Measurement, NAPX-p169879v02 SA
U2FsdGVkX18zJEfJ0TEK+G0xVPqR6P7h61t7KkimrVWBtDRvSgpK208LmN3DGWsRiBSxrKSAU/wX/XuEC70yeDNpnIktk5D62+76WzT3+inunnnSbJyIR+p+qKrcWsxyy0FDAc9Ljbq95ARhkgo5eYxsUbM7x86Ao6KTXk1Lq7E7OwUstrSmCnBJYD7hBukNEDEqVeZpaFHE1yRkrEoNeYzxnV/6dvWhKuslMJxOSXI8JAyQbKnWs35wJk1uCv3bkxKjmzIEGS7wFNBE6myBTGPPZmCSiQbPCa6lt2ynVLjHx3qHKqixxNupdyIA5A54Rdu8C0Fd9bz3Nw7Pd4+/FOJ7Zb7QO8OfYggxqQX7a1w9ocaReVeAfzwYTgqXj8PNPDBBN+pNkI2tNOsVdd+EdF0xUd10ZX7BRgsODwrkW2nhMrjo9VcoiCSDRlaYy/9KznKmkE/fAXBBa6yJWR2jfb2Q0wJMKikIsG6royRWyNF2ZHWmW1a1n+jtsHs0A4DXD+zrStDLs8chkqtHaT/jw8dpw1EOpXMUaPRVSFFbIlruKZw0WBP2FI/2QLtLgzh9FVVbv8n0TlRYuX3b20olmJX5B0W0d8u8LoYs/VYidd9z9e8A4DxGBdz4kqhnMuKeCsc+XQCXT8QIR1nj0AYvjT2FR6qtmUy57pxy/QLyUDWBdddkvvOQia5oYFZUDNiz+heeS6OqMC4UF7y0f2SGaTvyWQz41cM1gy4zLjv+kAGLD6HuzXKnMjp/nOvI4qycrSaT2gHBZUpOede/eIb7w+3vxYYimCvZ6RDdNyJnW8gonZOudsO1tMj5PJl+dQCKDMZpbTUwgHlH1eGmumVy9j2vIQrkHAL5Bsn3wexW8ELi/t29rfEGBeapAeCVujLf4ekuMZRWqS6bA0gwNayNvWXMbkXcyvlygIg0ocI4kzlvYNk8vCZP3jXFsdhuq40NCCJMeY+4MaNARWYLHn7En1jb9e4O3H3+VeMHXQ/UqF3fX3TAaA0lbJpECVv8j7qDPdeDMME11zH9c5F13Ujjq7W3PuCIcTGoCxiZfKAQ3RHWli0rm/AVVWxvdc8kH4pxG+DGVtj6nc3dwrIke7ncI470YSpAf3TIrhxUienCUuP6AL5Ah2u7zOIOVRbI3NZuuj4giF4gbPKYhmh2mz+sJXkxZrL6n5Mrtm3C0E6RexvcsWaE5jy+9Sn7argqVJVQokcNTlkJsi2z/96j+iatqIFkKysEEJJGPMfFwcW8VmhvGHTr/sVrjqlqdWR1rukZbUlqTD+0kPfLZgdF5/0DIzky2oumXjrN/NsqqS2NPTJ7oKP7fKkwDVgNWUFx7p7HMCnZ9HbwmTLkJewVH4bl2J2zBI8yLlcbup8+PLWP47YtxsoZBuCYqrB1V0hxQz8WGuebRYHBKENcKI5gOeDmPIurAzKtnjiPbklsvkreMtY+zMRkkqU96wlov/e0/q/+GtjeQSo65mIfWaR9IJqAF7tLO1dd2LTfze9jQynZb48zeKYvUz9sRb8twAbCnweYwNNCPwoCSi5Rbr5OgYI6kUtExqdouEbPOV9BFV7EutPacE/1dwaOVSdwZI7IROusm5qEVKVdB5eDfI7Kor7Px8j6ygybF4HfZiQ0cUhChDZZpEmcLayrQaDPFUluSELPgnWR7H1Q7yCZwgIARehjHqdAdXHmlatxzLHEvjrNED7sydYebjV5IT9Lg0jqY7KK5sNU0MlzdO/De23KFQltn0fUY9cdcnw3y979QE7uyt9AjZIp5rKSSHgzFNDIyC7elH6HwjUTDu+iJD6Ehxgb2HyJnSwzseGK6btZ9PWq19/T3bTpYTvXBfs2xMDHIqoINv8JY2R27leuVF6ZOpEhNev18PzSTjFk/T1t6Gtvj3zCm9kHduZl/7254l/U9vOsQiokYNTDdbsSXg85qRZiJMwDImjmKdTQoIPBqPGNwj8aeJX1xspfZn7Jwzc98afFOZKBfozC0AfFGiHfShYZVwaj1qzttfaOfNTtG+670gU/4c96IS3dfIIBUJ1woRctDNa0eeqBapTnl0ZsjUWVBVx3IObeIae6yAtNoXLFDhF918n6Hwvy1t3qIEOUWKnbBTOW7voaVOGMctpYqlbSKEc7Z/vn11puDTrSPYNKVN1FDj7G4Ad/x9pCwLzNgonZDa+QcLJDA4rL5UWSUwkXAcUYusprjdL9BMYJVkSCedEaf7qD+U+eFyT/G0vuho2uBt7URTE1QSmA4gcChL2G3FAlY6F4QiAtOmhmliVWVa/Ee9v1iNUZjnniz8u8Q0V8es+jYlGvotAyb+IWbWggJQWbXGZdD+a6fWU0tscudiVBzOeAXcLw0hhbl7Y1P7BcP7a7NrFwSLJLr2/+VEeGuLmnHcW8cHFJ45GdIQ2hMyGTy8eAEsMWVYwKXmvXGHQ0TczxN4ODQEyS+trwadjIzAN4zmnweR6CPwzRcstmMQ599P+0tS0O+IZsHmkjNCpORSjr6jUcdX5tAk2rHYTniAf9bRwp3MIj3LJgCsk2CHOgrfmfZ3wBwxZkYpOTK0a6fyfcBuB+ADQ+35qtsDb8gCfE3ze/CNDDs32NL+HFvITgX1JehEcg8icHuLL9MWpaFcTZAFseomcs8WwEW2+L6pm9crjQp4l6d8Zz46+AdNSZkI4tq4+ZLoA/UqESafRyB8ek++p1c6+QoZ3locaZZBZZCVafEUAxyxASBPruC/xAJvOqT9xGP81o4RPMD/yCmbTXywoFVQFKdZAMPSr43xgxKiEakAnzNY7wDQr0jVBPNrbO7gcfBLsNXLmgZ2VFfhajKgVEQExBIze1EwdmkHvvt+UryNJmqZWp+SLnyczKsOscguwTeM2AWYTS10bHGw7/RKmFedz9Il8842u4NiCoPQ1m6SqmcJqpUId3guJH9regaigxzb+6HNR0WOgJ6Dg9x1QgdvgAyYs2tsSgpfxj+AzwRREFtSo1oh119s2mqPxJ+yQ6J0ZcM+7WkznTl3gAXQfFZcvMOQSnrjCTUEqxI9hyL24t4Zt5vMiZeSibcXEourEnde8Zv0P0laxE4y0jOA+m0o9ZhZ0zGoT5+RRsZ2qx08Q34n5fwbP1qgAqEBqzw9WIqiyeRecFYe0N4BHzn94NPeYA1mRXAscIJG6+8AzWIP/EcH1XL3fkoahlLoJLqqdlQqiwI4A6t6eBW7Xtwk+F0KoHpq3afoFCQC3Me1JWSpEh35fqP4c485hCCubq3p+QMgCgsh9lGub8njY8rqd2mYi1WjryYb0hFMsQ45ImrG10wNl1T6SuIWMTW5GsWYX2dfClGF2S9U0cmjPUK7Zq4VHZt8gowZCsdwESQiucT7N45UpWsXVEKiP+PkAYDxSFg5pDVfD38mjA1sL5MuRpttseWOi+zy7266yiE0jIMVETyKjXEgohh8aI0nlOkyvuYWxAhFQlMHpvO06EK7ZsN8NapLATaF7eBUXFWbrnOQxY4+r/XnIKMcW7l9o5smOfMPzYNIuPabbziSnGE8TBJXYJ70rvGu+s33JWm/lq8YU5YekUWwUxGbI7f/6eQi+lpxFh42StlAclBQ2bBXB6dJieQ2WgQNvlDDW5F1SsQQFiSdFc+5/93IT2XAyqAViSgOa6mO0Zl51DcmC1WPwABBkuF00K+MBebvk0OzMpDK1V+qjwxSKcAGc9pNwQNdBz8wuVJXxk+M9vnWo2mEOA7ccPxWoYDxe8d7OEU0Q8v8mK58ihaqceJHg3nLIbIh3katBhKuwJqsr31Df6rLjnT5wDrFfssEzhLSnEOG8KoIw6e8/rz5Rn9bFgsgwbaoCHds5QiCmtc+YBhj+uPCOUKX1jEHVFoLCWgL8/0aBM3nvUV/5gvcSJXyBcqkq4SWKwI8LdSxa/PTH91kRDaeO3FEgBH8OcXqlTocgQPOBUbQwx/Os0Y5Lxxr50O5qHDRYJ+Z0hreq6KKmQzcqy7TzXyvv/JY2rKkUVv8xCyTdKtC9420OyK23GMMYeggBAHyP6Dp6+Vjimxr4m3smaZnGhNkEVwIqG3TfHNSfGkupzBTlrMmZJkbmJO/nPdv9mV4o/BZs/8LUL4/m/Df5xb3JzJFyKWnYB7Uueu8t73POjH7Kx6vkpGQ+AVPRarEOjaLPcXNJsS3Z4RFMEH+nvXpgo+OOEi8yy+c4ju/WHgCkgH5CZ12ddoTShtiPNdRb4oa8OPasSZtetsMsqaEookxQ02AkXE8XZfzsMk3Ey20BLLIIiDBQjfsmRi8BkqHQsf8ZN/i2IOjrl+IGpRbToC0eTxB6KQXv0or75YtRcBdSNlGPq/6jey1lTDWO9r8M0rufm+9iJ9AAfOneTp0Mgm3DSQpC2/AfKZPqefpgIBQb4g6f84k0V7My/8EJxRzj9fXqNzCiePN/h9RngE6zwik27GIZZMpWIHhokgDrLYcc5139LxkY9Bus+jGmfzQP2NK0wrbKOEkypM0d+fFHcPWSZ9siMpFP+E8IgpEOUaPI4sLj6zwjov9TkPa0t3vHIwRKozhqYcxN6C3c+iqWX+7h8GvfTwr6Vxe2jGbcdmMCjtUddOjpicJwNJMl3p+vs6kNIKHwm5rSzFmgZTAD0tFiqRMxZlOFVmdkuQ/tcoYT57pRpRRtXx3T/QiURN+oeRk2ewzWx/X5H73XT8gx6r7Ow0Gb/g2HCHRuFp0bb3JwLe9cTbqSWX9DjCsz07k27UC9uiBLbSaV3MOBXWD9dHhDQH5iDRZHE27QCl+hkPh9qQvOLCp02sQc7SfDkzFlAIZ5pACctNT8YxdybH9rjSYaJu4GEQJPdL1UhqyUz/83x1BX5N68lH83bq92rSKrtgGCd+rrbIfdH9P3zHUjievBoSksMqWX118LhFu86Jl5W77xIxiuTW/8v1mzBx/tay2eG3C6u3PW5C893jOppyU/atNhvxF3bMA+HjnVDMBfYcMnlR04CINY7Da9eSTG/avQRt5pdL6Kad7IizikH/drP3jyRc14vk82C9eULUNwk38sSz8Rr9tOx6FTqnQiGB3EyBbmwXNRYJkvvTYRSQD0kWTnjJE8IW/94v8BapmvvlN/ESY13Ee7XuE+RJKnpg2Q6H/SxQPk7vx3uET2PMB97Jgtgwz9ObNlH1PBGJnXq4W1Z6m4DT2j7Cmf23paB0YqBnwb94THe6EsQlYCr0KgNrcKM6SrbfM7kkavek8VNoG2fDfydn3zeMOs6CXdK/EO0/oa6mbJSnj30zzlh39egPLXUtRiy2ScQFLET0+pjh95L2MWBzJ/eN0urXnBnRejirPv33oqb0SBwu8GgNKeQNk9B+5i95ApeUvTTHkHOR1477jN8D429FwFlmAhdecvTXWcg7ndQsz2ND9Rz9r+FvSmTtFHl7Wr8iucroANEabahy3N3OXz4uDo7UN4nRaYcjowU+AiFT7uq2TKgUjIsAraQwcfYZSrk6rBD1JwC1wYPyHhtIBMzjP5n0eAdpooepQVFL/ePommnXaqrXIkrUHdss/H1mVRtTTlNltAq/rMQvx2/GQa6kLbXUXIiQhBkkPlr7Q9MUZgMBr4V70TU76RMUgcgiwGCc4XH6Q+Omz+4apBU4tG7+6E36fTeN+RC4kWNArHveyqC31VM/6Htjmg5BGJT897O6zCbbX6sJzTbXZhoAbCQ/Akslco1JcYgH5Q2D5/oqkFlZzv6VBd1llBTLpO6MxBfWK5GJo9RT1bBkVgOsGBlaZyZlIEwY/O3uMqu8f/VZfeheRygWGjpe2mjKtMTemr66wGIbQv4MTkrG/knROyIQk9gFVey5BL3/zLA421TSNZ2mwg1cMFJznwfE0z8BAais9r1TLCN5eQi376UqVb63Kgx7Y+uw7V0RZXJGb3bHExMwM35oSbMjQ2T87LfxSS31spvBXzePuvUr0ITUX/ZIsMm0PE2cA5WisaJV6iQITls0L7ZUz62gQiWeoXpz++uFfWR/1M43RpxxDvJVC0XxVJots+PhVi3+Gq++H80LGBVH3sZhZUyzt1p1bSte6IhJD4Wv+iA+BVqq+bAucFlYUhej5zmRxKVaFKGJUx/0P3/VTGGOEFkRNPi0LzPRjkn9yLarwZSNRTX+H+YYVVIQEVtP9lnqK0S7zl91ZcfqMVHJoTPgRiN7Ve+yy++ohiNswzQ/13nfRxVcmPugZZ6uc6i6txwYZ1pZ9CZut+TxMITY1Wiyb7+B3EaU5jZYVJSJjIN+r9VV6B1+jk0WCvpsqGN7jUG3igGf5OQlcKQ7WClbV/wmHeejTJDI+scdYFj4kL0QWjkbJ9Rxli8kh