RAPH12 Q57-58
U2FsdGVkX195hOUDVdGdiZ63L/di+pec0RQeC1O8GU5ZVXgYL79B7hBHSkQrRbEYuQcGrXUpeH2PjFMa6bQi5p1HEljmJNrWQ3oH9srnNulgGHewGvnbScPWvCD7v06uMZ9REDQJZs48gsubUXzEscJmHx8pSJri2bfuKS6bJPJQyeMAVD0GovQyuXh5ONKlarNQvpF+wYAYJxYP+4oK6gg4QbenWQPWnCl2J50ZdTcqPED9fuEB2l3tPwJNoMiqWa4tzi8KRsRmbIfgWpSt5Rk1K0Gcib1X14Zihj2WmkG2ieZ4HQifPZHLZdshYHLUIWPAWS5OZm4q1aPqcbvNc9dz5G81MLA6GSjAJ2CKpuZDAzrblzhXNsnwuCtaUOzbiKkzi2YUfuLzg8owxcA+UatFtsDyg3NbH3R9sLPW2M/cLWH9/fTXjWi0OEVnZzyhoZZ18lEWdhTGEHFNMAS51ur84vFEtLnWcSCKvgPgTCkAQGi7OEo/+al76QTKL42906DHao59napOOXHsj928wiOLG9B8hqR+lDyFTsuUUW+i95sCt8JuraNqskNm7YalGYPwsiVgigRXp1j+SR2gDLgPy95GV1FrNXf7CoDfQGFD0awnY1oDsZfcJqiIKkOKxnRudqs/94cTe8JGBFoxzKgaiDGCUbmj+d7RxwtBlP5fu18+WwU+uhBliFt3r8/w3sSw/tbhfvUCz4U4mKpoCpHI96VrobVetlsdzSiyB/Q0iNDeC/yTg8F23vEpKkmFW+KZFXaCH2CZvBNDo4uyTWnRnC7uR+HUsLgCqQrTLhvCFYy0Me2DcmDBR+t3+uKtJp1LobipvruEs1/Fo7/cP86mTAfdsVSBGRNNGoXstuEIngOtg293IeqSv4F0unZz4DMG+G5NlyEO1aTtIWQVcegL7ajLvgSzmGAmo8FK30fm4oMDK80eyDw3Iod8tS1rSYU6I/Rmne5eWBDZYmX3mLMmfJI7zVLPLEBPWimAoS0MsLTKK8xabjHD/tcDb6tE2OWoJxXhcUC+roQra34LxQeWngOcQ24pwLOSDstwsLb0MyyU2/ARpIY2XTVQu5ZpbllGtmSPkw6Yt2CPcDg1VClgH+GM0ylheABEqz5Q+E3wUTtNNF8cl5Q5ulppSx7y/ZxrCIgsI1KHCt3m/Q8w/lgpNBWYQOIbmT1a2YWUg6IDJrH86lIDxPbIOdU0Wx7yfUo+iBd+xUSXm0pBrz7rlmgDveuZ4ykq5AyLm/9XVXmlT4/5bZffCLesupOj1oFbxHBGAt5CyZZO4H1juxcKqfKHyUtA2+nVoeO8n4i9aB+bO6aN5XkdTOy7KaTnhUlCQuMgdR87DgyWeU/RV58gzIfjJL6m12QaDFDYYwl9ZSxx/JK1xMNRumv/ZxOCM8J1eyQUux8Pk7hDuzoGuzkQpOrEP7dtUpEe+vVExiADqgxGKitC46iIxUwOy9ARuBCgAlT+B53sYdTCw1misAKyrxe05BSg72ejA080b1Sx+fU3gaspPhLwPGfZOUY3ImL0fVCLJY2bcuY57gsom5UG6EQJpYWd1PxVkODKFc2/q69KgvMV2q61MiZDmO54Yke3sdq6abIsLrMW7qKDbY8rydBA0Er08JRlMz1NyLepfzwr/E4FS44N1as3YaOgGKHX4wtyxgmGp0M4SXQUdNcFO04dQNC5JZLXjYMeHReZQwrS696LUdLdkkadvxFJXCyr122wGcpwDLLrboEFjTubDQdcR1UDduS/NsHx0rkqHlekh9ao84ZySW5GbUw1LeUJXs4N0rvvIkWdSIFcYbtab1SVsCbXYbp9PiuOu9empgzEFEW9yP3pjBSrLjNrv8+dVBT40XZlIL02k7ghbuWfMfQZJ9PwYyi3b4ShDI3fqQt5CUo6/E61AYDT5Ei0Vk9OI3wRt8v8vOMQuTc12CCmYjuYliW4b/PHhSXDZ6UDOlFl+UkJPP30J3i5eBy0jbeIhL6D9CS+Z577pIRnx6Q6N3I