkVzSzsjKAs6EsRY2h71H4fUveHSm4qj3CltIPg3fqaeqjBgzQBipLaL1gWvKDmYLNzGeB3BvugVv/eX7ivfQ48LUEJRCyZ7w8D0Q3O+O7ZXEFjLLzxu/13utrRGVtdgfeA7QLOPeUZISzEDuzaZoPchQFPD59iAjMXOiYgycj2XFTMGo3M2O27aNDT+rFgKBzfmBeIttF0TrgCurOPoS1TonEyX2Dc9e9hwXKGpfnZickKWHlMRD9Cvi96yPVmiFQ1INfQVsnjXdTzP1h4rmMmxD4sQ8USbuBVZW6Kl84fJp22ac4/ArQ8WaFx10OiTz1OfwA3TKfrtcRv+AD7Kzajd43MgOF+Bu18h74yAjUhE11RkxeiffYQIfvJM7RG87BmYV/aSetrn/clcGY3sAjmhCUs1Gu3K4JyOJ52tP7jBTuJC7W4Ogal2o7KdHHC26724ktTU4yfPf3HAZz8g9xb1+0bBmoELXpdZbUnO5rvrJx5/bQoZVmEkzTlTjmlwASyM97KI8nnZvzayNWfaIgd22MRyP1wut/RHZJ8Nk9prjH+r1cJd83QsjRgiHhpZLlKDnRgh6ykJ3xi09y9TjGZnXkckWQrAInkHnWDieNeFlKKUW5/yG2+bgErW14C4tWY7yq9jZTWii4qaxunU2hiofT02YKcQRgI4XgrUVxTwn43PdC4RlJondqPCWrQJHUIpeiFX2LHrXcDwUZ9bpX6abKs8eBKNscPZGx+DqYb/ZWqHSUXJCda1ixdiYOYSS4UnR8N3rsvc8+kFRvmHjanEAAkNPMei7QOa18bV62fSPzS/WvcGa/wWNDShUaawm2FugpdBwZYlhecZupb+wjkXsSUp26SOB9sQu9agLzDt/0Wan5gpy3UHptJtKTiA3iSXwnxygJIQgyIrgaQDg3QpPPxUIOLGh1WTysgbtr2zKbzTTym9Lx5NZQB3DfwUFxGFsT1JQfGMZI/gXllqV7/Y/wQ8fSyw+/CpXbXL11yoFK6H45bKEDwNjhc+UbizvtYJcfYNUcigWp7o5zsHprhsGub4GgCt1VCivygabHONjGI1La7M8yhVKMYMSLQOzzcpAMUE+fEwhtdFuGtEzGh3crv1Z9O/vntA8eQ22JFoyONYfGRm+PsN8xYa4TKadGMN77YHMILZV9ONmitkeUoZbHHTapEKXQAygUTlyT8gvCT2YDT9n2vXC/LRFAc+aTL3CkmxMvlNHgwT5Ys/NkFOsax5J9AzFAfrVI6YIC8iVqVWJYjytw8TjSoiGbkvObX2O26+k/U5oZ+Dj4mEAvbKqB6tQxhL/qEdTy4OdTen/FaR+NOVx9fvpnJcEgxRGHdblhlsyaahBEbA1AQhf9Dn2lW3ggWxlsehCmexk/Um4XTDSU6uGwPv0a8RM7jdxmr2eg8M0mJDh+iu3hoO6FN2mkJvlzUpHsIKBdkPbEMa3Ny/9suJ9U3k/AAGUQcvpeMSaKHVyg5Mv9czUkslsVQ0RM0vG0gqdD+p2iT6lDo2Aj96JKz9zurmSV0lYqm+KpHzGmcj5WNHBpATBeN3MhgoJtlh5R2d6nFYT/pnS5zhm+JBF+aDaJAov0gE+7Az/gP2l6MwV61GMiqBCrSlvpzEN5eKtMWzsnm9VukOQCEqfIeX7gOADmaXjgo5gFCxvUScwxASCwuGtajDfUd53hb23OMFvkS7lTnqf/USBHedynOmdkWCWT06A3mnQASkeVXKWB0SCaPqWlB/05+cMlHLFNN3bffQrijPDB0eoaeP2kfza9aNIfb4Xp7OoAu5Jzf5FiXN8nM2xWpxOgQkP7q70fMtNtVigEpnZsxJAlVmaCFGDDXP5OnrJKYTj3YGNZyYNHQ0/4BCX4e7JgkpB5tgIO08EHf7/Zc7RRJpZlf4DZX9fEYbJtlR/ntHX94v7nQqh00P8Ekw2K4QNYP3j7Awaol0S3SkQ2BZKwKD4lwD38DrQkdJbBLOZbVrr/YChOslwRA0L5/xUW9WT58+CX87ZvxgitfGMeMsQFmp6t9EEqT+sFdRiLdswiCmu+cmY/EhHUtRS4AwmlfDp4niKJjHPtHUFrOlqMQMPVeRLHhr/TPs6KQroCpZfGXa6FEnbWSKrJSJ6JPjYrCsH4nXymGhPtWsvTrOGWzzdH0ucS/JqXZPZkcKIGz1jo9fMKBzgJa9M4gsLPDy84VtaQhZRzQLzGgrUuGt8yWuzS/+KgPMJOWzEYlsVF7iiD8xmSqU5NO3Gb82fxuDcXyk5TM2FRKR25cjoICbno8XnzV8bW8o/VP9h9nk10ALzeAm7dsnMbA4a5u6JQ2sYn07suCIoVZ6fMSskdEZ/cxynyc/q4sW0v3d7rVBOx0rc/59iglqwXf8he0cqWUHbiFpeswQF8YuVyDIwE1fBvWP/dtFxjsyoD7KxVdMQkmCnPBekhSae1t8HRzRq3Mi9h7Twp7ZtSu/3vleii5UmyWH59Pu6aLx1oyHbLg8wHDyrrarSvViF+LA3Cp+8NTzyfJQU1DQUyXMlOsqiutKuZ7wrwRfQ6vBCVlCi+K0hLlCcl8K9+/z/EnQXHNKMgTnlVUVwHNCKfXFV1LCPaNKuPbWdg3dukungLN5gzhIk4SRZkuL4rCNlBUumi+KN5CRtPk+ixcoxpoJ8GwoqUQvZGDarryyUKq3m8Amo6Haty8i3F2A/kBhNhgEwZwqcyOPez/+uNstZhgToqGfK9K3cxwzCDA0WIJXwQGHngfAsKFdbKm7BgB2JSbKPEaCTyHWUMglZZfXjusw+L1+abwalwjepGgjz9OX72xUSAOEKGA6VJA4ZR0zN3O++TqRyPiAXhG4z+WPMJaoEGTt798CAqUpF5Z4NPp9rmZX3hqRG+eZ7VfFYt0i2DJnXrT85SjESxnprK9nD1aNtOrUcWXmghtXuECVSbWODJB7sBU/IzmW3NXN6jNhxc70vi4sD1XuGzrutXB4FuZN1qcL534DA1DLrkyUQbZn+e9RW/OtMOw7bCbMs+xPlJ7d7ddBDCck9ed0UNY9kCEifVxIV3a3QXjgmDLVfT+aoTTeIwnY/vrBuAUykH8cpBfeif4vJfc7BqesUk5KOT/eE3IA5h1glQnIK8x74MRBl+Kd/Inkxfa8LYgzFdP8AKO/8KhoL4lTvJjAF0WkulBxHL0ybsu+OQtylHFl834DUitnA7j8tyN98uecazJxVkmahfCqY4OyssXetA2Z5LSi0CTaR3c20K/cYWT2orObee7B5IK3TlXXbfNv8BVQsZZlXkmd4DH4z+lDj1ayQDsCSJ9x6DAHgFAo0gV5rTdY6hJAGBetD7zEfnDCkgIirZAzfd9iOosWKRysrTGgWctGygRU6Az2Cf74VamLm06rMos6wxUfjjlZ/i6RIRL2ncro03suRnp34HA595pLNu3OWaTXOahab6+hKjhWYawDOF0Zt6ox1fJX5AvWgTjM/qipBMMC09Sqk/Srpjh/OGkjD/lkUHo7AFHJSJHlf3GlIsiDPtjvj6whr09TRZ7hUyC3OAA/rTSQx05Eboly2PrXjY5kOumm/rkJ98MgSVNEy/DMWM/mcEoSoDtCmNtwwKombGvo5TFB2RkXKmFQglqyQEYW7FtOcmTFbQTKzrGt4maz4ndCh5o2wzDI1Dp5hE7ZR5/2ISjDsUg02ynHuDii8EdAaDluY3hsP82G2uIO+sQwZfZnyREkdihSFcO7IhrgWT03+gXdyO367jWc2UU772bB6RNf0dhPOD4jjU0m57Uvk0+AbHJWGLQQfDWf4zh7ecD+RbNExhyUPUBrn6N8NkcpE7T0HiRCvppyMoJrECx9s+NvhzWV5KxxOrLaHIQih7jQ/n3a9DwtUWhKHXVPxUC7Ez7XknBiuDCzAvldcZFepLggqx3FPZ6W+x8cE5vPgO4r31YVWUH/OevVaa6zZH2dUHJuIs4P9qVG0DxOmAP/NipUbNQTdbE8RlhvWld6OEFE3vyL6KOdbyRqhAuOxQc34hVWKBdlg55WfEd3rYXhFHjCK1NL10W0Vi5XucFmiyfkFGToRJXyjR+3vOVyX9Rugv/NWnsdTiSsf9pu7rUjbP2RYvioSCxbGHBPsqWjCQVW8jIgRjBqM7a9JROe0t+RArOqNYvbSpdl+FVFq5f97MQMYADmIQ/owad1bMlZE7Di8AaeiCLqBZZboAtVgcpuPWZFEBqxsRz5ONzUt98tABQESlI5LD1zYU+xAg9TkEIn1NQdCeOdbOxT3x+zjgTzUtnIc2IU3sjJJTJOr5PZGG4+e0vung43xLdDs94Q9k4VtwSm40Xn7Lg0HQXGMPlhFIdNuW6qlFIXn7uC8DGa1FvBoIk4BJ1a83xq1S1ynf8gjpD9sW81gH9WoW0s0ePRB+stzpnyFFax4XJhC2sGwCU/yJnE9cfKOv6c2c8g9bs0peHFvSN8LJupqjBHvpjtMQrUX3Yo8EtV9yaOAUnWvOuIerXM3G0gXt49Lz+q1tiUNwjD6DbYm08gDz0ViCG2lZ8fzQv2F59FAk+uBlhwU5Xl33mbghpU7/rB14KjKkB/6qqrZwye77ZfNzJCJrIdhQC+zLv1OKQN+5CtxaS6ZQlglKoFgoY+UWh6yqCL1aQsoaOFxVqcRuYoLQhU/1x2WI09UwFMlE0WptLjWvAJCvKLnGoyvN3W7rcZcMRsupEknpiVh4kyRU7dud9RekBCqR/n+OVEiqQC6RIsK2KPd80OabodTJv/4g+xcJrtBrX3lpBLmCE3lPDWQ8eZt7R8RHlf8tzAwYJ8orB7FcGorp7ocyif+hQ6FYSa2m3FN86D8hc0HPsbcNg0Haix9nktwiiBUJ7CNoZ2TuRJ63RDrHjMP9uHfqyMHFUryUGOFKw/2nmLK5VHfBevxUnBmYxWbJ6eUSLUOcg5Q7XRBkuAUZjDn5Il1/qRD0zneaU+lpdvKMmqKY7AWguAdvgufFW4cVo6rzh36wgV/C1N3e7zjIuL3tBcrKKYiD26Vh9tqiiSZH28Az1xKJ+qfkrTELil0N2ua19V2Bh9n1xQ+cQihgRG8PGHHxRYF0KxcUElheEQze3u7DThqVFch02cV4etJpz87OcykJHPEQs7W1SMW7ij7Ufc5WSYTOCYocrw6tlsjb8NtRYI6PLtr26DmPYPHC3mLkWQi2GGHxGvr/s4yT385T1PC9+2PeJACYfSBNE2OHrZhL2n0aP7PpyUgN0L6+tMr5hf3A+Su+uOsoig9ba5wXgZOpl2ljXANjNhrIIACdAxdm9wYxO+vMzwAlRivLH0SAoohoSgpuwLL49Bn7z+Jw+JldOGZkwtsJYY+ZiY1QDuhpySxBvoj5YKOj0kf49YQ5xQ+7lNISqvaA1ECtvFDcvlx1A1q/npFnPq5tziOPgePvIwGkXWUHOG0deVYtBwWEov8bxrinkSiBTLw3IGE0fxCSphj794GIvaGtxqwS9s6GtdfqS3Ofx1qknSkI2eHp1Hle2Ig8smtBl56Qt8182ijWOZXJyODYyE7Z0nkW2bNaUrKmSJbNtfujGW0ZhDhofj4b/AONYvVltFAK7PV66Xlwf0jvBN6DfoXRmH8YrEhIFUir4yT2vuvYdnfbg9tMtDbuezUGlC01hFS1+YrRkCOawrcVnYTGCCeZ4rmnLnWb2d3TlbJyanGjPglk73pnQ2gYtwdd7VPn7kVapPs6tBCIbaYdcnwPvaIkRw7VaaAlUuiRBKgb+vnm54R+wfY3Q/9kxUUbopVC+trmmN8emWnkVhC25Pes2PX7YXF4L4phVScUdcdM5DY8QVR3PrBsqq7T02WWsy7NLJIdtR/xeufbKMbmWzHZNxITvZPWYszoPH69wjqXKPekBWXVcmbDX+mRI4p0FOGefDVYUuVuT3JsPDkUsL//eSTu4lqNuIGMirsPYrlMlf0L57AqRVeHhPhpo9QwqwvM2ov6qz4q2f98rXYUJwAqmqj3yiH1aDThhVf0BmZS9kukxyrdEpR0KDjgV9QcekQPCiiwSg43agFfH+iJSsM3ku75oe90983nxzaI3LSD7c5iKUj3Y3BKmffYfOEvwotA8J8vC3dhymcHRI4lJT3GngYq64nGMtUu9gRZuswABVkGuWHvoHTmwR086skT0HuMzhIH44ie7bti5trbvgxYC4dBifjgXhGM8JH3TQXBcu9emYwPhFqwygka2ps+fALJd+/HZVujZfevMJEEolAjfDxgz/eyY+2YpLtbnnxoHZi9Yg9y6lk+ybxW5wzYxiQuRcCbeARTQpaJXOUIuZ81NYNeJfIYhwzX5ZnxEK4vBYK9LEz2P6i2SeKzlZhqvzvAmSa/TFQoiRKgmrtjXQOz+6RH5L7zx9DDn1rgWpTjn2cU3xOAAGBPBVeBLoBB+noDECGvuLgqqbvsjmYY8CSqyfQgWaORWqSmcpiDmc18SX8noh4AQX31YxoPxYfDha6j+PCZp7VEbBYDfex01iG/YH0nJKZvOL+uS8EpFibxmKDUwv2zkRaXjxMP9rPjyLnlDsm1+IrFEea9EQHJGFeZvu4A6PKQuwFLPEf9ZXKtIjmCvQQIvA46wY4u9r+FFxm1phKM5iGggkIOdpdmEfoCPt9To/Zx+dm7r8bfk5xwevJDogPth8x1HJYu2TSr/V7FPB4XXXMoIgvZHGG2cb/mIznP0e3VqGrKO1xocHynhY4Z6vucaHBsz2Z+m601RywtvuB/FZ1HD14zsa8i34M8zNfINE/wrF6GGlHu7jTyTonFygiWUcThPjK6hJrv/8GG3P1M58ad/pH1cU9b60UarfynalKN3HUmzQ90MAstiuSvRA6PYKr71CPZeKvTCnnVcYmBwBlAxbH6F6u9r74ncV4/uvHetJEIyxirWsJt7haCnCSeuCbYF6c3duWumbvrz6kmV0YguNvkwo5BYcWSFpX4rvn4+Dg0b/0UwTjC+KITWTW/G23ow1ufe9gl68zqJaUlmZMWa53FFv1gmNsQM+GInHAUR+6eRrgxDhBPEFhVfC7kOcJ5YXx+72m7yY6DAlJyxetXLQTHDPcS2fICNsjhoL6mm/UIHV75ZEV96g2ahSDhPPl3ZJuQzuCh5338GPpNgOa9RtG0N/U9AxwtRWC0H1vr/BkltCUPyJEjDodrxWxciIvqqFiemApefaymq0I8IBrDJymxRlgQAw4hA7JPq2lEkOdp9P4CYCodWXjbRmc9AYT1l7o8V168oNrouTeTKVvsjRsHAWbpQld3DmreCvKAT+wG3QI5QBs734w7ADM4wJdSkP9zHbAUCeROxq+5MlF1CiwBhVw2HBHwYYjus5qUkzlH7aCHXObuwNrLHuL4qgKap76gNoDK2tyE8H4EuCgY6/sE5SkQ6pdk73j7A18fYU6Uzg8jMpEdqdQu973v6+MnyzyFpmAzu+/HUf4cQOhk/o71EopsjiJqKLkj0OIynnWCrp0oBMFQditBfzV5Fe1aLrHcshZUx9apVB3wGL7peuwcpzI3npiASWIOKLD1o5sYRPM6iBM0Vh6fUGy0dyfsgJuzKRL69M+J0d3rpbq+ASjWRYmkT8aYielYks74Nx2ah0swANA/gfR9h2E/oW3Bs3V5E53WM4QcsmIFc3OtGmk4tR/8IflEF7tI8K0jj8wFqjiCW/Y6ILbsFhumjn2LQb276kkDCVKDGxd3g7Oo/qPh4BHyRFc46u+dtLFaVgTkFkU8w9hiSEjEsp8pQNo4U9NTcdcEvN7RnKNlk4OPA/D8lcvDHraObw6VyA3cVF3HPdRnj275mReYzdh8FCOeNzhP/Pak7565p/w0CkvVLb1FqMiTY1bHVZCRkubx2cDA0Cgdu7Nfa8daRMfxAc7CixztRfANZ5qf0OmRAv//Dl7qkthuS54GQlZGT1AbYkTgs92/l1b6hY89KCdLtGh6W8uJFgtMewdc9GfIZcRpFDyFlQbWHB3LNjPn4wtjUxDmMby0E9NN2ki35g3d11rAZpaxGPMmj7mLm6SbJtJHokEdI+jn426GxvtYt9PvnghiWYa+oIp0P+krtGLKgwvbNcPRoiqXoN5AEVkvbmWy5NGhcQCtpdiBE/BRSgndS7x8q2HpCcsG8VUq8W/i8d7W6mCcoPuYXuS1cM5ZUPQEEiVnWPqaSnFDBmp+pTe+R3o2W4jROKNYePggmLuK1KziJrMRhWLltgZGm8EbeGZeY3coYvI6Dj8BXCvRqHwOkgcqRHAJd9zdKoa9ZG4z9MyYkFjKJzHFkscqNweX49+3G6IsJbI+SAiRJDC8Xt5vQSQoVRSnRgr1V0AYNuXx1GcH3pgxkZH1oFVOYk8ioSx8S2hBygWvnmMKelWBkkzZ+BTSz0G2uwTptXzXG7fqPseKWfwnTlfScsaXYF8YFXpmXn4w93tyXz3EoyJQWze+HUFd4li404ahBnr6nv2tUEcTzDlOe85jOQw/s47NJez+pRv1vucVHZYilOFU9QXxQsFkaxQK7c67b7NBYvCo83lolDO81DEg5ejdkugeSWsgcFB0dIoTiRyo1C3jKj1vOBh2kPXdYztGHYuYVb7gl+mBXqgqhFgSJ0BjvYDoJy+5+N+AA8Ei6EDvXNcuU+pYYi6RdHtIx7+EkMDVNS2wyeiPyapr811GJiTniVPi2NNmVjm7k0llncVR4K1oBJY1icOp5RZu5hIdueCD4/Bv/fDPaVEogl8DEjsErI4lsAIBS723OtY4srKvjYcAthP8+mLXHyzvTWYzOWW0+aRH4E7TEtYxS3qk0xZNhdSjJb6nWgIRzZeXitedx2Q/9JdnXzAfy440dg/JIClKWUCxAdn1GWn2+EReeC42goJ/mJgYHS4yxhx+PmPqbwRa/p4naHN3WJIirsEzuFJarTiBTdHSSzVbBNRw/p5Hw2gBm/HZeP2s+sBD0o5BkPtVUvewK/OoxzTQEvrpdl2eg3SuJAaVRiB1kqcSKVRldUa80ga0ukQ+q33ikexkQ/YzcO9p9OUc5d9StmPlnb18kbApZt6IaLxyiWdSjuW7gutzoK5sL8vCP24RcWCyJTT4nJdjNObazcEyMDu6UObu1CeBr9ZOfw0Oi4H3nGMCTPGXCL84T/Ms7NkuAWve5OVU7rePBhryB2jpo+kIzDoPYiv1j1o5EE9owDEbPFcV84lWZDeKh59zTa4WPT+WdTBLHP75wU1G6/ryVlhsFXeDLYteelFyxE0QigsK2AYkbzLTmDjcxBO3jOpyY62nKk17l5Xo6ahx1r0HyND/RVEEkQ3KBYH+1pj30i/Rj3GNKjxV1M+bmDSKOW59bXrBPbuUZVc5i/DxysqxLib3hEpqshaFDPVp2c7Ongvf5s50bLgIrVvQggW709QJTzyZqjMUWDVvubZ1Vka2EtBmPKo3utBLwaXAhWMM6H3Qb9D+SRsXNxRdNzqmuOYZkyAjNDdQmhtqT3X5UAZWbPuvnJOGqjCsjsVpT0QB3BC4aw62xbuk/x2IYiAaeijOF0AFK3VClcHa8n2DuK2XnaPwLtdAOJs/JKG1SSJgeW5cmaZ7jPGRz6cX2p+wsPwJFkGkaQLW2xjt2D4FtZt2UQuPtpsdS3x/yrijxSkdCUfkdB0MQHOorls+o2DGoMqmARlWWm5iaAOLonnW4oNJViZYpINEH0dTj10cnEbV3KIzwUiCTT5Rf6Ah+ba7BaNNPBRU//MxhkfdlF203g1B5nRxY3E2kEvPD9ZGxGVW8AvXmYwxiglxALO783FT25iE3eLRiPKDW/1q5GHJ7qbCpVI/kN+GqxFHq/BNbqtlwt+Tv18TahfQSLDn+ocyIQQ4b1aIqYh2zfyoNZPIeyP5JCxrNst7ixlsqQe/GyZU6SHpsygnNM7g8c4ySRd/o23Xiiqif29yFjekXWVPF7pRgf+lSLnOkHqff57eF9n8LB4RtxtH7uvkdn2XdPLAyu1bpwNjadALS5Lx+n0TQuErAr27sWNdyEQ43YSnHao8ZhD/NavFoRiE3A/WslLZ6cSQU4a2jinVGTRNWS42Ua7EJPCqKqqSZ65zIVY2UWYSkJRhbGwtBFvTy1jphRwctA7usNjDEYKAZ0ZpAgY+614QgCUU1hS+JczRKgzph3zX+XiBMN4HbJupoNtQgxzx0qdxg5PnWRVc/FFsn87IEFOEUbZWcMtJRnBGbOVxtqgPBywGkkox5IBJqFPLsn5czbWhQfsuspAfKswp3dJmmtiUnJ7LUiZx1QknCasv04TWfa3qROko46V1P2iMQcsfcJZSnAAWBWsAuVEzxK4tbU1xD1SMJm/82ndL0RuUAu3UcytRW/y7ZlK9ctOz8p5jR7UhvnIrKUha9StemaJgCQ3KlotK1XGlejCv+M2TocvZ20mScwMAsVi3nytB6uqpYSJs50j8l8HkHfzLnnNjwsXgxpBshcOD610m7DHikLivo9Dc4kLPwUtOyAcDxLUxKEf/XKuqYwH/qyRz5TJyio5FRLq8zshuNLcziR3dli/AZV5QpGIVeBygQeq9D4rLTkoHyk49BY0hXQLBs9KYRUBrlqHxKEkhs5Rfi9KIQxxA1uar5MYtUf/fu/jBYcbpk1TQRhrMddWBzzLUFCk4NHCGeMnT48zrALb6BwOnp2z/mrUM07Zf4E7wLAgw4Xx40mXo+Uiu4RYCgTdkzYhQSsRsfWtRNk0a4xu6rtR3tCO1AEYGlgrpHCRMfsL56IGzIJHqMK52GY0owFfG76tmr/Ag9Os1XUZDq29OkFrbQpajEluZGzXHyohKFssdGjDxy0g+LgBqALwwy77LlfrEszBOpZmee3DaOQOiZUGzjNzRnCyujDcwmQoY404Ti0yYo6adJPHYXBFLlP83J5tX3a/ZItJNq1t0fh/MzjwhTFsFWhZqC5yFeoXjK72sLz8NcclJ8aHRn2VytjofsCNlXIoPzli/9fndp9LRMr8P8EUs3DZymuUXaSb0Zc1CnwRUtffTmzFVtPNJLfsHuqLUPCf5X6TfC5IOFgxpobvG9YcOF1MDtA+hCriGSVLzjCcvG/FghNPhKGOy5OdHngjD2ANmUed2e0OK6oya2lEdLfKrm6sfSyjHcVzjLlCfcVDx7tgwT4F+URzzY9DVCGN0NQevOYlvNTmqnu0Vf4C/wQHIPoa5fetRAq8aRtVuhA6hntmaviCao4i9Np7+kc0MNgiiGGxQkEWRdnYGB1k/cFZ48O+mi3DcgwjWoyfP0fWJTDdh7nXQNBiYbHjxDb6M9DCbzWpU8HXbtbbcORgbHiNVw/CZxDryjFsa8dkooqo4gJkgfHsJPV99+RTpJE0Z0SkpNet6D2VjsqoitWO6cHEVW8+7XJcW/pTS4C0V+s8I6ehVf5HLij4BZoWu9DIB+eJD9/rXpSYZun6Ef6FNkYV9uxjX9PMdF0kTAcP6WJTEhnKeVeVaNBXoQ9xBIYoJDvrFqT5u0Oe6VN3GyAdweQ80/XWA0IXfZDXhNLC4RwFPwf3pmPBU0vNMCZpoXYFZuo+Ziv5+c6s5bW7nqBVXrAoampIOVk5/wal3De+VPdQs4QF+ts+L2ilg13N4xohmeZcUgdP3+RebJeeOP8QOOHFWnKxqTA0zhSbAzBQT7W6vxMXZbpavPN67+K3KKmtzzrvIwxKzKNJTQk3fVOmjd2TjrJriI6Y0DpoRlibYdoSwbcGf/leaw7WX8u1nfL6q4k84zpGP2itVE8/kOPqEACh2a7fyHBc6DJkZXG6xJRUTG511009UjXAPQ2RXv2gXeOMPXZweH7drp6wEvTbFCnT5SvOeijcjbXS6FFe/c8HWrNtSbqkmH96BQwwF/vvnudxKV9HLjrKn05/4eDUQYXU5PVrnXU4vzLTlAqv7YuO7ARKQtKy6hzB5DbWGemJX+L/Tt3pg7sJVfgatbakDE4A+dorHuKYAyJ4umh1TlmucpaTXbZt8knFMNbQSoWAz5735LrpaZjHLO5M9p7NGtKUNeGrWB4JYMVBh6ZU6qsHhmV9oLeZJgJfLd6tH5+I23aEBSqEJPZdSV+L5ZpW3Uul1HNdzhtCFFKYLRVckaYPOsb0PI1eb8LscSgLZbfs+UP0triVlxL3VhExxZKxQBAiQnky+L7H7HHqSdf8b+VSVQFslYp71Unhf5M5LcIY51lGGBuOuf+f4zxwIaxTKefO81rNF84/ajQ4xBeu0bYoWJXHk3zqr1LQhfPCIkGHIm4i16yBExRqoOuyHboRF7AQnBIxjVVfYGwJX8MwMA4NLO/b/wyS0tne0DnbrK+/t5mPZk89v0KO7M7B1ImBB40b4d2EKDdf3blVwrE17naZKZdkQVpy5+nh981cay42N5pQqXYVlEE8ylWkdB+ZPhUQDMF/V3OhIco0N6gJNUMbWRVGq1hVgdWP7h1As5Fjba552e3+vs5tJg5wXIBPQoEJaWOR1BnpOeM5LGmn1gQq4XcgLRWSzr0RT2VQILoEwdchfFYeBLAbeEG6MYLIu8VFarRJXCh83ETSabE6TODVUOpW8YjvZ0hJ/nn1Vb0mh6n/UtA3Tm26wJJjBqOJzpV2zEm6fCAlPzp6ry/eqkM5EYfpdYIsIi7LjuTGcyS5CoDU8aveKnSlq0WIdB5q7h66gz5TEEwayGrU1wWUnYG6NXH8rR1x0EmH+AKpwS7JnD/ajshKMuT3bCTvxhJN1BFrI3i/QmwAwJK6TxmPcHnROEoXuM8ryeBnZoNafvNj8DMQrHw8kOEbMwffjpQuVFG/WGu+TT5oXslmMTdfHrEZTIDmqAENDq5bwLz6k++ZjMy+iDXB5deDJNNOhhFNolCvTaEQEbMaOSiBjZQJ6R02g1JLsBah+tFYq9oJHni1HZu3bRFucTqbLFROkU42tMvf9hMp+iov60sWvXCDvLV2cM+Q9KP4H5zUSKNHbluaFg3jA6I27JARCy0hLfAe9uIIIbNmlVpf/846l/EXxjfX+YcHDfB+ce0ahUBwxPPbyWHA6+TS4XbHM2J5nP5TULr7kfmtRsAhE/ukYaq4i3D8qJ9+TWNeVWpL3BklRIVz21zMvMjNVokBl6JN9yXtJLxvg4nzhKmAeMii7/DtCJ2zNEy/ZQp9caHawSDv8w945Wjune+Z9mjuNH3LYX9oz7/2Tb/GPm7txd7SouB/MEaALHgg8JqFk0c5SJqqHAWpmYmwxu+rvSJGWI9kbWvOMY4F71mz/R8bHyCWHJfkiXBcO/ySVJJJvfe+2NOjc433HSHbHEwJnYGkZ6cc6b2JTQbSqBC04TjFbZkGWOZYyllN91Hc4h2e8zJIn1WHO7mVCVpGKH7wAeFXQfxMCQIcSVY1kYMnjLEk+7LTNZKNx5juqZd/Im+mA4Kq1yNDkxTaRvZGIpIqNHga/TIDsljCwIvzwjIWbHFo7Y6Vv/aaNrVqMiNc1Mr/xGL/0z/kGNMfTAiQ98VNXN7wYcn4VBfGQLzLAeOLBWjUxjceGdFEnoBmtJHAeU5qcuofaAZL/JXC6VzL0Dh0P0MOW4nbNuKE/4+rU/6t6fGjywVGGAz2V3KOmQ5dzbbyzpzH7ebd0Zt7dN5oTQqJXx1vJwYT523Hyrqul8drpR/CHsydW7H27S+F/DJoEu1tfbg5ZEhwy0j4IvAgsV2XOe6X3GsQSyb7sS0wCYDxibS6D0gQGSu4nlxCg8hbzaEVpQHi61rzs4LDpoQaRWdynhpDLugKRiktgrpo1nIWomOGtVlnXOTLr4oG9dIA7oxx9yU+KX2e+5fiH8sXUiWsUE/pzH66COJC23tiDYYNs6wqwYQyJ2pFNLcvJ5N/Bd5CXvjKhRWrGmoBJoipKAr9Hn+1rfudAzy/rnvPZ33tpfUQh3o1DGC4XVyYSh+t5utDrW2JX2BRywLVk0BPR9vw7KtE2Dj3sIkSdZCnOYwaKxfuEnyUqe4u/1J3lWimwOkcYC2pMMxeYwKh1lnqgqIqkdYagFam5d+3IuLHuy4f/j8rxdtvEntlqFjSmYnFVkJEMFSKn5z6i2K+O6EUls7MOakdAyu9rJ7YO9nfNxYdr1WHnU75jlOVl8teCiqNkxlSK9QQ6HFRMaEB/qt6TIAiVW/KTxFhitBBv6jUhhvBJ4osvyR4RN4i1Rq0NfigMiKFasKQr9LpJw33r/xbF5XZQcKacUBHEXXdV39Ry0w5C54bBbQV7hM6y9cfFxLA0rmZGk6aJ3zmyjvfj6tblQ0PSS/yNczicLTb2+piWQwMsHI1+t+Gzl/o5O7BpdvhfTB+9Iw1L2rDr6icgl7xKF16ioR6IgPuWgILc1gClzy79c+SrHot03NawVaIEVkfIhbuxKen7+hlCu+BSKTKOUGTpaoZDUdumSdVQFCg7vCYnt0jk+m+9dF08MYwbYd81xOYS859HiJWDjYhCUgTSKl1GF0T1y6MWu5AOlhXgKyxoKAGYyuAhUYYtorlOleKr1TT7tadUNUOfBMnoTgDRwWhg2VGTyXopUyythwmaD8q7rlRsMgxcLSCAp7nRgL12ekz99ll2RfcLfItkKnxnnQugXcnH/hPGUsq97BQLyhTl1oIsMzjdIlMImMO4uLa6enCenj5FC7j7N7xT0caOk1KSwtOnycMxoTama/MeIGqQcr5F/PTYRAXjs9+sq3IV7LxybwWmgGMQQAl1nSP3M1tV5+XUFV1UJVfgU8UXtbPlzzt1pGlbF818KtR0VaH9oc1YbSxbzcVmd0h5vc6qz6LFFTZIUKdW+HwNBEKgqDQt+cwvzCEXI1kkvDLb7uveM/xZgSqP2qVe1KlBnDwAwSw3q7GvvNJIc13xbbBuELJgiz1hCRnQ8wUMxnJbE9mIb5shJxirNQufgXxaBcrEA58i1+c/3xubaIIF+ZoTSrzSN7PomWcoDdbWQxsNCJc/7JLXzZVN9dfdFx+fLvPDg0lQ6FcHHkujZubjmXLoXnjYz2qoEcHdALvWZZ3LpBJ/XGXU6vaF1LubaYdKTAQx7QW+VNhay7/bencMD/dbI5hOxww9j491JkKkEir1GlS0z0Zm2NZ9gBIAsgPIV7kDfpyHfeejEsz4ecU3Z9a8PAw0c120SgxJkmam5aeeWzKjao15d/Qq8Ctrxyy3LX8s+aHLDcR+3Bhb8HVhp9zGfsalElvx2q3gqVsl+LEOOFfFD7geOMSbgLJzEB7aisEXEmIAOZXtpU5vpcqF26BjrvgUnyIo7/O3xCg46D4yqhs4Od4V8xI87WdSOI7RSvWIfb0yJXqiwiEHe61Krapv/h0jS9gs6A3vKgR2+hFFCwRGdD5npj52stMGbFvsqOoH+OwlYYj5H92t7AXyhssHmGi3lUqNAKylQSE99dxipMr7PiNMv2GYEekarmBG7pfWbRuV/+pHiByoBsMjgft5/WO1xPxjtv72w/S56fUd158ix7PQwzO41M4KLUmy+CFV1zyxyiwmKDS4KLrUI3OBep8gqtuTZ3kHSSWMbUNRSGg8pQBSjlnj1QIRQfucEsQf86EJvt7J5p3OTHE1Xw3CdkWTUReLI7BjGzg5f4Ku8z0SM7WOUec6Z2Wj0xJOuUj/8Lvklaty6g68BG60Yt5DeejZTjX4b4snBhFQNcyZZo0XwteJ/sUToC4eQu9i5+VQRPC6VUufQB1riPsMziGDKzBGRmjK7DlQjilqUJ9EHs0ASF+QyBAQ5g9668Gbu+DCqMmoDocG04/b8wgK7/CZJUgmheaZSWP4ht77u18TucyPeShlcKeMIuDjgQwiNn26+7KmxVEnWNY6IdU1zp5VHAId9HxxMD76J0AuEZrOYcfSlK85osOtlqd43WMD+Q6UnJTq84GC4Y4gQ498sMrA5dcpyKJNkbrAqz3yGhni77KYRxL8IW6+yUrxIZ898pFgW1jEkvEAhYp45zGnOJMlXqL/TCUXFP1y5TE6+RFfjZLZiuR1tJENJOUo4nUfOBj/268kyZE2aZXbqriZUcBtN9FMZrNHTfDZVS5vk1dCARn6/LO+hOh8BT85FTvQ5jnVYmLr8HUjrasxRO6mFSnR/wnTEOtFrU/9XEmkg3GumeBMiVx0S+zpHVqyjJUeHzN06jiV2ZAhS8tFGGE48tdSVel4HsCf2+3sVwrxC2oBTs9I1fTuFxxrqHyVfER0Kf3RJjDJ6QRJ1NJxd5iS0WN3lwfiAH1adVB+BPp0kC0QwzEswnfyXwxUIZQQEzD6RtBbCie9wzKcbhLjIooAxfWIFWMWeALceCMY4nXr3SLR0v0z2TlINhtbXSf1dIR1/5Ee1IXDe9TWYmSY/HocIn/0+yMhC1bVb6A8hBzmNxZ9XyoQ9fUPBXe8kCfowRlABRM5LiEI5DYHkYSUA3hkvUVxEpM5dXdNuPo2HUawjjBCzUM4G9SDGpS2UpUAF9HGfphx7TPnHmFq/JACoTFJkOiSZSA9lEmjHFwyf2u1h1dOx95f9obv1UEUs3RwNfs2RddXs23YQWvlGFxwijIx1A0yYYEpTj9BKXxGSsMd8Yy811d3ZSqM5q6ua28OEBGaWKzeOplClVe+xSFQTBExYL7V9J/oNOULKnc3MDcncBKbo1EGE/1aYHPTE9ng4wfooVvWz1rWbQorrH+lI42aoxyEwu0Pi9UxDY0odYuQ+GOEPPlpI6N2D/g2oXT9NjEkGeYaUSpYdTDL87sH9U2DRBH+D1D/b9OT3U61rC6W4fbEGz7vPiDSThQB4hQ7a76Vw8g5BzCh+KgG8YI73znMEJGmj4eghOh6CPvSBFOHCzSe8osKDpi0Ze1RnPLgd8yzD5/27qZI6UugckerCqpzQPDVOT35uGj6sl5Dih8+SVTU1tbzU516m6/XJB1+nDZghp8jDHVMpMYsbFsLuGoW40C8+yxJdpX9wgqghACgSwT91SZlZ0dVzOYDTjlMoP/tBnzypm2k7xfqfZTeKlKe3fy2EJipJLT/VTLhNRNbg26W3stClzRt3X8nr7TqZ0CZfvHz4IhZJaP4NXgYC9DSboAOFf+FGTQVlDTo30vHqBIvkHJK+TtdN6qSOcCOfw88KeUMOM8CJnu/JvaDfnCbl6i5rmesto23EvIAlWhWyYlPFscZhqzoTOdhZO+suQDt/OOBl3B8yrAC6umJBDikHNPxhrH65eBqL2r5ow5gGRUSFuKiKDAa45cC0mOj50Em/ffUuYV3S6hcvBEoxUHMn9gX5U8BfPxqE7xV5FQwBsUsUS0UdF83+A6SSc5ck9/CiU+Fymf1bwT48cf2Pp5JfNBMqHAVcRi8+8sCrHTGOS8ApxFDkjRoB4bakpcy5ovp5KLUiRBmHJpck8lpsD2lMnnou9hpumTa2mdW3lPeXqPFVmFtS5TjUWWxMZ4ECZkgC8enn7G6SwyV1yEV+bbq3og01IZBytECzedIirbVsfyfba8Xra5E+oup1FIMS6nRDj7/zHpI1JUmvYP/LcXLC4dz7mLkQGup/mZ1eZbWvJ61MWee2X1N10kDps5ffZLUCjpFJuVqqTofrkRQOzzuE6Xy3TD94iZHY58y66Chl8VLQ/D/olZ/DhXkjl7rwL1hzun+yEpl8bHKTLX/FWg0mVUUSEpFgDBOQcYL/AfEpvhVJI7fcIjuBWJA1rXRocMOOohz41cDG+/r5xwKPesZcXvaYqnPgwqYpxfqC0fjrImIkvj7WaLM3oUQQMSZxn68rcx/bFNjFqj6ODgMz24XsO7CDJOEAjUkwGvo/O2chhvRrOx/oOdqX1ViitUcvPQ1GfWEnvrflQ647h88mHWL0ZSMLRrUsTgjy2eD1M9AI8NopoEtMg8B9JmVlME023t5s+wemcdGl4TzOno4xd7X11aAFjjUUeJ5tB26Pv3n60mX0Czb23eYprQ1pOkw3dCg+ywilXrrFwt/pp4RqkTMTeDHEvVj+1M3DjvDqYUhdTJiPrcwmWQG9MyKNeQ3jJzweqC0ErvpBOp/dYE9pqC3UeNqRMjm3aOW/HQ/opNUv411iBPNWnRhhMhErvxdBMLTwbdgE8Hi5xfCWkfH2Ic+OAiPJeqKZWHZIRzsNuN+yoVVYnu9iQTG/4v7kgs3zdN6v6p12XVEOgOObVuu8uIjp8o1aQ8k4U5333AE+y39OHmevAAT8JOIjnMYOQLjmraqbGxVRpEeC7J0gvVLjgCiBTux6g650O57bK2b4WubZhN5RP2Gzx+heXCb9KGKbeqorvUDfhXyFWu5nOlRIrkPcJUpDmIBBkITuW8p2i0UEnAJhTdeoXjqT7VMC8GMF3fBlJMy6X2OqDKkFCMP3NHBVjHULGPo98boskpj1wDx+Gb4h8W7wyRjc68QsnNOFTxZ9HJY7nG6pNrumGyQ9DKMZbNHMRhlkZkEtjRxTSnyaflWBJsHE3biKeJmcWg4JVM5O4p+3eXBMg6N3djxLB6agGQZRqfsqRK8M0w3Teln0BRTNeS0c1scGJDmnQLACZhcyMxmr2pDozMnffLbH2TMgSd3nM0t5cbt5FxB5URWIV00JJJ0NcEi30qFVHb7IcztZxk1ft9xopAGo/h12tbstBS/spsLKQ1mx0Z33JBc+sl2f24J6JJcmVyOQ
Variant 1
DifficultyLevel
685
Question
Patty cut a basketball into two halves.
The following calculation gives the approximate volume of one half of the ball in cm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
|
|
∴V |
= 21×34×π × 123 |
|
= 3617.28 |
|
≈ 3617 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Patty cut a basketball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA22-SA_basketball_v1.svg 190 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in cm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball?
|
workedSolution | sm_nogap Radius = 12 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 12^3$|
||= 3617.28|
||$\approx$ {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 3617 | |
U2FsdGVkX19j8FJNilrvmYewnxcGf39juuWx00v0kV/5KZZ16Jhc5sW4/tFgj6rQOVJdlEYBD39YbcPd6dASgmfyzqRfPNQl0pNYugPs+fblruRyq8F9ElQDw2ib50pvoahaprSiETmQcFJJl4w8YvTolqsSot66bP8YRmczKIQtJtMdGVn3qReuOu85OQnl9NEY05faLYPGw+4eSAJ3EPYy0bfGqkxU6aVTdtqNL+kTwhv5uCGdcFxNJ/BUOrK+BjSAFvgjDY/bRLSwtzNTXtNzEPwXlfsbZYO2jGejClVcisCalNY1AZkA5wVQ8PQ04AQvc1gHoY8IQlNr2veSaVXqCd+qQ/8vy4/hG8xYdCF7iNG7/JknPeFgtQJw8ZkbuFrSqrZJyAI9kEtB36hMmx4cKk6BpUxrYmP0ZLlEe90DtqAdaV1/b7XqgllQpmRroINCQ6F9XyTTMpTd+2SsKTqbUw/3s4o6Yg+lBrYi9x0WhgEPQlVTlcehw6urvt1jelGVJjCyL6JgRw2aKKe8OunoRg7e5ylDOJ0SVohgedOlKY2e9O0+vigTnSdt7o0OKudiOm15urReheVNT9oD+y0QU7BcUGWj/v6iZASCLuHLKPggrI1phMv6RAE/WhnnFO6Wxk6hW2y9BU2P1hN5zsJSR3Vm3rglrNsZ8PFFOcPkm8G0V0jN4ykw6ieJdsE7EXCyNc9khEjQiSYL6B/AH17h6rBUKCeMZN3ht6vX8J4SgE9OyiRbSbwDThsi7fRZiCar+7ZXcph14MaCVBPF2vPXHsi9eBW4hm+QLDx5AmoYc9XB/ROWhgYJzFa09bmOlOX/xCxom7pzHtgr+/kIXT+y1+OXQ3CRYLMJDI2++z5WOR+eo+hnYnPlnUum3UG9AkqGBDAuexLcb+58VCJMek65k6r6grBoJGSV1vKFqTShpeU5ZlxDkKtHmAN8As6sI6jlfutKDlNooc8ZiCWdWi/518p3hc2cVRDPG0Tgv7ml3MDkdLOLt+JhwlQ7uWHaDHen0nDciG5pFeWMaNE7a67B0Jdu6UsSN/K6ZPBC1OBaRLJEAF0VGf8tbAwzo23nH+aR32c+YuG1i9LQTkzNdhLRRvCZS9ZJXQYPC0aH8VpoBOjijyot1NawbgqWQyLLG016ufxMY+R4/Rx1DOUmb/EtfMIU58YvAJ7ui1z0+sCGdYHYCBNMd9hpp/y4KEPU4UE3vEQe8Ksxu2oQNR1OxlxpCw1KjZMH1dsKkHQxoPoPWlDKems+uk36BmpnWuntHMqB7W9L3vuNIOxmogVOVl6P+r55CgX40G69mPR7O6zsVomu4TaRrce5TFjsokuetLBEZSJ93nfubgl2nsUuVq+jntHb1k8q5+SsyIPNChhigH+G6V//fZJiLbzfMEXryIHF25CDAd1h2rP3Yae8T4CpH+3mv9tppYlrnSVTVJV6t0NcNDEC7SSvcb7CESFndgRgXerm9UDlDKql2OQa4lwNH/7fJvMrRpINMUumgOW23Cx2l7xBxZlnt5BpoM9tNKJeGF5m8xgVTkDPsHKZsxUF1e/ftqTT93rGaPNWGK2wVvt2ezU+TDgQzfSCyt0cOTARR04llFKX5JKDD7WeUqk3bQlF45b4mqfahblJJUJ1wGQkePP69uT6lc1ySDPuYaYBudDFriyUYUGuuHMLaAGDVNd8FXW8OiiUDty3cuHqSnXYuy7bSMQTDBwDAvAm14ZwWyvXzDRq96OahDdneCoDNSMtrwtcyoUaf17gB+5rsNzBXx5HdI2I/89tw4j5oqTagEpDGCnm4qQSahx1Ckq+VJHjoHFhIbbn29/QJZ/qXDNladulxhqkxTRUOVJm8ps735CXzGmhFrN/A43FJU2LvxqZcrwpss71lDaJfNg13DrwRgIXdt42Nj/S5FtNz27UtiFwqx0urvRyxbBBK/094QPIlilXM716qdzCIPAOrkC4A+1EMIkMCiY4R7RuuN8pl2qVDjIgJd5/9kXJ4f9ZxJZx69VniXS2dRvxojfkDzwghLNZ4b26dciGSMlC7icJOr3SECxMD+5US605xS3Zdj549nt7LFQ8gS93ZEk+FbJ3rC7V9x5mni2/e6pCx+ElvoYsmZVQ86760wKWucISss7En9k+d9P09Hzn97yZBZeMaiBUwxZQ8jd4y3ryoRJcz39ygIh05XzhCbJYO5wM2S4Kt3YcVDxDP4z5u3+nz2ClTht3F6q8x5hJe/HsKWnFqT5YtPTiTsZZn2wYvgpXsO/KHWvf8LulId0s1LKDQQqawDrURGmY25XSziW4m+sekzibX32Gn8iUICO0wgEgs1hxpqeBg8bwuWFwEFS2TZxjvmo6442yUtK+4XvPEsMmyX6kNuRQ7nJzMrBlLd4fWpyqnsiT1HDLNkwGs+zR1YwdNA8Fp6m86JXnewQxIPOTRwfYyEWjIRlQfzjGEgF3gjgsj/05yKsiJHnqvrXl7viV4ZYSEuPdTSb14Cy8kdl8PiB4fuBoGVL+DI/c2oNqcyYMZzjP+dPLWxpv4SHaK4qWa5Tw0N8546AHPKI0yrfI/eVO++Ow/iEY43ZxZGnULIQ41QyQ0cuAPb6pPSxgyUogIHKAxoxFs+NCCqYkxfuIfGQ6EwskvjvDGEGHOG28fwu69j1UVdlhLnaQPSQovRiBc9dIHYZsqLsqI1zZeQrFZGdkm7bAW9wFh6HIFbw/vdYLdzu2CEKKcVhL2WVn3L4sNJRhJ3CddmMtK+ngDnt5lkNQ+hyPa7rTAhpmYTJIEh6x1cBkmipXrUysFWY4C+OFHJJ5/e3wycfCMvIsURAaFYO/I8sS2xobPTkLuPuejKx/pjgaxsXdH5z44EukZF8ckhlEaeFft9Qk0Dl78rgQV5So/fNTPOHOWcUMBCt0a+9ikLbXKY373D8d9acC+kPMSn0oVi3HIxya43mL+G+Afg3Uumk3oI8OKdieLb9DWvDkW2m5DRXAyq8X3BXbio8FPepv2O2Yq/vGTFm5Y1B/t3Lnyh/I+RHYt2DgsJGEL39YyaAItqwdOcVPzJrqR1s3wra1JbN7nSvcvMtXk9OF7D++GRz/pMqsk3gmgsm6VSq+bybgNtCNJ+Kl464A92c9LFaKW3+BvuleX0yILDl7Gcaeybeppq/mn+lAyIC0m9aOhPjJvod2uSTRS6PHFjjowNkJQDUljwETH2bSiV1yCVyYxTKXpizBfj40uMmoqQCkt2EqRTwxkN5rCC0D8dKFPh2NpV3k/XaJ/gGLB1Q2BeguZ/ZP5x0N2fhPfkWWpcIB60HmLkh14hH3V4Ah+Cw5Y0A4WD1Qmwl9Vg9F/bwvj2GqB2rPZQ89uMAhCY6duw8NOVwl6j5wdLw5NzriaCV99C0O5HIpZIHAz991ViS6T24J2IwqWS16sefcOQJABJKFYKxy4t60Xu/0YcQGuM+nSk93RojwHg7WG1cHeEvSGiOYkQRuobK1QRq+sxe0C4B5IRGz5bGVycElS06BwmkVbOMzz9ae1DQgUOXvKk5p7RhKZ/XtA16se44OTY72469dYp9SINT+KB1DxtXHs5vu3CGKRowmWIRpPki3hhev0eXG4HtHTSvbhqmNokOyHRoVt+YpxbBhJEJ9/WMFAq4MLqiZf74zBa5+FL2EbrPg0xOsBNEsWPnOUgWDECWFSd1yIWtXKeWckVCL7qwzdzc9rsGNa7wQFjBMfjvuLSynXQRSUKiO/7YuOKQNGs0uNu7KFyhF3jL3TnSWehsH/msinWkuUnU15clQ6m8rusOVnjfBPu7sOPzZWUXk1MGf04ruhXxGTbw99ZJhxTxyIP+piND4CC2CzVx6z8STjen7ysW+OxUf2SgwGGYTD/xQ48gyXrHVsdtiH9MV1GhKCxbNwTdwLCsClAjiVubXsADTbWf4V4G5XXM/eWP+N1lHvoz/LenjgkSrhimza4gM2krSZRBk/Wl0QdQ220kbnN+0tOyr4cs28pCkvwuPifGLL8qTLXsLYUO/OpuMuVKiwGU33LgMifwlwaI59SkiPnQl1l2adTy2MxkxLFaS1DHRpWMGBrQErIOTANRAKo6Q1qlRQzJ4Pjo/HTg5ADziDAI+MFJf6pUcL3hBvf3v88+22tJnMXGpfwDcRsQL/4nbJIHiSaviMpcMeATXI/LKTAuh7DQvZnt17sIdY61MqLUyl7ryQ0v3aOCS+ocecoT6b6d7mw1SsTZWXe6svvmPt6xwrmBDaYK+AnIbb8WeBmIiXKAL2tvmz1/RNYQO+H3rf1r71DSR+ulFIXWf7ODGD1LsKdJ4vt4/krwnduGRqMAVtSA4VYufNVBsfktTMNXpzJXKPHUlX7866sdaGro+xoA+I2cN+XtRnm+nVTV6vtrRMphxxE1n+h/7T+Oe+6FkG1j06rs7BE3esaeb8Q1fFglLgNlDe78oZJjk8/33ZJJevumSnTk5yCCmIXwxj21I8q2qWsmoUysay7IRJ1Lp/KBNvT4QmT8C5vPcbKTCxcaqgaG6Vk8V6Ws1HqsSawEmoTFCzhUNbHZLC+MoQodvE96afzhFR5N33x3zrXfqJkODXRk7PH7YkbOjv2ux8z3wfavdsdHXPS0WxkSFIMkvgUdMSGYbgX3FKi1fWhp3C4Y9V8YB7zyu/T7h3WnWBlbMIsyJKai48TK41ZeRJrjE39lBORYlsC5x3gM3uEb5TrWfs2KDWhN01KvyTf6tN/AxZIwQ6XOsnWsmo6NYGy+dp0RibSo3dzUH+L37T7AGg7X4Deu4+CUEVWP850CgNHS6gmRLqnN0/sRQLle8Pu9o/3l0KahbQB5ghHi3UGlgBy4XEtd/DMRoti/xkEHToYin47ofyJG5C0pwt1nFLPTIVSYRmpOAnM5+XZMSWVoUFH5NRmT/t1zhuP7fCsfY0/Ojos8crXVPQvLLyfvFuLVMsvEhPQzU2/wZBZGSxLz2lpnMnQF+oi2ip0zaMpe9nUysnUDZPoiI8d6JGMER2wETOxRdoEVduJQITqafEj7RQ14EE4NXRrrwpAPb+8+or5hEguLcaBjJKZDZQyYq4YLwR//fqZDEvWrTRKppzGAoeKIS7X1v0qQjkOIVVP8TZyI/bD8DGAT+t2eAfF7BPN3OXS/Rv7Xw6Pfw0IQvO1bQkTxaaVDvbRaZyOCUUjQGgZjVrAfERaaWpaeCXFa/JRgjZCkcl6BLFne3DDOOmjOtq4oMLDm/+ttDi/vBhR+G30aW+Gi8OoZvoa6++/V/b6PUvoRdZ9LZgpo0tsFFmYe613by/OjjaZLXcj9pewR/FiJcQg+KC/lfpGpHjwB4J07oarGbKoEkVMRpqOt52yQUI+5odh0hT7/+BakKKCsMFVmx9mgBIDmgVWHE5yXEUcHfgMN8mytplcxCdImM7FIrbDVn9aHBbr1K7YnAQ3A10VlRWlcfNcLsp7iHajApKDaubgNYq1+f0FA5QSQtn98jP2OvYN0siwE80THEMZ1gO+kIZRsuYtQJiqpYHE7tSl0KS0z1qVMMK9sJByzgLkR/xMpUxkhRWTrUaS9qU+S6a2Y6L2eZYde5Surl4UkQk/XFc/Hmx8vczcbN+qoCe7uitkau38lAbRrQA6BjDe68K06B/zmsKaZizwooxJUW/esNjoAivDWt2AypYB0ki3QeOVxV+Ag0wFHK1SjPPH0xozJxrxB/GcAXNNZHhw1OUmuQJqKQheBQQjI3i3PdKCE+139p3xovLScSEJoV50M/rMuKSZxnPL1Te84C2Lr81NWZ7m3Wvw6VXynxNGxUYtvTMhEtxXcR1z+N7eJQiDxT9wQ3zyh47yt294qj/AOd7BdkdEy/c/ZOtln0eqKZMYuRDZwRNgmk0Eaguo5UlsdurlJjvICQoSTIQs/mF/GlWQN7G0uiGJv+srY6oscg2M3XGWl1QHhHAtrych7aFf7DP+9ZyZRhGCmyWw3RBB6Qsz6MTYnaBvx6dG0B2a4Oay9m3ekghD1fDU/R8hppwbVP1YncPiB54c2srEWHC/NXdydGyfzmBwCGF1Xsb/h9LhmK16UZfzue0Z+mlNbAE8Uk+gbkGGGUfweZq2kE46nuoExcmumJIfBKkk7kWU6DJmT6jcdRlPXz5i83DG/vxf0FkLUsQTtZIsHRm+0hBQ++8D8UoOf4GL5HtC/Z1Du36Q6r+HD8iikaoM7NlZ2JuPcDB9lgPQtgmKe3lIfVtAMqHXZsazgW/Qz/T4ykCSqeREK4WWoGULbvDTn9ha0ASz2aU6GqcweNADJScLPm8ddpnRSQqzMJw1xDCXSUbV9MZ2rZAWvKf5mjZfuuZ34V0WoEj60aV0bWR7/hbnMJ0MleITzsY9EaYrigEjJP0EGyWLBBm/ksrMlXW0aJLNVVCh+tkA1rxlTZUjEjmPKuSeDtSSZC7UlwSic1GZEOtiYwoBZ9fS0dsN9D+4/NokneKq4T6TOwgi80ViNRq8X/6UJG3MJjy1MDJnNhoqs4BQGf3UiJhWBOYyLTUTQhhpzLUx/LNWvviXx0LVA4j/wgHdBh7ZTJMO/XwgVGwBpjaOoQ+AUKDpvcMqkiOvAGgfd5dy0jFDEKNCb0pOyaQUiCV7dLoPu+wbPYwbL8qUg6c8oX4z3UvADw65iPqfV4lg3lMsbDuucPXcsygOC7wSGRw1k8BbKBZlEK9bugY9yyGJrFeRKdFzMSr+NW5WxOLxFGYJisdbFW6u+6yKhRsuzZcTocc/5sWyNm81j0t4dT4YCdUQyZRrrEEs/E04iJswURltyRPwJv3t1Bv2GFH7rZdFxY/OvJPONHkSBvSZyhYyDjhoNoe6hg6dBIXqYKmiUTGKnqQ/aRDkpNEugtFmAVJpODlvBu7i3wyaUawXfzHH4CjxsIi5Bt9iMLSFafsBKE+GPzG4Ny512oTsABnBtSU7BCrzOOWj2HBxpgHWgNoHWa2nfDBVmW3mwRUois5guqhu/uMij+v1LKILa/jdXW4B7/MiqcF8qNT61w8MC8oQnBMl5/8bu+uCCoyJI9lA8+riDXGz1VYaCO5irNiYBwBZVredacHm2k7on0w9sxWSTimvOhP8T4PpJe7sLdRou7yMfxL5+Fgur/hRaLEGCsALM443B6/A2fzaMwfBAJXjvTNZ+E6P3m/cQniGAcPzkSQZdfUd6x9IUz/LMgQqUAanj6NNdSXBIo1qPRTU7Eyyku4Q1gwSZn0vbK2FBWbrOV6lQ/e+XQzYDhuGR6mZDuIOcDy95fv0AvratDrvQWdXh2thi5VM63uL9fqWjyzU3yXLoxIprA2a1uBiPDrPSHkCIoC9GsZEuRPR2r9FT3NgXxO+SDqMVNZwaO44Aak8vguLeTUti8wxIVbpE9EXeTl9wYb0xMXJo9giVvms2mWEyo8cf/aaTBLEHKf8fL/YLSGM+XFpeAoIP2tHfXm5w8D+ZfAmG/74aDBIRn1QVx/edVzgkLdP1MGmzt1p8Pha6rYykTd5gXQsdHOpWiv2XNQVXwlBOaU45RAVaDQ4oF9/t2CLsFjgZGBlHLQWo7QakVgdzsE+cFXJZbVCPEBs3NXiA/euVw6Raym4HjHZOWDLR1ivz/0ntv9IbmQTPjMX2GmIuRMock/qtcQlhyBjDkC5rjBHtkGtxAHAx92m1x1LeXIUwHEx4Ey/EYy2IuJYs10iYfhGaSFPC/1TmlaM943UNSFW+uNrivCbOjw4G2mkY/bnFicKmR6P8LyX3uHc688HQ/V+NZcLlB71eOL7DQPUADHlPXVDI7EwMr+573qGrRl0dAWqpHm2WX0HPrkC7wQHxIs+ZAREwLrJoxCBt4nQr0wNAkmIR6ABiBmH8D3JvmRovc9L0uULuEvMel9E5awimlDIw1a/xne3ls8cuHgu9zTYJFRhaQgLRsurvfeJ/LPb08RXkF0COuY3d4vlDE+A115QvBE8nDFPmyiSV650DVQ7zK5WoqWpMxEKbxQ1gGvXRyqTaozn7eW3qR8o1wrMVU037DoML91Wgd6m4utca/gakpAdQFUBs92p72+OpOeB8mb/U6tJzfluPr2a2NDik8GjoevsVDkivLmgmOLd+kbedEMha8glIHBge3HIrAsJydUXdgk1lMm/w15jXbK9s4s5ETiXiQPNqRwDNdiutr9/NEFRf/dMzON1zi5g6MLhR8MmAf6gLU2MgD8dXUKj3I52vLeOkmGjEFQiHSeXUdewNqhJGkqgVfLub5i3N/Y7/1mtkxe3F/QOmjwMz1WZDyuE+7th/weOeREv+WgubJk1pw6qlm1uudnUT+TnmEzuW2cIgB31kbmtBbuf//IBkBSL0i6lsp7TA2haXvalZ40jlLzxbu456i84djjmEGVdZRtxq/meS3WwYrYpGCkA7rOoWrDqUP3MdguR0bMtYYYq7o/LJqrE3Wfwlk556aJFbOtloRSv88iw7YtVDpmOTbpmi+/bn4lKbCNyxpguJr+xCRD99gNgIdqKiMy+a/kgRKi7BFDy9G2XtZz3eyhW09bY9JVRuorfwOct2c/y5TityPt6cV/TDaUiXJcqFxZyEU3azo4M33cHIjNPZFycQCY7MUh+z9pX+nsn+eDL4KQhfrZxW7lKBY7fbN5q6WQKElsjyiWspDKPF7ZDUpBL/gAZCNCS1bb4bE+9ZeRaYsoAyBkx2fhaczlgQlZK9xDdwtNS0Nj1ZbmarxeumfrOqQ88n0SMKHbHTaoBgSKVVtHAdPY0hShgwWem742TfxP8mYk4FNq3c9csacE5KaB6NKLOmxyB/IrBIZvl6q25KXAml831dA9beMNEzeS8L14SjbiuO4scG0A4/wQiUVY+uysRcfisVqCvXI1Q3dR8FKXXdwHf3GVEy+iMKtfp2564JIbmdQyZG4ze6zSP5Fv1CmRx+lCj+B+/XSeMJPqLupsVyPf7Dhle1szdGCXwZ4I0gijsVAbjwOrnW0dtUkZMy4X6TTMoE8tV+nPOM+hQk73HAtVhnypyLGSET/xvgsEayLM6yElIPPcJoBbNQngHMOMMfsv0d4kDnm5uyjsPu5RRbzlCILnnqai2VvOARUtm+wP6OqPCZFIdGgvgNnEMxIpwT3CyeZPfOmS6FKyAwVk+3BYqEa8NaMXUPrPXpqtAXi3BUMOGRy9+Wp0MQdnoyf23QTDCWyv3WyOcFEu9GTtROCmUjPO8hawNfURfFRfwz7veR8FrppCR5iKPDcvGIMYmj0l53CVL0hKmIYrB4M7kJtkRLI2ZZXGR2zz5FVJDxxEXp4j3AZPXnHwQ8GA4gOgxAJIL2Zk+nNEWCeYsq0USZQc7woHhG03aMiDatKHO+jAnEyJn5QsJlMK8IRMEa0xvP1BcN50y/BG48s0f9KAbtxLqsIABtk6fbfjnwfBZk8ba1rw3hh4Dj8wP2iUHy/mPqiFI2PDyyHDwDIUJcxQZmmuSiwdbXdsnBesixwMB1FWCnfw1xR/sCuC3h4+tDROmL2zSl+8rHzZ1kowr6UnqcYBDcrN7ijtwbC9JrgO4ws8oO719TE/WOkrs9PcJ9S7EVJGiKOIJd9qfi1CSlYtx3n8VlLtKp5nNMKfETfa6BMa+GYcciCtEDLlSEygIMWvS3PE5QTZ6bbiOVFKhMAgESSeY3Yts7i1gDaci3hmMiFj2mT3qRuMBSUgBBuKCiCesvMtvi7LbqKdWEnTdSXfWH/JTEjEnhW15s9WRHNWPrCbMgh6kFOaQQXrNqgj09bjJclddPnjx6Bp4tq2EQhW055Yb2ADZmlhyWGvSAhq1rvi8unmt+IjUeHxj6dtfXbmDG31RhggbMdIiSlobO1GM3wIedQXaVe3xxmciEu9+17PKnklmAAeUwMkFseiM5lPPfOnA1bur32dsZv8Hb3oda3eF0DwERUgLLeUdwVlVmsMe9s3GgEXNi9m8AaFK9xqHqvTCDXjo+3DPhaNgCtH2man4BMJ3Y7aXg9P8LnkXmoR2Xf5dnZTrIr+c9ooE8wtROfV+2S8I9uJWN+KM5pR9y2ULuRwHHDYejzERYoHp8uMlNNB/XZrLAE2a2xpLdjrK6hcwdIOh5NlNAA7fmALddzZMln7XPFde4AM71GabEEyGoj5I9lwFbWXUeQYIADz0ag1fqyslyEhrHW74SZehLuE9GN9pU7PsSoDR9ylrD7NOK2xTYz5qSzNelF7V4cRnNlDCaOtty94iamxpT3Yb3FRebvnwg1WQIoOiU8kI1KLdPkjW5vpVSM4yJi51jAyxpc6P608xn5vFbWFQcIFL6QGi6Wp9rv8P1NUDlQtg2kViarqJ+Az1ewhywMK9nQp4GzGdiZo/fM/s4DQMy5u+G0zC3x/D2DzZcGxwhlLbfKQEgxes9kUdwFzNmrBhtHzuvgZdnMDA9ASVj+xDRC6sXIohQ5mipVYn2qQ181w0XBreBvK0/DA+S5Tj7mcwaLAQweZQqasaoJrO0LhYaXV6AaPHMFYvGh0ZiVhfQCM5fQ5VoL69rZ/QB+tt3bby26cQDenSYuP9QgaO5jd7Uh21buY81G2uwz4VolQO3SwR5SMkDSBrmpRN4qAel7b6WKZeXAeDGFicXO3eoZ5JBf12RwhyBdAyOtZLonyrq92x+/DNXRKzmLRYzN7dPLPiTj23J4tnAW7RV9QO4OLi1BkWF6o8yyEUSzVCECKtvHmnLVH9KoNsZ0NgM1z0ZcUlwInJWfk5BoEtz90enH73B8Z4pBV+izJ1/pzuvtr/f56PHivLhyl5ldej+nrQr0nBfBXDVs8URZu9E7FkcFnmdMDpH8503SJT2maaZ3inKkNP4SKOB+9EesiVVjBRg2VaRdvMbiRfMVeFRJ7SBQ6HrDUOlrld5eqRQfoXI6oNUssTOiMD+BURF2qqOHpzMgRHzvmcFQ9ywFXRmLBGoY/jHGXKsaKdONp4/ysu3AvGyEDLyItkwCOjZED7QTO9iYbyUidqsfZ367UOlSltsluNxzcaLP2e4XgegKPURWkzEyPh2o91+ig5H/Ibikn95OsqLuNuqRsFeXIj/FckGu75nFbGnA7+VDUaDCIem5LQDbc7Dhjg/GhcWT55mO22QFD/RH5tRIVjDJH2cwFAnz90UltffbD/yJEeFbJargX+pj7cWpJ55erc31R8zwHkLL4iBoym6RfjevljkdeIq6vI2hNPQFhbZ5mW2P2M638/47jLhcckxMmyJpUxePcy8vabZcml4iUbJR7f7m5Pai+zksbDXM4A59a9g6PehKhOxSW4X9TjgtMZ3cbwrX/k/P2Ihv4eAcvvHJiKCbgRhwmvBR6KzMd/XWf/a54Z4h1l4XCWzdT3La2Ws/E+XEBwqQkDmCUd/2dLwIAC5Lf80oSql41Ug1zIE7uyZA3N/bNBN29mvvYp8ZFGDjRZQ2+v/73joe1UqDNFs3eu6Dbin+9NP7iSwiEJli7S/SMu6t+EJho0xE5uSCzssOEjw9058+Y0EZnnYMCX/x/ZEB2Bb9+l4BqyKgKrpWXqOIbLfFNnF8Xk7ADqYgK1DehFw0QSawB0Z+wuDrWbold5CBg3TqsNnRM7mT0FSRjxFukutwCVFX2f+avIEt8ku0ZJHzyenuGrYvCFNiqd2Gwh3GlneUqhBQ8ti19AdXsHbopb6pCnSRC2U831Hbn61W068OON+H5q7nwsNjF34onUVM8c5FuzMr/0phco9ne1+Xet5N5zx6rpjByx5VR0Lf1L5rg2KzCGhWZ5qQFcA31o6vqnBmjL0oCVp5mA8gIz6NCyqd98S0Pqxmymm9M7svbnhDk5lKiIbHVAPyqB2SsjEhVMOqop0wC3pftVjDTmLq/ZpH8YqyhyA6xayW2j0QgBfa991iFIx0LPj3BVqUCE+6ikXVjlZ12j8zjCnbsSo0fdMvZWXf60oNfre68CaorjgPw8BPZwA6ZzGGGx8gvT4RKp3eA26wSE3+IYHazmEHWybYH5IMbuOzjeJpROZuZUK+ILfd+BBNN0G5A+alhLaMdiIO3A2OBV7XsXG5QefoGX1w98dr7SfNg0qkYnUAmJFGajoVvQWtex9Hq+nTguMoYfKvMj3B4Aw/b85+GI08a4uOkmvlRYw5B0JZ1XBkWFDABRCQ/CSJVv4GPljmbkRLFCdoRKR1HRU18CB5XCSi1m7LOtKVecAHL4krmJU5BYHZe/hVKlSvOUhVBb/JLu8cor7+QefveTsI29vjADlXqmn3HxZhXcmLcprEAOXqAAQm8UrMA+lIAjxqs25FjEJf5TtlnwOrUh3L6dcq69GpjAPJHX6AuDSXzqkm0OsyrWbGzgnnTUDNEqMdIFsdxDkwYoa2Y/IEEIttl5pnL2B/uZEUEhyQcUGPnNypiNtLwTWwvdIjKJP6RYHG3S6vPw5Xq7ihdmKRVaOiZRm++gOtHy+zF8SGdFhj9dHfYWWWDOh1EOi/8X5rsuyQCcOCqPcHbVAfihZ380LZklRjFrTr6+hamd9gXVCbasVNZFptzbBuH9ssOKivumPcpLriOjBhfMEPZlutimA7iILDbCmU46hoB0vMfASfJWu/oIGArckhczaU0aTaxYhOK2v/xxvovNdJFpAHhMCFaGAFzj4fc7ctQ/9BSeDfeHP7BYjARmFss6rhtxpioK+lvx/v753ys1qlJjzeP0G546QzPOvM5qc4sqWEMNnE0kY82Ms3DXVa2srTPUiBPygiQjzqEQNyBidhzIMFrKcjKeTlrp09BtIxV2UimkNw9zfLbyC3Oo9HaeqZ0oXfBB3dF9iajEHUEuOFQjJNwVQLaq8yCOueELUalwHthDdP41vywpOb5HBz/Wsy5XJmRrt6ftkiBScB1+zIIYNGOlMDtsvV23CgTMIqumBgHmMGG9qXwbQpuKGDCGwo7ds3iP/3HsFpptaYeTEuMYHkUJM38p8VeTjYskkwU0wNQO+qCCJvYH3t9TCdCE9qTDKTL6yu6q9niH8IqLt9PZ8Np4bbqK0G3kujp3LfH/SLRbzcC+lMdRdW2EVhUW7+tUelXTqPCPd5lj0A7wzBEwtM/9O3Ij4W9mAlPPI7jdhd2KvKn5j1vPDa0WK3ISln0bjbncfoEQAEerxNhMt6sKnO7jflLd4zmdSSWWuoe8Jrujs5JU8f6VY7XJTADSMlHU/hXzHrtww/W2Q3xNKVdzSu7IHJXUeLCB0wl9bJZgMCfYroH4Th1DU2o11+mckoziMffOMm7CAoArzKUz/7BUErppU8PUdy+RHlOvqNtmD5agfB6hELAI4kRtpAKl09Xhxx0Cwc8wEL5ElJ2Y1pK1puzEo2JhiYjOOhs7d5kbU1NEG13QMiv0ll+voydOU9j9QSEm5/WTacx/JFkxRWRbq2gg7jXhqIbcLr9tw3H8LLcxqrFrvNjtMbOX6ykyYkZBXBXqHua8un/eV+V0NYK7bO9px68BaGnhT10BC+i5v21f02w6wrUrJnPcmzuUqPc9TumTj7Pt2/QF2HVEVABnvxmEyqNZPnegRmBtffQt9K3932RZDjva5gafwR0Fzh2xr+4mjtRQHCCc/iD/9y0eTzjHAzvSO+t3RSkQqjiZohHMQC7tSIfy8MMVgbg71IqsmPlT1kbkTE5J1CTf1pxz4UsR/uPIV1NLg1iC/bp2gNUfKmdJUGIUKe5mzZMVJtU1dGSPnKKOWsEC6W1ysA1uLb+3zxoO5xzlVj8keoPw5OoCYvZLuiaWRByKRfrjdaN2ANWMZMlLmPiP+bUuXXloK5/aVtUa8jjgwHPOgzY+RkPLaL9GvrnPJ8XEHEeGdsFWN94N+1Cn112RBIkPVrGEWawrVxtD+ps6N2YunkfNIOqHKCweyoSkmsAgHL2QdHhHCYUQ0AEwLlh2RenwgdKaru9edUW+0Z+CbhHgV9QGkKTeYQ8A4NCp7Ine5dLcDzdxhK+TIqS9NGeVEvvNYK6PAA1zc9Jk2kkxdAlfzGUXfeMZRGLMnOMeIDXl8wU4Vjvqnz0Mt39Qi2qFqunuJBqLLbsuU7EHB9aFi9esqhdHd8/Nynac/jSQSW86j/9c+0wZYULe49oLn05eSs9oqN1kKtITpYUYgF+oOWSUQ6c66s/YXpzfWPONHQFZwLsxYcpTFAVOd1vMedTsyTpysRBN0XVXQY0Q3pTSr7DS7MnReRqladK/nAfDnwXzWsu98KMyMDfJ5eG6Dc4CrU1iFy03JTGfdsAvkemJQk5CGAG5Af0CibBrqpBPc2QPHVbeHJbdDsy656CkD6YzRQ54JXxNf5/NheDwChIcDScI3lsXDE3w6tFSCpR/68Mibv+rfx49qbZdPUA7e+s0tOzVzSnl2lDTZk4p3RnkmGa+cW/k4WIxzDN00edGg9lQabSx1dtH3630FFGQz832VyJSx616ssnwKeodgMHNycWvXfghLdVRbDhmZ8fZ8zMJGUv3RU+nLk0xyiYHFyPqaGqny2/kZlDO7M3iurP6wEVpP3WaMRucaQkeksjFFW/4n40LC2FmZyqX3xv4GrdofJwU6SLWt117ZS8UKrFV7xe+j+tHm3oiTlQpqNI5XsmeYX09RHb72J9eVQeNAsg344c6du1MGEEZDKrepKPz4pGrioU2YtZ2lfYQaDyLshhmkPKDxBrqPiMQ9UWGp97l+HRFGWEq6SSn8I1KDugw2cq+TIEV8FM/33vzaeT3p3r0Y3b8lPIlF/mK0kQ+yluW00FIFYRbRBFcRVvr0ZEC288eKI7As9HhFNXapka/dYhC6CNBswXlZ3/OUAn7f4ulGvR2ovaV1Z1s1anbLKTcVN3jIHLJbQ3guT/oGSj/4NuXrEBTn83or+o8xhXpuoICTossaymNcBF6sSBeeq0p+XirCythqKNM2rSe2X4H/MB3tAY369CQwqRMJVgHIT1TWpBqJy2kQ7VHgowJ/bbVpWC5eMugcRz12mera1PxjGax1MsOEUPublIt9Gay+yd0s9S6wbLw0WicP3YAjJSxiCUChdm+DprRvDPstB/0WdtQmCQOv/nYgWU60gX4gwUY29cQmHyKYvIRhLEtO4QYsSWNW46JcM9rkJWBc/GbTYS6ghPzB7Qys5w+giy+7ABiULPjx52dB7Z2ZIV3SQfvLWXv9R73ZUDmidDocgKW7pjf63hgr97RLFet5JXlENAss8rwdaxIBRfgq1fbNRxS6hE+iMZ6kdqcMet7pVShOXUj21S6FxvSILPh3kCUzir+cHg36QsO370dqyW671aqQS6pVfxkqWw+FkPwC2TyiVePzHTorL7YJPypS0x9h/Y5t1E9eYkZU2sAt4AaRxf7v3u2YaIj5vUVfGJIxKlu2KOXDuFWnksUxYs//8RD1wokgtGJkb/vfg3aS1lSv4vdS61U0aQOwMjypL6V8H+hW/uMORpF02UYuxn7uc1yPED0FczkAhzf45t3AP4OGVZHAwtwKBkdcKGNxks1OOUAqy+FruoPpx6jEz+3xGCKfNhK8qtNnbZqLtAbUtSH3xvUF5H1bpkS1N/k/8dXjAOFtqPQEXnSr2TY2U+3d9oG5VXbKQiRNKqXiWTp5QmswFdKlFvrNGF5DH7drnB1RbYGysD4BlxbCsv6jvkCsfJ1SZwq2c+sc3B+JQEsPMqTelnkZUkvS7ByhIaaoDepk5/Jjd8RPNCIrK5bLz30HnxgV/QghZ5dWuWYQfzHhGdNucfhB8hRYJCD3aqQIaHD83F9IkuQNuBfQjmB4Y+Z65HvWBdu25Fkak8zhu0VCet2BgPEV3bp97GSIUFlzgMLpqvi9tEqVEQgVZJy/3WcavvD6XkNQFoCv8W19eSIoiB9BFd8H+MI86oh48lmX6WG5jQ1c6rIvTXWQ8LOApy56XQG5qGQ9GW1z693XV6XnmTvImM5ULACz4F85Cyj3zJD3ml7zYfI8ILSBYrzQXt32Y9hQqmeD/JUlyPXeOp3TRXQGjkCwiZXNoqXGvd47VgsvJECFaOZ0hYqg0bvoSp2w+Y3qxGfTAcBYtT0Edbl1Mbu+NU3/1nrGdOnUo4KL9IPm/W6XDjiBy6QLUn7q3POtcYrcwlPaB5gKAcsELyr1TXNdQifDGVy9kFhvN/Yz2odofQYiOyjD0tbK1ZZ0ol79ayxwNA3I0J4XU9VMidKisRY6vKVeEjRsxtBaeeAhQelfc4jTTVgnn4alEa5o78a0FNSgCbyeFPYGghsQmjf4ZYkKNsf6/3zQoxeweb1JnpfqTbCkBNYW2phKd7Wdn4aVVI67VkR5G2VS3rREGvkHP9gTkrxg58tnzvHHnhTqiG9rZ+Ei7hGPCWXACEZYwvBikFJKCRphl5luKQ8XXoLfTKl/vNAjC3yUPLIE6OaLj/Ph11+RU5p7C0vlRjF6UxsDQYy9QGppI7Xa9B4VmfroTctEPyhlZcGEAjR63ZCVBsB+V972za0TpiTNm+odBFm2hOg1eaolFE78j8PVvj6WP6BPUpRKHQGB5GLaU5W1kk+nPXqc6G4FM2ZXW1lKZkiqxrOF6aSqYoLT0kxaIMo5c7S6aKLP/bc0GIrU07B/7HNkEP9dF95r9x+L/DefNibCcLqBLSVI7f2TS2+rZFCfahdMB5gf7BHgCdSi8oPj/DJHPBleVc5d1HeAtBkBf2bcH7Eb5/gftCsVOlcYb7H+NAMTpd37JQGqFnyD8+aAYNJmA88/+E6BpbDZhwbLE9HY7HMvlHHHY/aLlT1KSBFYVAxQuJR5dP3pAe2YLwyp1ZW8qncujKqzERRwULVIM+HAScJQBv828Ib+I95KBH7Z44kwLAOaFLt8FisKMcSJkNMNSqxRcTOLJ6nSvlzEyICuQ+gbekCxPZ13ME+Oym683M1lzJGZplGj3HJ6NNxmrOg8eMQHqXtbbtzAgtKcSxY8Y6N6TSUh7m3ivM5R9akl8N16qHv0S33F+U8+8h+/YhDBsSyolrK3kNPcCf+CXBY8USOKC95j5Xr2wkG5cPQYA5/YKOlSS4jTqTwsHw2/sbZrZrmUl/4v93ID7k+nIaFEvCr0oVGzqag7+lGNXsM1ldgx1DL8IBk5ag/dLU2COqE43+HDlYlRDDIEqi2wtBCrco1SXKC/Whkx3kLr7izZz2xt9wnzVwqF23WC+edUJ+5Be3E2gnYZGozRDj0l2Cjmeg67GQlXT8p843sxH+eHVRLZSrswqrNxsDuvwUQdN/llGjRQT6OzsJiB2qONmzMWn5i+WipbFse8/Ns8eCEiMMt5/HTcmrydevzchyndQ/k9i6hJwCakmZWkjL84IMc7QFQj+izSrl9wPa/2YtyVRg5AePX47UFDOqHGbr+iHJR0CPqgHo5aztKH/0G2f9gJ3k/zngsCLGb466UITXF85dWGAWg47q3kiWhchHcZf29CgtAezk9Ti9yNFm/aH9LYoDbwzWqD3EyYP9lPCszqOIMlVz1fg0LIC2NA4BkqZom2dvUiHw14H9jvgvxDIN8tECIKXYXSjfVdZsnY5ihT/i+rh3+W69g/yeI4KXbvUgqiZW5yahiCP593W76sdkuBiRxCx17gwIwMOPJATZZVTXVLS7Gfa+GEVgE0hb7ho9UzIPHP3rZUBDzgZ4ZWZiVZCWTgpvJHOdBcfpau0P/4uncbcWlAdqa+O2N3w7e8WGXjLOfskoV8JbivAufeH8GbUZh41W9cvPZUS7DFEtS0DcP19d88B1eggRfuVD19YcYFPxlzifxXK9PzgJCcZAQND8pNreshqnEBrgMI6f698S82ujP2CXPISp2W1+KTyUe89yI2zfns1JTXLNGfCQUINcxrJc6yY0znax8+taZIXyo4SoGD28P0c8QQ4DRhV6CnEvElQm7CAopxc2aLSfN+PDtz8B+ZaQsYc8/cZR0Ku4ysdh3///vU/BJYK/Cty7sT0GAfEgPGKA5XgWTHFGOvXw4gIB7pOt3P9JqmE24aO36GP8NlvdgCjfxl0XpZBEOToR+QT5Wb65rvuGwRoKae1YrDRlifVMVuXiQLEoOxuZ1sIP4SxUkCf/12uhye9+XgzQPobz3g28ScWqPkp8d9oczPhng75+h9bPjLvNAm1rqzz2RhZz/MI7Mza5mIIFdCXsCqo+q0Qj1C9n9ndlPDqk5gLX5IbJ7HzryeGIX01vG/Xlswrcn1JMcDqtS/YUfEkO3KPDBvM1Rj/MLrh+hpDzqN60dmpd48lKtoIGPMZqD94GtxoopClvuf3gfXpVP9QBu2LKh1KJIKpM8WsMZDq0Cm2SZSijQst8Fmeugr6mHZh9Vh4D9d+bzDD2wzdj49LxjV3sz2kCElIsuEEVKF2uFge8elsaJXdSSJFLaGeeGUOg8GR52Lk2v5HB55gCTsHJOjThpdNHgCO9u56DQ6B+8uPhR2pOgOD2tA7/mkRi/3S6NpM/46taWctGiBuo/CdrYqzWG/eWIjYpEAsAbn3MSQU+e+ZY1D/7POsq0Y3dbr5O9MQL8k0Q/JkFTzPcXJHD0TS34asaES5lNNwns9oV7OlG62JW4O7GacTaY8qykkqTygfaqBmA/ltaa+M7LlDVABuX+94PBEdTee5uBYt9Z2a0heMYLYS6PPrciU0mUkrA5MIPLyhuHc5j9C976acNMRPkCMeD0IHu/UZu4rEUecLKukEfgUxOMRLbrqV7UwNAZS7TnIuUbvsBaxvcv+DAcJiYfPEtkKFlmnMQeGPh9cx6V6aJVQKj6Vsn/+ECRrQ2hF08HByi60EM0kG7TxTPxpU6dqS+cTN+CfVzjmFi9lCwaKq9gBHx0uLY385tW7dGj92+rT7+XlpJMGMcHAaJpRNX2tV3GdqrbzVmrkXYZQ1m2qrlITxmVmM/BwAwSY2vckFsxbXiEMPaCYf8hnVY5jNuF/6ocDiM9McwH6MpEqBXRGP8Khr1+JuyfErxUF3C4ayeFv3JwDx6wQawSf6I6yJU4Q2oKgaHzZG53KjsHXh9QmuZQAHEYz9uVqCKxAVV+2Bh7VlHcY4++k+w/PaGWz6rLlrPUK79SsX1GlUlJToggXF4Y0hpOAM+FB+J3qpLg2Nt068JgT93RthL6TfzPgu308EGviVA8a+W751cqM3pNk54aLlq0X6x2+8OJ/UPYlvSDDmbfnVhVmf/b1OKfY9RygMhn6KdiYtSrVtn2+O06yM7OczXl3py3cygyD6kkOhQ2oA54SgP17m0ipXI0np/QgvEATPfzRTxdMhX7xJTvQjyodaq6yUiDhGYlQTQBP9AN87Pw9aLEKABTsGJ9EwUjfTdoMZQdyWCDsApJIJLygMY4JGTevTSIdLBJv6Jo0diTkRcg9SwRtH7YjinvwjTN3tOy9E5y/JePEzpzb4prfD5J/y51gZH81gyKZ5QQ1VQH6VbIfA9hmvbPKUKnUHl89ye0/lEU28mkn2IPdcPB48IPmiKRsymzotcUGiRRYkPSEmVLTSqsxTk9BLE6lEWwOGNstuQUo3mwchkpEskzpN8Tzo3gsC4/zRqQvQ1kf08mBP8pCCFOmAG6KPpyH2AmiYpSD9pcS5MVicbTArc0ecsisnOnj3pMPbSSWA4FW64XVs6D2XHegSqPlat94mevJokjajKSoKTFifyJz3ev9XEmSrBHjpxubymQZ1noICFz9E46yuAaYNIyT2pSAEaKzsAt90MlQldz11QTvA1FXD+HX0TL4Ia1DWSGLgzrlsHrlEEAe5/5rF9dgTLhe3msR/Kc4NezLI0w6JWlTayvoLvubSocNFaJNOUymzUEWRPqATHwvkNH0IsCVW5WPCXfVXQ6RfTmSgg0Wpp/mMvVGWwNSROJNp6vUv2YiwUtt+hTZJctbkRPC9Q9LBSTLYy8cms+ZgtFYwFgngI6aL0VlaOfw0nKRU3Cy3
Variant 2
DifficultyLevel
687
Question
Ricky cut a cricket ball into two halves.