4XOqHYjijft7VMNpB5538+9bLxs7qV5ka8UZcWdIK8R6NOhnA0EYqRHUcb06BJZYtwLLuRnG1F0T/SjXdgXA/VvHs99ueTRAMlWGCjs92hLQlVz87V/3X7GVbxevcMEe8/wBnni3iTUFlEMQjJtKOireRqUwrZ68FxuzDNV3L/Oob+p4nKjX/PJCG6Veke2iQePaATjFblAe73vzrVIzQb1py39U5ootLkwdYAOjn7WF+QgQtr+H7tlyjvEHjhlSGA84FVR5qKDEb9BIec8CVaMEhfvhn+azCuX3s503NDNo3O4CPde0i4HubqD6MBQy5fMelYGbPMP007OEaUknTK3xlpy5s0+S0M+Es7LfkJZSAaRxePBgG8oOsZIqWj/DcRzdrQaqiF2OSv+uWvJde/BMKw3N9l/RpvYnrnTMoWxL4LdXvMsIwPl3fvpiPkUf/8y3ECS9D77RScpVeE+6XUNPcjfqu7dEyCjEDps/i6tdJ9GMSzZVK3Zb9XScVi30p7OWUsGhdh6nEQv4nr27Ry4Y+Aekq/pCuFwZ+m27DlJ+XNzt4gL3JwzWI6BjJjOIcwWHv2BKucPzJBzPeetKerVU9z5kOFU459jv/d1ucHR5uV8mFML4vuhht807rfxzP1KYBMySEv7bzmOL8n5FYD1x8jrWvrSzfMEliiipMMeJn9hh1peN+ndikcQwBFPsRT/r2hNPj2vNx82+qGjXGt9AxBfm3xQMSsSPNCvOplmIDfsQ==
Variant 0
DifficultyLevel
671
Question
Timothy sketched a plot of land with the following measurements in metres.
What is the area of the land in square metres?
Worked Solution
Divide the shape into 3 parts:
|
|
Total Area |
= Area 1 + Area 2 + Area 3 |
|
= (15 × 12) + (23 × 10) + (21×11×14) |
|
= 180 + 230 + 77 |
|
= 487 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Timothy sketched a plot of land with the following measurements in metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/46.svg 240 indent vpad
What is the area of the land in square metres? |
workedSolution | Divide the shape into 3 parts:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/46s.svg 300 indent vpad
|||
|-|-|
|Total Area|= Area 1 + Area 2 + Area 3|
||= (15 × 12) + (23 × 10) + $\bigg( \dfrac{1}{2} \times 11 \times 14 \bigg)$|
||= 180 + 230 + 77|
||= 487 m$^2$|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 487 | |
U2FsdGVkX1+okuhdg5r8zFT+XfRmRgEYh3W2cEKhxC44XomemIGz2ck/coYdkpqfhYK3/kegwQ1X2RwuEc37UlC+mZDVax9cRKJkshdrSRwfOYkD9xpz6qic1ID5Q0O4cTE+AYPBdlU3yRBC+P+tIjQt6n3RzfLJdfBgyjQ+biptzj2KRjdFUOkUqmhz4ig46E7D/wWjejEenHuwhkyG3lF7kwrzglBMxN2polzQcw+skMQIBCril5SkANmBgWorlqxn4Am55aK7fiotgCFRLPpI0DuLxxhak2tcjFzfC61KbjAmkQK+oQu0h1eaa0UYHgc8rAosWXXTBps8z2K8mKj7IBfH76GUNMOsCDicTTzmDk4LkSIgnbCHugsGn8oTtxqPOYLyNunmlOGFqY2378XHs+v88CtCmhFkHagGwtE8KUGo15MBnNGNmzhC/crIu+qKI7Ams4pwbZUVxoz7gkT3ALeFVdfO9YZW4O7zke/Jgwewhz3KDn94Q3DLzlCeBW7mMBa2Bpz+NpNxn6TYCLCxwxw6h/MEeJSdDXGLUoBGUynyPHR3w23kF/BNjKgtMyerQI2/GloZaD9oRAs79cXtAPxdFYPCOwsZmI6jVVVYxbWrpga/ayABDlReDawlLb5ht9QfPN3bz0iolTsa2U1sMC6rBUgsQs+YUOtTnt4/fy3z8TP51wMiW7TBE1QwDneEqV86cogyFX1SfU52CvCBEEWBPrYQdzvp+UmhFEe33wVrS9PNBCCEsTGVLhwkVyAwaEGeTwE1zGZxwzycL1ui8ZoepZk5Pj776T1IzXqs1+B2zDRQyyAmrTC7eyDnMCBDRz7cF6xcwHPzCJ6z/AENTAez7+YJirAYGjrpBWR+UBesoZFZBsR9PB+GxlOz65yrcw+mEgqfAp+0vRdPIkmlEbFPAcK3xhJicMx/EIDqQF6inkV5smmw4GmMC7db1HkGZk3HGt+KcNxsKbfLHuNqywpxJvwXr0aOY1cLPiJrYysx6ccJXFr/qUAL2pDHFlhx0uPGHUsfAKlyPG2BK3qCm3bssXegFMi9rGtZOymclXSYg4I3sIlOdePF9HrNhTSasgQW6YxO3igAlmhJt7qR9Cw/luUUzNxCVqT0kw+jlyY31JbSotOsjIa2xQ5jk5hI9IXLigC9E2W1dn08LU6S59EVLY00fSTS5pvpCyGE3nBBM39qArg3D78QfwTCuG6EjTmMjNibvDfxbarUjQa6Z66roketwE0Pu2gQ0p895rSoWQGUkRjuRtv9mNNfcWHtesFuI45C8d2aozEgB316L33glVz9c9q48oXDQqAaHeyWIHd3GhE0+ijCXvj4pJPCLMA1dlZg2sCOSNUcQn7ZLMon4VFL+xonWuzQ1Qem500t7WSJYnsNC7pUJCYp9MGXyYoDSepeciHaepqOCynMskwZ9vsxmPscsUbnmpMan8PVFRzCBtnFVdRRyw7LnmJItv2DoKWQYFmrxvXWDo2WeaLztTToIxUqOS8pslyez/e7nOQj7+tfIUlHz6yhhASniXC3uqmp4E4a7++fY7Ole5p4p8CFJvJ5SccqOjR9rJdpGiIccg0HMonYoFy2tbgrEGiO5Tr5SI/odOYoB5UWEk0nukPfWrQjH+xHSMHjP0h+Hlyy5+BcWI0KbaWkKI6nrBbfHXaQ0UMybcnMVf/hmuVBIcHZhW4RE6a0bcFK7K+ARdipSXdgNkpBoeGuVK6+EzFqBAPLGEFrXgS44psojVA5EqJB091ajyxUsdouH1myiOOA2kCFiD0ZNfCTfH3q/TkqV1dID/oXI3UotOHa9UsAy52Wntp2OgXgZ1LDfoAQmuShqZ1dJ2/dbpA9tvrQDh6ZmQ6coNn9wR29tzaFWvNhJw5uB5ZwXecEwME1MYOPdA89a5i9mseD6pvYL7crUAqnDxkTnq/B3NlQ+okMSYHtTvGWxWipV37UhUnRjRIhlciZc4fzxldE7FepFTP52LP1Xy7Q2zfEAThAl9JLv5WL0fjV9f1TIDX3u3QbIqfpSWNtSI1gLqHl0MIy0smm+v2YgdCvwwWxGnD11F2vzIiPRcrhWo9wG+l2yhWYoiEaJpsgqf7HhSzRkIGJ0LIMufDCI+2Bop+6UGmhUOFZJmaeS4kkZBZ6937iDVR4DtgS3dvyjTOiCED8jv7Mj06PHLugZPiB+peoYiwkLh+nU53S3cIfNEapc4BcZnGmljfTn4Vg1ShovVgXzpV3d7yvqltzWWwQDV7F7/2UkSmvpmtLmJHj3k3eLGK1O6vuCrE2bVLOL0gmva0aa3y21EmO96rqUgAZkynTrRITQUMs5Cnpa+5/N98SvIL1EFGTFzxdVuNiWhhHVjsw+U1ZLB7U9VbFJXdPSDpQ6lMJJL/fv8BG0tAyjBY6dr1iKfghRsdtvR5WUt+HgV3VqWpxH2hSt2UUJntjjaMeSwbrFKQNCKO2D1TMAoe4RCTbI8sxLv5PokpASqPY4CVgg0bmZdLY0zjGhPpeTJqf1LYr7F9tg7WJyJi++Bvl7Rp7XSxQzoj5RwZ2tjACm8l1H/xtUmBAyyi1V8+1IbFLE6Mr372EHWaDovU99Am5aVHtdFi0ilACezDkKheUxPzPA7LsxSUrlQVvZ5H8KLX3IPfSxhmeWpdqW12r2gMZzv7qbtfhBwh9vyxmd9iG9tzRmKZGTtyh46Jo4MMTzHYQn9uK1hfhavjIG7CT9EFmGyf/7iTNzQr+Ssb6NENgiuKSh0xlAbQhdTaBdvbD+pnsrF51+aRa3NbkqS8qXWvggb/EH3JbM2J+QLicPLnuG2CkGUt1jRcn2qihK5UBtieRPDjupCbZb1R6lt7pXFgIyoRtTaC6DHa8XrPfJ+GsJml9fJqifqgf+cGJjf1pE/pkEEec+J9X7UNvFIfL4jy8Y0HaEgYIvQnPzvyV6wE31adWHiSR5RU+Nqnqbssfm006jqa/Z+vtisMbNBgdTHsmasqlQTOLVEDZIXeh4AefiC5s9vZA+h5UJtGeNI7f2XBZTdq675PXaIPfYoeXG31IVdUVTyLOr4sQhu/zs/svGUDJDkorhzPuZdUW8OAtxfJWDl/rjPXtrfN8sgkPZE28j9RgDzsQgiVZMlen9g1uX+KN/nAEsk9aezfX6S029djeibb3fMPZO9gmxNLWvLHoKswzKNVPVIP1deIvuBkEgPajNsq552fMuGOF8UxaUtPl1yb12mrr+7uFga5HXqyetpJrxajUkwx+YuG+OOPpN1GlCQie4hvJqGiLeb7foX9i2HEG9FzEpMzgfb48Tx00T6QFuBB20+SlwloXKhhsZ8dPJi6ZRhK94hPy9hdhG3Mvd9yvXOsVLH6V8PtWd5uvWXoi8yCoYaFY4uOxdk0/DwvZR8y1VWbAqxLhvbXLJd4CZJYD5JGQ4C0zFYlohh9qxPcg3VmyRQsJxNkCxYcy7oS/i6crSmgvw+NydUmcn9PMt8YYGt9aEwB/MskoUEh3TgvRRL6cfEwzVIs60bFt1GiRlL2fWAe1D4OAVuckA36lj9astXXiLZepuZys6Vx6QFV0hXpVHK3wUg5P9EWZegc3aKWN0v6rEXxe0Njyjkmg4kGfYTHB5g1S1Or1VGziueOgUHgkrbULLvMcyl1gag4XCDwsJIRtCCcfggPfIUur+Exj8FSdHUdQZCI9CZ5z0cnOzmvy+HU7fZ+scXAZ3al5kqH37vOOGukAJML8X7bPLxMeAj10jszI9CXhU9BDSVUB44aVxfKSASAQkEYRx4ECVgR1yet3RjuBozX5816B3lG9L5IumX9+skFSKs8TOzSrcwpSLHRWNXJLBFj00ux3VbU7Bnwd9OtvblVHDrJST/RYN2vO63b8aYzexLrb/dOUhKhD/051VHtKVkoI0TxzaYKpuweKm7P4XDzqtozUWPPOg1OoyVG5g3hFuH/OpLNxIVCiGr9L88WmQSICW+SaGBn2RkqTbAEOn6wDl/K16CHQV6aWm45vk2XEqes0+nHgmiSyomEeQaCUZyp/FoBkpj80ouGhiGSjiLbSHB4H4L46Rpm3sUjY8JNY0njfH0QvYIfXZ6X3P3S8F3RJMdJ7QCyjiV/k+JmmTARhAjzx6J4808pnmVtRztlaMB5HOHyg5XT2FgyXssO0rCrizOy9nPa2M71F7bxWoRllelQCw0qoB/GI/J0kI27F2OYqoKEca2jpZeLEYhVd/I7cQsjbRxptLReNPXOj92qDUwxO6UKLTz8FpdvYE+T7yfuS1u8Gy93A0javNtYAJeHsI6HkbY32yzoeRn6Ec7ALJ6PM4nkiIkG1Nx5rKbuFlzJSxB1vm8arfdOremcUGyhBiiWK65zeirLBsSz2YHe1nkoJFnQYhodoFbM29dtAfulccap4J3qgmekMbtlJ939flvcwj45r5R3fNsKB8guC3H1zKCzjXB+v8hzlSHslOURzLUjzOz77ErL1J0ckqXcv6RFI/WJInmQ4CLQPk3yx2zd3FSxt9o9ZOmpwqcxdC+2XcbJ1k7xOZjj2WsWpJo4eKIhfIKMd5VLKJZWbRiw8JUFrdjA1lUVnrTJz91o5fv9Vt0xEyqt8nPCVEVlY2dNQbx16Gbx8GTT1hyg4HYjrweAoOEoPix4oLNtRAuZM6qevK0Qnnz3d74ecZCjPZqoEcK+KtUdzxwvq08XETU9PSOiIt99x58JeW7dOk71GP/owWiJi99WR/gChAOqJItWnFETKzViGd0GLx1B84FvHgTfw5pFO6d3Jj3liXrCd3hYju72uJD1dJGtpGBiqMINdkqMEapy3ANPA6R3MRI3NWpb/GGyC/19H0XPOOk4GmCE9YY8M8X5VMvTDmVZ+135GMfLLgyaoLYIm6EdosGc53ty9J25lvRnfP8so0w4LBIzdaDVt565w0kjoBcDMuprCG78PGLN0Qblf6kWTCVloGvQF/q4MgCPKHeBh/p3E7SoSRZDYGuNQtZ4W3sVJLv3CYlXX//6d8Xhe3Jgi3kcrI7Brrs0fnes2T8mA448u6w+tW5oY6c92IRxSbT893vqJ7qgRfG7tnCOh3BeFpa6tfpZoFX93hB+dyeXDB9guMSbXx9QtukahdPF9PdAAL08rE8pFx4jjDxy/XvKYGDdeikVChEhALxC2PIjkxazYgbDpuu3ivEiP00jYLY2AJLObwlRRcpuog439IjdjG3mCYAYSNd23hxf+Mp1KLxyISILVrEORwSIY1WnLNCay3RMsu4RGLW/JLTWGvN7s9177pxOa9hD08MO9DgWeSodbTutUDxudOsvYZPbKcediFHmcufY42PissnJei5fcQojqFParBGf5xepJpUQEpHD7sAGk7BggkpjpFLGMIEP9rHiu/7AHsKXrYIaBByhSTBBXwkzXSwdGGgUKYcB27XVgbASZ0zv37cCYyJLhqMhe083J50DXWq20ynnm5QHodp6MeInNLsBENTJT/YuqhgqAO0ziu6NYmcvsfr9zOaj7H+q93YekcF0vV17BYw+hXirx41e6EY2TcfwhozfmtL9Pb3KDKX0SnDzRM4lqp3/rPP+dn09u9y3ql0hVZfm9NYCmgQDPslXhgRy5VKrjn4AdioQpqAzFUjdObXvhRs1TSGWWAidFf8iuvcD+3iqv+8anOHZ1ckJWmD8qf5RliM/MNIxd3/RngSPY8To1h/B3gkUQG2DSJx/rI2KxlANInc/SLaExMwCsbt/PPthyGy1W4QkKszD7BGyazxWsnQqGZ1pHdJWONtvEjYOmoG0hg39n3XOTHdDpDl8ftaepriFLM0v+CG8qHnkr9mmYBfDkc65lwfwWnyEYDGp7etYKdAf8llUQ6sGtAZSpB2nymLWC2AFnuZGY+f1ywZDHAcdx1DCacRXC++hgxLUcqBTVNGH/W4pIZ0YrFP6Qr/t5lLmZdMC+jOAdXkowIaoCNb9/pNAsH/JmJVGfE2oOUgyEnSmFSjCdfS0j2vXvzVzUVCU6/7B2M/5yBVq4v2bwxrjpe58rWC7XbTTB+rQszlOb9rr9M5eV0kNeTjNmZ6f9MIZbAI9ebUjKDUZnT0+iGuSRE7/jZz5obArCSdfMu9dib4/ACHfUgRARrRWaRvOCFVoSeoCd0YG76k2jf6E4L4HRvwsPrcuR3ccu1Q3xVmCxvQD6ghT+vr4hJJmglpsBGR3qqVHxW5+ZDLM8O8LweMIX4YEr4jg4Xzr9rRMuPOxTo7d/hjAjsAY8Jer7E3pA5yGy4gVKUkfRI2rsQTLDuNWiNl8cmPPAr3LqFWqXiLZFGU7Z4PZ7Q7W/2LB5UVieMhZRe44mUYi/sLNX7udSIzYGVksIpIv5AvRaOs+DT8UOu5UVIH6G6pv/PW0y9y0HPtFiuHT3qSyhBIMpECVYDCXcPrIDlvVDMSh1X1EChvsmtU2p6S+s+EbBSFijhcv78XIqaJIhu/x47pm5r2kjEE5GjOTbNmEVTyX8MzPxdGEGwPO61NMaVBfaCtwIaD2rn1ePaxQd8MnJAekvfJrQtGZPzawTLiPkI2qxOD8cUCy4Z+DNOcOdh+SeJDEZsuvEZsKspaxiN/SeN6/ndkGnv3pWpJyTucQcsDCA4uEF7V+91uAc8wbT/wzV6wrS/Q4O1BM8II3oP0HqSDX3tmTorESGknnagWUs3/zu9i02lWiNwKLC8YKfon2D2qovWxPwHxkRBzU5+G19nwe01PbVDGCxtVdwY2N+vevwhW9IcbAtYwz0SS39CnqvQnMajpAh1NrC7rd2CCmGkqBFZNv/UVmuWO1fNXtK6JAUlBvWxC1Xe0BqzISETo88rvd6hBSgvTewia3v1gh7vLAMJvJqNP0Q++KefGQuaWx2rKiu+z4uZEK4nUE+B2tTIo643MCGl9c3d8diOx8mXd0lGm//3jt2EO40QQu4vKMpk3MICX23iPRsEqY3tdSTrrcXa12vxh2U3hKFfmwm9sYSIz5S8zfOSvXlPREdVjtA/gYyAdgrHaK7KhQ3dHU89FHcs5keBXju66Aky7qTKH2Ci6ZCE6gci/nbgPEB162C/mpKA5aLb5WKzpHPkaCCvL7jTH8y0RGV3+EpxRNW9uVlqIw7gVnyIDgc3MZ0zvZ4wuDaq1YgLC76D1sGatNu45fPbHGC1HzltE3MfIx0pcTaBa7EZTV4O8P0j0vYL8eXG7ZCXQDOA6pH8iZCKbGO98sn9aF0H20SWY6sMk54fWiOqYVCdQiJ+5ougTtCT/f+o0oCm7xwpzRp3/u7byPQS6pJ30WKsBatECvRP0mCNuQu+2wl2GY0uTLrb9VArETntUbf40peiVR3TS2dDHqHEfgHValCP26/X2pBGbTpZ4VSf2Fq11qtI0NpV/XYyqUtbAymKvlzM+tn0l1HWfVWaoQCjYA3YEzM844dcU+5Y0OHb7Y36RkKFaCqilDXUNomCqIr/ZciN+8zAaMWd7J+nSOYjoMKmdy3Up33LBj8TsbYQIyD4bwoLw/Y5ENMlXTJyzPeyv8bMn40AkW8u/qUIm14l+vApMaJc08y14H8V4GrcqOVBrKt0OIAa+VT5HAomZBnlaH+vh9P4VsxVS8J1X919PrvS9+VONruiNeQpgUBGktOF3LWxaMrq2DWyubu00+S0D5X/HX2ld3HOZ593oH/IuW2eyePSxSvrraNiGIaUBVskEV9oTcDgq7QkCZpFc15WAhA2JlthGYUhtVfLPMqpd+ms7pJUNi0BTwROzyWgOuPMGZiv/5s8R0HrpS1uVDBB//2CgtkJq5J+58+wAz9H0SyixgK2batQJaK8bXU30h4I3d5SJmKaLFqyfUHUWUqpkNya6EFiTZcV2Z+HjwLqc/tyAOu9nK/DOfAo9Bsz4gCO1613ZK22T/5MlHLg0HJ+vPd4vMaIO6baBKd6ZQ4uiHHgANz8GabDZ9uvLBanvvjpBifqVbeZwFMqZu+/fx5I+nwQ+P8NGJfSHAYcoOzCeLkL7PyUVLQk03irZc/tdU/lCnd+TqJOtlgrKXY
Variant 1
DifficultyLevel
671
Question
Hana sketches a shape with the following measurements in centimetres.
What is the area of the shape sketched by Hana?
Worked Solution
Divide the shape into 2 parts:
|
|
Total Area |
= Area of triangle + Area of rectangle |
|
= (21×4×9)+(8×9) |
|
= 18 + 72 |
|
= 90 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Hana sketches a shape with the following measurements in centimetres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/45.svg 260 indent vpad
What is the area of the shape sketched by Hana? |
workedSolution | Divide the shape into 2 parts:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/45s.svg 260 indent vpad
|||
|-|-|
|Total Area|= Area of triangle + Area of rectangle|
||= $\bigg( \dfrac{1}{2} \times 4 \times 9 \bigg) + (8 \times 9)$|
||= 18 + 72|
||= 90 m$^2$|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90 | |