5HsvefID8E3rrWgwRsrhbXLghE8r6/GkqZkLHFXfMtDCCyZES7EGRuCKOspc6wIVvvtuT6MpONbqa3va4j7FmrD5AJ5AWE5+9Oi/t5uJ567Jn81JftGKpMHGbLFQeApyI60lPE1aX1vsjyn/52QycM7H0uWG8ugI1lAiqKpA4lVnmMAc+ZTDcQNBLnWfhbpGp/DNxi7oK0Q7+Wh6bQrqtFfyRKAouQy8zMbD1kii4rP+Xw5/vqMb55/hWwkG9Tghmhe+ubnfC1KYfVugUJ8jZOkHPGFhOTChjNbSj+mWxk6ZR3xvEhE+nd/whsQC/oHhQ8iyEt/fuladrlyFVXkKlviiFyacSK2fYnGYydqJATG6TCqf/MPnHqOR4eYs7tgP7MthJyJcvhMJPfZwRCs9Glxra/WA6VaP4BtSanlzl5/AfpiDZ1GRORn0GSIvUPXnnIm3ROfa+7z1Qc7TnDvZ0jJLmEKLGO3fn23bQk0gUe2YgaEXVnzjgOdmFCFoCQYpYyLpAk0VctaRv5TUOH2vQUwDQYLaQtEpCdyVVCYblDfC+reTAS1R33PBQQlJiNj74oYne7VWUTvlA1uwdcErrZjHN7HBdkFPm6mnJqiQ2o8dRkKlINqQNUbDYRnr12YkXoXyTcYUuRQYN41l/IL+uflLEL8gwsLCxMpdUSfsdxRQ5k2rdY7b6eA1m5jLlqXyZLX0PvhKgyy6EvbkBmK2O/SqsUtg1G27mCL3dPB+bloow4nf3J9+WiOCkDb3CSs0GH+hnXgHlUU7dDZ08ANa4nbUGyHTot5RM6JJZdCokSRK9rUkw45k/VVdX0IbGzxeQuopgJkJiyMDKiI5GXtqz+7VRkW/eAG/bZ8lVI/q0Bsi6iFI/CnO27Yi0ULkyfbvfVyaAf69Gw5OlGS162xHUGLa6oaUBYktzivy1teKU/z63B9BmB/ELyybQ9LMo4w7BsaW7+H2yQqAnifjELsBES37SmGztyS+GfB5e1QrDiMyeogPOjefFIBLo8FHHnN57uPTsBHVo6OOWe5hF71fUwTDXHd1Ta42fSlTYhar6FgaxwKxwW688Tp7daTngntRos/TTvjW8zsjL7U9tFFkn/ked9bWUgSEYDkD5qUiaOitNLMikLbU3P3U+VQgta5gTsU7Y86pmGBX6rYeRpYjwpBEwiT4u8afC12/JuojbougNNJ+JijcgcliZfOoopaMnxH2EdMdMkoKMRvihd6JirhzFZBObvLBp31SewAzDzvD8r96AA3XGZDEw33KJ3gZRs/CYrgq6LJEw2xE93k3Ep+SRHkx64cGTTbhxAjUhZ57AOfNOMEm/L2kgg6DF0xGNh/3gAIpc4p4YMFJNg54DlEReld+y4jxLDx4XbHCbH3LKBz+COQ1vBIkwyB+2kYYroc0mCaASjUtXInTRJCfUafcPM+TweKKvd9kbuhKcNdulwB5qC3gaWSnoMytDwnvNhYHLryK3nbNIyZKnUhVaZywsAtTOoEsx9RqpjEoKVCPAoOirE54xhQCG0Aaoi6XHvZhxrLYm8Q4oJpp7Mzpl8PGB4pdYmXWG9EwDFXffAAPk90yyUq55Cbu1WU1V+avQQyjPU9dntU/mDiexuybswA1lqXIRbWsoB1gaCqL2iRJbFR589tBvZNxTtwVsq3XHH2P7F3DBP4sm+1d3e/HV/zDrqSi4mUlUS02PN87VmYz977O3AamdNHnw/LBbWGr7JPEBDL0/nnR7scI7A+lY+Tqns24i5EQWFm9zj7KwibGIL7x7eVDnhG9EYNdyvVzGN6OoJ072I2HxAR6FoYGkJAD9FgIC93WxzvVTINUBNAsEle5zQzXZYRw1qZVqEFWEeXi9J7mF1TBH6ovx4cJIgJPCa5ANLs/NlbQ52ELaG8Qi3ARMJqnU4+YIJe406LeX+1o4qA/5NGX/Ag9G+roQLpUI6lH7udCynHQzK8j53Xig5rOOJR64YKwykryVt+yn4YV6FPIp0lEHonJtzuvtHmcURLxoDizhFuGlW/POhekDFM+gxaKk8+KT29y4c1m7atI3A+b0Dd2YIXxehkIvef50U9N11LgEV0Abfprxnx1X1tk8rc0KPU0EZ7NrJJnRk0Tde8tq4pq/FBQoDyZ8kuDjXMcs3njWftqpFSonOaE6YljhsqDMcZXrchOwjnkRhXz6HwHpbDqn0UkrxT7y6XCTmKPtnSD9IvY/oYH/aedhX3ESC9ZSyJsEBrO2hpKZGsKk3IVRLtxmOs/s4Y5iY3jPwLyRg/9XOSXv7OvltkYKtkzsqSgL0aMARCq0tt1BD8uoTCbXG+eAI+FANCTpcuBF7qMSqCmDW7OESCR5mBSPz0EGNx42WzzXMb41gZLuknrb1aNqQpWjI+oQNh1XrJ3dO5ajd8u2XtwYMTk7D7u6UY4x+HOy/U9VfqrXtHAycMomFYtyzeGyJzwuYJhJJgaujv8eklWbJwLCmM9jfs7dmhr3Lo0eJ0YKyDEHelPBDAbG0MY0xML3bDO6g6Fhw/kvlciN3kaxEeqLdtHp/REP49Km7lLsFl5SCbjTewIs51kC2H44gDgpCmgkETTczcMSJ6xD/JQWf+mrfkDcVto3BBJWFQaJRhhLuIq/TpNhqcSxltrxw4S+7e9yM7vV2yzdLkb9Uy+2p0sYUS5//lt2sH4mhuY+wN5vo4Y5983yftaNbyzWIJNNiqtqQMiroRjGoVbMR4i3912Ay5B8nXnvikuw+pR3aCzLF+hUGmhtZzJcDU2Wh3XVrPnlgs1GfaCYtA4SMqQFEdQPq966dfeOLBWo4YbrKbyspGuI0OqABchvEHClyJ8RQXwtde8yUWB98X37rOQYJnnDs3LWFrC1Oug5c7dkwQCz6oFHVLN8hh6wTmvOyAaYLYq3F8Scy6FcZlh+dhpDYP4CAHe/wJkJRw6srPFJQ9ROTVTzhZbZo3Ywye+FYmW2cfn7rtELLljc/GuYFKP/Vsr/1SZ9kWx2IjVERiyRKumB/bYugvnKNK8nVh9B24PhravK5aoTXLwDvEjklendtD34DLEso8Hut6KrQcXVS822xKF80DVyu3axgXxLbswSche2fNsBaIsk+lLIfAmf4ggmay8avcBrGu9FwG3xKqE1cRASuB2W/OXzvWSNR0n05Km0eDtveaLPk4hLN+5rg0ZgTrOy3s0qLKv9X6ffkRlfzbhmMlTewxNr0Sizr6Y7b+6+M0RMPocaH5l2k/Fr9AvIfaMLOp8hRSstZDhecQvSqoJkcw1LP9o24E1XWkNaicICMqPGy0lQ3nxnb7YWGrM3Ry4KXe1u8hYBL/ftx9bCmo+u8FvC2I6gQCs2elpezB+3HlNiIhTlpj34hmhZqaF6S3jIrZ/CL70rvoWmSnideW32u8yVc18+JlOYGguiimnny7Bic1vNwB+s89tv/IU9eZbkPvmu+aPQV6Tyb+XCaBhVMfCJbH9a9ImzhUxi6+kIY1Rg4iBPC58R3rF1J+inN9DasjxxyHYPG9nzNSvKKQ6qW8UB0FVyCxb4UBFOMFqWj/32HEl/08RI10Cb8qP3EQ+yszmVcS1vdR7FKveJv04XnZ3X0JVHZrp65PvQ9lwwBmPcar6JBhOwDMqScVKA2uVYvlTv2VG1DTSLNxaS1LWf0m9MfHLrRvwK7USsVM39bx1k2u1dGRRTPHgTphNsQ2Xk9fq9CsRDvjxb0tMX+8LwZTy1FzX0rUMZZmeAJCMek/U=
Variant 0
DifficultyLevel
320
Question
represents 74
Which of the following represents a whole?
Worked Solution
Each pointed figure represents 71
Therefore, 7 figures represent a whole
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 represents $\dfrac{4}{7}$
Which of the following represents a whole?
