RAPH12 Q57-58
U2FsdGVkX1/REgLTXdJQ36XeoaNXQNUkBHsort1qKlP0cIJEvHau9zArVhO5Geq3mKqw05irj1qK4of2FC0neXlrkf0bGBMhht1pAG1Xz3/CfG9kj7pJ0FFqgOUmpQ/jEGVerzkHRSYFhPtkDzVDFLIJxL2j4ZltmZ+tkT6ogtUhMyrHxVXjCMKV19odDjAwOyKNPvN3EMy28LWCDtGPkNI8cwLj7YiBVChPMszjSup42I0AShwKppliZA/d80MZko8k8owcqapkc1Qzu0REA0m1AI5u2dD4CplFzXRIyCZWlFLXrrwXFV5OGVPRaImJCE6UlgvInOpSIOWKfv3ZvLACx21254YKihEd4lJ8FWlCPmky6KtSuDCtOb9N0tVxcpbsRF8KJ2nezz4FjODPvMitAaVePQSS8mRr9RzHb+7gTE83zaNfqhSPIuz0bKRXNQLRC+8I6rRmusY0tpDiJsc1PvsHUukMzSZYHysasPJ8pK36OdOMLA15bu8deibtp0o/NMCYhXJCW7JdHVnMt9Fo5WMyzhDa/8f0oBqAnrsQZr57LoJ+EI1VikbHPOensb3HwY76t9kiPhHN5bEt2cdFEUlKIvY4ZqtwHc6gsLPbwAgrqaXwkO6ieSA7DxozIe8RAuskrIvNBS7NpXv2lazEPxK2JMIL4PbXD7ZRPmltYQvcAdl1SwZu7mPUNpZfgXD6ANXnCCbPIVquqdZbmNwi7eGT1ALYsM//zaOCuYH2oMzS2b+UjfesSlw/mkVh8CeHWV01oWbXUIzq0VJs5U5eX1FgohH0gzA+tXRbPNP+hZ/eKB/jb86k9w5y46cAgGDxi4c/1T54LOtTDtrVSfEHjc6DaZVPDt8PPGJ1RbcWD8C+JPhizKdZTvPRCPqxZlAMuOrCzA3lpapKRCIAFcHqVXYZqEEymm1rx3NJdgTlSutlE4Li92AhpH1PXewJQ7RF/JEDQ2PB8ThIYhL1Xeu6Jz/j98EGXXEr3bcohxevGDox7t6t73hjAIB2aCB4l3+OoAsqKWKBuMzShcvgPHEZwKP8uEvdCQ4xHHjqlqr3/JJBbCNFE7Pi5zCOatg3V6r5zB7bcQXVuz/YgsDnO+XoZTG6Y9IZTHUwvm465liJnGPY0/wOZkJ+HRtUgsZAP5aLcXElVHU0RlrYzemEmRQiFHDrblLGYhH7rK8hj/M3mIknr3/5qIGzCOaxQbyvZHIN+7yEBUC+lefyqeP9DYKadIOVtIm/OZMBWPswbKxlC+NlnKhTQhPtlmHFq9AVU4xGk9pZZyaZxrTw/bGbPjOl2TtnuPkVlzAOpmZQnAf1gn3Oi+suZAchzp3dtvIimvPWp2XRU+iS5n8OUxyqef/n0s7eKM3FLH3U2C3YuRsFsW4HTLiePL2JKh8sG7EnR83SOdrIR3tW9guK+Qs5hC37A60ynyaz+bO/SWpaJrpnRG0bJjSDODBMycnQfNDLUv+GdfralBDSiPhRCyXFe+KdOBJayWq95XE0N83cck5wCTKnZ4KfbPMaNxnWJhQoNWxJxoGQ94WtTCCUGBL1J2ZJpfaVMh5IfnPfzcwNQn6wcrsjyTB7ZFpUGrqqoBWzjctVvM6XRHEtdSIb/aBOcvSQiyQqgy4QDJwZLdOlTL8s7FK4kHeEeFDUhoO2RIHE5F031u6Q7VqCOop0yoTqoRzTAdVif7RYHUOwSvDAz6ZPgLGDYSgsNMh7STKAsHsNbJVsBM6cvGHt+85Jph74BNw9oNvqC5jc5UzOqR/FLySQz4u34PowWTfoLEOMVRvtVcgQkQpwj1cdmfwwB5ib8NxqjuFQisyNhgw4rDG5LcrEMkBQePBGN84+sHO7Z3GtWalX9ioqE5QiC4NywykowEDD+iYtOl8NmaS3TpYjVRnzrIP5heK7xsD+RD/WK2/WeaAKpKmTf37L4N3BR2MpSkzoG+U1bqaIWqAn9f22/hxjFkcnoZyAg2dRCnCZUT5kHRXIEro3Fwv9FCg5k86QmEl3MpSgXqHpnrdwe1kg80jjxAfIuJL1DGqoCZ5lfqRspw1t+WK9k1BamSQme/aVtI9LGxXuBx0WeeYE6yjnVe3uY2K4mIBNXG9crfF10+xV9kZrD0Z4+1l1MpVJqxm38+352/uuq0QujIc7a1ulDKROYYm6zgq74hS+pynMci87rwhROFi3JbbcfuBAlGiPqc+lap5PcnR+esVKxZ6o8JDDSDphf5JqI1b1Y8QAPIvxFVHqDuNaX/bwjBvv+RBzS72scV/W5a2BHagEW9qiKV3d0Fw+kbXrxM2XFkAAapfzRHHB//a9jYJru5YC4XqJXDWq5iTvh9x1ONPVzPMXiFwFgHCtg7TWiAjKM3pfM8hCEXvCR/GKq6L6kbk08Uag5GCr+3Qirqa9m8jFj2n9eZ8QXf8pugjVrL1FZyqKMojLhP6NJAsJzTaKAscglO9Gka1dICBCEtbJuxDhy7D7Xf6RDYKsATsNjVTQJOvflCi8XqXIKZODh9LSXJ5VmXs59YHPOgTy5ZO06Fq85Qimlqr5m/SOVeJWVV7xI0P60W/KpUCt52yxsv9TcVfnV71MrQnaRlYd8/NTlFziWZfyJgUALXHN4cpF5Ryi8yfGvZxoxParIajd5YGDYa95I/PL2hazawO4wVrOVRpKya+4fYi741XGxXtfuMaegUzG/HfuJJRTPTI2EVG5xveCajb7Kq+AraDJUYQezNN+GC9MjyWN+Y7eZmD+dOMx+wFJTOnbUy3h/4pfGsXxytUd/xQPwnrBfSWY2QvrS1mITgKDg4nW6G2pawmqTQTyO2VoD384VtnLWACRg1ntubSx+hmC2iPpJYxJz1DfVNaYaIGMq8AaAd2iQb4SplLwy824croAeG68KzZOMrEoe9HCdv8XRFmvb/7Ehbt/m2cWvk0BQzchSBDByfp9HuG2V1yR8M4VRR51OihcPk9W8vh0rzYXcNXRsfRXYg+qJ0the/YQxcvngWnQ5veLH2Jd97u/6uonry7raHE8ejFcUGkznV/HhrH+f5J6729mByLcO152XFLSIiMSw3rFQGCr118BgkENZ2/lZfdP/xSsDu1Iwi5EcPw0b4Ls7+f+OKXJ2tFa+TpU63ppoaaR+yNJSqj9WzUOtB1bX0y0iTw4UV9jEWfvvBqjzg4xoT7Z/GDByvR9hYsZ29d57NffxMydgsHANvyEXZpS0UxdZyMY/y9dJZqZ5UnG2MjQIC298haIqMBSrLQY5154CevN/rdANhe1wnp3+Q15GSLCLhTv5Z5khP7SthKEUfaSj/zqV4o6WsEse6lri9LPd7VDIDHvWDgiIB+dlB+8gNmkwx3rzgell/RGTak8IgOVgpvmT7j2o41mMaZerI1xdcJN/C4KmctrVyEijxMq/vcK+mPJSXqgUe7wz+FHdJ1Hx4/eEnbOagYopWu6EOvIWlnU0cw0mL+w5eeKzab5wT/aewki0aJ51fTyBo1F6riD5o1k3Hh5J9pyJg+mvLCfO1FTpWdTXVpaZ/T2wEGajvR0yI3zXWw72jdOSDq/+MIdaGxnNNubZAC9WhHs0Ez+36ayjWDjeam3+RLjMPE1JjW9l0glx2mnBq9XZ14M6K+5on1MkgQ4QD2EZrHL7PmuE/GsmtzlsOHe7D/42m83aNm12hVnLU0Q7+wa9TK/T7+NmfHQ3gl97JXflYT9nOfKzkS7FdzEssGYyOOF0rQYU/Lvaxt4AZ+KmM9ZnWMD3BNyremcyILrmPSchy9PYUAVWoeY+mdsmOM5nOROBViLX3aA/e40b5t4/CluIjGaw8jdft4UWuLNE/ArbfGNozYx9Hb5p68XwPCBBr5drtgoMoNM2Cpg/2c2GtXoY/vxDGMXnOpGVpDd+477GPX9xTRv9GfY1ywAZC5t22hHiOHcELtj10vktCZil7ghQoFSdwhTkLA2bhf10h3vwzOvyDBAeDWPvRu+9UaMMPiJkXlSYgod9HbUymK1HguCcYidJUyd0NGzOS6mxULLjdap5xa9RGv2i37FG19Q7zbS5fAm0m+JzUVH2z/0T+aoV4Hf42D8SqPe/8zr+nbNmxhy1y78jICPFy8lCEt6sOX4VjbhyAycSrZg1raYKWenZ7SL76IAvRoR9piByseUMYPme+0B/DpN+9O8fVzXo+nux90vlVtjZxy8893HC9Dnf4GKPaD90OFDg5feslS3+kXkhZf2jli48HIRu0A95wpaoBU+dOyquOTH9wmj4Aga27L1mat3HO9/YXNopeG5ptjmk+b7uPZ1bhr8U6Sul2qELd/lAp1PCOm+fUr3FFOFk5xzGPAtprg3tPItzrbjMWbIBXmLSCONsZdSq0l8+/6pEKNCEYnTTC1iGnT9VvVUt+DUHaxCXvyi9e/IPPPoIt+uUp32VUOP90KLvLAfI0xQbxtYfAnF7/oeJfbZjxuOKCywQVvUBVdh28fvHMthVmD2rMsatV56XXxl827RVVUhH+zt17Ir7RHKhrg+aoPWyQooRMcLfmD1UZqE8Sl05n56/AFYIgusj7MriCOetJDnN6Jk1XD+fSDUcjE7F4b9Kd1SbXyEbw2tr2WLwiAhZBwKMOVj/qgo/jGhkw5BVYc1kjyTMbX4+1hehNTZxCgRkVJ8WK5ZySieG5vm/nEq4A+culXA/kHKtxMbo2O3GnxLZN+JYTg26cpSytdN08l17pbPABFq8pk0jqmwHUh5aqC7CF2tvAMQ5rBHKu3FhHCLETuyrSOzWjWU1dzmlKtIe9rUPFtTkkP+LxXkoQ3w0+iKoFglExf2rGmZXCe8jO7wGH64B93TRfio9u7yzs8HJdjTokQbetgSoXYtFGuLUg74z836xMn5qNSviKWFaDCy73cYTj+V5Q7f71bD24bjLeRdCHGe7s6xvA5SiN0vythnqwXDtr5t4UfhuCqqb0/mWqfFdiVznFwqANqfFoLBIo2y59uGAkXzJIZNKuCK5x+5oLJzhy4Xs6Cu8uu4aIu0HH7khjE7eoaI7tn4cS7rQPVT5H2OswWN+8MNHsUF80x+WOAaj1XLZhA8XFZz+gRVeS7PAKF5kqe1BGLBefJq8cliisJlKebFbl5eWhn3q2n4VUO4//F4bGJdzHR/UTquf18IWmdH5qcKL1FnTjWpvy8YsXE3aX2yjt41UybpXRsSKJUT/ppcvsIr+/GPYzaD0DoLOCZaMNBuaTTNYxAgsLprejX9GAJ3vSZBX2ugUd2Cl+XliC+ACd/W6tfUK5rNLRE3CWxURWM2NR/aLcGQhouARjfvT3JP9YOquEmHqlGTjTj6s1np1AONlj+cGZ0nyxXWtxuBNk5nsmN9mZYOYwoHUaO2cy/6C1nXa+1BDZ5Qhr5yZO9X2z1fBZ6SqBYVE6VsypcKTU4bAQ7N/ZowQcb5SBjBlHYqZYsx1y8HPlmp0N4t3gPVYj2B2Kkv1gmbgolV1UlnEc82xJnNqhvNjrtjZtT7GSiFDUtwESw/3kIma830wQcDCi9awh/z3SXYulrk3jM3ds/+YgHB8PhQhku4i818mdALe7dO2mF9LNSp2C/6Ogp+Pz3bMPJu4BbVCZ1LHmYfmxBpTlHIc0jRAkuKals4HcwFEGTmKlzi5oT82ib5pufW4vYtYy8S9Hu7AncbqmmWZGvEmv/tbzNF2iXfXXfkQ2of9gWMzuMlM6Hdbz+DAkoDrXrUGiqXtPLiyhQcQL/Um6+2lRdeyOUrIRoVhvkDFI516FUj3F5X9C0=
Variant 0
DifficultyLevel
320
Question
represents 74
Which of the following represents a whole?
Worked Solution
Each pointed figure represents 71
Therefore, 7 figures represent a whole
Question Type
Multiple Choice (One Answer)
Variables
| Variable name | Variable value |
| question |
 represents $\dfrac{4}{7}$
Which of the following represents a whole?
|
| workedSolution | Each pointed figure represents $\dfrac{1}{7}$
Therefore, 7 figures represent a whole
{{{correctAnswer}}}
|
| correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/08/57a.svg 350 indent vpad |
Answers
U2FsdGVkX19hhDu0gYlU1BjAGK7lUgvUj/QjiZj/cCBRfIf7SoiD1H0tLHrYCBzECHTHI1tDE42bym6TTCnMOFcjiZnQwSSGU3QTvZVGHlxuRaN956Ud6cWlpXRbavFf06aOSgWL86aXtXuFtbJd8c0tncUH8AJ4Ef9vxIROtLQTE4/y0+tRAOSGv4NPPEJd5/QqlVaYX5kcSkCmMq9GsqzX7OHb9RDwOyjHu2lgIdM32tSeOEhWxn07kH82LiMBkqj1CZOkLiAfNnsSeAbtKyupsVf3ehj8PCQbXUctBlV+lDtpMsVad6PEe9Z1R3Gc4Mnlf4sZyTY8h29v0p3yKmn0I0uIUeqCks3WMr+y10IwGUy5POTAnhZNnS80WSMP5BgFj+Vo+mj0B+cUTjdMqS7v7fH5Wv2FO8ddiV+E7w9DkhpeO2vEK/O/yEt2KykMX7S6NpqEKFwTnxGGdcAye871N3HOvHauxVWtjf/PdnxpkFvzOWuEc/psLThnBqkVt+BprjYdtN2XGgULmX1Xeo3ng5Ok6cs45076F3dnfuioeoulUIRtucB8i9ZfN0vc6SYDvOXCjCoxViBTT2jaiALsQlQwnbDQzfO0QPhGajGhcyCaVALC1i0rpIqL6Hb5hPpqWDKDeexLrFYoSrGF8UoWSD7QNIEvsrkLsHhvXJHBN/Tj6ac2F+MPsiN54C4QJPUsyMYtioK6xeuN/YEMVMr330VqdgRgHC/rmCIAoIzgorJIOB+1Prls8Tl2kGut8YwZKdQwAyOF/fJkpHp78OgwRY8kXCp3BMzloIXH1k1VSsV10RieuLjaq9UsSGp727EIKxGgaJaJNrapwomNrlv4Y60UNhU6+QlYvZvqmEmdnx1PrH/eyouwQlLRalKqmdsP1XoPi1HLmIHurXZzMVe89Lc8BfX8UcNWHze3NNWrLwTV5jXLGpuwadSZqrTBS/l5F4KnuNq4eXJbeOMIu5cDP2xr+1i/g4l1UWQqDligyfpOxBM+1j5ExWNx4/K3aRKKHTJhiWZBJgREc8ctbWcVJabZz211EWlWvfAtz+AyeFuMrAkQk7+TmWGG65nROXkPem3CLJt+5iabO2oo188PpEj3CDWIAcKdL90H4AjzzgB17zy7OJvrcDmTVViYux9OXXjsLv73L5d1vEe6WkTfQG/tyuOl+trf6NAZFWu44p8DUDFtS48zGEX7ywt+cZS2R12F5hlSao+4r86hPLHKrXvPUAFLUpA4CgBeFwFX/tgu9bikgeBDmFiMMoUsCxMnkgmeByNdkvirun2DcZKnQLZgAr/yzcE+MhB/oR0QY8T3AYcu3fntLdkk+/LvuDObrqBdbWnCOdiE9FB/BvImL+PupyDFvQeNVcw1eoX5I5udWXcOqXgnlrjc7HFY3h6EcYi2+lhmWNx5YLjX2mmZOgqQ6D+2yUojbNaP62WnVStnZaZJhJQhOjHh1nd1nSVactBxD/6g87/kkXdRQVhBcEadTf4qWa7fjDZJ84lKOuznkb/uqZ+FFHYtitlq1Bqp5kG3P6cVBqk31jtPinAriYf+R1ioWk8sxDu2y9didLXlBKjAsRr+lBeT67zYeE129MeDVEHEhPN//uzWuvoZJrG0za5lIm7FoKXpvY1L7mGKS9O099vz9j1UZ2fypTXZaA1T3/ymuxKeMAXrKAPIh+0/ADWxQioMMHJvp1XdlO1mBKDNiQQNRJeGMEhXHvGHjvwTYD1sNnGes6n3HRPW+CiuUgwd5KPv+XPUI/ThnNTpiP5qEbiR0RysULvKtzEw33NnUhQ6ZZRYI4/IBvWF+mE1mrZT1JGArrRJUFa8TCqJ+RVxur9Ws/CFNxkksjE+6/0lEPHYdic/2aWgAsdJhCBB9YObJxE4Nfn0Udz54QYtFwwX9fYWCDhwtnMB9mYy5vRHwF7YtJ8VXGvCs2l9Hltv0cEuD6W6VIlkWxoyPUAEvrz6n3BxE0XKCyDmi9G9WhFD5G3AEfsdLTjhk/S2IL3dfBEHkY2phme/D06sJTfzxU5ydYnQB2SUa0R0kCOm61F8Onrk21YedFYJInfG8sHb0/OEy4F5zrP2Hhp6PWNXJcOmGI1D/ysIThicpLjckx26o9gYFPypFEl6tu1E6UMe3oc5UXLS1KEd4FsReDyMiykqyAV2azA8+ZGyHZULjZTPDnrdomxzZ1sxOtmOJjOqcNfFl1G7zANWinLOnsektyhvJTKTkRRxOI56+PzctkcJKigGcRmfPZj+WpKXaGMe/N5vUHkN0JD2wF/f9OABPaYzEQd1C91wBQZx5+owcj6Mzo+f7UDcnKYg24MFra3bFOLgQPNnEMUAhrCt3cVSd4s6Syv+lFVtvoB4wzAL1T+++ll5DXVzjssxZNgZJdfuq9LBnEJoyZm+62cjriK1gfb0tnlDLKLajnA7KzYV+yodqk+AL0988CscRdQDL3ZB8onnzztiD4xmX9oAYULvSAWiogyf6vHI3q5ZcL2OAXkuo+LKNJKJyKejqPp4DE/+Taj9+CzqI/5Q/55jawAqDQaRwBFjxutaccRCGSQmXmB/F5unIcZzJSJyhl2DD9/zA8MAdbCAAH9qIBWaCWdqP6CBKidmQpJaYI5zYFBVXHsteWZFMYckTx92dk/q5Y8QcOWTFiZ4PGwDrz+JxdO+R/V/UQ12FNmPTs2BauWEXJgdFD0V1VSUWzKkebPk3HmQsCmaQX0vjPTc78k4emdbEUkEVKS84Oc3bkotY3XUQ7QggHWiCsqqHcF1KFi9aGF1nJ7XSo2gqtex7rq/tUrmp38itvUXjubHo6T8hCdY8Vp9cVPi5dqbWHdsACKJmceu9XppXyd5ultb3kUQUaYvU1ALP0Dbl+gp3sHdqruEKhszYwMPn/uOVTS/I8NLe64d3/mYIooI/JUgIXqgzhJyom1r4SicjKS6VtPdqTQSkTMsIMJvFZ5lNX4OCbnpyZ8WML9b1WYIXvSNj9OET7GOOVkuVquUl4M0Pjh0ie3N03OvRtQXY+mbEdw77D2r2gh2EdJE2WSCdh03i2Nveg2+51R794CTC+zw7Q+XxLc+ZE80sa3dkaUHCvxDv9/gMcQaas1YhNQMvI6n/MzxvRKZxbyYOkpzcZv03Zo9kx0wOYhJtTNRIO/ErgH+72xqDjR9ieQTKk1K+DqBXZ3y6hxNpzfvqFdaSWlw5B8K5eBqUpV3Ryq6Mfuu3voQnvZI7usr+B0XHKt3Wn6Q0C2DmpTzD/HGJ3asKhzucXifbdlXe1+AG4ldYwvXtblnh3KFuQ0EBMBPFamagsQkQK1iMrrHaCP6xpNJn4FM/a2wcuaFeGi/xyFhkqUNbipIeb9umZpu6r7pbVkY2IaaG8Vj0fK8XoKC7x8pX0KJNBhQ3LNTTcJ3VQmblDL2XlpYjnbWHPhSiFZXDzv9ANKn3jChCop1jU1UpCRvuxOWxlvTIEvyczK/DeVDqhK9TWePek6Yw04fPnPAU/mR+oU5Msz/wgdAX3H3HcfiCoW5LIWYgfMt619thMlb/TN2Se8y4vqbYKhFnpkXVbFIoc1KrucPxoTWslms8+uT7psW6fBmrl2gqHdhS7n7xe+HWYVUr8CB0+acJq1MII8FvNL7KxgaxcsauFyq90me0PVsMBlVUgdK3fPjSRDhTQxFDCPJ1aL6Jj7QNwvP/IytvVvs7JJ63Dq2uOgqC7Ro72CGQFA7/niY7Hq4qPOLfycERty1+RLCiLfJ3XctMdlb8l0KnMFc+pXeUvBivDGxPZu9cDBtq65rrznFo/kFUSOCiV8YDRBrRn6c1SQoOIo5A3+YgnuAXSXE0unIqXTVKu3ZNuSTMRqGDxVc4MHnYZGHpyfEdDVHlNnXXyyTfeJXVpoFbFA1OtIyHxC4anrtyi90nJYznnqywJdj2uxZGTpHLdPrRj08LkmyB9WOY2nFyyYPWxOruQsb8cURgeWAP2yEAAKrtXpwRhvnAGcrYKhu2DhaiJQ7V6tr2vE3KHu3YT8BRxb+G6N1uGGA1vRfHXUy7wupqgj2lBjP5JhShM22Na107LsLfRLsYfesyP7LRgmLU7NM/y/d8aqfCuNVIQMZfnpNQyPB193HLKAn/i1iF5hxDXsYjN8xPqchhdR4Euc3WmhHjBABH/26qv7Kznlu/gXVojYcNU48G4SVXQpktm5s5qF0VWGa3YEKF4dhOCyudOfwczweOnybqOyDLj928YHCbJ/w8cqlCv9QFWZ4Qh0Qp/6s9MO4cmTLvIG75Da4LWoKM87Q/cRnHc5adVraQukrJAfA8FCALRoR32lDT0Gh3VIXYKPqTXBND/XmHT64OTc9LPpj9vi5cH1cA06MUHYZnUq3Ju1M01+IRoNxjq5hLi9HMM7PDVj7wCWxLOht2Y9kW05FbMmZgr1hz72XD+doepry64hiZL0RiwRvrd28vCTDOKxjXqRzAlEEOdUZNP5yAkqHc98T+vvcZVkC6GYe7M5ZqYibScYigBUkvnsf1mIDR/LC+4AZFm/Dg2mW9dvTALrhLSAbff4N0odBF0rlkOZekXSoR1cl2WMVnwOyKCm5iS7c2icybeQ0HnnswnSkRPbm9N7HjOM5wgl0nu+R7qCWstBxd1lntwBg20KBvtBBW6fga3DwVugDwy8wXCJsMHB+NmMz+gH+QzMyGbbt2AJoeJ25/1t4jxyXFwiFVtdxxi219XrYNT9z6GLFwwBNETomziuGsLdGFot/C9VlibLNpcApAt07eK7/JMEkzNAYQ849Oq2mpWtTuBCVONFz911XaTJm4JERI+52TzY2RfAxKGQuUr3NwIWNsOa0izthQmWJ3WHrI1tPpYWVMDe4Y/H0CmnLxImosrxSVW6uizQtM2yf0JORKQuArPEWQg7u/4V5gtPIxw2GdGUGGyScQDIFLL7H0Xkj5hWLryiAhTemtyTdK6ZwtA/oxrzPyzrgfq80ha6FOvM9sBcu69LXmu6Jn7O4Spr0rYIswhu55d9d7mDnOCU6JKzQtAa6IhSiAM3RnE//9zlxYfDIedb5/Z6TIsIUnHKamORsZCMRYWqOKabhiJ7VdAfm3XC5clskWvURVwJpMWVxp64g0uYJWdK9XmY0wWzGnZxYPkp4xGvcCFz9kswncBrm2xytwTJOCys9256ev7dkvl4L/pXO1sWM/2GZAnbmp6UcAZ464BsZjI9P0kS74k4+QdkhMVT1vmOrg8Q9rKXrCA6TEHJuM3IzcG5SgUTPSFMrYIypYK09hpwF/T62Y77BnqDqVxTIMqtARbmqwwKGzE8WyZ4h220+EktI4afpAd9uQ4J83KVAAJKMQsdsQenNHkB/IhkMthh/CZqYVEBvWc1ao31k+RnxhtNN4PBFVFOt/VSi0u6b2Z8v9ql57NDCBnfwNNO3b0JSgNKCjrzXZl2+4enl2f5eCWHhQFA7JC6D/Kbqgp0vw8i76x9Tbsf1lBsFDshSsxlw67X7JoViwnsytQ8vI3jDiYtzAIlg3FPwotFJYYNTlsuHkvDWnomR/l9w+uoZVL0WBARUIONSoh6GHC0+uGyz90G/mKW/t7MAHMMVCTjqtKM8Ger4jX6GY3CGSNl0ueS5Wcy5r54ticPd60fcVtbejvf2tvOkzjMAvH5OxNA9n1dJQuYaJpAXR63Zx7um2hv/60yoVGoHQKpmvkGbZ/4pJANG3XD8yhFrc95BJkIRNCLtrEKy/lh/+svHnT1QYgQJKPizKBAc+nK11W9Np+hA9TqMsoIxRqS32XC6D3aF4MsLyeQSK5rA60Mil5FP/50vSiSPFY56LEMvfz8g48szrXhgO3u2T4TH/1UWcYoI1yJgDHmRMcxBnTpCV1y7h+pRJURmwOTHNYD8A+hGCqmshzJQ5iVZpQMJ5lWCJZqbE3Cd21g+KhzPSneG0rcHVc/lTDtuvu4AnKG1k3G3Vq73MoLe/C2VqRFzjUWAvZriCzJU0WrGIdWNL9OwGLSBJpdq35Hf57hrRZk6Pr9Y+KQIHFqiJ42aKrdpacE1tuNMdk2ylqOcQVe1T82KnuEQck0/q17/RcIBoCbBJD+xyqZCI4WX1IJzdhnmzDxsTqJwAKADNFxBvRCmJ0owurVMJjmDhl/OUeLwRdl72UmIruVMTPRgVHxpOTrkjQ2umGbb+XlL0aIo0zqfivQt82C8aEe6HVfCGZfiOCSiZOfFJlgFAjdP5IYQGjqkhwNQ61iWCUB13J3UgFdx+Qzew6N+pmzxuxXHKHfPYZA+z9S3/BTq/TnVmmSON6XCCbvl0gtjALLnyGdnBYtTEFTmcVIb4BZxU8AiwsfU0r/pvA9CECuR4jMpvRxviR05ulA06oJPY3gOfmDv3pDBVjerxGVykwCqRbgNSG9ZCLzpKQLuLJ68sJQyVTqODWuE3csThaHOz4IjRU+TtCL6fVdgAqXFcy8unZ6qGR32gsC24nu9B53DRhNe5O2JX1c4UurFx152+rRe/150LfvQE0tShsgLh/otNgXzXgoRjWBJNrSjY/QS2ahhqiqAaYPl9TzcLwWsA11IsuB+P/wOCyyCLohbRDOjsxARD1MsgOQ21fx33mCsRjKqJ7C4Fi9IZ/tgouV28PMpKIR2b9zGJwl9xg+Vnp/EsIvZh2K+LyNANih134uH5lb7ffdnVKHRy8xy+O4fM/6ZJo8+K21a6dorofSLaf3SmPg0x+cnOyrzT0rE5DgneBmZ+BmCqTAeOyZsiBWmEvhBQiXZ8OHY+k7ZClvO7mPGObzfg2huWQpQ93bQpvTuZqxh1H9NqY0mhPfIlq6bpAODD6JolWNN7LfSpFFh4Cs6DeBcloDdqOgBU+WMqoJUd+8FIBu3Gz34J/TXVBuIp7SwG80UgMd0mD3/KM7cpifSAgrgjKOpLFl8VJMmHrG0grG2OGvmaAWHSXU5Krl19Y+7k/ARU1mXu9/IG8g3ua69mhhFMtVcoAFNw09V17Tf774G5QVrCtmuSPPYvTrJmU0cg12uW4btohHPmE15SoheI9Q2k2fN4GzIWc5ieqfcXoUy1u+mB+CqSCBxs8nUx8qFTgR7wahu27ngIfjo3AEqaUsIBVainEtIFTYNLV8EFStSl+8G3ZHyVKmdWe/7P11Djx9or8I16xrQ+V1aV50cLCpf6ZAqHIKuYPdzkJnz2AgltB9pmPcMmcdZXQFb3uhFUOSBvJv9DfLi3YyKR4yHFtNXQ9cQlvcFrlDsJ2nuGyRIRzD3PgR9TYJkCOkKR15EiL3TgtgU1ANGljqgz4ZmLOJ8H0kQ8Mu+WA/QSeadM0cwO6EtwzScEfbij3V5qGhsCE+3m7mcr7FN6wr5YUT3eHKHoClZxmm66NKEcAMFr95MYrzLmoRss+5/H8nI/NY48ipiMQaTsXEolSfKujnBgOea1mpsvVq4+ZodYKAeotiLfZ3YR/Hxc6Onst9Vc/JFsjN7BSQX//DKCUzzjI1kJ3y1racwH99hd1pODVShi6003B89w2kOxiCni9CJwQOYYbkf+HwfBsAn+UBWX5Nwxzk4bzubTGeQv+v9wIjvTwNpY+nU/054SQAS2pEklQrzrvyif4QMnMeg0eaki+gwv3N16eOWEKDEfX6Dfyb2VJQ4uRxEoIyrwIMv+DMyxA5X1HYXDzuMbHm66Y4Q1NuNPJMlEFHriysDA1GQRrQT/4k2cdRHqPTTWflXfRa4zz/MV/BJL6Agpv93WSH9hmQzSjtGlH4KqIHdMBcJ4QYzC5j7lDdHOmwtaBDcgzYexTDlJ9+ZAwMtjVBHQ5kHhBqfQrWG70+Ag9OyQpUNohNQXUpnWtN2JKHqgkwsnHNcArqktLI+Ntg54rw/2dJy32Q1NeQdz9GZWOeeT0dHR8e0V4UFnQtNfeP+4DPr896m0RNflhQFPUpuBIfW6IBYxMTrElm/NBDq5cNeYvLTTW8Ye49Pp7mNmnjOKAgoUrJloFUg/KpVkBjIwwFaHJFn47lCXKgNoZNGwsUIlfJHd8sIy57V2cMk2nMf+UPM5UFJaPo4Ip9A78sLZVi8k1VUObnL9wOis9DhbmhRq3D2cIHgLJcULTF/6twOnwAH9EHAcT8VXzyHnmXO6CkpsEJZTlBpECOX5wj81d8adF/lYimHtBQOf8K/lo4wb2RygViN/YCMlL6392PignLNhkSYKlJplFFypsn9q6bNXwEi+KFr/JROy8aij4eQppNcIFs8A7Ixjq4WVvjYMbkIMYEEd7+v5H18l/RxHbIzh4lYwcKudlG8cI5+YoXapFRfWjJaYaKkR1d75PlYMjFfHleFC0i20XNa1PRyOZz/iNaA+ZCW6s5CU6HJ5Metcx++ELHfBDD8II54W2eMo10y0Di2artVVCs8Ws5zQDzd6nk0h9qqjb/RsU9uaJtNZ+KN2Jj5GaIwWkeGzykoWZRx6Y6d6hSN0HTkvS956eMOEgByQKTvUYmAyGGDeAzw+zzVm/Q3FBQZT+upZDefZRy850AeFyH/C6Xd3QcJIVVHnWzQtBqwg2VzpYtz/+e6HJzkxb0K081jKJAS/gbyxZlk1KzEgsVnTf6MuT2ptmwNLZ9SuFV4+oIVeEehfSh+Zp4lIwqnLU2ILKgIn6Bm/VvS+fPI3tjh+u/20NMFaPQRSyFEWfnmtKlMkC8IAJ3D6Ggc/oP+h2msdsuY1xgFu06PTtVSASkOeTqoBwRJB0/5QfCaUFHhUdrvCk5zALWarZPjlvndfBk9N3f7GADgwNC3Axu259yjyTT3Vrp6kNdPpME5NZDpxIpmK/hZuRDJQQ/TX5yMCjX/bsf6UaXUOoUVNtYlPqJipcnxaRKXutiA7PH1+bauWb2LMU1iQlrhe52XXRgAOy4hmDuLAESDxut4mNUXHvZMNe6O0OQ1rh9xhT8GJ5dTYLT6m/c88NifMEI7NMotOLhTVQqjaZSZ3wEAU8em0CmZ+gg5M9AE+iq7KlG3dUez4wRh+0Y09+dbLUGtQaMOxEQ3L5S+7S2OXcECqOAdhDby+SYtf+MhL6DX/Z41WDIJbGj7mYHN/uySFXgravQ8IbZY58jjs/DqKbyfXgipDFd6tPfjVHcB5yIOMvPUjiSvAvEwJ1qRv3zOUct9metrKq+4iPg8avNr1MTqiSY+CuSVmHloGrqorWQppTtyZ8DY97PEstmjiFOJVCbCISB7ydK3fpSumN9+YtJ4b+SHI+l9Tt0cZ9rfm2A0pabZ2GCTx+kxAGABR0SpGte3DIXkM72CRln7A/iO6X8O4b9hW87cf1lq/ZjJ1Zjfh6AVyy9Ar/EozcSfpa1zfuo6Pd06jhbsKe/5nUxUt++16M5tRaWEzGF7JEnpZXbV3ikGb1wQisiW7XMpXP9ePXR66VO+