The following calculation gives the approximate volume of one half of the ball in mm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
Using 1 cm = 10 mm
|
|
∴V |
= 21×34×π × 3.63 |
|
= 97.66... |
|
≈ 98 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ricky cut a cricket ball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA22-SA_cricketball_1.svg 200 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in mm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball?
|
workedSolution | Using 1 cm = 10 mm
sm_nogap Radius = 3.6 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 3.6^3$|
||= 97.66...|
||$\approx$ {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 98 | |
U2FsdGVkX19bvpzVlaQKcqcsFkIoY855bQvaR9bQrFNkyuoP8KRpJfaL5lJUmuK6ZkIs1x/s0Rh7/HVbDVN9jTNRzEtW5QnitZcHS3zsIlNaCA1hcFC8p6QOtQXnei17zLuddatR3BKrkU+dbcLTXR2X61OQaLhOKaUiez27vW0i+QmISS6Wm0xEzo+9vWEkcDPuZhC9TCuLRkZOjaw2ZwYhrK/TMz9BjK6lQn8y+E6S1U5INgE2mW1CnsCAzDJ4m7wXjPAhJoOkOSc0RMekKFqoJJljfcvtZavpUfDlrKanUbBbAb9xEY4g4metGRcScNA3DoxYDD5v6xK5ocMN0E8ZytZNMzGs/cpaZc9p8XqZN25zcjwkWLBza6HhOd5vnA4d9CcvUCGQ0NiV5B65IWDxeWc2HHBgBP/ZScZxG9BUm8R5+cXZfAucF6AZrOtZ4ADbPeHA70yjh5OkgBZnFdL2eoJYOrLt9PeLMnlcFqOwTu43oG89/IdWBBgby3uKH0M0ABUsCm5TR/Gm5GQUENeOU6FQMHVGoQ38/DHDCUmjPfE0wHVRyb07C3ZulmkAQ+FXtY5Ke+PtYMCumkHc5W2PaG1hKov/6uVWud4La9G281/Sa6WanvKZxSTr2jbQDT7oB+4TFQSyGNkylk95X/uNgTsjVeHuoMzrBA3Rd5+HnYTaYoB8SEMF+lN/+hLsR5tSY8HYSoP0z1c5uvnRQvgVD7HEB2GpG46G8xiEFpsJ17m0ldJbJ0eKVahPFQAYFgntDQPKC6P2u9OMa4q0tQdVD7AAbH+7EPaY0zJ3jXgDpR3NjFVyGzJmCQka1UY1DA/enivp5npzYhL+QVX/Qt3j9A4guTsWGKMX/MesMiplrRf6fSap0tN1/psXj/Mlf5k3Nqyif3o0cTRb80BQSd9EhJcEX5RaLWh1Jo5l67xzy3CLT/GitAd0r/ywx7PhlGkLeUrLqOAyqFMyWArsdXEURHvHATGCWytp0/93lhSbid9N7DaEsk4YC4IQ+7mVqFBB0M2ILZnuR/31T/1KVssJK/Esn82QQKo6MmoTjL6s3JBvDBKzuZ+jqPTQuMvA6bnGdVP8tr+xyh78OtXS5qHk8dlMWawfrfiJldZL28IwqJZT80lJsxjdKc9ShI0v9cSozwsZxD9VupeEUAVcyZAuv81bsXhprk0Htb709MyUscO70Q6HNU5030Dem2cFwfWUDgr7EbC60xfEHy9YRXrz6f3wUjRebyNOs0Jeze8lcSqn46MKy7DiKsFxPcGajdU5CFrItm5qXN3g+psZGrHdKXK/60dA89DWN2ud+n32OBfY/dvkNaqc9lv2VAl8R3X1Y6VlSkT5o4kVtE4GUCLax6BEtCBk7TBiSnXWtXUy24KoQ+GpJqHmBQxhy93A/uTLaWRlWDzUnZRMMF9L0kEFLfC9gyCUqUbZILEO/CWa2Cngva9an0XXg8bx4/RONonb4pZ7pqvr2OINdCyxijNGOmIqLhANzTzGBCbYOUc82HY6+oDd0DhnZhWMCnDudqbQhZgP8VKOvHGziS2OovNHLMKxm05ky6c0ymD664mb56NXaFvXJzd1mNEiTqb5ishFuU+BZOOLg525Osxzsn1ntOqbrvM5LTpCdcBFXspcp20y+gKbZkqgv4HfNHnVDDBQbmLqFR4R8EBE0EbsCsmblXYpVddB13da6nXlqkFvw0pYEPhPwT6EFehduPrdKgz1/pSonObQ8gnySWI/KL08xsowbui3ZokkPERmKzuLQlHI1uDJPwII15Vg00NKpHMybLnRSrVZq0ZzF8U+SLmWb08bke9VH0t4UWN7vg4XZVj82wjQT1Ie/cVcnMLwotCY1poWrxRIxJsZbgWlEWb1lSCOgaD19vG1rqFUyATKLhrmd07rnqmX28I79wCvrFfU9yn8IGbD4kZ3wLbs88yU4pDJ9DWd7HDFCTT9hBrESzr/wRLOvNL+LT5e9PCek2Yb2BTQayvvwCK25QCJPqMidweaBom9WMw+BpZoZndSL9cyhqGEAN1AWGBrssq8Byy/d7xocvA54rDvva/x8NtvAo/FrwcKDLx7SIDqoRIMExG4+rIxtQ6YaE0mR4i0BiGaChTgiE/x3Hc/aYZVNRPpuJJjC6wbmBKyIlnT2sxubo7NG+cznrdJo6U2GR2GeYR1aewEzN0VzNCa0oVct3oebJtqxHEk8LaxVfdcxglAHwLU/lW2qcLlekqVuo+aFp9sDr469LCaUu6BBHSuNtbRUhBd1VfPSXIIK6AoFhel8uQ2hko456MOWxy1WSUyEb/SpotTrYp5ur26YjIj1ZxVPDi80rAm5kjtGdIVmcBfLrlWT1fuJmMCoOKe1YPL9g7hM/AjoQhJx8uyClJdhtVK4cBXOQmPHt1fRFzYssNIlUx1MHBm90eZQpEboGDPEnaC15xthcg93c4+TBmL3BVKCyj98PKAuRHFPQFunOwuPWtyLjtTzktSyuyUy5LV/Jjg+ULQVofeB9iJa/nPicH02KhOsvFvr9MSyJy8+f98WITcB5o6Odwi+zyrPMIL/ZDE/zRFHcngcXCAM25i/j7RCWmRMRYLexoFiHoz4h5u/ntHShD2MSu0qf+WinW4kXkmZ/hvb7tjMgRecR4E1ikea4+3G3+w7jPinxo+JTgsxy0BQYCyOohknT/uXtiDAcG997hi9exsIPqDQXtESq6s2kZ7lbNpQKXALkWgUQyVgZvyCertrYa6nFGN42fUJorWOZk5y2MHa6WQJrL8kuVEPb5gNUV5DJk12Jp2xgd5URNKreOHY2XSVlssvAieaKwFg3GyCtN2GWo+IpFx6pqTnBRn9LHgUzSPOh0688gBmr8JIcd0Hlo7QxLOBtzKYEjSuQ6tEK6yxdwycaCZXS93WsRhf9K0RsmU8PyMEQfsrsYtu9h/BzIjbeTIquCNIIPdeIcGgeofgMurHRgcci1wIfcZINrMBgjhccIoKbm65wbUZPIA5CGtUvMdIkZZ2hf05yvCF5OPov6aGQVBqZJdK10E2nVMoRtBimsliAGlaQI0mTQnDHHGxVIepSaV1Xha0Wt8Wqy24OXYfkNVuhTsYwLlJPQG/poKo5asyzZ1EbFlZoc+uC4gjis+h/Fp6a3txUhBdSKu1jaDJwVm8/XMsgH3XVGm+XJbJUtiS9pc2rkANbeh9mLlyK1dyjKy/uIrBuWBjKFB2U+Jm9J2tlSs0MCP4zYbY8Yy+r5vGhlrZqGNLccYyHrItGftu+T0fdRgTc3QR3/Z6/xPu0eBpgbj2+Fxvd0pM1BJP2KOhNhiy7ZrA89IwfRZoJefnu5sxbfyzwr9STiO09bUBOzFiMdaWQmqmbZxGZlosByYznWNi1Ma4KzorJoNbYHHmyEYdsEZErE2L4ZNNBHudlEE7t9XVNKr3T8roU8Tnp0OuY+hZnaDSJVtT8TRhGjw5UxMrbP/PQAigaFSt4R3GxSHbsZtAKN7vlYycRi/y4AhH2RjQXPGT7RxZMNcDpOcfrWFm5UEVgBjR6TFC+K7c1BDuKUlH+rmIz7T/mXvsBzENnoxVW55jSSIQcbUTirSJwdHMLVowDF/mvUCgmXN5Cu6S4y0FKkMZYlbVsdXVlM6GC3k5niewcdTUVlQGVKFQv81UGo2F3AXv0sFawFiWUxXK9EYYG5mBi6exXxtBI1I+wfU0tOAmPYSFvS9LKhS7c+Zc1218E6x+Q27aXs/zRlzheTtUi9OjSW0IfmyGrO8qf/SrIY0DS1aQIv/vlwRR+OgwQcvEJvkeCDjQZ5wK+RGBMB9tTHr/N7OekSc5nBsI3ls331y94tqvqILJRsgmd8VXjhau4Fso0izROs57KEXBCfRQBsha0XK2fpNuJ2il1GbzDzwVM0/Wac1rQl5IOWtlv3AgBKKsIwZdj+ZLtqMW5gUjdVgskVCyVug3JkmtWOd3ZIKdCA8jXsim4BpgRm7p8ITbmgcWL2wsDq0aeEKC/pJ7iAPpO1/Py3AvNSbaSvASCdQVEnH6bmgKyVrofFVuaXIXY4jdulkq+EKgqt0HfcKUOX187fqNQTbscgydd5e3d5NG8V4adrUdm4I/wPmtlrcEwz0lsRk2bGTv4/FLyMux03rjK8VWQxOUMXSrwq3KqdC4jMltMiDMnlqVeMP0Wxy72iSV0AexP7WYI89mudY3zGIwd6oO3X6ikl0fe165QNRk4pBxNXaas2wMwy97Z3OI3VrGVI+p+fLGqD4VoKkfMMy0tyn2Q/NBo6vjNnY822atTsgG88BcbBRmnG0bqhzCq1/hGGqixxh+InsCx8R2hpXauAGYcNb15LYS+VZacSEVK0fzPsrgM9KI/1FrjkDobAb3nKasKoR0QOQk1S8Iw284BNea/HXmaHJSTdBiv34UGYAzd9jIkHA6dbaA4yFiWVra+f0hn2qCYAXupOpd1tVqRRDyy88tZkl8IklfkuEH5nF2l7J8NilGx1rz3Bh0ZdYzBsgwGVdM4qMymK32cynK+RXlLOUIu5NCXozWSfXSDwNyGsvYObpWwbumHceNpYJtSUPPdpnF5CKWcmiZAGH861VqDMOFpTgcPGHCeSWL1XtZPrtYzbhZQG2RqgvDi/glzmh4Zs/tsxnRy84bDQfAUyztIk+LVnM3hAoA6pjGsHqtgQ68TGjhf3JPQFRSNKfLQY7KHye1pZ+42MpyO4SrTz9pDuTMwX7lD/M8us2PhYtyF2V1ePZs8F4EuVryx3kfS0eWMyn/0uuAvGtM2Fscdyum/I1eM+0DodSPA6phBb00DkQtmn9p7Jldh6Q1LDFHVJkDkLDQozGoFhPikUYWNiSATLckwyVVWIvUTI8RVS3w+zmC4sVC57IN4len4lT9u9V8fjxyKJdaLMvbDVIS7cVzETkb+ee/rubo112KR4QH+gEaaEl8gOvOkmQfZ0TgmGySiRAg2VStUxi9ri/0iDKbLKm08IjrKoUwBmihEQPB+cc9BexhiCDV1ijcvpv7olszbJnPxTRLYAIhNQvyAtEiuKzlGH6hkS85C+kNufIetSldrdSGy6HH3lm9lhEGHUzCl8Z7i22iWALpjH8cBkA/bVpndaEto4zVwt6zmlz/keVBijTXlycvq9a0gvyRcsyjaEqTxgMtwL+z2p4Si+5UXV4vBtmaZ72vhhqMtVeGz0l656x9D4ixGDKBAUw3EdcU2ZwQRyCF0trqCvcfnPsDwRtlR7lQo+Yj1YkE1SD7kfrW1ZksB/4R1QR8p01DVVh6nU2YHGAJUqMEa3gxt5+mWOgW/rn0z/HAHQW7oDFyV49KYEIjUnK9cHBbY+gdl43c2j/nl0ehqyJd1ScUQ0eSisA3DZyjJiHXkrSsnVua2cs/yVM2yrwTcxtzj/NDVoGp2VomJ83/E/WCtNQnXi+fX6xClxsJZr2Or0v6WFXJGtuVZdLESxibjby+XB0LXifopVvBby61Qwfw+5kDZFN8zaX1YsN/pySUpO/Tr/zA+WBnKFj7OXD0jAeKSeN1kWPxnagsMhXAjvPQJ9fkvhZl7at8PTGP4s6szh9WnMc4oTj7Wb0JsBB5SuP6JTQYROfG3NisQ4uxDYnQfCvNePmW4XplHbCnBULPzqGRAlZ4VAWfa9aEWMTqCPA94JQPw8D0OMQ/2CX7GJyUfzgX6W4xpdKLu5TAdGUPuHIgMvkhpPzeh0WhjitKDi+iRj3aMvcjIlipOhlb+Pr3uSTXXGLFSDZT0uOvN+/0GgC4RJS5OBMOMs8TcuuOkReof3Kk6TH7rgS/y3juSbNmug+FJvoYSZNygHF1N8TGi8kNMPrKD+Zxt9oLN9hLzRZaeaenMf/GdF5pUS60+KHXJ5KRZzvHOXzeiEumqmyFYD5+t0j2hoZS0oOa7nmYBKJ7TNcpDSOVC8pK5pw5xYlrA7qvmKeNA0zzbWptW4Te5ui2cpSd/9c2Rkq+Anc51a7MUUETz5fe+a7Okc/VsOIPNYO12/9v3jOjemaRI6ZJPJlbxcLJAio1GqZQ8NU+p+Q8SN0TvPxjvjJqv1X2Op45dZdcqRoaz6FgmEVZM/Sr3txiQnVni9Z1LaQc04kATjRw98oNQtVUP7SkvjMz4PY5JNBb8yEEUOeuZkZwgJSFF7c3NwhmEKXvA/e+zsyoYVte5g/oi+DZinYGaUg1jsfyNFbqyrXoFNKaQkzxYdLXxtYZIh6/ePm1rF8Z6V7mq8jPhnsbQ9d70aBgsAQKCZ4ZfGWRnZS9PBReBsqUmdRijKn/yvATxCfg3qGNNOBdgSzHyehk6TrV7F6ABfQbwyVNQrR3fxCmPJJc3c6mavrEmRBs2XmBXxgC3XwlUQl4fWJ2GCqstHcwliWvUaG4U7/CuFuW/b3aX83JcbAraubhyZR9hMMBiR5b2UZHfOR/o984qJ8nizdmnsMfvG3kUGcoLLoGQDeNA/bSDhhKcEFNVUTOxcyS+NYx+CninKxM3s29facalU7N2AOOsHua7Jaaf1z1h/KEdzNtVbFnNUbtXEj/X+E6+dSnAzJHOoT49X6+cfuZy08XaWyakZ6dg5/YmAkdaafKfzx5WdUQOI/DVVknS6xW0v7zCdtyZVxt4NAA0c8cuYwxpacFaqosYA9MyRFE2q+ZHvdgk+X/Xg1htphfbr3Q2fuPB/qX7oSYk4eGv9LFPOHZpv7wDgzWYV1EYFKMdpuMJMstOl1+RdNiqAuqDLgdm9DJbnc7ldWln2LcE3f+Z+++Fx0iOtw/TPWZLhBTfMJaGkwm4CBGKCpKpRQNE0LVy5TnG3p6cv/FV9yGJ2eZ+YaGu7/d3I0vtObATBSDp/phxePh4hRzUnUA24DWr+eLhmIIEYqhDyQyQIZND7/wR9GIsZVP0rTJH7pxqBdNQ6pLw1C14/WmNIMph+dKjraLNwrJJtoTFLH3+a5lpBSk/FeFgd7WEJyH88hC9f7UFVHpge6UMfHI2w2tBnIw9nk1XFqZ7YG46l1gvAUQJ4BN/svvp1Ann3A4m3VDIhwd+9DQr46v+UpdSGRabyLOflpfMYtG4f38yUVR+ffAi8FR7pR7cBUAWRVqy/pn71B0SioixOkQiRPscytruTccTPM/4JWb6kYi4KnwFFDQo/GuTetX4F1cjdck/Mj/kHzwdtcCgapIzGljtKfArjoGjAtOE8VRq1pQo2dsBCdEuzztyjOklBX6nozE5e+5FG0HgqhygTeOEu+L+HUwPudZxJV7+cRkdT9b73e8XUl5i/wQcJV63pS2jzs27ajo9gBHZsNPp9yIhdQjOP0Dd62WWyoXrpytBLQHXX5IlY9SkKQ3PjIjzEwJKDB/q7NHh+ApYkzRKKViPo/aVHDflaRSOXiLPyVb7iGJSVGk7oiBhexmcdJlFH5NBbVFbIwlVU5sRzdF1LOhyLmHF4Ggl8DmdLLHk133iXUttIVH7c+oDZatPVzHSKPCbKqMBOXZaoJOLTv44dVuMAaQkzhAOP6AshSZGyJXuYNctXoi7rp0hpmJUh4/+6v25eMgo4K0SsFw+55xOC4PWG7BLJxAl9rU+DIfrgb1O39tCI7SCY2NOEHsjC7TvBiNr5SD2KBNLa3t1zPwmjm4IAckTrrn1BDa+loYyRGmGwgMetgiiOl75+dkHSCHDGr3tT+sk/lrS/ukVDFWD0Y2fhQ0HCczsc3MawJo5euE4+bA+6uHz8j3KgqwYKTW9Kh3HbvYanxyzk0U25B6IIVXHk5chz/3VtU8h2N26Ao0bRadDvabJVR7pl0+ur285zdfpJPzJQTlssfz9v9K7Pktws4dPaTtnUWKLx5bLFt8L7xFzuTa870ds1ApKhulQMl4ldaR9Bo89KQnMNsdtDEZopg6pfb6w/EQmd/ZJkylpaRZZSkmVRakZPz+a9KnQVfzzb1zYdXbCrEtwF5xKGnHvT30f8DWIfE3TqFkPF5CBH/WxPJrUlAZ0LGeHycB36RIc1y+d81XTYG4cvqi8Ao2Y+TftAa44XR4VBBIOEk8RboCDMXA5DhnOp6k+/BDEraRl1CYQcRjavhK8h4Nu0z0nld1o3g/mY763lbskk0rXLp4/g/EVjUCQqPv7ezToSUd/kezBeJ7kiCauOEGYk0OESx0TxnBq2b1HOS0bhWkCR00d/QOpsNnnOQb/4XxwvrZ3a0e2Z9Ge+rucMcWypnL/Cb9UV6tHjAYm36O8n99ie47KrdjtvVX0q5tDnfC3SnP8q96xlq4SiBeycj2ksnAY2bEEc724O0RUkEUeuD061dU+iw+YjUHc3m00ZsHnXf2GMpReSu/w+xhuhitau3jF50fwxsaVmq6Tv4/B+9NBqnyh6L/3OVy76LG5uvzpdHI7SQpPAEbZUB8BYvqhdmBQ72VQSSCz0XMbDUUNVUiryygUSwBcPrNkpc58dqKfd67iMUMA5Zs8QQa8TgDd8px3r1rpVvpriATT7cyxx7va2FGBSLxz1H8Yt5KNfScngnNXYzV040ZqOTd3LQR4fdFHkYJGUih02CUNWINOEoSvoD7s+IywzVC0/pkMbSt94v3/AmTYaCsPSF8Z+ByFZdZPjAh1qhc//qmVX/YFUNqvve8BgaaEfcyMvWwzHPDuNK2943n2FYa7cmVcZkXTkrpzvNsiVLnwakoE4xIunrtsJm196SK6rTHNaEd2aMt3bzjHk66D6KEh0VDSMyWuniT527ryJNxZXxnAoDAYqlLcmWpla5x1HWpZXXY8/EsoGF6eYqWdP16d3+IV9GPG+wnJIl4ZRc30OijKfflasXDs811f0Ti5bTA2VPneYYe8OFrARNmeAGwUbrAL+AM+fA6j2UQWdMyyw9+QoDF7KZ+64uwGp3bP8TWiFlK4LNrgpyvcn5hgc0/kNUwYfzAhFjgckcDgpK84kOdRzSW+ObtWP/N/6fugMqL9BgkVMAkSkZ3noNsPIr40FT1hFkEpPJzDDbKiqf/SVGUucZvIcLS2Y+aIboL13vBrNOUHSNdA/XttqxgTaYxOXo8w7iaNdsg3IfKNa28PvuYGmT0aHADTrJC8lo5qoOJv4bFQfMQxraKLEcXLTARq8Dr82/fWWHwpNR+qa3SC/J7SavrezcGpk3V6DjYHZZ26NxsEQS4iUSFGCaAQWK21v9vTjbtEe6TEeuX1AJ8nxGhbChpok+D8r2FEtmGkzEQqnvpbudV86ll81z3lZjbshRvQIRGzqIKdugrejKSN538Q9+njo426tha8XYOXEYeO4fVT04UdmGZL61pMWhxEWtejLLL49w28bMusWrz4w+FJBM+QmKXtQfR23M0edzhh1GebdWG107HnXLHRCYMUwvNBuGd/ReoKByKCd/6vs3ofrj6k4TAEKWkykNtU7Uu6dyOmY2nMHbBVDC2G/LcruGUeqLKJZlzZhHoBFYDt53clzRbA/0P/2tYh8VNS4Z04GTm49O054lDTBA3118+XrAm8PT5WROJsVyzr+o5lrcpK++VDBmLupIsbdE9ywb6BUKvlaAsIcnogOnqUd0T0voh18A6ScRbNGsL882xTOAtTEk62G4n0TTpEizfeyxHDcx53UPrhe8AIZAYv1ZL4DrQTaTYsQjTEWW+AUidHYJOIEL1w8zvLw6mqmVArFz7fScxla6OWDzn8E5MKxm1Xv86ib3jUxQd36hfyIavdlJGhShWCqChdoI9aRqT7NXmp4KnUK4LiT70zpaOwDAsqtDEvc83c1bX7bRj70bzlmAycpGGHYCcBSTzf3PWCP1b2JWytxW/mQjBj3ZQxf2EDIIhWGW7ZJ1z2OjK6apVfWjb7tDjPYa7C2S01KUnR/qr8I4Gc+ycZ4b7yhd7paqsm/wnO06ONrKs3aVQu3iNUqAApiQ4gMXI/bKKCOKQQ5tUysfckb9ybKfgcbrJHDlte5d17Qh6w5GRMTy+8csh2o1crNYB8tVMrt5oHMtBjXAJqF7hocYYqTF+bSpyLrES11ptwjGtUzKWpxQwLhCSmrY7CAuwgIHHig/s3n2C2Nu7nAW5GoJhzti1NmhOdp4obXfB+TU6Nj0aqPVwigU8Is+mSigLjl1Dj0fnXivaIM8v4iXA66YPHaLEIPBueShM4qo1Pi0Y76brNyN0hYcQ0uEEnPTKZR2f2oIeyen44fpKnXwdvJ5Y11BCIhBXfEkMC9NYLYOELaGD8DThjFRLF2cz3VkzSrJYiVUn/ia15KOMK3SDzZHjJ0SRSBXsq0Y7gHCcE0JkpP8ocbA/AMmCfG8Rrurf54inhOmK2hGXEsWv2SxPzx8FAC8ivQZtmvKjtu/JD36kBfVPDlbnc44BOHr7lhGR6WHcBCm2/BT81jcyAitonOlxQAUmHfjztIudOUKBlCP95qAxfRR4fH0ZtnN215jA1dSSvxEpp2Dw14QJuKedUar33nB401nnK51Ds+CluXhWMhLKOoQQpu5DSCBRMpcDFse8s3Hl8j5AaR/B9LD/qC3aKuXmGuYKB1eD5j+vL3nYuXd9XnQ1VFfebAgxwJZ8E7RHlloWS8v77dyYdCWRcg2/zqNd2PCwss6SLaLr6HBysn9rzpwGPx7xuhW0v9fzLR4ye6ahPYBINhyrHRtc+fQEvzrCAaW1kzgel0nOUIWe7B0+u75iDhEUOBYQCADSzvcBsGINIdunPJo78fuVBcxW98gXmokkZ8NxGIfiaNwUUmj+t7eTiLiNgddHjq6yPhJvNdl0oO015p94gknC0KsmuAnG1cYsbJ6RVCWLUJ7uOid6Y0zGF1Q1/WwuP8nAXf65c5qyznkj4gqFcBiRz11YvBOXxPhnMo+/sZi29DruqAmc0Lo6PZiyVd+l9ysqSVe3h7swWKxhaLRtZJO2xTlmR9nB42G8Ct9xpe3slyggZugIVGesFMDxXBm/4J271/SSEJbQRp38uMOpgpRMH6qZxSs6o1sMp0ZE4dlzeovqyFAWzKZURbzpzqakg7i8b76k1/6Up1+BltOTB5i6TQvtF/K5ThvIptuSepECrN4SYfkBvbRI1IdEk95ehhLyshdgUHwJaxFlzi/I+s87Dz0B0ffHlurRPgdJrYD7Ye6pca381sNf/NId7zsZkMtwg0myhyayZYVuXImT4U6/6TifXT9EmYuLvlnOmQUB6R/xgeM7rSD5Ujme8CHQEINDsyijCvEWhCT3hRSKsd7p3tfVx2y3fNiXIJ2Wt2d8gL52IrxVXoiiPxDaTjZBCbon2YGsUNemgZG2ItsI2U/DEpG9874rxh6Fp+QL0a4fxH4WzpBWiTgF/7KUtEgHVv6iGmz51MhT4+yZ39aQab57ywd5gFi1+Uoo1yam9UT1cz7c/inbsWLnHmaXc5OakN99odSqMfF0n+2d8lkATk+bHizXQNH7n6KHQcENYqA+/M4xofvHkSyvTN7N4DJ3nVeMEmSZOM9LrFi57nbsKwC+XiajFlUfv987ZeP4+YQVon4kk5RzF6eoo1ApWiLE6nf8fTz1bpkjTmG54IjDTTvomS/LYRYutJHpPltuVvR2AZzM2CVdUKFdnE0MLbyTRuADtDQ40HqLVULJ1+X4VuxxIwQKLSKhFKbWQ183br3+lYBatth6THJpYA51pzp7o/Az3OuFCgMSQ/35OiRQN1pO82TLfPnjXNudzHkkiOtXIB6pRsF7846F5UDGaFHqHs8PyDULfjVnjpWcs0ZaBXmibKQzjwDIbkvhV9iwpTQ+8PDG/ZQ2yVbE6bG3k0Uskz6LeGlMpFttlSRiU4bG0DEyxq4HQb2kdj8FKICIWVTeRhog8znOznuQ1Qa+gU2Q3wetVORVvMZ6oyjz7MGlM/AIriWLR16vNNpFzTyTjF+4xYbZnbpFsU/YhfWevkkdbCP0wrVPYRw7o7ve8VmQmhumSsID+W/EzQDLNRDyHHVmuUQulMh/4Z908mCg2qLUnO4psTntMvtR4i0racbnYTDKNo1aZQhiNlW2cLCilHk5phqhQEayLQFzxd460xzr0xtFEYhaII1zXyxj55JAVdtTCFNBxKp8nyo5RloylQ1OO8LjQ+WXweljBe1B1BMp5SZh+So9217NoLZzfLxZ5AZn8ZZTVyfGBayHI/Lmo6FBuSMP1mt5pbD7+V49T67nwDmpyA3YcWvLLAwjyKXRr4a4kqwYSMHLv5u5XiK9I7Z8xmBDiAHnt2W3hiRMqR27150KP0Mcx0m5MrO9y1JxQ8YR3/YDg4nK03NbN7zYphsSVokgrBjKHuIBt54pRMCEyMao7k/XjhuJL3l9d1MFLm5joiKK7UbpD/NbFwfRDZJBAajaHI+q9OnJncaNPqlC8Xzbmj/m8w5UVJzEPPbHaFGk06wWQmm7mt8tpGkyQFFXwOf+djmBhig6Ww0EWJs1Qn2V3BB5Og5JsDrRpL7F7hXzx7XWrPNizPvKzJkWRn2KpfOqQt1sgSRKwxN/vwLP/bec6kWwkrcCRgG1s3w0zoz3hbD8qhbNFp+XqfJ2dObYrI8kK5/Vk1lf030l0qAyRQ3zvmwwSw8Zz5ebKA9L5OPic7NV4TkoG/hlbFKLR1OxHhcMoQnYgBnGnDKif8HLCnfVMWl2KG5FYK/LVl3g8QZild8ZmjbnnHdY2m+YbsC7+7/ti+GFHQW2k128W1lMa61K6MUtbEHm6561NGacQE2ivHvfu0ZPxvwxhQ3R9PykknDA5P/AK3+htI+Hui9iI0IuH+AWeyU5HQbuOWCkWHEAdfOVk4y+HgDTHq7jTyO1SBNWsU8zHtkKynJ0NOmATnJHh17KFr7k3oLd2lJu5A+uwAVrgg8O5XOSXWD9AaGxSkeie4CFNd2QCPTKAdr9f9fmjVUuwtco3KcdHkbHHBX48AcHrkLHl/getu/S6yAmP3g+IkNLvvAyb3UCnK6ssoCfTbCKOt3BdAmD8O9WVHXyJF6HY6tnzkhSmqxNBcVgWzi2n+eFffMIaRkqLkYJjUJs2kOizfKXpEDqqb/fThnw744zBpbwPMeNjpRtI56U5LO7rkTY5A2+TWBTCInWW+UChXuczIRj++U+qORtZix6uPLpLG8gSzhS5rRMMFf7jEf7NppbUf7l80OMa0BJ1ie5YhPDBLDa+eCi07PIWoQHkI1f1VQ6oRfo06pDzXDYc8Gn0FxkHUpuJaYK96AvH3fgmckY0zOLtvx7d8KYJvl6GEr0UGiEGYTmnzRCTeNGYvnDFdwn4nELQbpej0P1hElkmsD4j/zCsFQe69kmJQSrBpBK3oevy5S6j2dc0NaZp4P+f1heQ5zTPXKDRC48C4wGlzWx/FJYWGuBhJaFUAsDNJCvqNvr98y1SAIj31HJxurS2zI9KambjVAXiBswvzac9H4T/gBgL5onMLkb62b/uMevlnL6zjoCVOFTx0znp3pOKXj8FdSO5gPDT/C6BTeHQfEZtyUV1KrIgBqFB/yGNvPU5gq3t/dlvkDhPFxTbmJ+7jXhmSTnUDpC+B69p/yvcpoUxHzQBmlVjN5Jup1/Ug/jaSrd7QwV0Yjd/0Bj2Oa2zlC2S/eI+AVS1HWAS1/jzGCuKE013sG5LAqVmo9zHgBYSg8wrALrgC2aDTojy7lyntCkXNqqOW+95/c3kmF07m8b07hpZLMknFfJWb9KdkwNsiELsIlv5trI9JZ9WusZvKpGk4HxJadTEJcvyQRSo+RdpAvQ5T6Nv48/JMMjgiSOePOOLidWufUXkMCVsRWhNKSPAxbJKbEpANVcvAaXlTt+81WbcFiLXEnx8pFK7pYfQYZtalC1qkjSV+fC8OsOYPLcmQF17d3lezWOyrZWJd7OCaVCd+/X7SX+cgxi9yDwrymA1UtV1ynm7xylIyScIo/9EDo4NYEctn+vZ8RJ/hBQHrXDJ3Ej0QZDOEGdaHoMyr8cYHv1CKuwvfF6NiJWJb0elw04VKVI+mbIdMFdT1ePCcyyBFSxJK4viATBbw8nDiXX0EluXEb1Lf71Lvk5kGwsU28rnTDXxNBV+O2IAcc7wKbzfaA+BthjTXJdGNvvk2W41F9vjHVMYtHACajzI5fCMbxkOhugpYjasUcGIiTwLvd6XOJMxjxcNG2rsF3XXSJkgDK8wPoTjY+riv47DfaG9bvzAq/UWetRNc+kbhlhletx5CGibaQKcQsdrR4SXIekJfm4FOYsIbhoNVGWr/+QBCADQD+JW5oNmTGYc+GIV1p7N/PNbZFuFJ0wrSsHJ6++kGISJOJst1qgMchyBtqSBOKi8iifONVycPIMKduXIxB7POBvelqBAYas/HtensWGqt9xXIO7nWx4az1MOA2yw9mvGX/VSXKh9OP0rgaML+kHY0+xJkeMs9tc0m7V32ZQoQRxs4BfxUNHWCT9kSQgrH9dRgoIBi56YaRu5IrSmt9Lx+dOh53TsEin2BHFZaG+u0rA9M8bOBd44l1AkpsGQkfybL2injUcpPHhzGwfM9fMvLx0C+fbZJXiNN5h1BpLnPz350ES8PpbnIWUxcAVfM6tjUSAUxzxmeT3vMSQGfGHkp/65gh+o58NhDjLNssLBurtW/jXkJCh5qL7L3wwqTfTxC1Pgp29TrsS95LqTS6j621MvDU6IyMVZxWN+4clMX49WQGDupbYMM/cRvlJdmeSpx1sb7FeAYsDRkwUkhoZzpJUVUS/DbiAbEWwUIjW8JkN/0joe+8guQeRHCqldirbcv93W8hmrWOlBdl6w4QRp947mUtI1ZBBJ51HAosBf1xLuIN+pgQQ8w9KHrJjASWndvTCcQmiCzjK6B6zzFxYDo3f6Rom/3tNVZBGEn9s9CPfzrVdyvtGq+/k9zlQKny+akitbMfEjjSWNRxJDtZbc9zfMT6rxupyk9207Z2ELVqP7kxo6aG3Vq7Yq1CQd8LS3zVha3LoQLiuXIp2G6mMKG7Iu+8iA+JZs8NxYpvcxIeLSJZloJadNjPw0K8blVHC1fYIntxGyjbfNjStJEy0rnMk3Wzxa3uhhK2xCV7sR2xIMT3ygVcX5buUkeIgQPL4CcnQdUZ8Viut+Konr+I3/0Eti7j3Dzbvrr6/mtyHiAiUQJQro7iPmvMNJptfkw1zb1rjBgqMDWWHWiVJkjBa6ojXQczAGv8v8Ex8Fo0ua4GIikUpysHy64SiTzkBjRoD1QDdFCdHA7nYTu+xmbc2CBnTOZhDyj97HNO2YQHo21+l+aCXeXscEvB3SzVkCacNhPcvXoLymW6suGf0Bvv52YiCyh6THpuH2naC+gbZ4yLPnSuNfpAbaQw2Z7gXW7+XqwUGdmQ8rTTGFquYlgqH5pbuU0eHCkYsqauvEr7zV47g+w9JkdF784cyaY105SFIiBfxAJmCjpx5+HrXT97NQ864d4RZlmrjDcVBKwiZUqBMGrsqyDq2d1vhtcS7QBT1rpcXmv93TZfW3Df6jKDoL5YQ78Fb0BirHNELxOEwO6go2cPbMUlzLsORHbRS5UwY+wx1G4/gtgU5j/407Do9VXdb6Hk4430HkOP8sjLymB5IIf1Y8Naaqwu71r9TY6uof9lzwfAib+kUOP+XvyiiDBTBcgZi7DhtAmhjehokgIhwaLXDEYy0pVUw1/0VoRIMZ1m3AJ12u2DBiUYOJ75l0MVwbx4LB7WYdWto++q93tztXN0oxQbO7twQ+Yz1elcmr6Cd3xcJ95E8JCwfF028Kw7JCMLvnLlF2gRs6ADIfYRUCeSFvsAWveQJ+/YdGRhtEhRrcugmTJyWccMwCfIQFmV3yIpd5b3P3mXj3e0qBvkOl2EDY45X4f79+zLLGYVxqkCiRpUDCXIe7Oj5WHBcKT0RaLL6YOeOmtxuRdk4Mz3iJ+zs0Zo3W+l7y7CA/ZDh4jVIDAXPIqjFsF84Yu7Bb0PU4w8FkJZKKRusE+VjBzAwsuI6JKnCLyNbizstbuUG136BUMlcL6hdvnDShcXsOmLBU4p5xtvz1IKfe4cfXFJ81/InOGG3QiBAB0V3NY6EhRPaTVWViVmSrcO2itcG5yBlK79/neS2KJ0nafQ5q4mc9XLNOXQ0Lc5DmF9ctX3tPgQzWI9pYuQtjO2qhidh4pl0w2llccLL2Fldd6GCqasjjrmf7F0PhAulhcrND/WDxHLxilPGkfZE358xxCz6jMLEs0Im/+bZbq3Qjtp77NO4+dMUFD/408gviJpUyx7Odt3dEW6uVlNUh+PAwR9bQJPdSTRcJ8LfB56yW8xQYqZQObT6vwp6IzTGrbEYEFbVHwgb2lRXKPLmUCS/pHH0lXoIh3DZnSL1Cc+ez6UUy7SRnZcB8DaMyFK7YtbpO7VL8gO7k/Wp1gAoWcEEDpyu3SdcsKjU2Zd6x/yyZMIQpOAFya3qN93UcyHmuMhbka4LX10q1x21f8MzHZU72HmWZDgGLsziFgPZlOcVoRepnhUQ1mh4RoLgLAXYOyXC0f4n78aTmEhsXi+FVodXnfd8bHxLOoIRPrlNn7pSKFm7WaQjhKkaZq7vbst68qQcQluDbWFzVil4Q9vQ5Um/aSiyE1zmDtGQ9fLwDBCBh25d2c+wmrIV8w9ON7yEGJ6emIFu1JXxv6GzCMHlOoydBziz2RubqFoL+6qGNhnfx5gCvSB900miQc9f8iJEO/LfR/lPFzz3Hub40HoIJ1vRN9+s07ssp0Zj71q5TfHPoc+Tt9YbHffGd70cNPqoUeASJSV9s84S/dV+ghvdnhboMlbwDEnYkNYvi1yl1Y6dKpuXG3mYldTBT45iC3PfThXASQdxN1Fk30m3wCilC6i1iCcse9T6MrPC+ovnAdOL3g+1zTZuctqKAHMYf8tMtIarD3rVHsg5M2V25pTE/KFpp+HGMZBIydMmMBRL93x618H8xhOISUdwe3tAL7vL6lm3ZdRP90OQwEodqpbHMaAkZ0no5bTS70YEd81gtXWpUnE5tIoCVCQFdHNJjiNS35emw98WuI4VslIVpv/x8FTbf/CoMUuXnKBCtojiVccRdV6jOD7yEAWzYiZCTS/RY0c56YwAsDeHeqzlnomABjBfgh6J+EQRBBY7YuSb8IRVyE2MJK80FyZA0bEiahI0y31lbWEyKvWBhpMs1UYJZnpjFNJYb2phsoC97hXssbuEsOpmMXjgj4y/aIGBzkgMj+a+xcxY1pil8zXEsDebVJycZ51+TZVPSeuCMGmLhxMZoo8zwpH1nmvLzAxEHRyPr3KiSTc49Ee/nNzc2Vz9/j8WCqf4ww/Lttf9iMUAe+GrWYW5ovbBjhqyk+O0fBe+/T+C4h+CCj3tPhyaM+9cOKSi0eSPjvWyDdWXY7yr0968cUPrlulKH1MiR9bqMRv49Emdfs6pFFE4to+SCsS+fY62qLaGC3RgjSNKHd1QRE/Aqo9xur4a64LyGaTbG6khf4+j28kzuYAOJGJhtic6LlGHsLjPuZdkgT8bUQVJOGLkQCMdDThwuf5U6MPM2s3gjYmqISjVTy8HYp5dAnxT6y0ZSM0vCC4+0b/DlHC/CKEbaT5JdrqyhxB6TfCuoSkwxYrgSX3QLSBRhFBRFc4xVHDyt3T+FHcNmLPhp2iKhuaOiN5TiyGjdKZ6/dW6zwFQ7gbpUHzcR3cRJbdBKegQKjd/NN1TkblzjowjmAdm9HPH6fZq5fpj3Hrk02cveXkKct6npkTu3RYLP0iLknwgtwoVJoe7kDB6uS4y5hujj46+EyyuZzGWFV6cjala4N2GwaUv2E1m6rWubdmPfFYA7u8xXeUF6DWlqXOPz9nWzFjYPqhp0qsi3ZA7PE8mrjv8KiSwAE55M1SnpWRnUc6Il0qydQbxzk/KnP5ujDoFsxEX6MjXfeDTO88883BNKC16+VWanE3SCykcN83RJ+x2ZfYqySI0LaKwcQB9JZbxBJJG8owrNa6dGf5wVoJ8gqbdnLcGpkCL49WVLW2ATcga0lReljzRHA/SePinHBWDZDXsnnPpmlEa1589rD/A0lUOMkyK88EpLzze1OgS/9QRzaREw1KyvvXwsing0Gxxz42zQp3mFPBvHonBPah6k1pm41PXQvH9e6QDBJVbvgHyBtdvMwlOAPCpVJXi1XQKFj78uZBiuI8ROQsdc6hHednOpNL1nxfbs6V0vfNb4R+FpsFtMHOSnPNSTbSycM0T8QeUyBsIxcbO/sN6bFszfhT1izqPEH50Yqtd4M0Cr6vll/DYwb/5CtSDUJEUAihn9gYBpnwMCzZKHk5YhxVvIPj9aMfX53CIwMo7FshF57r0+Oyip560Vdub+RKJ1hgf6JtRRKXZsPKW4M/TYJdGjtZWugMboepgQ0G/FN2AXwvzVFYpHHAdGlieO1btr1kqjNvNifPHmjFzT5gM0RfP1+YNJid9c85ptkj4VEEO9MSIf0GNdZDH0NApar9UHSf2paKtgz2d6WWeSO+/BNt3I+NcE+ufogzLpwSDzduotjctXfajsStHN0nbCCaKKNHrQINiQ4bh8GDaxASmbskH/aWJT4ReVJ/HMfx33wCwjM5Q2Hc5DMO/4bRm+l1OmTEzxh2XMRP9Dlq74W3foWrhfof2i7M0UhcKQq2cgdqst6X7R5BWkXVf+X+tBtU1rAjIm+0k/go14YYqPseDoEI/hY3Z7fdHF+8FEBPxM3JYsiFEVEu5bURuKwdRHOOfRtOAx88vCtxg6O0m4xbtpFJlBBYCsI9OhfQcQF9iUoc8SlaxEEBoebjEEvf72xN9Ai420KudiHpK2/FboKZfaZynZIhdr6YqcX/TbJukkufdEeXBDmKdu5iuPyC+rxbSo0cAUs38e2473Yas23PFRiWmggOz5gpHCxen8E7Te52WSQpsFOifmRUH7hbVGJpQ+G6iJ40gJE5hceWreMGdbHG2HmgGwlSK4Kuq9T72KGyxxTOeuhsWcMnCbq1yGUPrTbGmbvlxchidogLTGdvac505GBIBlYblvaBBtq2KLZjDouQfiySMPQes1zJrEZA+4zOsCqzFK2Xn47lVCiKPPxiPl56f/cecZmJIR9TQhZecxIwn3eqFClA5kAVELiuM58b7Qt29Rb93OGtPotFTR2EtOhMLxTvlnOSkcu9DN4erLSYFsrhHAho1KmxzfWFdVymq6+vpqMVo+dJEkzghzFe7ZjYE424O+Z88JTxziDEvfBthGEqYXFvHFNRlgxqFOj+39HLeDTib5onePxjdDyxW3MHi85BzdA0vMnlwGBa6dDJ3MqwLYY7BEtzu87ITYdXMAgmmnIY9kVKB3remOIRmDG/EUnv2s47HnU14+hkrex2ZNKTMx0/75NYYEcJi69wcBArDENbxqyFRckDyUCIgoNU9lGeFBqM0nlSgjvJOzaymCiytdEOGOH6OVJkZ3jh1D9ZNFGcQ8ATjkUHXJVd+G4f79eSWoWq3Y38pnDd77AubekUUcwAVGwl6BhVkN53fKNR1fKMWrXDFRV0kHtN8y0y4cp0e9U47d/TGTI0ylc7t/0nDUKf9V5QBva0zeud8EjnqPgVzXMU4ogazgGbEq8dwLbOBiTHSgu2pgJL6+Ohmpuvl89gF8cffV4pp0tDKBKTSO0bCGGBsAiesgQ9+P4MPW6dBEZo9HlQhHrmh7nDowvMapnZYnqDeM5QHPgeLTJ40+6jP/O1TPauotbyD6gRgJIjj/NPHCsGFOvzxsQNjnsk8xraOxBwrKcXJghrgFp58GR16IIGqPUL6/qjtfdt0cx1arz5U0KVXQUsuwC+1cNcEdWKPXM3Hioc0xdC4vnO107gnh3PBhECCQsRmX3eaU+C0iVP3GfU+EC1Rf/SjXV72zsMRrTlYBr4GcLEj1IyKvx0as7U5bE+j/pCr1S41Ysqsq38mP5FgkBNszRM0KGZBq6uHJwZO1mPCpMP38jgf9oulWCR8JpnPriKRYiuCVdBFHShcbTZ2nAYeY+0cn8p25bsZo775hOlpU/HjxFgZdBEhLJWy1Fr98s0Q6zMxhBGbf5i1ya2fkUIpW6u5Ee99BZe3f0B/1F/ygXrtwbe6/DrDF4emqz8JE37Tgy7x7vNkMnhnjqFnLXtnGXLCcb2lsWEkStE1Z/HvMIZWrzsebojoyfABAEVd10PJ4/UmGy1xTsSPlZLJbFJzLJLZi+xmvhzZPVJRucaY3e1CosiNZXLUAJVSi/cfJek30ozC3h+/xW+zOvp16V8KmHHWJq+oVrFzMRaMxxCIQpjU6Pr7Ngltk9+cHQCAc0sjiDKzkDwiByLF1fDUpzuw22yh/Ii0P9WnljNblhilR81V+wLJ4YuDKxTm9TSk1+RZD9MVjJsAMa/taaCskiegpxNG2Gp7leHSZMaB74Se6gQPq8bU52UkEYAvxQaOMWws4YGrkkLlBAGGsU3KzEQOPUXVv7NcaLNtWId67qNdDNVeAIvGdEKfTb2Ey8r3FmrlhjhDd90iTXhIgIr7FNbHXPPWRZENFFAedhOlaxzlIyMR+sOyb0QcTJqDvmwftUMITO3Qs06F5GG+E9K29qaJwH0GNX3mFuy78J7eRaEREAbjwhLXf4h5Pnt/1PFMNt36ytol1o4HslMfXZMKCw+KUCmctPnUZCANkvL0td2VtU1Q3ptk1ia65Oy2ka04zL8VEaKr6Peh7E9ACQzzMGWbwtJ7NpJGRjK9aSanjCb5jjMcOvze5CJ5wamWZ1I6iyvfg4nwWd/5KTiZ5zcilTxP1wbbCdA9XtWm50OZ4vmNXUZR626GXLc/eZNtjuVW7g96CW24pBAfYO+nkWPABzvAo+pXGAvdsFduLVtc6IIKggMsjMWRuTq8GuZQ5m2bUjAixGznbNrPLuKxsKEKdTcGnFEkMY23PSb786sShgbAXAq0qsHWsiEOFVTM2FnxGZiZu+x24RyZoKyUZgZAYykCZ8q8LlQJDFTJeY/CBKFIW3dL3xcpWqRvHxNFQfteJQq7dM1jTgx9GRmIiK3e3DMEDAlPHoR+6tpzUrFOD0pW3KLJRv7lH1Ujd7/iCOGRF26RnwN4W41EfXMSc20VYS4/NaHSNXvtNlaZJkmT7oTbN/ICOp7F/ISQDlc8AiK3xSNjLgVvmCup5akVs1wXsF/TXJgFa0JDNEoj/SNZQrbyUvf6D5AFqoTxQQungD1HluAX3ZL6eHaItNlOGY0ivY1e8NKlc+6f+OhhxsXY2DagdP+UozLI00/QRig9etoBfTmaSJtl3RTuVIrzuUtvc3GnIHdLKGiVQqhcVuUUjXDprEyKDZw6k+34pfWYpqL0NQ9H9zvmI8xgXAU12FsST/PXt2A1JDiU9yETppY+mEBocssYLbV3El42NZ3PuTKQBGJCJDMW0Ghji1LOZT/jfC4YRqy5+5MZl9nq4tF5luHoXNkUqUx+shan2ufRUw4TfIbIkvoK+oarS0OSuZNQWz7qZVXE+I2fmVD7916Z5Wm9QLXpIb293vdVP6rTmWetkjSEIqrxa9af4a0S97dPO3jnR6UtkoWdlMOixvDRfpzKNIddnk4R2VJEZ19TcijWBH/FD9e4zFW+Ee86PpQUMFFwvBVGyuCmzkgu54VQumwFaEgb5tzN0khMFOSBhgRPv07SJghlbBkJpledGFkdVzqDZs5s7/X7M+8HADo99OFofXzpT9dNjLpunFz7gWySnQlIXxD+TU42G1g9uVmJt5Lr+Bo30pqLdeFVjALO+RZt8twJYRcY+NLCaPRUmWTPT0NRNd2oFrZzq2eqH18pmlaaO+gXaool+Tucwbs1+u0Y7BoaT+89ABkv7tG2A==
Variant 3
DifficultyLevel
685
Question
Becky imagined cutting a beach ball into two halves.
The following calculation gives the approximate volume of one half of the ball in cm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
|
|
∴V |
= 21×34×π × 253 |
|
= 32 708.33... |
|
≈ 32 708 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Becky imagined cutting a beach ball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA22-SA_beachball_1a.svg 170 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in cm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball?