|
workedSolution | Each pointed figure represents $\dfrac{1}{7}$
Therefore, 7 figures represent a whole
{{{correctAnswer}}}
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/08/57a.svg 350 indent vpad |
Answers
U2FsdGVkX1+RCEoZcJKAUoyBOxDfmpOlKhL6IDAAZhzEFgpEkHX9Ks67udQuI+6JrmZULLgpml4mHboVyUKaH0ZkI3zm31Q98xf3MRuuCp6o6ArjyW0jKFQayd4hIDTnH5e+bVFvc8KNgagUB8CW89D9oEra993CjgLST1gKxlg3oRNX2mGAp7P1pdWv9Lf2PzLEfEXGkNA9DX5aXSoUQFea4stCytBUbzGnQ0qVyHLTU9EtaygQcFFYsSxG5T7b2zJxSULI83Y5kKQTaAnG9V6XhxB6VF1nn7tctFvfxfe+Unho5eTSyPxSPmX8ZjCXQzoPZxtBIV/yMPdnesg4WxijlWdEP8xkxpkK3aOUH0Oomhk+qZY5N0Ddc9neimTMP+4O+9dQ2/UGrWm85Wo2ugDSqDJk2cmZ/pKKtEsANNFSsUrKnoFTAcgEsQc28bjz5hOwtV96bZN5ybGCBC/lHgzAGfD90PSQePEXMRH/cZ2KN539u1MmtiRw+YOH9nL5ljKMT1VOCwPq39iXYqK4chLB6/S9uRDg3OQvZv2gBVkX2HDMElPdFpDMgBhtmwIcpbPKI5vg//W0qZTAYaV1AwpmOBL2IwwO/fb31kuw8gSsK5FDQdF4+2kpikC9BYlCSlZwIxZ0sSZl1A0+DG8IXa7+nMdqb1av8OncLwuuJf4mbDunBVdmPf4toq5hbMBX+O6S+rT0haLutTdqCD6Q4wITU+wXNc60jiPVGIyw//WT5t7nyyRsXRW4NOVFSDE39pRDxE63eGw1jNoP6t0+N81TZucNzUHsT8QdAxtl0c1c1vJNP7t2EeUJDr4bAtnaR4OmqztFHFcbS7RNVsO+596g4DgsyhzelLS5/CU6ovEGx8G5+8FdPMUTG5cnPHdFtaYA0D6krtC4lva1yfkXDd8T2Vr4hvCTMJ6ZSEySbHMai6qUK09uYL2FABfijxUtdhHBSU5EpKtLBk7XkCz8NJPWDQTU09MZsw68nHayHQT+gPPqhxSsPKn0Cx4lUUm/cPqCWwBrAB5kQnX2O+cSjZrHRG2B+svGdN28n4/1ugG5uJyyVmcLT5R3nniaHjw9KW7mqoDAF30T4l+CG/OQmZpJ71XRPil8oZx37mtNaIzmIp5ZD1rJL5vL+V2BbiSQUKCsdCbZ9msdr6dDqwDZEJKCG4Xu08OBRm6PDxpH9Lim6ejvFQyMWA523CENNLbq29FLwQRwW1fw4OQP2VAYL/tkyASfOXqJSTggxMIEVtsyUz6SSwnh1R+dwpE0nqOl3YAS9LTYYBGCnPhYu28V8T4czKPmzooSmDEhOEwceghEg9wxH4QQLFajZJXYHDXOp8+nO8/nJEWs+6b1AuI+KzpOIXJFGYov9YALyUEFlZvWwn3akntqBUL0O3si0vvCGIukGf1kTSD62dOZaiID/kp82KUA4PjHkPuWVYVlGcUERUxF9+xS6y0+HT7vKHbBlA3oqYKS/xsPhQug3SE+/opIgKzc1Rlv+bw27Fjlzfsj/tBr2lKj/YYPRK1otFcA6jKKmMDmFS4097b8wC+1lnbMm0ocZLs+u8U0KKDaTKeFpDSu9BP4Dn/i5uoLZk8hqvcHITC4Evsxx4Ne376sqH9W5w7+DrZ+t3OH/bVWTsOxT4iJaQW/MBvVb2Q3YakdQ77LZcIklUNdS0nbqlqjyoLnQ8y7AqqRpr6yIaem9ttBxml48X/u+7IhgRDlVXLjsOgY50XjYpG1F44xD23rf3inISH+pqwLraThjTM+PC6hEiaILHOEAj84ociKwQJtP2DYwCjcZ/bMqcc+mEKSvYomT/fdOtEeO5Sv+d74R9+UjAdEsTF69ApVTGxK61y5bmiQ8kIM1cD8FsdRaxXKL5gATFKISGsTKDk2jLhj1vTfmP/siaKrAyW6zKzEvOGR9HWGUYEe7UgdkDGgJ3lBo2qCjQR3oqz78OWvNPpwFJjcUIC+0gw4oTubwSRs+66iNKTlLRWizLUCxcKNKM9yh8vuGbXgn89dFDyR5QAJd1WhG7ZXEc5LPRVzmNLaPQtGBtheciKZYfOZWPpnvfbIOThxKXTgqmhHLgzrhmsi3VLdmWO4LNXGjcqs8pAs4mJfk7HvNiYSqKgCE02jQMzUSlXVOzo6IVWQSU1/QRvy/22solmDRPubEtB7a9hUcN/+SU/WVqbF8rDkcXTtytPHxbh2+L9mHVJhBBB0YgXOYz2bjsCB4NEUbLfjqrl4SvX1SzxkfwYu6EP9YWp+bQE5gpRC3IzlU8pxRRBALuNIP+Ira4pTkjAgv9cpGtCLmjz6uLPnjNFYfkaajFLSc6x2vmlY5E5Y8g+pw/TllEQeWOhqWSEMpcdwRkcg8PifvHGnX5tVeLRaUix0/epfioVYtlYOiFN6Hy9sAswg/BChpGoOFpXrrx8nMKMq90gElic887YpnUx5x5OVHnMKWA4nmvkKW0UaMeZlBlyGwxmUWUw+7mVzEE3ETPHt6Llrji4W1B8DaBN4W0Lt6s1eK8cvGu/nDA7ZxY5AvZpFr8ub2C0G6YSJr8lBQsRugWb2TZKykZ+T+QCvg8EpveFYnRr7FlPt9BqCLiRkyNtTgu1j5yKXs9fmiaAwmKls3UWpm9+xYGLbzhdk07733xUZklmm64fdMN0IchWiYWXKkY5VvOMC6HvSZw1iPu0yjGLXJaC/dS6+0yMPZoO6Qq1fOXvPYd6Uc/0eLpNK57coAwwgYZu5Goz90dDyqUqIxt7St+aEmKDYbrj9Hb1gQB2U0BmeBhy9189a1VXtNYyEkswewplgxcBAf/yPZHvTmwqAPqGObsS497FrEE9jdWl7vQ3QR+UxN87HBgJyojgkldt9QA4EMTJRI9M1OchPt1G8WOGtFAGhQY8CY3/cEEm8aYx/GiBltlQK7YxladSkeMuqhx6OpPdyOfMRUbCnV/Q9ZIoInOIs1VhPbGvGIwANnnpy7J1QiIeTTBsyNiXnt3EpXGe6garnlbMFr2q879SWDKdUp0oMofmP6Ye/1UPeRYXfc122cXOV6TXF8ZzbFUBim0+dJpcAynql813zxWMnrW6NtX3I+1dEvBrApYuzIKVcKOxewkCmKSvMTRSjQHLIXsmyyKpyGi4mWeKTJpaegkiZLex+gsBjcJoWiKy6qrZiMxm+3+t8YSdECm18EYCZR+ye/mS+MfnVJ6O14k8Wvmuu+cmKAzRR/hI1cDlSd9HHiYP9oOpLLXv28sqtZBdqsZHROZhd1YW6+RHiEYIP8CBB2PdWrCzUxZxBgMa9FGThAklfQY5aihJrIwv5aTjpOEaXd9xseGPmVyrWTCTDAu4Onj7HVmW9qZ9GInEIllfboliAaY2FXdeS1QW4ZoSpx1+li4vWZFS/ikN3uT3PFHyw54orkQBcTug9DLKgn1aSK/skf7+xmVpBYq8pVczOKx+TSCyN4/SRGF16bxOXworcaQHzm96bcIH2URTVhBbbZfZnwfFVBnrWiYUL8oQ5QWLRktlo55wwYIo1WrJf7oeiJsVnPFSBuGfjU8l7Gx0pUNFCetsHUv7cbXwBiaCxSgSj5nclLJDwPE1qvbj/6VJXQS8EwfUtb0u5HU3+zgKETN6Z9Gzn8EP6bhbbko2EcU4f0QBaMEC4OaF/h2aBnuhjUyCau6yJXX1sD5TuZbtgmp2jeA1XgHa8lbmYYMA52yXjIjxq2+mZRxvLDsDeDW9QhcNKjhgLOs793H+apc1UOa3ax74SVQz7eN6A0SF55c70fzcEfwhAF0F560j9v6VdsHck7upvTovvr9/5wB+DKoW3S6LdG7ENYICfgFTxRU5F91LRFJ/Djff+Zjv6gP2qkRURbh+gRyOgpT6s4ewR3fF5UX9r6jucGNiuhTb5iJmdYIyNwL2XqWVCgKOz3n2vRJzhGvFu3xdPV3of7KH7/prIQc/w5HPHHmbMkCx3BaYPLaYeV30MY8LaBz5RiI4hVb/GAkP8skLC/CTo35ENu+yohdeElyiS+/TbxLVL5JkMjhAKt6nvub8HK43rCbjenrdzVDeYMpMOuOTJp12orR3S2jF+joFdsYpanwxsYJnLMa6gjE8dwshmHySKOJ2sBKr4xUTIVIyTtaN9oBkqsE56DlPpADx6rDx54/TTDLEdpqzD+qR2Xw5O6+iWyW/LbTx0N3wxykJ8BZwbHSeru7kJniGN1rM9kIrGXaYB3gU4j4T5BdD93DGu2rU6RdzYCy4M/uJSEDAP9u9j7ajATxX+xu43