6fd6hEh31X+8FsSmzQD7H1FVgMQrcSrqBpX0HkTp5Bw0NIEFCTnb8GMH9XbNY0wCQXzD7aOVBqeGKvOLNl5zxvQ4wh18Y0JzATAIAGiuq7nT0erBzpBwvcRkutKhNlGosAvnqUgWq9/3wAHTpVIiZCw3BYUrWGx1sTkKgUU61FWExFTiDXxWuB9ko923TvJacWsHxzvOenFz8NgKIPJIwc1o8sYFZp5NLiznFlLBVOvstIcqwbRMMIgg5wMcz1eUbtwzIX69lJkzkR2mkQLyaa50gqsTuQg5jufz2Wd1ipw+3jSieYgp6lCmV43qFqkWvsw5Bdp7Jb0amEg/y0sMf43pdb/nF4XvINpEajFa7iPfndTXWYKo+izgAn8d0xiY0t1FB4bV004agypHUyvKK0HAGoJNCqLrEkUxdsdf404EbgyLe0padbnCyN7I+hoeUeiEaDe7X+kb1AQaLpCKm3RLNJ9M0bWvRZrItdHsZ3HZWgJNShGnpjo9/X1Ryi4ixnGUfrB4wGWXUqKB3ChXEpiqDu+JqhNeWQgCun8LaNI4shhJl+I4oIuThrnWx9246yyIzPGJ8J11nFrYjKEc8H0I0oNqVzxh1GBUpm2fxofE0AnRqjQFPIjdM1zXCGU7R6Btclulh8AufUipJuuv6wJd6xSvOtgcc8E4yTSMoT/0N42l53Ncnw433FPJzxFtC/sXcU8QcvNeTEPQac38+Mpv/pYRlc3UGwpau9Qktq4pxu9pI9PcGOOhkntmO8PPyYCMvRirekHU5gm7DSjS7EBdkJyPXlfQha2vsw/VQpYcKa7YfQ9IsXCc2EOEccvCg0FU2vNZYz5hE7TX9oLCVEvAjK5cHIoFZx9RHN0CsvBkrEGL/YgqGd8qSBSUbToRiUtAHzc10l6HVzjWaYdQKODC/Qizi+wXusUuOKOQ6k/btiglrGI9TP/LgxR+x5AGx8+lxd8gCd8ZDNOUwA==
Variant 1
DifficultyLevel
323
Question
represents 31
Which of the following represents a whole?
Worked Solution
represents 31 = 62
Therefore a single spiral represents 61 of a whole
Therefore, 6 spirals represent a whole
Question Type
Multiple Choice (One Answer)
Variables
| Variable name | Variable value |
| question |
 represents $\dfrac{1}{3}$
Which of the following represents a whole?
|
| workedSolution |
 represents $\dfrac{1}{3}$ $=$ $\dfrac{2}{6}$
Therefore a single spiral represents $\dfrac{1}{6}$ of a whole
Therefore, 6 spirals represent a whole
{{{correctAnswer}}}
|
| correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads//2021/08/58b.svg 277 indent vpad |
Answers
U2FsdGVkX18LvGdp78DbxzfEPxNhX9ll5OyY8B5tEisrL0UgRWPUmgVQmWd+scvVvBXS5GINa0mHtIJYDwzvhS97gbgWpCzXaj277pSo9+08mFFd2c37sapyZCqFgESv47S/rlimXFYq3FunCYdKPbUmsxYbg0sw//X8CAdmIlV2NkjE8pIp/lBX6OlpuDHJun2y0tB+4/36DcNiuc5+xANaiZ9ZOjF02l3zcb4NPS15bkUKNenc6k8PSyq7VNJgBiOwRFy2Bw8sK4ZliMmui8j1R2ZYSGUdqJ4IoJmIbbklIb5qvTOC0ZibdGOuqc/VGXCFtMfXZuFTSLwLMv5Qubm2BrxCLvhO553+DN7CmiydIOdEc43chWJPdxKhG2OTZ/KGusxkQxf5kbAhxHEwoDXVwzEoRnk5pY0gKbCmUklhUhKVKCS0jWAfNWc57hlgtUfsQOziUJg7GnClZER9LpojuJnLqz3GlgfW97w6TjkQIUkFs5dkirKXh77NYWOibP6Fa9n30ZxOu0OYhHiM+0fMNnEGEwBvbcDAg55DQXdwaLMT+t0jH9PnKy8D2q0BJfaHL0E1DGbDpSsluz2FeCMstJaIWdv3RmS9M8X44DYt6Ig4/E6B3RY0Ag/+OcQ+yCdVmI3rUHphQWjtgpvrnId3nY1N7HSfUQEItSz5zIHmSlDDxRvpqMLGtn7oZs5mZIZJDCIk1ZUA83/pjp9TXI/TsqOOnBLji341DI6x9QVk24u7D/WRxtJ50ZtkRiLijPp+HdaLyjmwWjJvuosGFDUgbrSIfJefMKhYfdxQ4JEuRp7/K+YcJ5sRp5CEpeJYpE5YnOZJHfaW4FgYk7J8RMizXK24p4BHfojoWv4InxRS+CDAt8JDqhyn5I0FCbZI3fPoKDwePfFjN1Px+Bd5Gd5r6pDXF0JIIHdY18nQpuQk1E2gUzcoXDs0VLN7mmWPrzRQsaj3xd+sA19HKMG96I+7+qcTBX+TpFAK3ITeWN43BSZkDcRsxJ8qzQBzJL2El4XIjBxcajgbliuLtxq8bb6+ponlz359hKyFGQAlvLrhr8P98mYpV4mNQ8hpgpFaAcZNHDoGpcBO2Oig4eAE/6fMNG9iPRtaUHC7Xy2Z1t91eCc95rnAfBoPS9LfBRTvuYmh+3XlqjXLw5nsgGl7hg4I/LJbHOJ5Aq7VOd9sh/xbg3vTATnWT2pKyuXjyTNYcRm1+E4xtKmvyzuYKiQUM8BybnsirWn5Uz25naJ7d5gG2vOTziIhScGCwplJjRErhw4mnHzHtTAD++cv/jsWMQW15kMWoJXiZL7O7RgZLqWR3Z91xSZYtOzXSu0sJatbxnmJIHfBccF78QNEKVdtrw/s0jl9C7xMUIYZxp1uxrT6rL2IdP7qmE4TldOKuoJa2NFgHn8qKxo5IRPOLgsFv3q0DbFk3krZpocA9sZPZNsGnEV2h7kBmauqzcNtSKaPsu5j62/LHeI5v+y3VZO+p85+nzkq0ozYey1IW1C32ntNGribKj5iFRZSnyftFdKHZPDzS3CgCvVrWGC3s+M5qldAMTFx9BKRj0gtW3qc+sKw/PmNN9l9ZDX6fxh2vjE/3G1aaKjKiCiuUvSkClugy70xgdBtZNneXK+fa1uiOGfmBVgcLYHCw2o2njmA+aDaRbVNInf59TPY0osB6jkJcMvACqlm6e7fYytLt4kMrQqOXiCCvVY/c1nwo8lJbpUrO2QVXe1/n0R8yfak9sPea9ZnGcrgwaCiT7rJSPFO8OGrL4D9CrhMVwVtmHRdC6yAtLUbD43o6xmjr+k+3HO46s0d9+cBYk4s16f4TuFI8UeAE7tvZK7/5lElYCgQ7F/v/FMfYPVeGS8k+r/SvJfQ7keeoyL62Vd8iotFSPN5aHT/AyS9eoKz8TZI5PhepAiflPvEw9PHkzYVsArAb2YU1kJs8Z2xASepjH4QXQaQPBxcrrG4DnJDUpG1h9wmKTi//HyEMcaWgqGGbYOaOh02C+mgX/j14KMrOmC1wa3+nm2aL2YDk1Tf+z4zu8aVbynnkbUvDNANVo6lf0FjujoBt8x//Sa3lp0yPJpMoPrGyEiUKKiEtdhbbdb2OpgDEiRXikYJqoMkko+XEhzzTG4m7Hx9JdlzJDzIZP4apTWNOiJDoJRpSjkdtPlL2hpvvDe+MgoxHXQAZT24IBJzvUoR4kBywstt4kZlV89+P0SCYaXoy9WkrrCOzwgaprudl88qm/iWAARoIkrJwh0NI2AO3ss3AAxa1sFJaPZNfQF4NzPmZHklVCyUsdoIVPQ3BdWeMw3oehAEuXoXsKRyEQB/wPDekrwfmeogc1WIx2epbWQiNC2irZp9WA3PHamjbk/o/lc5eadKlMGTqDUPF9XFqXZjkO2NNFv/okamZ1pUDZ6bYuffA9kPQLTpYsw75zJxsq4+/sTA+hVXe4K+N4Ije86sJjrcHLXDrDjzxJ0plaB/OdPSfPqygRaK0bH+Di3aezlJP23sFEp5S6jAeFzFXWROHP/Nbk2IwTCa1qD+lixRYrYV+p4sclSwCTSfgh0u7BBNbLUISRkug70Fba8yvGqz4ELi9r1SiR1AvV4gNYLIhbQpLt7aQzKpyKWHHC83ZZBwM4Kl+gJDFLM+rFKHAiP2BHIEcEE4sIikNYPrhKvhECXJzum8CUA1UCNy8ok37TiaAwfHPu2X7iP3jEHlraW+YcGYq19FAEZxeU/Jd8S7EX4kldsMUxvC3+jtT2HQQfSV/7p6rYjA0aEwYZeeF3A/euymdHexiwFEeY0CbHdnZQq9gmNvZKZwh6i9G/AWXnPGEvnKyZzOVX1TKuYbx3YeG4fuilpA334uwo5ugQbbCDzUeuHRcoKM4rqpEjHLJNVUtNZL1kZQSjcHkmpbgkVjAPUvacijuKf/i+7X8TW6I/13/cjZmuccyhKzdfqxUJPJswikmB9a305TbUdd9aL8OGVnkB8cAlHb+BxJQALUDDcEn7wry3QdGikAhk9ygvtRd97SANlInzQZ39rtPAV4Bkz0xFti4rip4YZuxGhpAs4vj0qLVPFrBAKHHnkK5syo90vI+RV0RYVI7NjEYTgWxclEDQSM5E9+P7KHPVsBhLDR40W993ygtyOIhK5GqmixHEFs17mz54k9j3k3TtI1oXG+9DtdEOEEVOZVkjIvGCoa/pHiDRIEACGi43OI5hnvlOdDyOLPqpS5xMLo16TJ9CBkEne1agkkmaoN0Y4cQ3Nv/Z3wZOLNmNe7tC3GIMMRPdK7SMsrrcFAjLLChU2LEyZ7iDyt86XDY2d3qjE6GZ4/DD+p3Tn32FENJzqw2lxr7w0slmdMX5IvR8T1puKGISqQsjQFikvy8nKACseuS+1Fr/psHDERbkGggOVo3CK3WFmNGU5PpaQaev3lsvxqkWwvOQ4cN8ozXM9JCRzAmNHnTf+uD/VnsiPW/DIKyusaz3qw0DQ8a4XVFbOUAg8DUxl3RFb7bdrB1XvcUwUeMIcXkbGD3LJjb3nDvOgZ6v/0m4EZiC+Kmb140cyyMf7pOU+xNkMRJ5kbgvEJRHBNvEfMR6Udv36C3JqhL0GHUYyT96TlJ0VgERw8p22F/Ie5ktXUEcetVG2LtED/D47vMhZ3mB7qexchM6DYsc2TlGjIYfgcYBLOx347OSwqV5hxrAw+jztxg/ysT/kS7FXfNr7KeCCLLBEb0IiSkflgCI/05EivHZCoLPt6fblgdAA5BS0KpGmBPNfjAXeXlKLrlPU/lVrXfanOg3sDXZelTJarmy/MANE01ImrmcgY+xugqONaSq56G3ckXyNsQchnl7Zw3pDlMQ+PrjYqZxTdr1Ly17E24ACZaLsQ+uyXVfje2NQOTAFVCr5hmZfb95h2Qz5iFfAVjCja9hCPiR6VFEeCdQvvn+/wdmWzSMBuS6Wn5jku6g+XHLg1NsCnVym+0AoCp2W4hHE+sHwJBQX4ArC3qQBZc8N6dMF54+MooRA4wzXAMqpYOwzOWrdl96ZpP1FdSPrzJeEq836l5npaZO37erKjl1+Vzf9VbbvYUrmi4v0sISMSoQqL4F1S9xChh5kVd5I1mx3fZIPNtDbAGlE2qQGqTZHaCedhO7Hb6hjv0DtRgYRkj3TyASwkzELga14NuNFg6AzIMo+mhLwi4TzE7BWL2mUFJnamnJXSftt4iXRrIB7RIz0dw9j728/JrCZYgPI8lhmPF8ON3pe+adV2XtCM6wPtNo0omUZjUZgsweHuHkuJDiwFbQn/ENMNS2ytIt/yqgafXE+yAr+8d9wLZS87PiayhaTPJgOzm/UC6zZzyjhBovAed81HbXa6guIGcjfdrkIEyaSo/EYYMq/m4+4SXbOywYbyP1CqIEnL7fjxnb1psU8CMnVk2XpHeqAipJQFZwJeZ3UAoF+qnhwvtDnIevtUFHQxYlvqYLWwWrsuigaMS8Kvnkzr13r7tnBzO435fbnoAuiW5EXHkvKq8m1rQWiSouAfMXwd06a1jRTyiHcBLkesKSoy59Kba6Z5D6Tcji2IguQOo1gfVEEWfq8M4lZlo8R6fRWRAOD8MVfJf/BEVdar761iTBgFxqWmM02It36qu0RxCMqkSXP7oHP3BshEOF1rc96umGJDguNSJ2mtortI5HAU2Xr5tUBzPfZJro9murtCB/XPonHr3rzvPfH5gucHyXNlOUsT50Z3Xfn8l2ENvRpDeaG1grn4UNt0Nk6sbEvV00k+mGbdi6dAtIGMGVLm/yluTIAINuwJNlI1BLjkDeCF4Fm5SeNNjW6i5d3+UHpbY7WqFh5i3j6bEYZA9Aq79Uc5EBaJR06j/PZ4GRirJZUxc/E6dWH/3Swggm3gYPhvKBadRD0icmBaTBcKR7VMS9rIa5pX5LGdKQE4npfrbFIV3eBpI9YUslQZ9AUIXlqEv+R5XeMjk4gKIEztBaTw1D6bhvrZbQBeQuAnMDIso5MntIubyZLH00eK4GR6szo8dGXiLkirFqUZlACVmIyhBQak8YZP1pJdOfCV1IueAV0BNmcMb+7A7Z1j9r8NE8tML0McUWS3Pn32VilM2+fGB5ozRBnQxrBLjF/hH0d+ePUrdDC+Hvb/ut+COY4UqEldZlYXUdfewv4PxbNfX+Czzhy/zRk6ZFiwnaXhtTbCrik/RTuFWMLlyg3y6VYt8dztmxxZRUO/xEtKH8AEFvCR0L8YdQ/cIaIFb1Wxz+fvFRIuLglMf4oMHj0UbgFFgoxlpVcS2Z9TmoUlg09UxW+ywmMKfMtu8L34UWwGU3kxqPhYpCAgNisLKPCmAbO2lJW9FR7EBohH5olaXW3ob7G5VNhxO+MXI9T4tcwdgTmeyHSNUd2dxNPFS+6++WhLlfNn/KY/IwMP5Z+jzXTL3DtmAv8c5LxvjWpfEwcjQVACgkrv5/nSfHg7E5xHwVk0mrHBX3Rmx/vENPSPcw5RIWmJgHgFdRLx/L0eP7LJtqRk+EOLSxlzEgJaeAt/Sn51VM+e/UfKijSgBcEReRmQFknB6qCmRDVVPOXMOMTmWDv9fP5byITzTf/UN0+1K/bq8Rc2bg1wdoK/6cieyz7tu9WidfQ93/pOgXlgOVIPfeIiwGXPR+aLzGQpeShp3z7734u+NZtPQjt7+AatcQFbZwoJpMfzDJ3sgqh/cK/u502O3CT6EQg36rruzVytmjZVryN2puTcOSlMxWvBpMXxCDFydHLUzxJ/ouUvVDN89ljD4gmpygd1ufCPNt+4ZSaiQUaz0ctcqxwEjadMLSHx4A1ug+DYnXv7EIxgCcnlUJqf/uEix0fOvYORQARbyEzDVEsF9YW7pddba0kUVytAsp+e39AF8V7qUEwBujGLLVxsh/SMtbO+DgS26UYdxmtK3BRWj/7zbDNI1Z8aVnwECJPYqLnMKh/SHfJO+PxxDS78qEbz073VgAbpTDnNampy38KdOVO/MzXWvNyEPzogehqCbh6UnUh1/huqoxJ6Cnl/3BmvF3vNagMloshZ23+q6c6LCAA4GnaLbF0fehsjIc4NHp5Nwpbw4G/BwG71A+roG71m+AK5YkNVjfcmHIxIZIfX6wHbhB3tr0SP4Lx0wpd7p9VXQyyKJazYKKRjztepI3TmrdLaSjQevZrz9jwgWlbyO/0tscli4GlLSgK0ljREZMDM/J/qw44YgiMiHqxpDYYrtOIrujv6tNkuwdfigidUzRobvaO4sUvVQTgOFZKkbTJhpa4xw7NL8NbcoOlwoiKqucJumfLCRr3sqsvsm9MmY0ClssNsgPVATDl0UM8aPm5dZyi8k4zEVtlo62yuddYMMVgfcesonm7cr6zNsWHx8snPqOZlLi6LASc0NTz73+DbSiZk/yxLm89Fthku+TJPYSC27lMY3iZuefglp7/U5jU5BdWPpgOSRbgJU3E9k4jOolos2fQvKCNMe6NeplG70nYCCUqTZFhiWwc+NrPnf1EjoMWbiOO9MluJsiOJqKhejSpvm+up4rD8p3oQ/bDfPMvqKI5FbPUibwsLopVrnJS44gfUXmP16+zdsSNfPm7IQ0ksghehPn2H5NTFx1SZ4K4D47hm5o8lpMj6Ag3Z9V7d0UVWYJjk417aRxnwv3VRySAMncEr49PCEg3VC1nY6wlJdrCZ88fvp384KjgU+FPA8Pdhg/DBqwCJw8q7kPNSXS1dSFhKsvkLDZ/mLmAWQauacuhUI/xcGIfmNqgXbN5C88L6S2tTzGZhBGINeQSRtKVnmFWdCx+H6+/5M3m7VexzPQsOGMp/5rVF4lwahzqeCoAr8nVjE9mm4i/8rpCJLmIOW7srf0oy208y72rSt0yCbDtExOlBpUauGVB6W2NQoXjXkVdcF+HW1/KpBBccDQ4lUoLLuF9pVfkUAELFdtu+TgO/3msLTSVDBex24PrRSM5Fgo8NzKSbZfdJNlNgJYO021wdrCL+zdHjVvahMbS3IHJeu9IqROqCwXP4IisZ1P1+7QmCL03JojRuTQuh1qlunYDacI4Z37+mni5VVAiJjMB4W9wr3R97xBD1j4L1KNiE1wxzv8His0ad/GZGnJ5gP06Y51E2/SH/5jRSefl4KxyI9/aSSYugmf404fh5H3QRpBPHuqLz+enXI8su2K7jhuWydCS1SEThfQmPv646/62s/gHEeOOp0CiGr6Yi0+HB905tr0Rowl28PcP3rI9HAIXaNW33LWN4P4vwJL+pXgPJ6aIhfzkSB4E35TTQK8UOm6o8O0Y8nE0ocEr96rxIT1rxLtq501s264oVIMjXbhx+uUMp/ppTUjPl2MhXzWAduMnnUoIKnHAADTTp3T5OWDysTmYiK9IJ7CGVz83OH0zVlzXrM4hw1176scrIsmIDvil3b1m2OIfkbiO8NGosmVZKWW8s3EUsuOqk+E6Zw1kCdnC6jA6P0orSOuCyVy7D5E04GmGsi4wveBbwRvVsCvloGd53AWGe3Q43tcgGlowoaUYWRdJ8mcCl3qmLygg0puuJsArHOYFNw4BT592Q3nSvqHT0qFegHlbNzEYJiTlkUHJUYWskyGII8aPJsvWQdN4Bs3IdfUN6jTqEQtAF5m5fv/4KXTN1iW6EbubzadK3Ly+uGbnLhZy2gxu+VHyxMLPUqzHR+ybB0jmP36EVEK2XBM8e40RyzCHrN21Ac5vt0npSAu0pcL1xIOUyvZyMQwQb77X92g6GQDDT78VQ9V5OEPqRlZfgsbEfAgM35pj+y+ZFmYRIyi8HiBumSEn1hsGyJgGNADphzzY9UcQUy+nCHv4Q4Glh1seiCDZ/W8MNcD4o7j3esAPwUS1LIcHkjHTdS9q7qTkXdp5nELens/PStgeWbk5j/eXGbInPqqqKVmN3h49XRFvpCaBjyd2BBLn3qHalGgTCg1rqtc6eFLozWfvKfK7A31d2C0E/QmOcm2C345ARHPf+Yia+317/NB0LYXrOmgWxgfuoLuQO2x7r/UcH+3a+ciM/3/VIG73HPxBBDnogjxItIB2cwf6RI1xPPX0dW8vRRHRl85dWp2+R22yChNVFpdnJ9frfzNSMmGzB/1QFtbWmdCA2MhFiGZhWbqfzj73BoNrYHGvDj3cfpmDg3jAnYBkm11bTZB6gArgCEhZAkhg0o51preIblnrt0GF3GbNqtjE3ugKPTdO10iVsZSC+JRlbt24rrIM8VxgnskSF0GzKmlUGASD359iHExiOWdy7CpuYnKOZQwXT8vcNz5QOVrZZapPWDxe4oUEaZ8cx96OToHch2/VQM2/EOd4XvZvVdbgrSS/bsqnXuCpbwaJq1Wfk0hwV/Q6wt8CrrnJBH14xPz6RgJMSfaWhaSMni/b9pXIIxieC6HoGIWejJTPsQqCCsa+DQLRfXUVToPykfHqcmaQA2xYvD5pQmpO+inEfRS9SPdVJLQqnT7E530LvVOhAL7bXYPJaoGjDoU+DQb/XVTNvXpxQrz1ptpIJpuVo5B03pBP17DrP7K3Zj30JRJeBnPyO5iQmGVewha/+W9TYPgpOREYKVlp68Zv5nya7FJ9cD6SC+AXc2dlrRseGmWpwjhdrsXtejjqiuu+79VkB0FhIBDorPia61/bIJDHe6FcKQZPCEBfsQSpJjNfw6YdBtUgBaI+Kekv2jZkCqqtyn1OZ6aoIs4/UNLqqVrGLbCkGVYov4vxs4IgFsU7wKdIL5y+8x8j3dRtAbLP00uhliuWUTAFERqhjtAVLJuRbqVOvgJtd6i8fDATJ0gHSWGLl3rTidPlacV1eR56OpjRIM0nvIikLs6nYhJA+64Yf8B6pjta38sZOMGr7yjkeMmfSalOrj5iU1qpeT8EHUJA0uwY6sqKHi49hLAJEREcSQTIa/Gs/SUo+jmrn9upt/7H3P+0upcL9q1C7eByIc2Q3+O+u3gv4cUXudNojPzzXTWJb99ROu8EIvX0iKbCVAeB00NYxgTE+NJhoA8z8BRfOpAZO/7zkpW9Kr/SxDG39NiZvdki95nqDFnCEHxu03MOgW3uKNV5bzbHyGxpxyi9v1b+DAmqFg9/8wXMPfjLeIwmtr6hAezpwftFh3Z+0B4H0gtzNqkK9ASILugQIiaD/M5CEVNb6/828E13SBaP6ru6aSl1cSHBtOEfBJf90pF6vN2irYAGznBBP6L/QuAux3q/cEO1OIDr8VW3lCwkHFPvRawiqvCCTomJN63knhV1j129Sfx9FQtiPkfVBEJQdQIMLEnO6pvHlOYiMf6v7p2l6OrOcmjblOknjnk6XZBNk9x8ODrdw97u0+bqoTlBJJ7rQwuJIeVhxOFFiCPIDoXhyM/DdvJbYIxuUsi1C0cDOlaxD8kqJhtnMSNm7rD3b7kt/XcxX0PpcO+9dwgaZH+/1vJ8isflbA5deMLDKCUjUFVqxi8oMxWVOoz6K2UDrk4ZHMSI+mYWgtrwIg6sbmcSfWGJi8RgB28DUXmHfmweQAYXY9zOdm9332GijqKUrrQuDxxrcx24LKV5tNKUJmn/Fx4v0E42zDGnElRx1F1VE8vbuGCayR3VX1SzC41BRYQgy7vnZ2YsWJ4+wN8uqzQAMQeXefGeXjl6v+5Gth+3CSaNvxAQvVnWTOll8s3Yz8FAxyLfN+UE9u0OikSEHbxehQsk18UQnK/Bte6C5ao7h8lndTnIew9i+kOFG3fmCeTChwSrBtRK3om4eE6e/Ib5NILQWOzeHNTrq3Ja9xxo7iHxhpdNDk+45FmRETWj7lzHu9lBJ+N6HIliTx4ebOimafHGuMAQk/rrLqo526BKnfNL70U0ZictIRffUcA+EqgB/od12aLdNtHApzPNUk2aDzqYVUTjUJq713CO4k+ElkmgKNTlheIOQGJaLfYt2zxcI3bGKICC/CdDSmGZL8IvdCg2VWNd5mXFe83TOWa+CynklUgz7P5J2BW8HecVh8zbFjbK3IqvzrclMNZBab9v96jpY+9rUW2orqANqmMD8CWFCB0kJ0B/cAPB6gWmomP0/Nebr7g3i37jSvZGtIp3+NW3DrlFYPd+3yAh4NMBSeHPZYICvuLIgVgVZzYc611yGjNzX/kQTuNFMISqvy0xqK1bhUeVe0CB/xkxBaJc7f25Thu1pi3royuGc8xeVNPfCa3PyEJwlDAdCl1JglYlLyxKp31cYJad+frF9BTtg2atyn3nPGnb8AbNirVoRvZFGGncVowmzVYDFzMBUscxPD04OVppsOLujucz5plXKzPbP4fLSfOe9vDwC5E+7pxN9ts3e+7QDNewWYL1nopdmERkCNFz6Or+0Q6EiGZNgRQ6W9rnyrD5ZpeK3V5j0vsiFSyRAaHxJXMjIjT5/1hNOWE5L0nFYuJ6PXPMXpipXwGPC5C1tsoaQD6eU6j7aofdOXMJ+0B4/FVemfDwd9yo3SM2lY6RPH8N4dsFuP73QuDj86Jc3TDF2ha6FRz0F9gEoAtFFO01zfzERJWPv8AbRwXW84G7uEftUBmE4t6a7+83L7x0bjnytcovHAtQH1cP1w7eykr9KecU1mSDuA0XOKwzMnJLc4dKMDuolXwSVZDVQKcIC/wakMu3Wy0acpJ9CdCyUng6jl/GBUvUWcxIdxYM3V5uXcJiFYYy915ga7OpbRxKVqPw0dOhBqwdtVb+X5IGF9LY7L2mjQtHxUnZbKwjQRTczB9brYQ3lguw1/Z3M/HbblZ3OHm3nKdsOWhjdjKfPRLL7NDT6Dr7E7LSbHirO4x4QrAvpy0YB0hq4KkdZTlviH8cvLgLoMlYGjO6Kg1oQ1PTXKLC7AyERMbBT//T8owqQzTdw957NT/Fze+DOxtFKBGmpLmBYWWZMS719VVvZPPPqX7BcobsvITp34HSPDUxw4d6zXvWiXnKc4GateRrA3XCOz/oUr/Sivf0iFfOeBlem7ybyhsoFGP5wxi7Mb9AUDoFQmmrVdEnTUAjTGDxiin8lNQtzwoCJTtMtoXKOPZZGwo2xlXbWHFZqgcF7ImuHMmi2M8NXkyQSWvwDy2N3G/1ItnlJd+DOdeXNceJFvbQecOeIF+mbUSgYC81ShEKRKFN48/fEdDYVuVFpEws2Wki0GZSik4GxbxC6X+sRjfgL6IZV8+xKe1+GXnSU4hbrO0n+jZo5PjOQRZS62+/mhTWfc6Lw+E+SW8D+K0hs91RiUUcCLT94+SB8mAADLL8rso8uIKHRtuOIAsCy+MyLUz2NhEIw8vfRD8A6pmGhqo49ZXViF/Oy0Z5EKLNrfUcBM6aPElq25+bto/AF7Dad7OQqGmbtOzwiGJDqHExFmJnZY+yVvKKuKrsXSqVpbf+S9wl2G2l1S2wdhGpop39dlIJtHNqqwdMOBlIYkRmlxyn9RaZHFhSuZjZRI8OwlikMjJMsTID/zRo0q7Ss34C7SsWrmKT67qEz3SRSpgfPDi1ztIgZnebaQBRRUYGGXbKjauEdIdG88aqXJ1I7YXW24o+83B4x0Z2ZkRKzKq35+VKNyxff1X/M0OiF/u2JhdlqONcfx+6g2a/R5DfjdtPbYOL53L6XdohOLSNVGxnS/yZBxXvwtcRuxF8AqrlTRNMiRmWuSXFEocM++dkOJcUwDSsZ661767Fa0SyTUtazKATJdnw/JH3oy2Pl8WhDKAprZGvUCe4oINWg7ADlOPqzd2YSqabhoI3l1aNyRQpqq8cmJKwAglLLgffTT64mWIdzWZVUvkqT7/iwU74OFY/u/VoYbdgtBrBhPR2E9tNLarbKM9nfr0oMNHAHMiFrnl6FF8pKdw9TAQ+K7zkZlgIpH9IeyW4iGYPzsTLGxHeWOyb8sbG4GKWfDVEkU/29ECd4zpyilMjw9ricFsCvcIjsvEi948z3OfxxzhJlJLTxu4/s/YG9dN3VBhrgOVMpRvHT/Fv4t13A3QZlDqkupa3cq0xuz+/x0PLMxfdGXxq0xYIgsh3aLoZC6r4q8ck84K3+J7h15qPnpAy1XXLF+cma4yZUutMDzLoMGFqX5VSCvjga+XdXW7IPEWNrtfkqFOrxYBPAZq4UqTejoBjPRdtVmp/gnlg9Blhpcqy1e4lQj57AwmtusIqzTNPhCM0nTwNe7bDDlgXRTelAfBVEVjqxOyevLo7oZQB80H3AQ8PQyhYAxyFfnWTrzWEQ362GNiIZAWPVX5Srpt1qAtHAAcXcgkkYnyhF+h/LivuUQ5nzEdGWu4b0Tg5/GBlemKxogYGiE3JsFtlZryFzw8w54l0t7gHtSkNyXFBmaK6DHybYPuyAlbxqErEp6e8vtetKoFAHXbCIxFWtWDFPSJrUeduZvS28UpcAYHUenOHCHH0R5dAGchOxlZX8ShpovP+crKwqk2ioq5xlrt1fuCA3NbRLE35OvPvTNvs2E/hXhXEM3wzWrmYSZTSPEbFuhG7BAHpl08Xx4s3CLKoasA5qrtfm5MSJ6P75iaZDemA65Y1e9NJ9U+JXBkZUzoHhgxTFhgYaIE8X5EbyZuS5Jd/aWfQHCTl+bBfDFmvwaY9O7Dt80urv1KdYKOci8+TefvyynRUGLz0MEhowXR6n871KNi72s9cs4b6TR9/NTVdqkcF8axS6rlt80Zns4bsqTl1hCA9RolSbKwF31FRVNcTJL7+KdgSGseDgeWie5hdnM8jtLtA/J7Wtgdx6xDwpQ3pY/XarrlJjWgRdjn9Th8qNAwPx8D0/wUyhrra2Nc4jtxns1Kiglctr9tg4fxD1+JrGbF6xadtiJLpLgUnTm9QNq7bSth/8Ry1J/6oL1Y1N7+5SvEHBdmfGtW+ay0lWjszN29wHKw4horik9ZfD6bmlCIWdRiLEgGj6FLfjwnQtptPaH1KA4gV0/z+16biPrG+2d9SouAc/KpEP+c24MV9wV6BHgsiPEBJBF/OBBnuQAq6/M8rHge3zkJxhCkFzQjHwNitAZF6IYcND73urOKQeN3JRDzHNN8l/pXMiKxhTDadyXlxqqhX+plr8MlVPTucTd381ZiFRrL8ceO7qErAfYM+/6r5M4xpTxW5H5qgmsGR46+KUosbGNF6Es+PuCeoJ193db6bQ2Mu4VAEAADbOl7rVtKz9TU/B6smdJz8/OK/EizSBewdtBeeYRSvwNbVFRMayBQZzhuGWPrwWsOmE5WFRZGxveOMl+pOXmKAO55XNniMRgAa2GkyqtpUIEF9zvcRUHtppcXsBnC+DXRxJGxPcyaLYFx/+fNWrIo72W5oP76EWgGKJuCPM/ML+N2xP7bFCyKi+sOz5ECNU6yZ/JARTABWMoeyM0AZkUejOmyJNR7JCpAde5egjnSTLm5GWCkW39vgSyH5JWTe3ZRR7CLR6VRL89EPN/ca5sFG6
Variant 2
DifficultyLevel
325
Question
represents 43
Which of the following represents a whole?
Worked Solution
In this figure ?6=43
Each star figure represents 81 as 86=43
Therefore, 8 figures represent a whole
Question Type
Multiple Choice (One Answer)
Variables
| Variable name | Variable value |
| question |
 represents $\dfrac{3}{4}$
Which of the following represents a whole?
|
| workedSolution | In this figure $\dfrac{6}{?}$=$\dfrac{3}{4}$
Each star figure represents $\dfrac{1}{8}$ as $\dfrac{6}{8}$=$\dfrac{3}{4}$
Therefore, 8 figures represent a whole
{{{correctAnswer}}}
|
| correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2025/11/RAPH12-Q57-58v2_8.svg 290 indent vpad |
Answers