|
workedSolution | sm_nogap Radius = 25 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 25^3$|
||= $32\ 708.33...$|
||$\approx$ $32\ 708$ cm$^3$|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 32708 | |
U2FsdGVkX19dAloL+YkD+yZQgP/5gFveXzgpvwIKmyDR/RJ9F4p/TqjAZtm479kkxtvbJtJEsGUmfIpF/04e+iD2F0bSOdG9BfblDBQxXnXuEJR+lLH/GoxoG9V3PhKTV2DsbstqTVZoMG8pSdlv1wKCmxsUZTr/Yqwi73qTwDWzOpjDJsT/OQIrrnSbvPK03VC61adzCW6vbP9ITUgTu7k+G+l6crC7mUMNK7A+cSX5zZwQSsUhb51e5D8XaUOIhVbuQEOafDDGWQgAcuDxr3CoQfJNIzvw/y7qvPmpfxVlK5zFD3CT4kzKkdCsDgWWzb+xCJ5SJObsG8n2zCb0rDdacmRlBfMOwHZFR9H74duC8DRM8uGNprI/NNxobV76H11yTkotODmSOo+jNqmYEMg+4j0yo8207KZPXr7H/IG7E6QgCj3hjF4H+1Lmk8JJSCSGrUOsfqrxnUzjT6zFQ+wDwnKdDUWvhf6/TMvlnLgYpRhR4djqvcjDP7+rOvFTlQsbjUXNk9/Y1plEkujo6OJrN6uUYrgjGmNO9p/+x4kUWi3exCex+NSWU7ZP1lB1PoWMPt1W7rHx2N4D5dTFRPkZXcgjhlC3TZv3gRjWljBP96miLnlRc1EZ/txHKNS8dCpPK7N5BPO9Id6ui/ZZXELSYYMegycERCXZlLLna/YYka3GeCNzDFm/pmaXoT0Oae1r/I5i+hLlpyE1janYsgZbGEmEM6QnbKA56rcikO/uBCqHXj2ffzP7WHEoxkZHnYlX/xd50nvJyFUvTIQPFsHzMGPkDIhsYV7ZIM4CdshVvPsW94VzqWHPE+AkDeIviUZ+NOKKZVd8eppL6UzN2atRniByRHVLirB7t3/zz290JgzB0b1D+dAx6B37wjWiqYD4AeD01KikOdp1S5W3tF02PV/eOuYU71upj3TvQJy1u9s5rBPlULp4kz7U9u4cqREYVMiJg11H5M9gy5Nz5vH0keSRDzQy4mNAFGXEQMSFG+2JapbPs1xOcgxHQSv/EWRWkM3l0OSiYjyJsi25BYuJVRCz4aW7+lb0aBp1WWiAifH4Z6iycFsdsdsct6sX8/8eUxlxFi7aK+uoHmg2K/Ih9J6TN8MuVTdMA6sH0e2YLwm1j8ymbw7oz2S8XsOWHVf7O1pVDAxsM9UrearBb+CMAvp7hYNuGvDKjF7owfTGRT5FJu3lczl0M7NLLfdtJw6oG/xmW4oeT/TIE5vajjYTF5xFsy88YKwoXVZ5XDHb8Uy/bVTOUs7mZlBJ2z94KWlUlDZegA5MtEMnKwQFAu73jQXmYBtwdOGBt9kOxobUjDzc+NkV/H6wxojBeabZjAxIqvv7EY+YwunLod7q52bwDITbEJG71nbAGuTzOqUFZcDlwS6FOGzYVvQxZbTXx5CJO0/A7z+KR6W8InkEMjFL4Lvw/zhgVq6+tisgcO4Ir3fn5dsCt9MLmUIouwRFCKTCzxOYcQ4A/t2sX2OB5GlbPe1em006HSH5LRsHtcEj/EP2hizCKUHmhAUfVctOCGLYuKCAZdnQxVQ2hlvbDFv5dmBzpQVXsYE8eTD51U0QnqmE2ZxVs4MgPoGrnC996pf4XNjY/G7CV8wVLYC5e41v6SDNhXs5rztB3Eq4o/RmrcgyN7/NpvBBrEDiABQbIzuR7cEpxrDcMTxKcbYW2nVSe27c/UUhegPtenqA8fFH4B6UcTA16PNJxeBirmKFnN7RAEJ+I2JieJ1dxDw1R2DOudsAJmqOWe/wojlgnPMKaY/su0WZ0dvrZtlRIdG9m+7iDCcEGIodbyGsfnLhWUgXtpCeeDljdfzgHXTg4jkFIrnmFB1cXxJqD6iGvNfWbYJoxZyNd+Cpb2Dt+57NTnkzF3O5Xxar0rnjXGQ6mL57up2uXmbMjnw3Krgim+hrOGWkZcsr0kyAMNlu4FC4EYVuFbfso7eRqSLVzO6Lhhsbi0koy8FqVQDnXs1CKmC6z76fch7mVoyqG3WV8gLhmPFqzkCShGnh0Bmn9XU5z69GB4DKlXX3FK1cGRDnHOm5pSVYFrxOwuvJyLbdN769E3O2gl1h5Q6BKfWdko41rrxfb7hJO6ifoxN323yj4zYozRgyQHgp0RCMpclGpKF8d2p2vcBkQLJR7crArqegjNuKKmBQFVxV2HlJ7YXKSihtMyxLe4cYR4qIJKIWlHs6aR/0RYEjCOpFFyegIPoF9+cocgF/wfcy6wegeDq2FRwAo6Ees6yjbIbqHPnt6fEjJiooPQBYpQiEOvXqkwkWI6LW5rAW8/kukm9jaJsfygMEAbjshC9Tb2sBjh41zM+Sfq5gmU4xeNuNUng0UnGYyID7sFDktDfkIpElrlTN2vAH8YFKnkYME1/jtewk5Sv/N+DYEVZO8BGcGZwc5MZWxIA1Hj13eqrIrVtsYgANiz8uJqaA9gCm4KA2rmWq6SobZTzdqASo+UL+BEEnT0CnZfv6W/QfYzEftkYXYOUh/Uvp30o+nK53uxyjAFjLaDdJOPX1wWsnX+e7l+nWW1RFrOPXm2laMkhUjIchHSOVaVufrVqdp//MSnoDpDHloOQEYcI2/pZVZFujNP5YSyTWpQg3FyfODHYp+43ZDHy6yeFOmgX370Md92gepOI4QAcimERYhrn5HUC5Cc0OI3///SGWSbHk8WrtUFqCPBL6IpZdURy01OND2a3lY4bmSTP/NmV44yY38+fvWhx8Y4H+ntNuryD2TF5L12yLdTH0yLE+O6A2U4NWjK7l5EnI1wPsfT8+/LX2rMUrw078rdUFx4qIu2zUSoHwXKrp1ZQrL9DB8oX0rv6U0ggsmk/sdV/Zr2dMCRaSLkn3v3TQHwj/G4ndClZfJO6YazLbbroNfWzldKsUPma83cTJQYLz+wNshKCyU9bIkwP01RJxwvgpu+LRR6p5wsm4Z25Eyc67ZtTHRLVefR8jrLZLdmj2ctIHwXXS14FpxUh2ST47i4cfcfavav6Ydc3RLFAwKutbOMqSsvSPdrXadrYCQo7N164YHAOFiQPQ+j5iFGHnAI7W32Wd3eIlqGfkKfN8wkFVJobjgj9ZEHjkbgy/tPo3jQu7/Dm+A6rclc77zQca+wrv/7N8tTZoKCxW691qzeul99xgsL8izLtJsIJ1Eh0OeDBPMQ0mVjZ2Sju6nMNtoSxBIQPf0UdrNoE/KiQt5RQGZnCbKbpK2T0pPy+Xpp03SD8EX5sUvn9ZgGQA1XMNQhDuqD1rq1om9/ULIGDAhwJnyDYdKvmqp+yYb34jWx9k7spaa0b1gnata3vQlSrQiE+Vsnt/S73B3AGmZLJFYw9G20c4Qd1J658WTt2zAZrCfDHOaKTZfuMmfPw2OdQr1itL00hzJkhti6JFxv1NRx/+NcgPPcEX4Q1xyhu0z6jvnmXoBRMbdDiErukF3fZJ32+/MNyMS0d6geIT/UCAPHrghcNBCpevAP2MsfA3SgIt36S9qjo94yH8sNetMQqodsFesI2DQchsqxvA5pZxWw++UZeVYu3Ro/+NQP4Cjc6Wt5Sy3+Qh/EsDKJ9qXsyOHqwDu66B4B+7gU174OW1A30UilQ3+b1twApfO5PNrdReifI9bsuSoeG5EogHIDTbzk9sAs+yCYjPD/M7J4qg/xwfLR254wEZwRRWWGfY2Q7+SBBRyQGGmjSZi1j0kWD6aVYBZw+mCotJp4bAHbzMZxJOR2jGdRpCPYgym8xO4USKZVFexlKqHu6aAsB3i+hhMRShBcr0R+olD+i+2NhF3f0bKn8HEW9EThstwObo9Tq774K3gi9SZC4XYyGjnln8W6yod2n6KIyWn42Q8UbUo53t+1wLDrV3634f2WvXICBTmdDUdWKR+y0KeXzM+quw5zt6SkSyE3Y757r8OtbiPqI9GR6z/FaoWADnGVrkMrcBL+wbJgdVjaQNDoZ+quGGG/BJSeOqLIrBSY0yilTvnFuFxUTa1AH8r14Qwa/HohBmYKAWXvjz6BpEoPpaGRkXW9zcArFiZ9KhKZ6pQ2XtxYca1woVD58nw52TS6wqTrgZDOry5zIMzakk5i2Q/Q5WLBimejJGT28rAiIwuwHngxaqsNIsZwfpUSsqKNwEA5dhjnEbdHB+zH9R3n+Zss2YUaMTU+IxxDo8KaHYzkixFhNAxUkfcwxebYAJF5uR4npjlQ0M2Ir8E1fCYwDxdxL2DZFiXIpC57ottFx4pFXavfImTEaGqfubfhaZh5/37HG9reZS6NkthXrTxyhm+HhhOdMi/F8tVYaBuV049CClwaARl9yx1XRWh8U1jxdZImBrhf2mGExFgKSi5V+HaoLckVsoVLg+If7WKMRaomNslZ24VDbYeJLcmqgIrLs749KNszOPpgnNFCX1AQiqiTMQKsxknTJate6xWCENwjO0JyVv2xwtD7hf6Qgz65/z0BdQXz3G/gbcAPZ6/wmZOEEN6YC3PpGjaAxX8HqmLHXpgmBzZnjYey8+Lji+2aaX4nXxAoQZrGEA7oYu5I6SfnOhEpRPHoXgmu6uk7hxIyJcGEnLwI9L2DjNz5HCredFpOb5DfGX6FmKw/eXG2bIy66EZ3i+lBDdJ4MTgLwPVYAi25feNv2T0+2rMYneKsN+o0W/T6d+2o40Mcx2ISgGy3aspLGglQ2Qo4fWvFBkgzTyDINodqidZCX19wclPUkRO2gHIYWl/llIR4QUCLhMTz4UeXV2e9b4oT8OJZ+u/3LvHoBVg+lhzvgCVpe6wHEKrFsV3UmW3X6M1+0BIGyl36CZNJn+3Zg0swVOTsyhkKsA3p0jXotBbmIbATnD9qaYHOT6I5WZKjAJ+/KmNtkK1k+klXO+RFejqWdb3++kPXsX30ZMHss/bIioPiSfkQiVl4xcnq7/22pikbGSAL/1xAQzysUiBMEv65pKutXhMi0C2SJch9IVghBzHc9TL5NbwI8rQ3pC5rjaqms6aSHoZnIj62J7zT2z/BFwJZAko8fie/6XFeyT5exgGAKRNCgBAhdDmZ7WoReVx0YZmxLRTuCeyig/RQPS/39rd/p1YDYHiRWwc2BqrQ0nqa5Au6cxRK1udLK64GcoEMowcFFqtFAWh2pTpglZQHTFaqESLjvkdDeSxalh10PHAVs7LoqfhHSJcd+GSj7IFEbNIPUZW497XAiWUch25/dlUx9tKub+Ph081f9i/LCdcB12onLq5SZrHrx6ugdf76T3wogp3ey+brw8Pulfa8pqlwmoI/GO2ER/DsAxbeP6XThvPL3LRFjU7uWW683EJd8vJVVUSNuZgvpFyiLvrYagjd8VJMyLJFpYNgIr7+K1wv2LtxwFioPuUxXp9mIE7+lhHZgOLzo5ltFqMFBBLjOmbGmIY7wJilSfjuL1xf/Lj1x2HJWG/pyIcB1FSagbwxP8bK+36/bY/xRUTuA612PD9Tusnt7oyD4WMOQQQ3Xn8E+SpxRkpYp9Kt8wgU7AV5hiSEuRLkuYktztkvDgnl1uApCAAiEPoGOdymAX7m91iLSwQW/MsV7X/W7C+Okhz0LPvKED+kp2WmB7PWQzCGvx+JYFnKF7D7u4+pZKTAM3AR4GACinK49YRSCcMIfvWw459ODnlDAX4u8vNo1/yHGVvWMOpIUs6SSXKmxaiDJyTw1o4dS6AxPSDk+vWjW8QUDXqudh7bnEEGV3a7nksl0iWZbRXXKKsma8BCJOJjKQ16/vZ7WCs5Lgsmt29GRjfKOZjPvsqgbCS01Z0CrSejMfTSgaFQRL/c1mhlUfaocBIXSAtkJdSFo3wj211D1TpKKS7kB8fkGtv2rOBNJO4banp2u/EeQSOGU2D8b4CPXBsokGHMpOQ01DIaPLtnM9tZNf5+3cU31lht+jkcz1FzTyc3uADqA1UV6p/6jDI2NQBMfsBv8sEKoGCEQZQLx7NMTZlMHC/g3OGpmy9e9rMimCM0ixJj5/WWaHp8wzG6gG1oT3SNHS0hzRYIpbzHmBcShiRckL/fKgR+FE9159hFHYgDFsJQPtbG1CwCX/5U2ro++oD53BRWMRDN2W2iOADgFY43uQWvF2G+Kg7hkdw84EKy0IkXAaOTm1DYo1p8rMwn/UiFrnsMD1H4ElpUraGi9SuhNTJT6VV3dcYq3LLPA+YWc/uMb7QY5E2hj9jI6LLYnuAGS3g/RRRRhWd2CIBpFUb1oiw/xn5yLSFwAhf8SW8zCYdzuyKt3Aj4xJy3DwB/71ikF2hAg7vjOCwokaTYfDpReG1X0pXoojLYqlOAwv89PaFYxYmP2Y76L59S2RxG3grR12RaTRFDunK733JQG2Ni8+2Efrepb0oSDebmDc+ia4ANRscrwOE33N5A8bh3BvrCW75l05NdwJBVcKI63zCQY9+mSDcYb9rPa6G/sHhLkjX81tNYpFYnsr4aZZ6i4p3Fki3uPxYwfkN2gTCJJH+Cuk6tThYektrtwuQ49BwQzLaJrL0gPsx+MY2gEXvGaFafecLvTD8KMNy/dB4lEmL2cdwZJLqyVS8SJ3N31BQpPEYDqmA9as8J2QmpXLD3mNNPS8uaQylI83rUdQKLut9Dojbl/prtDQQVD0Jhj/Gw0DUzcSYjAynTtxPK4ZdHBwKl79wJuel2Niikn6Xo6xjLBVbgqioPHyNuQc0E8OUtUvNIu21lifQQiyVaIHb6jtx9WfTkjwyyE8c7VHcjK1siMntkqI+MsxJX6QoCs34axTHUm3oAKAK0S1xZI91SPORcr4+JnrK97F3b5Lxu2Ie6gOMvvQUScWGFedwsOnno/mxNPbhk0r8YCGOrifVdCZ6dOvrrN/3C9N3EKCvIU4iLLfEL8bgX41ae0W6hmorRFSEXc7h4aq0KS8eOaHnTKNRovtNW2EY/UfogUEwzGg2S5Y/RJ715VcwvFTMN73UMQb0hbhSCKMsnxVix9psZQc4kKMArmf4J/jolUCsYfhSczXgM3pG++rmtv+PX0a2+80zbBbliPItzSiLNcIayvn3zjetJT1sSs1EH85XkAjiU45lxfsCI3Gzg0flb8rjcphvBLI2uFo8u4d6pey4qUJYeTC4Y/P1rF97TN60bQ4F8LaYK1flDEdZsB//7bjqGLRaYaEEv7x3non1/zH6W3S45iU4CRshc2x6fawIUXEWYSxKdxyepYL2M6krWWioNaIhYUDFCdjIH3cs4SwzrANiJSfebaP9/TNBF8s9yqzm6KjxQavAizMmgQf8yglpzTn83/MXBfXNkJ7IerXuMAXq24JUBY8V6k5TBE9mL/tip/bh8PgeEymNXZwNQZLil5GAuV7CmVGXjNdciA5/pKFfmKzRHjsF10PzRg1QSINFFeYs3JbjaClw6+o8jC7RXfc9CjuLELVy/cwMMSxwBbE2Og0lT5z8LiOrCGrmduV2AEGGwxkqvPBhZ+ZDNfwkW9qdKoEs11LTnufL8sn/QLCgTigMdQtcVdNeKPcUhC8qEVJxene/ot4CjV1q96txb5gISYIooK+Qj/3aWXvF8kVa9pbxg0Rc+dX8F2FrFfErl0nhPqwod4y8ug4AbZmla/TvFi9MmbujLnmVQcmWvbeG0QSoBkw12R2H82R2/paFL9SnLHq2tCaRfv48WgL0qAQEpJHcxr3mkcsjAZzMBvNTckWVJRpeWX+FzlAmELE4Zhpll3VdfiXpci1H8v6WWaHXJ6LWFOQgawseyvS1gm0uW5CRlMhQB3UDZuKspy54EVCCEM/1i8HSCzlMyJZM5wzvImapZnKLCNvg5tqrrAVd/bGMjOoTPAnHKOS3SsDLbjmr+jeGU/vVr0vsA8DTyMsNiMvvJ4Iy81AD4Wlv2dC0SDR5EBxbio/qGtMTBGRSIsgs3627Dcji6HTxsTzggFW0ak9ne5Shu5PWSw20Mtcf8SJZnPuO0jexXXFlydBtnaYkjfOD4WbA8ONkC4ZNR7IJkrm54EitFGhJkn3QAM0OA4AR9D1xeCKhm4D3lx1iAlVl7TrnSbtKx9u0W2/MYjCCas0VnATfzWFUvMIjOBM9TRWuwGB7T2Wx1874df842x3+mGwl/SewgE4UDThmVY5UOn2QyKTZB/sI3QDFBAsoL1QNiAZDF9KBwPsuxiKwQttIFAWXLf20TjQ1o8O0154ZEr2Z+NR9Xup84VbaL5rpQ0UGbyc7vSc5bMC8TOkGYkg7uJaZxI3us4qXepBJUI+b5ObJe+hud2epC7dXWWDu4mqq3kNApuHc03IkbQHt6Gxsv0nHfbiQKxc3uoXAdYVHFNnLnnB8E+UcgN/DTKQMvfiZuCPpMYQO4mnAu901P6GUCCvwjiTuNeYG19C1nUbwG1xFP+W6XpdVxXESpNSyxyQwIh/ScjQOUDDIRp6NmRbo6Y1I/MBoJTFT5EJdt0okwdpXFQMirTi6DP84K5yfXM0yAgg/XMsLTSdzamwq39/iuC6pf4Qg9kdasvf1HawyK9sQT+El2NyN8c+fi0PN4uKfxIdzGXHLsVelOzovQ5eK6YusDiwhDjLfRSPSZ/nrmPkmYkuuUwSeqPuGwPT2rkR/NAFKZFXpIBGAxDmLSqlrVkYJd74H95SYoUTBoLOTJH4wjHRhrhxUjr5vddAZNYZruv09/14AH1zMHKWhC2lsxI3yYP2KbmvH35kYzQgZc9UHNY1S/7RJgXTQud8ZzsLBh4tPGKRMOl0A48dqEaufOHTsi1HlyHTw1011QnsFkUu/HSdhUKWaKeipX/1B04/movqYQnAoMFYfCuLioGh2zrrdQr6807Tlry2gMK+gDnlubRDR2J9+0t5iVCUNBSZOXaPAN+DYkU8k7M3DplBdqjevIH64VqWSS3VfJ/dQbRiD4uATEyW8Hsk4F4y9/+omH0f3MuSikDDNaPZOiTui71FAMDs/Ppq5JJOJvNeQK1fLYA6cv5IQgpZ0yU4GSobQQFVsY+gJserCtWvPUYeF0hodOlNvJj717L/n5Vx5DOarRcaRT0IeTo0DSJ1F4flMqzURWbyWQ+SVe+QhkP/M+tvvEN87UKykYJE7hJLhOwcp8zZZ5RM58RMzHLmRupDFyHscZaX/O9oOZtZwYG3dIp4NwPREcSkgp8Xnl2wL7wvFmq5AjR1pEr2fnWUaX3IHse5mE40UP/5cNwNZoe5gg76S1c4qwSmLo2YQK/3B7xI39WmZxdzqUz2ewKdScf0IboOfTCvD9SXqdRNVBD7jD5YSdLQ5bU4kLRzpZbJXrimH1re5CrljcoG8tdAz2wZ093Yey1Y53LrIhrm3RY/MhL1vnOQbIxKKAUQexgtIRvx/eFl+E2k/8HitBKcUFvcTiEeJal6IpT89kfAZHgHlbRA+Wgjr8yoY7nyKiXH/UbATJLXZl/gPSLDaSZkmmUfhLpp6fH7fGxv92MIAUkMHhihwC0kdriVD+ihpYxTfMzLC3BRVloRUguC4XsYsZTDOJ17GIABQJWkcAfpvRwjM1sd2G7VBQ8cX9rNiiEZX+uobRjXwMhIw2bHZ5X7xF0kNr7/c5W6Y0sLdTYqQAPtk3F5bzScNsVfGLhefURfeRQU27i7PZcfI1Lyu5gTgsToqcPzoxy/owU89nUEZKtzCh47ZIif+WGtxcGbR6zwecmP12Oc7uKn4/xTncNFW22rWwUTsm+TNL0KGO+qhMVzUYIYDJxOwxVksd1qTaDpNnos5ja8kO1TAVptzibEI79SLqog/fqXRLsuM73Wa8mh+OfShh9MJmmtSJCTAHsAgr/Dwun+MwKjomQVZO+RCcnO0tQ3FK8aWJE1auxrFYVs3FQY24LrOKUeiE+09vaEvclLkIkyYF60UaPcna3Y+p7pZjvWE7vk+9dgiudddGfF5k/M+AOfwvncm1x9NpaempAMRtG/rQYaMVG7gy7UGvvBdo97MlpYhP+q+XXx9L+oj1nSoyRMjP7LDn7Waifge4CpSWWdM7G1MKTBLDOeGVsq3CL2HQcWpmr0OTpw21iW49AOc5aWkjuDl2Sqdre8f3+FmbUy4WBuA0tLoCqrfwNWheOi4HySjo3iG5gY8VvsNWJ3PN3L9EQ5JkNxuofvFkuWZfHSF6Y51+A6G91WI90HjR5v7eQpmaWwawZfzXXm9TPiYcOxPBG7z1csgx92WGnkyWDWWDUsHnSgRqHA+Oy4eH5QhyG+dw4o346Agfz38N1oK1rFbjjuIGTg/6tKLS07BZEOXcGbWAs3lyV+V4jf8J3KQTAQrkXcy4IFXFNRZJDAnEWIrkRfHC9CFLDXoZRe0axdhIoJpWjqigoWjOeGtsKNmrW8zxOdteGquVjWoekPL2c9fBsNowmTqYkzE8rYnmnXrN5JkV7pNDzgZPKAA/veI5BOw3HmiulIishEVMGiMkSOObDlXi1MnjPEsGDDXIiLvmJWyvIp3tZ5Qk68vdKQ6g5OE50mf2ujm57O4C14qhFWtIfJCEhNSOTtVGRNVhVXri9kKX0iOrV467JiFoL6VZeUEwIi7ffRlwJA2TYOQpsrQFcrt2i/db6jfkhb1Xg5Kb0FW8ZbdchKYv3dJHyq82gTvlOvPL9tuJhhNp7WkPfmpCojzIYkjNqw0MoiaKqiu0zfGzmM0wQoi5pc64x8n0J+WDVotTYj3DYwio+a4fP8JCYBRlW15ZJ3c+7XvyVaG1YMHaCfqxC7xb3uJejFN6deZ8iECfq1rRf+4D7FaU5DIi+2CwAQiVY4kLcHra2PZwWXOXhwxc32DfdjpOsSKPl6iRutDwe601wsZmmjo329Zgz6hPGmEd+YzYlg15N9yQq5Tdk7UYT8zEvbCBwktM4cSzj/y6fwqcxxz7UHaBVZIiNwgkCrLbi4dEaxcU8sWL4QD5HJGkkb2senQo+xnlzYIe+2uE/mxeW5BQLORVTxqMLzgsStwe90euA0zBB1r5Qz2Uu6Wygabdn8pcUwPkOq1elro04k9RutYcMTGBnn+/sjKD6xy1zsvUPbMS/CTYLLZTP9fhI7yZ6uqMse94RESbmjn711Z/Lp0o8bfLvAHILzw/dly5JS0HuYFn6xXfDnux858Xqcmcm+f7Uk8SE2m+P068YkmDW8nUOkI3V/2szTccMr8ud+UxL307bglD5Vuftyo73yPJ23vA5fJYL4iN0sm7hqA6mbF8t98N1yGZgKSc9ZjdHMaHe8KjR4swKqi24OuGtJMBk/AKN9Kj44Z8rdEEAXvLC5ISCKhleZRpyYdcKGVr5BY44tkCUxj1Br2fh46gEi3Z7VTvwsd1vyTDRo69b6LNGAr13xNKzNZUP5rSnCL3imph2FGBEYONfyaberlgbDInrSSxsTC4hzsRwvxPL3FbkoAOd5RtOVMeB9t6E5SncUII1OyOOwh4tisKv05u6GbL5FcVaKk1doVTioMmNtO4Sc89MrBXVmzh4PC2NxriDqnouh0fk45oiu3nmo9/r5BgqZ5s/uK70HVpEgO4YWCa8Cgha/dZrZQQA7AMaHt2A4FLKKxvS9XeXjdSqVCNN0mLaFfWHjHZPijBq8hKy/NvHLjXShbHGvg1GB6jnJgDMuKtdrQusgOEV8a7yCU0Gjv1ePPWoM7K17hfwSXa1atfmJ6hg/ZzsLCs4IMNK6KiNFabn+vLuQaM523CGEqt2uOGo74dHhQj1BKQqu65vv4uuaLKJr1yE7ASrIQYIkNafSFuDvh3IIc5VBLRruJZyDTIG6EWRIa6YBdsbclAPS86JrpUpEvQyM2q87hybvfNuCB1Rt+txxgCsxIApaG1BSDLQl0IhbC0kjKjPo42jyBoaDMqCCeys3jWEkcwRZNQRT8i2f7mql98mZ7Orth8xy2lpoRnYaHTszpfkryxJ1p/XAhIj6quZv6C3N346JmTE9tK9Vz6V3Q+dC+TFzvjnPgGNuEMlNhg+WCoEgKmkOeYVObpsjeEGnMwYZ+4z7mqzZNYKafDjBEXhkoqneF8sOSeT9qomhXr74WwkPcWXOkbXHfZeqdT3L1SLNPCmYS2b9n3a29Vcxg9173QUkeVlHzXrqag26JY1cP2jgDea853h2sQMuDn2HXlcarK2pFiSH3Fu3QzaX2fgEPwybqRNs/KVcZASy6AlluPoTiIHldKbB6Q52b6ruw1WXlHba8AqFCLR+71J9cyrK0riJ+ltaSpzhEWrRzKbJzylOfj8WgPIcmCliBmeEt8AOROaivze3QSUo6DFt5TYUpQTZMZGP2C1EZHeO1t7aegLuYsSuRxaU5OikaEsuw5NKYNSrwKimoxNabvbIX57JiJi/DpN+DF0zcup2Mq+0qB8xvinGv6oixss76ZbdqyMj/HxxtVIijDyzxl53KG3+An3M/ZYyIrWRGX5Pq397C5FRsupTtGZjURc1HiczaxAphxYOB+9BEGI6BnjK9rfOyksWeDUgrToobMVoE1lKmdt0nCq3tHqOLuCAu4X44yn2ARYSr1GSbkoMAlox/MKDRZPstjZQyhuNHhT71LCzPc+xAA6S959w56nAeLSwBBBMNcRrZ8XSX1MsQv3TVJRPY/qT/h+UeuttbAybrXiUgZpFTZDLT4pQGAmBoRo/94sGSx75zm3UMp4khYFHQC/FKVT64QCXZOn77izDSmdioqwsh3RZcwg5WmsE0n0mGUdLIfWydFRcuBdu9bElAKi0tzejl+Ce49vUGXqf0rbkyMnj5b1HnL4Fw4X64F4TV6bnPPgV2edFPIfMOg4PDhUnzx+yxJlsJh4XoPrypswCypcX7obIN2jH3IAZh3MHRgVnEWLWWHMttZTsHF46dKI/18LeN20XaZVAd/88i/LPw/JQ75N+Di2VYwFwRvd7dzfQn5jCw/Gv4hI2vW9RacfglwGRT3jb9X0NfDPFoouMuOJpK6JkKl8CsJs1XfDiuyPRGvlb2yPMNIA4kRhR3Z/d1EzEm01olkLsOhmBizywnlCStI8d5OMRZmvUVXHfydYyylDY/Ens2Cuka+jdhn8kJrZOKaYzYDvq4MhO5sVHC6CK9xgfxOgLOFrUWXaJHWXDpYSeXyHCTx1P4df9/8efPrxjldLgZZHuDBB60muymmdamM3sE+XVRl7VgcIVY+aBU7HjMJ6H+gtAHWatZ8q+u/yqVXBWsG5m8zRWmDmzY3RhupalWZFqkClvetGSPDTOd/PMHatU470vS5Q944gplwm4PmpmgCGuUrm9NLm3ojNBiGpu4pvDvOPa6WZ+uTRnqlYdW4dZhlTGgel6I/uLZO219OaVvK0cVAD3UpwwqCx+vH0vkIdetlV8RZzma3XwWnPPaVLQhuV/xH6fRfrala8v2TB6bagTZOrjzoBDP4o9+pvAKw45jeHUOp0S/JFLViaNWeZQjyyIKa4xgui98n0uTSnA9IpMuXbDfh7CyX1qu09UqwK71kg/G25IWcDvEJuS7tBmfzxtpkUPVWG/775LqRADpcTaWWteVJ57UbtGciA1AVWrVfYcmMzCK41i/XSxvajjEKtQYgnRpVmqSNtb1Ao3YDzmZDFvayq7QnZEg0a8k4yJbzTZAeKViVcDoGljzqqwLOe9YabrV4SLndBjmBiZoQekqYqEDohI03GLIgWKtksII5SDFlz6vPag/Eqr5eEbsmVjTNJ4bvNwbeiboaSoR9CWlqsNrhB7uop8DYJq9+rLYsD6p8YntUQQUip7d82m56G1tJw13/32NmtdNGbhvbKDiVoGiFvt5gGn0fBrNceEgG+dNTNictjvZ0J9Y2LsD0NOCMVXberJ3VzOx5SsKXKgQ/jMp9KFRWTSviNiNqg8Mlx6y4PoFwT+QykNe2GDJcJbjsiIEOslgPtQENh3Q4Nv7VfGsLjnsi9kJoBVL1qseWjQlQxOkM4AHVsSs2gFCHjZzmtu5DpQJ83awQu67mQSo1YrafTwmHsdK0DuupHF8OOyXAVSNWfD5N9xQONeDrBkzu3mx4M77AlRYRKfb0ZyTZx0FL9spHB/D9QjT9TrJDktRBe62rGt1JM/tIOh4/3RvoqUjvjfMJbLGQROH18+kjER+F2lXnhlrTdlZKDVzP1gtVnKRX2Tj6c2zXY1DwSWVP46FcdWXTZT2ihsAj7USKSQJPCDsKNwm0CDEO/n26xP0bU6eA+JGaFxQG/faEfu6k/rbIGFHW3sFYYlkDL1TXq1yrGtCyVOVZ53BaZZWpPQ+nNbIG+DclgGt21i1xSAkorxPOupZ+gwAwqtAuovTxPzEZ/89fYY7EVhkoGXISrT7vGtHI5R3mLMedTIl7o7zti2ExGRHbHgbp5vp+Ke1AaLaDD5jHbpjUTa3uLSmntqWjHFfUAYME3wcRat9KjmeshjGdQOKLO/r+Lk6MGRsbbd/crSkrIGvQltGpOL89F39HtXbO9G3AK9YphS3AhUNjhYWl8cQVeIemMq/0xOeSJTAdT3uzcaClMNJKoXIGi6X3uUQY41kmjv1nP0uZL9gWGPnFKKYB1VnxZroCKr+QeLSyn3X2Mg94v0z9j5xzJFOeq9OJoAEZM7UJX8ZzlCOcDjcCV2P1gV/rCjOXvVBjZL6hHrZvu9DHV8RpBp8w6TIS5gCOYzhCOZzHnLhuMICGYynLpfoR4cArOB8ekPgN9i5sHOEoFhtSydrPW/9mzlxqyrFDBPm6+JLJPq831Pv8yCkuVFHVvfTocRfvsZ6ud21jjqw45SecVByXnoZmQi7vxjg28H41cKrmZYDUF8Cxjw/XfZp/drlb20GYcazuOmIHpw0oqhGrad+77lHllJcrGl37qLc+f4/hTOsW9aaDmCTjQUNdJUtshYb9S0VZJp4wE52QKhc4MI9+6G84MVUyOjEKnMd2I6QPtjGsEPSTWFnbjo5HFMiyNcAYN7EHJsPuGSpdkyWNUT2Ykm37uLGBixK5yVXBWgfDYG3Gfdv0yT/NYBasZX8kUggYNxHMXBOSTbmf/jTHgBswKcv1uaaIPsDzfWGhIW08b6Hw2rW2POFHMSKOSV/ZKdngCsoZJxM7l1lfFwteekr/WT5zwS/7DN2TL8gNL9oaQFccFsWIXZsHgbspZtu7mP4wD1D+9yqhmHSk22TixkvAav+WieuiPZEm25YYWM4nkkaJA0QlhnOgZQnSwFr6XD0FM5kTqqk/JV78iOCoQoNsSrnXKxFqzpQQgsHhGl8k/HwMhUT7mpVgDmqp8VLlwiAhsEJ1PgiofPYP/NYD1KuJ0pPfxnRauyhXvYeOlMuxBQASKGOQ514UrKd+AVTb7NfWDpb1nRyidRAQO28NhkllUf6JqNhsv+ylnLlh10A8rSAoJi5yMtDl0myOD89lUBrfmS3/CeP5yBhUQwsFrYI9o3k3xYew7X9bSvWvCUZYECysXj5iIEEOVzPy82IAc2rz3y5X1MYkjxIbai7AduxSTVfgiflU3IkmvQqoG6hrpt/6YJthtz+iOKW39oaLGFFRx8SA+GbJgniodobtvlP88gSjWSOgH5cMumPN8i5+ZdOwppKUO40I8vvMKxjYPDdlZFIgzEqdi79fm9OC3odGnT3485cwMVvbUW+E7LsvPp0iQqbjiDasU5r12BwDdHlNf9V+FwIL8KptHB7HYxukmMW0dl6QUcaxIvep+KXTZkHNW9oDA6oaQRQK9LhQCjqsBb5dL3FV4mYKpOZa4nxn0YUT6EYHDac0tl88lgUMlQMZ0o59kiwMRXGCbsda1FXFwgdGkrjKaMAFJh+dWB/MWGk26xGUZdhca+rXOnHSyAHCrtlkvd5660lODsizasdTAkqMjjV6rxORZm5J6L7HQDdzwY1ygN3aIX5HaSsRA69+52MPd3ytcetwAtK4dtJs1u5m5dv61W7sZZw2KSrnfdgRtVPUAJ4EE+1YpNWKiGbrIjd/0/izlpz+7q322MAQ1K37B0MfCjiRpcq7QhzsqMOUqGR1pcBrtPW0CbGZ8x38p5Zbxe5jbbHeyxEYJmak8+wu/Ljvxkrk0iJKDWNEceUeAv6mlyMWvkUkGE3+LzlbPdqKDlDxIr1NIeLyQjDPBRolvPQ9QTOoVLKk3Nhgk+W9uco+3F1m36cUWpVPlFeRg2KZ2J9J+kFcjqI+iHpCV7QhN/UtBCT1S6Yp9k3Re9NWvAsGj6IAIT1VPKXf2pQ4rsVlReh6o/wI+kfuf2B4HZP1LrFeN30K7YBiwvbboeDGgMCCzcj2FPBahCZn9HHckjo3eOv4yEXiPGKse2+DR7+MB3VuH6zyptdMVGyubrjXinZ/QXeTq7YGmCiI7EcsIg3ndGZAuqdXolAJxt81rvkXdgFiGd5bZ8Fw/RTw+3v7iDm/MzuC50BgpRuHttBptB/cCOPV403zG5yjr7/BdWVyvtuoZ9Lw/hSCPLC8u1qwtaJUDDLNpdmHwAmEA4VgSw8P8nNe5aN8zC++8NGkCLUvJZUOdoXGhakmpYSqDjU1XtFioNPSSHxH276igxzXzH0XkMt9Pce8vcZ2xEUd6clm+iEQZOkyeSdPno9RSL+3ACcLnX0ciUU52i3ZIBWQHm8V+cg53ti6THQreOjOUlSVI+o5fc0y5PdinD+ekXwO17pezPBt3jBPdXfcJc4xJakG2Ume8rz+5nFMs2nIyAfPJhU/4hHjjm+l347uxlqQXVc7vqrn7tOk29THsMY1NFniJ1g9loFLI5ZinE22v6s7p8qJTLfOkIyFBX13AKsY8ZKp76XxJ3W4MkRUlmetkjW2Ti4uUANB76akQCm5ChvtSBd5To6eteS/po9cb9f+fZZ3qUtPNPhuK3PDwnUIHJE1VN+ZjYKpNQgf5SfcGxZSGeonk7tY8a9RsPnlGpf770wFkit+g2pl4unyq2nlLEdeK6VH7fCjJwCuGaHzdE295HGsw3nE5Qpwm7mNRfe+Zk40+9BwCyKl9LRUVTvu2XwBcB+Z4A6u+5+yqoLOO+xhg3IneZiEnzb04oxJEq+5bRuVJ2vk4eaQO6wjoMS+8UmMNs1QoFuwZkjS9QToUaukGpqxVXYJ4LVbbkAfVeZBBdFK/0EMcZqrTDHIu7w1yq04C9eMJZZfeWe4IZmAuYPzm0p8Pw3XL11ovVCzZ42GVuYD5fumhKYoVLcooNUeZg2Bm9rkOCccq8mo8nygXvfntesrhgrnjFESPncBVgJzsZ1EqKrS+HKyzN4l3XF9g1VuuEPLY+yhnyOeiH7EnqxNv+O8aTYBBnZlVKlWokQgiBwP50KDtecVFJgczwXBuDBr6jnnY4sLILybWJeHHN5GktGqnue6Zsr/dF49Rf8CNivigk6tcKFOk/BU1N8EQu3vmgPEthw2+5p/COfA/ut3j4qgLEAgbShL5Hjb9waP8ohkzgTQBjBKeuK6hQZrOlL/QcRB0qbAz9XRF4O1rgi2Dn1xUnq5mmvP5H7DVd44F0RBtgrFv9rBPPg/QNwME5MIoZ2uvyTFNkBjf2RNutqkAvGAsbzcFRVAM8qCvYBRTfhBFoFjl3pini9P20B5rQZ4eV+7++r8Ym70GKXthWbYF2PwREKtOaH51psAw1nB7348YdrtR9cAZM5FaEJuXBnk/p1w6SFcMeVn5+aPJ0YkViWjQe3CdhfJGVBlGfNK80KXETt84yAEj7ByapeVKrhVygtDggTCKRZADYZFRj/n4mqjD5IeIH6ck36l4iv4VsQ4x+46bn+Jvw1MXBWEoG1UN3CarFLHKPMkM5zKeKztcFj60eFK1saoUoywBeTsNNVwAJdyU0oxgwSdOgC3Rwy5EYwVYTRY5j1qu2xZzO7oxaCM6rZdfVcwvLeWjr0m+TlIPRuNHcwXGR9nTU8iOWBopaS6HLUUSoWmja5a3Rv+oEL5X1FI4QbUwsWXlm3HETqHMkRkaK25mL4idExEZAXE4iy0NYpb50sW6idbphGGPK7irAh/RHnnzIvKVaV//zO+fepEvN/3nYvs+5egJkgUdDgMhSnPOk4Tg4ncnSMCs25C6ktAiOk1oK4WYuo1pfEL69jp3cZjLvjzhzqXbX8TGl+2mn1fxSqI/u0zbxuFk704e1Be8VzXU1iE9ySUuf5/e/I2LJ4rWKnRQVBUTIADQG7pj6606381ugi6WV3leY7Cffo74daAlNZON/pYbWN4XIngJzqeUJeIQmYiOYYr8E/wozJYYQjr/avZ6U3E2zCwnfbpcM86vFsN9qoL7Km89OBxlSQFZFKG500pc62nETq64euYcipm2etBpecjh7MJHgiDatHpYAMO4RLSN2C87YZrmo65iRLnwIHHkfcH0mjalxVcjpF1v3OfAhNuqfd6Aqx3pinEmzTyq9RMzHT6mhDfYoDVYlsVIZrg4tcQp2Iu79pFYTzSH3NdNQJWY9rsqvJ3MmNBYo01nTCCG8UxZaUs9pEV/Rt/za4XW5QsB16mVRevnLF8WU+WsvGbl1C7ih1Z65OANavxtttz9U7BbCBRzwqaQxmQQTSEVg6q1ffNDK/gvXqGp+eK5tJvO7iK4yiG0E452lfNUphOuSCXicGW+lS4fCvd/lcMwEdLf/aQ01d+BOK5BeZEp3oUYX8KSi38JFa3xm0sCKGIKRQJyRVgA9BYK39nFTcWsMiBL4TYk5Yq+iqJtE80KJDOki6fLwNyzF3wzP49/RxNtR/hPLbvFAdWNED4MXryCsqZnmEH6HFRQDqkrMjKxND7od2rY7e06lOCL2KkNGVNt0/ce+iWSWcHxihG28hC7+6xoyBqllrk7IJYhuLdLGjgQ3Jtkgm4lOESn71QpTwRiDa8QOjAy2038enbFSyCet6pzKkxTZegm4fPcHPz/XTdcuLMGDGzJyD6kpWy6+ezD7JxRElGgUOcT4Zs/aCQSE9/qx0SDzpi78LdWPWgPkby+2XNmBwSW7GigEZeXjaozRuJN0PTFvniVQb9ehRASXIdmd066+Rza3md24+8Ic51gXi+m7DQh0NSMLS4DbzkPPEgzhElQJxzBtonhvAIIF5enpQFAfLi9oNzeHBc5fF7xTJHDvYjoQ+8ZXkZ4uE7sAdBsEHjE2i0AWNPZKVC3Q84uEYPga7exWXlAOdrskf0+I9RFbXQQgrOMdH7VW52DvQK8+cXASvNwPdSQ04nsoh+eC1VSBpoH0WDkKQW0XXd5xgB/XzUhNvV6/oUFmgF5kT5Fyt1mModxvA2IMLzTXB9iK76Upe8rMnn5YoOaMakSHzyH5r/yj2b/5iVsBt7FKUDanAx3zyCgQBAiFsHfQfkx04yJqdhdDG4eufhP7eA2fYyYq4lafgHqpC3ft9ZDvov5Nm5XgUtAnwlFCbgeMnAwDElcPGbcTy9BzEh4V3qBGaaR7Cc/agSCmP4INlepRFnkCZC3nnPFneQICJ6yAGIdlAlEtSB2k2FZBtuS3XwVo9bxS2HDPE/Tky37U73sZKGHSfFndvWJ61csbm0OTZUVFkr1ngwZpP4SHIvkBfZJfRBFHGvzDsLnhI6BJwTI9FT29tLyD2heoRaHX9kKAdtE0uK3OTkBe1mrDCumuP966VyEYrI+eDhRqfuvKt91K8ZMZcY0x6a7jBMSA4sU6+4D8U+N6wJRm3pv9ooT+ARMXv3x7yGvItkBsgqTmwKFgdPBQqmWDNaSpemSZTr1zNGDOEiVhbgCptgx1A/MD7DwmjqFTUAr9SeCE8CgtQoKuJVSNcsobPwuDP3UdfVffzrqZlCAeSN+pkaqIqntyiSz8GIAptfbx/qvwfblQKPgsluMtXjKMFNBlFlSRuPXYTZxReNrkF4/MI3u2Sh6aKAKZqkCK6j8TYltCcL5TyagMYMujhonXBqHRkfcTs/uX5syTGk2W
Variant 4
DifficultyLevel
685
Question
Diego cut a soccer ball into two halves.
The following calculation gives the approximate volume of one half of the ball in cm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
|
|
∴V |
= 21×34×π × 113 |
|
= 2786.22... |
|
≈ 2786 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Diego cut a soccer ball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA22-SA_soccerball_1.svg 170 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in cm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball? |
workedSolution | sm_nogap Radius = 11 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 11^3$|
||= 2786.22...|
||$\approx$ {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2786 | |
U2FsdGVkX1/DO+OkJrANLLSVMmhJLOAlyFKz6IVK31cwu3jHeO70/8vAfv5blX7nKDRmXVqx3UnD5riiARUtIIjXKnPhLDmiiVy0AuyZOyeW3uD5NUBcd1gp0u9eSRmdxM7ZKfW7J4Mtcmn8dXF0cQM5S1uybg9rbRJM55II2pis9W3Yge2xM9oitFLudUobve1wHZ3aykPJ/LV4k6+PDLLYslQDo+F881OARPZoGIIrO2VNiBrSy4+hHwUN5IuD0NJ72mjllc58v5QhBAO/Ad6MkN2PzGtYzX5TCI4M9teJfXujsbxXr1UCK/Q6lCqMEbKS4uJuKkzAnXiC6NdgwbtdUxtkiQu9oFybbFDFRK7FWdzfNUntGXwvu9KrYqep6ln1z7I5bSeSHofGmKTULeq854bHPRil7GfXxU/+JaeYFCrI19qIYCoNtRJNpO9IKK1GN0sybkne9y8qtO/TSmvAxnvL9BNXIzZSqYeEHJNeeRI6iSMPHSXZRIG1Tg7OPe+f4TOaTwPTu/UDohP2+Y/on0Wu4x1yXdQ4DHoOFb+3z4tPS9zvR3V7YAvdCnzES3kNcH9M8WdBScwwaqRkaCL40QkCpweqJARyC6fhkoYa07rwqo4l2hcWgagEGFKsSDgKIL7ytcjt2p2ZcLMs329P/iUWBLS9b3t83zO8PiZkJO3SzYUXoYqw33hsXNkJOnS0DLhhN2A/0WX0wBa5QVh5+u9fw3jeigb9BVtZ30FKaOl2d7+8IiowthhyxmIC1w34YdzunB2IkciXKP/dgyZDV4pMjGbw2UD9bTg68BZJPnQZZnmvMP4N7O2Q9ycg7s6gFvLfxQzUh6Wap5pzDQAx4DLJKJ2lRxymQbI9SlhwtR6IXhjkr2bDPMotghRIMKYKtGw2fSUOtJzJUQK3dgUBx6lkaDkWis/OJbU73h6nAzaxJYNeF7yhoVX/0l5rdC/PfuoDwBbKKalELs3RJ/gxnsH79uuGx8K0anOskM4sOOfx4NU3YsEraQkrJzxXrRylVCqDpkHMj2peEry90ydvO1njIAI5tISRRS4t0JjcHHZIzn2r4eN4WcjDh3xiC45om3RUE8g2EbTEAG6SlD1eYmpG9hRepi7niNhwyXqmHbSwl1okMWKgUraoFiKuB2XHHwiDsYOVRY8bLP2ika4vNtEaO8VAeB8gZf5FdqoQIaALcRqNbF7S1wiVkCtMxqehgpK1qwe/xJawM9Ov+3TA25gYMy3ftX1mi17/5ewJffrHA5hrNnv7f2kcnsMpRIsvsRf8LnmiWeRZBe4bC7GvRgkD485pLavdnkHeRFTyEItBXAmA+p5DaE+Hyk54aQ9RO+uR9CYp2dp/9wDJtEWNpOEMRyV9PARS15cbKx296fyti/WBHSe+FWx9odKrA3Qwv9ze8AflcLeVMsrfV4C5Vw/unpyso8V0mbUjODavgNQuAHxYwFOQ1U0zyhDfPfO2iDbupl1LQvHXpRU5KmsAn8feJWJKZbzm8RYCCX0ftpU7apr4OvruuLxG60DCfNMzSdT5hRyelEJe7cVQ9Rgm5v1nT4zfW+RC3URUd8SKeYV3t2jWSQHWS+0bxstkzL164tmhInU6o4OaahcREf4mWsQu4QlAc/kpAese23M5oJM+i6a3ty/V2nHnwmkqP27hoMXnPvrP0dt5CyAPNZMvSelj8KxvXsE9RN+MluPFn5feQ5fYzccZirOXDN4Q5WKnZeYVQW9dlPlGUoquJvkAg/Z9KD2fHx68/yHahZdVO5YLynTaBZeKcKoaPD+PLlRLyxCcvhqLPsBTfKZZNKtAQu5RhkQBut1UQsM4VDhSZiQuaZw0Z1VhEYfuNNeWM4crEACE3MdRPFHD6RMjYOmno/q4tx5dQyOklQuzZmbhc6ulgvGmOiNOVUZc0mj/jZXcdzyVywcIHfb6VqzlOyz5vldRI+rA8ezL0976ygv42LAKMk2wHuCEtjjNLnh5ikcS5EX9F58Fhj62PZe6qmf5SftSEGH54OGKVd4ncerZa6eZd6GA5OjqIyB+Af/j/VimQGcEEqZ5ch22WgPfhdKHrsivGFM3SlAXtD2aqRdW7NuJM9qt6Tf01Uehmp6sUswd2P11b1BpIqd+MZTripK55sP+4Tf+ME1SYRSqCo/BwTnxhSdXNuaaz/GHj3cJR7NVGDjWJA2MA1uwsj7DyoXalT7OTNE/omLnSyppz13OA+sMac6DSPkyqM2Y+R+++KsU7voLUeazIGCn+Y0HitPbrZUAPO3yyU9DILClPbjBHss954dXiaL8aVErSv1CUsDyCMXEbpg3ilP+egN96koQa6cl9aDZrZj6c+InCnEl55u79l6RuDo/6kdtA8xOWj/M2kb6gptn3wcOS9FrbfPElYEtGdzERh96dVKv7yWgBPwjw3DdsC6QzmKqADMxbYginMGJ50fGZpbm1ulUds5wL0QQM9GwiURVtHdEUR1YbT0OBy/UCy5x0K71MepgJqgVq/JAVuyBeqjnoaD4uuEyxT7lXgNAwmtNYpWNkYMJJ9EE/unprS0ZNxXsFszl1/IpOQL0ZuazyoKtvPO2it+oMXwDVCotx4NkfHLTfSOGCWJbx8xo2rwUR9VRGCsv+v9UyNbFwGXcOY6dgQMlEttaRqzO9LY5YaZXezpaNuUfQjhSBKUXP/pQVYhCaYuaWLR5h3orY3mFI2FbGirsBSwmHF/lpuyj3PN4L9UmA5lVESYmy92hQx6AbZVBE//a+gr6JGxaDoSECEEpxfovGI+Co3BF9eQO50o5clnNjGnWQwFk4NeNHdwIz1TZyuJ9AyE4VPe5uDJPTyi16nQhjXBZ8e7ss/P0y7rcL2yNI75YHFEaqQJp19jkVE8XiG9omaUUlp1QLKp8tDFTZmkFAl5cWtAaYAmf2TN+EiFREaJebE9egEOLpBcgoNZA8gVj2fNuO4xok/NENShMZ2CvbtnNh7JRfLxcA6je/jkf++1qunFz4XW6E4BIFxJ5PdmtdX420Kh+iHckCfXiy77QCq1PqTlR5Xkd01I+WYQ909nJ9eo5YhvC8l9sDUbEsCVKW0yKwKysIvHX/AfXMuSbbMGwI9wqUDikZdm1LBOf2F80kQMJmpW2kR6Gm/rojwCICjvnkKS3p5elglrfy314PRdI2hTIxQVNJnEuibXb1uFROQTO41k7uv1bv1U6ha2x5OzC3gbT7yPIu8Pw9jTLSzQPX4bffjXQKyTRe1EOdtt4ZR8SQjhUQy0uqlkCLRNkb1v7PSjpKhFPz9RP0k2YJEVkYD4HBLExHmLBEtje2W3j3CymYuFG07Yt4e3bD6nmxO1ztYRDhphDl0wRo1LJRsGp6IbyfogjtJEQjydGtxhLU6aQjxgbia21hh3wmjOu+rnnip04INjavwPwUkdQLoo8b6zfHrn3ZqNRBrqD61lS/n5ZlO5WZEEi/w5koS8gZU5yP0P3rsc2RrbqJqWsvTnXNyY4OLxvp87yB9QbnCQnDk2HSm7urBi9ff3/bdgd6LvgE1473MfyukAz4V+IyaiPCHQwsMqSi6g4CH8Z9b9F2nUNHHMEwTa89LNRjk9Bi4Et/TI8P7MQp40QqUmy47EK6hR1NQYqM+7jbVDCTKLwnYu0VkWxCjf3L9u/OqYZl4/p0zQrKUl1Xe5NKwrc5ERE33Iz4ZA96JqL52oSPWkMR2PDR8NYFrYMKNq7ue34XRkoIuWvMzsNroHorbEhgR9ZxhtpcIGEofDp/9gMdQXAHBGvYpU1NGc6tpi/KzIz+2+OLQdwtUPcbc56V8Xedyzbrfo//eCUiWAO66iv5RqiqzW3M95qv3qR9y22LAxHbe88q8lzrN4ru7m7fYD3XsH0zxvRlT8um6zz6nrX5wurwaU5T9SRjqA1cn8nin2VZZNSs900th8gxAhvlEAQ7DiJT2ipZ5SKtOybaoMq0U/3rqcpTE07lFARcjMx5AbEs8Ysl0C3/YnIoRRCvUbEmmhbqtn5tj4hGetTKSMlw0LLnZ+LbI48bhAGI4mFnL+RuyKjHniOP8MDtf6sc4dCWUiIFnwj3uYTxJSiia7Q0JkfSdqTL2cS8ABfe6iexlBGrzuXlmfHKsvl9ZusVVbjmQn04qg1pA/x+WbLcES8LheYbZjE3c3xJDHA6BLChvJdb/JzV1GewXZCQ9x5PQb6ZdQPSx0/mQ7B/FztJNVVL6RMfJHLHLEWNQJeQ0eJzKUbMLsoH/JlJulPLxJ+uTnXxOkdhuC6RZOGt3ibIm5Eg7PgIqdL3ViVsOScVWzMjlBsGPY1gtS9YbuOA0sVGZe4DatF+/j8A5rLq6rt7EIeqj+KTS2cAP3oHSogQCR9BKZGviWD+c9/c+JdSOHs5mJ5xYpn175CADbWHtibFjHb3/mxp9/Ifz09oInvknwtfj7TEBVOVr5lnPJ/H1kKWtFRH/LOT9+evE63Dp1FlqYoshmwxZI/qn7bHtUpRKSkWg6FkftUxjZfzTOgmH6OoHvXM2xRWydDYXAw+g6ceYFyQF/0KJg3x8cOBc+YDnJqfwAzQ9sVFERUCHKOxFWYLAt82AKZC/NtQ4YOYwOszRK49ghH0H0Yu1TsLjGhxqdshUFGB8y+CTdFdylQU4Nlzhz3yOfYX0IZznv0O3q6AF0YS58zCFa+W+bcjlYGgc8fq4FGofS9yi5aXSfirgWNfur5Ol7WPjfj3VzUM+B5dxoclzJ9FJNnGmk0Mn6Spw33Lo3V12MzlrCEJBr2BsyRPFv7LpCJDnmtvHW1x1pzjCD9ktO6WA2maGeM/qZQTnYPN3YBmW12bfSeremhqrQIY+sUx0d3p2t7sC2ZHcc0GQsbmoku9q0OVREO9ZcMdcvU7jWSyU+Nx36/S6FK3s40+MPeXwRadluTC8gt+3Iep5B8MyDKQ74mOD5AHeZp7WYHZTfHAfu4r6Lf/F6LsVbHzkWQI1z7adhLD8fFPxfGOSu6+9kzGBCCB5EMkMCooU6GNkR1dqOvOOsQFGE4CrxfQe66ygpbjH8DRA/2g8DAk0k20y6DjL3ZrUUVkk98boNTX+kgFLwPoZzuUuY3E4fuUzqlyjEdpezcAwikqoLXIs+Qlg5lYaqL6IyNM79d5d9HyE0LIek805OwE6PK9KeBjnREHDUVlbZKm2LMiK0adE3SfLVeethApzMloXvYfONMif8OrVQFvtx5f+H4Fo3ZlycdOVJNXMX48wlf/btglHiFyzHgr0KDC/ItTSjIMaq7r/Cpv/yShbuBI1twDHY5Nvd4OjwQ8QtNPH0deZx60ebIfU1L8t10A4cV5AJ6d1MjzLzN9RiYyvTii7waLDLL9od6BDkhbfVA4qEbffX3CGdla64M4R1rSuEgmTkqmybyC+Yz7lGEl8rIaTuh/92fGI3UmnxjR7qsLfy7YTBnMeEKfrwv8UNceQVz4QwjnxhU+8s6XEbYQcVcTcTP2klsdJEJoS1gi4i58LRIYKUx7WrOle4yi7W8KwgwUX0PIkiKtG5FIWTfLtLLL3kqdNAHs/gCrWnTkSIDvin8MQWgue3cSKyncay6f8wSuEQcV0KAGZj8Y6CjnaP2F7qgbleIAuV9BwM83b+RMOtSljgcb0zt0I2TPwAhuruWMLLYqbe+RBu3KM4lQPKpSr2gklGpZgj0o5lbZcs84F8dYNg6yN9T3WNp6oop9lcbxYrj7FnSq1n5vW1Cb1n7Ml5CooJdpSuZGtI5EqdP+NmqDrUncmj/O7sH1OM1rYiDrZFY5Lluiyqvohi19yNBoYoxJF6ZwVsQqDiMGPg/qgWV0a49KaZb1eRha8dg/MSGROVurZHIBRDInYejDUQKtCaLdRunIUEPYUjg8v951Tjx6oBMxgM462xMKPqT8oh3rB/SQJKRQh/0RHA2grpdwAFTAPIKEMRiOFTtCh519Xju1CVbG9fr/njdk75LCSUqYTWkf0PEMH+UMdyzJkUEAlFR+2lGhyNJ+mycEgjS221uo9qed7v5GHDYW6bqedXnl5PfkHPQKhO1PMsTRGpA0XSWaF4uEMJibBtkrm9093/RATsIzC1V1cj4Uu24Q82wt32vrZiiYtWFQRExnNIvP+pXtl4xIK0Rw+3Ykw2qkOdSuZDK0jIGer/ZK1YhH6Yj4Nx5pVK4twHhvz9bFSdla9ZWUd18WqWs//neXcBW4LVeKI20YY3QLHpBDRNYMNCsYck79MoLXtlcVNe04WhP4z98VY4ZcXF1Yk8WPr7+Yd7YTa7MLFzdM6/D3Y25s1Ppj0jTMzNe/3eXFRXx8ao7hBO+l5ti8DdQ+DNuePexwAlYR8VLQPWTTW39nzmkgEN5brinf9d545WATdpGexpa9lPLbaYZmsvwJjhvJJ4z2H4jran/WM0dA5qhtZWEaHn5fFIMWkOp4MTaPrqei122fSFSbdrXPXE9lTDKCQwSE+DJgCghghFr03z7mkGMRNZCez/7+4aw1SGHPu+eNPgEwpVnhIbzn3BEvCdLfAPm/2OjbyDyghnD7dAuX0gz5d0qf/PQ3UQdjPivQaE3JwYLeGDzkVLlhkXdLZ66gPeAUSMapxFznLk1diYF5gz53