BsS3xx7MF9jIT5b2aPHy5YbfUHrkEg3Sai965legp7ifTNLzlFH9jAbyEDNOvE/805RQF0ieBiDUrFS0YjPoPWX6vdAnflui5H/tYOSwfg2JM6lABGcjPPmfVM+ZXYqSLtkRwMeMVMCNrMw0VDkCpGvpt1i2cTjp6C4O2/6kfKVB5oJ58QZG4LIHRhCQ0wCK2SZ6ycCLC79UyV8dQPtUq36EcIIx8MHFaxS385xG4nvi2aWulI+uCCli+WI6tCbVpHR5UBUxJ+Ys7o8oFFvtu/f/z2WdnJQnqcHVQQMMn6AXRF0YfMlj8a6e39oNS0Ch98sQay9rOVF1rYREXL2lZU99b0izg3fUJjAHHx+x27zSAzGgn9M5lF3FcxSqb0BTU+agZvC7A636IsUyW+Acr4OdrA4y/oml40L4Y/Zm1IrX4obGDoROW0n+wq58sE5nbrGbcFUApXCL7zVoC+GKRrtd+o8cvSAMLlma72NFKOWrlXtu/9xVaavXTDoIzzjT6kwNnH/KMxlDVVgWRp1CFc0KiS7MYOQtkFP0knAYJw7cnV45/MxPhCDDgPPgUS8dcOAJxBHinfzg/tzsTZqTDokyKb9pkGIrgkzPYvXNkC4h2776cV8YAsmtd7aeJjKohWGeburqic5YzfFxawuB7EhSkG1UpU6TWsbS+pQ1PFxVGwxUBZ7njOKeo9TNbnXQYStMNaU+0BfhAPII9EnwzvysIyXnuidA5BuPFdYDu2g8KkFRVv4Go1y+b9kTitAhTDOyb7NmFDGX/r5ysHCBMW8J9AcoC/339CGP4XAn6J6ADoh/Yw/zT/Cxy80LWENjc4r3mJTssaEjGWtGi2sIMlCrApxU3cEI+21PoqeZMoYLtOj4uB7tA4lQxDOJvCHdtH9P/2r4w8j6opnqTS0S87vVIEFO3hcrAP8FOe2i+sssxOH/64LKiKDWQbfjb9MGCXphV2xRc/LhIXo4n+iHRRl9M9wX/IMROzT/oevS7oN/XgIfuaFInqL5U1m/jvPiNVaVg75o/j5v6Ni/waalOn6ZYpdg/D5yE5437oUftflwicqxCnqEsg7i96gQmwAqr3t7sx2IYftih7+iOwyxDOcnJBXjBIFA4eVoFi6raDV0eyKtclMF4apXb6P7mO4NfDyQmh21RJs7q50yVRyBkUXTDc8Mv5OdpcwSoMMExZ+7X/9sBYrxTO3qAkckOJItYkAzg2O19CRl7HxZDDubfxZWb22zHl4WGXOSSOQr7mIE2D3tbxOrhxTY5nopgKT5ndYG0RzMBBLZZbXt71gsrYfeTxdybi5Lr0y4u6jkjKtg3bSWPIEi0Z9HZP59E4OyP95UZ4ibwSfPSmEbtpGfd1/V0lahJsU+5HRxZCZaAlXEYIyVd3SAfXNZ5PxWn8s+ebBKiw6346spL6VLymXY6wT0vDK/V9yJYdClgJHA972SpSVftSOCgWd8QBxRVpT4JOye0bbbiZ81vZmtGiuG5rSgCRCFs/UvGMtURN9FvXjleoMUHPScJv00rt8uIM79bubgj8e/baWQQHJeBmUMivmjIZSIn/ENeXFQHfEC0i9NKqX8FPZnH0ZlKcIDMs+kaWVvpxFH/sB68yviJABO5L3SvlE7Imm8qpRIs9KVVJb7LhSvQ5wNGX9TrVfnJpeZmWiZxRSVsxfZmwtd3ONblugUieQngd2PAEq9nYTRGR7RRg94WVOpCOsP+fr+iIuBSLeXqTN4HRKXoYI2pxRjqnZNY177HfXnIg6RyS1jnZaK/OYlkUbfA+cSFX+d2Utr4e1eU/NN294kP/yGAHrIBRj7Cn+m54XyGZaLje/QeEh45ZhBEnr0sq/xeZjNr6SWpOQLEjYqr52q9z3kdVIR+fCWIIKjMza59Ke8aq1RyhzK8x+Rq2BU8Pqj2N9dN6f85U0fhYEReWAQ5sL2AWReGwTGOUkIBQ/Gr+g8bkTR8hqt4OUgXdnnq50t5TZqnHXWG6frOQSm2juhaU/NE3QYt8ZEsFZFCr2mZvHaxrFciEfMfHurhUmUFKPgr92Yqx9iqvuvHjpfrl9vhf4L51kAHlSSRG/1dPAgVjmJ38pVmSPicFRs1mOIJF2pE3fxy81axfnqJwSd7xO4tOsjiOGsMAVVPwYnsnFUO4m2DNi8TdgZSuWi35m1ANPaiWTony9epAHjFZZY2zX17t9M4Khr5HN3m1Zj9MLZRxOg/v9p1pC82ZPgkYLOcWtsHzDds/1imG+jdK+KV8VRhgZ1pDJJtWLj9+7k5hw/zpl7/NFj5aw0ySigIJH2GkVax7TGaqftFgXhnENRkjO/9j0vnR+mw4Npy75LHvHFK9Kvg5B2fogb6Kl4OlSM5ZNAqCEr0o4WTibH4q90ph5B2HbW6jhk9VhPwiQ+2Kv8d4Q0g317w5oCizN49n4YXOHYtEX79kN5KnX9LcdRkDFce4bClGUfd4hDPOaD7WaxO1H8HcHU0ll+26MdcZEgzKh1LVeOgcnnuz9sOfNGphEA6p6igm2M/xiSbtjk76ulCgRAIp3WlVYfd6w75I7ItsQZruyUByE3cO24o6EB6Km4e858lUqV6xUO8tQpQdXzgB6m7fXXe+nOYxsT7GR9c0QJ4p16JXd+YynMrl/WFtviYPYfupvLpB6njtU3ucaqS5Ihdg15e6y8HOGCAvD2CbarAKMfZtDOYaDU85QzMYjtKaXJYxA2T1qSgxKngQJveeyN7aufhqAnniup9qTLJcHjXapO8vs/w1WjiyA1rSjLqThy9FpG6DkK6k8uYElqheldnRM69LOII0gQVacDufmaYEFLYFxgkdOoiOH+8Gnxu+da6V88LleF1EQ9/VZHGCwF6bRsLJLgH03W6ESJNb0tkaCNW3x5n7jloF320qtz/QblHZNbPA4GBIku9now2DPr+xnQYWU8daxg/XDtjf80SoQxY3cbO1DHX8B4XHXPPkVaVv6xrCTf3dzhTKGVpC3Sy4HyfdEExt0qBfrrMu/9sICrhp8Upqp2vgQTNUmJLfVqkTPWaUEHIPLPF2Lpk6f6pdgU7vCbaYe+gpaI7SwC79XUKYq4YI/FwFZkNKwzq7Y+ti5A2415A6Wgi9pnQJJniUhtDNA7/LVsRbPQRu3Wy/RySKt32IK96QQZyXH7gpFMj0ddPPZhPvyOqFue0lDy9lnSUcXATk30oQOuar7thfJqkl2xl6NdKAk8ewXwvR7xkQ2LxPtBZlKp1oStUSiPrpVQ9Z5jHnWzkT3KOlpwK4HvfqXzcVDUc0447zSCw942YPIMOsUh1rtBAyhpJV7LTQnBKy/Rh9mDnAlE9iBEUW9OKo0GkUn40KAn50cFaWx+VK5+1vdESRrF99GqX+P95dyKizI8OCV4Kj9vN8T697QiQohj1FWIRLMpK0jvfVso7NYwGxVZzMOcvqFehchCHt8ApAKziHyDdQ2UL1kSuW2RQY9lrU9HIWDaMYcja8D5VC7tM+j+gHs5YMzzH56GnjWbXkywHvXEB5za4v1RNRpm8HTnErHon72uLYbqqcDXOx6a/W0jPsx7Kt3sXtaqLW+q51y3hEJ25/HXqIf9icjfJioDjk6V5p+J9apMS6Hmb3jyJ5RJ4yRSfusomniOxf1co0ovqpqSYQ2aP8ZvG7K9jk/I/ApJND2cyBUcevDFd05LI5ZLHZejJPDW3zr+2Zj9Ss9LZ5VHa46ss5v8GS5nW+d1Wi2WDTUb5Kn6MFFWOlXNjh3K3p3W/wIGJ/f27p62mUFFsfWV8qj8+MSZzIHoGHvJ9twu7UCReDCSA36OBhWBdOmYDuwM7q+HsGOQKllXw2GwOgyMmsNfB5l82nG3QLtqXZ+IqNT01kLxQHaBlJBexzdvh0+UbV5u/+Qba+zpCCcZg/9JodRMeWdoSM6tsAiMOEH8Ub+o6tOKL6e7eDbptWcllGuqA3hKknBWmp7DFkG3ukrYqtzIHWicRmMbt3RJVUqcx0YjSiUp9p6uqs1tiADhEhsuXWdSiboYA+G5kxeW0O9bLCJEZJwUUBBbhYkehImj9864Gl4VAe3AfidpKUPXqGS0Sg5NiBcKny3/Q0K6Xz13AfexGoR625HhP5o5CuR6/jcD+QxVJvqImP0ySkCl+zwsRnajR/X75sfrNS6uEMB8UL8EFwU7LcY4FHt2nJ/ZmCm8zJeoo7xQowGf5bzfV8koG0wU5n3MzD5e1kRY6NptTmTtZNDGYrqhEB74t/oIGpf0V8jIeOXDD4Gdghg5rdMPQxNbIKe+kzaYBR1pCwyFEYeMNsdSWfRcwyKaeQnPFYDtj3eFan/Q2f6ewhk6+r7WbClRMLsGfcKnGuZIzxzmkhPm88JVGr+UniAHVwvi9wyCwgaxxHiwX/DqAbfFYbFcy3Q91hp9gACyUf02ABagJVkKOZl9QIrlJlhS7FUgY7AEv1h1v6pyVvZJfzho8bCxpNxOTyC0oc4KCZhjEmkFcqotdHjnC+Q9klGQI2sD1aCErcjbdHWXeFgzX+R1KfYJoPo48+y3b1qnhg5EZSH26fh4kBXmTdhON8Hyqhg5juvis9Kq8ZEelGs/S3Qc4YwYMVg8H5sAH8W/46tIuPeYDpCBR68zWvP9JeZ6kakuJklgzFfDkANJ4S+TuM6EW5UnXr4mKH5y4XTbwbu5nrupFopQa7ssE0KjADSvE5Ueg5AarCNkyFxar654yK71NEAzBlNwX+uTmXIf7M7H3XPOAoefYBGHy1XYoTnhS/szfHrdQMEB4Icuo4MboXfcblXJV2avpju6EYdvodTDyQZ49xo7rsECMtyPTYaSR1+xgmaCwHU+NKmY92sSepeYkfcEZX3mNM7nbBYpLlHWc3nQNLoUdE1EKyxeY7LU/f64spibBX1vkAVALaI6VvwMgc097AKXHQ5GvVY+M0ZWzKOEwvwMcogwPiTNLesaSGOSidvByqKe5oXjyWGKkc7WhEbmzdOPOsBUuqg5wXUi/TtoJt1QID/LR28ahDY4E7da5Yx8W9ow8KZZUNJyR2Byxo3Stw9+wvmqpfIvMKmb0bF/uiwbz90c9F1Wc3RJSc31Q6d1gZhfzyLB6hk0u72vw2wvJAbf+CaBwoAnBMJ0Auszyj7UWu3GgC21sMRWBQBxcc6g3HxID+NXNUcY2n6BkauMVBm3KzjB4bh+zgZVSxl75KDbLB3kDahAfALIGZTc8T2jGIbnu4y5VuzE9uoAACUxsh3IgPhnfOlrOwcdAcKrNmKaMWPvkL6mkp6dzKSLrZ8ozdM5NJY1y6Jx6zWhZ1L5Bh1/uLFQ0JLMvTDIdr30j5+Q4+jfNVt7UWIKQs4BQaTJkyBZd3LDEzJn5XRGVsCW/k1rmATJnkuidieqqCcyKKppk445VDVSZy5gX071Bh9NGkgBr7ZQmp2ipLMngPFxsG7tLdf5rEJx/baniW8YIKA09SrQ1cmiCe/JFQFfiN+d83c9XWGceIaxa5fSdePh8KpRupOVs5xDg4csb6vZPSFZlI814m+I3TKs8WMjdx+6FBJBNo2S99sHjX1yAy8cRj1AdJSLj9uPOv+hOqdqDonU42BmL7f5A2QQ4uIpP2mjmgO6wB1WSdn73p3KKgu/UIIUAzab5skTdTGhPpUMBby5XLo9fkLEA5am+ErRAstUTX/6Q2LBitNIeATPa/NdsHURnbnJSTrb6DuiX0QbuRmnZ0KZC0yVwt+eTS3wxRGiirsvdm7tjjZfPTIG2bJIg3UCM1NBCVRdICgpE7SliZCpluNCSzR+/QroxVNpnwBt2SA7uMjm16VPl4Tl7TIYHhN5u6bn6HrPL7nJURaNeYH9KRZRl2lXWBVPuulFDPs5GDcZwK90tFNcQA3Um32ZtX51q5Atd1jaQNxLn4ax4iIyVGS2r0XNRj4OHTVjGWqxZpjMEVayP5ooLp6JlJu2PHbpsoYTTzxD9ZdW6sWqksd3c8IlJkIGuUD/IzyaE4X51ERErnbjL7o2BTv/oNz2mRXnWRct0dNHMx7uNO33nJh0elhk9bP1Ay5Q+v+TOtDWZdLRDb1/iQIRPwuHHd3xtGTZb4rGXIyA04ReVa74qNWrmY/ViA==
Variant 1
DifficultyLevel
323
Question
represents 31
Which of the following represents a whole?
Worked Solution
represents 31 = 62
Therefore a single spiral represents 61 of a whole
Therefore, 6 spirals represent a whole
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
 represents $\dfrac{1}{3}$
Which of the following represents a whole?
|
workedSolution |
 represents $\dfrac{1}{3}$ $=$ $\dfrac{2}{6}$
Therefore a single spiral represents $\dfrac{1}{6}$ of a whole
Therefore, 6 spirals represent a whole
{{{correctAnswer}}}
|
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/08/58b.svg 350 indent vpad |
Answers