CsDuNhxGGzyvc7XBvGVCZn5xtIQ+xmLmN4coqaBrKspvw4vtS2Q0SpsvLHr1MGIxKOKg7mTtg+3BnM5pkMnxpAM4qPjAS23mAwiDFkrvawj2dvdjDNTZaz3nmLcWZudNONEU4UkAv37sybXaUwpD7h81/5Tq6Fshy7W2I7N1HMRw9BHlpgkIn17tnBseQfIPVCBCFO0NOWhfXp7AM50dDqgBTRtwU9ut8uPtf+jPaMISjjPvNBlfzIBIXIPAqhqdQC7fWqrQXdwD8P2soS5bGBZyvH541budKXdhpMe2t1UVdl9x3RhgFYfFi3PDkyXsMwJyThecH+nlkd7z9FF2sznYp/i8UAwuPxCCwJ77OfiFhq8pz539h7wFdRNfKMODs7wxZM07AB34kNv9+FpO7Odah1ec71z7XIQhUexcyaVTWYof9gQ/+DgBtOVxWHQv8B4tkFeHa4DJwaDe+9RMOI5Cs7fCWhZudQM4d+5nqjy2xo24ihTZL1BmJ1IWIkfXx2qo9MSNphwuOqPiuGw0vNoIq9BaZABy7YKKUU2yzQ/PbtYK3YMlYrlYV1BrcliH/xvaoNjYmWfIbdpRRwjpiJWO58RpukMbp48x8uIFiPVmst/mqyCOAtkeRJJ35ox/M5BWpIxV/8Szhds0FgKfU4cgFxUu0L0H7TfxHQg6jJyXbbD2ysbTuirYHxbSUxfoUt4PCDmtwmnmSTLnHi7rdNKz7Mr4XjGs1DM89OoyRzVlPiRpYbysZVqrSmPmXm6A26wntYQCtZVJkDrXkxBAzeLNzbIeJZ1lmGxdQ4IWnM59iHLLauEmC2K1y2F/gZTV6XnJaLW7KQvfilmHllqmmslKsMupXsadqbXg2KS3y8e80k1pQwlFPuOXK/+8t2iGSw5ggAPzhqJnGp9o8dZDPwuJU+V3zVn2tydYeELN+TzemggtrcUmlK3YI9Bir0gwTa/PrGj13axXgctB95RWqig16QcDaqHlJmNPMEjjOX/RiepFsf3X7CTZxF6gt8rIq9RqsM6zkd+4zicLK6+RYnTxBTKNHu8PByp6sTIw3YFS4V3ltu/ygb6NQET3Tvu2wzAlg+lFcSBxOuCf8UXs108WWb1t8xQlzYAwI1XSTbYwhKHwOT/u1OtdUcZTyKRHbiUC7LBQBlgjM6Dlkj5iGkojBe/DwKnkgVJzzFRf6t2usY3YqVVPTCmN60djw3mRMh3kNbGdTBaS4pR70MjyMChnLiFeYJgTenP3SMFsEqiNiu3MCP7SusFWjZ4dIRP/b1liRFs8qiYzocQB+NCKFzSnJHrLDro7YoKiy1oLgA1NrFhvGpIwUrGoTkqbYP0hJF4IsNVx146ows1fGBEgCjf4kiTMNHeUbLH9PikFfECeFzq5rhssDlsjycIqVfgrhEPlNs/cMZgL64pH99HPRYsOtWJHKawB3rpJZyT1XgiFW64lbIbDHtiLilFpEJlHdESLsO4kyFRhzr9csrBSwwjAsGPuFTTuVmBcX9oKt9JNsxyyk4oFttbw6av46zh5xHI874RDoCJl0GOhqQo0tS9LgY2yb0E4tpaQtg2gJyEKHNdyrUxTkBwXm5EmJ9FmBtOATOI4Y1BqNsDL6RMh/JqhSeUlHSBD1jCGSnB4KbMxyQUUFidBAhjUsqFGQWzwtCEO5ODKaTdrt1yryn4mj1rfupYd5IAbE1YdGo1z1vrLbszB0PfYMh5aGkI78UVevYn7vGbGsPwfMaD8bz66UJXtpFmOULAZdPS7AXXykqactpmvt4VGEVXMbwevKkBndQ58nEgRTJDAKD+0zjg9Y4jCc8n2e+4S8CdC17pS1gsBIeY4x23nW79F81MpBeL2UdO9FMYCTaGEUunma6Nl7smyHuQdtDTSt/dxOkMwPOAylyG5ceOtzggfX05NXZwx6fXoU+HJ5bPEhwZ/iqd3SQ10rYTSrs7bq3t8mW3/HZ/zKCy8vHUCc9FxtSDw3TnA26mgGP19P0SexvHRTkcaeQwiuWhuaNITXfewUZFiJ1YvfEkKcwyfDSIRw5z3FOvaJTXR4FsRVHTmMr+bcUAag0CJDIlm1KhNd63RU6yygSCmG1ykBSwYcZIhdTjwvfYxmxFsoP/R7rzlcO/uGvq0ZS2ZTNrQTfv8Tzx4hAgIde3s40J+D9NyzQ3t6Sw4iwuIK1nS+jNON3PLZiBP2Sh+AaENbLpqluZeSCNroG25HfnzzB2L8sJX+rAfu0DfFX2EbwM2ihA6CCLb0Bl//pyWO94E5ILonLKQGwOnlyKlUdOhGSHqkNTgokGHKgsZr+YOAl6XrVAhJcyeTjXbO3G2TwkmofI8/Z2TB5AAzaRG7mcrAlhOfHzW+xDjWGQDtSM/koqjdpyH57UprMNqraJ1lkxo5fIckGdSJpxDkmYQ9nrZPXBPmG/xK7rwU5ku+cqZMpwdxJlR9xfxrf32wfs78RQwe6lMERyJBAYhnaGatJzLmG+b2bzGeaA5VPPJ2ngi57XzJShX5WvkxlpN+cLzfWWbUqKIRtKHbqEVdt/6ZPf5Y3j9qEUB9lOlKoTXB4a6e+63K5b6b3jLw6qsIgWiHceE7hnp2zDNtvaeP5jTTf1gnaf7tlJ5wdI4DMXQh5IME2BtvUD25sGfmfpioVX+xFOfRmdngEIIP441DNy+4XFSaN0hfGJArhRjf3+vt3FiNZ3BV9ZolB87YgvRv313mu+xwJ+sFeHO6rKtllmCuuNMuQaMZAkrfssY3gO5AeZ378z4nDLssnCHju9JPaklu6a5mqCdTPcWD0VPmhhiS7r0b924NdruK9kk6oG8yA0wz7DmM+5vuKGDcWM3P2Gilyr8ZqKDQNZVfRFXuDxpHaYCLKuV0cOK98RWaYNhFLcu3k5pVZFxuCZrt0eMsWEaK6/UlxT/1Y9sdZTX1B1k5OEcCbBSLX8xWMopAywY2d1gxYhgpUc5qvU4FqMYFQAfLqumw8kCZw4hLe1ht7vABNfVQ5FxY7dn8bxBjJ1KmVgrNDFi0uW1V+gMOO/AU8NQVCyisi/H+mU82AQQ2CM+LMtPVME/U9tjiu/YCmyJA8LUtKVD37KcIsv8lLpRTN/okqWfXsM+fL58ru8PGhs4OGK2a8DQABXq3wlTCMY1HplTvnxGTtizFkS1qE4IxoQblZOOyY+SYAs2IrGrzwNOcewRNQaKZtoAWMWKh8AmIxOc1zUwJnnNhmBe1eqDp3yqJRjl8clHMrDT+HyPNJ75X20N+W2AQq9LQfdubDWezBBDgAK1SuYffug2zgvDhyhb3I0xXyMC4kjo3LlelOvP+IOn8/wIAtEC6aNMCQaG4LF7oT+iszNC5w3DxxbR5B59lHV9chYtMNnFnDicdX7OMwY03KUE4qZnkf6meXBNQldvgYLYFQUYSymizowrS8cWIGfTLafWyGaAyMPMseWiRagm53ho3jqvKkz92AWtzTKV197WmZmFGcsTuzZqZVPbrVtqP1wzegewbgxfTN8sLwzgG/A6OL97+tLsoyOiLM9p35IqBzmpSRj0ResDxfZZWvZiJUF/MKgktcK8UStnOJkDbBeywVfXWRFMw9STkiWkJmAp2Jpx+fr65X1zgbsxD75w5HIz9I1IFLgiGTXJb5Q3msKiUTgQCXcgZ+/MJpkj7xlGmxaGkkfmhgUfOwNmCw79gLSs5Wff5T7SKV9Eo1Y1JAIjlQOxH6nuirddt+WZ4BGUfRXQCXu2Eo1R+LwEmbMlQoNUsESZSudWV0p78N0xr5Ifr0y5ADGzAR/yAUdEdLiTgJBZeljbgb/pNDN6PDsgcjZtSN3+/CD4EY/fJK6MEItxdvR3qjZ0X1SJtWXHbFNuGxbZbkp8wVj9wttBsURrGxp8qrnDRHD40qPDIyWRaZ4i/WvGMQJxuwkH7o6ryAE8LOp+NnBnTE8ubjALURufBtltSmvd/Axwzzs73a5L9Lb/xv4P+0zfvj+m4avEQQLEsxl3I09+00udo5n7rbeOZ5hhwg7s1iQn4acTIAbU14VzlAfJy1M6rOYxr+nBKmlX8hptTgBToGtFJqS5jkMXbpECKQrCexcX82bc/2X/MhYKI9ywJ2tXZ3Pj1G9Be8tIcZIsZOOX1/EEgpvz8PD/HBjm8onaTs38ZY7+XWlNtrKk2NW19LjsKlMhV3bQvXWstNHzq/R6wGnJDW2zh47Cg2F3uLvANYKruP65x/HUyYycbKFjPrxTxkvjrHwApIMAjV5yL73vLPHvHdHg+sShs1pm4xJ+iwzY3MW1rRRyVWRk2VeP5E5kM4yIbS/9kZCICnswgGt/oULxj7Vnm6b3Fk7Y8i5V+XhCeGMEjIzcatrmXBIYslBzBwZb9/GxNdkPmTWs5azxwqHaoSWyOuUFySEU1xChBoG1lvyTY7zwvpZbf9uffc15RGa6n10BUSFCoGIqOpYJLPtk1qavXEXYoriGlUMfOG+4ZDNu8MzsC9/9qbbhzZDlj495tk4xQ5zARnMFXOfqwGx28xflMK9v7u3KgNszVvpbj8wYegtRnLR5Qa90iupFyD0h+8GJonHKQPEKG8NQbUVtG2hkaR7KfgArqDnH6AXFc2SaDcQ+vRmmR2KTAz1NMlo2V2j6MzbxuqyNzo+sr4GDZvcjXZa5AcAXJIuROWF8XiABQOEqEN9cCZJ0qi6fsfn8xsFM+Rz+FCDodmeAbTYxDNHe14umAwNFT/kUDgRkRwTc4ycUFKwuSJz7uNnD/PZrOvuhjD6y4vnrKQH0wnSMOqCGDcCF1BcwHBozsWBP41+HYXl7D33tJMKeLHO6EzUr3LWWcf2RwERMdH79u6Y3yXBQyMU19g1vAyF+utElFaySlRlbIJ3+B6glJga8/8IfKA2qDTOA5vBzCj0xTDA4mi3L5V+ko57wI5KnySHz7fb7WZiohpXSwg8smxSwLYD/EIOfgkhJa8D/IwXX+9AKrakW5UIAObdtoyO8q6bHHZgEJpmVk463d/wB2IDQD1zHbDBKR8UoHcb/en29peBhBKaRROOwhQUng3PVWd5D6itWQ75jVYSvaG41F6s1R1xMfPZDPu5mTWx3nBZ9fjFzBCovbBMwaH5elj5Q9uz2he8VQ93FUOQibgzwsu4QeftaUNDVdmuwTnnfhkpchDyqzIo8kLUNA379DSD98IouJVXVkLM1j1M+ozUgBSbuF4iai+2I0vDo20HTM7oJc7NF/0ARUfqB7x4LepNTdOBkTZy2+cEtj9lGezZvjNeALV56pO6cuksmAUthXuqSPlrhRPKVo/sDHc9tIZY7DVctH6BNc8hmk+n02JFIYdx7+rdyvEnV6KV5lsL5H5plfMePxWILwCCiOln/20KfxhmtDZ2FNBTkmSAtbi2pIsRIKwWeiVCyG/9G2qlLNOl+p8hrQzBCRUOhRnjdCI2tgXXrpg0qa1YhEqZ6x7whFq4u++eJKLHj16nV+nKmltLlRdbxla5N3fMzYqmSq1nsv9b3hnE0Qn+o5RYHErgjRdZeizgLd6LdGmOtBfNus2Z6WFCuaLajHEbp1IfcyXxnqcLBJrWVyVGBhKLg08JlLPFxB4IRAdiYrLYEXXgULTQZ99bDX6yxk7/nPw/Pkzc7akV8U8GDjeufjfxUkLERO8Q8rOYfZcp7JgElmx6YhzqrzfQC8rZw2QcLpruo+4QfSnN2x69avR82busixn2/OR28BlFvJHq/xixCN5qyNcMHTMUL2uTalIr0W1/OKEI9BtnaCZcKi3qkAp5mWhXV8nYvk0o8exp/CLOovsMfOGo8mKh12mvFin84pJj3MaKTeuMHKppsHvVo4nCvu/MrkuNhwZW2GJGPN1Xl/WaCL8UUDK4OfQGFWqlrUrXwZtTw2A6Iq5TxIT0P8485xR6TXCfOrxLCePh+6wUR5XXxSZ2A3l1D9xHH74Ybu9GuNEATwJNjarIBAO3fiTj+poDlWa1t2Hdr6j/oRjQf6A7zIWtFndAg7rMpXRBtUwVJFxxdmrqNav97nIRcF5pfcrsSwCWjkpLK5n0Xu18f7SdnonIlhACvY0AN5AvSTDypaGBtDxjVdXJphhuC8XT4/EbadThbEg2foiNYKQPoRjlWBb4953HXf34PKADQQw1Ofd52rDIqiEd8dgAv1Z/EXmr1fCx2d/Z/dufdUbzLUaliLzkMPk2yayG4kIuAo/8ar65C/BhrPe52WRfOrqfvtrsLQaGxU8p+fJRwhgzOUNEQIUeyNw7EtGTWPOJeYxMGPJ8igFmHHjn8GY7/bH/fBAnJWo3JXSqmkyYRKigQMuoXS8bruaxGmpYi9CdY2SIJdyjXR8xIWhbw+EzzWtRBowRMJSpc6hcZp0spjW8IE92h/cjSRXnngB+D6YbJ0oFG65rCUvt3cjZOWC74FLt0QCPcetboOTrqF/WnqXVqSLFtThR0bTcaHT5jaOd7rhlTCNqnT89XWm5ChC39my0SM6MV5wl87jwSH956Hw86T4eUs6j6ltP8hioxxFdOtW7JP52Ksp+PV8jl8DOtcqGNacbxQKat5Qm4FpQyTJD8micdQr3+lGaX41E2TtrfngjZi5Aq0TKxfrm5A1ageZFWhaKXjXCj45enVMoYIc2AeHkPxyYdEOtIXQ0BBwXnau0um18ntMRmcUr2OOIb7gvwluLF9qpnC6iQ/X0H3EMPTW7cZmoUu0bDbhCXmzEPXHuBqIReMWXemTymyf5ZS2ulkqzwFlMhhRdHQ1kxjrjOLjmjMXSr7ZpfQVwn/FvpGBM6MjlqMPTTqd+J80VFHAoxKMy79a4QpR3yXS77XGY5xlhAxM6TIXlL4Hi/meiS3/54EmnChvm2hWphnN88sIttpKFrZExsfsmdUtU0kKROICz/H9n3eS76LRoHuAnF6AzUruWUqKCVS3jiW06m3KXcNj5CvkLIWwzkRaVlj7JRLpPw9Cu14lBLaAJ/3lUIaCKcWoBWeBy/TVCRe+lSh7ngzBdUiZA0OyRlkQfp9WvZyzijcSMjpgHB0WuADkdAWISS29Q/yo1UDw0TxGxXb6f0cvSohZrI6ZvuW7LgN5wDyCTD7SMqSLsBb3eLPaESkRTGkUTuTMFsKMx0zn9bCxERM40jc470P1sf/aDCpcqYN7oyec7AC1iEMmM15wxDJWxmpOQgL6RYGT+KaEVOyxOmfHNWbUHSiscGfOyYc3S54T0Tr94hs9qCLwRX5oD8VTqOjGQ6AK+4XgTZGZbMedxP/DO9NEJmybVPN1fqxctq4Cw2EG5znyuzvtozau9lfdAw84fFx/N1bCdQ3EipXDcspdIc/AS3Hh+0mpQDOPkX6gqPP1n6awxg1rZmwJCf0q5My/L1LgRymIv+9jHTO7LFIWg2zJJz4sZzIyNPYs1s1wZNO+4HCk0IgEIhRPfJmJbIjKZAPdnZJ0/tg+e1YI8nbK+CqLnx9sQTtfS2uoDStnXj9ooLced7BkFBQTMVewgb6baKUAm6f+cbSjv4OXBiDSvN4vG2YyUuB7I+qLY3wz5PEVoWhijpo8c6/PWxJmCNfNaxLo1z+YAd37IfFS4sq42Mp3AP2qTDAzRNZ+KRx6SkbxH6Mbuv1vGxTFOmGHprwRJH8TdrKy8c9eNNtFyTlJXW5f7GnDdSjv40kr6Zb+ilKusqvxeCcvrb4E1G3/Nx3Wa1ghYDYtT01VKCcAfNng959YFe0TLvKFmG2pxBYATOukabZN+cN8kDXBpce+GZthQxkdaSy20Nqhj4VxOqmccfRijAXHIKJRFtr5JmQ6jTTaOawoaRe8oRG008C3EPpRkpevPHdX8p0uP0cRSCkMVhvTHDS8wvHgrZeVZF5+f4vvEM+1eBp67VKdPAMPkqdSsozpWYWfu3Tiv631A9xrhHMqITfh4r0kMR2wmBXXwNvtsCNyxFH5UbjXvLSqILdXLGTVDEMHWguI9107gRqWAsnAVN74aBV9iDHoder24JzwZsm/k6h0y5tex4//DK2r1662PsjQqMrkcKE2sTX9XzRhICcIWEHJ2F4EYlMe4KQHdxLX5N+sKI4lqa8r5x1Qy3/cH872Y4j7hEsUcpC3fmcxXgLofgUWny77OiFhkcaWWQXJRUyp1pd591zaBw26+K7WACjGg9opNNv2EODgL5acvtoYhM12Z5x8F2E3btSReKeMRjM9ZPjDzbZgbfjllj9f4fFc19Fe40srzgo1PgxM7beTWY3Opra+kok4//1+50cIM2Zspb9kDasar7CnqzK3iW2P+yLxv4GSgGpo/2h+mvTQ6p/dMFAipH+OH1+/13NROPgPGNLKRvKhpxydBzyJUs03c4Blm9Vszp5aN8pJlgu/AgtRRnIhbUHsGVIFkmaaE6lMSYwtJ6ICJgQvBQhuKrd/6bNhatIHChHR4OVH2Aus4eoIvzvOcjLXVYkjsfw8BtOuvdpzyYFUZ0K974uma75mdlxCNNSvZVUwLznFlGsPzJ9u01Rk3l4bQ969NHM/tMA/grXw//oWDScL2/hlnzT0/d4AjON8Hfoi0xtat/GdMO3iL4tLNw2mjoJocHTwL/1AMYJvGdBHH0FL0cSQy/whUBS30jQApFkYq6e83EH5Zp8ZMsOPg96mGWnbf4YsegLZPw59+w0Tuo2LtfSToJiAjMfmLVp889Orjxz2QbUr4AtWhejMqqbrTBjQeMgXJnnoYR0shbc5Q2xb9JmM7d3Hs0sllfo2V8E4oEtBKNiIrB59uc7onHxd5uxtxNCZN8onrN6fQF/2Vy61jGb8oZcfQWr5KDZYu2QtwMJW9dGLolQ67MYpe/o0POa2+zhdwzzu4zcl+0earWLivMr82eFxHbCbbbenbUriAj0GTxRaoSMmHQx0LVdbvIFR7g1jD1fy0Xfxlx7PJD58Axp2pCatusQouSVUW/KIc48//cWo2uNgxzQf/dMv8/B4V7myCQJdL4qCAEkTMks5Yuwc4jxPVqAKRzuiYoCXyfRsXp5Dcq5jvBiZE/8BFXeKbm+k/Vj0bTUx9FIhknsoEm84nP/WOfONzN6/X/3lLUyTqfIlaWm3+vgofEI1uf7b0vigIGO+2/JwP/01Dtp5Od1v0Z4fcz0668VxHxA20PFS9EvsmlclyMdJdSPk7LwU4m56UDY+uhYgQhhUUu9uM7lVcTtjvpfufmNuDL9yW4bs2TdnaV4/x7xPPrLGIHXiNjVMCLF17DDRgaqDJ9X+B3s/9Efee5IlILhzslz0FIj0sMq54F4S3McyJ0cHjUeZkwYLdR6LbSK0jdRxNgo62KhlWT5RvV3tOolxf8Lx/1N1Toiunyqu1fwQLWzl9kI298knmeJO473VgZE98Xnukr8oA/4S+q8RmBBlywVoo5wOoj6Tko4lQGyQKlSmvNnKqAcICPg7kQj7ryFGZYPBKS1wtd+JMY+MwJVJNmMoEpyxiNb99eb7ehINlZGbvC1nxylPOTjRannb2OW08f95jMfSeuzxzacXsPASJJ2LUnLSb8O7fSiINe73hW9lGSkfnD2FhCauc/meoBzO7HsX8Df07vjIJ/UTnihHzhIzo8ORnz2wC+KqixBYWupZ9tbnOZB24e5P3kMXlwj/o9qNbcVjtQIbYGjFpAK3wH2h708wlm5uq7PDG9pZbtEqN6omSK3tfHdXRGm9JrS+sQYr9TXoMQDisR5wKWMY7EDLkJCCHFASoX2bPCa+HvJd53ULGav0t0yyr8yWKymg0NUtjYD+UbRJc5PAWAQ87ENFFLggOrfJ7PPJfYk5RsyiGqmiQDNo0cCAxx3RjuRsKxmsjVN+PVGUtTIBQLMH1mji9QX0GNeVb4rertrZNifUD0LZkFZGtkOZrR2hFzKiHJR7IDi6MXontjs5mHmlZqrpCyMX5mM7obx3Z4lttrsjHHgzGXhXsmWmciPS1glOOuHnf5cjeLGZWq7pPxe+9D1BQdMDXoC7O98ByTswlZ6YrIaje8CtSiODuSyegbuNlU20v8H+ZPrA61KGhFFP2U8Od+ODXxda2YUrd9TZn3FbgcY+8Vi1tFZPlxNHTG2XNxSIBAsyHANsAJuhFsDNZlrBpHjiseQzPqsbdssCIp4e1pqjmRz1Vr/P2Izi3zRuJ6WTkUAyCfbkB9cUSnYPgQQwO7+N4i65+wbNgOWhV1Iwwj/iT4cIov+RHht0rJlFKKfU/VzjejelEA7rm97qp6uvlRgmtKGHYyOFZm3i4u1N5FMsfqCUdVW1o2LvMo3ZKzrgan2tPWulMGQcLZOHcrcY6pFMvJSxnVCC1gNjxPzvGySme0Q6UQpvSOkKqcXUoIudSmk8zaFWH8EutMR2zQBVmrSaYQeTyQZfaa0ulRzPjmdx4XWqsX+s3MAqN/HC7aD3M8JB/ZRYCO2XE3OvMGuPyzkF5MX/HCGmeTNmkFPlXDeXRs/Ou4bX+i02xpNZTX9gioDq/DBTF5DSWamy+2TiabJkes9nBv+cqxfy5lhGjR8N+f9td1w3L5lGlNYY75RYFyBpFgk+s/xUgN+mTV5q921rgM6DxEnlyyhDG7P8oHmnZjSmsi0H82ETvv4mVd5McUpnGF+nRIHzHLOs3WjvDQnJRBFFFLnyFVrIETRWBdNPR8bbMapHYIz449k1EDo02Ohz5o1NrtyFUbN3lD6iKZgbm7YycaHRpIJA1vp+2CnE9NXCu0WwR5frDnAQxPp//vP26VA+BDcSYNO6tkMavr8RrmDAqAlBfD67rRhsGJZZ0Fb5Trr1F05s5sUZPEG5eUBVquti5kbqnwGqwX12nUt3asPRQaKdQRmeMrtHW1M5tzZSaKy1qhnQwYsHZJy4t/SF7yEILlqXi0kUk9GC8rihLtmdCJe12OCsMmV944MxKSie+WjtDvu1N1gd5GlpPxBq5CkTfn2TU+POpQqJLogUKFxlrI5jwvwaJtsXXLQD0EOnkPtAdffyRaAYD+adegan+8gRjZJ2ZB5asRSd+ZHN0vydTyNtsk6tp1/ud1JIcn6t2Uux2SA6fua77+IdAcBhIATl6WuOL0tWNMQRaSVtOyLUqMnJie2kn8UNSwKeiBXk8qC2lZ0xuwvrHMK6Pvwp+4mTrie7lFcjiBBYjGcfvkPLbpHoJp/HrRgJcHD3OcYgEKvwn2hYPkIPYTX8wv3oPwX/9WUuKllSPOW2SM8KYHSehz4VEHaI0kn41uioPXY8R1Cmq/csdH4euIK9HL5TUCgq8/kjuLTIeoXRrTVYa7YOoul7Tj2ayZSqftysVU8sudSbh+83c3ROy7WYK5L2tPGnyCmeKgBobW1x42MXtc0UbJJukL6tDzuHbOgDLPRrMiLr+kFLvypSHbIHZkNFLK5lGM/MCj8qIjNs30vcbb61COgrsd7ZLFteBOwo+OjnTW9yajdpExNq50BuhOgxfQPutiK0tKkFvS8/6KDKpPAoJ/cbmiGzeCON6HqHk7hmGoBeg4dLijzY6EduTZntyV82GU49vEXgy3qfRaGfofqFeBRAmWb18l+Ya3Vs4euSfGRhGUx+fAo0HJbLT0OxJ7/f/4FMOTIY4+D/TPlf/PSzCI5xM1ZFS5EK5OacC2p5XrCU4CGsj5GJB6Fm9dD7dNA3IaeMT0D7vSGcOwteBMU4Nu3Fch2zC8YcfnOGG3wmDcj3jP2AcPGxNoZK//k0ne6C2a3INnrRILv57786Vrx8X+3JsJWcpjB4eT22xPfi9HnWdeMUeFxqFmDwMqdH+r6tRmsMVs7WzUx+UddTOetSbnj3+FCNI3w/+hrqCrJehw8pEfhUU4rHUJIaJwEPa2B6t1u/RFEgkBqBCzmDFoPoqGEZPCDvFn3GAuUEBY7+h36Vrzgvy68t4ywfvJ8YFK8wMRyhtZn6iFtUpsn1KuBofYln0y+3YL5evLgOxmx4eyO7V0usb30ZmAMW/spHhXdAiNRgGUx8SV1zX6ervUJ+49boPluayd7B/Zjy55oz6u0h8nkUVXlAA5pEzYJlyjnpe9NyddXvTE2M4tHwD6X+C8h48m3VxZ+XM4nI0uUmzm8t2lUA7GEqM87Lch4910iS5ImQM/zU4VA0UdzpBR/ulTwLflS42zoLvMWxNMetf+Bt7UQHVVIB75g89F0z15brRpOAPLFHEniRke+0A9SdhLIa21UWr+12qprK9H8jSEfR+7HYb8WqrnfGpDhzb8ipchHwyxVNjyZ/Om31rXF8cxEkj286G6OhMez8UtOjAFw/32YfdaFw6MZbaEsNniN6+uqWgyRRb3RfR8Fol/QrG9/+NclQ2nVDtNsYlYcAQbAfmqDMT8SiJjAyc7GC2n9a/d422nfFdxVGjvfakJEzA3NdEgs3jAQLMGHbJoWw/Q/dY0pJ0++kW6I/5fXwlxOOUNKMOAZQXPLoWo6vW3WN+L0rsagDaZYeIx3YnE2MOUvae8A6Vch3uZLkvx8O6aVi/wPhyHmkxmgjdr7SIW4oXsIUARU07vOZlwVsyiV27DJvdzyKuAq1F8iCCRLsTiuBoGh3rlJMJYpfUiM6Oi9T3AVbBQ3yV6NiDfiG7dqIFvRIYYt0aPY4Q9Yw5zf1K0A==
Variant 5
DifficultyLevel
685
Question
Cher cut a mirror ball into two halves.
The following calculation gives the approximate volume of one half of the ball in cm3.
Volume = 21×34π × r3, where π = 3.14
What volume does the calculation give, to the nearest cm³, where r is the radius of the ball?
Worked Solution
|
|
∴V |
= 21×34×π × 403 |
|
= 133 973.33... |
|
= 133 973 cm3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Cher cut a mirror ball into two halves.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA22-SA_mirrorball_1.svg 170 indent3 vpad
The following calculation gives the approximate volume of one half of the ball in cm$^3$.
>>Volume = $\dfrac{1}{2} \times \dfrac{4}{3} \large \pi$ $\times\ \large r$$^3,$   where $\large \pi$ = 3.14
What volume does the calculation give, to the nearest cm³, where $\large r$ is the radius of the ball? |
workedSolution | sm_nogap Radius = 40 cm
|||
|-|-|
|$\therefore V$| = $\dfrac{1}{2} \times \dfrac{4}{3} \times \large \pi$ $\times\ 40^3$|
||= 133 973.33...|
||= 133 973 {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 133973 | |